Lecture 4b

Solutions to the master equation: method of generating functions and Gillespie algorithm

CONTENTS

I. Introduction 1
II. Master equation of a pure birth process 2
III. Generating function method 3
IV. Gillespie's algorithm 5
V. Probability integral transform 8
References 11

I. INTRODUCTION

Consider a random experiment with discrete outcomes defined by the probability space $(\Omega \subset \mathbb{R}, \mathcal{A}, P)$ and the master equation

$$
\begin{equation*}
\frac{\partial}{\partial t} p(x, t)=\int_{\Omega} d x^{\prime}\left[W\left(x, t \mid x^{\prime}, t\right) p\left(x^{\prime}, t\right)-W\left(x^{\prime}, t \mid x, t\right) p(x, t)\right] \tag{1}
\end{equation*}
$$

or the equivalent for processes defined on discrete sample spaces $\Omega \subset \mathbb{Z}$:

$$
\begin{equation*}
\frac{\partial}{\partial t} p(n, t)=\sum_{n^{\prime}}\left[W\left(n, t \mid n^{\prime}, t\right) p\left(n^{\prime}, t\right)-W\left(n^{\prime}, t \mid n, t\right) p(n, t)\right] \tag{2}
\end{equation*}
$$

To solve the master equation there are several options, for example:

- If the rates $W\left(x, t \mid x^{\prime}, t\right)$ and $W\left(x^{\prime}, t \mid x, t\right)$ are linear: probability generating functions;
- Time-driven or event-driven (e.g. Gillespie algorithm) simulations;

Here we see the method of generating functions applied to the pure birth process, and the Gillespie algorithm for a generic system with N states and R reactions.

II. MASTER EQUATION OF A PURE BIRTH PROCESS

Consider a population of n individuals that can increase by one individual at a rate of μ :

$$
\begin{equation*}
n \xrightarrow{\mu} n+1 . \tag{3}
\end{equation*}
$$

FIG. 1. Pure birth process.

The transition rate μ (units [time $\left.{ }^{-1}\right]$) represents the probability that an event occurs in an infinitesimal timestep, then the transition probability (unit less) in a timestep Δt is defined as

$$
\begin{equation*}
P(n+1, t+\Delta t \mid n, t)=\mu \Delta t . \tag{4}
\end{equation*}
$$

The probability $P(n, t+\Delta t)$ to have n individuals at time $t+\Delta t$ is given by the sum of

- the probability there were $n-1$ individuals at time t, times the probability to increase the population by one in a time step Δt (eq. 4):

$$
P(n-1, t) \cdot \mu \Delta t,
$$

- the probability there were n individuals at time t, times the transition probability that no increase will occur:

$$
P(n, t) \cdot(1-\mu \Delta t) .
$$

Then

$$
\begin{equation*}
P(n, t+\Delta t)=P(n-1, t) \cdot \mu \Delta t+P(n, t) \cdot(1-\mu \Delta t) . \tag{5}
\end{equation*}
$$

Rearranging eq. 5 and taking the limit $\Delta t \rightarrow 0$ yields the master equation

$$
\begin{equation*}
\frac{\partial P(n, t)}{\partial t}=\mu P(n-1, t)-\mu P(n, t) . \tag{6}
\end{equation*}
$$

III. GENERATING FUNCTION METHOD

Consider the probability generating function

$$
\begin{equation*}
G(z, t)=\sum_{n=0}^{\infty} z^{n} \cdot P(n, t), \tag{7}
\end{equation*}
$$

where z is a complex number. Multiply the master equation defined in eq. 6 by z^{n} and sum over n :

$$
\begin{align*}
\frac{\partial \sum_{n}^{\infty} z^{n} P(n, t)}{\partial t} & =\mu \sum_{n}^{\infty} z^{n} P(n-1, t)-\mu \sum_{n}^{\infty} z^{n} P(n, t) \\
\frac{\partial G}{\partial t} & =\mu \sum_{n}^{\infty} z^{n} P(n-1, t)-\mu \sum_{n}^{\infty} z^{n} P(n, t) \\
& =\mu z \sum_{n}^{\infty} z^{n-1} P(n-1, t)-\mu \sum_{n}^{\infty} z^{n} P(n, t) \tag{8}\\
& =\mu z G(z, t)-\mu G(z, t) \\
& =\mu(z-1) G(z, t),
\end{align*}
$$

The last line of eq. 8 is an ordinary differential equation, whose solution is

$$
\begin{equation*}
G(z, t)=A e^{-\mu(z-1) t}, \tag{9}
\end{equation*}
$$

where A is an arbitrary constant. Using $G(1, t)=\sum_{n=0}^{\infty} P(n, t)=1$ (from eq. 7) and $G(1, t)=A$ (from eq. 9), we obtain $A=1$. Thus we have

$$
\begin{align*}
G(z, t) & =e^{-\mu(z-1) t} \\
& =e^{\mu z t} e^{-\mu t} \\
& =e^{-\mu t} \sum_{n=0}^{\infty} \frac{1}{n!}(\mu z t)^{n} \tag{10}\\
& =\sum_{n=0}^{\infty} z^{n} P(n, t)
\end{align*}
$$

From eq. 10, we find the solution to the master equation

$$
\begin{equation*}
P(n, t)=\frac{1}{n!}(\mu t)^{n} e^{-\mu t} \tag{11}
\end{equation*}
$$

FIG. 2. Poisson distribution.
which is the Poisson distribution.

Using the generating functions, we find the moments. The mean is

$$
\begin{align*}
\langle n\rangle & =\left.\frac{\partial G}{\partial z}\right|_{z=1} \tag{12}\\
& =\left.\sum_{n=0}^{\infty} n z^{n-1}\right|_{z=1} P(n, t) \tag{13}\\
& =\sum_{n=0}^{\infty} n P(n, t) \tag{14}\\
& =\mu t \tag{15}
\end{align*}
$$

where we used eq. 11 into eq. 14 . Likewise, the variance is

$$
\begin{align*}
\left\langle n^{2}\right\rangle-\langle n\rangle^{2} & = \tag{16}\\
\left.\frac{\partial^{2} G}{\partial z^{2}}\right|_{z=1}+\langle n\rangle-\langle n\rangle^{2} & =\left\langle n^{2}\right\rangle-\langle n\rangle+\langle n\rangle-\langle n\rangle^{2} \tag{17}\\
& =\mu^{2} t^{2}+\mu t-\mu^{2} t^{2} \tag{18}\\
& =\mu t, \tag{19}
\end{align*}
$$

where we used

$$
\begin{align*}
\left.\frac{\partial^{2} G}{\partial z^{2}}\right|_{z=1} & =\left.\sum_{n=0}^{\infty} n(n-1) z^{n-2}\right|_{z=1} P(n, t) \tag{20}\\
& =\sum_{n=0}^{\infty} n(n-1) P(n, t) \tag{21}\\
& =\sum_{n=0}^{\infty} n^{2} P(n, t)-\sum_{n=0}^{\infty} n P(n, t) \tag{22}\\
& =\left\langle n^{2}\right\rangle-\langle n\rangle \tag{23}\\
& =\mu^{2} t^{2} \tag{24}
\end{align*}
$$

IV. GILLESPIE'S ALGORITHM

Gillespie's algorithm is used to generate paths, whose time-dependent distribution is the solution of the master equation. Consider a discrete stochastic process characterized by N possible states and R reactions with rates $\mu(\mathbf{n}, t)=\left\{\mu_{1}(\mathbf{n}, t), \mu_{2}(\mathbf{n}, t), \ldots, \mu_{R}(\mathbf{n}, t)\right\}$. For example the chemical reaction

$$
\begin{equation*}
A+B \underset{\mu_{2}}{\stackrel{\mu_{1}}{\rightleftharpoons}} A B \tag{25}
\end{equation*}
$$

has $N=3$ possible states and $R=2$ possible reactions. At time t, the system is in a state $\mathbf{n}(t)=\left\{n_{1}(t), n_{2}(t), \ldots, n_{N}(t)\right\}$. Then the algorithm is used (i) to calculate the time $t+\tau$ at which the next reaction occurs, (ii) to select which reaction occurs.

To derive the precise steps of the algorithm, we introduce the next-jump probability density function [1], which represents the probability that, given the process is in state \mathbf{n} at time t, its next jump $\mathbf{n} \rightarrow \mathbf{n}^{\prime}$ will occur between $t+\tau$ and $t+\tau+d \tau$:

$$
\begin{equation*}
p\left(\mathbf{n}^{\prime}, t+\tau+d \tau \mid \mathbf{n}, t\right) \tag{26}
\end{equation*}
$$

Eq. 26 is the product of three terms:

$$
\begin{align*}
& p\left(\mathbf{n}^{\prime}, t+\tau+d \tau \mid \mathbf{n}, t\right) \\
& =q\left(\mathbf{n}^{\prime} \neq \mathbf{n}, t+\tau+d \tau \mid \mathbf{n}, t+\tau\right) \times\left(1-q\left(\mathbf{n}^{\prime} \neq \mathbf{n}, t+\tau \mid \mathbf{n}, t\right)\right) \times w\left(\mathbf{n}^{\prime}, t+\tau \mid \mathbf{n}, t+\tau\right) \tag{27}
\end{align*}
$$

where

1. The first term is the probability that the system in state \mathbf{n} at time $t+\tau$ will change state in the next infinitesimal timestep $d \tau$, independently on the arrival state \mathbf{n}^{\prime} (we just require that $\mathbf{n}^{\prime} \neq \mathbf{n}$):

$$
\begin{equation*}
q\left(\mathbf{n}^{\prime} \neq \mathbf{n}, t+\tau+d \tau \mid \mathbf{n}, t+\tau\right)=\sum_{i=1}^{R} \mu_{i}(\mathbf{n}, t+\tau) d \tau=a(\mathbf{n}, t+\tau) d \tau \tag{28}
\end{equation*}
$$

2. The second term is the probability that no system change will occur in the time interval $[t, t+\tau]$:

$$
\begin{equation*}
\left(1-q\left(\mathbf{n}^{\prime} \neq \mathbf{n}, t+\tau \mid \mathbf{n}, t\right)\right)=\exp (-a(\mathbf{n}, t) \tau) \tag{29}
\end{equation*}
$$

3. The third term is by definition the probability to make the specific transition $\mathbf{n} \rightarrow \mathbf{n}^{\prime}$ in a lag time τ.

Note that all three terms are unit-less.

FIG. 3. Description of jump probabilities.

To derive eq. 29, we divide τ in $k \ll 1$ equal intervals of size $\varepsilon=\tau / k$. The probability that the system will not change state in a timestep ε is

$$
\begin{equation*}
\prod_{i=1}^{R}\left(1-\mu_{i}(\mathbf{n}, t) \varepsilon\right) \approx 1-\sum_{i=1}^{R} \mu_{i}(\mathbf{n}, t) \varepsilon+O\left(\varepsilon^{2}\right) \tag{30}
\end{equation*}
$$

Then

$$
\begin{align*}
\left(1-q\left(\mathbf{n}^{\prime} \neq \mathbf{n}, t+\tau \mid \mathbf{n}, t\right)\right) & =\left(1-\sum_{i=1}^{R} \mu_{i}(\mathbf{n}, t) \varepsilon\right)^{k} \tag{31}\\
& =\exp \left(-\tau \sum_{i=1}^{R} \mu_{i}(\mathbf{n}, t)\right) \tag{32}\\
& =\exp (-\tau a(\mathbf{n}, t)) \tag{33}
\end{align*}
$$

where we used

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(1+\frac{1}{k}\right)^{k}=e \tag{34}
\end{equation*}
$$

In conclusion, the next-jump probability density function (eq. 26) is written as

$$
\begin{equation*}
p\left(\mathbf{n}^{\prime}, t+\tau+d \tau \mid \mathbf{n}, t\right)=a(\mathbf{n}) d \tau \exp (-\tau a(\mathbf{n}, t+\tau)) w\left(\mathbf{n}^{\prime}, t+\tau \mid \mathbf{n}, t+\tau\right) \tag{35}
\end{equation*}
$$

In a event-driven simulation, the first two terms can be used to determine the time $t+\tau$ at which the next reaction occurs, while the last term is used to determine a specific reaction.

The lag time τ can be determined calculating the cumulative distribution function (CDF)

$$
\begin{equation*}
\int_{0}^{\tau} d \tau^{\prime} a(\mathbf{n}, t+\tau) \exp \left(-\tau a\left(\mathbf{n}, t+\tau^{\prime}\right)\right) \tag{36}
\end{equation*}
$$

Assuming that the process is temporally homogeneous, i.e. that the function a does not depend on time, we obtain

$$
\begin{equation*}
\int_{0}^{\tau} d \tau^{\prime} a(\mathbf{n}) \exp (-\tau a(\mathbf{n}))=-\left.\exp (-\tau a(\mathbf{n}))\right|_{0} ^{\tau}=1-\exp (-\tau a(\mathbf{n})) \tag{37}
\end{equation*}
$$

Because the CDF is a number between 0 and 1 , we estimate τ applying the probability integral transform:

$$
\begin{equation*}
1-e^{a(\mathbf{n}) \tau}=u_{1} \in \mathcal{U}(0,1) \tag{38}
\end{equation*}
$$

where u_{1} is a random number drawn from the uniform distribution. From the inverse of the CDF, we obtain

$$
\begin{equation*}
\tau=-\frac{\log u_{1}}{a(\mathbf{n})} \tag{39}
\end{equation*}
$$

After having randomly drawn τ, we select which reaction occurs. The ratio

$$
\begin{equation*}
\frac{\mu_{i}(\mathbf{n})}{a(\mathbf{n})} \tag{40}
\end{equation*}
$$

is a number between 0 and 1 and represents the probability that a certain reaction i occurs. Then we draw a random number u_{2} from the uniform distribution and the next reaction is given by the first integer j for which

$$
\begin{equation*}
\frac{\sum_{i}^{j} \mu_{i}(\mathbf{n})}{a(\mathbf{n})}>u_{2} \tag{41}
\end{equation*}
$$

FIG. 4. Trajectories generated by time-driven and event-driven simulations.

V. PROBABILITY INTEGRAL TRANSFORM

Consider a random variable X defined on the probability space (Ω, \mathcal{A}, P), where $P: \mathcal{A} \rightarrow$ $[0,1]$ is a probability measure with probability density function such that

$$
\begin{equation*}
P(X \in A)=\int_{A} d x p(x) \tag{42}
\end{equation*}
$$

with $A \in \mathcal{A}$ and $\int_{\Omega} d x p(x)=1$. The cumulative density function (CFD) $F_{X}: \Omega \rightarrow[0,1]$ is defined as

$$
\begin{equation*}
F_{X}(x)=\int_{-\infty}^{x} d x p(x)=P(X \leq x) \tag{43}
\end{equation*}
$$

Theorem. Consider a random variable X with a continuous distribution P and CDF F_{X} strictly increasing, then the random variable $Y=F_{X}(X)$ has a uniform distribution $\mathcal{U}(0,1)$.

Proof.

$$
\begin{aligned}
F_{Y}(y) & =P(Y \leq y) \\
& =P\left(F_{X}(X) \leq y\right) \\
& =P\left(X \leq F_{X}^{-1}(y)\right) \\
& =F_{X}\left(F_{X}^{-1}(y)\right) \\
& =y
\end{aligned}
$$

The CDF that satisfies $F_{Y}(y)=y$ is the CDF of the uniform distribution with probability
density

$$
p(X)= \begin{cases}1 & x \in[0,1] \tag{44}\\ 0 & \text { else }\end{cases}
$$

indeed

$$
F_{X}(x)=\int_{-\infty}^{x} d x p(x)= \begin{cases}x \in[0,1] \tag{45}\\ 0 & \text { if } \mathrm{x}<0 \\ 1 & \text { if } \mathrm{x} \leq 1\end{cases}
$$

From the theorem, it follows that if we need to generate a random variable X from the distribution P, then we can draw a random number u from the uniform distribution, and take the inverse of the CDF:

$$
\begin{equation*}
X=F_{X}^{-1}(u), \tag{46}
\end{equation*}
$$

where $u \in \mathcal{U}(0,1)$.
We have required that the CDF F_{X} is strictly increasing, thus the inverse F_{X}^{-1} is well defined. The theorem can be generalized by introducing the quantile function, which is the generalization of the inverse of F_{X} :

$$
\begin{equation*}
F_{X}^{-1}(y)=\inf \left\{x: F_{X}(x)=y\right\} \tag{47}
\end{equation*}
$$

FIG. 5. Probability distribution, CDF and inverse CDF.

FIG. 6. Given a set of random numbers extracted from the uniform distribution (y-axis), the inverse of the CDF F_{X}^{-1} makes it possible to generate a sample of points distributed according to the P distribution (x-axis).
[1] D. Gillespie, Markov Processes: An Introduction for Physical Scientists (Elsevier Science, 1992).

