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Lecture 4b
Solutions to the master equation: method of generating functions

and Gillespie algorithm
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I. INTRODUCTION

Consider a random experiment with discrete outcomes defined by the probability space

(Q C R, A, P) and the master equation

%p(m,t) = /Qd:v' (W (x, t|a’, t)p(!, t) — W (2!, t|x, t)p(x, )] , (1)

or the equivalent for processes defined on discrete sample spaces €2 C Z:

0
5 (n,t) = Z (W(n,t|n',t)p(n',t) — W(n', tin, t)p(n,t)] . (2)
To solve the master equation there are several options, for example:

o If the rates W(z, t|a’,t) and W (a', t|x,t) are linear: probability generating functions;

e Time-driven or event-driven (e.g. Gillespie algorithm) simulations;

Here we see the method of generating functions applied to the pure birth process, and the

Gillespie algorithm for a generic system with NV states and R reactions.
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II. MASTER EQUATION OF A PURE BIRTH PROCESS

Consider a population of n individuals that can increase by one individual at a rate of yu:

ntn+1. (3)
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FIG. 1. Pure birth process.

The transition rate p (units [time™']) represents the probability that an event occurs

in an infinitesimal timestep, then the transition probability (unit less) in a timestep At is

defined as

P(n+1,t+ At|n, t) = pAt. (4)
The probability P(n,t+ At) to have n individuals at time ¢ + At is given by the sum of

e the probability there were n — 1 individuals at time ¢, times the probability to increase

the population by one in a time step At (eq. 4):
P(n—1,t) - uAt,

e the probability there were n individuals at time ¢, times the transition probability that

no increase will occur:

P(n,t) - (1 — pAt).
Then
P(n,t + At) = P(n — 1,t) - pAt + P(n,t) - (1 — pAt). (5)
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Rearranging eq. 5 and taking the limit At — 0 yields the master equation

OP(n,t)

e uP(n —1,t) — pP(n,t). (6)

III. GENERATING FUNCTION METHOD

Consider the probability generating function

G(z,t) =Y 2" P(n,t), (7)

where z is a complex number. Multiply the master equation defined in eq. 6 by 2" and sum

over n.

0%, 2"P(n,1) o o
T :u;z P(n—l,t)—u;z P(n,t)

o0

aG n - n
En :,u;z P(n—l,t)—,u;z P(n,t)

= ,uzio:z”_lP(n —1,t) — ,uio:z"P(n,t)

= pzG(z,t) — pG(z,t)
- :U’(Z - 1)G(Z7t) )

The last line of eq. 8 is an ordinary differential equation, whose solution is
G(z,t) = Ae H=Dt (9)

where A is an arbitrary constant. Using G(1,t) = > 7 P(n,t) = 1 (from eq. 7) and
G(1,t) = A (from eq. 9), we obtain A = 1. Thus we have

=e M Z %(uzt)” (10)

From eq. 10, we find the solution to the master equation

L (utyrent, (11)
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FIG. 2. Poisson distribution.

which is the Poisson distribution.

Using the generating functions, we find the moments. The mean is

o) = 27

z=1

= Z n 2"t ‘z:l P(n,t) (13)
n=0

= ZnP(n, t) (14)

where we used eq. 11 into eq. 14. Likewise, the variance is

% B +(n) — (n)? = (n®) — (n) + (n) — (n)* (17)
= 2+ pt — (18)
= ut, (19)
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where we used

o
022

= > n(n—1) 2" _ P(n,t) (20)
=> n(n—1)P(n,t) (21)

=3 " n?P(n,t) = Y nP(n,t) (22)

= (n*) — (n) (23)
= 1?2, (24)

IV. GILLESPIE’S ALGORITHM

Gillespie’s algorithm is used to generate paths, whose time-dependent distribution is the
solution of the master equation. Consider a discrete stochastic process characterized by N
possible states and R reactions with rates u(n, t) = {u1(n, t), po(n, t), ..., ur(n, t)}. For
example the chemical reaction

A+BE AB, (25)

p2
has N = 3 possible states and R = 2 possible reactions. At time ¢, the system is in a state
n(t) = {ny(t), na(t), ..., ny(t)}. Then the algorithm is used (i) to calculate the time ¢ + 7
at which the next reaction occurs, (ii) to select which reaction occurs.

To derive the precise steps of the algorithm, we introduce the next-jump probability

density function [1], which represents the probability that, given the process is in state n at

time ¢, its next jump n — n’ will occur between t + 7 and t + 7 + d7:
p(n', t+7+drin, t). (26)
Eq. 26 is the product of three terms:

p(n', t+ 7+ dr|n, t)

=qn'#n, t+7+drn, t+7)x (1 —qn' #n,t+7|n, t)) xwn', t+7n, t+71),
(27)

where
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1. The first term is the probability that the system in state n at time ¢ + 7 will change
state in the next infinitesimal timestep dr, independently on the arrival state n’ (we

just require that n’ # n):
R
gn' #n, t+7+dr|n, t+7) = Z pi(n, t +7)dr = a(n, t + 7)d7; (28)
i=1

2. The second term is the probability that no system change will occur in the time interval
[t,t+ 7]
(1—gn"#n, t+7|n, t)) =exp(—a(n,t)r) (29)

3. The third term is by definition the probability to make the specific transition n — n’

in a lag time 7.

Note that all three terms are unit-less.

p(n’, t + 7+ d7|n, t)

b+ 7T+ drin, t+7)

t t+T t+7+dr

FIG. 3. Description of jump probabilities.

To derive eq. 29, we divide 7 in k < 1 equal intervals of size ¢ = 7/k. The probability

that the system will not change state in a timestep ¢ is

R

[J = pi(n, )e) 1= pi(n, t)e + O(?). (30)

=1 =1

Then

(1—gqn' #n,t+7|n,t) = (1 - Zui(n, t)s) (31)

= exp (—T > wiln, t)) (32)

=exp (—7a(n, t)) , (33)
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where we used
1\ *
li 1+—-) =e. 4
i (1+7) = e
In conclusion, the next-jump probability density function (eq. 26) is written as
p(n', t+ 7+ drn, t) = a(n)dr exp (—7a(n, t + 7)) wn', t + 7|n, t + 7). (35)

In a event-driven simulation, the first two terms can be used to determine the time ¢ + 7 at
which the next reaction occurs, while the last term is used to determine a specific reaction.

The lag time 7 can be determined calculating the cumulative distribution function (CDF)

/OT dr' a(n, t + 7)exp (—7a(n, t + 7)) (36)

Assuming that the process is temporally homogeneous, i.e. that the function a does not

depend on time, we obtain

/OT dr’ a(n) exp (—ra(n)) = —exp (—7a(n))|y =1 —exp (—7a(n)) . (37)

Because the CDF is a number between 0 and 1, we estimate 7 applying the probability

integral transform:

1— ™™ =4y € U(0,1), (38)

where u; is a random number drawn from the uniform distribution. From the inverse of the

CDF, we obtain

log uq

= , 39
After having randomly drawn 7, we select which reaction occurs. The ratio

a(n)
is a number between 0 and 1 and represents the probability that a certain reaction ¢ occurs.
Then we draw a random number uy from the uniform distribution and the next reaction is

given by the first integer 5 for which

Zi fi(n) w
—CL(II) > Uy . (41)
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FIG. 4. Trajectories generated by time-driven and event-driven simulations.

V. PROBABILITY INTEGRAL TRANSFORM

Consider a random variable X defined on the probability space (€2, A, P), where P : A —
[0, 1] is a probability measure with probability density function such that
P(XeA) = / drp(x), (42)
A
with A € A and [, dzp(z) = 1. The cumulative density function (CFD) Fy : Q — [0,1] is
defined as

Fx(z) = /ﬂﬂ dep(r) = P(X <ux). (43)

Theorem. Consider a random variable X with a continuous distribution P and CDF
Fx strictly increasing, then the random variable Y = Fx(X) has a uniform distribution
U(0,1).

Proof.

P(Y <vy)
P(Fx(X) <y)
P(X < Fx'(y))

Fy (y)

FX(F);I(?J))

Y.

The CDF that satisfies Fy(y) = y is the CDF of the uniform distribution with probability
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density
1 z€]0,1]
p(X) = : (44)
0 else
indeed
z € [0,1]
Fx(o)= [ dzplo) =0 Fx<0. (15)
1 ifx<1
[

From the theorem, it follows that if we need to generate a random variable X from the
distribution P, then we can draw a random number u from the uniform distribution, and

take the inverse of the CDF:
X = Fy'(u), (46)

where u € U(0,1).
We have required that the CDF F is strictly increasing, thus the inverse Fi' is well

defined. The theorem can be generalized by introducing the quantile function, which is the

generalization of the inverse of Fx:

71 o . .
Fy'(y) =inf{z: Fx(z) =y} . (47)
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FIG. 5. Probability distribution, CDF and inverse CDF.
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Probability density function
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FIG. 6. Given a set of random numbers extracted from the uniform distribution (y-axis), the
inverse of the CDF F'y ! makes it possible to generate a sample of points distributed according to

the P distribution (z-axis).
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