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Exercise 4

If you have questions or need suggestions: donati[at]zib.de

1 Dynamics of a chemical reaction
Consider a vessel with three chemical species A, B and AB. At time t, there are respectively nA(t),
nB(t) and nAB(t) molecules of each species that can react according to the chemical reaction

A+B
rF−−⇀↽−−
rB

AB , (1)

where rF is the forward rate at which A and B react to form the compound AB (dimerization),
and rB is the backward rate at which AB can split into the two species A and B (dissociation).
Note that rF and rB are microscopical rates, in the sense that they do not depend on the number
of molecules in the vessel or its volume.

To reduce the dimensionality, we assume that nA(t) = nB(t) = n(t), and introduce the variable
n(t)+nC(t) = N . The variable N is not the total number of molecules, but it is a constant quantity
that does not change over time and it is useful for characterizing the size of the system (see table
1). Thus, the time evolution of the system is fully described by the variable n (i.e. the number of
molecules A and B) and N from which we can calculate nAB = N − n.

time n = nA n = nB nAB num. molecules N = n+ nAB

t1 10 10 12 32 22
t2 9 9 13 31 22

Table 1: Example

Under these assumptions, the macroscopical rates, i.e. rates that take into account the number
of molecules per species in the vessel at time t, are defined as

rFn(t)
2 , (2)

for the forward reaction (dimerization) and

rB(N − n(t))2 , (3)

for the backward reaction (dissociation).

Computational exercise Simulate the chemical reaction described in eq. 1 using the Gillespie’s
algorithm:

1. Estimate the total rate at time t using eqs. 2 and 3:

r(t) = rB(t) + rF (t) .

2. To estimate the time at which the next reaction occurs, draw the timestep τ from the distri-
bution

r(t) exp (−r(t)τ) dτ ,

that describes the probability to change the system state in the time interval [t+τ, t+τ+dτ ],
with dτ infinitesimal time step. Calculating the CDF and by exploiting the probability integral
transform theorem, the time interval τ can be calculated as

τ = − log(u1)

r(t)
,

with u1 ∈ U(0, 1) random number from a uniform distribution.
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3. After having calculated τ , we need to select which reaction occurs. Given that one of the two
reactions will surely occur at time t+ τ , we estimate the probability of the forward reaction
as

PF (t) = rF
n(t)2

N

1

r(t)

, and the probability of the backward reaction as

PB(t) = rB(N − n(t))
1

r(t)
.

4. Then, we draw a second random number u2 from a uniform distribution U(0, 1)

5. If u2 < Pf the forward reaction occurs, otherwise the backward reaction occurs.

Using the Gillespie algorithm, generate a set of trajectories, then construct the probability distri-
bution (the histogram) at different timesteps.

2 System size expansion
The master equation of the system described above is written as

∂P (n, t)

∂t
= −

(
rF

n2

N

)
P (n, t) (4)

− rB(N − n)P (n, t) (5)

+ rF
(n+ 1)2

N
P (n+ 1, t) (6)

+ rB(N − n+ 1)P (n− 1, t) . (7)

Here, we solve the master equation via a linear noise approximation method called system size
expansion [1]. The idea of the system size expansion is that the dynamics of the stochastic variable
n(t) can be decomposed into a deterministic dynamics of the concentration φ(t) and a stochastic
dynamics of the oscillations x(t) according to the ansatz

n(t) = Ωφ(t) +
√
Ωx(t) , (8)

where Ω is a parameter that represents the size of the system, in this context Ω = N . Under this
assumption it is possible to derive an ordinary differential equation for φ:

φ̇ = rB (1− φ)− rF φ2 , (9)

and a partial differential equation (Fokker-Planck equation) for the probability distribution of the
oscillations Π(x, t):

∂Π(x, t)

∂t
= − ∂

∂φ
[2rFφ+ rB ] ·

∂ (xΠ)

∂x
+

1

2
[rFφ

2 + rB − rBφ] ·
∂2Π

∂x2
(10)

The solution of eq. 10 is

Π(x, t) =
1√

2π ⟨x(t)2⟩
exp

(
−1

2

(x− ⟨x(t)⟩)2

⟨x(t)2⟩

)
, (11)

where the mean of the fluctuations ⟨x(t)⟩ is solution of the ordinary equation

∂⟨x⟩
∂t

= (−2rFφ− b)⟨x⟩ , (12)

while the variance of the oscillations ⟨x2⟩ is

∂⟨x2⟩
∂t

= 2(−2rFφ− b)⟨x2⟩+ φ2rF + rB − φrB . (13)

Given a solution for eq. 9 and eq. 11, the solution of the master equation (eq. 7) is finally written
as

P (n, t) =
1√
N

Π

(
n−Nφ(t)√

N
, t

)
. (14)
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Computational exercise

1. Find x(t), ⟨x(t)⟩ and ⟨x(t)2⟩ solving eqs. 9, 12 and 13 with a numerical method. For example
using a Runge-Kutta method (RK45 with Python and scipy).

2. Use ⟨x(t)⟩ and ⟨x(t)2⟩ to estimate the probability distribution of the oscillations defined in
eq. 11.

3. Use eq. 14 to find the distribution P (n, t).

4. Compare P (n, t) with the distribution estimated by Gillespie’s algorithm.
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