Exercise 8

If you have questions or need suggestions: donati[at]zib.de

1 Rates formulas

Consider a one-dimensional system governed by the overdamped Langevin equation

$$
\begin{equation*}
d x_{t}=-\frac{1}{m \gamma} \frac{d}{d x} V(x) d t+\sqrt{2 D} \eta \tag{1}
\end{equation*}
$$

where m is the mass, γ is the friction, $D=\frac{k_{B} T}{m \gamma}$ is the diffusion constant and $V(x)$ is the potential energy function. The corresponding Fokker-Planck equation is written as

$$
\begin{equation*}
L P(x, t)=\frac{\partial P}{\partial t}=\left\{\frac{\partial}{\partial x}\left[\frac{1}{m \gamma} \frac{d}{d x} V(x)\right]+D \frac{\partial^{2}}{\partial x^{2}}\right\} P(x, t) \tag{2}
\end{equation*}
$$

and the backward Kolmogorov equation is written as

$$
\begin{equation*}
L^{\dagger} P(x, t)=\frac{\partial P}{\partial t}=\left\{\frac{\partial}{\partial x}\left[-\frac{1}{m \gamma} \frac{d}{d x} V(x)\right]+D \frac{\partial^{2}}{\partial x^{2}}\right\} P(x, t) \tag{3}
\end{equation*}
$$

From eq. 3 is possible derive the differential equation

$$
\begin{equation*}
-\frac{1}{m \gamma} \frac{d}{d x} V(x) \frac{d}{d x_{0}}\langle\tau\rangle+D \frac{\partial^{2}}{\partial x_{0}^{2}}\langle\tau\rangle=-1 \tag{4}
\end{equation*}
$$

where $\langle\tau\rangle$ is the Mean First Passage Time (MFPT) requested by the system to reach a final destination x_{F} starting at x_{0}.

Pen-and-paper exercise

1. Solve eq. 4, find the Pontryagin formula for the MFPT

$$
\begin{equation*}
\langle\tau\rangle=\frac{1}{D} \int_{x_{0}}^{x_{F}} d x e^{\beta V(x)} \int_{-\infty}^{x} d x^{\prime} e^{-\beta V\left(x^{\prime}\right)} \tag{5}
\end{equation*}
$$

and the transition rate

$$
\begin{equation*}
k=\frac{1}{\langle\tau\rangle} \tag{6}
\end{equation*}
$$

2. Assume that the potential energy function $V(x)$ is a double well potential whose left well can be approximated by an harmonic potential

$$
\begin{equation*}
V(x) \approx V\left(x_{A}\right)+\frac{1}{2} \omega_{A}^{2} m\left(x-x_{A}\right)^{2} \tag{7}
\end{equation*}
$$

around the minimum of the well x_{A} and by

$$
\begin{equation*}
V(x) \approx V\left(x_{B}\right)-\frac{1}{2} \omega_{B}^{2} m\left(x-x_{B}\right)^{2} \tag{8}
\end{equation*}
$$

close to the barrier x_{B}. Show that eq 6 can be approximated as

$$
\begin{equation*}
k=\frac{\omega_{B}}{\gamma} \cdot \frac{\omega_{A}}{2 \pi} \exp \left(-\beta E_{A B}\right) \tag{9}
\end{equation*}
$$

with $E_{A B}=V\left(x_{B}\right)-V\left(x_{A}\right)$.
3. The Kramers rate for moderate friction is written as

$$
\begin{equation*}
k_{A B}=\frac{\gamma}{\omega_{B}}\left(\sqrt{\frac{1}{4}+\frac{\omega_{B}^{2}}{\gamma^{2}}}-\frac{1}{2}\right) \cdot \frac{\omega_{A}}{2 \pi} \exp \left(-\beta E_{A B}\right) \tag{10}
\end{equation*}
$$

Show that eq. 10 can be approximated as eq. 9 in the high-friction regime.

2 Stochastic calculus

Consider the stochastic integral

$$
\begin{equation*}
\int_{0}^{t} W_{s} d W_{s} \tag{11}
\end{equation*}
$$

where W_{s} represents a Wiener process.

Pen-and-paper exercise

1. Solve eq. 11 using the Ito's integral
2. Solve eq. 11 using the Stratonovich integral.
