Lecture 7

Escape rate problem and Pontrjagin's theory

CONTENTS

I. Introduction 1
II. The high friction regime of the Langevin equation 4
III. Kolmogorov equations 5
A. Forward Kolmogorov equations or Fokker-Planck equation 5
IV. Mean First Passage Time 6
A. Harmonic approximation 9
References 9

I. INTRODUCTION

The escape rate theory addresses the problem of estimating transition rates of metastable systems, i.e. dynamical systems whose state space is characterised by metastable regions in which the system can remain for a very long time before jumping into another metastable region, and by transition regions in which the system can only remain for a very short time. Several examples of metastable systems can be observed in nature, e.g. chemical reactions for dimerization $(A+B \rightleftharpoons C)$, folding-unfolding of proteins, protein-ligand binding processes. These are high-dimensional problems, however they can be represented as one-dimensional problems characterised by a reaction coordinate and a potential energy function formed by wells (representing the metastable states) and barriers (representing the transition regions) as illustrated in fig. 1 Actually, reducing a high-dimensional problem to a one-dimensional problem is anything but simple. Several obstacles are involved, starting with the definition of what a reaction coordinate is. In addition, dynamics in full space is usually Markovian (e.g. when described by a Hamiltonian function), but reduction to one or a few dimensions

FIG. 1. Double and triple well potential. When the energy barrier $V(x)$ is several units higher than the thermal energy $k_{B} T$, the system exhibits metastability.
involves non-Markovian effects that cannot always be neglected. However, in this context, we will not deal with these problems and make the following assumptions.

- The dynamics of a $3 N$-dimensional system made of N components (molecules, atoms, particles...), described by Euclidean coordinates $\mathbf{r}_{i} \in \mathbb{R}^{3}$, are fully described by a one-dimensional reaction coordinate $x:=x\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right): \mathbb{R}^{3 N} \rightarrow \mathbb{R}$.
- The $3 N$-dimensional potential energy function governing the dynamics in full space is reduced to a one-dimensional function $V(x): \mathbb{R} \rightarrow \mathbb{R}$.
- The dynamics along the reaction coordinate is Markovian and can be described by the Langevin dynamics equation

$$
\left\{\begin{array}{l}
\dot{x}_{t}=v_{t} \tag{1}\\
m \dot{v}_{t}=-\frac{d}{d x} V\left(x_{t}\right)-m \gamma v_{t}+\bar{\sigma} \eta_{t}
\end{array}\right.
$$

where m is the reduced mass of the system, γ is a friction coefficient, η is a Gaussian
white noise which satisfies the properties

$$
\left\{\begin{array}{l}
\left\langle\eta_{t}\right\rangle=0 \tag{2}\\
\left\langle\eta_{t} \eta_{s}\right\rangle=\delta(t-s)
\end{array}\right.
$$

and the standard deviation

$$
\begin{equation*}
\bar{\sigma}=\sqrt{2 k_{B} T m \gamma} . \tag{3}
\end{equation*}
$$

The function of the friction and noise term is to simulate the interaction between the system and the surroundings while keeping a constant temperature.

Studying the escape rate problem means studying the dynamics of metastable systems and in particular calculating the rate of transition from one metastable region to another across the barrier. Over the last century and a half, various theories and methods have been developed. Initially, most of the methods fell into the category of model-based methods, as they were developed to study specific problems and were conditioned by the characteristics of the problem. Instead, in recent decades, data-driven techniques, or machine learning techniques, have been developed.

The first formulation of the problem dates back to Svante Arrhenius, who derived in 1884 the famous formula

$$
\begin{equation*}
k=A e^{-\beta E_{b}}, \tag{4}
\end{equation*}
$$

which shows that the transition rate depends exponentially on the inverse of the system temperature and the height of the barrier.

Several more elaborate theories were developed later. Here, we will deal with Pontrjagin's formula, which is valid for overdamped Langevin dynamics, i.e. in the high friction limit. Here, we summarized the Pontrjagin's theory in six steps.

- Definition of the high friction regime for Langevin dynamics.
- Introduction of the forward and backward Kolmogorov equation.
- Definition of Mean First Passage Time $\langle\tau\rangle$
- Definition of a partial differential equation for the MFPT.
- Solution of the partial differential equation for the MFPT.
- Calculation of the transition rate as

$$
\begin{equation*}
\langle\tau\rangle=\frac{1}{k} . \tag{5}
\end{equation*}
$$

II. THE HIGH FRICTION REGIME OF THE LANGEVIN EQUATION

Let us now consider the Langevin equation defined in eq. 2 and assume to have a trajectory realised with a very fine time discretization in Δt timesteps. If we counted the number of collisions between the molecular system and the solvent molecules, whose action is represented by the friction term and the noise term, we would observe few collisions in the time unit Δt. Imagine now to enlarge the time unit Δt by a unitless factor $g>1$, we would observe more collisions and the time-averaged acceleration over the timestep $g \cdot \Delta t$ would be zero. In other words, by increasing the number of collisions in the unit time, the velocity reaches a steady-state. Then, by coarse-graining the time, the term $m \dot{v}_{t}$ on the left-hand side of the Langevin equation can be neglected. Instead of enlarging the time unit, to increase the number of observed collisions in the unit time, we can act on the parameter γ, i.e. the friction coefficient. Increasing $\gamma \rightarrow g \cdot \gamma$ is in fact equivalent to increasing the number of collisions in the unit time Δt. This allows us, in a completely equivalent manner, to delete the term on the left-hand side of eq. 2 and write the so-called Langevin equation for the high friction regime:

$$
\begin{align*}
\dot{x}_{t} & =-\frac{1}{m \gamma} \frac{d}{d x} V\left(x_{t}\right)+\frac{\bar{\sigma}}{m \gamma} \eta_{t} \tag{6}\\
& =-\frac{1}{m \gamma} \frac{d}{d x} V\left(x_{t}\right)+\sigma \eta_{t} \tag{7}
\end{align*}
$$

where the standard deviation $\bar{\sigma}$ has been replaced with

$$
\begin{equation*}
\sigma=\sqrt{\frac{2 k_{B} T}{m \gamma}}=\sqrt{\frac{2}{\beta m \gamma}}=\sqrt{2 D} . \tag{8}
\end{equation*}
$$

III. KOLMOGOROV EQUATIONS

A. Forward Kolmogorov equations or Fokker-Planck equation

Associated to the stochastic differential equation defined in eq. 7, there exists a partial differential equation known as Fokker-Planck equation or forward Kolmogorov equation or Smoluchowski equation

$$
\begin{align*}
\frac{\partial P\left(x, t \mid x_{0} \cdot t_{0}\right)}{\partial t} & =\left\{\frac{\partial}{\partial x}\left[\frac{1}{m \gamma} \frac{d}{d x} V(x)\right]+D \frac{\partial^{2}}{\partial x^{2}}\right\} P\left(x, t \mid x_{0} \cdot t_{0}\right) \tag{9}\\
& =\mathcal{Q}^{*} P\left(x, t \mid x_{0} \cdot t_{0}\right) \tag{10}
\end{align*}
$$

which describes how the probability density $P\left(x, t ; x_{0} . t_{0}\right)$ evolves with time given the initial condition $P\left(x_{0} . t_{0}\right)=u\left(x_{0}, t_{0}\right)$. The Fokker-Planck equation can be defined in terms of the operator \mathcal{Q}^{*}, that is the adjoint operator of \mathcal{Q} that defines the backward Kolmogorov equation

$$
\begin{align*}
-\frac{\partial P\left(x, t \mid x_{0}, t_{0}\right)}{\partial t_{0}} & =\left\{-\left.\frac{1}{m \gamma} \frac{d}{d x} V(x)\right|_{x_{0}} \frac{\partial}{\partial x_{0}}+D \frac{\partial^{2}}{\partial x_{0}^{2}}\right\} P\left(x, t \mid x_{0}, t_{0}\right) \tag{11}\\
& =\mathcal{Q} P\left(x, t \mid x_{0}, t_{0}\right) \tag{12}
\end{align*}
$$

The backward Kolmogorov equation answers the question: how does the system evolve to reach a final distribution $P(x, t)=u(x, t)$ (final condition)? Then, instead of varying the final state x and the time t as in eq. 10, the backward Kolmogorov equation acts on the initial state x_{0} and the initial time t_{0}. Let us now consider the case where potential V and diffusion D do not depend on time. Then, the system is temporally homogeneous and the solutions of eqs. 10 and 12 do not depend on the specific times t_{0} and t, but only on their difference:

$$
\begin{equation*}
P\left(x, t \mid x_{0}, t_{0}\right)=P\left(x, t-t_{0} \mid x_{0}, 0\right), \tag{13}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
-\frac{\partial P\left(x, t \mid x_{0}, t_{0}\right)}{\partial t_{0}}=-\frac{\partial P\left(x, t-t_{0} \mid x_{0}, 0\right)}{\partial t_{0}}=\frac{\partial P\left(x, t-t_{0} \mid x_{0}, 0\right)}{\partial t}=\frac{\partial P\left(x, t \mid x_{0}, t_{0}\right)}{\partial t} \tag{14}
\end{equation*}
$$

Applying eq. 14 to eq. 12 yields the backward Kolmogorov equation

$$
\begin{equation*}
\frac{\partial P\left(x, t \mid x_{0}, t_{0}\right)}{\partial t}=\left\{-\left.\frac{1}{m \gamma} \frac{d}{d x} V(x)\right|_{x_{0}} \frac{\partial}{\partial x_{0}}+D \frac{\partial^{2}}{\partial x_{0}^{2}}\right\} P\left(x, t \mid x_{0}, t_{0}\right)=L^{\dagger} P\left(x, t \mid x_{0}, t_{0}\right) \tag{15}
\end{equation*}
$$

whose time-derivative depend on t.

IV. MEAN FIRST PASSAGE TIME

Within the Pontrjagin's theory the transition rate is defined as the inverse of the MFPT $\left\langle\tau\left(x_{F} \mid x_{0}, t_{0}\right)\right\rangle$, that is the mean time that the system needs to reach a final state x_{F} starting at x_{0} at time t_{0} (see fig. 2). From a mathematical point of view, it is the first moment of

FIG. 2. MFPT.
the distribution of trajectories that reach the point x_{F} starting at x_{0} at time t_{0} :

$$
\begin{equation*}
\left\langle\tau\left(x_{F} \mid x_{0}, t_{0}\right)\right\rangle=\int_{0}^{\infty} d \tau \tau \Pi\left(x, \tau \mid x_{0}, t_{0}\right) \tag{16}
\end{equation*}
$$

where $\Pi\left(x_{F}, t \mid x_{0}, t_{0}\right)$ is the associated probability density. To define $\Pi\left(x_{F}, t \mid x_{0}, t_{0}\right)$, we first consider the solution $P\left(x_{F}, t \mid x_{0}, t_{0}\right)$ of the Fokker-Planck equation (eq. 10) and impose the absorbing boundary condition

$$
\begin{equation*}
P\left(x_{F}, t \mid x_{0}, t_{0}\right)=0 . \tag{17}
\end{equation*}
$$

We denote this distribution with $P_{a}\left(x, t \mid x_{0}, t_{0}\right)$, then, we introduce the function

$$
\begin{equation*}
\Phi\left(x_{F}, t \mid x_{0}, t_{0}\right)=\int_{-\infty}^{x_{F}} d x P_{a}\left(x, t \mid x_{0}, t_{0}\right), \tag{18}
\end{equation*}
$$

which describes the fraction of trajectories starting at x_{0} at time t_{0}, that did not reach x_{F} at time time t.

To better illustrate the meaning of these distributions, let us consider the pure Brownian motion (i.e. without drift) described by the Einstein diffusion equation

$$
\begin{equation*}
\frac{\partial P\left(x, t \mid x_{0}, t_{0}\right)}{\partial t}=D \frac{\partial^{2} P\left(x, t \mid x_{0}, t_{0}\right)}{\partial x^{2}} . \tag{19}
\end{equation*}
$$

The solution with infinite boundary conditions $P\left(x \rightarrow \pm \infty, t \mid x_{0}, t_{0}\right)=0$, is written as

$$
\begin{equation*}
P\left(x, t \mid x_{0}, t_{0}\right)=\frac{1}{\sqrt{4 \pi D\left(t-t_{0}\right)}} \exp \left(-\frac{\left(x-x_{0}\right)^{2}}{4 \pi D\left(t-t_{0}\right)}\right) \tag{20}
\end{equation*}
$$

Whereas, the solution of eq. 19 applying the absorbing boundary conditions defined in eq. 17 reads

$$
\begin{equation*}
P_{a}\left(x, t \mid x_{0}, t_{0}\right)=P\left(x, t \mid x_{0}, t_{0}\right)-P\left(2 x_{F}-x, t \mid x_{0}, t_{0}\right) \tag{21}
\end{equation*}
$$

These functions are illustrated in figs. 3-(b,c), and represent the distributions of trajectories in fig. 3-(a). Finally, to build $\Phi\left(x_{F}, t \mid x_{0}, t_{0}\right)$, we integrate $P_{a}\left(x, t \mid x_{0}, t_{0}\right)$ from $-\infty$ to x_{F}. This function, reported in fig. 3-(d), represents the amount of trajectories that have not yet reached the point x_{F} at time t as function of time. Then, $\Phi\left(x_{F}, t \mid x_{0}, t_{0}\right)=1$ at time $t=t_{0}$ and $\Phi\left(x_{F}, t \mid x_{0}, t_{0}\right)=0$ as $t \rightarrow \infty$. In fact, we expect that after an infinite time all trajectories will have reached the target x_{F}.

FIG. 3. (a) Ensemble of trajectories that have reached the x_{F} point (blue), ensemble of trajectories that did not reach the x_{F} point (red); (b) distribution $P\left(x, t \mid x_{0}, t_{0}\right)$ with infinite boundary conditions; (c) distribution $P\left(x, t \mid x_{0}, t_{0}\right)$ with absorbing boundary conditions; (d) fraction of trajectories that did not reach the point x_{F} at time t.

Consider now a small timestep $\Delta t>0$, then the difference $\Phi\left(x, t \mid x_{0}, t_{0}\right)-\Phi(x, t+$ $\left.\Delta t \mid x_{0}, t_{0}\right)>0$ represents the percentage of trajectories that crossed x_{F} between time t and $t+\Delta t$ for the first time. It follows that the quantity

$$
\begin{equation*}
\frac{\partial \Phi}{\partial t}=\lim _{\Delta t \rightarrow 0^{+}} \frac{\Phi\left(x, t \mid x_{0}, t_{0}\right)-\Phi\left(x, t+\Delta t \mid x_{0}, t_{0}\right)}{\Delta t} \tag{22}
\end{equation*}
$$

represents the probability density of the distribution of trajectories that reached x_{F} between time t and $t+\Delta t$ for the first time in the unit time Δt; while the opposite is the probability
that the system will reach x_{F} for the first time between t and $t+\Delta t$:

$$
\begin{equation*}
\Pi\left(x, t \mid x_{0}, t_{0}\right)=-\frac{\partial \Phi}{\partial t} \tag{23}
\end{equation*}
$$

Fig. 4 shows the functions Φ, Π and the MFPT for four different values of x_{F}.

FIG. 4. (a) Function $\Phi\left(x_{F}, t \mid x_{0}, t_{0}\right)$; (b) distribution $\Pi\left(x_{F}, t \mid x_{0}, t_{0}\right)$ with infinite boundary conditions; (c) MFPT $\left\langle\tau\left(x_{F} \mid x_{0}, t_{0}\right)\right\rangle$.

Unfortunately, in most of the cases, we cannot analytically determine $\Pi\left(x, t \mid x_{0}, t_{0}\right)$. Thus, in order to calculate the MFPT, it is convenient to write a differential equation for $\left\langle\tau\left(x_{F} \mid x_{0}, t_{0}\right)\right\rangle$. For this purpose, we use the backward Kolmogorov equation defined in eq. 15 , since the MFPT is defined for a fixed end point x_{F}, whereas we are interested in calculating the MFPT as the initial point x_{0} varies. First of all, we rewrite the definition of MFPT (eq. 16):

$$
\begin{align*}
\left\langle\tau\left(x_{F} \mid x_{0}, t_{0}\right)\right\rangle & =\int_{0}^{\infty} d \tau \tau \Pi\left(x, \tau \mid x_{0}, t_{0}\right) \tag{24}\\
& =\int_{0}^{\infty} d \tau \tau\left(-\frac{\partial \Phi}{\partial t}\right) \tag{25}\\
& =-\left.\tau \Phi\right|_{0} ^{\infty}+\int_{0}^{\infty} d \tau \Phi\left(x_{F}, \tau \mid x_{0}, t_{0}\right) \tag{26}\\
& =\int_{0}^{\infty} d \tau \Phi\left(x_{F}, \tau \mid x_{0}, t_{0}\right) \tag{27}\\
& =\int_{0}^{\infty} d \tau \int_{-\infty}^{x_{F}} d x P_{a}\left(x, \tau \mid x_{0}, t_{0}\right) \tag{28}
\end{align*}
$$

where we integrated by parts and used $\Phi\left(x_{F}, \tau \mid x_{0}, t_{0}\right) \rightarrow 0$ as $t \rightarrow \infty$. Then, we apply the
operator \mathcal{Q} to eq. 16:

$$
\begin{align*}
\mathcal{Q}\left\langle\tau\left(x_{F} \mid x_{0}, t_{0}\right)\right\rangle & =\int_{0}^{\infty} d \tau \int_{-\infty}^{x_{F}} d x \frac{\partial}{\partial \tau} P_{a}\left(x, \tau \mid x_{0}, t_{0}\right) \tag{29}\\
& =\left.\int_{-\infty}^{x_{F}} d x P_{a}\left(x, \tau \mid x_{0}, t_{0}\right)\right|_{0} ^{\infty} \tag{30}\\
& =\int_{-\infty}^{x_{F}} d x\left(0-P_{a}\left(x, t_{0} \mid x_{0}, t_{0}\right)\right)=-1, \tag{31}
\end{align*}
$$

From the equality

$$
\begin{equation*}
\mathcal{Q}\left\langle\tau\left(x_{F} \mid x_{0}, t_{0}\right)\right\rangle=-1, \tag{32}
\end{equation*}
$$

we obtain the differential equation

$$
\begin{equation*}
-\frac{1}{m \gamma} \frac{d}{d x} V(x) \frac{d}{d x_{0}}\left\langle\tau\left(x_{F} \mid x_{0}, t_{0}\right)\right\rangle+D \frac{\partial^{2}}{\partial x_{0}^{2}}\left\langle\tau\left(x_{F} \mid x_{0}, t_{0}\right)\right\rangle=-1 . \tag{33}
\end{equation*}
$$

The solution of eq. 33 is the Pontryagin formula:

$$
\begin{equation*}
\left\langle\tau\left(x_{F} \mid x_{0}, t_{0}\right)\right\rangle=\frac{1}{D} \int_{x_{0}}^{x_{F}} d x e^{\beta V(x)} \int_{-\infty}^{x} d x^{\prime} e^{-\beta V\left(x^{\prime}\right)} . \tag{34}
\end{equation*}
$$

A. Harmonic approximation

Assume that the potential energy function $V(x)$ is a double well potential (see fig. 5) whose left well can be approximated by an harmonic potential

$$
\begin{equation*}
V(x) \approx V\left(x_{A}\right)+\frac{1}{2} \omega_{A}^{2} m\left(x-x_{A}\right)^{2}, \tag{35}
\end{equation*}
$$

with

$$
\begin{equation*}
\omega_{A}^{2} m=\left.\frac{d^{2} V}{d x^{2}}\right|_{x_{A}}, \tag{36}
\end{equation*}
$$

around the minimum of the well x_{A} and by

$$
\begin{equation*}
V(x) \approx V\left(x_{B}\right)-\frac{1}{2} \omega_{B}^{2} m\left(x-x_{B}\right)^{2}, \tag{37}
\end{equation*}
$$

close to the barrier x_{B}. Then eq 34 can be approximated as

$$
\begin{equation*}
\left\langle\tau\left(x_{F} \mid x_{0}, t_{0}\right)\right\rangle=\frac{2 \pi \gamma}{\omega_{A} \omega_{B}} \exp \left(\beta E_{b}\right), \tag{38}
\end{equation*}
$$

with $E_{b}=V\left(x_{B}\right)-V\left(x_{A}\right)$.

FIG. 5. Double well potential with harmonic approximation

