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Lecture 4a

Equations of motion for stochastic processes
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I. INTRODUCTION

There are two ways to describe how stochastic processes evolve over time:

• Time evolution of probability distributions P (x, t) (continuous or discrete) in proba-

bility space (Ω,A, P ).

• Time evolution of random variables X(t) in sample space Ω.

Last lecture, we have considered the first case, and derived the master equation and the

Fokker-Planck equation for a specific class of stochastic processes, the Markovian processes.

Here we consider the time evolution of random variables X(t) that describe the time evolu-

tion of physical processes, e.g. the time evolution of a Brownian particle or a random walk,

and derive a stochastic differential equation. For this purpose, two strategies are possible:

• We can derive a phenomenological stochastic equation of motion, i.e. we guess how

the equation should be constructed based on our experience.

• We construct a stochastic equation of motion from first principles, i.e. from a purely

deterministic model.
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II. PHENOMENOLOGICAL LANGEVIN DYNAMICS

The first route, is the one taken by Paul Langevin in 1908 [1] to describe the Brownian

motion of particles suspended in a fluid. Consider a particle of mass M in a fluid, then the

equation of motion of the particle can be written as

MQ̈ = −dV (Q)

dQ
−MγQ̇(t) + fr(t) , (1)

or equivalently

Ṗ = −dV (Q)

dQ
− γP (t) + fr(t) , (2)

where

• Q is the position of the particle.

• P = MQ̇ is the momentum of the particle.

• V (Q) is an external potential energy function that depends on the position, for example

the gravitational potential or the Lennard-Jones potential;

• γP (t) is a frictional force due to the fluid that dissipates the energy of the particle;

• γ is a friction constant with units [time]−1.

• fr(t) is a random kick that the particle receives when it collides with the fluid’s

molecules.

Here the notation ḟ = df/dt denotes the time derivative of a function f . The force fr is a

stochastic process, but how can be modelled? We expect that

⟨fr(t)⟩ = 0 , (3)

⟨fr(t), fr(t′)⟩ = δ(t− t′) , (4)

i.e. the average is zero and the action of the random force on the system does not have

memory, then fr(t) is a Markovian process.
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III. DERIVATION OF THE GENERALIZED LANGEVIN EQUATION

In what follows, we derive the a stochastic differential equation from a purely deterministic

system. This model, known as the Kac–Zwanzig model, studies the dynamics of a particle

coupled with a heat bath represented by a set of oscillators that exchange energy with the

particle.

Consider a particle of mass M governed by the one-dimensional potential energy function

V (Q) : Ω ⊂ R → R. The dynamics of the particle is fully described by the pair of time-

dependent variables {Q(t), P (t)}, where Q denotes the position, and P denotes the moment

P = MQ̇. Assume that the particle can interact with N one-dimensional oscillators of mass

mi, position qi and momentum pi, with i = 1, 2, . . . , N , through a potential 0.5ki(Q− qi)
2,

where ki is a spring constant with units [Nm−1].

The complete Hamiltonian that describes the dynamics of the system is written as

H(Q,P ; q1, p1; q2, p2, . . . ;QN , PN) =
P 2

2M
+

N∑
i=1

p2i
2mi

+ V (Q) +
1

2

N∑
i=1

ki(qi −Q)2 , (5)

the equations of motion of the particle are
Q̇ =

P

M
,

Ṗ = −∇V (Q)− 1

N

N∑
i=1

ki(Q− qi) ,
(6)

the equations of motion of the oscillators are
q̇i =

pi
mi

,

ṗi = ki(Q− qi) ,

∀i = 1...N . (7)

For the entire system, we need to solve 2N +2 equations. However, typically, the trajec-

tories of the oscillators which represent the environment in which the system is immersed,

are of little interest. Thus, we are really only interested in solving eq. 6. The question is, is

it possible to solve eq. 6 without also solving eq. 7 directly?

For this purpose, we first differentiate with respect to time the first eq. 7

q̇i =
pi
mi

, (8)

obtaining

q̈i =
ṗi
mi

, (9)

miq̈i = ṗi (10)
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Inserting eq. 10 into the second equation of eq. 7 yields

miq̈i = ki(Q− qi) (11)

q̈i = ω2
i (Q− qi) (12)

q̈i + ω2
i qi = ω2

iQ , (13)

where ωi =
√

ki/mi is the angular frequency of the ith oscillator. Eq. 13 is a non-

homogeneous, second-order differential equation. It can be solved using the method of

variation of parameters: (i) first, we find the general solution assuming ω2
iQ = 0; (ii) then,

we find a particular solution of the non-homogeneous equation. The general solution of the

homogeneous part is

qHi (t) = c1 cos(ωi, t) + c2 sin(ωi, t) , (14)

A particular solution is obtained by varying the parameters c1 and c2:

qPi (t) = c1(t) cos(ωi, t) + c2(t) sin(ωi, t) . (15)

To determine c1(t) and c2(t), we solve the system of differential equations,
ċ1(t) cos(ωit) + ċ2(t) sin(ωit) = 0 ,

ċ1(t)
d

dt
cos(ωit) + ċ2(t)

d

dt
sin(ωit) = 0 ,

(16)

and find the solutions 
c1(t) = −

ˆ t

0

ds ωiQ(s) sin(ωis) ,

c2(t) =

ˆ t

0

ds ωiQ(s) cos(ωis) .

(17)

Inserting eqs. 17 into eq. 15 and applying trigonometric rules, we obtain

qPi (t) =

ˆ t

0

ds ωiQ(s) sin(ωi(t− s)) . (18)

Finally the solution of eq. 13 is written as

qi(t) = qHi (t) + qPi (t) , (19)

= c1 cos(ωi, t) + c2 sin(ωi, t) +

ˆ t

0

ds ωiQ(s) sin(ωi(t− s)) . (20)
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The integral in eq. 20 contains the variable Q(s), i.e. the position of the particle, which is

the solution of the first equation in eq. 6. Applying integration by parts, and bringing on

the left-hand side Q(t), we have

qi(t)−Q(t)

= q(0) cos(ωit) +
pi(0)

ωimi

sin(ωit)−Q(0) cos(ωit)−
ˆ t

0

ds Q̇(s) cos(ωi(t− s))
(21)

Finally, inserting eq. 21 into the second equation of eq. 6 yields the Generalized Langevin

Equation (GLE):

Ṗ = −∇V (Q(t))−
ˆ t

0

ds Q̇K(t− s) +R(t) , (22)

where

K(t) =
N∑
i=1

ki cos(ωit) , (23)

and

R(t) =
N∑
i=1

ki [qi(0)−Q(0)] cos(ωit) +
ki

miωi

pi(0) sin(ωit) . (24)

The GLE is made of three terms:

• A Markovian term that depends on the external potential V (Q).

• A memory kernel which conserves the story of Q(t).

• A noise term that depends on the initial conditions and physical properties of the

oscillators.

Given specific physical characteristics, initial momenta and initial positions of the oscilla-

tors, eq. 22, which is purely deterministic, can be replaced by eq. 2, which is a stochastic

differential equation.
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