I. SUMMARY FIRST LECTURE

- Hamiltonian dynamics of one particle of mass m (units: kg) on x-axis.
- Definition of position (units: m)

$$
\begin{equation*}
x(t) \tag{1}
\end{equation*}
$$

- Definition of velocity (units: ms^{-1})

$$
\begin{equation*}
v(t)=\frac{d}{d t} x(t)=\dot{x}(t) \tag{2}
\end{equation*}
$$

- Definition of acceleration (units: ms^{-2})

$$
\begin{equation*}
a(t)=\frac{d}{d t} v(t)=\frac{d^{2}}{d t^{2}} x(t)=\ddot{x}(t) \tag{3}
\end{equation*}
$$

- Definition of momentum (units: $\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$)

$$
\begin{equation*}
p(t)=m v(t)=m \frac{d}{d t} x(t)=m \dot{x}(t) \tag{4}
\end{equation*}
$$

- Definition of force (units: $\mathrm{N}=\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$)

$$
\begin{equation*}
F(t)=m a(t)=m \frac{d^{2}}{d t^{2}} x(t)=m \ddot{r}=\frac{d}{d t} p(t)=\dot{p}(t) \tag{5}
\end{equation*}
$$

- Force and potential energy function (units: J)

$$
\begin{equation*}
F=-\frac{d}{d x} V(x) \tag{6}
\end{equation*}
$$

- Kinetic energy (units: J)

$$
\begin{equation*}
E_{k}=\frac{1}{2} m v^{2}=\frac{p^{2}}{2 m} \tag{7}
\end{equation*}
$$

- Hamiltonian function or total energy (units: J)

$$
\begin{align*}
\mathcal{H}(x, p) & =E_{k}+V(x) \\
& =\frac{p^{2}}{2 m}+V(x) \tag{8}
\end{align*}
$$

- Equations of motion

$$
\left\{\begin{align*}
\dot{x} & =\frac{\partial \mathcal{H}}{\partial p}=\frac{p(t)}{m} \tag{9}\\
\dot{p} & =-\frac{\partial \mathcal{H}}{\partial x}=F(t)=-\frac{d}{d x} V(x(t))
\end{align*}\right.
$$

II. HARMONIC OSCILLATOR

Potential energy function of an harmonic oscillator:

$$
\begin{equation*}
V(x)=\frac{1}{2} k x^{2} \tag{10}
\end{equation*}
$$

where k is the spring constant (units: $\mathrm{Nm}^{-1}=\mathrm{kg} \mathrm{s}^{-2}$).

The second equation of the motion of the harmonic oscillator can be written as

$$
\begin{equation*}
m \ddot{x}+k x=0 . \tag{11}
\end{equation*}
$$

This is a second-order linear homogeneous ordinary differential equation with constant coefficients and the analytical (exact) solution is

$$
\begin{equation*}
x(t)=x(0) \cos (\omega t)+\frac{p(0)}{m \omega} \sin (\omega t) \tag{12}
\end{equation*}
$$

where we introduced the angular frequency of the oscillation (units: s^{-1})

$$
\begin{equation*}
\omega=\sqrt{\frac{k}{m}} \tag{13}
\end{equation*}
$$

Finally, from the first equation of motion

$$
\begin{equation*}
p=m \dot{x} \tag{14}
\end{equation*}
$$

we obtain the solution for the momentum

$$
\begin{equation*}
p(t)=-m \omega x(0) \sin (\omega t)+p(0) \cos (\omega t) . \tag{15}
\end{equation*}
$$

