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Lecture 6

Derivation of Langevin Dynamics from the Generalized Langevin

Equation
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I. THE GENERALIZED LANGEVIN EQUATION

The Kac-Zwanzig model is a system made of a particle of mass M connected to N har-

monic oscillators with physical characteristics {ωi, ki, mi} (respectively, the angular frequen-

cies, the spring constants, and the masses). The complete Hamiltonian function gives rise to

2N +2 equations of motions, respectively 2 for the position and momentum {Q(t), P (t)} of

the particle, and 2N for the positions and the momenta {qi(t), pi(t)} of the oscillators. On

the other hand, the system of equations can be rewritten as a system of only two equations
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for the particle: 
Q̇ =

P

M
,

Ṗ = −∇V (Q(t))−
ˆ t

0

ds Q̇K(t− s) +R(t) ,
(1)

where the second equation is known as Generalized Langevin Equation (GLE). The GLE is

made of three terms: (i) a Markovian term ∇V (Q(t)) that depends only on the state of the

system at time t; (ii) a non-Markovian term

ˆ t

0

ds Q̇K(t− s) , (2)

which conserves the story of the particle by means of the memory kernel

K(t) =
N∑
i=1

ki cos(ωit) ; (3)

(iii) a noise term that depends on the initial momenta, positions and the physical charac-

teristics of the oscillators

R(t) =
N∑
i=1

ki [qi(0)−Q(0)] cos(ωit) +
ki

miωi

pi(0) sin(ωit) . (4)

The choice of physical parameters, positions and initial moments of the oscillators determines

the shape of the memory kernel and the noise term. Consider the physical parameters [1]:

ωi = Naui

ki =
2

π

α2Mγ

α2 + ω2
i

∆ω

mi =
ki
ω2
i

, (5)

where ui ∼ U [0, 1] is a random number drawn from the uniform distribution, a ∈ [0, 1], α > 0

is a parameter with units [rad · time]−1, M is the mass of the particle and γ is a friction

parameter with units [time−1] that describes the collision rate between the particle and the

oscillators. It follows that
∑

∆ω
N→∞−−−→

´
dω in the memory kernel which is rewritten as

inverse Fourier cosine transform:

K(t) =
2

π

ˆ ∞

0

dω
α2Mγ

α2 + ω2
i

cos(ωit) (6)

= αMγe−αt . (7)
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Regarding the noise term, assuming that the oscillators are in thermal equilibrium, we draw

the initial positions qi(0) and the initial momenta pi(0) from the Boltzmann distribution,

and we rewrite R(t) as

R(t) =

√
1

β

N∑
i=1

√
ki [ξi cos(ωit) + ηi sin(ωit)] , (8)

where ξ, ηi ∈ N (0, 1) are random number drawn from the normal distribution, β = 1/kBT ,

kB is the Boltzmann constant and T is the temperature.

We refer to Lecture Notes 4 and 5 for details about the derivation of the Generalized

Langevin Equation, the memory kernel, and the noise term.

II. THE FLUCTUATION-DISSIPATION THEOREM

The non-Markovian term and the noise term in the GLE describe the interaction between

the particle and the oscillators, which can occur in two ways. On the one hand we have a

force that opposes the motion of the particle. This can be interpreted as a frictional force

of the environment, represented by the oscillators in the Kac-Zwanzig model, acting on the

particle. On the other hand we have an apparently random force that transfers energy from

the environment (the oscillators) to the particle.

This intuitive fact is formally expressed by the relationship

⟨R(0)R(t)⟩ = 1

β
K(t) , (9)

which connects the memory kernel and the autocorrelation function of the noise term (see

Appendix A for details).

Eq. 9, derived and called the second fluctuation-dissipation theorem (FDT) by R. Kubo

in 1966 [2], can be understood as a manifestation of the relationship between the memory

kernel and the noise term which collectively account for two distinct aspects of the particle’s

interaction with the surrounding environment (the friction and the random collisions). The

FDT requires the oscillators to be in thermal equilibrium but does not require a specific

formula for the physical parameters of the oscillators. For example, fig. 1 shows the validity

of the FDT for three different choices of physical parameters of the oscillators: (i) ωi =

1, ki = 0.01, mi = 1 ∀i; (ii) ωi ∝ N, ki = 0.01, mi ∝ 1/N2 ∀i; (iii) ωi, ki, mi as in eqs. 5 with

a = 1/3, α = 1, γ = 1.5, M = 1.
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FIG. 1. Noise term (a) and FDT (b,c,d) for three different set of parameters ωi, ki, mi with

N = 2000 oscillators in thermal equilibrium.

Of particular interest is the third case, where the memory kernel converges to an expo-

nential function (see eq. 7 and Lecture Notes 5 for details) that depends on the α parameter.

When α → ∞, the exponential function becomes narrow and peaked (see fig. 2), and it can

be approximated as a delta function:

K(t) = 2γMδ(t) . (10)

Consequently, the FDT (eq. 11) becomes

⟨R(0)R(t)⟩ = 2γM

β
δ(t) , (11)

which is known as first fluctuation-dissipation theorem.

FIG. 2. Noise term (a) and FDT (b,c,d) for N = 20, 200, 20000 oscillators in thermal equilibrium.
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III. SPECTRAL ANALYSIS OF NOISE TERM

The function defined in eq. 4 expresses the noise term as the sum of sinusoidal functions

that depend on the angular frequencies of the oscillators of the system. The Fourier trans-

form, then allows the noise term to be expressed as a function of the angular frequencies of

the oscillators:

R̂(ω) =

ˆ ∞

−∞
dtR(t) e−iωt . (12)

To know which frequencies contribute most to the signal, we can then calculate the power

spectrum

S(ω) = lim
T →∞

1

T
|R̂t(ξ)|2 , (13)

where T is the length of the signal. For more details about the Fourier transform and the

spectral analysis, see Appendix B.

In fig. 3), we report the power spectrum of the noise term for N = 20, 200, 20000 os-

cillators. We observe that by increasing the number of oscillators, the range of frequencies

widens. This is because we have defined frequencies as a function of the number of oscil-

lators (see eq. 4 and fig. 4). Additionally, if N → ∞, then the power spectrum converges

to the power spectrum of the white noise, which is constant over the entire domain of the

frequencies.

FIG. 3. Power spectrum of the noise term with N = 20, 200, 20000 oscillators in thermal equilib-

rium (a,b,c) and power spectrum of the white noise (d).
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FIG. 4. Angular frequencies corresponding generated by eq. 5, corresponding to the power spectra

in fig. 3.

IV. LANGEVIN DYNAMICS

The GLE (eq. 1), can be reduced to the equation of the Langevin Dynamics

Ṗ = −∇V (Q)− γP (t) + ση(t) , (14)

where we used eq. 10 in the non-Markovian term

ˆ t

0

ds Q̇K(t− s) ≈ 2γM

ˆ t

0

ds Q̇δ(t− s) (15)

= MγQ̇ (16)

= γP , (17)

and the noise term has been replaced by a white noise process with properties⟨η(t)⟩ = 0 ,

⟨η(t), η(t′)⟩ = δ(t− t′) ,
(18)

multiplied by the variance

σ2 =
2γM

β
, (19)

derived by eq. 11.
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Appendix A: Autocorrelation function

In eq. 9, we introduced the autocorrelation function of a time-dependent variable f(t)

C(t) = ⟨f(0)f(t)⟩ (A1)

= lim
T →∞

1

T

ˆ T

0

ds f(s)f(s+ t) , (A2)

where T is an arbitrary large time value. In case the timeline is discretized into N equally

spaced time intervals of length ∆t, eq. (A2) is approximated as:

C(t) = ⟨f(0)f(τ)⟩ (A3)

≈ lim
T →∞

1

T

N∑
k

f(tk)f(tk+n)∆t (A4)

= lim
N→∞

1

N

N∑
i

f(tk)f(tk+n) , (A5)

where we used T = N∆t and t = n∆t. Note that in practical applications, where time T is

a finite number, eq. A5 is further approximated as

C(t) = ⟨R(0)R(τ)⟩ (A6)

≈ 1

N − n

N−n∑
k

f(tk)f(tk+n) . (A7)

Appendix B: Fourier transform and spectral analysis

Consider a continuous integrable time-dependent function f(t) : R → C, the Continuous

Fourier transform (CFT) is written as

f̂(ξ) =

ˆ ∞

−∞
dt f(t) e−2πi ξt , (B1)

where ξ are ordinary frequencies with units [time−1]. Note that if the function f(x) is defined

on a space-domain (i.e. it is a function of some variable with [length] units), the frequencies

ξ are called wavenumbers and the units are [length−1].

Alternatively, we introduce the angular frequencies ω = 2πξ with units [rad · time−1], and

the Fourier transform is written as

f̂(ω) =

ˆ ∞

−∞
dt f(t) e−iωt . (B2)
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The corresponding inverse Fourier transforms are written as

f(t) =

ˆ ∞

−∞
dξ f̂(ξ) e−2πi ξt , (B3)

and

f(t) =
1

2π

ˆ ∞

−∞
dt f̂(ω) e−iωt . (B4)

The idea behind the Fourier transform is that a function in the time-domain (or space-

domain or other-variable-domain), can be decomposed as a sum of complex exponential

functions that depend on certain frequencies. The transform and its inverse therefore allow

to transform a function defined on the time-domain into a function defined on the frequency-

domain, and vice versa.

1. Fourier transform with numpy.fft.fft()

Consider a discrete time-dependent variable f(t) evaluated onN discrete points t0, t1, . . . , tN−1.

Then the CFT is approximated by the Discrete Fourier Transform (DFT)

f̂(ξ) := f̂(m∆ξ) (B5)

≈
N−1∑
n=0

f(t0 + n∆t) exp [−2πi (t0 + n∆t)m∆ξ] ∆t , (B6)

where we used ξ = m∆ξ and t = t0 + n∆t. Inserting the frequency resolution ∆ξ = 1/N∆t

into eq. B6 and rearranging the equation yields

f̂(m∆ξ) ≈ exp (2πi t0m∆ξ) ∆t
N−1∑
n=0

f(t0 + n∆t) exp
(
−2πi

nm

N

)
(B7)

= exp (2πi t0m∆ξ) ∆tf̄(ξ) . (B8)

In applications, the function f̄(ξ) can be approximated using the Fast Fourier Transform

(FFT) algorithm. With Python and NumPy, it can be estimated as

f̄(ξ) = numpy.fft.fft(f) (B9)

where f is a numpy array containing the values f(t0), f(t1), . . . , f(tN−1). Note that, if

t0 = 0, then

f̂(m∆ξ) ≈ ∆tf̄(ξ) . (B10)
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To produce the array of the ordinary frequencies, it is possible to use the function

xi = numpy.fft.fftfreq(Nsteps, dt) , (B11)

which can be converted in angular frequencies:

omega = 2 * numpy.pi * xi . (B12)

2. The power spectrum

Signal processing theory introduces the concept of energy carried by a signal f(t) (not to

be confused with physical energy in [Joule] units), defined as

E =

ˆ ∞

−∞
dt |f(t)|2 (B13)

=

ˆ ∞

−∞
dξ |f̂(ξ)|2 . (B14)

where we applied Parseval’s theorem in the second equality. The integrand of eq. B14 is the

energy spectral density

S̄(ξ) = |f̂(ξ)|2 , (B15)

which describes which frequencies contribute most to the transport of energy.

Likewise, we introduce the concept of power of the signal f(t) of length T :

P = lim
T→∞

1

T

ˆ t0+T /2

t0−T /2

dt |f(t)|2 , (B16)

and the power spectrum in ordinary frequencies is defined as

S(ξ) = lim
T →∞

1

T
|f̂t(ξ)|2 , (B17)

or, in angular frequencies, as

S(ω) = lim
T →∞

1

2πT
|f̂(ω)|2 , (B18)

where the factor 1/2π guarantees that

var(f(t)) = ⟨f(t)2⟩ =
ˆ ∞

−∞
dξ S(ξ) =

ˆ ∞

−∞
dω S(ω) . (B19)

according to the Wiener–Khinchin theorem.

In fig. 5, we report the power spectrum of the Gaussian white noise.
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FIG. 5. Example of white noise (a) and power spectrum (b,c) with ordinary and angular frequencies.

3. The Wiener–Khinchin theorem

The Wiener–Khinchin theorem states that

⟨f(0)f(t)⟩ =
ˆ ∞

−∞
dξ S(ξ)e2πi ξt , (B20)

and

S(ξ) =

ˆ ∞

−∞
dt ⟨f(0)f(t)⟩ e−2πi ξt . (B21)
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