Chapter 7

Distribution and Quantile Functions

1 Character of Distribution Functions

Let $X:(\Omega,\mathcal{A},P)\to(R,\mathcal{B})$ denote a rv with distribution function (df) F_X , where

(1)
$$F_X(x) \equiv P(X \le x)$$
 for $-\infty < x < \infty$.

Then $F \equiv F_X$ was seen earlier to satisfy

(2) F is \nearrow and right continuous, with $F(-\infty) = 0$ and $F(+\infty) = 1$.

Because of the following proposition, any function F satisfying (2) will be called a df. [If F is \nearrow , right continuous, $0 \le F(-\infty)$, and $F(+\infty) \le 1$, we earlier agreed to call F a sub-df. As usual, $F(a,b] \equiv F(b) - F(a)$ denotes the increments of F, and $\Delta F(x) \equiv F(x) - F_{-}(x)$ is the mass of F at x.]

Proposition 1.1 (There exists an X with df F) If F satisfies (2), then there exists a probability space (Ω, \mathcal{A}, P) and a rv $X : (\Omega, \mathcal{A}, P) \to (R, \mathcal{B})$ for which the df of X is F. We write $X \cong F$.

Proof. The corollary to the correspondence theorem (theorem 1.3.1) shows that there exists a unique probability distribution P on $(\Omega, \mathcal{A}) \equiv (R, \mathcal{B})$ for which P((a,b]) = F(b) - F(a) for all $a \leq b$. Now define $X(\omega) = \omega$ for all $\omega \in R$ to be the identity function on R. \square

Theorem 1.1 (Decomposition of a df) Any df F can be decomposed as

(3)
$$F = F_d + F_c = F_d + F_s + F_{ac} = (F_d + F_s) + F_{ac}$$

where F_d, F_c, F_s , and F_{ac} are the unique sub-dfs of the following types (unique among those sub-dfs equal to 0 at $-\infty$):

(4) F_d is a step function of the form $\sum_j b_j 1_{[a_j,\infty)}$ (with all $b_j > 0$).

- (5) F_c is continuous.
- (6) F_s is singular, with its measure orthogonal to Lebesgue measure.
- (7) $F_{ac} = \int_{-\infty}^{\infty} f_{ac}(y) dy$ for some $f_{ac} \ge 0$ that is finite, measurable, and unique a.e. λ .

Proof. Let $\{a_j\}$ denote the set of all discontinuities of F, which can only be jumps; and let $b_j \equiv F(a_j) - F_-(a_j)$. There can be only a countable number of jumps, since the number of jumps of size exceeding size 1/n is certainly bounded by n. Now define $F_d \equiv \sum_j b_j 1_{[a_j,\infty)}$, which is obviously \nearrow and right continuous, since $F_d(x,y] \leq F(x,y] \searrow 0$ as $y \searrow x$ (the inequality holds, since the sum of jump sizes over every finite number of jumps between a and b is clearly bounded by F(x,y], and then just pass to the limit). Define $F_c = F - F_d$. Now, F_c is \nearrow , since for $x \leq y$ we have $F_c(x,y] = F(x,y] - F_d(x,y] \geq 0$. Now, F_c is the difference of right-continuous functions, and hence is right continuous; it is left continuous, since for $x \nearrow y$ we have

(a)
$$F_c(x,y] = F(x,y] - \sum_{x < a_j \le y} b_j = F_-(y) - F(x) - \sum_{x < a_j < y} b_j \to 0 - 0 = 0.$$

We turn to the uniqueness of F_d . Assume that $F_c + F_d = F = G_c + G_d$ for some other $G_d \equiv \sum_j \bar{b}_j 1_{[\bar{a}_j,\infty)}$ with distinct \bar{a}_j 's and $\sum_j \bar{b}_j \leq 1$. Then $F_d - G_d = G_c - F_c$ is continuous. If $G_d \neq F_d$, then either some jump point or some jump size disagrees. No matter which disagrees, at some a we must have

(b)
$$\Delta F_d(a) - \Delta G_d(a) \neq 0$$
,

contradicting the continuity of $G_c - F_c = F_d - G_d$. Thus $G_d = F_d$, and hence $F_c = G_c$. This completes the first decomposition.

We now turn to the further decomposition of F_c . Associate a measure μ_c with F_c via $\mu_c((-\infty, x]) = F_c(x)$. Then the Lebesgue decomposition theorem shows that $\mu_c = \mu_s + \mu_{ac}$, where $\mu_s(B) = 0$ and $\mu_{ac}(B^c) = 0$ for some $B \in \mathcal{B}$; we say that μ_s and μ_{ac} are singular. Moreover, this same Lebesgue theorem implies the claimed uniqueness and shows that f_{ac} exists with the uniqueness claimed. Now, $F_{ac}(x) \equiv \mu_{ac}((-\infty, x]) = \int_{-\infty}^x f_{ac}(y) \, dy$ is continuous by $F_{ac}(x, y) \leq \mu_{ac}(x, y) \to 0$ as $y \to x$ or as $x \to y$. Thus $F_s \equiv F_c - F_{ac}$ is continuous, and $F_s(x) = \mu_s((-\infty, x])$. \square

Example 1.1 (The Lebesgue singular df) Define the $Cantor \ set \ C$ by

(8)
$$C \equiv \{x \in [0,1] : x = \sum_{n=1}^{\infty} 2a_n/3^n, \text{ with all } a_n \text{ equal to 0 or 1}\}.$$

[Thus the Cantor set is obtained by removing from [0,1] the open interval $(\frac{1}{3},\frac{2}{3})$ at stage one, then the open intervals $(\frac{1}{9},\frac{2}{9})$ and $(\frac{7}{9},\frac{8}{9})$ at stage two,] Finally, we define F on C by

(9)
$$F(\sum_{n=1}^{\infty} 2a_n/3^n) = \sum_{n=1}^{\infty} a_n/2^n$$
.

Figure 1.1 Lebesgue singular function.

Now note that $\{F(x): x \in C\} = [0,1]$, since the right-hand side of (9) represents all of [0,1] via dyadic expansion. We now define F linearly on C^c (the first three components are shown in figure 1.1 above). Since the resulting F is \nearrow and achieves every value in [0,1], it must be that F is continuous. Now, F assigns no mass to the "flat spots" whose lengths sums to 1 since $\frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \cdots = \frac{1/3}{1-2/3} = 1$. Thus F is singular with respect to Lebesgue measure λ , using $\lambda(C^c) = 1$ and $\mu_F(C^c) = 0$. We call this F the Lebesgue singular df. [The theorem in the next section shows that removing the flat spots does, even for a general df F, leave only the essentials.]

Exercise 1.1 Let $X \cong N(0,1)$ (as in (9.1.22) below), and let $Y \equiv 2X$.

- (a) Is the df $F(\cdot,\cdot)$ of (X,Y) continuous?
- (b) Does the measure μ_F on R_2 have a density with respect to two-dimensional Lebesgue measure? [Hint. Appeal to corollary 2 to Fubini's theorem.]

Definition 1.1 Two rvs X and Y are said to be of the same type if $Y \cong aX + b$ for some a > 0. Their dfs are also said to be of the same type.

2 Properties of Distribution Functions

Definition 2.1 The support of a given df $F \equiv F_X$ is defined to be the minimal closed set C having $P(X \in C) = 1$. A point x is a point of increase of F if every open interval U containing x has $P(X \in U) > 0$. A realizable t-quantile of F, for 0 < t < 1, is any value z for which F(z) = t.

Theorem 2.1 (Jumps and flat spots) Let $0 \le t \le 1$. Let U_t denote the maximal open interval of x's for which F(x) = t. The set of t's for which these U_t 's are nonvoid is at most countable (these are exactly those t's that have more than one realizable t-quantile). Moreover:

- (a) $C \equiv (\bigcup_{0 \le t \le 1} U_t)^c$ is a closed set having P(C) = 1.
- (b) C is equal to the set of all points of increase.
- (c) C is the support of F.
- (d) F has at most a countable number of discontinuities, and these discontinuities are all discontinuities of the jump type.
- (e) F has an at most countable number of flat spots (the nonvoid U_t 's).

[We will denote jump points and jump sizes of F by a_i 's and b_i 's. The t values and the $\lambda(U_t)$ values of the multiply realizable t-quantiles will be seen in the proof of proposition 7.3.1 below to correspond to the jump points c_j and the jump values d_j of the function $K(\cdot) \equiv F^{-1}(\cdot)$, and there at most countably many of them.]

- **Proof.** (a) For each t there is a maximal open set U_t (possibly void) on which F equals t. Now, $P(X \in U_t) = 0$ using proposition 1.1.2. Note that $C \equiv (\cup_t U_t)^c$ is closed (since the union of an arbitrary collection of open sets is open). Hence $C^c = \cup_{0 < t < 1} U_t = \cup (a_n, b_n)$, where $(a_1, b_1), \ldots$ are (at most countably many) disjoint open intervals, and all those with 0 < t < 1 must be finite. Now, by proposition 1.1.2, for the finite intervals we have $P(X \in (a_n, b_n)) = \lim_{\epsilon \to 0} P(X \in [a_n + \epsilon, b_n \epsilon]) = \lim_{\epsilon \to 0} 0 = 0$, whence $P(X \in [a_n + \epsilon, b_n \epsilon]) = 0$ follows, since this finite closed interval must have a finite subcover by U_t sets. If $(a_n, b_n) = (-\infty, b_n)$, then $P(X \in (-\infty, b_n)) = 0$, since $P(X \in [-1/\epsilon, b_n \epsilon]) = 0$ as before. An analogous argument works if $(a_n, b_n) = (a_n, \infty)$. Thus $P(X \in C^c) = 0$ and $P(X \in C) = 1$. Note that the U_t 's are just the (a_n, b_n) 's in disguise; each $U_t \subset \text{some } (a_n, b_n)$, and hence $U_t = \text{that}(a_n, b_n)$. Thus U_t is nonvoid for at most countably many t's.
- (b) Let $x \in C$ and let U denote a neighborhood of x. Let $t \equiv F(x)$ and assume P(U) = 0. Then $x \in U \subset U_t \subset C^c$, which is a contradiction of $x \in C$. Thus all points $x \in C$ are points of increase. Now suppose conversely that x is a point of increase. Assume $x \notin C$. Then $x \in \text{some } (a_n, b_n)$ having $P(X \in (a_n, b_n)) = 0$, which is a contradiction. Thus $x \in C$. Thus the closed set C is exactly the set of points of increase, and $P(X \in C) = 1$.
- (c) Assume that C is not the minimal closed set having probability 1. Then $P(\tilde{C}) = 1$ for some closed $\tilde{C} \subset C$. Let $x \in C \setminus \tilde{C}$ and let t = F(x). Since \tilde{C}^c is open, there exists an open set V_x with $x \in V_x \subset \tilde{C}^c$ and $P(X \in V_x) = 0$. Thus $x \in V_x \subset U_t \subset C^c$. Thus $x \notin C$, which is a contradiction. Thus C is minimal. \Box

111

3 The Quantile Transformation

Definition 3.1 (Quantile function) For any df $F(\cdot)$ we define the *quantile function (qf)* (which is the inverse of the df) by

(1)
$$K(t) \equiv F^{-1}(t) \equiv \inf\{x : F(x) \ge t\}$$
 for $0 < t < 1$.

Figure 3.1 The df $F(\cdot)$ and the qf $K(\cdot) = F^{-1}(\cdot)$.

Theorem 3.1 (The inverse transformation) Let

(2)
$$X \equiv K(\xi) \equiv F^{-1}(\xi)$$
, where $\xi \cong \text{Uniform}(0, 1)$.

Then

$$(3) \qquad [X \leq x] = [\xi \leq F(x)] \qquad \text{for every real } x,$$

$$(4) \qquad 1_{[X\leq \cdot]}=1_{[\xi\leq F(\cdot)]} \qquad \quad \text{on } R, \ \text{ for every } \omega,$$

(5)
$$X \equiv K(\xi) \equiv F^{-1}(\xi)$$
 has df F ,

(6)
$$1_{[X<\cdot]} = 1_{[\xi< F_{-}(\cdot)]}$$
 on R , for a.e. ω .

Proof. Now, $\xi \leq F(x)$ implies $X = F^{-1}(\xi) \leq x$ by (1). If $X = F^{-1}(\xi) \leq x$, then $F(x + \epsilon) \geq \xi$ for all $\epsilon > 0$; so right continuity implies $F(x) \geq \xi$. Thus (3) holds; (4) and (5) are then immediate.

If $\xi(\omega) = t$ where t is not in the range of F, then (6) holds. If $\xi(\omega) = t$ where F(x) = t for exactly one x, then (6) holds. If $\xi(\omega) = t$ where F(x) = t for at least two distinct x's, then (6) fails; theorem 7.2.1 shows that this can happen for at most a countable number of t's. (Or: Graph a df F that exhibits the three types of points t, and the rest is trivial with respect to (6), since the value of F at any other point is immaterial. Specifically, (6) holds for ω unless F has a flat spot at height $t \equiv F(\xi(\omega))$. Note figure 3.1.)

Definition 3.2 (Convergence in quantile) Let K_n denote the qf associated with df F_n , for each $n \geq 0$. We write $K_n \to_d K_0$ to mean that $K_n(t) \to K_0(t)$ at each continuity point t of K_0 in (0,1). We then say that K_n converges in quantile to K_0 , or K_n converges in distribution to K.

Proposition 3.1 (Convergence in distribution equals convergence in quantile)

(7)
$$F_n \to_d F$$
 if and only if $K_n \to_d K$.

Proof. Suppose $F_n \to_d F$. Let $t \in (0,1)$ be such that there is at most one value x having F(x) = t (that is, there is not a multiply realizable t-quantile). Let $z \equiv F^{-1}(t)$.

First: We have F(x) < t for x < z. Thus $F_n(x) < t$ for $n \ge (\text{some } N_x)$, provided that x < z is a continuity point of F. Thus $F_n^{-1}(t) \ge x$ for $n \ge N_x$, provided that x < z is a continuity point of F. Thus $\lim \inf F_n^{-1}(t) \ge x$, provided that x < z is a continuity point of F. Thus $\lim \inf F_n^{-1}(t) \ge z$, since there are continuity points x that $\nearrow z$. Second: We also have F(x) > t for x < x. Thus $F_n(x) > t$, and hence $F_n^{-1}(t) \le x$ for $n \ge (\text{some } N_x)$, provided that x > z is a continuity point of F. Thus $\lim \sup F_n^{-1}(t) \le x$, since there are continuity points x that x > z is a continuity point of F. Thus $\lim \sup F_n^{-1}(t) \le x$, since there are continuity points x that x > z.

Summary $F_n^{-1}(t) \to F^{-1}(t)$ for all but at most a countably infinite number of t's (namely, for all but those t's that have multiply realizable t-quantiles; these correspond to the heights of flat spots of F, and these flat spot heights t are exactly the discontinuity points of K). That is, $K_n \to_d K$.

The proof of the converse is virtually identical. \Box

Exercise 3.1 (Left continuity of K) Show that $K(t) = F^{-1}(t)$ is left continuous on (0,1). [Note that K is discontinuous at $t \in (0,1)$ if and only if the corresponding U_t is nonvoid (see theorem 7.2.1). Likewise, the jump points c_j and the jump sizes d_j of $K(\cdot)$ are equal to the t values and the $\lambda(U_t)$ values of the multiply realizable t-quantiles.] [We earlier agreed to use a_i and b_i for the jump points and jump sizes of the associated df F.]

Exercise 3.2 (Properties of dfs) (i) For any df F we have

$$F \circ F^{-1}(t) \ge t$$
 for all $0 \le t \le 1$,

and equality fails if and only if $t \in (0,1)$ is not in the range of F on $[-\infty, \infty]$. (ii) (The probability integral transformation) If X has a continuous df F, then $F(X) \cong \text{Uniform}(0,1)$. In fact, for any df F,

$$P(F(X) \le t) \le t$$
 for all $0 \le t \le 1$,

with equality failing if and only if t is not in the closure of the range of F.

(iii) For any df F we have

$$F^{-1} \circ F(x) \le x$$
 for all $-\infty < x < \infty$,

and equality fails if and only if F(y) = F(x) for some y < x. Thus

$$P(F^{-1} \circ F(X) \neq X) = 0$$
 whenever $X \cong F$.

(iv) If F is a continuous df and $F(X) \cong \text{Uniform}(0,1)$, then $X \cong F$.

Proposition 3.2 (The randomized probability integral transformation) Let X denote an arbitrary rv. Let F denote its df, and let (a_j, b_j) 's denote an enumeration of whatever pairs (jump point, jump size) the df F possesses. Let η_1, η_2, \ldots denote iid Uniform(0,1) rvs (that are also independent of X). Then

(8)
$$\dot{\xi} \equiv F(X) - \sum_{j} b_{j} \eta_{j} 1_{[X=a_{j}]} \cong \text{Uniform}(0,1),$$

(9)
$$X = F^{-1}(\dot{\xi}) = K(\xi).$$

[We have reproduced X from a Uniform(0,1) rv that was defined using both X and some independent extraneous variation. Note figure 3.1.]

Proof. We have merely smoothed out the mass b_j that F(X) placed at $F(a_j)$ by subtracting the random fractional amount $\eta_j b_j$ of the mass b_j .

Exercise 3.3 (Change of variable) Suppose that rvs $X \cong F$ and $Y \cong G$ are related by G(H) = F and $X = H^{-1}(Y)$, where H is right continuous on the real line with left-continuous inverse H^{-1} . (a) Then set g, X, μ, μ_X, A' in the theorem of the unconscious statistician equal to $g, H^{-1}, G, F, (-\infty, x]$ to conclude that

(10)
$$\int_{(-\infty,H(x)]} g(H^{-1}) dG = \int_{(-\infty,x]} g dF,$$

since $(H^{-1})^{-1}((-\infty, x]) = \{y : H^{-1}(y) \le x\} = (-\infty, H(x)].$

(b) Making the identifications G=I, H=F, and $Y=\xi\cong \mathrm{Uniform}(0,1)$ gives especially (via part (a), or via (2) and (3))

(11)
$$\int_{[0,F(x)]} g(F^{-1}(t)) dt = \int_{(-\infty,x]} g dF$$

for arbitrary df F and any measurable g.

Proof. We now prove proposition 1.2.3. Let D be a subset of [0,1] that is not Lebesgue measurable; its existence is guaranteed by proposition 1.2.2. Let $B \equiv F^{-1}(D)$. Then B is a subset of the Cantor set C of example 7.1.1. Since $\lambda(C) = 0$ and $B \subset C$, it follows that B is a Lebesgue set with $\lambda(B) = 0$. We now assume that B is Borel set (and look for a contradiction). We note that F(B) is also a Borel set, since F (being \nearrow) is Borel measurable. However, F is 1-to-1 on C, and so F(B) = D. That is, D is a Borel set, and hence D is a Lebesgue set. This is the contradiction we sought. \square

The Elementary Skorokhod Construction Theorem

Let X_0, X_1, X_2, \ldots be iid F. Then $X_n \to_d X_0$, but the X_n do not converge to X_0 in the sense of $\to_{a.s.}$, \to_p , or \to_r . However, when general $X_n \to_d X_0$, it is possible to replace the X_n 's by rvs Y_n having the same (marginal) dfs, for which the stronger result $Y_n \to_{a.s.} Y_0$ holds.

Theorem 3.2 (Skorokhod) Suppose that $X_n \to_d X_0$. Define $\xi(\omega) = \omega$ for each $\omega \in [0,1]$ so that $\xi \cong \text{Uniform}(0,1)$ on $(\Omega, \mathcal{A}, P) \equiv ([0,1], \mathcal{B} \cap [0,1], \lambda)$, for Lebesgue measure λ . Let F_n denote the df of X_n , and define $Y_n \equiv F_n^{-1}(\xi)$ for all $n \geq 0$. Let D_{K_0} denote the at most countable discontinuity set of K_0 . Then both

$$(12) Y_n \equiv K_n(\xi) \equiv F_n^{-1}(\xi) \cong X_n \cong F_n \text{ for all } n \geq 0$$
 and
$$Y_n(\omega) \to Y_0(\omega) \text{ for all } \omega \notin D_{K_0}.$$

Proof. This follows trivially from proposition 3.1. \Box

Exercise 3.4 (Wasserstein distance) For k = 1 or 2, define

$$\mathcal{F}_k \equiv \{F : F \text{ is a df, and } \int |x|^k dF(x) < \infty \},$$

$$d_k(F_1, F_2) \equiv \int_0^1 |F_1^{-1}(t) - F_2^{-1}(t)|^k dt \quad \text{for all } F_1, F_2 \in \mathcal{F}_k.$$

Show that both (\mathcal{F}_k, d_k) spaces are complete metric spaces, and that

(13)
$$\begin{aligned} d_k(F_n, F_0) &\to 0 & \text{ (with all } \{F_n\}_0^\infty \in \mathcal{F}_k \text{)} & \text{ if and only if } \\ F_n &\to_d F_0 & \text{ and } & \int |x|^k dF_n(x) &\to \int |x|^k dF_0(x) \text{ .} \end{aligned}$$