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I. INTRODUCTION

Statistical Mechanics is a branch of physics that uses statistical methods and probability

theory to explain the behavior of a large number of particles in a system, for example, a

vessel containing a gas or a liquid. It provides a bridge between the microscopic world

of individual atoms or molecules and the macroscopic properties (temperature, volume,

pressure, energy, ...) of the system. Statistical Mechanics has applications in various fields,

including thermodynamics, condensed matter physics, and quantum mechanics. It plays a

crucial role in understanding phenomena such as phase transitions, heat conduction, and

the behavior of gases and liquids.

II. FUNDAMENTAL CONCEPTS

For the understanding of Statistical Mechanics, it is essential to clarify the numerous

definitions and notions involved. Here, we summarise some of the most useful definitions.

❑ Particle. The smallest unit studied in Statistical Mechanics, for example, an atom

or a molecule. The position and momentum of the ith particle are denoted by the

three-dimensional vectors ri and pi = mivi, where m is the mass and v is the velocity

of the particle.

❑ System. Collection of N interacting or non-interacting particles. The system is

defined by the tuple

x = {r,p} = {r1, r2, ..., rN , p1,p2, ...,pN} . (1)

Note that the notation r and p without subscripts denotes the tuples

r = {r1, r2, ..., rN} , (2)

and

p = {p1,p2, ...,pN} . (3)

❑ Surroundings. The surroundings of a system encompass everything external to the

system boundaries that are not explicitly included in the definition of the system.

3



Dr. Luca Donati Essential Notes on Hamiltonian Dynamics

These external components may interact with the system, exchanging energy, matter,

or both. The interaction between system and surroundings determines the type of

system:

➤ Isolated system: no interaction between system and surroundings;

➤ Closed system: can exchange energy with its surroundings;

➤ Open system: can exchange both energy and matter with its surroundings.

❑ Microstate. A specific configuration of the system characterized by positions and

momenta of the particles: ri,pi ∀i = 1, 2, . . . , N .

❑ Macrostate. The macrostate of a system, is the set of macroscopic variables that fix

the macroscopic state of the system, for example, Energy E, Temperature T , Volume

V , Pressure P , Number of particles N , chemical potential µ.

❑ Ensemble. The set of possible microstates accessible to the macroscopic state. In

other words, given a macrostate characterized by specific macroscopic properties (e.g.

number of particles N , volume V , and energy E), the ensemble is the collection of all

possible microstates (i.e. all possible configurations of particles) that determine the

macrostate. Examples of ensembles are:

➤ Microcanonical ensemble (N, V,E): Collection of the microstates that determine

an isolated system, hence with fixed Number of particles, volume and energy. The

systems belonging to the microcanonical ensemble obey Hamilton’s equations of

motion.

➤ Canonical ensemble (N, V, T ): Collection of the microstates that determine a

closed system with fixed number of Particles, volume and temperature. In this

case, the total energy E of the system varies due to exchanges with the surround-

ings to maintain a constant temperature.

➤ Grand canonical ensemble (µ, V, T ): Collection of the microstates that determine

an open system with fixed chemical potential, volume, and temperature. Here,

the system can exchange matter with its surroundings, so the number of particles

changes. However, it is required that the exchange maintains a constant chemical

potential, a physical property of thermodynamic systems that indicates how the
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energy of a system changes when the number of particles in the system is altered.

It reflects the system’s inclination to exchange particles with its surroundings.

III. PROBABILITY DISTRIBUTIONS IN STATISTICAL MECHANICS

The number of microstates determining a specific macrostate is typically very large, for

example, there are approximately 2.44 × 1022 molecules in 1 liter of air at 1 atm pressure

and temperature 298 K (room temperature). For this reason, it is unfeasible to study the

dynamics of every single particle in a thermodynamic system; instead, it is reasonable to

use statistical tools.

For this purpose, we introduce the concept of probability distribution π(x), a mathe-

matical function that describes the probability that a particular configuration of the system

(a microstate), at equilibrium, possesses a specific physical property. In this context, by

equilibrium we mean the situation in which the macroscopic properties defining the ensem-

ble do not evolve over time. However, individual systems in the ensemble can change their

microstate. Depending on which ensemble is being investigated, it is convenient to define

the probability distribution with respect to different physical properties.

A. Microcanonical ensemble

For the microcanonical ensemble, with conserved quantities (N, V,E), the probability

distribution π(x) is defined as

π(x) =
1

Ω(E)
. (4)

The quantity Ω(E) represents the volume of phase space accessible to the system at a given

energy level E and is given by the 6N -dimensional integral over the phase space

Ω(E) =

ˆ
dxN δ(H(x)− E) , (5)

where δ is the δ-function and H(x) is the Hamiltonian function

H(x) =
N∑
i=1

p2
i

2mi

+ V (r1, r2, ..., rN) . (6)
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Eq. 4 expresses the probability that a certain microstate possesses the energy E and it is

based on the postulate of equal a prior probability: For an isolated system in equilibrium,

all accessible microscopic states are equally probable.

A consequence of the a priori probability equality postulate is that if a system of the

ensemble (N, V,E) evolves over an infinite span of time, it will visit all configurations asso-

ciated with energy E. A system that satisfies this property is said to be ergodic.

We now discuss the example of a one-dimensional harmonic oscillator of mass m moving

along the axis of positions r and momenta p with Hamiltonian function

H(r, p) =
1

2

p2

m
+

1

2
r2, , (7)

and equations of motion ṙ =
p

m

ṗ = −r
. (8)

In fig. 1-(a), we show the component r(t) of the solution, which is a sinusoidal function,

and the total energy E(t), which is constant over time; in fig. 1-(b), we show the complete

solution {r(t), p(t)} on the phase space, which is a closed circle. We, therefore, note that

only a small portion of the phase space is visited by the trajectory.

Let us now imagine that we have a very long trajectory and discretize the phase space

with a very fine grid. Then, we count how many times the trajectory visits each grid mesh.

In other words, we construct the two-dimensional histogram, which is an approximation of

the distribution π(r, p). The result is shown in fig. 1-(c). If the trajectory is sufficiently

long, net of defects due to the discretization of the grid and the trajectory, the resulting

distribution is constant along the generated trajectory, in agreement with eq. 4. However,

this may seem counterintuitive. If we imagine an oscillator moving along an axis without

friction or other external forces, we observe that the oscillator spends most of its time close

to the extremes, i.e., where it slows down. Conversely, the time spent around the equilibrium

point is less, as the oscillator passes quickly. Therefore, if we wanted to sketch a distribution

representing the time spent by the oscillator in space, we would have to draw a parabola-like

curve, not a constant straight line. This curve, reported in fig. 1-(d), is actually the marginal

distribution along the axis of momenta

πr(r) =

ˆ
dp π(r, p) . (9)
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It expresses the fact that near the extremes, there is a greater number of possible states

that satisfy the condition H(x) = E. This observation is important, as it shows how by

projecting the probability distribution of the system onto a specific coordinate, i.e. by

reducing dimensionality, we can obtain unexpected results.

FIG. 1. Harmonic oscillator

B. Canonical ensemble

A system belonging to the canonical ensemble can interact with its surroundings by

exchanging energy to maintain a constant temperature. In this case, the probability distri-

bution is given by the Boltzmann distribution

π(x) =
1

Z
exp (−βH(x)) , (10)

where the partition function Z acts as a normalization constant

Z =

ˆ
dxN exp (−βH(x)) . (11)

In eq.10, we introduced

β =
1

kBT
, (12)

where kB is the Boltzmann constant and T is the temperature of the macrocanonical en-

semble. The Boltzmann distribution describes the probability of finding the system in a

particular configuration such that the temperature is T .

Let us now see how the example of the harmonic oscillator changes when it can interact

with the environment to maintain a constant temperature. In fig. 2-(a), we show the solution

of the equations of motion in phase space. Again, we observe a trajectory that draws circles,
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however, it is highly irregular and appears to be dominated by stochastic motion. In fig. 2-

(b,c), we show the energy and temperature. The former is erratic, while the latter, net

of statistical fluctuations, is constant. If, on the other hand, we considered the complete

system consisting of the oscillator and its surroundings, the energy would be constant. In

fig. 2-(d), we show the two-dimensional histogram built over the phase space. In this case, we

observe that the distribution covers a larger phase space area, however, it is not constant,

but it approximates the Boltzmann distribution defined in eq. 10. From the Boltzmann

distribution, we fnally deduce that the most accessible states are those that take on the

lowest energy levels.

FIG. 2. Harmonic oscillator in thermal equilibrium.
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