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The Langevin and generalized
Langevin equations

15.1 The general model of a system plus a bath

Many problems in chemistry, biology, and physics do not involve homogeneous systems
but are concerned, rather, with a specific process that occurs in some sort of medium.
Most biophysical and biochemical processes occur in an aqueous environment, and
one might be interested in a specific conformational change in a protein or the bond-
breaking event in a hydrolysis reaction. In this case, the water solvent and other degrees
of freedom not directly involved in the reaction serve as the “medium,” which is often
referred to generically as a bath. Organic reactions occur in a variety of different
solvents, including water, methanol, dimethyl sulfoxide, and carbon tetrachloride. For
example, a common reaction such as a Diels-Alder reaction can occur in water or in
a room-temperature ionic liquid. In surface physics, we might be interested in the
addition of an adsorbate to a particular site on the surface. If a reaction coordinate
(see Section 8.6) for the adsorption process can be identified, the remaining degrees of
freedom, including the bulk below the surface, can be treated as the environment or
bath. Many other examples fall into this general paradigm, and it is, therefore, useful
to develop a framework for treating such problems.

In this chapter, we will develop an approach that allows the bath degrees of free-
dom to be eliminated from a problem, leaving only coordinates of interest to be treated
explicitly. The resulting equation of motion in the reduced subspace, known as the
generalized Langevin equation (1905, 1908) after the French physicist Paul Langevin
(1872-1946), can only be taken as rigorous in certain idealized limits. However, as
a phenomenological theory, the generalized Langevin equation is a powerful tool for
understanding of a wide variety of physical processes. These include theories of chem-
ical reaction rates (Kramers, 1940; Grote and Hynes, 1980; Pollak et al., 1989; Pollak,
1990; Pollak et al., 1990) and of vibrational dephasing and energy relaxation to be
discussed in Section 15.4.

In order to introduce the basic paradigm of a subsystem interacting with a bath,
consider a classical system with generalized coordinates ¢y, ...,q3n. Suppose we are
interested in a simple process that can be described by a single coordinate, which we
arbitrarily take to be ¢;. We will call ¢; and the remaining coordinates g, ..., g3y the
system and bath coordinates, respectively. Moreover, in order to make the notation
clearer, we will rename ¢; as ¢ and the remaining bath coordinates as y1, ..., yn, where
n = 3N —1. In order to avoid unnecessary complexity at this point, we will assume that
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the system coordinate ¢ is a simple coordinate, such as a distance between two atoms
or a Cartesian spatial direction (in Section 15.7, we will introduce a general framework
for treating the problem that allows this restriction to be lifted). The Hamiltonian for
q and its conjugate momentum p in the absence of the bath can then be written simply

as
2
p
H(g,p) = o V(q), (15.1.1)
where p is the mass associated with ¢ and V(q) is a potential energy contribution
that depends only on ¢ and, therefore, is present even without the bath. The system is
coupled to the bath via a potential Upatn(q, y1, --., Yn) that involves both the coupling
terms between the system and the bath and terms describing the interactions among

the bath degrees of freedom. The total potential is

U(Q7 Yiyeeey yn) = V(Q) + Ubath(qu Y1y eeny yn) (1512>

As an example, consider a system originally formulated in Cartesian coordinates
ri,...,ry described by a pair potential

N N
U(ry,....,ry) = Z Z u(|r; — rj). (15.1.3)

Suppose the distance r = |r; — ra| between atoms 1 and 2 is a coordinate of interest,
which we take as the system coordinate. All other degrees of freedom are assigned
as bath coordinates. Suppose, further, that atoms 1 and 2 have the same mass. We
first transform to the center of mass and relative coordinates between atoms 1 and 2
according to

1
R= §(r1 +19) r=r; —ro, (15.1.4)
the inverse of which is
1 1
=R+ o ro =R — 3T (15.1.5)

The potential can then be expressed as

N N N
U(ry,.otn) = u(lry — o)) + Y [u(lry — r]) + u(fre — )]+ > Y u(ri — 1))
i=3 i=3 j=i+1

(el

Z (|ri — (15.1.6)

N
—|—Z [u (’R—i— —rn —r;

2

where n = (r; —r2)/|r1 — r2| = r/r is the unit vector along the relative coordinate
direction. Eqn. (15.1.6) is of the same form as eqn. (15.1.2), in which the first term is
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equivalent to V' (g), the term in brackets represents the interaction between the system
and the bath, and the final term is a pure bath—bath interaction.

Suppose the bath potential Upai, can be reasonably approximated by an expan-
sion up to second order about a minimum characterized by values ¢, 91, ...,y of the
generalized coordinates. The condition for Upatn to have a minimum at these values is

OUbatn

e =0, (15.1.7)

{a=q,y=7}

where all coordinates are set equal to their values at the minimum. Performing the
expansion up to second order gives

OUpath

Ubath (4, Y1, -, Yn) = Upatn (@, U1, -, Yn) + Z 24 (¢a — Ga)
@ He=qy=7}
1 9*Upain
+ =3 (o — o) | 7t (a5 —ds).  (15.1.8)
2p 940945 | {4=7.4=7)

The second term in eqn. (15.1.8) vanishes by virtue of the condition in eqn. (15.1.7).
The first term is a constant that can be made to vanish by shifting the absolute zero
of the potential (which is, anyway, arbitrary). Thus, the bath potential reduces, in this

approximation, to
n+1n+1

Ubath (¢ Y15 -+, Yn) = % ZZ@aHaﬁ(jﬁa (15.1.9)
a=1p=1

where Hog = 82Ubath/6qa6qlg|q:q7{y:g} and §o, = o — (o are the displacements of
the generalized coordinates from their values at the minimum of the potential. Note
that since we have already identified the purely ¢-dependent term in eqn. (15.1.6),
the Hy; arising from the expansion of the bath potential can be taken to be zero or
absorbed into the g-dependent function V(g). Since our treatment from this point on
will refer to the displacement coordinates, we will drop the tildes and let ¢, refer to the
displacement of a coordinate from its value at the minimum. Separating the particular
coordinate ¢ from the other coordinates gives a potential of the form

n

1 N
Uath(@:91 - ¥n) = Y Ca¥a + 5 > > valagys, (15.1.10)
o a=1p=1

where Cy = Hin = Hap and ﬁag is the n x n block of H,g coupling only the
coordinates y1, ..., ¥n. The potential, though quadratic, is still somewhat complicated
because all of the coordinates are coupled through the matrix H,g. Thus, in order to
simplify the potential, we introduce a linear transformation of the coordinates y1, ..., yn
to x1,...,xy via

Yo=Y Rapzp, (15.1.11)
B=1

where R,p is an orthogonal matrix that diagonalizes the symmetric matrix ﬁag via
Hgiag = RTHR, where R" is the transpose of R and Hgiag contains the eigenvalue of H
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on its diagonal. Letting k,, denote these eigenvalues and introducing the transformation
into eqn. (15.1.10), we obtain

1
Ubath (0,1, -, Tn) = Y ada+ 5 ) Ko, (15.1.12)
[e% [e%

where go = > ;5 Cpllga. The potential energy in eqn. (15.1.12) is known as a har-
monic bath potential; it also contains a bilinear coupling to the coordinate q. We will
henceforth refer to the coordinate ¢ as the “system coordinate.” In order to construct
the full Hamiltonian in the harmonic bath approximation, we introduce a set of mo-
menta pi, ..., pp, assumed to be conjugate to the coordinates 1, ..., z,, and a set of
bath masses my, ..., m,. The full Hamiltonian for the system coordinate coupled to a
harmonic bath can be written as

2
_r
H= 2N+V(q)+a§

n
=1

2 n n
2?2‘& + % Z mawixi +q Z JaTas (15.1.13)
a=1 a=1

where the spring constants k, have been replaced by the bath frequencies wy, ..., w,
using ko = mqw2. We must not forget that eqn. (15.1.13) represents a highly idealized
situation in which the possible curvilinear nature of the generalized coordinates is
neglected in favor of a very simple model of the bath (Deutsch and Silbey, 1971;
Caldeira and Leggett, 1983).

A real bath is often characterized by a continuous distribution of frequencies I(w)
called the spectral density or density of states (see Problem 14.9). I(w) is obtained by
taking the Fourier transform of the velocity autocorrelation function.! The physical
picture embodied in the harmonic-bath Hamiltonian is one in which a real bath is
replaced by an ideal bath under the assumption that the motion of the real bath is
dominated by small displacements from an equilibrium point described by discrete
frequencies wy, ..., w,. This replacement is tantamount to expressing I(w) as a sum of
harmonic-oscillator spectral density functions. It is important to note that the har-
monic bath does not allow for diffusion of bath particles. In general, a set of frequencies,
w1, .., wn, effective masses my, ..., my, and coupling constants to the system g1, ..., g,
need to be determined in order to reproduce at least some of the properties of the
real bath. The extent to which this can be done, however, depends on the particular
nature of the original bath. For the purposes of the subsequent discussion, we will
assume that a reasonable choice can be made for these parameters and proceed to
work out the classical dynamics of the harmonic-bath Hamiltonian.

15.2 Derivation of the generalized Langevin equation

We begin by deriving the classical equations of motion generated by eqn. (15.1.13).
From Hamilton’s equations, there are

1The density of states encodes the information about the vibrational modes of the bath; however,
it does not provide any information about absorption intensities.
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g2 _»p
op
. oOH dv
p=——= ———Zga.fa
dq dg 4
. 0H Pa
Ty = 77 = —
apa Me
. oOH
Po = —F— = ~MaWoTa = gad; (15.2.1)
«

which can be written as the following set of coupled second-order differential equations:

MaLo = _mawixa — Jgaq. (1522)
Eqns. (15.2.2) must be solved subject to a set of initial conditions

{q(o)v Q(O)vxl (O)v 7xn(0)7$1(0)a 7:1771(0)}

The second equation for the bath coordinates can be solved in terms of the system
coordinate q by Laplace transformation, assuming that the system coordinate g acts
as a kind of driving term. The Laplace transform of a function f(¢), alluded to briefly
in Section 14.6, is one of several types of integral transforms defined to be

o0

f(s) _/ dt e St f(t). (15.2.3)
0

As we will now show, Laplace transforms are particularly useful for solving linear

differential equations. A more detailed discussion of Laplace transforms is given in

Appendix D. From eqn. (15.2.3), it can be shown straightforwardly that the Laplace

transforms of df /dt and d?f/dt? are given, respectively, by

00 d N
/0 dt e_Std—{ =sf(s) — f(0)

/OC —st d2f 2 7 /
e =89~ £10) — 57(0), (15.2.4)

Finally, the Laplace transform of a convolution of two functions f(¢) and ¢(t) can be
shown to be

/OC dt e_St/ drf(r)g(t — 1) = f(s)g(s). (15.2.5)
0

0
Taking the Laplace transform of both sides of the second line in eqn. (15.2.2) yields
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§284(5) — 20 (0) — 524(0) + wiia(s) = —Z24(s). (15.2.6)

The use of the Laplace transform has the effect of turning a differential equation into
an algebraic equation for #,(s). Solving this equation for Z,(s) gives

2 ~

~ s wa . 9o G(s)
Ta(s) = 5——== Za(0) — — . 15.2.7
a(5) 24 w2 «(0) s2 4+ w? 0) Mo 82+ w2 ( )
We now obtain the solution to the differential equation by computing the inverse
transform Z,(s) in eqn. (15.2.7). Applying the inverse Laplace transform relations in
Appendix D, recognizing that the last term in eqn. (15.2.7) is the product of two
Laplace transforms, we find that the solution for x(t) is

1 t
Zo(t) = 24(0) coswat + — 24 (0) sinwyt — Jo / dr sinw, (t — 7)q(1). (15.2.8)
Wey MmaWa Jo

For reasons that will be clear shortly, we integrate the convolution term by parts to
express it in the form

/0 dr sinws(t — 7)q(1) = w_la [q(t) — q(0) cos wyt]

1 t
— — | d7 coswq(t — 7)4(T). (15.2.9)
We 0
Substituting eqn. (15.2.9) and eqn. (15.2.8) into the first line of eqn. (15.2.2) yields
the equation of motion for g:

HG = ——— — Zga Lo
o
(0) Ja

= —— — Z Ja {:va ) coswat + Poll) sinwut + 5 q(0) coswqt
«@

aWa aWq

m w2 / dr ¢(7) coswqu (t — 7) Zm w2q (15.2.10)
(e «

Eqn. (15.2.10) is in the form of an integro-differential equation for the system coor-
dinate that depends explicitly on the bath dynamics. Although the dynamics of each
bath coordinate are relatively simple, the collective effect of the bath on the system
coordinate can be nontrivial, particularly if the initial conditions of the bath are ran-
domly chosen, the distribution of frequencies is broad, and the frequencies are not all
commensurate. Indeed, the bath might appear to affect the system coordinate in a
seemingly random and unpredictable manner, especially if the number of bath degrees
of freedom is large. This is just what we might expect for a real bath. Thus, in order
to motivate this physical picture, the following quantities are introduced:
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0
Zga {(xa Ja (0)> coswat + Pa(0) sinwat| , (15.2.11)

54
Maw?2 MaWa
92
¢(t) = S COSWat, (15.2.12)
Maw?
«

W{(q 15.2.13
E man ¢*. ( )

In terms of these quantities, the equation of motion for the system coordinate reads

i = —dd—W — [ dr ¢(r)C(t — 7) + R(). (15.2.14)
q 0

Eqn. (15.2.14) is known as the generalized Langevin equation (GLE). The quantity
¢(t) in the GLE is called the dynamic friction kernel, R(t) is called the random force,
and W(q) is identified as the potential of mean force acting on the system coordi-
nate. Despite the simplifications of the bath inherent in eqn. (15.2.14), the GLE can
yield considerable physical insight without requiring large-scale simulations. Before
discussing predictions of the GLE, we will examine each of the terms in eqn. (15.2.14)
and provide a physical interpretation of them.

15.2.1 The potential of mean force

Potentials of mean force were first discussed in Chapter 8 (see equs. (8.6.4) and (8.6.5)).
For a true harmonic bath, the potential of mean force is given by the simple expression
in eqn. (15.2.13); however, as a phenomenological theory, the GLE assumes that the
potential of mean force has been generated by some other means (using techniques from
Chapter 8, for example the blue moon ensemble of Section 8.7 or umbrella sampling
approach of Section 8.8) and attempts to model the dynamics of the system coordinate
on this surface using the friction kernel and random force to represent the influence of
the bath. The use of the potential of mean force in the GLE assumes a quasi-adiabatic
separation between the system and bath motions. However, considering the GLE’s
phenomenological viewpoint, it is also possible to use the bare potential V' (g) and use
the GLE to model the dynamics on this surface instead. Such a model can be derived
from a slightly modified version of the harmonic-bath Hamiltonian:

pa 1y g\
(o3 2 (e

- E . 15.2.15
2Mme + 24 Mata (xa + Maw?2 q> ] ( )

2 n
szi—ﬂ—l—V(q)—FZ
a=1

15.2.2 The random force

The question that immediately arises concerning the random force in eqn. (15.2.14) is
why it is called “random” in the first place. After all, eqn. (15.2.11) defines a perfectly
deterministic quantity. To understand why R(¢) can be treated as a random process,
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we note that a real bath, which contains a macroscopically large number of degrees
of freedom, will affect the system in what appears to be a random manner, despite
the fact that its time evolution is completely determined by the classical equations
of motion. Recall, however, that the basic idea of ensemble theory is to disregard the
detailed motion of every degree of freedom in a macroscopically large system and to
replace this level of detail by an ensemble average. It is in this spirit that we replace
the R(t), defined microscopically in eqn. (15.2.11), with a truly random process defined
by a particular time sequence of random numbers and a set of related time correlation
functions satisfied by this sequence.

We first note that the time correlation functions {(g(0)R(¢)) and {G(0)R(t)) are
identically zero for all time. To see this, consider first the correlation function

GO R(1) <$R<t>>

L [dpdge {%ﬁ+wﬂ}
=—5 [ dpdg exp =0 |5~ q
Q 21
% / H dzq dpa exp {—ﬂ lz (21;3(1 + > Zmawiwi> + ngawa] }
a=1 a=1 a=1 a=1
x 239, Kma + o q) coswat + —L2 sinwat} : (15.2.16)
K o MaWy aWa

where the average is taken over a canonical ensemble and @ is the partition function
for the harmonic-bath Hamiltonian. Since R(t) does not depend on the system mo-
mentum p, the integral over p is of the form [~ dp pexp(—@8p*/2p) = 0, and the
entire integral vanishes. It is left as an exercise to show that the correlation func-
tion (q(0)R(t)) = 0 (see Problem 15.1). The vanishing of the correlation functions
(q(0)R(t)) and {(G(0)R(t)) is precisely what we would expect from a random bath
force, and hence we require that these correlation functions vanish for any model ran-
dom process. Finally, the same manipulations employed above can be used to derive
autocorrelation function (R(0)R(t)) with the result

2
a

UMWW=%Z 9o coswat = KTC(1), (15.2.17)

Maw?

which shows that the random force and the dynamic friction kernel are related (see
Problem 15.1). Eqn. (15.2.17) is known as the second fluctuation dissipation theo-
rem (Kubo et al., 1985). Once again, we require that any model random process we
choose satisfy this theorem.

If the deterministic definition of R(t) in eqn. (15.2.11) is to be replaced by a model
random process, how should such a process be described mathematically? There are
various ways to construct random time sequences that give the correct time correlation
functions, depending on the physics of the problem. For instance, the influence of a
relatively high-density bath, which affects the system via only soft collisions due to
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low amplitude thermal fluctuations, is different from a low-density, high-temperature
bath that influences the system through mostly strong, impulsive collisions. Here,
we construct a commonly used model, known as a Gaussian random process, for the
former type of bath. Since for most potentials, the GLE must be integrated numer-
ically, we seek a discrete description of R(t) that acts at M discrete time points
0, At,2At, ..., MAt. At the kth point of a Gaussian random process, Ry = R(kAt)
can be expressed as the sum of a Fourier sine and cosine series

M omjk 2 jk
Rk = Z [aj sin <7> —+ bj COS (W)] y (15218)

j=1

where the coefficients a; and b; are random numbers sampled from a Gaussian distri-
bution of the form

M

1
P(ay,...,an, by, ....ba) = H 2F02€—(ai+bi)/2vi' (15.2.19)
k=1 k

For the random force to satisfy eqn. (15.2.17) at each time point, the width, o, of the
distribution must be chosen according to

o2 = ig( jAt) cos gk (15.2.20)

which can be easily evaluated using fast Fourier transform techniques. Since the ran-
dom process in eqn. (15.2.18) is periodic with period M, it clearly cannot be used for
more than a single period. This means that the number of points M in the trajectory
must be long enough to capture the dynamical behavior sought.

15.2.3 The dynamic friction kernel

The convolution integral term in eqn. (15.2.14)

/ Cdr gt —7)

is called the memory integral because it depends, in principle, on the entire history
of the evolution of ¢q. Physically, this term expresses the fact that the bath requires a
finite time to respond to any fluctuation in the motion of the system and that this lag
affects how the bath subsequently affects the motion of the system. Thus, the force
that the bath exerts on the system at any point in time depends on the prior motion of
the system coordinate g. The memory of the motion of the system coordinate retained
by the bath is encoded in the memory kernel or dynamic friction kernel, {(t). Note
that ((t) has units of mass-(time)~2. Since the dynamic friction kernel is actually an
autocorrelation function of the random force, it follows that the correlation time of the
random force determines the decay time of the memory kernel. The finite correlation
time of the memory kernel indicates that the bath, in reality, retains memory of the
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system motion for a finite time tyem. One might expect, therefore, that the memory
integral could be replaced, to a very good approximation, by an integral over a finite
interval [t — tmem, t]:

t t
/ dr ¢(T)C(t —7) = / dr ¢(7)C(t — 7). (15.2.21)
0 t—tmem
Such an approximation proves very convenient in numerical simulations based on the
generalized Langevin equation, as it permits the memory integral to be truncated,
thereby reducing the computational overhead needed to evaluate it.

We now consider a few interesting limiting cases of the friction kernel. Suppose,
for example, that the bath is able to respond infinitely quickly to the motion of the
system. This would occur when the system mass, y, is very large compared to the bath
masses, (> m,. In such a case, the bath retains essentially no memory of the system
motion, and the memory kernel reduces to a simple d-function in time:

C(t) = lim God(t — ). (15.2.22)

The introduction of the parameter € ensures that the entire §-function is integrated
over. Alternatively, we can recognize that for e = 0, only “half” of the §-function is
included in the interval ¢ € [0, 00), since 6(¢) is an even function of time, and therefore,
we could also define (t) as 2¢pd(t). Substituting eqn. (15.2.22) into eqn. (15.2.14) and
taking the limit gives an equation of motion for ¢ of the form

dw ¢
pi = =S = 1m G [ dr d(r)ae —e =) + ()
dw
= 4y~ ImGilt — ) + R(1)
- —‘L—V; ~ God(t) + (D), (15.2.23)

where all quantities on the right are evaluated at time ¢. Eqn. (15.2.23) is known as the
Langevin equation (LE), and it should be clear that the LE is ultimately a special case
of the GLE. The LE describes the motion of a system in a potential W (q) subject to an
ordinary dissipative friction force as well as a random force R(t). Langevin originally
employed eqn. (15.2.23) as a model for Brownian motion, where the mass disparity
clearly holds (Langevin, 1908). The most common use of the LE is as a thermostatting
method for generating a canonical distribution (see Section 15.5). The quantity (o is
known as the static friction coefficient, defined generally as

@—Aw&«w (15.2.24)

Note that the random force R(t) is now completely uncorrelated, as it is required to
satisfy
(R(O)R(t)) = 2kT¢o0(t). (15.2.25)

In addition, note that (o has units of mass:(time)~1.
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The second limiting case we will consider is a sluggish bath that responds very
slowly to changes in the system coordinate. For such a bath, we can take ((t) approxi-
mately constant over a long time interval, i.e., {(t) &~ ((0) = ¢, for times that are short
compared to the actual response time of the bath. In this case, the memory integral
can be approximated as

[ aratmste = ~¢ [ artr) = clate) - g0 (15.226)
0 0

and eqn. (15.2.14) becomes

d

Hq:—d—q

(W(q) + %C(q - q(O))2> + R(1). (15.2.27)

Here, the effect of friction is now manifest as an extra harmonic term in the potential

W(q)

q

Fig. 15.1 Example of the dynamic caging phenomenon. W (q) is taken to be the double-well
potential. The potential ¢(g — qo)?/2 is the single-minimum solid line, and the dashed line
shows the potential shifted to the top of the barrier region.

W (q), and all terms on the right are, again, evaluated at time ¢. This harmonic term
in W (q) has the effect of trapping the system in certain regions of configuration space,
an effect known as dynamic caging. Fig. 15.1 illustrates how the caging potential
¢[g — q(0)]?/2 can potentially trap the particle at what would otherwise be a point of
unstable equilibrium. An example of this is a dilute mixture of small, light particles
in a bath of large, heavy particles. In spatial regions where heavy particle cluster
forms a slowly moving spatial “cage,” the light particles can become trapped. Only
rare fluctuations in the bath open up this rigid structure, allowing the light particles
to escape the cage. After such an escape, however, the light particles can become
trapped again in another cage newly formed elsewhere for a comparable time interval.
Not unexpectedly, dynamic caging can cause a significant decrease in the rate of light-
particle diffusion.



