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Lecture 10

Transfer operator formalism
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I. TRANSFER OPERATORS

A. Langevin equation

Consider a one-dimensional system represented by the variable xt ∈ Γ ⊂ R, whose

dynamics evolves according to the stochastic differential equation

dxt = −D1(xt)dt+
√
2D2(xt) ηt (1)

where

• Γ is the state-space;

• D1(x) is a position-dependent drift;
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• D2(x) is a position-dependent diffusion function;

• ηt is a Gaussian white noise that satisfies⟨ηt⟩ = 0 ,

⟨ηt, ηt′⟩ = δ(t− t′) ,
(2)

As D1(x) and D2(x) do not explicitly depend on the time variable t, the process xt is

time-homogeneous. Furthermore, the process xt is Markovian, as we do not consider memory

terms (as for example in the generalised Langevin equation).

B. Fokker-Planck operator and propagator

The dynamics defined by eq. 1 is equivalently described by the Fokker-Planck equation,

or forward Kolmogorov equation:

∂ρt(x)

∂t
= − ∂

∂x
[D1(x) ρt(x)] +

∂2

∂x2
[D2(x) ρt(x)] , (3)

where ρt(x) is a time-dependent probability density that describes the probability to find

the system in the state x at time t. Eq. 3 can be rewritten in terms of the Fokker-Planck

operator Q∗ as

∂ρt(x)

∂t
= Q∗ρt(x) , (4)

whereQ∗ acts on probability densities defined on the Lebesgue space L1 = {f :
´
Γ
|f(x)|dx <

∞}. Solutions of eq. 4 are formally written as

ρt+τ (x) = exp (Q∗ τ) ρt(x) (5)

= Pτρt(x) , (6)

where we introduced the propagator, or Perron-Frobenius operator, Pτ . Applying the

Chapman-Kolmogorov equation, one finds that Pτ acts on probability densities as

ρt+τ (x) =

ˆ
Γ

pτ (y, x)ρt(y) dy (7)

where pτ (y, x) := p(x, t+ τ |y, t) is the conditional probability of finding the system in state

x at time t+ τ , given it was in state y at time t. Note that in eq. 7 the integral is over the

variable y, representing the starting state in the conditional probability.
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C. Infinitesimal generator and Koopman operator

We now introduce the backward Kolmogorov equation

∂ft(x)

∂t
= D1(x)

∂ft(x)

∂x
+D2(x)

∂2ft(x)

∂x2
, (8)

where ft(x) ∈ L∞ = {f : ∥f∥∞ < ∞} is an observable function, i.e. a function that

represents a physical property or physical quantity that can be measured. Eq. 8 is written

equivalently as

∂ft(x)

∂t
= Qft(x) . (9)

where the operator Q is called infinitesimal generator.

Analogously to eq. 6, we write a formal solution of eq. 9 as

ft+τ (x) = exp (Q τ) ft(x) (10)

= Kτft(x) , (11)

where Kτ is the Koopman operator and acts on functions as

ft+τ (x) =

ˆ
Γ

pτ (x, y)ft(y) dy (12)

Note that in eq. 12 the integral is again on the variable y, but here, the variable y represents

the target state in the conditional probability function pτ (x, y). The integral in eq. 12 is

equivalent to the expectation

ft+τ (x) = E [f(xτ )|x0 = x] . (13)

The infinitesimal generator is often written as the time-derivative of the Koopman oper-

ator as

Qf(x) = lim
τ→0+

Kτ − I
τ

f(x) , (14)

where I is the identity operator.

D. Adjointness relationships

Given two test functions f, g ∈ L∞, the four operators Q∗, Q, Pτ and Kτ , satisfy the

following adjointness relationships.

⟨Q∗f, g⟩ = ⟨f,Qg⟩ , (15)

3



Dr. Luca Donati Stochastic and Diffusive Processes WISE2324

and

⟨Pτf, g⟩ = ⟨f,Kτg⟩ , (16)

where we defined the scalar product

⟨f, g⟩ =
ˆ
Γ

f(x)g(x) dx . (17)

II. DYNAMICS PROPERTIES

Studying the dynamics of a system by means of the infinitesimal generator and the

Koopman operator makes it possible to transform a non-linear problem, defined in eq. 1,

into a linear problem, defined in eq. 9. The drawback is that the problem from being

finite-dimensional defined on the space Γ, becomes an infinite-dimensional problem defined

in the functional space L∞. In order to use these operators in applications, we need a

finite-dimensional representation. To this end, we require that the dynamic xt, solution of

eq. 1 satisfies certain properties. We already assumed time-homogeneity and Markovianity.

Additionally, we require that the system has an equilibrium distribution, is reversible, is

ergodic.

A. Equilibrium distribution

In order to find the equilibrium distribution, we rewrite eq. 3 as

∂ρt(x)

∂t
= −∂Jt(x)

∂x
, (18)

where we introduced the flux, or probability current,

Jt(x) = [D1(x) ρt(x)] +
∂

∂x
[D2(x) ρt(x)] . (19)

The flux is a measure of how the probability density ρt(x) passes through the boundaries of

a volume in unit time. If we imagine the probability density as a fluid, the flux describes

how the fluid flows through a surface, e.g. the cross-section of a pipeline. Eq. 18, also called

continuity equation, expresses the fact that the fluid conserves the mass, so the rate at which

it enters a volume is balanced by the rate at which it leaves it.
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We are interested in solutions of eq. 18 (or eq. 3) such that

∂ρt
∂t

= 0 , (20)

then we require that

∂Jt
∂t

= 0 . (21)

We distinguish two cases:

• Steady-state distributions ρss(x) such that

J(x) = const., (22)

• Equilibrium distribution π(x) such that

Jt(x) = 0 . (23)

Steady-state distributions, or stationary distributions, describe distributions that do not

change over time, but have a constant flux. Referring again to the example of fluids, a

liquid that flows uniformly (e.g. by opening a tap), is a representation of a distribution that

is stationary, but whose flux is not zero. To construct stationary distributions, it is necessary

to introduce sources and sinks in the system. For example, Kramers, to construct his model,

imagines a situation in which particles are created in the left well and removed once they

reach the right well. This results in a constant flux J(x) and a steady-state distribution

ρss(x) that does not change over time.

Instead, equilibrium distributions, represent situations where the distribution does not

change over time and there is no mass transport, then the flux is zero. For example, a

basin in which the liquid relaxes until it homogeneously occupies all available space and no

macroscopic movement takes place.

Setting J(x, t) = 0 in eq. 19 and integrating with natural boundary conditions (π(x) = 0

at ±∞), one obtains

π(x) =
N

D2(x)
exp

(ˆ x

−∞

D1(x
′)

D2(x′
) dx′

)
, (24)

where N is a normalization constant.
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The overdamped Langevin equation

A special case of eq. 1 is the overdamped Langevin equation, where the drift term is

written as

D1(x) = − 1

mγ(x)

dV (x)

dx
, (25)

where m is the mass of a particle, γ(x) is a position dependent friction coefficient, and V (x)

is a smooth potential energy function, and the diffusion term is written as

D2(x) =
kBT

mγ(x)
. (26)

Then the equilibrium distribution is written as

π(x) = Nγ(x) exp

(
− 1

kBT
V (x)

)
. (27)

If the friction coefficient is a constant, then

π(x) = N exp

(
− 1

kBT
V (x)

)
. (28)

B. Reversibility

The zero-flux condition (eq. 23) is equivalent to the detailed balance condition

π(x)pτ (x, y) = π(y)pτ (y, x) , (29)

where π(x), π(y) are equilibrium distributions and pτ (x, y), pτ (y, x) are conditional proba-

bilities. The detailed balance condition expresses the fact that, at the equilibrium described

by the distribution π(x) , the average number of microscopic transitions (i.e. solution tra-

jectories of eq. 1) from a state x to a state y is equal to the average number of transitions in

the opposite direction. If this condition is fulfilled, then we say that the system is reversible.

Note, that the reversibility condition is more general than the time-reversibility condition.

For example, Hamiltonian dynamics is time-reversible, Langevin dynamics is reversible, but

not time-reversible.

Under the reversibility condition, the operators Q∗, Q, Pτ and Kτ satisfy the following

properties:
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1. Self-adjointness relationships

⟨Q∗f, g⟩π−1 = ⟨f,Q∗g⟩π−1 , (30)

⟨Qf, g⟩π = ⟨f,Qg⟩π , (31)

⟨Pτf, g⟩π−1 = ⟨f,Pτg⟩π−1 , (32)

and

⟨Kτf, g⟩π = ⟨f,Kτg⟩π , (33)

where we defined the weighted scalar products

⟨f, g⟩π =

ˆ
Γ

f(x)g(x) π(x)dx , (34)

and

⟨f, g⟩π−1 =

ˆ
Γ

f(x)g(x) π−1(x)dx , (35)

2. Spectral decomposition

Q∗φi(x) = κiφi(x) , (36)

Qψi(x) = κiψi(x) , (37)

Pτφi(x) = λi(τ)iφi(x) , (38)

and

Kτψi(x) = λi(τ)iψi(x) . (39)

• The eigenfunctions form orthonormal basis:

⟨φi, φj⟩π−1 = δij , (40)

⟨ψi, ψj⟩π = δij , (41)
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• The first eigenfunctions are

φ0(x) = π(x) , (42)

ψ0(x) = 1 , (43)

• The eigenfunctions are related by

φi(x) = ψi(x)π(x) . (44)

• Eigenvalues are real:

κ0 = 0 > κ1 ≥ κ2 ≥ · · · > −∞ , (45)

λ0(τ) = 1 > λ1(τ) ≥ λ2(τ) ≥ · · · > 0 . (46)

• The eigenvalues λi(τ) and κi are related by

λi(τ) = exp(τκi) . (47)

We can write solutions of eq. 3 as

ρt+τ (x) =
∞∑
i=0

λi(τ)φi(x)ci (48)

=
∞∑
i=0

exp(τκi)φi(x)ci (49)

= π(x) +
∞∑
i=1

exp(τκi)φi(x)ci , (50)

with

ci = ⟨ρt(x), φi(x)⟩π , (51)
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and eq. 8 as

ft+τ (x) =
∞∑
i=0

λi(τ)ψi(x)di (52)

=
∞∑
i=0

exp(τκi)ψi(x)di (53)

= 1 +
∞∑
i=1

exp(τκi)ψi(x)di , (54)

di = ⟨ρt(x), ψi(x)⟩ , (55)

These representations of the solutions of eqs. 3 and 8 express the fact that the dynamics of

the system can be decomposed into eigenmodes that at infinite time decay and the solutions

converge to the equilibrium distribution. The eigenvalues κi have a physical interpretation,

they are the rates at which the eigenmodes decay. Equivalently, we can introduce the time

scales at which the eigenmodes occur:

ti = − 1

κi
= − τ

log[λi(τ)]
. (56)

C. Ergodicity

If the drift and the diffusion terms D1(x) and D2(x) in eq. 1 are smooth functions, then

the system is ergodic:

• There are no two subsets of the space Γ dynamically disconnected.

• After an infinite time, each state x ∈ Γ will be visited an infinite number of times

proportional to π(x).

• The equilibrium distribution π(x) is unique.

• Time average are equal to ensemble average:

f̄(x) = E[f(x)] (57)

lim
t→∞

1

t

ˆ t

0

f(xs) ds =

ˆ
Γ

f(x) π(x)dx . (58)

D. Example
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FIG. 1. Triple-well potential energy function.

FIG. 2. Eigenvalues and timescales.
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FIG. 3. Eigenfunctions.
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