Chapter 7

Distribution and Quantile
Functions

1 Character of Distribution Functions

Let X : (©, A, P) — (R, B) denote a rv with distribution function (df) Fx, where
(1) Fx(z) =P(X <ux) for — oo <z < 0.

Then F = Fx was seen earlier to satisfy

(2) Fis /' and right continuous, with F(—occ) = 0 and F(+00) = 1.

Because of the following proposition, any function F' satisfying (2) will be called a
df. [If F is 7, right continuous, 0 < F/(—o0), and F(400) < 1, we earlier agreed to
call F a sub-df. As usual, F(a,b] = F(b) — F(a) denotes the increments of F', and
AF(x) = F(z) — F_(x) is the mass of F at z.]

Proposition 1.1 (There exists an X with df F') If F satisfies (2), then there
exists a probability space (2,4, P) and a rv X : (2, A, P) — (R, B) for which the
df of X is F'. We write X = F.

Proof. The corollary to the correspondence theorem (theorem 1.3.1) shows
that there exists a unique probability distribution P on (€2,.4) = (R, B) for which

P((a,b]) = F(b) — F(a) for all a <b. Now define X(w) = w for all w € R to be the
identity function on R. O

Theorem 1.1 (Decomposition of a df) Any df F' can be decomposed as
(3) F:Fd+Fc:Fd+Fs+Fac:(Fd+Fs)+Faca

where Fy, F,, Fs, and F,. are the unique sub-dfs of the following types (unique
among those sub-dfs equal to 0 at —o0):

(4) Fy is a step function of the form }°; bjl1,; o) (With all b; > 0).
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(5) F. is continuous.
(6) Fy is singular, with its measure orthogonal to Lebesgue measure.

Foe = f—oo fac(y) dy
for some f,. > 0 that is finite, measurable, and unique a.e. .

Proof. Let {a;} denote the set of all discontinuities of F', which can only be
jumps; and let b, = F(a;) — F_(a;). There can be only a countable number of
jumps, since the number of jumps of size exceeding size 1/n is certainly bounded
by n. Now define Fy = Zj bj1(a;,00), Which is obviously * and right continuous,
since Fy(z,y] < F(z,y] N\ 0 as y \, « (the inequality holds, since the sum of
jump sizes over every finite number of jumps between a and b is clearly bounded
by F(xz,y], and then just pass to the limit). Define F, = F — F;. Now, F. is 7,
since for <y we have F.(z,y] = F(x,y] — Fa(x,y] > 0. Now, F, is the difference
of right-continuous functions, and hence is right continuous; it is left continuous,
since for ' y we have

(a) F.z,y] = F(x,y]—zw<ajgy b = F_(y)—F(I)—ZI<aj<ybj —0-0=0.

We turn to the _uniqueness of Fy. Assume that Fe+Fi=F= G. + G4 for some
other G4 = Zj bila, 00) With distinct a;’s and Zj bj <1. Then Fy— G4 = G.—F,
is continuous. If G4 # Fy, then either some jump point or some jump size disagrees.
No matter which disagrees, at some a we must have

(b)  AFy(a) — AGa(a) £ 0,

contradicting the continuity of G, — F, = F3 — G4. Thus G4 = Fy, and hence
F, = G.. This completes the first decomposition.

We now turn to the further decomposition of F.. Associate a measure p. with
F. via p.((—o00,z]) = Fe(z). Then the Lebesgue decomposition theorem shows
that pe = fs + flac, where ps(B) = 0 and pe.(B¢) = 0 for some B € B; we say
that ps and pe. are singular. Moreover, this same Lebesgue theorem implies the
claimed uniqueness and shows that f,. exists with the uniqueness claimed. Now,
Fuc(@) = pac((—00,2]) = [*_ fac(y) dy is continuous by Fue(x,y] < prac(x,y] — 0
asy — x orasx — y. Thus Fy = F. — F,. is continuous, and Fs(z) = us((—o0, x]).
O

Example 1.1 (The Lebesgue singular df)  Define the Cantor set C' by
(8) C={zxel0,1]:2=>"",2a,/3", with all a, equal to 0 or 1}.

[Thus the Cantor set is obtained by removing from [0, 1] the open interval (3, 2) at
stage one, then the open intervals (%,2) and (£, 8) at stage two, ....] Finally, we

9°9 979
define F' on C by

(9 F(Xnii20a/3") =300, an/2".
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Figure 1.1 Lebesgue singular function.

Now note that {F(x) : ¢ € C} = [0, 1], since the right-hand side of (9) represents
all of [0, 1] via dyadic expansion. We now define F' linearly on C¢ (the first three
components are shown in figure 1.1 above). Since the resulting F is * and achieves
every value in [0, 1], it must be that F' is continuous. Now, F assigns no mass to the
“flat spots” whose lengths sums to 1 since % + % + % +e = % = 1. Thus F
is singular with respect to Lebesgue measure A, using A(C°) = 1 and up(C°) = 0.
We call this F' the Lebesque singular df. [The theorem in the next section shows
that removing the flat spots does, even for a general df F, leave only the essentials.]
O

Exercise 1.1  Let X = N(0,1) (as in (9.1.22) below), and let Y = 2X.

(a) Is the df F(-,-) of (X,Y) continuous?

(b) Does the measure pp on R have a density with respect to two-dimensional
Lebesgue measure? [Hint. Appeal to corollary 2 to Fubini’s theorem.]

Definition 1.1 Two rvs X and Y are said to be of the same type if Y ZaX +b
for some a > 0. Their dfs are also said to be of the same type.
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2 Properties of Distribution Functions

Definition 2.1  The support of a given df F' = Fx is defined to be the minimal
closed set C having P(X € C) = 1. A point z is a point of increase of F if every
open interval U containing x has P(X € U) > 0. A realizable t-quantile of F, for
0 <t <1, is any value z for which F(z) = t.

Theorem 2.1 (Jumps and flat spots) Let 0 < ¢t < 1. Let U; denote the
maximal open interval of 2’s for which F'(z) = ¢. The set of ¢’s for which these Uy’s
are nonvoid is at most countable (these are exactly those t’s that have more than
one realizable t-quantile). Moreover:

(a) C = (Up<y<1 Ur) is a closed set having P(C) = 1.

(b) C is equal to the set of all points of increase.

(c) C is the support of F.

(d) F has at most a countable number of discontinuities, and these discontinuities
are all discontinuities of the jump type.

(e) F has an at most countable number of flat spots (the nonvoid U;’s).

[We will denote jump points and jump sizes of F by ¢;’s and b;’s. The t values and
the A(U;) values of the multiply realizable t-quantiles will be seen in the proof of
proposition 7.3.1 below to correspond to the jump points ¢; and the jump values
d; of the function K(-) = F~!(-), and there at most countably many of them.]

Proof. (a) For each t there is a maximal open set U; (possibly void) on
which F equals t. Now, P(X € U;) = 0 using proposition 1.1.2. Note that
C = (UUp)¢ is closed (since the union of an arbitrary collection of open sets is
open). Hence C° = Ugctc1 U = U(an, by), where (a1, by1),... are (at most count-
ably many) disjoint open intervals, and all those with 0 < ¢ < 1 must be finite.
Now, by proposition 1.1.2, for the finite intervals we have P(X € (an,b,)) =
lime o P(X € [an + €,b, — €])=lime,00 = 0, whence P(X € [a, + €,b, —€]) =0
follows, since this finite closed interval must have a finite subcover by U; sets. If
(Gn,bp) = (—00,by), then P(X € (—o0,by,)) =0, since P(X € [-1/¢,b, —¢]) =0 as
before. An analogous argument works if (ay,, b,) = (an,00). Thus P(X € C¢) =0
and P(X € C) = 1. Note that the U;’s are just the (an,by)’s in disguise; each
U, C some (an,by), and hence Uy = that(ay,b,). Thus U; is nonvoid for at most
countably many t’s.

(b) Let z € C and let U denote a neighborhood of z. Let t = F(z) and assume
P(U) =0. Then x € U C U; C C¢, which is a contradiction of x € C. Thus all
points & € C are points of increase. Now suppose conversely that x is a point of
increase. Assume x ¢ C. Then x € some (an,by) having P(X € (an,b,)) = 0,
which is a contradiction. Thus x € C'. Thus the closed set C is exactly the set of
points of increase, and P(X € C) = 1.

(c) Assume that C is not the minimal closed set having probability 1. Then
P(C) = 1 for some closed C € C. Let z € C\ C and let t = F(z). Since C¢ is
open, there exists an open set V, with x € V, C C¢ and P(X € V) = 0. Thus
x €V, CU C C° Thus x € C, which is a contradiction. Thus C' is minimal. O
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3 The Quantile Transformation

Definition 3.1 (Quantile function) For any df F(-) we define the quantile
function (gf) (which is the inverse of the df) by

(1) K(t)=F'(t) =inf{z: F(z) >t} for 0 <t < 1.

Figure 3.1 The df F(-) and the of K(-) = F1(.).

Theorem 3.1 (The inverse transformation) Let

(2) X =K(€)=F ), where ¢ 22 Uniform(0, 1).

Then
(3) [X <z]=[¢ < F(z)] for every real x,
(4) Iix<) = lig<r(y on R, for every w,

(5) X=K(€)=F ) has df F,

(6) lix<] = lig<r_ () on R, for a.e. w.
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Proof. Now, & < F(z) implies X = F7}(&) <z by (1). If X = F7}(§) < z,
then F(x +¢€) > £ for all € > 0; so right continuity implies F'(z) > £. Thus (3)
holds; (4) and (5) are then immediate.

If £(w) = ¢ where ¢t is not in the range of F', then (6) holds. If {(w) = t where
F(xz) =t for exactly one x, then (6) holds. If {(w) =t where F(x) =t for at least
two distinct a’s, then (6) fails; theorem 7.2.1 shows that this can happen for at
most a countable number of ¢’s. (Or: Graph a df F' that exhibits the three types
of points ¢, and the rest is trivial with respect to (6), since the value of F at any
other point is immaterial. Specifically, (6) holds for w unless F' has a flat spot at
height t = F(§(w)). Note figure 3.1.) O

Definition 3.2 (Convergence in quantile) Let K, denote the gf associated with
df F,, for each n > 0. We write K,, —4 K( to mean that K, (t) — Ko(t) at each
continuity point ¢ of Ky in (0,1). We then say that K, converges in quantile to Ko,
or K,, converges in distribution to K.

Proposition 3.1 (Convergence in distribution equals convergence in quantile)

(7) F, >4 F if and only if K, -4 K.

Proof. Suppose F,, —q F. Let t € (0,1) be such that there is at most one
value x having F(x) =t (that is, there is not a multiply realizable t-quantile). Let
2= F71(t).

First: We have F(x) < t for < z. Thus F,(z) < t for n > (some N,), provided
that z < z is a continuity point of F. Thus F, (t) > = for n > N,, provided that
x < z is a continuity point of F. Thus liminf F,;1(¢) > z, provided that z < z is
a continuity point of F. Thus liminf F; 1(#) > z, since there are continuity points
x that  z. Second: We also have F(z) > ¢ for z < z. Thus F,(z) > ¢, and
hence F; () < z for n > (some N,), provided that z > z is a continuity point of
F. Thus limsup F,, }(t) < x, provided that = > z is a continuity point of F. Thus
limsup F; 1(¢) < 2, since there are continuity points x that \ z.

Summary F,'(t) — F~1(t) for all but at most a countably infinite number of
t’s (namely, for all but those t’s that have multiply realizable ¢-quantiles; these
correspond to the heights of flat spots of F', and these flat spot heights ¢ are exactly
the discontinuity points of K). That is, K, —4 K.

The proof of the converse is virtually identical. O

Exercise 3.1 (Left continuity of K) Show that K (t) = F~1(t) is left continuous

n (0,1). [Note that K is discontinuous at ¢ € (0,1) if and only if the corresponding
U, is nonvoid (see theorem 7.2.1). Likewise, the jump points ¢; and the jump sizes
d; of K(-) are equal to the t values and the A(U,) values of the multiply realizable
t-quantiles.] [We earlier agreed to use a; and b; for the jump points and jump sizes
of the associated df F'.]
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Exercise 3.2 (Properties of dfs) (i) For any df F' we have
FoF_l(t)Zt forall0 <t <1,

and equality fails if and only if ¢ € (0,1) is not in the range of F on [—00, x].
(ii) (The probability integral transformation) If X has a continuous df F', then
F(X) 2 Uniform(0, 1). In fact, for any df F,

PF(X)<t)<t foral 0 <t <1,

with equality failing if and only if ¢ is not in the closure of the range of F'.
(iii) For any df F' we have

FloF(r)<z for all —oo <z < o0,
and equality fails if and only if F(y) = F(z) for some y < x. Thus
P(F'oF(X)#X)=0  whenever X = F.

(iv) If F is a continuous df and F(X) 2 Uniform(0, 1), then X = F.
Proposition 3.2 (The randomized probability integral transformation) Let X
denote an arbitrary rv. Let F' denote its df, and let (a;, b;)’s denote an enumeration

of whatever pairs (jump point, jump size) the df F' possesses. Let 1,732, ... denote
iid Uniform(0,1) rvs (that are also independent of X'). Then

(8) §=F(X) =Y, bjnj 1ix—a, = Uniform(0, 1),
9 X=F'&)=K(©.

[We have reproduced X from a Uniform(0, 1) rv that was defined using both X and
some independent extraneous variation. Note figure 3.1.]

Proof. We have merely smoothed out the mass b; that F(X) placed at F(a;)
by subtracting the random fractional amount 7;b; of the mass b;. O

Exercise 3.3 (Change of variable) Suppose that rvs X = F and Y = G are
related by G(H) = F and X = H~*(Y), where H is right continuous on the real
line with left-continuous inverse H—'. (a) Then set g, X, u, ix, A’ in the theorem
of the unconscious statistician equal to g, H~!, G, F, (—00, z] to conclude that

(10) / g(H)dG = / gdF,
(—00,H(x)] (—o0,z]

since (H™1) ™! ((—o00,2]) = {y : H™'(y) < x} = (—o0, H(x)].
(b) Making the identifications G = I, H = F, and Y = £ = Uniform(0, 1) gives
especially (via part (a), or via (2) and (3))

(11) / g(F~Y(t))dt = / gdF
[0,F(z)] (—o00,]

for arbitrary df F' and any measurable g.
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Proof. We now prove proposition 1.2.3. Let D be a subset of [0,1] that
is not Lebesgue measurable; its existence is guaranteed by proposition 1.2.2. Let
B = F~1(D). Then B is a subset of the Cantor set C of example 7.1.1. Since
AMC) =0 and B C C, it follows that B is a Lebesgue set with A(B) = 0. We now
assume that B is Borel set (and look for a contradiction). We note that F'(B) is
also a Borel set, since F' (being ) is Borel measurable. However, F' is 1-to-1 on C,
and so F(B) = D. That is, D is a Borel set, and hence D is a Lebesgue set. This
is the contradiction we sought. O

The Elementary Skorokhod Construction Theorem

Let Xo, X1, Xo,... beiid F. Then X,, —4 Xg, but the X,, do not converge to Xy in
the sense of —, .., —p, or —,. However, when general X,, =4 X, it is possible to
replace the X,,’s by rvs Y,, having the same (marginal) dfs, for which the stronger
result Y,, —4.s. Yo holds.

Theorem 3.2 (Skorokhod) Suppose that X,, —4 X;. Define {(w) = w for
each w € [0,1] so that & 2 Uniform(0,1) on (2,4, P) = ([0,1],B8N[0,1], ), for
Lebesgue measure . Let F,, denote the df of X,,, and define Y,, = F,; (&) for all
n > 0. Let D, denote the at most countable discontinuity set of K. Then both

Y, =K, ) =F Y 2X,2F, foralln>0 and

(12) "
Yo (w) = Yo(w) forall w ¢ Dg,.

Proof. This follows trivially from proposition 3.1. O

Exercise 3.4 (Wasserstein distance) For k = 1 or 2, define
Fr={F:Fisadf and [|2|"dF(z) < 0o},
d(F1, F) = [o|[F7YN () — B L) dt  for all Fi, By € F,.

Show that both (Fg, di) spaces are complete metric spaces, and that

dg(Fn, Fo) = 0 (with all {F,,}3° € Fi) if and only if

13
(13) F, —4 Fy and f|:c|k dF,(z) —>f|a:|de0(:c).



