.5 -

JUMP MARKOV PROCESSES WITH
DISCRETE STATES

In this chapter we shall continue the development of jump Markov
process theory begun in Chapter 4, but now for the “discrete state” case in
which the jump Markov process X(t) has only integer-valued states. In
Section 5.1 we shall obtain the discrete state versions of the fundamental
concepts and equations that were developed for the continuum state case
in Chapters 2 and 4. In Section 5.2 we shall discuss the completely
homogeneous case. And in Section 5.3 we shall discuss the temporally
homogeneous case, but only for such processes whose states are confined
to the nonnegative integers. As an illustrative application of temporally
homogeneous, nonnegative integer Markov processes, we shall show how
they can be used to describe in a fairly rigorous way the time-evolution of
certain kinds of chemically reacting systems. We shall continue our
discussion of temporally homogeneous nonnegative integer Markov
processes in Chapter 6, but there under the further restriction that only
jumps of unit magnitude may occur,

5.1 FOUNDATIONAL ELEMENTS OF DISCRETE
STATE MARKOV PROCESSES

The key definitions and equations for jump Markov processes with
real variable states were developed in Chapters 2 and 4. The adaptation
of those definitions and equations to the case of jump Markov processes
with integer variable states pretty much parallels the way in which
integer random variable theory follows from real random variable theory
(see Section 1.7). For the most part, all we need to do is to replace the real
variables x and &, which represent the values of the jump Markov process
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X and its propagator =, with integer variables n and v respectively; of
course, this will also entail replacing any integrals over x or § with sums
over n or v, and any Dirac delta functions of x or § with Kronecker delta
functions of n or v. Although it would be possible to deduce the integer
variable versions of the key jump Markov process equations by routinely
implementing the aforementioned replacements in Chapters 2 and 4,
such an exposition would sacrifice much in clarity for only a slight gain in
efficiency. So we shall instead simply begin anew in this section, and
quote specific results from Chapters 2 and 4 only when the arguments
leading to those results are entirely independent of whether the state
variables are real or integer.

5.1.A THE CHAPMAN-KOLMOGOROYV EQUATION

For any stochastic process X(¢#) with integer-valued states, we define
the Markov state density function P by '

Pln,t|ngt,) = Prob{X(t)=n, given Xt)=ny (=t (5.1-1

The probability density nature of this function requires that it satisfy the
two relations

Pn,t|npt)) =0 (t,<t) (5.1-2)
and

;{ P(ntlngt) = 1 (t,=0) (5.1-3)

Furthermore, the conditional nature of this function requires that it
satisfy the relation

P(n,t; | ng,ty) = 8(n,ny), (5.1-4)

where 8(n,ng) is the Kronecker delta function (1.7-5).
The Markov state density function P is actually just one of an infinite
hierarchy of state density functions of the general form

P(j+1)

poj Myt

|nj,tj; ;no,to)

O=j<k;t =t =..=<t),
which is defined to be the probability that X(t) will have the indicated
values at the k—j times standing to the left of the conditioning bar, given
that X(¢) had the indicated values at the j+ 1 times standing to the right
of the conditioning bar. The Markov state density function P defined in

oot
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Eq. (5.1-1) evidently coincides with the first of these hierarchical
functions; i.e., P= le.
Wesay that the integer-valued stochastic process X(¢) is Markovian if
and only if, forall k>1and all ¢yt =<...<tp,
PPt In, b, j.ingt) = Plagt,In, b, ). (5.15)
This equation asserts that our ability to predict the value of X(¢;) given
the value of X{(¢; 1) cannot be enhanced by learning the values of X{(¢) at
any times prior to t5_1. In effect, the process has no memory of the past.
The consequences of the Markov property (5.1-5) are very far-reaching.
For example, since the multiplication law of probability implies quite
generally that, for any three times y=<t; <ts,

(D . _ (2) .
P2 (n nl,tllno,to) = P(nl,tllno,to)P1 (nz,tzln tingto

ol v
then the Markov property (5.1-5) allows us to replace the second factor on
the right by P(ng,t2 | n1,t1), and so obtain the formula

(1) . —
P2 (nz,tz, nl,tll no,to) = P(n2,t2| nl,tl) P nt | no,to)
(tostlstz). (5.1-6)

Thus, when the Markov condition (5.1-5) holds, then the state density
function PZ(D is completely determined by the Markov state density
function P. Analogous arguments lead to the more general conclusion
that, when the Markov condition (5.1-5) holds, then all the state density
functions in the infinite hierarchy are determined by the Markov state
density function P according to the formula

k
G+1 .. .. _
Pk—j (n oty s nj+1,tj+1|nj,tj, gty = ' H+IP(ni,ti ln,_pt,_)
i=j

(Osj<k;tostls...stk). (5.1-7)

From the addition law of probability it follows that, for any three
times tp<t;=<ty, it will always be true that

_ (1) .
P(nz,t2 | no,to) = > P2 (nz,tZ, nt, | no,to).
n.=—w

1

But if, as we shall henceforth assume, X{(¢) is Markovian, then we can
substitute the relation (5.1-6) into the right side of this equation and
obtain
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Pnt,)Ingt) = > P(n,t,|nt )P(n t |ngto)

(tOSt1$t2). (5.1-8)

This is (the discrete state version of) the Chapman-Kolmogorov
equation. We can look upon this equation as a condition on the Markov
state density function P, in addition to conditions (5.1-2) — (5.1-4), that
arises as a consequence of X(¢) being Markovian. It is a straightforward
matter to iterate Eq. (5.1-8) and deduce the compounded Chapman-
Kolmogorov equation,

o0 w k
P(nk,tklno,to) = Z z ﬂ P(ni’tilni—l’ti—l)
nlz—m nk_lz-w =1
(k22;t <t =..=<t). (5.1.9)

This formula can also be deduced by setting j=0 in Eq. (5.1-7) and then
summing over all values of ny, no, ..., np 1.

The initially conditioned average of any univariate function g is
calculated, for any time t = ¢y, as

EX®) = > g Pntlngty). (5.1-10)

n=-—ow

XD Xt )=n)

Similarly, for g any bivariate state function, we have for any two times ¢;
and tp satisfying ty=t¢;<ts,

(Xt ), Xt,)| Xt )=n ) = ((X(t).X(¢t)

_ (0 )
2 glnyn)Py gt in it |ngt)

—x© p =—®

-
2 g(n,n,) P(nz,t2| nt) P(n vt | Rt

(5.1-11)

where of course the last line follows expressly from the Markov condition
(5.1-6). Using the average formulas (5.1-10) and (5.1-11),we can calculate
in the usual way the various moments of X(¢), and in particular the mean,
variance. standard deviation and covariance.
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5.1.B THE PROPAGATOR

The propagator of the discrete state Markov process X(¢) is defined,
just as in the continuum state case, to be the random variable

E(dt; n,t) = X(t+dt) — X(¢), given X(¢)=n, (5.1-12)

where dt is a positive infinitesimal. The density function of this random
variable, namely

(v |d¢; n,t) = Prob{ Z(d¢; n,t)=v }, (5.1-13)

is called the propagator density function. Since the preceding two
definitions imply that
II(v|dt; n,t) Prob{ X(¢t+dt) — X() =v, given X()=n}

Prob{ X(¢t+dt)=n+v, given X(t)=n}.

then by applying the definition (5.1-1) we immediately deduce the
fundamental relation

I(v|dt; nt) = P(n+v,t+dt|n,t). (5.1-14)

Equation (5.1-14) shows that the Markov state density function P
uniquely determines the propagator density function [I. Less obvious,
but more significant for our purposes, is the converse fact that the
propagator density function IT uniquely determines the Markov state
density function P. To prove this, consider the compounded Chapman-
Kolmogorov equation (5.1-9) with n,=n and t,=¢. Let the points ¢, ¢,
., th—1 divide the interval [to,t] into k& subintervals of equal length
(t—tg)/k. Change the summation variables in that equation according to

n,—>v,=n —n_, (=1..k-1).
Finally, define vp=n—n,_;. With all these substitutions, the
compounded Chapman-Kolmogorov equation (5.1-9) becomes

P(n,t|nyt )

Y] - k
- A _
> S .ﬂ Pin _ +v,t,_ +@=t)k|n,_ .t ),
v1=—m va]-:—cr‘lzl_
wherein
t,=t_, +t—t)k (i=1,..,k—1), (5.1-15a)
n=ny+v + .. +v, (=1..,k-1), (5.1-15b)

n=ny—v, — .=V, | (5.1-15¢)
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Now choose & so large that
(t—ty)/k = dt, an infinitesimal. (5.1-15d)

Then the P-factors on the right hand side of the preceding equation for
P(n,t| ng,tp) become, by virtue of Eq. (5.1-14), IT-factors; indeed, that
formula becomes

Q0

o k
P(ntlnyty) = > Y [ v |dgn,_ ot ), (5.1-16)

y, = — v —o (=1

1 k-1

where now all four of Eqgs. (5.1-15) apply. This result shows that if we
specify the propagator density function II(v|d¢; n',t') as a function of v for
all n', all ¢'€[¢y,), and all infinitesimally small d¢, then the Markov state
density function P(n,t| ng,ty) is uniquely determined for all n.

To deduce the general form of the propagator density function for a
discrete state Markov process X{(t), we begin by recognizing that if X(#) is
always to coincide with some integer value, then the only way for X(¢) to
change with time is to make instantaneous jumps from one integer to
another. That being the case, it makes sense to define for any discrete
state jump Markov process X(t) the two probability functions

g(n,t, 1) = probability, given X(¢)=n, that the
process will jump away from state n at
some instant between ¢t and ¢+ 1; (5.1-17)

w(v|n,t) = probability that the process, upon
jumping away from state n at time ¢,
will land in state n+v. (5.1-18)

In fact, we shall simply define a discrete state jump Markov process as
any integer state process X(¢) for which these two functions ¢ and w exist
and have the following properties:

* g(n,t; t) is a smooth function of £ and t,
and satisfies g(n,t; 0)=0; (5.1-19a)

* w(v| n,t) is a smooth function of ¢. (5.1-19b)

It is clear from the definition (5.1-18) that w(v|n,t) is a density
function with respect to the integer variable v; therefore, it must satisfy
the two conditions :

wiv|nt) =0 (5.1-20a)
and
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o

> wv|nt =1, (5.1-20b)

V= —oo

As for the function g(n,¢; 1) defined in Eq. (5.1-17), it turns out that if tisa
positive infinitesimal d¢, then the assumed Markovian nature of the
process X(t) demands that this function have the form

g(n,t; dt) = a(n,t) dt, (5.1-21)

where a(n,t) is some nonnegative, smooth function of £. The proof of this
fact is exactly the same as the proof of the analogous result (4.1-6) for the
continuum state case, so we shall not repeat it here. If we combine Eq.
(5.1-21) with the definition (5.1-17), we see that the significance of the
function a(n,t) is that

a(n,t)dt = probability, given X(¢)=n, that the process will
jump away from state n in the next infinitesimal
time interval [¢,¢+dt). (5.1-22)

It follows from this result that the probability for the system to jump once
in [¢, t+ad¢t) and then jump once again in [¢t+ adt, t+d¢), for any a between
0 and 1, will be proportional to (d#)2. We thus conclude that, to first order
in dt, the system will either jump once or else not at all in the
infinitesimal time interval [¢,¢+d¢).

Now we are in a position to deduce an explicit formula for the
propagator density function II(v|d¢; n,t) in terms of the two functions
a(n,t) and w(v|n,t). Given X(¢)=n, then by time ¢+ d¢ the system either
will have jumped once, with probability a(n,t)dt, or it will not have
jumped at all, with probability 1 —a(n,t)dt. If a jump does occur, then by
Eq. (5.1-18) the probability that the state change vector X(¢+dt)—n will
equal v will be w(v | n,t’'), where t' is the precise instant in [¢,¢+d¢) when
the jump occurred. If a jump does not occur, then the probability that the
state change vector X(¢t+d#)—n will equal v will be 8(v,0), since that
quantity is equal to unity if v=0 and zero if v#0. Therefore, by the
definition (5.1-13) and the multiplication and addition laws of
probability, we have

I(v|dt; n,t) = la(n,t)dt] [w(v|n,t)] + [1—aln,t)dt]|[8(v,0)).

Finally, since t'€[¢,t+d¢), then the smooth dependence of w(v|n,t) on t
assumed in condition (5.1-19b) means that we can replace ¢' on the right
side of this last equation by the infinitesimally close value ¢ without
spoiling the equality. Thus we conclude that the propagator density
function of a discrete state Markov process must be given by the formula
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O |d ne = aln,tydtw(v|nt) + [1—aln,t)dt] 6(v,0). (5.1-23)

This is the principle result of our analysis in this subsection.

Because the propagator density function II(v|dt; n,t) is completely
determined by the two functions a(n,t) and w(v | n,t), we shall call those
two functions the characterizing functions of the associated discrete
state Markov process X(¢). And we shall say that

X(t) is temporally homogeneous
& alnt) = aln) and w(v|nt) = wv|na), (5.1-24a)

X(t) is completely homogeneous
& alnt) = aand wv|nt) = wlv). (5.1-24b)

The “past forgetting” character of the definitions of a(n,t) and
wv| n,t) in Egs. (5.1-22) and (5.1-18) should make the Markovian nature
of the process X(¢) defined by the propagator density function (5.1-23)
rather obvious. However, a formal proof of the Markov property can be
obtained by showing that that propagator density function satisfies, to
first order in dt and for all a between 0 and 1, the equation

Ov|dng = > H(v—vll(l —a)d¢ n+v1,t+adt) H(vlladt‘, n,t).

This condition on the discrete state propagator density function I7 is
called the Chapman-Kolmogorov condition, and it is a direct consequence
of the fundamental identity (5.1-14) and the Chapman-Kolmogorov
equation (5.1-8). By straightforwardly adapting the continuum state
arguments leading from Eqs. (4.1-16) to Egs. (4.1-18), one can prove
explicitly that if a(n,ty and w(v | n,t) are analytic functions of ¢, then the
propagator density function II(v|d¢; n,t) in Eq. (5.1-23) does indeed
satisfy the foregoing Chapman-Kolmogurov condition, and hence defines
a Markovian process X(t). We shall not exhibit the proof here because the
required modifications to the continuum state proof given in Section 4.1
are so minor.

It will prove convenient for our subsequent work to define the
function

Wv|nt) = alnt) wv|n,t), (5.1-25)
and call it the consolidated characterizing function of the jump

Markov process X(t). The physical meaning of this function can
straightforwardly be inferred by multiplying Eq. (5.1-25) through by d¢,
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invoking the definitions of a(n,t)dt and w(v|n,t) in Eqgs. (5.1-22) and
(5.1-18) respectively, and then recalling that w(v|n,t) is a smooth
function of ¢ in this way we may deduce that

W(v|n,t)dt = probability, given X(¢) =n, that the process
will in the time interval [¢,¢ +d¢t) jump from
state nto state n+v. (5.1-26)

By summing Eq. (5.1-25) over v using Eq. (5.1-20b), and then substituting
the result back into Eq. (5.1-25), we may easily deduce the relations

aint) = > Wv|np, (5.1-27a)

yv=—00

_ Woind (5.1-27b)

wv|n,t

Vs

W(v' | n,t)

vi=-—o

These equations show that, had we chosen to do so, we could have defined
the characterizing functions a and w in terms of the consolidated
characterizing function W, instead of the other way around. So if we
regard (5.1-26) as the definition of W(v|n,t), then it follows from Egs.
(5.1-27) that the specification of the form of that function will uniquely
define a jump Markov process X(¢). We should note in passing the
subtlety close relationship between the consolidated characterizing
function W and the propagator density function I7: By substituting Eqs.
(5.1-27) into Eq. (5.1-23), we get

Hv|dt nt) = Wv|n,t)dt + {1 — E W' | n,p)det| 8(v,0). (5.1-28)

'
v = —w

So the relation between [T and W is very simple, except when v=0.
Because of this caveat, formula (5.1-23) is usually less confusing to work
with.
The propagator moment functions B(n,t) of a discrete state
Markov process X(¢) are defined, when they exist, through the relation
E*dsnn) = Y v II0Idg Y = B, (nodt+ odd
y= —x

(k=1,2,..), (5.1-29)

where o(dt)/dt—0 as dt—0. To deduce an explicit formula for By(n,t) in
terms of the characterizing functions of X(¢), we simply note from Eq.
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(5.1-23) that, forany k=1,
> vE Ty |dg nyd)

v=—00

> v {atm,odt w0 + 11— aln,0dH 55,0 }

= a(n,t)( i v w(vln,t)) dt

v= —

( i vE Wy In) ) de,

vV=—o

where the last equality has invoked the definition (5.1-25). So if we
define the quantities

w,(n,t _Z vE wiv | n,), (5.1-30a)

v — Q0

ac

S vEW | n), ~ (5.1-30b)

y=—

Wk(n,t)

then we may conclude from Eq. (5.1-29) that the propagator moment
function By(n,t) is given by the formulas

Bk(n,t) = aln,t) wk(n,t) = Wk(n,t) (k=1,2,...). (5.1-31)
We see from this result that the kth propagator moment function By(n,t)
of the discrete state Markov process X(¢) exists if and only if the kth
moment of the density function w(v | n,t) exists.

The sense in which the propagator = “propagates” the process X from
time ¢ to the infinitesimally later time ¢+d¢ can be made a little more
transparent by writing the propagator definition (5.1-12) in the
equivalent form

X(t+de) = X(0) + E(de; X),0). (5.1-32)

Now, if =(d¢; X(¢2),t) in this formula were always directly proportional to
d¢, at least to first order in d¢, then the proportionality constant could
evidently be called the “time-derivative” of X(¢). But since Z(d¢; X(8),t)
will be a nonzero integer for those intervals [¢,t+d¢) that contain a jump,
and since a nonzero integer certainly cannot be regarded as being
proportional to an infinitesimal, then we must conclude that a discrete
state Markov process X(¢) does not have a time-derivative. However, we
can easily define an antiderivative or time-integral process S(t) of X(t)
by simply declaring S(t) to have the “propagator” X(¢)dt: :
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S(t+de) = S + X(¢) dt. (5.1-33)

This equation means simply that if the process S has the value s at time ¢,
and the process X has the value n at time ¢, then the value of the process
S at the infinitesimally later time t+d¢ will be s+ ndt; indeed, this
statement evidently holds true for all d¢€[0,t), where ¢+t is the instant
that the process X next jumps away from state n. We may complete this
definition of S(¢) by adopting the convention that

S(ty) = 0. (5.1-34)

The time-integral S(¢) of the discrete state Markov process X(¢) is
itself neither a discrete state process (since it assumes a continuum of
values), nor a Markov process (since it by definition has a time-
derivative, which a genuinely stochastic Markov process cannot have).
Nevertheless, S(¢) is a perfectly well defined stochastic process; we shall
see shortly how it can be numerically simulated and also how its
moments can be calculated analytically.

5.1.C THE NEXT-JUMP DENSITY FUNCTION AND ITS
SIMULATION ALGORITHM

We define for any discrete state Markov process X(¢) its next-jump
density function p by

p(t,v|n,t)dt = probability that, given the process is in state
n at time ¢, its next jump will occur between
times t+vtand t+t+dt, and will carry the
process to state n+v. (5.1-35)

Whereas the propagator density function II(v|d¢; n,t) is the density
function for the state-change vector (v) over the next specified time
interval d¢, the next-jump density function p(t,v| n,t) is the joint density
function for the time (t) to the next jump and the state-change vector (v)
in that next jump. Unlike the propagator density function 7, the next-
jump density function p does not depend parametrically upon a
preselected time interval d¢. As we shall see shortly, this feature makes p
useful for constructing exact Monte Carlo simulations of the discrete
state Markov process X{(¢) and its time-integral process S(¢).

To derive a formula for p(t,v|n,t) in terms of the characterizing
functions a and w, we begin by using the multiplication law to write the
probability (5.1-35) as
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piev|nt)dt = [1—q(n,t; D] X aln,t+o)dt X wlv|n,t+1). (5.1-36)

In this equation, the first factor on the right is by definition (5.1-17) the
probability that the system, in state n at time ¢, will not jump away from
that state in the time interval [¢,¢+1); the second factor on the right is by
definition (5.1-22) the probability that the system, in state n at time ¢+,
will jump away from that state in the next infinitesimal time interval
[t+t, t+1+d1); and the third factor on the right is by definition (5.1-18)
the probability that the system, upon jumping away from state n at time
t+t, will land in state n+v.t Now we have only to express g(n,t; 1), as
defined in (5.1-17), explicitly in terms of the characterizing functions
a(n,t) and w(v|n,t). This can be done by simply repeating the argument
leading from Eqs. (4.1-14) to Egs. (4.1-15), but replacing x there by n; the
result is [see Eq. (4.1-15b)]

gint) = 1 — exp( — [Ota(n,t+t')dt’). (5.1-37)

Substituting this expression for g(n,t; 1) into Eq. (5.1-36), we conclude
that the next-jump density function for X(¢) is given by the formula

ptv|nt) = alnt+1) exp( - Iota(n,t+ t’)dt') w|nt+1), (5.1-38)

wherein it is understood that t is a nonnegative real variable, and v is an
integer variable.

It will later be convenient to “condition” the joint density function
p(t,v| n,t) according to

p(t,v|nt) = p,(tIn,t) p,(v|t; n,b. (5.1-39)

Here, pi(t|n,t), the density function for t irrespective of v, is calculated
by summing p(t,v | n,t)'in Eq. (5.1-38) over all v; this v-summation, owing
to the normalization condition (5.1-20b), has the effect of simply
removing the factor w(v | n,t+ 1) from the right hand side of Eq. (5.1-38).
And pa(v | t; n,t), the density function for v conditioned on t, may then be
calculated, according to Eq. (5.1-39), simply by dividing p(t,v| n,t) by
pi1(t| n,p); that division evidently yields the result w(v|n,t+t). Thus we
find that the two subordinate density functions p; and pg for the next-
jump-density function are given by the respective formulas

¥ The last factor in Eq. (5.1-36) should actually be w(v| n,t'), where ¢’ is the exact instant
in [¢+1. t+1+dv at which the jump away from state n occurs. However, the t-smoothness
of the function w(v| n,t) stipulated in (5.1-19b) allows us to replace ¢’ by the infinitesimally
close value t+ T without introducing any sensible error in Eq. (5.1-36).
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pl(l:|n,t) = aln,t+1) exp( - jota(n,t+ t’)dt’), (5.1-40a)

p2(v|1:; n,t) = wlv|n,t+1). (5.1-40b)

A considerable simplification in these next-jump density function

formulas occurs if the process X(¢) in question is temporally homogeneous,
aln,t) =aln) and w(v|nt) = w|n),

as in fact most discrete state Markov processes encountered in practice
are. In that case the t'-integrals in Eqgs. (5.1-38) and (5.1-40a) become
simply a(n)t; so the next-jump density function (5.1-38) becomes

p(tv|nt) = aln) exp(—a(n) t) w(v|n), (5.1-41)

while the associated conditioning density functions (5.1-40) become
pl(tl nt) = a(n) exp( ——a(n)t), (5.1-42a)
PV |t n,) = wiv|n). (5.1-42b)

Since p;(t]| n,t) now has the form of an exponential density function with
decay constant a(n), then it follows that the waiting time to the next jump
from state n is an exponential random variable with mean 1/a(n). And
since pg(v|t; n,t) is now independent of t, then the next-jump
displacement from state n is statistically independent of the waiting time
for that jump. So we see that, for any temporally homogeneous discrete
state Markov process, the characterizing functions a(n) and w(v | n) have
the following interpretations:

(i) The characterizing function a(n) is the reciprocal of the
mean of the random variable “pausing time in state n,”
which is necessarily exponentially distributed. (5.1-43a)

(i) The characterizing function w(v| n) is the density
function of the random variable “jump displacement
from state n,” which is necessarily statistically
independent of the pausing time in state n. (5.1-43b)

Returning now to the general (nonhomogeneous) case, it should be
clear that if we can generate a pair of random numbers (t,v) according to
the joint density function p(t,v|n,t), then we may without further ado
assert that the process X, in state n at time ¢, will remain in that state
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until time ¢+ t, at which time it will jump to state n+v. Therefore, all
that is needed in order to advance a discrete-state Markov process from
one jump to the next is a procedure for generating a random pair (1,v)
according to the joint density function p(t,v | n,t) given in Eq. (5.1-38). In
most cases, the easiest way to do that is to first generate a random (real)
number t according to the density function pi(t| n,t) in Eq. (5.1-40a), and
then generate a random (integer) number v according to the density
function pa(v | t; n,t) in Eq. (5.1-40b). Thus we have deduced the first four
steps of the procedure outlined in Fig. 5-1 for exactly simulating a discrete
state Markov process with characterizing functions a(n,t) and w(v | n,t).
This procedure is of course the discrete state version of the continuum
state jump simulation procedure in Fig. 4-3.7

The t-selection procedure in Step 2° of Fig. 5-1 is virtually identical to
the t-selection procedure in Fig. 4-3, the only difference being the
inconsequential replacement of the real state variable x with the integer
state variable n. The procedure is especially simple in the temporally
homogeneous case, when, as noted above, t is to be selected by sampling
the exponential random variable with decay constant a(n). In that case,
according to Eq. (1.8-7), we merely draw a unit uniform random number r
and take

t = (Vam)]In@1/r). (5.1-44)

But if a(n,t) depends explicitly on ¢, then this generating formula is not
applicable, and one will have to carefully assess whether the inversion
generating method [see Eq. (1.8-5)] or the rejection generating method
[see Eqgs. (1.8-9) — (1.8-11)] will be easier to implement.

The v-selection procedure in Step 3° of Fig. 5-1 requires that one
implement the integer version of either the inversion generating method
or the rejection generating method. To use the integer inversion method
[see Eq. (1.8-12)], one would draw o unit uniform random number r' and
then take v to be that integer for which

v—1 v
> wnttn =r < > wi|nt+u. (5.1-45)

v = o vVi=—w

If the v'-sums here cannot be calculated analytically, but w(v'|n,t+1)
vanishes for all v’ less than some finite value v; (which may depend on n
and t+1), then the lower summation limits in Eq. (5.1-45) can be replaced
by vi and the sums can be computed nurherically: One just cumulatively

+ One can also formulate a discrete state version of the approximate continuum state
jump simulation procedure in Fig. 4-2. But we shall not bother to do so here, because that
procedure is almost always inferior to the exact procedure of Fig. 5-1.
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1° Initialize: t « tyg, n < ng, s« 0.

Y

2° Pick t according to the density function®

p(tnt) = alnt+y exp(— jota(n,tﬁ-t')dt').

Y

3° Pick v according to the density function®

Y

4° Advance the process:
eS¢ s+ nt

p,Wv jt;nt) = wv|nt+

ene—n+v
ete—t+ 1€

Y

5° Record as required for sampling or plotting:

, n—v, for t—ui<t' <t
x(t) = ,
n, for t'=t¢
\ s(t) = s+ (n—v)t'—¢), for t—1<t' <t

If process is to continue, then return to 2°; otherwise, stop.

Notes:

@ Use either the inversion or the rejection generating method |see
Section 1.8). If a(n,t)=a(n), then the inversion method is easy: Draw a
unit uniform random number r, and take t = (l/a(n)| In(1/r) .

b Use either the integer inversion or the integer rejection generating
method [see Section 1.8]. For the former, draw a unit uniform random
number r' and take v to be the smallest integer for which the sum over
w(v' |nt+1) from v'=—o to v'=v exceeds r'.

¢ In a simulation run containing ~10K jumps, the sum ¢+t should be
computed with at least K + 3 digits of precision.

Figure 5-1. Exact Monte Carlo simulation algorithm for the discrete state
Markov process with characterizing functions a(n,t) and wv|n,t). The
procedure produces exact sample values x(¢) and s(¢) of the process X(¢) and its
time-integral S(¢) for all t>¢.
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adds w(v' | n,t+1) for v'=vy,vi+1,v1+2, ..., until that sum first exceeds
r', and one then takes v to be the index of the last term added. In the
integer version of the rejection generating method, one takes the interval
[a,b] in Egs. (1.8-9) to be an appropriate integer interval [v1,v5], and so
replaces Eq. (1.8-10) with its integer counterpart [see Eq. (1.8-13)]

v = greatest-integer-in{vy + (vo—vi+1)r}.

However, it is rare in practice that the integer rejection method will
prove to be more expeditious than some form of the integer inversion
method. In any case, if w(v|n,?) is explicitly independent of ¢, then the
v-selection process of Step 3° will be independent of the t-value selected in
Step 2° [see (5.1-43b)].

The three advancement formulas in Step 4° of Fig. 5-1 should be
obvious. Note in particular that the increase in the time-integral process
S(¢) between times t and ¢+ 1 is exactly equal to n[(¢+ 1) —t|=nrt, because
the time-derivative X(¢) of S(¢) has the constant value n throughout that
time interval. Note also that the s-update in Step 4° must always be done
before the n-update. Once Step 4° has been completed, then we can assert
that at the current time ¢ the realization x(¢) of the process X(¢) will have
the value n, and the realization s(t) of the integral process S(t) will have
the value s. But notice that we can also assert precise values for those
two realizations during the entire preceding time interval (¢—t,¢). Asjust
mentioned, the realization of X(¢) must have had the value n—v during
that interval:

x(tY=n—v for t'€(t—r,b. (5.1-46)

And since, as ¢’ increases from ¢t—1 to ¢, the realization s(¢') increases at a
constant rate (n —v) to the final value s(¢) =5, then we have

st =s+ (n—v)(t'—t) for t'€[t—r,tl. (5.1-47)

Equations (5.1-46) and (5.1-47) give the realizations of X(#) and S(¢)
exactly during the entire time interval between the last two jumps of X{(¢),
and are the basis for Step 5° of Fig. 5-1.

5.1.D THE MASTER EQUATIONS

Since the Kramers-Moyal equations of continuum state Markov
process theory involve partial derivatiVes with respect to the state
variable x, then those equations cannot be conveniently adapted to the
discrete state case. Consequently, in discrete state Markov process
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theory the description of the time-evolution of the Markov state density
function P(n,t| ng,ty) falls totally upon the forward and backward master
equations. In this subsection we shall derive those discrete state
equations.

The formal way of deriving the forward master equation is to start
with the Chapman-Kolmogorov equation (5.1-8), written however in the
form

P(n,t+dt|nt) = > Pt+dt|n—v,) Pln—vt|nt ). (5.1-48)

V= —x

Then observe, using Egs. (5.1-14) and (5.1-23), that
P(n,t+dt|n—v,0 Pin—v+v,t+dt|n—v,0
HHvidt n—v,t)

aln—v,t/twiv|n—v,t) + [1 —aln—v,0dt] 5(v,0).

Substituting this last expression into the Chapman-Kolmogorov
equation (5.1-48) gives

P(n,t+dt|n0,t0) = ?_: (a(n—v,t)dtw(vln—v,t))P(n—v,tlno,to)
> ([1-atn=v,0d818w,00) Pn—v,tn ),

+ S
v=

or, upon carrying out the second v-summation using the Kronecker delta
function,

P(n,t+dt|n0,t0) = }: [a(n—v,t)dtw(v|n—v,t)|P(n~v,t|n0,t0)

y= —om

+ [1 —a(n,tdt] P(n,tlno,to). (5.1-49)

But now observe that this last equation could actually have been written
down directly from the definitions (5.1-22) and (5.1-18), because it merely
expresses the probability of finding X(¢+d¢t)=n, given X(¢g)=ny, as the
sum of the probabilities of all possible ways of arriving at state n at time
t+dt via specified states at time ¢ The vth term under the summation
sign is the product of the probability that X(¢)=n—v, given that
X(ty) = ng, times the subsequent probability of a jump of size v in the next
d¢. And the last term is the product of the probability that X(¢)=n, given
that X(¢9) = no, times the subsequent probability of no jump in the next dt.
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This logic ignores multiple jumps in [¢,t +d¢), but that is okay because the
probability for such jumps will be of order >1 in d¢. Now subtracting
P(n,t| ng,ty) from both sides of Eq. (5.1-49), dividing through by d¢, and
taking the limit dt—0, we obtain

a el

5P(n,t| nyty) = > la(n—v,) wv|n—v,t) P(n—v,t| n gty

v= —

— a(n,t) P(a,t| nO,tO). (5.1-50a)

If we multiply the second term on the right by unity in the form of
Z,w(—v|n,t) [namely Eq. (5.1-20b) with the summation variable change
v——v]|, and then recall the definition (5.1-25) of the consolidated
characterizing function, we obtain the equivalent formula

d .
5P(n’t|n0’t0): > W(vIn—v,t)P(n—v,tan,.tO)

yv= —®

- W(—vln,t)P(n,tan,tO)}. (5.1-50b)

Equations (5.1-50) are (both) called the forward master equation
for the discrete state Markov process X(t) defined by the characterizing
functions @ and w, or by the consolidated characterizing function W.
They are evidently differential-difference equations for P(n,t| ng,ty) for
fixed ng and ¢y, and they are to be solved subject to the initial condition
P(n,t=ty| ng,ty) = 6(n,ngp).

To derive the backward companions to Egs. (5.1-50), we may begin,
again formally, with the Chapman-Kolmogorov equation (5.1-8), but now
written in the form

P(n,tlno,to) > P(n,t|n0+v,t0+dt0) P(n0+v,t +dt0|n0,t0).
V= —oe

(65.1-51)
Then observe, using Eqgs. (5.1-14) and (5.1-23), that

P(n0+v,t +dt0| nO,tO) = IIv IdtO', nO,tO)
= a(nO,tO)dt0 w(v A| no,to) +[1 —a(no,to)dtOJ 8(v,0).

Substituting this expression into the Chapman-Kolmogorov equation
(6.1-51) gives
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Pintlngt) = 3 Pntlng+vt +dt) (alngtgdt wivinto)

+ Y Pttt +dt0)([l—a(no,to)dtOJS(V,O)),

or, upon carrying out the second v-summation using the Kronecker delta
function,

P(nt|ngt) = > P(nt|n +v,t +dt)lalnt)dt wv|n gt

-0

+ P(n,tlno,t0+dt0)[1-—a(no,to)dtol. (6.1-52)

v

But now observe that this last equation could actually have been written
down directly from the definitions (5.1-22) and (5.1-18), because it merely
expresses the probability of finding X(¢) =n, given X(¢y) = ng, as the sum
of the probabilities of all possible ways of arriving at state n at time ¢ via
specified states at time to+dty: The vth term under the summation sign is
the probability of jumping from ng at time ¢y to ng+v by time ¢y+ d¢y and
then going on from there to n at time ¢. And the last term is the
probability of staying at ng until time ty+d¢y and then going on to n by
time ¢. This logic ignores multiple jumps in [yt +d¢g), but that is okay
because the probability for such jumps will be of order >1 in dtg. Now
subtracting P(n,t| ng,typ+dty) from both sides of Eq. (5.1-52), dividing
through by d¢y, and taking the limit d¢q—0, we obtain

a x
- (;—P(n,tlno,to) = Z [a(no,to) w(vlno,tO)P(n,t|n0+v,t )]

0 y= —a

—alnyty) P(n,tlno,to). (5.1-53a)

If we multiply the second term on the right by unity in the form of
X wiv | ng,to) [Eq. (5.1-20b)] and then recall the definition (5.1-25) of the
consolidated characterizing function, we obtain the equivalent formula

a oan
_ at__op(n,u Rty = _};_ W | ngt,) [P(n,tl ny+v,t) — Pln,t| nO,tO)J.
(5.1-53b)
Equations (5.1-53) are (both) called the backward master equation

for the discrete state Markov process X(¢) defined by the characterizing
functions a and w, or by the consolidated characterizing function W.
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They are evidently differential-difference equations for P(n,t| ng,to) for
fixed n and ¢, and they are to be solved subject to the final condition
P(n,t| ng,to=1t)=6(n,ng).

5.1.E THE MOMENT EVOLUTION EQUATIONS

More often than not, the discrete state master equations derived in
the preceding subsection cannot be directly solved for P(n,t| ng,ty). It is
therefore desirable to develop explicit time evolution equations for the
various moments of the process X(¢) and its integral S(¢). In Section 2.7
we derived such equations for the continuum state case. Those equations
are expressed in terms of the propagator moment functions By, Bg, ...,
which are given for any continuous Markov process with characterizing
functions A(x,t) and D(x,¢t) by [see Egs. (3.2-1)]

A(x,t), for k=1, .
B (x,t) = {D(x,t), for k=2, (5.1-54)
0, for k=3,

and for any continuum state jump Markov process with consolidated
characterizing function W({ | x,¢) by [see Eqs. (4.2-1) and (4.2-2b)]

Bxp=W o=~ deg*WElxp, for k=1  (5.1-55)
An inspection of those moment evolution equations in Section 2.7 reveals
that there is nothing about them that seems to require that the first
argument of the propagator moment functions Bp(x,t) be real-valued
instead of integer-valued. We might therefore expect that those moment
evolution equations should also be valid for a discrete state jump Markov
process, for which the propagator moment functions are given in terms of
the consolidated characterizing function W(v|n,t) by [see Egs. (5.1-31)
and (5.1-30b)]

Bn=W, = Y v*Wu|np, fork=l. (5156

y=—o

In fact, as we shall prove momentarily, this expectation is entirely
correct: The time-evolution equations for the moments of a discrete state
Markov process X(¢) with propagator moment functions W are given
precisely by Egs. (4.2-23), and the time-evolution equations for the
moments of the associated integral process S(t) are given by Egs. (4.2-24)
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and (4.2-25). And so it follows that the time evolution equations for the
mean, variance and covariance of X(¢) are given by Egs. (4.2-26) -
(4.2-31), and the time evolution equations for the mean, variance and
covariance of S(¢) are given by Egs. (4.2-32) - (4.2-36). All of those
equations for continuum state jump Markov processes hold equally well
for discrete state jump Markov processes, it being immaterial whether
the jump propagator moment functions Wy are given by Egs. (5.1-55) or
Egs. (5.1-56).

To prove the foregoing statements, let us recall the specific
arguments that were used in Section 2.7 to derive the various moment
evolution equations. The equations derived in Subsection 2.7.A for the
moments of X(¢) and S(¢) were derived wholly from three basic relations.
The first two of those relations are the basic propagator relations (2.7-1)
and (2.7-8):

X(t+de) = X(t) + =(d¢t; X(0),0), (5.1-57a)

S(¢+de) = S + X(¢) de. (5.1-57b)
The third relation is the fundamental property (2.7-5):
(Xt ZXde; Xio),0) = (XAe) B(X(0),t) ) dt + o(de)
g=0,k=1). (5.1-57¢c)

Now, we have already seen in Egs. (5.1-32) and (5.1-33) that the first two
relations above are just as valid for discrete state Markov processes as for
continuum state Markov processes. But it remains to be seen whether
the third relation (5.1-57¢), which was proved in Subsection 2.7.A for
continuum state Markov processes, is also true for discrete state Markov
processes. To prove that it is, we begin by noting that the joint density
function for the two random variables X(¢) and 5(d¢; X(¢),t) is

Prob{ X(t)=nand Z(d¢; X(t),t) =v | X(¢)) =n,}
= P(n,t|ny,ty) (v |de; n,p).
Therefore, the average on the left of Eq. (5.1-57¢) is given by
(Xwrasxwn) = S S [”f vk ] [P(n,tl nyty) Tv]dg n,t)]

—00 y= —oo

> v TGy |dg n,t)

n=-—ow y= —ax

P(n,t| no,to)
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|
™M s

nt |Byntdt + oldn) | Pin.tin it

n

where the last step follows from the definition (5.1-29). Thus we conclude
that

(X Ekdt X0,0) :( > [nf'Bk(n,t)JP(n,t|n0,t0))dt+o(dt),
n= —ow

and this, by virtue of Eq. (5.1-10), is precisely Eq. (5.1-57¢). With the
three relations (5.1-57) thus established, the derivation of the time-
evolution equations (4.2-23) - (4.2-25) for the moments of X(¢) and S(¢)
now proceeds exactly as detailed in Subsection 2.7.A.

As was shown in Subsection 2.7.B, the time-evolution equations for
the means and variances of X(¢) and S(¢) are straightforward
consequences of the first and second moment evolution equations. But
the proof of the covariance evolution equations given in Subsection 2.7.B
requires, in addition to Eqgs. (5.1-57a) - (5.1-57¢), the relation

(X(tl)E(dtz; X(tz),t2)> = (X(tl) Bl(X(tz),t2)>dt2 + O(dtz)
(tostlstz). (5.1-57d)

This relation is proved by first noting that the joint density function of
the three random variables X(t;), X(¢9) and Z(d¢y; X(89),t2), for tg<t; <to,
is

Prob{X(tl) =n, and X(tz) = nzand E(dtz; X(tz),t2)=v | X(to) = nO}

= [P(n2,t2|n1,t1) P(nl,t1 | no,to)] H(vldtz; n2,t2).
Therefore, we can calculate the average on the left of Eq. (5.1-57d) as
(X(t)Zdt,; Xt)t))

= > > > (nv)

—

MTTY %

X P(nyt,|n t)Pn ptilngt) I dt,, not,)

— yz= —o0

el

= > > n, > vH(vIJtZ;nZ,tZ)

n,=—mnp.=—mw y= —©

X P(n2,t2 | n.t) P(nl,t1 | nO,tO)
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= g D nl[Bl(nZ,tz)dt2+o(dt2)]

—0 . = —

XP(nZ,tzlnl,tl)P(n 1,tllno,tO)
2: [n1B1(n2’t2)] Pnyt)|n,t) Plnt |ngt)dt,

+ o(dt2 ),

where the penultimate step follows from the definition (5.1-29). The
relation (5.1-57d) now follows upon application of Eq. (5.1-11). With Eq.
(5.1-57d), the derivation of the covariance evolution equations for X(¢)
and S(t) now proceeds exactly as detailed in Subsection 2.7.B.

We have now established that the moment evolution equations for
discrete state Markov processes are identical to those for continuum state
Markov processes. It follows that the same consequences and limitations
of those equations noted earlier apply here as well. For example, in the
special case Wi(n,t)=b1 and Wy(n,t)=by, the means, variances and
covariances of X(£) and S(¢) will be given explicitly by Egs. (2.7-28) and
(2.7-29). And in the special case Wi(n,t)=—Bn and Wy(n,t)=c, the
means, variances and covariances of X(¢) and S(¢) will be given explicitly
by Egs. (2.7-34) and (2.7-35). More generally, the hierarchy of moment
evolution equations will be “closed” if and only if the function Wy(n,t)isa
polynomial in n of degree <k. If that rather stringent condition is not
satisfied, then approximate solutions can usually be obtained, albeit with
much effort, by proceeding along the lines indicated in Appendix C.

As a final note on these matters, it is instructive to see how the time
evolution equations (4.2-23) for the moments of X(¢) can also be derived
directly from the forward master equation (5.1-50). Abbreviating
P(n,t| ng,tg) =P(n,t), we have for any positive integer k&,

d d ~ s d
—(Xk(t)) = — \ Rf Pnt) = S n® = Pnt)
de dt = = ot
n=-—x» n=—x
= > > nk W |n—v,t) Pln—v,b)
n=-xy=

> n® Wi—v | n,t) P(n,t)

n=-—®y=—ow
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where the last step has invoked the forward master equation (5.1-50b).
In the first sum of this last expression we change the summation variable
nto n—v, while in the second sum we change the summation variable v to
—v. This gives

d Q0 oc
E(Xk(t»: > > (n+v)* W | n,0 P(n,t)

- 3 3 2t WoindPao.

n=-—wy e

> [(n+v)k - nkJ W [ n,t) P(n,t).

i
”MB

Expanding (n+v)* using the binomial formula, we get

d 00 00 k k ) .
"‘(Xk(t)) = > > > ( .)v’nk I Wv|n,t P(n,t)
dt n=-—0 y= —~» =1 J
J
k k 0 ) 0 )
=> ( ) > nk-J[ > v Wviat| Png
j:l J n=—o v=—x

k \ oo
(RN S
=3 ( ) S nk W (n,0) P(n,p). by (5.1-30b)

j=1 97 a==
k "k ]

= Z ( i )(kaj(t) Wj(X(t),t) ) [by (5.1-10)]
j=1

in agreement with Eq. (4.2-23).

Our earlier derivation of Eq. (4.2-23) using the process propagator
has three advantages over the foregoing master equation derivation:
First, the propagator derivation is slightly shorter than the master
equation derivation; second, the propagator derivation applies to all
Markov processes, not just to discrete-state jump Markov processes; and
third, the propagator approach allows a concurrent derivation of the
equations governing the moments of the integral process S(¢). We should
note that it is also possible (and equally instructive) to derive the time-
evolution equation (4.2-28) for cov{X(t;),X(¢2)} directly from the forward
master equation (5.1-50b); however, that derivation likewise lacks the
simplicity and generality of our earlier propagator derivation.



