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NOTES ON TAYLOR EXPANSION

Consider a function f(z) : R — R that is infinitely differentiable at point
a € R, i.e. there exists the nth derivative evaluated at x = a:
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Then, the function f(z) is approximated at specific point z, in the neigh-
bourhood of a, as
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the function at z (red dot).

Alternative definition

The Taylor expansion is often defined in a different way. Consider the point
x € R, and assume that f(z) is infinitely differentiable at this point. The
Taylor expansion at x + Az, where Az is a small interval, is
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tion and all its derivatives at x (green
dot), the Taylor expansion approximates
the function at = + Az (red dot).
Example
Consider the exponential function p——s
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and let approximate e® around the point @ = 0. The nth —— Taylorexpansion n=3
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derivative of e* is always the same:
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Then the Taylor expansion is
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