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Lecture 4b

Solutions to the master equation: method of generating functions

and Gillespie algorithm
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I. INTRODUCTION

Consider a random experiment with discrete outcomes defined by the probability space

(Ω ⊂ R,A, P ) and the master equation

∂

∂t
p(x, t) =

ˆ
Ω

dx′ [W (x, t|x′, t)p(x′, t)−W (x′, t|x, t)p(x, t)] , (1)

or the equivalent for processes defined on discrete sample spaces Ω ⊂ Z:

∂

∂t
p(n, t) =

∑
n′

[W (n, t|n′, t)p(n′, t)−W (n′, t|n, t)p(n, t)] . (2)

To solve the master equation there are several options, for example:

• If the rates W (x, t|x′, t) and W (x′, t|x, t) are linear: probability generating functions;

• Time-driven or event-driven (e.g. Gillespie algorithm) simulations;

Here we see the method of generating functions applied to the pure birth process, and the

Gillespie algorithm for a generic system with N states and R reactions.
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II. MASTER EQUATION OF A PURE BIRTH PROCESS

Consider a population of n individuals that can increase by one individual at a rate of µ:

n
µ−→ n+ 1 . (3)

FIG. 1. Pure birth process.

The transition rate µ (units [time−1]) represents the probability that an event occurs

in an infinitesimal timestep, then the transition probability (unit less) in a timestep ∆t is

defined as

P (n+ 1, t+∆t|n, t) = µ∆t . (4)

The probability P (n, t+∆t) to have n individuals at time t+∆t is given by the sum of

• the probability there were n−1 individuals at time t, times the probability to increase

the population by one in a time step ∆t (eq. 4):

P (n− 1, t) · µ∆t ,

• the probability there were n individuals at time t, times the transition probability that

no increase will occur:

P (n, t) · (1− µ∆t) .

Then

P (n, t+∆t) = P (n− 1, t) · µ∆t+ P (n, t) · (1− µ∆t) . (5)
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Rearranging eq. 5 and taking the limit ∆t → 0 yields the master equation

∂P (n, t)

∂t
= µP (n− 1, t)− µP (n, t) . (6)

III. GENERATING FUNCTION METHOD

Consider the probability generating function

G(z, t) =
∞∑
n=0

zn · P (n, t) , (7)

where z is a complex number. Multiply the master equation defined in eq. 6 by zn and sum

over n:
∂
∑∞

n znP (n, t)

∂t
= µ

∞∑
n

znP (n− 1, t)− µ
∞∑
n

znP (n, t)

∂G

∂t
= µ

∞∑
n

znP (n− 1, t)− µ
∞∑
n

znP (n, t)

= µz
∞∑
n

zn−1P (n− 1, t)− µ
∞∑
n

znP (n, t)

= µzG(z, t)− µG(z, t)

= µ(z − 1)G(z, t) ,

(8)

The last line of eq. 8 is an ordinary differential equation, whose solution is

G(z, t) = Ae−µ(z−1)t , (9)

where A is an arbitrary constant. Using G(1, t) =
∑∞

n=0 P (n, t) = 1 (from eq. 7) and

G(1, t) = A (from eq. 9), we obtain A = 1. Thus we have

G(z, t) = e−µ(z−1)t

= eµzte−µt

= e−µt

∞∑
n=0

1

n!
(µzt)n

=
∞∑
n=0

znP (n, t)

(10)

From eq. 10, we find the solution to the master equation

P (n, t) =
1

n!
(µt)ne−µt , (11)
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FIG. 2. Poisson distribution.

which is the Poisson distribution.

Using the generating functions, we find the moments. The mean is

⟨n⟩ = ∂G

∂z

∣∣∣∣
z=1

(12)

=
∞∑
n=0

n zn−1
∣∣
z=1

P (n, t) (13)

=
∞∑
n=0

nP (n, t) (14)

= µt , (15)

where we used eq. 11 into eq. 14. Likewise, the variance is

⟨n2⟩ − ⟨n⟩2 = (16)

∂2G

∂z2

∣∣∣∣
z=1

+ ⟨n⟩ − ⟨n⟩2 = ⟨n2⟩ − ⟨n⟩+ ⟨n⟩ − ⟨n⟩2 (17)

= µ2t2 + µt− µ2t2 (18)

= µt , (19)
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where we used

∂2G

∂z2

∣∣∣∣
z=1

=
∞∑
n=0

n(n− 1) zn−2
∣∣
z=1

P (n, t) (20)

=
∞∑
n=0

n(n− 1)P (n, t) (21)

=
∞∑
n=0

n2P (n, t)−
∞∑
n=0

nP (n, t) (22)

= ⟨n2⟩ − ⟨n⟩ (23)

= µ2t2 . (24)

IV. GILLESPIE’S ALGORITHM

Gillespie’s algorithm is used to generate paths, whose time-dependent distribution is the

solution of the master equation. Consider a discrete stochastic process characterized by N

possible states and R reactions with rates µ(n, t) = {µ1(n, t), µ2(n, t), . . . , µR(n, t)}. For

example the chemical reaction

A+B
µ1−⇀↽−
µ2

AB , (25)

has N = 3 possible states and R = 2 possible reactions. At time t, the system is in a state

n(t) = {n1(t), n2(t), . . . , nN(t)}. Then the algorithm is used (i) to calculate the time t+ τ

at which the next reaction occurs, (ii) to select which reaction occurs.

To derive the precise steps of the algorithm, we introduce the next-jump probability

density function [1], which represents the probability that, given the process is in state n at

time t, its next jump n → n′ will occur between t+ τ and t+ τ + dτ :

p(n′, t+ τ + dτ |n, t) . (26)

Eq. 26 is the product of three terms:

p(n′, t+ τ + dτ |n, t)

= q(n′ ̸= n, t+ τ + dτ |n, t+ τ)× (1− q(n′ ̸= n, t+ τ |n, t))× w(n′, t+ τ |n, t+ τ) ,

(27)

where

5



Dr. Luca Donati Stochastic and Diffusive Processes WISE2324

1. The first term is the probability that the system in state n at time t + τ will change

state in the next infinitesimal timestep dτ , independently on the arrival state n′ (we

just require that n′ ̸= n):

q(n′ ̸= n, t+ τ + dτ |n, t+ τ) =
R∑
i=1

µi(n, t+ τ)dτ = a(n, t+ τ)dτ ; (28)

2. The second term is the probability that no system change will occur in the time interval

[t, t+ τ ]:

(1− q(n′ ̸= n, t+ τ |n, t)) = exp (−a(n, t)τ) (29)

3. The third term is by definition the probability to make the specific transition n → n′

in a lag time τ .

Note that all three terms are unit-less.

FIG. 3. Description of jump probabilities.

To derive eq. 29, we divide τ in k ≪ 1 equal intervals of size ε = τ/k. The probability

that the system will not change state in a timestep ε is

R∏
i=1

(1− µi(n, t)ε) ≈ 1−
R∑
i=1

µi(n, t)ε+O(ε2) . (30)

Then

(1− q(n′ ̸= n, t+ τ |n, t)) =

(
1−

R∑
i=1

µi(n, t)ε

)k

(31)

= exp

(
−τ

R∑
i=1

µi(n, t)

)
(32)

= exp (−τa(n, t)) , (33)
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where we used

lim
k→∞

(
1 +

1

k

)k

= e . (34)

In conclusion, the next-jump probability density function (eq. 26) is written as

p(n′, t+ τ + dτ |n, t) = a(n)dτ exp (−τa(n, t+ τ)) w(n′, t+ τ |n, t+ τ) . (35)

In a event-driven simulation, the first two terms can be used to determine the time t+ τ at

which the next reaction occurs, while the last term is used to determine a specific reaction.

The lag time τ can be determined calculating the cumulative distribution function (CDF)

ˆ τ

0

dτ ′ a(n, t+ τ) exp (−τa(n, t+ τ ′)) (36)

Assuming that the process is temporally homogeneous, i.e. that the function a does not

depend on time, we obtain

ˆ τ

0

dτ ′ a(n) exp (−τa(n)) = − exp (−τa(n))|τ0 = 1− exp (−τa(n)) . (37)

Because the CDF is a number between 0 and 1, we estimate τ applying the probability

integral transform:

1− ea(n)τ = u1 ∈ U(0, 1) , (38)

where u1 is a random number drawn from the uniform distribution. From the inverse of the

CDF, we obtain

τ = − log u1

a(n)
. (39)

After having randomly drawn τ , we select which reaction occurs. The ratio

µi(n)

a(n)
, (40)

is a number between 0 and 1 and represents the probability that a certain reaction i occurs.

Then we draw a random number u2 from the uniform distribution and the next reaction is

given by the first integer j for which ∑j
i µi(n)

a(n)
> u2 . (41)
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FIG. 4. Trajectories generated by time-driven and event-driven simulations.

V. PROBABILITY INTEGRAL TRANSFORM

Consider a random variable X defined on the probability space (Ω,A, P ), where P : A →

[0, 1] is a probability measure with probability density function such that

P (X ∈ A) =

ˆ
A

dx p(x) , (42)

with A ∈ A and
´
Ω
dx p(x) = 1. The cumulative density function (CFD) FX : Ω → [0, 1] is

defined as

FX(x) =

ˆ x

−∞
dx p(x) = P (X ≤ x) . (43)

Theorem. Consider a random variable X with a continuous distribution P and CDF

FX strictly increasing, then the random variable Y = FX(X) has a uniform distribution

U(0, 1).

Proof.

FY (y) = P (Y ≤ y)

= P (FX(X) ≤ y)

= P (X ≤ F−1
X (y))

= FX(F
−1
X (y))

= y .

The CDF that satisfies FY (y) = y is the CDF of the uniform distribution with probability
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density

p(X) =

1 x ∈ [0, 1]

0 else
, (44)

indeed

FX(x) =

ˆ x

−∞
dx p(x) =


x ∈ [0, 1]

0 if x < 0

1 if x ≤ 1

, (45)

■

From the theorem, it follows that if we need to generate a random variable X from the

distribution P , then we can draw a random number u from the uniform distribution, and

take the inverse of the CDF:

X = F−1
X (u) , (46)

where u ∈ U(0, 1).

We have required that the CDF FX is strictly increasing, thus the inverse F−1
X is well

defined. The theorem can be generalized by introducing the quantile function, which is the

generalization of the inverse of FX :

F−1
X (y) = inf {x : FX(x) = y} . (47)

FIG. 5. Probability distribution, CDF and inverse CDF.
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FIG. 6. Given a set of random numbers extracted from the uniform distribution (y-axis), the

inverse of the CDF F−1
X makes it possible to generate a sample of points distributed according to

the P distribution (x-axis).
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