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Lecture 12

Fuzzy clustering by PCCA+
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A. Crisp clustering

Clustering or coarse-graining is a technique used in data analysis to group similar data

points or objects together based on certain features or characteristics they share. In the

context of dynamical systems (deterministic and stochastic), clustering refers to the dis-

cretization of the state space into subsets containing states with similar static and kinetic

properties (e.g. equilibrium distribution and rates). Clustering is useful because it allows

to represent continuous dynamic as a discrete process. Consequently, continuous objects

such as operators and functions can be represented by discrete objects such as matrices and

vectors that are easier to use in practical applications.

For example, consider a dynamical system defined on the state space Γ discretized with

a Voronoi tessellation of k disjoint cells, or clusters, Γi such that Γ = ∪k
i Γi, where each cell

Γi is defined by the indicator function

1i(x) =

1 if x ∈ Γi ,

0 if x /∈ Γi .
(1)

The choice of the tessellation is arbitrary, it could be a tessellation made of either regular

or irregular Nd-polytopes (polygons in 2D, polyhedra in 3D).
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This kind of clustering is known as crisp clustering and is largely used. However, it has

numerous limitations:

• Although dynamics is Markovian, its cluster representation may lose this property.

• Crisp clustering is not robust to noise. Small perturbations in the dynamics could be

amplified in its cluster representation.

• Crisp clustering methods struggle with identifying clusters of irregular shapes or clus-

ters that are connected but separated by sparse regions.

• When analysing metastable regions, it is not always possible to uniquely determine

the boundaries of metastable regions.

• Crisp clustering requires the specification of the number of clusters k a priori. In-

creasing the resolution, i.e. the number of clusters, may alleviate some problems, but

the initial dataset may not have enough data points. Furthermore, a high number of

clusters may require more resources to perform calculations with the matrices involved.

To address some of these limitations, researchers often explore alternative clustering ap-

proaches, such as fuzzy clustering, hierarchical clustering, and density-based clustering,

which offer more flexibility and improved performance in specific scenarios.

B. Fuzzy clustering

Fuzzy clustering, in contrast to crisp clustering, allows for the assignment of data points

to multiple clusters with varying degrees of membership. Instead of assigning each data

point to a single cluster (as in crisp clustering), fuzzy clustering assigns a membership value

to each data point for each cluster, indicating the degree (or the probability) to which the

point belongs to that cluster. This provides a more nuanced representation of the inherent

uncertainty or ambiguity in the data.

C. Robust Perron Cluster Cluster Analysis

We use fuzzy clustering to identify the nc metastable states also referred to as metastable

macro-state, or conformations, of a system driven by Langevin dynamics, with a potential
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energy function V (x) : Γ ⊂ RNd → R with nc minima separated by energy barriers higher

than the thermal energy kBT . For example, given a double well potential: nc = 2; for a

triple-well potential nc = 3; . . . .

For each ith macro-state, we introduce the membership function

χi(x) ∈ [0, 1] , (2)

also known as almost characteristic function, that indicates the probability, or membership

degree, that a state x belongs to the cluster j. The membership functions fulfil the partition

of the unit

nc∑
i

χi(x) = 1 . (3)

Note that, if we indicate χ without the sub-index i, we refer to the set χ = {χ1, χ2, . . . , χnc}

containing all the nc membership functions organized in columns. From a geometrical point

of view, the points of the χ functions lie on the standard (nc − 1)-simplex as illustrated in

fig. 1. The standard term indicates that the vertices of the simplex are the unit vectors

e1, e2, . . . , enc .

FIG. 1. Random points that fulfill the partition of unity.

The robust Perron Cluster Cluster Analysis (PCCA+) algorithm [1–4] determines the

membership functions as a linear combination of the first nc dominant eigenfunctions ψ =

{ψ0, ψ1, . . . , . . .nc} of the infinitesimal generator

Qψi = κiψi , (4)
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or the associated Koopman operator

Kτψi = λi(τ)ψi . (5)

We recall that the first eigenfunction ψ0 is equal to 1, while the other eigenfunctions have

positive and negative values, and represent the dominant processes that constitute the dy-

namics of the system.

Similar to the χ functions, also the dominant nc eigenfunctions form an (nc− 1)-simplex,

the vertices of which, however, are not the unit vectors (see figs. E and F as examples).

The idea underlying PCCA+ is then to find the linear transformation such that

χ = ψA , (6)

where A is a matrix of size nc × nc. The simplex has a physical interpretation: the vertices

represent the conformations of the system, the points on the edges represent the transition

regions. Additionally, the membership functions allow the direct Galerkin discretization of

the infinitesimal generator

Qc = ⟨χ, χ⟩−1
π ⟨χ, Qχ⟩π , (7)

where Qc is an nc × nc matrix whose entries expresses the transition rates between fuzzy

sets.

D. Solution for nc = 2

Unfortunately, determining the matrix A is not easy, as there are an infinite number

of possible solutions, which can only be determined solving an optimization problem after

appropriate objective functions have been defined [1]. However, for the sole case when

nc = 2, a unique solution can be determined.

If nc = 2 the matrix A reads.

A =

a00 a01

a10 a11 .

 (8)

First, we pose the following constraints on A:

1.

χ = ψA→ χi(x) =
nc∑
j=0

ajiψj(x) ,
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2.
nc−1∑
i=0

χi(x) = 1 ,

3.

χi(x) ≥ 0 .

Then, we rewrite the first condition as

χi(x) =
nc−1∑
j=0

ajiψj(x) (9)

= a0iψ0 +
nc−1∑
j=1

ajiψj(x) , (10)

and applying the second condition, we obtain an expression for a0i:

a0iψ0(x) +
nc−1∑
j=1

ajiψj(x) ≤ 0 (11)

a0iψ0(x) ≤ −
nc−1∑
j=1

ajiψj(x) (12)

a0i = −min
x

nc−1∑
j=1

ajiψj(x) , (13)

where we used ψ0(x) = 1. We now use the third condition to rewrite the second as

nc−1∑
i=0

χi(x) = (14)

nc−1∑
i=0

nc∑
j=0

ajiψj(x) = (15)

nc−1∑
j=0

nc∑
i=0

ajiψj(x) = (16)

nc−1∑
j=0

δj0ψj(x) = 1 . (17)

where δj0 is the Kronecker-delta and we used again ψ0(x) = 1. From the equality

nc∑
i=0

ajiψj(x) = δj0 (18)

aj0 +
nc∑
i=1

ajiψj(x) = δj0 , (19)
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then we obtain an expression for aj0:

aj0 = δj0 −
nc∑
i=1

ajiψj(x) , (20)

Applying i = 0, 1 and j = 0, 1 to eqs. 13, 20 yields:

a00 = −min
x
a10ψ1(x) ,

a01 = −min
x
a11ψ1(x) ,

a00 = 1− a01 ,

a11 = −a11 .

(21)

From the forth equality, the second one becomes

a00 = a11max
x

ψ1(x) . (22)

Finally we have two equations for ψ1:

max
x

ψ1(x) =
a00
a11

, (23)

and

−min
x
ψ1(x) =

a01
a11

. (24)

Their sum yields

max
x

ψ1(x)−min
x
ψ1(x) =

a00 − a01
a11

=
1

a11
. (25)

Finally, one obtains an expression for each entry of the matrix A:

a00 =
maxx ψ1(x)

maxx ψ1(x)−minx ψ1(x)

a01 = − minx ψ1(x)

maxx ψ1(x)−minx ψ1(x)

a10 = − 1

maxx ψ1(x)−minx ψ1(x)

a11 =
1

maxx ψ1(x)−minx ψ1(x)
,

(26)

The two membership functions for the case nc = 2 read
χ1(x) =

maxx ψ1(x)− ψ1

maxx ψ1(x)−minx ψ1(x)
,

χ2(x) =
ψ1 −minx ψ1(x)

maxx ψ1(x)−minx ψ1(x)
= 1− χ1(x) .

(27)
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E. Example: triple-well potential
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F. Example: periodic triple-well potential
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[3] S. Röblitz and M. Weber, Fuzzy spectral clustering by pcca+: Application to markov state

models and data classification, Adv. Data Anal. Classif. 7 (2013).

[4] M. Weber, Implications of pcca+ in molecular simulation, Computation 6 (2018).

9


