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Abstract. Our main result is that every n-dimensional polytope can be described by at most 2n − 1 polyno-
mial inequalities and, moreover, these polynomials can explicitly be constructed. For an n-dimensional pointed
polyhedral cone we prove the bound 2n − 2 and for arbitrary polyhedra we get a constructible representation
by 2n polynomial inequalities.

1. Introduction

By a striking result of Bröcker and Scheiderer (see [Sch89], [Brö91], [BCR98]
and [Mah89]), every basic closed semi-algebraic set of the form

S = {
x ∈ R

n : f1(x) ≥ 0, . . . , fl (x) ≥ 0
}
,

where fi ∈ R[x], 1 ≤ i ≤ l, are polynomials, can be represented by at most n(n + 1)/2
polynomials, i.e., there exist polynomials p1, . . . , pn(n+1)/2 ∈ R[x] such that

S = {
x ∈ R

n : p1(x) ≥ 0, . . . , pn(n+1)/2(x) ≥ 0
}
.

Moreover, in the case of basic open semi-algebraic sets, i.e., ≥ is replaced by strict
inequality, one can even bound the maximal number of polynomials needed by the
dimension n instead of n(n + 1)/2. Rephrasing the results in terms of semi-algebraic
geometry, the stability index of every basic closed or open semi-algebraic set is n(n+1)/2
or n, respectively. Both bounds are best possible.

However, currently no explicit universal construction of such systems of polynomi-
als is known, and it is not clear whether the upper bound n(n + 1)/2 can be improved
for classes of semi-algebraic sets having additional structure, such as convexity. Before
this paper, even in the very special case of n-dimensional polyhedra almost nothing was
known. In [Brö91, Example 2.10] or in [ABR96, Example 4.7] a description of a regular
convex m-gon in the plane by two polynomials is given. This result was generalised
to arbitrary convex polygons and three polynomial inequalities by vom Hofe [vH92].
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Bernig [Ber98] proved that, for n = 2, every convex polygon can even be represented by
two polynomial inequalities. In [GH03] a construction of O(nn) polynomial inequalities
representing an n-dimensional simple polytope is given. Based on ideas from [Bos03],
here we give, in particular, an explicit construction of 2n− 1 polynomials describing an
arbitrary n-dimensional polytope. Hence the general upper bound of n(n + 1)/2 poly-
nomials can be improved (at least) for n-dimensional polytopes, and we conjecture that
the dimension itself is the right value for this special case.

In order to state our results we fix some notation. A polyhedron P ⊂ R
n is the

intersection of finitely many closed halfspaces, i.e., we can write it as

P = {
x ∈ R

n : ai · x ≤ bi, 1 ≤ i ≤ m
}
,

for some ai ∈ R
n, bi ∈ R. Here a · x denotes the standard inner product on R

n. If P is
bounded then it is called a polytope. A pointed polyhedral cone C ⊂ R

n with apex at
the origin is the intersection of finitely many closed halfspaces of the type

C =
{
x ∈ R

d : ai · x ≤ 0, 1 ≤ i ≤ m
}

,

ai ∈ R
n. For polynomials pi ∈ R[x], 1 ≤ i ≤ l, we denote by

P(p1, . . . , pl ) := {
x ∈ R

n : p1(x) ≥ 0, . . . , pl (x) ≥ 0
}

the associated basic closed semi-algebraic set generated by the polynomials.

Theorem 1.1. Let C ⊂ R
n be an n-dimensional pointed polyhedral cone. Then we

can construct 2n − 2 polynomials pi ∈ R[x], 1 ≤ i ≤ 2n − 2, such that C =
P(p1, . . . , p2n−2).

The case of polytopes can be derived as a consequence of the construction behind The-
orem 1.1 and here we get

Theorem 1.2. Let P ⊂ R
n be an n-dimensional polytope. Then we can construct 2n−1

polynomials pi ∈ R[x], 1 ≤ i ≤ 2n − 1, such that P = P(p1, . . . , p2n−1).

At the end of Section 3 (see Definition 3.3) we will give an explicit description of the
polynomials we employ. The construction behind the proofs of Theorem 1.2 and The-
orem 1.1 can also be applied to the interior of a polytope or a cone which are open
semi-algebraic sets. Furthermore, in [GH03, Proposition 2.5] it is shown how a repre-
sentation of a polytope by polynomial inequalities can be used to get a representation of
a polyhedron by polynomials. Applying this proposition to Theorem 1.2 leads to

Corollary 1.3. Let P ⊂ R
n be an n-dimensional polyhedron. Then we can construct

2n polynomials pi ∈ R[x], 1 ≤ i ≤ 2n, such that P = P(p1, . . . , p2n).

Scheiderer observed, that this result immediately implies the following

Corollary 1.4. For any basic closed semi-algebraic set S = P(p1, . . . , pm) ⊂ R
n

there is a constructive description using at most 2
(
n+k
k

)
polynomial inequalities, where

k denotes the maximal degree of all pi .
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Though 2
(
n+k
k

)
is relatively far from the lower bound n(n+1)

2 , here the necessary
polynomials can be constructed explicitly. The reason is, that S is the pre-image of a
polyhedron P under a polynomial mapping g:

Denoting by m1, . . . , mN the N := (
n+k
k

)
possible monomials in n variables of

degree at most k, we can write pi = ∑N
j=1 λijmj with λij ∈ R. Now let g : R

n → R
N

be given by g(x) = (m1(x), . . . , mN(x))ᵀ. Then we observe that x ∈ S if and only if
g(x) belongs to the polyhedron

P := {y ∈ R
N :

N∑

j=1

λ1j yj ≥ 0, . . . ,

N∑

j=1

λmjyj ≥ 0}.

Using the results of this paper, P can be described by 2N polynomials f1, . . . , f2N and
hence S can be written as S = {x ∈ R

n : f1(g(x)) ≥ 0, . . . , f2N(g(x) ≥ 0)}.
The paper is organised as follows. In Section 2 we give, for a pointed cone C,

a construction of two polynomials pC,ε, p0 such that C is “nicely approximated” by
P(pC,ε, p0). Then, for a face F = C ∩ {x ∈ R

n : ai · x = 0, i ∈ IF } of C, we apply
this construction to the cone CF = {x ∈ R

n : ai · x ≤ 0, i ∈ IF }, where IF denotes
the index set of active constraints of F . In that way we get an approximation of CF by a
semi-algebraic set of the type P(pCF ,ε, pF ). In Section 3 we study the relations between
the set P(pCF∩G,ε, pF∩G) and P(pCF ,ε, pF ), P(pCG,ε, pG) for two different faces F and
G of the same dimension. Thereby, it turns out that we may multiply all polynomials
pCF ,ε belonging to faces of the same dimension as well as the polynomials pF in order to
get a representation of a pointed polyhedral cone by polynomials. In Section 4 we give a
brief outlook why we are interested in such a polynomial representation of polytopes and
what might be achievable by such a representation with respect to hard combinatorial
optimisation problems.

2. Approximating cones

In the following we use some standard terminology and facts from the theory of polyhe-
dra for which we refer to the books [MS71] and [Zie95]. For the approximation of a cone
by a closed semi-algebraic set consisting of two polynomials we need a lemma about the
approximation of a polytope by a strictly convex polynomial which was already shown in
[GH03, Lemma 2.6]. Since it is essential for the explicit construction of the polynomials
we state it here. To this end, let Bn be the n-dimensional unit ball centred at the origin. The
diameter of a polytope is denoted by diam(P ), i.e., diam(P ) = max{‖x−y‖ : x, y ∈ P },
where ‖ · ‖ denotes the Euclidean norm.

Lemma 2.1. Let P = {x ∈ R
n : ai ·x ≤ bi, 1 ≤ i ≤ m} be an n-dimensional polytope.

For 1 ≤ i ≤ m let

vi (x) := 2ai · x − h(ai) + h(−ai)

h(ai) + h(−ai)
,



38 H. Bosse et al.

where h(a) := max{a · x : x ∈ P } is the support function of P . Let ε > 0, choose an
integer k such that k > ln(m)/(2 ln(1 + 2ε

(n+1)diam(P )
)), and set

pP,ε(x) :=
m∑

i=1

1

m
[vi (x)]2 k and Kε := {x ∈ R

n : pP,ε(x) < 1}.

Then we have P ⊂ Kε ⊂ P + ε Bn.

Proof. [GH03, Lemma 2.6].

Now let

C = {
x ∈ R

n : ai · x ≤ 0, 1 ≤ i ≤ m
}
, (2.1)

be a pointed n-dimensional cone with ‖ai‖ = 1, 1 ≤ i ≤ m. The set of all k-dimensional
faces (k-faces for short) is denoted by Fk , 0 ≤ k ≤ n − 1. For a k-face F , we denote
by IF := {i : ai · x = 0 for all x ∈ F } the set of active constraints. We always assume
that our representation (2.1) of C is non-redundant, hence {x ∈ C : ai · x = 0} is an
(n − 1)-face (facet) of C for 1 ≤ i ≤ m. For each F , let

uF :=
∑

i∈IF
ai

‖ ∑
i∈IF

ai‖ and pF (x) := −uF · x. (2.2)

uF is an outer unit normal vector of the face F , i.e., F = C ∩ {x ∈ R
n : pF (x) = 0}

and C \ F ⊂ {x ∈ R
n : pF (x) > 0}. The only vertex, i.e., 0-face, of C is the origin,

and in this case, we denote the above outer unit normal vector and the polynomial by u0
and p0, respectively. In the next lemma we construct a basic closed semi-algebraic set
consisting of two polynomials that gives a nice and controllable approximation of C.
In what follows we will often use some constants depending on the cone or polytope.
All of these constants are explicitly computable by elementary methods, but in order to
keep the presentation simple we do not go into the details here.

Lemma 2.2. For every ε ∈ (0, 1/2] we can construct a polynomial pC,ε(x) such that

i)
{
x + ε (u0 · x)Bn : x ∈ C

} ⊂ P(pC,ε, p0) ⊂ {
x + ωC ε (u0 · x)Bn : x ∈ C

}
,

ii)
{
x ∈ R

n : pC,ε(x) = 0, p0(x) = 0
} = {0},

iii)
{
x + ε (u0 · x)Bn : x ∈ C, p0(x) > 0

} ⊂ {
x ∈ R

n : pC,ε(x) > 0
}
,

where ωC ≥ 1 is a constant depending only on C.

Proof. Firstly, observe that for n = 1 there is nothing to do, because we may set
pC,ε(x) := p0(x) and ωC = 1, say. So let n ≥ 2. For ease of notation we may assume
that −u0 = en, the n-th unit vector, which can be achieved by a suitable rotation. Due to
this choice C∩{x ∈ R

n : xn = 1} is an (n−1)-dimensional polytope P , which we iden-
tify with its image under the orthogonal projection onto R

n−1. Thus let P = {x ∈ R
n−1 :

ãi · x ≤ b̃i , 1 ≤ i ≤ m}, for some ãi ∈ R
n−1, ‖̃ai‖ = 1, b̃i ∈ R. With this notation we
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may write C as the homogenisation of P , i.e., C = {xn (x, 1)ᵀ : x ∈ P, xn ≥ 0}. For
µ ≥ 0 let

Pµ = {x ∈ R
n−1 : ãi · x ≤ b̃i + µ, 1 ≤ i ≤ m}.

Then

P + µ Bn−1 ⊂ Pµ ⊂ P + ωP µ Bn−1,

for a certain constant ωP ≥ 1 depending only on P . From Lemma 2.1 we get that, for
every ν > 0, we can construct a strictly convex polynomial pPµ,ν such that

Pµ ⊂
{
x ∈ R

n−1 : pPµ,ν(x) < 1
}

⊂ Pµ + ν Bn−1. (2.3)

In particular, pPµ,ν can be written as pPµ,ν(x) = ∑m
i=1 λi [̃ai · x − αi]2k for certain

constants λi ∈ R>0, αi ∈ R, k ∈ N, depending on Pµ and ν (cf. Lemma 2.1). For a
scalar xn > 0 we immediately get

xn Pµ ⊂ {x ∈ R
n−1 :

m∑

i=1

λi [̃ai · x − xnαi]
2k < (xn)

2k}

⊂ xn P + xn(ν + ωP µ) Bn−1.

(2.4)

Since {̃a1, . . . ãm} are the outer normal vectors of an (n−1)-dimensional polytope, these
inclusions hold for xn = 0 as well, if we replace < by ≤. Hence, with

pPµ,ν(x) = (xn)
2k −

m∑

i=1

λi [̃ai · (x1, . . . , xn−1)
ᵀ − xnαi]

2k

and p0(x) = xn, for x = (x1, . . . , xn)
ᵀ ∈ R

n, we get

i) {x ∈ R
n : pPµ,ν(x) = 0, p0(x) = 0} = {0},

ii) xn Pµ ⊂ {x ∈ R
n : pPµ,ν(x) ≥ 0}, for xn ≥ 0,

iii) xn Pµ ⊂ {x ∈ R
n : pPµ,ν(x) > 0}, for xn > 0.

(2.5)

From (2.4) we conclude that

P(pPµ,ν, p0) ⊂ {
x + xn(ν + ωP µ)Bn : x ∈ C

}
. (2.6)

With γ = max{(1 − ai · en)
−1/2 : 1 ≤ i ≤ m} and by some elementary calculations we

get for y ∈
{
x + xn

(
µ

µ+γ

)
Bn, x ∈ C

}
that

(y1, . . . , yn−1)
ᵀ ∈ ynPµ. (2.7)

Thus we have by (2.5) ii)
{
x + xn

(
µ

µ + γ

)
Bn : x ∈ C

}
⊂ P(pPµ,ν, p0). (2.8)
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Now, for a given ε ∈ (0, 1/2], we may choose µ and ν such that µ/(µ + γ ) = ε and
ν + ωP µ ≤ 4γωP ε. With ωC := 4γωP and pC,ε := pPµ,ν for this special choice of
parameters we get by (2.6) and (2.8) the statement i) of the lemma. Property ii) is an
immediate consequences of (2.5) i) and the last statement follows from (2.7) and (2.5)
iii). �	

Remark 2.3.

i) The main geometric message of Lemma 2.2 is that we can construct a cone of the
type P(pC,ε, p0), which is not too far away from C, but at the same time we also
know that P(pC,ε, p0) is not too close to C. This property of P(pC,ε, p0) plays a key
role in our construction.

ii) As constant ωP in the above proof we can take R(P )/r(P ), where R(P ) and r(P )

denote the radii of two concentric balls such that x + r(P ) Bn ⊂ P ⊂ x +R(P ) Bn.

For a k-face F of C, let CF = {x ∈ R
n : ai ·x ≤ 0, i ∈ IF } be the face-cone of F . CF is

an n-dimensional cone containing a k dimensional linear subspace, namely lin(F ), the
linear hull of F . The (n − k)-dimensional orthogonal complement lin(F )⊥ of lin(F ) is
given by lin{ai : i ∈ IF }. If we apply the construction of Lemma 2.2 to CF ∩ lin(F )⊥
(in the space lin(F )⊥) we get a generalisation of Lemma 2.2 from the face-cone of the
vertex to arbitrary k-faces of C.

Corollary 2.4. Let F be a k-face of C with 0 ≤ k ≤ n − 1. For every ε ∈ (0, 1/2] we
can construct a polynomial pCF ,ε(x) such that

i)
{
x + ε (uF · x)Bn : x ∈ CF

} ⊂ P(pCF ,ε, pF )

⊂ {
x + ωCF

ε (uF · x)Bn : x ∈ CF

}
,

ii)
{
x ∈ R

n : pCF ,ε(x) = 0, pF (x) = 0
} = lin(F ),

iii)
{
x + ε (uF · x)Bn : x ∈ CF , pF (x) > 0

} ⊂ {
x ∈ R

n : pCF ,ε(x) > 0
}
,

where ωCF
≥ 1 is a constant depending only on C.

We note that, for a facet F of C and ε ∈ (0, 1/2], we just have (cf. proof of Lemma 2.2)

pCF ,ε(x) = pF (x) = −uF · x. (2.9)

3. Multiplying polynomial inequalities

The main objective of our proof strategy is to multiply, for each k ∈ {0, . . . , n − 1}, all
the polynomials pCF ,ε, F ∈ FK , and pF , F ∈ Fk , such that for a special choice of the
parameters ε, the arising 2n polynomials give a complete description of the cone C. To
this end, we have to study, for two k-faces F and G, the relations between P(pCF ,ε, pF ),
P(pCG,ε, pG), and P(pCF∩G,ε, pF∩G).
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Lemma 3.1. Let F, G be k-faces of C and let εk ∈ (0, 1/2]. Then we can find an
εF,G ∈ (0, 1/2] such that

{
x + εF,G (uF∩G · x)Bn : x ∈ CF∩G

} ⊂
{
x + εk (uF · x) Bn : x ∈ CF , −uF · x > 0

}

∪ {
x + εk (uG · x) Bn : x ∈ CG, −uG · x > 0

}

∪ (lin(F ) ∩ lin(G)) .

Proof. Let CF∩G = lin(F ∩ G) + cone{v1, . . . , vr} for some points vi ∈ lin(F ∩ G)⊥,
where cone denotes the conical hull. Since both 1

2 (uF +uG) and uF∩G are outer normal
vectors of the face F ∩ G we find that

ρ = min

{
1
2 (uF + uG) · vi

uF∩G · vi

: 1 ≤ i ≤ r

}

> 0.

Hence, for x ∈ CF∩G, we get

max{−uF · x, −uG · x} ≥ 1

2
(−uF − uG) · x ≥ ρ(−uF∩G) · x. (3.1)

If uF∩G ·x = 0 then x ∈ lin(F ∩G) ⊂ lin(F )∩lin(G). Otherwise we have −uF∩G ·x >

0, and with εF,G := min{ρεk, 1/2} and (3.1) we get the required inclusion. �	

As a corollary we get that we can find εk , 0 ≤ k ≤ n − 1, such that a cone of the
type P(pCF∩G,εdim(F∩G)

, pF∩G), F, G ∈ Fk , is covered by the interior of P(pCF ,εk
, pF ),

the interior of P(pCG,εk
, pG), and the linear space lin(F ) ∩ lin(G).

Corollary 3.2. We can determine positive constants εk ≤ 1/2, 0 ≤ k ≤ n − 1, such
that for any pair of two different k-faces F and G of C, k ∈ {0, . . . , n − 1},

P(pCF∩G,εdim(F∩G)
, pF∩G) ⊂

{
x ∈ R

n : pCF ,εk
(x) > 0, pF (x) > 0

}

∪ {
x ∈ R

n : pCG,εk
(x) > 0, pG(x) > 0

}

∪ {
x ∈ R

n : pCF ,εk
(x) = 0, pF (x) = 0, pCG,εk

(x) = 0, pG(x) = 0
}
.

(3.2)

Proof. By (2.9) we may set εn−1 := 1/2 and in view of Corollary 2.4 and Lemma 3.1
we just have to say how to calculate the numbers εk , 0 ≤ k ≤ n − 2. For two faces
F, G ∈ Fk the proof of Lemma 3.1 (the εF,G constructed there) leads to an upper bound
on εdim(F∩G) provided we know εk . Hence, for k = n − 2, . . . , 0, we can calculate
suitable numbers εk via

εk := min
k+1≤l≤n−1

min
F,G∈Fl

{
εF,G : dim(F ∩ G) = k

}
.
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Since every (n − 2)-face H of C is given by the intersection of two uniquely deter-
mined facets F and G of C we may even set (cf. (2.9))

εn−2 := 1/2, pCH ,εn−2(x) := pH (x) = −uH · x (3.3)

without violating the validity of Corollary 3.2.
Now we come to the definition of the polynomials, which give us a representation

of an n-dimensional pointed polyhedral cone and to the proofs of Theorem 1.1 and
Theorem 1.2.

Definition 3.3. Let εk , 0 ≤ k ≤ n − 1, be chosen according to Corollary 3.2 and (3.3).
For F ∈ Fk , let pF , pCF ,εk

∈ R[x] be given as in (2.2), Lemma 2.2, (2.9), and (3.3).
Then, for k = 0, . . . , n − 1, let

Pk,1(x) :=
∏

F∈Fk

pF (x) and Pk,2(x) :=
∏

F∈Fk

pCF ,εk
(x).

Proof of Theorem 1.1. First we show that

C = {
x ∈ R

n : Pk,1(x) ≥ 0, Pk,2(x) ≥ 0, k = 0, . . . , n − 1
}
.

The inclusion ⊂ is obvious. So let y /∈ C, but suppose that y satisfies all the polynomial
inequalities. Since y /∈ C one of the facet defining inequalities has to be violated, i.e.,
there exists an (n−1)-face F with pF (y) < 0. Hence we may define p ∈ {0, . . . , n−1}
as the minimum number (index) for which one of the factors in the polynomials Pp,1(x)

or Pp,2(x) is violated. Since both P0,1(x) and P0,2(x) consist only of one polynomial
we have p ∈ {1, . . . , n − 1}.

Let F ∈ Fp such that pF (y) < 0 or pCF ,εp (y) < 0. Since Pp,1(y) ≥ 0 and
Pp,2(y) ≥ 0 there must exist a G ∈ Fp with pG(y) ≤ 0 (in the case that pF (y) < 0) or
with pCG,εp (y) ≤ 0 (if pCF ,εp (y) < 0). Thus we know that y is neither contained in the
interior of the cone P(pCF ,εl

, pF ) nor in the interior of P(pCG,εl
, pG) nor in the linear

space lin(F ) ∩ lin(G). By the choice of εdim(F∩G) and Corollary 3.2, however, those
points y are cut off by the cone P(pCF∩G,εdim(F∩G)

, pF∩G). Thus we must have

y /∈ P(pC(F∩G),εdim(F∩G)
, pF∩G)

contradicting the minimum property of p. Finally, we observe that by (2.9) Pn−1,1 =
Pn−1,2, by (3.3) Pn−2,1 = Pn−2,2 and hence we only have 2n − 2 polynomials. �	

The key to this algebraic proof are the special geometric properties i) to iii) of the
approximative sets introduced in Corollary 2.4. These relations in combination with the
result of Corollary 3.2 ensure that, for each pair of faces F , G, the set
P(pCF∩G,εdim(F∩G)

, pF∩G) is contained in a special way in the union of the correspond-
ing sets constructed for F, G respectively, and this inclusion allows us to multiply those
polynomials the latter are based on.
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Proof of Theorem 1.2. Let P ⊂ R
n be an n-dimensional polytope and let C ⊂ R

n+1 be
the (n + 1)-dimensional pointed polyhedral cone C = {xn+1(x, 1)ᵀ : x ∈ P }. Theorem
1.1 shows that we construct 2n polynomials describing C, where, in particular, one poly-
nomial (P0,1(x) in the notation of Definition 3.3) describes just a supporting hyperplane
of C at the origin. Fixing the last coordinate to xn+1 = 1 in these polynomials gives a
representation of P by 2n polynomials. The polynomial P0,1(x), however, is apparently
redundant for the polytope. �	
Remark 3.4. We want to remark that for a polytope P = {x ∈ R

n : ai · x ≤ bi, 1 ≤
i ≤ m} with rational input data ai, bi all the constants involved in the construction
of the polynomials pCF ,ε can be substituted by certain rational numbers. Moreover,
these numbers can be calculated by well known methods from Linear Programming or
Computational Geometry (cf. [Bos03]).

4. Outlook

The usual method to attack hard combinatorial optimisation problems is the polyhedral
approach. The basic idea here is a “change of the representation” of the problem, namely,
to represent combinatorial objects (such as the tours of a travelling salesman, the inde-
pendent sets of a matroid, or the stable sets in a graph) as the vertices of a polytope. If
one can find complete or tight partial representations of polytopes of this type by linear
equations and inequalities, linear programming (LP) techniques can be employed to
solve the associated combinatorial optimisation problem, see [GLS93]. Even in the case
where only partial inequalities of the polyhedra associated with combinatorial problems
are known, LP techniques (such as cutting planes and column generation) have resulted
in very successful exact or approximate solution methods. One prime example for this
methodology is the travelling salesman problem, see [ABCC98] and the corresponding
web page at http://www.math.princeton.edu/tsp/. Progress of the type
may also be possible via a “polynomial-representation approach”. Of course, since the
degree of the polynomials in a such a polynomial representation is in general very high
(see e.g. [GH03, Proposition 2.1]), and since polynomial inequalities are much harder
to treat than linear inequalities, we can not expect that such an exact polynomial rep-
resentation yields immediately a new method for combinatorial optimisation problems.
However, if we can answer questions like how well can we construct a small number of
“simple” polynomials p1, . . . , pk such that a given polytope (or a general closed semi-
algebraic set) is well approximated by the corresponding polynomials, or how well can
it be described or approximated by polynomials of total degree k, then we believe that
those results lead to a new approach to combinatorial optimisation problems via non-
linear methods. We do know, of course, that these indications of possible future results
are mere speculation. Visions of this type, however, were the starting point of the results
presented in this paper.
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