
Comments on “An Exact Method for the Minimum Feedback

Arc Set Problem”

MARTIN GRÖTSCHEL, Institute of Mathematics, Technische Universität Berlin

MICHAEL JÜNGER, Department of Mathematics and Computer Science, Universität zu Köln

GERHARD REINELT, Department of Computer Science, Universität Heidelberg

We comment on the ACM Journal of Experimental Algorithmics article “An Exact Method for the Minimum

Feedback Arc Set Problem” by Ali Baharev, Hermann Schichl, Arnold Neumaier, and Tobias Achterberg, and

we point out that a straightforward implementation of an algorithm we published in 1985, with the same

modern technology as used in the article we address, is competitive and mostly superior.

CCS Concepts: • Mathematics of computing→Mathematical software; Mathematical software performance;

Discrete mathematics; Combinatorics; Combinatorial optimization;

Additional Key Words and Phrases: Minimum feedback arc set problem, acyclic subdigraph problem, exact

methods for combinatorial optimization, experimental evaluation, branch and cut, integer programming

ACM Reference format:

Martin Grötschel, Michael Jünger, and Gerhard Reinelt. 2022. Comments on “An Exact Method for the Mini-

mum Feedback Arc Set Problem”. J. Exp. Algorithmics 27, 1, Article 1.3 (July 2022), 4 pages.

https://doi.org/10.1145/3545001

In [2], the authors propose to solve the feedback arc set problem to optimality with a lazy constraint
version of the minimum set cover formulation of [7], and they give evidence that this approach,
called “(PM)” for “Proposed Method”, outperforms the “Triangle Inequalities” approach called
“(TI)”.

The authors concentrate on sparse unweighted directed graphs, and perform computational
experiments with their PM-approach in comparison to the TI-approach. The latter consists of
solving a big binary linear program with Gurobi [6]: Given a sparse weighted directed graph D =

(V ,A), this program has
(|V |

2

)
variables and 2

(|V |
3

)
nontrivial constraints. This formulation is

trivially correct and has been one of the starting points of a series of articles [3–5] we published in
the mid-1980s in the pursuit of finding better methods to deal both with the dense case (the linear
ordering problem for complete weighted digraphs) and with the sparse case (the acyclic subdigraph
problem for arbitrary weighted digraphs), laying the foundations of branch&cut approaches for the

Authors’ addresses: M. Grötschel, Institute of Mathematics Technische Universität Berlin Straße des 17. Juni 136 D-10587

Berlin Germany; email: groetschel@bbaw.de; M. Jünger, Department of Mathematics and Computer Science Universität

zu Köln, Albertus-Magnus-Platz, D-50923 Köln, Germany; email: juenger-sfb@cs.uni-koeln.de; G. Reinelt, Department of

Computer Science, Universität Heidelberg, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany; email: ip121@uni-

heidelberg.de.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1084-6654/2022/07-ART1.3 $15.00

https://doi.org/10.1145/3545001

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.3. Publication date: July 2022.

https://doi.org/10.1145/3545001
mailto:permissions@acm.org
https://doi.org/10.1145/3545001

1.3:2 M. Grötschel et al.

respective problems. (The term “branch&cut” applies here but was coined only later.) In particular,
the discussion in Section 5 of [5] (reference [45] in [2]) essentially says that in a cutting plane
approach, violated directed cycles can be separated in polynomial time by using methods like the
Dijkstra or the Floyd–Warshall method. Of course, a fair comparison would necessarily have been
with this approach that is suited for sparse instances like their new PM-approach.

In their computational study in [2], the authors remark that “In all other cases, the proposed
method was consistently and significantly faster than the method of Section 3.1.” (Section 3.1
in [2] contains the TI binary linear program; “all other cases” refers to all instances except
Imase_Itoh_n_120_d_4 that could not be solved to optimality within 3 CPU hours.) From our
point of view, this computational study just demonstrates that the TI-approach is not at all a suit-
able one, which was well known before.

It is a good practice in the area of Experimental Algorithmics to make fair comparisons of new
approaches with the previous state-of-the-art. Even though two of the articles [3–5] are cited in [2],
the authors refrain from comparing with the state-of-the-art of the mid-1980s, arguing that this
would be beyond the scope of their article. On the other hand, they discuss “Lazy Constraints
Compared to Cutting Planes” in Section 4.4 of [2]. A logical consequence would have been to
compare with such algorithms rather than the obviously inferior TI-approach.

For a directed graph D = (V ,A) with weights ca on the arcs in A, the binary linear program

maximize
∑

a∈A
caxa ,

∑

a∈C
xa ≤ |C | − 1 for all directed cycles C in D, (1)

xa ∈ {0, 1} for all a ∈ A, (2)

models the weighted version of the acyclic subdigraph problem on D that is equivalent to the
weighted version of the feedback arc set problem on D. The constraints (1) are called dicycle

inequalities. An optimum solution x∗ defines a maximum weight acyclic subdigraph (V , S) for
S = {a ∈ A | x∗

a
= 1}. Then, F = A \ S is a minimum weight feedback arc set in D.

Starting with a trivial relaxation with no dicycle inequalities (1) and the integrality con-
straints (2) replaced by the trivial inequalities 0 ≤ xa ≤ 1 for all a ∈ A, we realize a cutting-plane
algorithm in which a sequence of linear programs that represent increasingly stronger relaxations
are solved. Given the solution of some relaxation, we solve the separation problem, which consists
of finding at least one dicycle inequality that is violated by the solution or proving that no such
inequality exists. In the former case, the violated inequalities are added to the relaxation, and the
stronger relaxation is solved; in the latter case, the cutting plane phase ends. If all xa are integral,
the acyclic subdigraph problem is solved; otherwise, the integrality constraints (2) are re-installed
and the problem is solved in a branch&bound procedure in which the bounds are strengthened us-
ing dicycle separation at nodes of the branch&bound tree. Such an approach is commonly called
branch&cut.

We implemented a branch&cut algorithm based on nothing but the ingredients we published in
1985, using the same modern technology as the authors (that was not available in the mid-1980s),
but we used C instead of Python.

This involved the implementation of a directed (general, not 3-) cycle separator applying the
Dijkstra method (which can better exploit sparsity than the Floyd–Warshall method) within a
cutting-plane algorithm using Gurobi as the LP-solver. If the optimum is fractional, the problem is
turned into a binary problem with the same separator in a lazy fashion at every 10th node of the
Gurobi branch&bound tree.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.3. Publication date: July 2022.

Comments on “An Exact Method for the Minimum Feedback Arc Set Problem” 1.3:3

Table 1. Computational Results on de Bruijn Graphs

Nodes Arcs Parameter d Optimum tPM (s) mPM (MB) tCI (s) mCI (MB)
100 296 3 58 9.85 63.46 4.96 33.46
100 396 4 91 2.10 39.11 1.00 9.58
100 492 5 116 1.86 39.83 0.76 14.96
100 590 6 158 31.23 120.30 9.68 41.46

110 326 3 63 1.94 37.60 0.76 15.34
110 436 4 97 50.69 100.81 92.99 98.95
110 544 5 134 39.06 102.01 1.65 13.05
110 650 6 172 1,214.80 161.73 2,317.63 176.44

120 356 3 66 2.47 36.97 0.53 8.24
120 474 4 108 5.14 41.80 2.21 26.92
120 592 5 150 2.74 37.07 1.50 13.84
120 710 6 180 340.19 161.79 88.99 104.53

Table 2. Computational Results on Graphs of Imase and Itoh

Nodes Arcs Parameter d Optimum tPM (s) mPM (MB) tCI (s) mCI (MB)
100 300 3 66 1.02 30.64 0.08 3.69
100 400 4 90 1.82 38.27 0.51 5.50
100 496 5 126 2.11 39.72 0.78 5.54
100 594 6 156 51.74 143.24 6.73 33.86
100 696 7 192 19.46 53.41 7.10 33.18

110 328 3 62 1.90 37.61 0.56 8.64
110 440 4 100 2.09 36.88 1.02 12.68
110 546 5 135 9.70 51.82 2.61 7.27
110 654 6 172 78.71 135.46 11.18 66.17
110 764 7 210 3,437.95 200.35 358.32 155.77

120 360 3 72 2.15 38.19 0.23 4.77
120 480 4 114 2,488.63 227.50 3,626.30 169.73

With this implementation, henceforth referred to as “(CI)” for “Cycle Inequalities”, we could
verify all results in Table 1 of [2] with negligible computation times.

The computational experiments underlying Tables 2 and 3 of [2] have been executed on an Intel
Core i5-3320M CPU at 2.60 GHz, Operating System: Ubuntu 16.04.2 LTS with 4.15.0-43-generic
Kernel; Gurobi 8.1.0, Python 3.6.6; NetworkX 1.11. In the pursuit of a fair comparison of the PM
method with our CI method, we use the code for PM retrieved from [1] (reference [8] in [2]), on
the same computer on which we implemented the CI method: an Apple MacBook Pro with a 2.9
GHz Quad-Core Intel Core i7, Operating System: macOS 11.4, Gurobi 8.1.0, gcc 11.0.3 for the CI
implementation.

Using the Unix “time -l” command, we measured computation times in seconds (“real time”)
and the process peak memory consumption (“peak memory footprint”). The results are in
Table 1 for the de Bruijn instances and in Table 2 for the Imase and Itoh instances of the corre-
sponding Tables 2 and 3 of [2]. In both tables, TI is replaced by CI. The column headers are tPM (s)
and tCI (s) for the execution times in seconds of PM and CI, respectively, as well as mPM (MB) and
mCI (MB) for the peak memory consumption in megabytes of PM and CI, respectively.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.3. Publication date: July 2022.

1.3:4 M. Grötschel et al.

A first observation is that the computational platform does matter: The running times tPM (s)
are sometimes significantly better than those reported in [2].

The main observation is that CI outperforms PM in terms of computation time in all but three
cases: de_Bruijn_n_110_d_4, de_Bruijn_n_110_d_6, and Imase_Itoh_n_120_d_4. In terms of
peak memory consumption, CI outperforms PM in all but one case: de_Bruijn_n_110_d_6.

Our computational experiment indicates that the CI approach whose basis we published more
than 35 years ago can compete with a new development of 2021. But, it also demonstrates the
potential of the new PM approach that outperforms our classical branch&cut method CI for certain
instances.

We have shared these comments with the authors of [2] before submission for publication, and
we are glad to have their support.

We join the authors of [2] in the hope that their work in combination with our comments will
trigger research targeting at new solution strategies for the feedback arc set problem and other
combinatorial optimization problems.

REFERENCES

[1] Ali Baharev. Exact and heuristic methods for tearing. Retrieved June 28, 2021 from https://github.com/baharev/sdopt-

tearing.

[2] Ali Baharev, Hermann Schichl, Arnold Neumaier, and Tobias Achterberg. 2021. An exact method for the minimum

feedback arc set problem. ACM Journal of Experimental Algorithmics 26, Article 1.4 (April 2021), 28 pages. DOI:https://

doi.org/10.1145/3446429

[3] Martin Grötschel, Michael Jünger, and Gerhard Reinelt. 1984. A cutting plane algorithm for the linear ordering prob-

lem. Operations Research 32, 6 (Dec. 1984), 1195–1220. DOI:https://doi.org/10.1287/opre.32.6.1195

[4] Martin Grötschel, Michael Jünger, and Gerhard Reinelt. 1985. Facets of the linear ordering polytope. Mathematical

Programming 33, 1 (1985), 43–60. DOI:https://doi.org/10.1007/BF01582010

[5] Martin Grötschel, Michael Jünger, and Gerhard Reinelt. 1985. On the acyclic subgraph polytope. Mathematical Pro-

gramming 33, 1 (1985), 28–42. DOI:https://doi.org/10.1007/BF01582009

[6] Gurobi Optimization. 2021. Gurobi Optimizer. Retrieved from http://www.gurobi.com.

[7] T. K. Pho and L. Lapidus. 1973. Topics in computer-aided design: Part I. An optimum tearing algorithm for recycle

systems. AIChE Journal 19, 6 (1973), 1170–1181. DOI:https://doi.org/10.1002/aic.690190614

Received August 2021; revised October 2021; accepted October 2021

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.3. Publication date: July 2022.

https://github.com/baharev/sdopt-tearing
https://doi.org/10.1145/3446429
https://doi.org/10.1287/opre.32.6.1195
https://doi.org/10.1007/BF01582010
https://doi.org/10.1007/BF01582009
http://www.gurobi.com
https://doi.org/10.1002/aic.690190614

