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I. THE GENERALIZED LANGEVIN EQUATION

Consider a particle of mass M governed by the one-dimensional potential energy function

V (Q) : Ω ⊂ R → R. The dynamics of the particle is fully described by the pair of time-

dependent variables {Q(t), P (t)}, where Q denotes the position, and P denotes the moment

P = MQ̇. Assume that the particle interact with N one-dimensional oscillators of mass

mi, position qi and momentum pi, with i = 1, 2, . . . , N , through a potential 0.5ki(Q− qi)
2,

where ki is a spring constant with units [force length−1].

The complete Hamiltonian that describes the dynamics of the system is written as

H(Q,P ; q1, p1; q2, p2, . . . ;QN , PN) =
P 2

2M
+

N∑
i=1

p2i
2mi

+ V (Q) +
1

2

N∑
i=1

ki(qi −Q)2 , (1)

the equations of motion of the particle are
Q̇ =

P

M
,

Ṗ = −∇V (Q)−
N∑
i=1

ki(Q− qi) ,
(2)
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the equations of motion of the oscillators are
q̇i =

pi
mi

,

ṗi = ki(Q− qi) ,

∀i = 1...N . (3)

The entire system of 2N + 2 equations of motion can be reduced to 2 equations
Q̇ =

P

M
,

Ṗ = −∇V (Q(t))−
ˆ t

0

ds Q̇K(t− s) +R(t) ,
(4)

where the second equation is known as Generalized Langevin Equation (GLE). The GLE is

made of three terms: (i) a Markovian term ∇V (Q(t)) that depends only on the state of the

system at time t; (ii) a non-Markovian term

ˆ t

0

ds Q̇K(t− s) , (5)

which conserves the story of the particle by means of the memory kernel

K(t) =
N∑
i=1

ki cos(ωit) ; (6)

(iii) a noise term that depends on the initial momenta, positions and the physical charach-

teristics of the oscillators

R(t) =
N∑
i=1

ki [qi(0)−Q(0)] cos(ωit) +
ki

miωi

pi(0) sin(ωit) . (7)

II. THE MEMORY KERNEL

The integral over time from 0 to t in the GLE tells us that the time-evolution of the

particle of mass M is influenced by its past. In other words, to know the state {Q(t), P (t)}

of the particle at time t, it is necessary to know the entire time evolution of the particle

from 0 to t. How the particle “remembers” its past behavior and how the previous states

influence the current state at time t, is described by the memory kernel K(t) whose shape

depends on the physical characteristics of the oscillators: the angular frequencies ωi, the

masses mi and the spring constants ki ∀i = 1, 2, . . . , N .

In fig. 1, we show three different sets of parameters ωi, mi and ki. In the first row, ωi,

mi and ki are equal for all the oscillators. In the second case, the angular frequencies are
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FIG. 1. Three different sets of parameters ωi, ki and mi for N = 2000 oscillators.

chosen linearly increasing, the masses are all equal and the spring constants are estimated

as ki = miω
2
i . In the third case, the parameters are chosen as in ref. [1]. Correspondingly,

we show in fig. 2 the memory kernel for each set of parameters. While in the first and

second case the memory kernel is a sinusoidal function, in the third case the memory kernel

is a peaked exponential function. This means that in the first two cases the memory kernel

plays an important role in determining the dynamics of the particle, while in the third case

it can be neglected. In what follow, we discuss the parameters of the third case proposed in

ref. [1].

The angular frequencies of the N oscillators are randomly chosen from a uniform distri-

bution:

ωi = Naui , (8)

where ui ∼ U [0, 1] and a ∈ [0, 1]. The spring constants are written as

ki =
2

π

α2Mγ

α2 + ω2
i

∆ω , (9)
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FIG. 2. Three memory kernels corresponding to the sets of parameters of fig. 1.

where α > 0 is a parameter with units [rad · time]−1, γ is a physical quantity with units

[time]−1 that denotes the friction between the particle of mass M and the heat bath, ∆ω =

Na/N. The choice of the parameters guarantees that the units of ki are [force length−1 =

mass time−2]. Finally, the masses of the oscillators are calculated as

mi =
ki
ω2
i

. (10)

Inserting eq. 9 into eq. 6 yields

K(t) =
N∑
i=1

2

π

α2Mγ

α2 + ω2
i

∆ω cos(ωit) . (11)

If N → ∞, ∆ω → dω because a ∈ [0, 1], then the sum in eq. 11 can be replaced by the

integral

K(t) =

ˆ ∞

0

dω
2

π

α2Mγ

α2 + ω2
i

cos(ωit) . (12)

We now observe that the eq. 12 is the inverse Fourier cosine transform (see Appendix A) of

the function

f(t) = αMγe−αt . (13)

Then

K(t) =
2

π

ˆ ∞

0

dω
α2Mγ

α2 + ω2
i

cos(ωit) (14)

= αMγe−αt . (15)

Fig. 3 shows the validity of eq. 15.
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FIG. 3. Memory kernel: α = 1, γ = 1.5 ps−1, N = 20, 2000, 200000, a = 0.333.

Under these considerations, we can now rewrite the memory kernel as

K(t) = αMγe−αt , (16)

and we observe that as the parameter a → ∞, the memory kernel becomes a peaked function

with a high value at t = 0, and zeros values at t > 0 (fig. 4).

Consequently, the integral in the GLE (eq. 4) can be approximated as

ˆ t

0

ds Q̇K(t− s) =

ˆ t

0

ds Q̇ αMγe−α(t−s) (17)

≈ MγQ̇ (18)

= γṖ . (19)

Alternatively, we can approximate the memory kernel with the δ-function (see Appendix

B):

K(t− s) ≈ 2Mγδ(t− s) (20)

where the factor 2, which is cancelled after integrating from 0 to t, takes into account that
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FIG. 4. Memory kernel: α = 1, 5, 10, γ = 1.5 ps−1.

the function f(t) (eq. 13) approximates half δ-function:

ˆ t

0

ds Q̇K(t− s) ≈ 2γM

ˆ t

0

ds Q̇δ(t− s) (21)

= MγQ̇ (22)

= γṖ . (23)

III. THE NOISE TERM

The noise term (eq. 7)

R(t) =
N∑
i=1

ki [qi(0)−Q(0)] cos(ωit) +
ki

miωi

pi(0) sin(ωit) , (24)

depends on the choice of the initial momenta, positions and physical characteristics of the

oscillators. This term is deterministic in the GLE (eq. 4), however, it can be replaced by a

white noise process under specific conditions.
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First of all, we rewrite eq. 24 as

R(t) =

√
1

β

N∑
i=1

√
ki

[√
kiβ (qi(0)−Q(0)) cos(ωit) + pi(0)

√
β

mi

sin(ωit)

]
, (25)

where we multiplied and divided eq. 24 by
√
β and we used

ki
miωi

=

√
ki√
ki

ki
miωi

(26)

=
√
ki

√
ki

miωi

(27)

=
√
ki

√
miω2

i

miωi

(28)

=
√
ki

1
√
mi

. (29)

The term β = 1/kBT is a thermodynamic quantity, where kB is the Boltzmann constant and

T is the temperature of the system.

We now assume that the oscillators are in thermal equilibrium at time t = 0, i.e. their

positions and momenta are distributed according to the Boltzmann distribution:
πq(qi(0)) =

1

Zqi

exp

(
−β

ki
2
(qi(0)−Q(0))2

)
πp(pi(0)) =

1

Zpi

exp

(
−β

pi(0)
2

2mi

) , (30)

where Zqi and Zpi are two normalization constants. The two Boltzmann distributions are

exponential functions with quadratic arguments. Comparing these two functions with the

Gaussian function

f(x) =
1√
2πσ2

exp

(
−1

2

(x− x(0))2

σ2

)
, (31)

we conclude that qi(0) and pi(0) are distributed according to a Gaussian function. Then,

drawing random positions and momenta from the Boltzmann distribution is equivalent to

drawing random positions and momenta from a properly scaled normal distribution:
qi(0) = Q(0) + ξi

√
1

βki

pi(0) = ηi

√
mi

β

, (32)

where ξ, ηi ∈ N (0, 1). Then, eq. 25 is rewritten as

R(t) =

√
1

β

N∑
i=1

√
ki [ξi cos(ωit) + ηi sin(ωit)] , (33)
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FIG. 5. Memory kernel: α = 5, γ = 1.5 ps−1, N = 20, 2000, 200000, a = 0.333.

Appendix A: Fourier cosine transform

Given a real- or complex-valued function f(t) : R+ → C, the Fourier cosine transform of

f(t) is defined as

f̂(ω) =

ˆ ∞

0

dx f(t) cos(ωt) , (A1)

where ω > 0. The inverse Fourier cosine transform of f̂(ω) is defined as

f(t) =
2

π

ˆ ∞

0

dt f̂(ω) cos(ωt) . (A2)

In eq. 15, we used the Fourier cosine transform

f̂(ω) =

ˆ ∞

0

dxαMγe−αt cos(ωt) (A3)

=
α2Mγ

α2 + ω2
, (A4)
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Appendix B: δ-function

The δ-function can be heuristically written as

δ(t) =

∞ t = 0

0 t ̸= 0
. (B1)

The δ-function satisfies the property ˆ ∞

−∞
dt δ(t) = 1 . (B2)

Additionally, given an arbitrary function f(t):ˆ ∞

−∞
dt f(t)δ(t) = f(0) , (B3)

and ˆ ∞

−∞
ds f(s)δ(s− t) =

ˆ ∞

−∞
ds f(s)δ(t− s) (B4)

= f(t) . (B5)

The integral over a subset of the domain isˆ t

−t

ds f(s)δ(s− t) =

ˆ t

−t

ds f(s)δ(t− s) (B6)

=

ˆ ∞

−∞
ds χ[−t, t] f(s)δ(t− s) (B7)

= χ[−t, t](t) f(t) (B8)

=
f(t)

2
∀ t > 0 , (B9)

where we used the half maximum convention to define the indicator function

χ[−t, t](s) =


0 s < −t

1/2 s = −t ∧ s = t

0 s > t

∀ t > 0. (B10)

Likewise, integrating over [0, t] yieldsˆ t

0

ds f(s)δ(s− t) =

ˆ t

0

ds f(s)δ(t− s) (B11)

=

ˆ ∞

−∞
ds χ[0, t] f(s)δ(t− s) (B12)

= χ[0, t](t) f(t) (B13)

=
f(t)

2
∀ t > 0 , (B14)
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