Mathematical Programming 51 (1991) 141-202 141
North-Holland

Solution of large-scale symmetric travelling
salesman problems

Martin Grotschel®
Institut fiir Mathematik, Universitdt Augsburg, W-8900 Augsburg, Germany

Olaf Holland**

Forschungsinstitut fiir Diskrete Mathematik, Institut fiir Operations Research, Universitiit Bonn,
W-5300 Bonn, Germany

Received 18 July 1988
Revised manuscript received 31 July 1989

In this paper we report on a cutting plane procedure with which we solved symmetric travelling salesman
problems of up to 1000 cities to optimality. Our implementation is based on a fast LP-solver (IBM’s
MPSX) and makes effective use of polyhedral results on the symmetric travelling salesman polytope.
We describe the important ingredients of our code and give an extensive documentation of its computa-
tional performance.

AMS Subject Classifications: 05C04, 05C45, 90C10.

Key words: Travelling salesman problem, cutting plane algorithms, polyhedral combinatorics.

Introduction

Developing theory for the travelling salesman problem (TSP) and solving TSP’s has
always been one of the central subjects of mathematical programming. The TSP
has not only fascinated mathematical programmers, operations researchers, and
economists. Now also physicists, engineers, biologists, and chemists get excited
about this problem. Reasons for this are certainly the facts that the TSP is easy to
state, it has very nice applications, but it is hard to solve.

This paper contributes to the solvability aspects of the TSP. We describe an
algorithm and its implementation with which large-scale travelling salesman prob-
lems can be solved to optimality. We see our work in a long line of attempts to use
linear programming techniques and exploit information about the facet structure
of the travelling salesman polytope. The history of this approach — outlined in

* Supported by DFG-Schwerpunkt “Anwendungsbezogene Opt1m1eru Wﬁmﬁbﬁ ersitat
Augsburg, Germany. 0 DR K Tg

** Supported by SFB 303 (DFG), Forschungsmstltut fiir Disksete Mathﬁmalfk' ﬁni@fﬁﬁ?@m&s
Research, Universitidt Bonn, Germany.

142 M. Grétschel, O. Holland / Large-scale TSP’s

Grotschel and Padberg (1985), Padberg and Grotschel (1985) — started with the
seminal paper Dantzig, Fulkerson and Johnson (1954) and reached a temporary
peak in Crowder and Padberg (1980), who solved a 318 city problem, the largest
problem solved to optimality until recently.

About 1980 we decided to make more systematic use of the classes of facets
known for the travelling salesman polytope and to design a more powerful cutting
plane algorithm to solve TSP’s to optimality. There were many stimuli for this
project. Around this time the ellipsoid method came into focus (with a revival of
cutting plane ideas), the importance of polynomial time separation algorithms was
discovered (see, e.g., Grotschel, Lovdsz and Schrijver, 1981, 1988), and Padberg
and Rao (1982) invented a fast separation algorithm for the perfect 2-matching
problem. Moreover, the computing power available increased considerably so that
we hoped to be able to at least double (in terms of the number of nodes) the size
of problems that can be solved to optimality. Our goal was to get close to the 1000
city barrier.

For this reason, one of us made up a geographical problem with 666 cities, he
thought to be very hard, as a challenge for our work. It turned out to be just that
in many respects. For instance, not only the integrality stipulations caused difficulties.
Some linear programs that arose were hard to solve, even for highly praised
commercial LP-codes like IBM’s MPSX. But we finally managed to overcome all
these obstacles.

We report here about the result of our work over these last years. Of course, this
was not a continuous effort, and there are much longer periods of neglect of the
problem than actval design and coding phases. We now feel that a stage is reached
where our code has attained its limits. We have achieved our initial goal to solve
travelling salesman problems up to 1000 cities. This, though, is still not a routine
matter and requires a substantial amount of computing time on large computers;
see Section 5. Some of the initial steps of our code design, restricted to certain
relaxations of the TSP, can be found in Grotschel and Holland (1985, 1987). A
much more detailed documentation of the code and its design is Holland (1987).

Let us mention here that Manfred W. Padberg and Giovanni Rinaldi have, in the
recent years, developed a cutting plane code for the TSP that is based on the same
approach and uses very similar ideas, many of which have been outlined in Padberg
and Grotschel (1985). The design and the “tricks” of their code have not been
documented completely yet, though some of the important ingredients appeared in
Padberg and Rinaldi (1987, 1990a,b). In fact, the announcement in Padberg and
Rinaldi (1987a) that a 2392 city problem was solved to optimality is really breath-
taking.

Before describing our work we would like to add a few “philosophical” remarks
concerning the questions: “What are all these efforts good for?” “Isn’t it better to
stick to heuristics?”

Everybody knows that travelling salesman problems may come up in tremendous
sizes in practice. For instance, Bland and Shallcross (1987) report about problems

M. Grétschel, O. Holland | Large-scale TSP’s 143

from crystallography with up to 15 000 cities; we know drilling problems (for printed
circuit boards) of up to 60 000 cities. These problems seem far out of reach for our
present (exact) algorithmic machinery. For the time being, these sizes can only be
handled (approximately) with fast heuristics. We also do not advocate to solve, e.g.,
certain practical 1000 city drilling problems by running our code for a couple of
hours in order to save one minute of drilling time. But there are some large-scale
instances where knowing exact optima is important.

Optimization tools should not be applied blindly. One has to estimate whether
or not it pays to use them, whether exact or approximate methods are the appropriate
tools. We view our work mainly as a contribution to the state of the art of exact
problem solving using LP-techniques and cutting plane procedures combined with
heuristics and branch & bound.

Beautiful structural and algorithmic theory has been developed in the recent years.
If one considers mathematical programming as a branch of applied mathematics,
this should not remain just theory, it has to be put to work. The implementation
process is more than straightforward and — at times — frustrating work. Often new
interesting and challenging theoretical problems arise that have to be solved. But
most of all it is the justification and validation of our scientific approach. The
challenge of our time is large scale and we have to enlarge our algorithmic toolbox
in various ways. We should not only confine ourselves to simple heuristics. Even
for really large scale problems exact optimization is sometimes possible (and
necessary). In addition, if only good approximate solutions are needed, the approach
described here can be used heuristically in many ways to obtain excellent upper
and lower bounds.

There is a further reason for our work. When starting this project, we had in mind
to show that polyhedral combinatorics is not only nice theory but also a powerful
algorithmic approach. We believe that the findings presented in this paper and the
computational results of many similar projects completed in the recent years corrob-
orate our point of view.

1. Notation

We will briefly mention a few symbols and definitions needed in the sequel.

We denote graphs by G =(V, E), where V is the node set and E the edge set. All
our graphs are simple, i.e., contain no loops and no multiple edges. An edge e with
endnodes i and j is denoted by e = ij. The (up to isomorphism) unique graph on n
nodes where every two nodes are adjacent is called complete and is denoted by K,,.
The node set of a complete subgraph of a graph is called a clique. If G is a connected
graph and W is a node set such that its removal disconnects G then W is called
an articulation set. A Hamiltonian cycle (a cycle that contains every node of the
graph exactly once) is also called a tour.

144 M. Grotschel, O. Holland / Large-scale TSP’s
For a graph G=(V, E) and W< V, we write
8(W)={ijeElie W,je \W} (=8(V\W)),
E(W)={ijcE|i,je W}.

The edge set 8(W) is called the cut induced by W. If W ={v} we write 8(v) instead
of 8{{v}).

If E is a finite set, then R® denotes the set of functions from E to R. This set is
a real vector space and can be viewed as the set of vectors x = (x,)..r where each
component is indexed by an element of E. If xe R® and F < E we write x(F) to
denote the sum ¥ _,. x.. The incidence vector y* e R® of F < E is the vector defined
by xF=1ifecF xf=0ifecE

A set P<RF is a polytope if it is the convex hull of finitely many points. An
inequality a"x<a is valid with respect to P if P<{xcR®|a"x<a}. A valid
inequality a"x < a defines a facet of P if H:={xe P|a"x = a} has dimension one
less than P. An important fact from polyhedral theory is the following. If P < R®
is a polytope then there are an equation system Ax =b and an inequality system
Dx<d such that P={xeR®|Ax=b, Dx<d}, A has full row rank and each
inequality of Dx < d defines a facet of P.

Finally, the (symmetric) travelling salesman problem is the following. Given a
complete graph K, =(V, E) and distances c; for each edge jje E. Find a tour T
with ¢(T) as small as possible. Without loss of generality, we will assume throughout
the paper that all distances c; are integral.

2. A short summary of some polyhedral results

To avoid some trivial technicalities let us assume from now on that the number n
of cities (or nodes of the complete graph K,,) is at least 6.

Given a complete graph K, = (V, E), the (symmetric) travelling salesman polytope
Q7 is the convex hull of all incidence vectors of tours of K,. Thus

Q% =conv{y" eR®|T< E is a tour}.

The interest in this polytope derives from the fact that the symmetric travelling
salesman problem can be solved by solving min{c"x|xe Q%} which —in some
sense —is a linear program. The polytope Q7 has been the subject of intensive
investigations. A quite complete summary of the results on Q7 published to date
can be found in Grétschel and Padberg (1985). (Let us mention, though, that very
recently D. Naddef and G. Rinaldi and S. Boyd and B. Cunningham (personal
communication) have discovered large new classes of facet-defining inequalities for
Q7.) We will briefly describe those equations and inequalities valid for Q7 that
will be used in the sequel.

The affine hull of Q7 is defined by the linearly independent equations

x(8(v))=2 forallve V. (2.1)

M. Grétschel, O. Holland | Large-scale TSP’s 145
Thus dim(Q%) =|E|—|V|. The trivial inequalities
0<x,<1 forall ecE (2.2)

also define facets of Q% as well as the subtour elimination constraints (see Grotschel
and Padberg, 1979) introduced by Dantzig, Fulkerson and Johnson (1954)

x(E(W))<|W|-1 forall WcV, 3<|W|<sn-3. (2.3)

Using (2.1) one can see that an inequality x(E(W))<|W|—1 is equivalent (defines
the same facet) to x(E(V\W))=<|V\W|—1. This in turn is equivalent to the cut
constraint x(6(W)} =x(8(V\ W))=2. So the system of cut constraints

x(8(W))=2 forall WgV, 3s|W|<sn-3, (2.4)

defines the same facets of Q7 as the system (2.3).
Let H, T,,..., T, be a system of subsets of V. The inequality

X(E(H)+ T *(B(T)=IHI+ £ (Ti-1)- [55] (2:5)

is called a 2-matching constraint (introduced in Edmonds (1965) to give a complete
description of the 2-matching polytope) if H, Ty, ..., T, satisfy

|T;:~nH|=1, i=1,...,s, (2.6a)
ITAH|=1, i=1,...,s. (2.6b)

(2.5) is called comb constraint if H, T,, ..., T, satisfy
|T,nH|=1, (2.6a")
|TA\H|=1. (2.6b")
Grétschel and Padberg (1979b) proved that a 2-matching constraint or a comb
constraint defines a facet of Q7 if, in addition, the node sets H, Ty, ..., T, satisfy
s=3-and s odd, (2.6¢)
T.nT,=0, 1si<jss. (2.6d)

The following class of valid inequalities for Q7-, which contains all nontrivial
facet-defining inequalities listed above, was introduced by Grétschel and Pulleyblank
(1986).

A clique tree is a connected graph C composed of cliques that satisfy the following
properties (in the following we shall always consider clique trees as subgraphs of K,,):

(i) The cliques are partitioned into two sets, the set of handles and the set of teeth.

(ii) No two teeth intersect.

(iii) No two handles intersect.

(iv) Each tooth contains at least two and at most n—2 nodes and at least one
node not belonging to any handle.

146 M. Grétschel, O. Holland |/ Large-scale TSP’s

(v) The number of teeth that each handle intersects is odd and at least three.

(vi) If a tooth T and a handle H have a nonempty intersection, then H T is
an articulation set of the clique tree.

Grotschel and Pulleyblank (1986) showed that, for every clique tree C with
handles H,, ..., H, and teeth Ty, ..., T, the following clique tree inequality defines
a facet of QF,

T x(E(H))+ ¥ x(E(T)

<3 [H|+
i=1

1w

(Tl - 1) =3(s +1)=s(C), (2.7)

j=1

where, for every tooth T, the integer #; denotes the number of handles that intersect
T,. Note that the facet-defining comb inequalities are exactly the clique tree
inequalities associated with clique trees with only one handle.

Setting
Q¢ ={xecR"|x satisfies (2.1), (2.2), (2.3)}, (2.8a)
Q5m={xeR"|x satisfies (2.1), (2.2), and the 2-matching
constraints (2.5), (2.6a,b)}, (2.8b)
Qr={xeR"|x satisfies (2.1), (2.2), and the comb
constraints (2.5), (2.6a’,b")}, (2.8¢)
Qir={xeR"|x satisfies (2.1), (2.2), (2.7)}, (2.8d)

we see that Q7S Q&rs Qc € Qv and Q1< Qs Qs.

Our approach to solving min ¢'x, x € Q7, is to use linear programming relaxations
that can be defined by the polyhedra Qg5, Q%v, Qc and Q&+. We will see later that
the linear program

min{c"x|x e Q% N Q5u}

which has a number of constraints that is exponential in n can be solved in
polynomial time (in theory) by the ellipsoid method. In practice it can be solved
by a simplex-based cutting plane procedure with reasonable efficiency. We do not
know how to solve linear programs of the form min{c"x|x € Q&}, min{c"x|x € Q¢1},
or min{c"x|x € Q%} in theory or practice efficiently but we are able to generate some
comb and some clique tree inequalities through separation heuristics (see Section
4). Thus or LP-based attack on the TSP ends with an optimum solution x* of a
linear program

min{c*x|x e Q},

where Q is a polytope that contains Q% and is contained in Q§ n Q3y. If x* is the
incidence vector of a tour, we are done; otherwise we resort to branch & bound.

M. Grétschel, O. Holland | Large-scale TSP’s 147

3. Outline of the code

We have explained the “philosophy” of our polyhedral approach to the TSP above.
It is, however, a nontrivial and time consuming task to make this idea work.

We sketch now the important basic ingredients of our code. Details on cutting
plane generation will be presented in Section 4. We assume that an instance of the
symmetric travelling salesman problem is given by the number n of cities and by
distances ¢;€Z, 1<i<j=<n. The code has the four stages indicated in Figure 3.1.

tour heuristic
(initial upper bound)
1
Held & Karp-Lagrange T
relaxation
(initial lower bound)

I

LP-based
cutting plane procedure

branch & bound ‘

Fig. 3.1.

3.1. Preprocessing

The first two stages are mere preprocessing phases that help to speed up the cutting
plane and the branch & bound phase. Their role is the following.

(1) Tour heuristic. By running heuristic procedures we generate several tours.
The best tour found is later used to set up a starting basis for the initial LP of the
cutting plane phase. The set E of edges that appear in at least one of the tours
generated is stored. It is used to set up the initial linear program. Moreover, the
length U of the best tour is utilized in the branch and bound phase as an upper bound.

We have chosen the following heuristic procedure. We first run the next neighbor
heuristic 50 times starting with randomly chosen nodes. Each of the (different) tours
produced this way is used as a starting tour for our implementation of the Lin-
Kernighan heuristic — see Lin and Kernighan (1973). These methods are well-known
and it is not necessary to describe the details here.

We would like to point out, however, that the Lin-Kernighan heuristic is rather
time consuming. Running the procedure described in (1) in the standard way requires
as much and sometimes even more time than the whole cutting plane and branch
& bound method to be described later. Considerable parameter adjustments and
coding efforts are necessary to make this heuristic run in acceptable time. On the

148 M. Grétschel, O. Holland |/ Large-scale TSP’s

other hand, we (and of course others as well) have noticed that a good upper bound
is as crucial as a good lower bound for a successful branch & bound phase. Thus,
the quality of the upper bound achieved in this stage does have a serious impact
on the overall performance of the algorithm.

Recall that our goal was to create a code that can solve symmetric travelling
salesman problems of up to 1000 cities to optimality. This requires handling linear
programs of up to half a million variables. We do not know any LP-code that can
solve such linear programs. Thus, it is necessary to reduce the dimensions consider-
ably. The reduction must, of course, be done in such a way that global optimality
can still be proved. A first reduction step is based on the following procedure.

(2) Held and Karp-Lagrange relaxation. We solve the 1-tree relaxation described
in Held and Karp (1970, 1971), using a standard subgradient algorithm. The largest
value found in this procedure gives a lower bound L for the optimum tour length.

In theory, the solution of the Lagrange relaxation of the 1-tree problem gives the
optimum value of min{c"x|x € Q%}. In practice, however, this value is rarely obtained
through this procedure. By making good choices in the step length parameter etc.
of the subgradient algorithm, good lower bounds for min{c"x|x € Q%} can, in fact,
be computed quickly.

(3) First variable reduction. Using the upper bound U found in (1), the lower
bound L and the best 1-tree T found in (2) we can eliminate some edges based on
a standard reduced cost criterion. For instance, if e E\(T n §(1)), where 1 is the
special node of the 1-tree, we know that T U {e} contains exactly one cycle C not
containing node 1. Suppose ¢; = ¢;+A; + A; is the cost of edge e, where A;, i€V, is
the set of best Lagrange multipliers. If f is an edge with largest cost ¢; among the
edges in C\{e} then edge e can be eliminated if ¢, — ¢, > U — L — 1. A similar criterion
can be used for the edges ec S(1)\ T.

Let E = E be the set of edges that can be eliminated due to these criteria, and
let H be the tour giving the upper bound U. Then E':=(E\E) U H is a set of edges
that is guaranteed to contain at least one optimum tour of the original TSP. Thus
we can restrict ourselves to considering the subgraph G=(V, E') of K,,.

This finishes the description of the preprocessing phases. The variable elimination
* procedure described above is quite effective. Table 3.1 gives an overview of the
results achieved in this way. The columns have the following meaning. “Problem
(NUM)” is our name for the instance of the TSP. The number appearing in the
name gives the number of cities of the TSP. (Details about the problems can be
found in the appendix.) The second column shows the lower bound computed by
the method described in (2). The third column reports the upper bound found in
(1). The fourth column “%GAP” shows the maximal possible deviation (in percent)
of the length U of the tour found in (1) from the optimum tour length. It is computed
by means of the formula (U — L) * 100/ L. The fifth column “Problem variables”

M. Grétschel, O. Holland | Large-scale TSP’s 149

Table 3.1

Heuristic upper and lower bounds, reduction of variables

Problem Lower Upper %GAP Problem %VAR
(NUM) bound bound variables
17 2047.7274 2085 1.82 40 29.41
21 2696.6135 2707 0.39 31 14.76
24 1265.2850 1272 0.53 41 14.85
42 684.1273 699 2.17 188 21.84
48 4953.3513 5046 1.87 210 18.62
48H 11 425.9497 11 461 0.31 84 7.45
57 12 758.6891 12 985 1.77 332 20.80
70 669.0735 675 0.89 223 9.23
96 54 544.2939 55209 1.22 557 12.21
100A 20920 6091 21282 1.73 681 13.76
100B 21 736.3089 22141 1.86 847 17.11
100C 20 460.2047 20749 1.41 619 12.51
100D 20999.9530 21294 1.40 617 12.46
100E 21770.0528 22 068 1.37 602 12.16
100R 9653.7772 9690 0.38 181 3.66
120 6 902.3900 6951 0.70 528 7.39
137 68 926.6767 69 853 1.34 1196 12.84
200R 9 550.3396 9653 1.07 721 3.62
202 39 502.0277 40214 1.80 7 249 3571
229 133 180.3029 134 666 1.12 3879 14.86
300R 10 282.9372 10 424 1.37 1742 3.88
318 31 182.3861 31404 0.71 2753 5.46
400R 9496.0431 9617 1.27 2520 3.16
431 170 121.4302 171778 0.97 24354 26.28
442 5038.7512 5083 0.89 7 990 8.20
500R 9161.2755 9271 1.20 3503 2.81
532 27 357.0196 27 829 1.73 43282 30.64
600R 9571.4626 9732 1.68 6 654 3.70
666 292 188.0715 296 371 1.43 66913 30.22
700R 10 120.1419 10 305 1.83 10052 4.11
800R 10 094.6417 10 286 1.90 13 406 4.19
900R 9995.6538 10233 2.38 20544 5.08
1000R 9962.3615 10 156 1.94 20774 4.16

contains the number | E’| of variables remaining after the elimination procedure (3)
has been executed. The sixth column “%VAR” shows the percentage of the number
of remaining variables | E’| compared to the number |E| of original variables. E.g.,
in problem 500R only 2.81% of the variables are left for the final optimization step,
while in problem 202 still 35.71% of the variables remain to be processed.

3.2. The cutting plane phase

This phase is the core of our algorithm. We enter it from the preprocessing phase
with a subgraph G'=(V, E’) of K, =(V, E), a tour H whose length gives the upper
bound U and with the set E < E’ of edges that appeared in at least one of the

150 M. Grdétschel, O. Holland / Large-scale TSP’s

tours generated by the heuristic of (1). A flow chart of our cutting plane procedure
can be found in Figure 3.2.

The aim of this phase is twofold. We want to produce a “very good” lower bound
for the optimum tour value by LP-techniques and we want to set up a linear program
whose 0/1-solutions contain the incidence vector of an optimum tour. To do this

INPUT:

- reduced graph G’ = (V, E'),

~ objective function ¢’ : B/ — Z,

~ upper bound U and corre-
sponding tour H,

~ set E of edges occuring in
heuristically determined tours.

11

Determine candidate edge set
E"” C E of the NN ‘next neighbours’;
E'=E'UE

1

Define 1.LP: ®

minc;’,?'zeu
z(é('u)ﬂE"):2, vEV
0<zn <1, ' cE"

T

Force variables z.,e € H, (@
into the LP-basis using
INSERT

=T

, Y
Call PRIMAL to obtain (5)

DUAL ()] LP-optimum z*;
construct solut‘ion graph Gy

\

progress too small yes
\

RESTORE @

old basis
insufficient
accuracy
r Cutting plane recognition 6’
Add cuts ® Determine set @
to the LP E~ of variables to be
Eliminate rows added tq the LP
Add variables 3 yes (&
E~ to the LP: < E~ ;é 1)
E":= E"UE"~ !

no

[Branch & Bound @3]

Fig. 3.2.

M. Grétschel, O. Holland | Large-scale TSP’s 151

we first generate a set of edges E"< E and an inequality system A"x"<b", x"eR",
such that the value of the linear program
minimize ¢""x"
(3.1)
subject to A"X"<b"
is a true (and good) lower bound for the length of a shortest tour (¢” is the restriction
of the vector ¢ to the components E”).

The matrix A” and the edge set E” are not defined in advance. They are a result
of the row and column generation scheme to be explained below. A” has (by
construction) the property that it can be extended in a canonical way to a matrix
A with | E| columns such that all inequalities of the system Ax < b are either equations
of the form (2.1) or define facets of Q%. Moreover, min{c" x"|A"x"<b"}=
min{c' x| Ax < b} holds.

Secondly A” and E” have the property that, by using reduced cost criteria, an
extension of A” to a matrix A and an extension of E” to a set of variables E is
possible such that the solution set of the 0/1-linear program

minimize "X
subject to AX<b, (3.2)
£e{0,1}%,

contains the incidence vector of a shortest tour of the original problem. The
0/1-program (3.2) is the input to the branch & bound part of the algorithm, unless
the solution (3.1) is the incidence vector of a tour (and we do not call branch &
bound).

To achieve the goals described above, it would seem sensible to choose the edge
set E' (of remaining variables) as the set of variables E” to set up the linear program
(3.1). Although our elimination procedure (3) is quite successful (see column % VAR
of Table 3.1) the number of variables | E’| is, in general, still much too large (e.g.,
|E'| =66 913 for the 666-city problem), even for fast commercial LP-solvers. So we
decided to do the following.

(4) Selection of initial variables. We initially select a “candidate set” E" of edges
(of which we hope that they will contain an optimum tour) as follows. Depending
on the parameter NN (we have used 0= NN = 10) to be set before execution of the
algorithm, we determine, for each node ve V, a subset E, of edges of 8(v) with
cardinality NN having smallest length among all edges in §(v) and set

= U E,UE,
veV
where E is the set of edges occurring in heuristically determined determined tours,
see Section 3.1. This procedure is indicated in Box 2 of Figure 3.2. E is added to
the “next neighbour edges” |, ., E, to guarantee the existence of a tour in

152 M. Grétschel, O. Holland | Large-scale TSP’s

G"=(V, E"). The cutting plane procedure is initialized with the variable set E”, see
Box 3 of Figure 3.2.

We now outline the LP solution techniques, the basics, and the main loop of the
cutting plane part of our algorithm. These are indicated in Boxes 3,4,...,11 of
Figure 3.2.

To solve the linear programs coming up we used IBM’s package MPSX/370. This
contains a quite fast LP-solver, though, for the application to be described in this
paper, it does have some drawbacks that will be discussed later.

(5) Initial LP and initial basis. The initial linear program is defined in the standard
fashion. We generate all degree constraints (2.1) and the upper and lower bounds
(2.2). As outlined before we restrict the LP to the initial variables E” defined in (4).
Thus our first LP is of the form

minimize ¢"Tx
subject to x(8(v)NE")=2 forall ve V, (3.3)
0<x,=<1 forall e"e E".

It is well known that, for every tour of the graph G"=(V, E"), one can determine
a basis of (3.3) with the given tour as associated basic solution. We initialize our
LP-solver by introducing the best tour H known at present as a starting basis using
the MPSX-routine INSERT. (By the choice of E”, we have H < E".) This process
is indicated in Boxes 3 and 4 of Figure 3.2.

We now enter the main loop through Boxes 5, 6, . .., 11 of Figure 3.2 and describe
a general step.

To call the MPSX-routine PRIMAL in Box 5 we have to know a basis of our
present LP. This is at hand in the first call due to (5). In a general step, a basis will
be part of the output of the routine DUAL called in Box 11. PRIMAL determines
an optimum solution x* of the present LP. To process and analyse x™ we generate
the graph G.«=(V, E,~) defined by

E.={ec E"|x¥>0}. (3.4)

The next step, Box 6 of Figure 3.2, consists of a couple of tests. We first check
whether x™* is the incidence vector of a tour. If this is the case we go to the variable
generation procedure of Box 12. Then we check whether the cutting plane procedure
has “tailed off”. We do this in the following way. Every tenth time we enter Box 6
we compare the present optimum LP-value y* with the optimum value vy of the
linear program solved ten iterations (of the main loop) before. If y*—y=<1 we feel
that further cutting plane generations will not pay and exit from the loop to Box
12 of Figure 3.2. In a third test we check for numerical accuracy. MPSX offers some
parameters to do this. If we feel that the present accuracy is insufficient, we leave

M. Grétschel, O. Holland | Large-scale TSP’s 153

the loop for Box 12. If none of the tests made us go to Box 12 we continue with

the cutting plane generation procedure of Box 7. The methods used here (and this
is the key to success) will be described in Section 4.

The cutting plane generation phase of Box 7 determines inequalities of type (2.3),
(2.5) or (2.7) that are violated by the present x* and decides which of these
inequalities should be added. If no new inequalities are provided by Box 7 we
consider the present loop through the Boxes 5,6, ..., 11 finished and go from Box
8 to the variable generation Box 12. Otherwise we go to Box 9. In Box 9 we add
all inequalities provided by the cutting plane procedure to the present LP using the
MPSX-subroutine REVISE. Moreover, every fifth time we enter Box 9 we scan the
rows of the present LP and eliminate all rows that are not satisfied with equality
by the present optimum solution x*, using REVISE again.

We now have a new LP for which we do not know a primal feasible basis. We
do not want to solve this LP from scratch. Thus, we use the MPSX-subroutine
RESTORE, Box 10, to initialize the basis with the optimum basis from the previous
LP which is, after adding cuts, primal infeasible but still dual feasible, as a starting
basis for the MPSX procedure DUAL; see Box 11. DUAL is not a dual simplex
method. Its only purpose is to generate a “good” (very often optimal) primal feasible
basis. When DUAL is finished we continue the main loop by going to Box 5.

The main loop is left through Boxes 6 or 8 to Box 12. In this case we have
somehow generated inequalities (in a cutting plane fashion) in previous steps and
currently finished looping through the Boxes 5,6,...,11. We end up with an
optimum solution x* of a linear program

mil’l{C"TleA”X”S b"} (35)

for which we cannot find any further cutting planes (see Box 8) or decided to stop
the cut generation procedure (see Box 6). The optimum value of (3.5) is a lower
bound for the optimum value of the TSP on the subgraph G”"=(V, E"), but not
necessarily for the optimum value of the original TSP. To check whether it is also
a lower bound for min{c"x |x € Q%} we have to price out all the variables in E\E".
Due to our elimination process (3) we need not touch any of the variables in
E\E'. Thus we can restrict ourselves to pricing out the variables in E'\E". Let
E~ < E'\E" be the set of variables which might lead to an improvement. If E~ #§
we reset

B BYU B (3:6)
and return to the main loop. This procedure (pricing and variable addition) is
indicated in Boxes 12, 13, 14 of Figure 3.2.

Initially we feared that when Box 12 is entered for the first time, E~ might be a
very large set that would lead to LP’s of unsolvable sizes. Empirically, in all problems
we ran, E~ was of rather modest size. Thus we decided to add all variables in E~
to E".

Let us mention at this point that — due to the large numbers of variables in-
volved — pricing is quite a time consuming routine. One does not want to call it

154 M. Grétschel, O. Holland / Large-scale TSP’s

too often. After some experiments we decided to trade space for time and to
implement space-consuming data structures that allow us to execute pricing in
reasonable time. (The details of this procedure are lengthy and boring and thus
omitted.)

Of course, what we hope is that E~ is empty. In this case the optimum value of
(3.5) is a true lower bound on the length of the shortest tour and our first goal is
achieved. (The number of times we have to add variables clearly depends on the
choice of NN. Even for NN =0 it is quite moderate as can be seen in column SP
of Table 5.1.)

If E™ ={) there are two possibilities: the current optimum solution x* is fractional,
or x* is integral and thus a tour. From Box 6 of Figure 3.2 we know whether the
optimum solution x* of (3.5) is the incidence vector of a tour. If this is the case,
we can stop with a globally optimum solution. This happened in 53 out of 128 runs
on which we report later on. (With large real world problems, it never happened.
Only small real world or random (small and large) problems were solved to optimality
in this phase.) If x* is not the incidence vector of a tour we must — in order to
achieve our second goal — generate a 0/1-program of type (3.2). This procedure
will be explained in the description of the branch & bound phase.

This finishes the outline of the LP cutting plane phase of our algorithm.

3.3. The branch & bound procedure

The flow chart shown in Figure 3.3 outlines our branch and bound procedure. We
describe the procedure by explaining the boxes of this flow chart.

We enter this phase in Box 1 with a set of edges E”, the data of the linear program
(3.5) min{c""x| A"x"< b"}, the reduced costs ¢, and an optimum (fractional) solution
x* of this LP. The optimum value L= ¢""x* is a true lower bound for the optimum

tour length. Moreover, we know from (1) a tour H of length U. We define
NB,:={ec E”|e nonbasic and x* =0},
NB, :={ec E"|e nonbasic and x¥ = 1}.

In Box 2 we determine those edges in E"\ E” that may appear in an optimum tour
as follows. We generate the columns and the reduced costs ¢ for all variables
ec E'\E". Then we set

VAR:={ec E\E"|e,<U—-L—-1} (3.7)
and set in Box 3,

E = E"UVAR,

NB,:=NByu VAR.

The edges in E\E cannot be contained in an optimal tour. Thus they will never be

M. Grétschel, O. Holland [Large-scale TSP’s 155

INPUT: @
~ subproblem G = (V, E"),
- with cutting plane procedure
determined LP-relaxation Rzp
with respect to G,
~ reduced costs ¢.» with respect
to Rrp, Ve € E",
- upper bound U.

|

Determine set of variables

VAR :={z.le¢ B" ANe, <U—-L—1}

]

Add VAR to the LP: ®
E:=E"UVAR
1
(.
Determine the variables ®@

that can be fixed:
F[) ::{:Egltg:O/\Eé >U—L—1}
d

an
Fr:i={zzles =1Ac: <L — (U —-1)}

— Deletion of variables, @T
— Deletion of redundant equalities
— Introduction of Special Ordered Sets

e |

T
Use MIP to find first integral

solution ¢* with &7 * < U — 1

Solution no R STOP .
found optimum tour with
length U found

?

(]

Add SECs (@ no z*isa
to the LP tour
?
yes

New upper bound found: {9
U:=elg*

Fig. 3.3.
touched again. Then we generate the new linear program on the variable set E,
minimize &%
subject to Ai<b

which has property that the 0/1-solutions of this LP contain an optimum tour. So
the second goal mentioned in the beginning of Section 3.1 is achieved. From Box
3 we go to Box 4 of the flow chart of Figure 3.3.

156 M. Grotschel, O. Holland | Large-scale TSP’s

Before describing Box 4 we want to mention that there is a problem here. The
set VAR may be so large that there is no hope to finish the branch & bound phase
in reasonable time. We have therefore added the following loop to the flow chart
shown in Figure 3.3 not indicated in the chart. If [VAR|> 20 000 we do not add any
variable at all in Box 3. We start the branch & bound phase with the old variables
E=E" and complete the whole process restricted to these variables. In this way
we obtain a new upper bound U and go back to Box 2. The hope here is that the
improved upper bound yields a much smaller set VAR.

The case explained above occurred in 5 out of the 128 runs described in this
paper. In fact, in each of these five cases the first loop through the branch & bound
phase produced a globally optimal tour. The new set VAR was therefore very small
and thus the branch & bound phase had to be called only one more time.

We now come back to the flow chart and describe the main loop through Boxes
4,5,...,10.

Box 4 contains a standard (global) variable-fixing procedure. For every edge
e € NB, (the nonbasic variables at value 0), we check whether the reduced cost ¢,
is larger than U — L —1. If this is so we can fix the variable x, forever at value 0.
Similarly, for every ee NB,, if ¢, < L—(U —1) the variable x, can be fixed at value
1. This way the sets F, and F; of fixed variables are defined.

The changes in the current LP that are induced by the variable fixing of Box 4
are executed in Box 5. The variables that have been fixed to zero or one are eliminated
from the LP. The right hand sides are adjusted. If the right hand side of an equation
of type (2.1) becomes zero, the whole equation is deleted. Some of the equations
now have right hand side 1. We determine heuristically a subset of these equations
that induce a system of special ordered sets (SOS). This information on a SOS-
structure is handed over to MPSX since MPSX has special features that handle
constraints of this type efficiently.

Now we enter Box 6 and call the mixed integer programming problem solver
MIP, an additional feature of the MPSX system. MIP is a branch & bound code
that offers only a few strategic choice parameters. So we have to use it as a black
box and cannot influence the MIP decisions dynamically, add cutting planes on the
run, etc. This is one of the clear drawbacks of the system. We set the MIP parameters
in such a way that MIP outputs the first 0/1-solution x* with objective function
value less than or equal to U —1.

If MIP, in Box 7, reports that no such solution exists we can stop. The current
best tour is optimal. If MIP produces a 0/1-solution we check in Box 8§ whether x*
is the incidence vector of a tour. If this is the case (see Box 10) we have found a
new upper bound U := ¢"x* that can be used to globally fix further variables. Thus
we go back to Box 4 and continue the main loop.

If x* is not the incidence vector of a tour it must be the incidence vector of a
perfect 2-matching, due to the fact that the only 0/1-solutions of the linear system
(2.1), (2.2) are incidence vectors of perfect 2-matchings. Hence we go from Box 8
to Box 9, where we determine (in a straightforward way) all cycles (=subtours) of

M. Grétschel, O. Holland | Large-scale TSP’s 157

the corresponding perfect 2-matching. We generate the subtour elimination con-
straints induced by the node sets of these cycles, add these constraints to the current
LP, and return to Box 6 where we call MIP again.

This is the overview of the branch & bound procedure and thus the end of the
outline of our code for the TSP.

3.4. Some comments

Our outline shows mainly the strategic decisions. Needless to say that there are
“infinitely many’’ little details that have to be considered, coded, tested etc. to make
a complicated code like this work efficiently. There is no way to report about all
this time-consuming work here. But we hope we have made our basic choices clear.
We would have made some choices, in particular certain cutting plane generation,
variable addition and deletion features, and the communication with the branch &
bound code MIP in a different fashion if MPSX were an open code accessible by
the user. In its present form MIP only allows a black box interface, and this is not
adjustable to special needs.

A number of choices reported before (and in the following section) are quite
arbitrary. For instance, why do we eliminate rows only every fifth time, why is
tailing off checked every tenth time? We cannot give really convincing explanations
for such decisions. We simply “played” with these (and other) parameters and set
them to values that seem to produce decent results for which we could give an
intuitive reason.

Let us explain one such decision. To keep the present LP small we should eliminate
rows every time we run a new LP. However, our experiments showed that, after
some iterations, the number of inequalities found in the cutting plane recognition
phase is not very large and the number of rows that can be eliminated is not too
large as well. Moreover, to find rows that can be eliminated we have to scan the
whole inequality system and we have to actually eliminate them from the present
system. To do the latter changes in the data structures, time consuming routines
have to be called. So one has to balance the trade off between slightly longer running
times of the LP-solver and time demanding data handling. Our experiments showed
that elimination every fifth time works well in this respect.

Most of these parameters have been set by looking at them individually while
keeping all the others fixed. Clearly, considering what statistics tells us, this is not
the way to do it. One should design beforehand a series of experiments from which
an optimal set of parameters can be derived. However, at present we do not see
how one can satisfy the statistical assumptions necessary to derive the desired results.

4. The separation routines

We have mentioned before that our cutting plane procedure never works on the
full set E of edges of the complete graph K, =(V, E) but on much smaller sets of

158 M. Grétschel, O. Hollund |/ Large-scale TSP’s

variables that are determined dynamically on the fly. For notational convenience
we describe the separation routines for the case of the complete graph K,,. How to
restrict what we do to subgraphs to K,, is obvious. Moreover, from a computational
point of view, a restriction to sparse subgraphs of K, results in a considerable
speed-up of the running times of all routines. We describe now our procedures for
finding violated subtour elimination constraints (2.3), violated 2-matching con-
straints (2.5), violated comb constraints (2.5), (2.6a’,b’), and violated clique tree
constraints (2.7). An overview of our strategy to call the various separation routines
is shown in the flow chart of Figure 4.1. This flow chart is a blow up of Box 7 of
Figure 3.2. Recall that we enter the cutting plane recognition phase from Box 6 of
Figure 3.2.

The input to the cutting plane recognition phase is the optimum solution x* of
the current linear program. In Box 1 of Figure 4.1 we construct from x* the “solution
graph”

Go=(V,E,») with E.={ije E|x}¥>0}.

All routines described below use this graph. We will make use of the fact that x™*
satisfies (2.1) and (2.2), i.e.,

x*(8(v))=2, veY, O0=sx*<1.

4.1. Finding violated subtour elimination constraints

Crowder and Padberg (1980) noticed how one can determine in polynomial time
whether or not x* violates one of the exponentially many subtour elimination
constraints (2.3), or equivalently, one of the cut constraints (2.4). This procedure
goes as follows.

For each edge ¢ € E,.», we consider the value x7 as a capacity. Then we compute
a cut §(W), §= W=V, of G* with smallest capacity x*(8(W)). If x*(§(W))=2
then all cut constraints and all subtour elimination constraints are satisfied. Otherwise
x* violates the equivalent inequalities x(E(W)) < |W|—1, x(E(V\W)) s|V\W|-1,
x(8(W))=2.

In such a case any one of these inequalities can be added to the current LP. We
have decided never to add a cut constraint, and to add from the two possible subtour
elimination constraints, the one induced by the smaller number of nodes. One reason
is uniformity of the data structures we used (and do not want to explain in detail);
the other is the empirically-observed fact that cut constraints in general tend to have
more nonzero entries.

A minimum capacity cut of G.- can be found by applying the well-known
Gomory-Hu procedure (see Gomory and Hu, 1961). The worst case running time
of this method is n —1 times the running time of the max-flow algorithm used. So
it is about O(n*). There are, however, ways to speed up the practical running time
considerably. Much of the speed up comes from the fact that one does not apply
the Gomory-Hu procedure to the original graph G,~. There are certain shrinking

M. Grotschel, O. Holland | Large-scale TSP’s 159

INPUT: ®
— LP-optimum z*
- Solution graph Gy«

1

1. SEC-heuristic: ®@
determination of
connected (fomponents

Cutting
planes

found
?

yes

Perform
exact pro-

cedures
?

‘7 2. SEC-heuristic ® l

2-matchin$—heuristic ®]

Cutting

yes
planes
found
?
{1‘[0
Exact recognition procedure for
ECs
Exact recognition procedure for
2-matching-constraints
yes
Heuristics for 5 EXIT
comb—constraints

Fig. 4.1.

procedures, described for instance in Section 2.1 of Padberg and Grotschel (1985),
that reduce G,- to a much smaller capacitated graph G'+ which has the property
that G« contains a cut of capacity less than two if and only if G,- does. We have
implemented this shrinking process which, in fact, may determine violated subtour
elimination constraints without calling the Gomory-Hu method at all.

160 M. Grétschel, O. Holland / Large-scale TSP’s

We have tested several max flow algorithms on problem instances coming up in
this special case. It turned out that our implementation of the primal method
described in Glover, Klingman, Mote and Whitman (1979) showed the best empirical
running times. We use this program in our Gomory-Hu procedure.

The Gomory~Hu method requires a lot of data handling (new graphs have to be
produced from the original graph by shrinking certain node sets etc.). We have
tested several strategies to do this. In our present version we proceed, roughly, as
follows. We do not shrink from scratch every time. After having determined a
minimum weight cut in some current graph é=(\7, E) we immediately construct
the (at most) two possible new graphs that can be derived from the new Gomory-Hu
tree by shrinking certain node sets in G and store these two graphs for future
processing on a stack and remove G from the stack. To save storage space we place
the graph with the smallest number of nodes (but at least two nodes) on top of the
stack. The success of this version of the Gomory-Hu procedure is evident from
Table 5.2. It shows that the actual number of max-flow calculations is rather small.

We have recently learned that Padberg and Rinaldi (1990a) have invented an
alternative strategy to compute a minimum capacity cut. Its empirical performance
also is much better than the standard Gomory-Hu procedure.

Let us mention at this point that there are (at least) two options to run the exact
separation routine for subtour elimination constraints described above. One can
grow the full Gomory-Hu tree and read all violated constraints from the tree or one
can stop the process as soon as a cut of capacity smaller than 2 is found. We tested
both alternatives and found the latter to be inferior. Thus, whenever we enter our
exact separation routine we compute the full Gomory-Hu tree. We generate all
constraints that can be read from the tree. But only those that are violated by the
current LP-solution by a value of some ¢ (we chose € =0.001) are considered to be
“good” cutting planes that will be added to the linear program.

An e-criterion for adding cutting planes like the one mentioned above will also
be applied later for the other constraints. We observed empirically that MPSX
sometimes ran into trouble when we added all violated constraints. (This has already
been mentioned in the introduction). Since we cannot “open” MPSX we could not
figure out whether the MPSX-problems were of numerical nature or due to
degeneracy. The e-criterion cured this disease.

We have also implemented two fast heuristics to determine violated subtour
elimination constraints.

First subtour heuristic. Given the graph G+, compute (by depth-first search) all
connected components of G,+. Each component of G,- obviously yields a violated
subtour elimination constraint.

This heuristic runs in O(|E,+|) time. Compared to the running time of the whole
algorithm it is unnoticable. Thus we run it always (see Box 2 of Figure 4.1) as soon
as we enter the cutting plane recognition phase. If this heuristic finds at least one

M. Grétschel, O. Holland | Large-scale TSP’s 161

subtour elimination constraint violated by x* (see Box 3 of Figure 4.1) we stop the
cutting plane recognition phase and return to the LP-routine (we enter Box 8 of
Figure 3.2). This heuristic is quite successful in the first few iterations (say the first
five calls of the separation program); afterwards it produces cutting planes only
occasionally.

Our second subtour heuristic, Box 5 of Figure 4.1, is a variant of the preprocessing
procedure for the Gomory-Hu algorithm that consists of a successive shrinking
process. It is only applied in the first ten calls of the separation routine, since
afterwards it turned out to be not too successful. Box 4 is used to switch the cutting
plane recognition strategy after the tenth iteration.

Let us also mention that the (time consuming) exact separation routine for subtour
elimination constraints is only called if the subtour and 2-matching heuristics fail
to detect a violated inequality.

4.2. Finding violated 2-matching constraints

2-matching constraints are of the form
a’x=x(E(H)+ ¥ x(BE(T))<|H|+ ¥ (IT|-1)~[35]=5(C) (4.1)
i=1 i=1

where H, Ty, ..., T, = V are node sets satisfying (2.6a,b) and they define facets of
Q7 if the node sets satisfy (2.6¢,d) in addition. An exact polynomial-time separation
algorithm for the class of 2-matching constraints has been designed by Padberg and
Rao (1982). It is also based on the Gomory-Hu procedure.

In Grotschel and Holland (1987) we have outlined a fast (and successful) heuristic
for finding violated 2-matching constraints and we have given a detailed description
of our implementation of the Padberg-Rao procedure. Here we will only mention
additional features that have been added to handle the TSP case.

The heuristic (see Box 6 of Figure 4.1) is called immediately after the second
subtour heuristic has been called. If these two heuristics come up with at least one
violated constraint, the cutting plane recognition phase terminates — see Box 7. The
two heuristics are only run in the first ten calls of the separation routine. The count
starts from fresh after each variable addition phase (Boxes 12, 13, 14 of Figure 3.2).

The exact separation algorithm for 2-matching constraints is called in Box 9 of
Figure 4.1.We always grow a full Gomory-Hu tree to produce as many violated
constraints as possible. We do, however, add a post-processing routine that does
the following. For each violated 2-matching constraint, we compute a'x*—s(C).
If this quantity is smaller than 0.01, the cutting plane a’x<s(C) is ignored.
Otherwise we check whether the 2-matching inequality defines a facet of Q% (i.e.,
we test conditions (2.6¢,d)). The Padberg-Rao procedure may, in fact, produce
2-matching inequalities that do not define facets of Q%. The proof in Grotschel

162 M. Grotschel, O. Holland | Large-scale TSP’s

(1977) that characterizes the facet-defining inequalities among the 2-matching con-
straints can be turned into a very simple algorithm that modifies a violated 2-matching
constraint that does not define a facet of Q7 into a violated inequality that is either
a facet-defining 2-matching constraint or a facet-defining subtour elimination con-
straint. We execute this modification and add the new cutting plane. If the exact
separation routines for the subtour elimination and the 2-matching constraints find
at least one violated inequality we terminate the cutting plane recognition phase
through Box 10.

We have experimented with our code and stopped the two exact separation
routines as soon as one¢ violated inequality was discovered in order to save time in
the cutting plane recognition phase. It turned out, however, that this led to much
poorer overall performance. Many more LP’s had to be set up; little progress in the
objective function with tailing off phenomena occurred etc. For a similar reason we
added the additional requirement that constraints to be added to the current LP
have to be violated by at least a certain threshold ¢ (our choice was & =0.01 for
2-matching constraints and & = 0.001 for subtour elimination constraints). If none
of the separation routines described above produces a violated inequality we can
conclude that x* is “almost” contained in Q5 M Q5. (The “almost™ creeps in
because of the threshold values £ mentioned above.)

After treating subtour elimination and 2-matching constraints we try to make use
of the further facet defining inequalities for Q7 listed in Section 2.

4.3. Finding violated comb constraints

It is not known whether the separation problem for the comb constraints (2.5),
(2.6a',b"),

a'x=x(E(H))+ _Z; x(E(T))<|H|+ gl (T{=1)—[3s1,

where H, Ty, ..., T, are subsets of V, can be solved in polynomial time. Hence we
have invented some heuristic procedures with which some inequalities of this type
can be discovered. The 2-matching constraints are the special cases where |T;| =2
fori=1,...,s.

Our basic idea is the following. Given the solution graph G-, we manipulate
G~ in such a way that some violated comb constraints are turned into violated
2-matching constraints. Then we apply the machinery for discovering violated
2-matching constraints described in Section 4.2. If violated (facet-defining) 2-
matching constraints are detected this way we reverse the manipulation of G,» to
obtain comb constraints violated by x*.

We run the heuristics, to be described below, under the assumption that x* satisfies
all degree constraints (2.1), trivial constraints (2.2), subtour elimination constraints
(2.3), and 2-matching constraints (2.5), (2.6a,b).

We now describe five basic transformations. For each transformation, we assume
that a graph N =(U, F) with capacities k;, if € F, is given.

M. Grétschel, O. Holland [Large-scale TSP’s 163

Transformation 1 (F}). If v has only two neighbours, say 4 and w,and if k,, = k,,, =1,
we delete v from U and add the edge uw with the capacity k,,, = 1.

Transformation 2 (F,, see Figure 4.2). Suppose {u, v, w} is a clique of U with
k., + koo + ko =2 (i.e., the corresponding subtour elimination constraint is satisfied
with equality). Suppose further that one of the edges, say uv, has capacity 1. Contract
the two nodes u, v into one new node z (i.e., the edge uv is deleted, all edges with
one endnode u or v will now have the endnode z If parallel edges appear these
are replaced by one edge whose capacity is the sum of the capacities of the parallel
edges).

\
’
a/ \\1'6 $
II 3
/ \
/ \
@ T \O
0 LN
N ’
/ \
/ [3N e \

Fig. 4.2.

The result of this operation is that a 3-element clique that satisfies its subtour
elimination constraint with equality is replaced by an edge of capacity 1.

Transformation 3 (F;, see Figure 4.3). Suppose {u, v, w, x} is a subset of U that
satisfies

k(E({u, v, w, x}))=3.

Contract {u, v, w, x} to a single node.

\
~ ’
N i
N V3
AN e ’,
N
AY /’ \\ /I
N + N s
C N .
@- _________ t ‘
~ e
~ AN 4
u HEN N p
Il 1 \
1 1 \
i \
,!Z *(E(fuv,w,zf)) : \ é u,v
ry - \ —
N =3 ! \ we
[N H \
[} . ') // l ~
.o ! L ! \‘
_________ " g ,/ 1 \\
e \ ’ N ’ e 1 N
. X ’ N .] ~
L e K N / :
4 \ / f A e+f+
e) ’ PN : g
i

Fig. 4.3.

164 M. Grdtschel, O. Holland | Large-scale TSP’s

Al 4
A ¢

’
\ ’

AY / .
1
uw 3

A} 7
i

g
A}

4

’ \

’ Y ’ \
s v ’ v
/ \ ’ v

’ \
; \
o o
’ \
, Ny
S / \ -
~o Pid
~—
Pie S~
!
I~
2] 1
1
)
~.)
~
\CJ c
- —
-
1
1o
=
o
} -
-
~
~
~
e

4 [y 7 Y
7 \ s \

Fig. 4.4.

Transformation 4 (F,, see Figure 4.4). Suppose the edges uv, vx, xw, wu form a
cycle of N and have the following capacities

kuw:kvlea kuv;]_a: kxw=a5

for some a with 0 <a < 1. Contract the node sets {u, w} and {v, x}.

Transformation 5 (F;). Suppose {u, v, w} form a clique of U and k,, =1, k,,, + k., =3
is satisfied. Contract the node set {u, v}.

It should be clear that by using appropriate data structures all transformations
described above can be undone. We will now describe how these transformations
can be used to recognize violated comb constraints.

Generic comb heuristic (GCH).
Input: A graph H=(U, F) with capacities k,,ecF, and a sequence

F,,F,,..., F, of the transformations F, ..., Fs.
Step 1. (a) Starting with H perform all transformations F; , then all transforma-
tions F,, ..., and finally all transformations F, under the side constraint that an

original node u € U participates at most once in a contraction process, a new node
obtained by contraction and the endnodes of a new edge created in a transformation
of type F; never participate in a contraction performed in the same iteration that
generated them.

(b) If no transformation could be executed in (a) go to Step 3.

(c) Call the exact separation routine for 2-matching constraints. Stop the separ-
ation routine as soon as ten different violated 2-matching constraints are discovered.
Undo the transformations to the very top level and create the corresponding violated
comb constraints. Store these temporarily on a list. If the list contains more than
60 different comb inequalities go to Step 3.

Step 2. Call the new graph created in Step 1 H and return to Step 1.

Step 3. Determine the set of different comb inequalities on the list and remove
those inequalities a“x < s(C) for which a™x* —s(C)=<0.01. Simplify (see below)
the remaining comb inequalities and stop.

M. Grotschel, O. Holland | Large-scale TSP’s 165

Fig. 4.5.

It may happen, for instance, that the comb inequalities created above contain
long chains of edges of capacity 1 in the handle. In this case one can modify the
comb as indicated in Figure 4.5.

This way a new violated comb inequality with a smaller handle and more teeth
is created that has fewer nonzeros. There are further manipulations that can be
performed to get inequalities with fewer nonzeros. We try a couple of these (but
don’t want to give the details) and call the whole process simplification of comb
inequalities.

The generic comb heuristic GCH contains (again) many arbitrary-looking choices.
Most of these choices grew out of experiments. Let us explain one. In Step 1(a) we
add the condition that a newly created node may not participate in any further
contraction in this step. The reason is that we observed that unlimited use of these
transformations often shrinks a graph to nothing or that a violated comb constraint
visible as a violated 2-matching constraint after one transformation disappears after
a further transformation. Thus we decided to alternate between executing transfor-
mations and calling 2-matching separation and to iterate this process.

Now we describe how we set the free parameters F,,..., F,, of our generic
heuristic GCH.

Comb heuristic 1. Call GCH with the transformation sequence F;, F,, F;.
Comb heuristic 2. Call GCH with the transformation sequence F;, F,, F;.
Comb heuristic 3. Call GCH with the transformation sequence F,, Fs, F;.
Comb heuristic 4. Call GCH with the transformation sequence F,, F,, Fs.

We start each comb heuristic with capacities k, = x¥. Figure 4.6 shows the solution
graph G+ and a violated comb inequality detected by Comb Heuristic 1. Edges e
with x* =1 are drawn with solid lines; edges with x¥ =1 are drawn with dashed

lines. Figure 4.7 shows a solution graph G,« and a violated comb inequality
discovered by Comb heuristic 2.

166 M. Groétschel, O. Holland / Large-scale TSP’s

i
=
o

It is very hard to justify the choice of our transformations and the sequencing of
these transformations convincingly. We have based our decisions in this respect on
a careful analysis of fractional solutions arising in the cutting plane process and on
extensive computational experiments.

The overall procedure for recognizing violated comb constraints works as follows.
We call the Comb heuristics 1, 2, 3, 4 in this sequence. We only call the next heuristic
if the previous ones found fewer than 60 violated comb constraints. All inequalities
discovered in this process (see Box 11 of Figure 4.1) are then handed over to the
LP-solver (see Box 8 of Figure 3.2).

4.4. Finding violated clique tree inequalities

It is unknown at present whether or not the separation problem for clique tree
inequalities (2.7) can be solved in polynomial time. We have experimented with a
number of heuristics, similar in spirit to the ones described in Section 4.3. We have
concentrated our efforts on clique trees with exactly two handles and were able to
discover some violated inequalities of this type. However, our procedures were not
too successful; moreover, the clique tree inequalities increased the linear program-
ming lower bound only insignificantly. Thus we decided to drop our clique tree
recognition procedures from the current code for the time being. We believe that

M. Grétschel, O. Holland | Large-scale TSP’s 167

more research in this area is necessary to come to a final conclusion about the
usefulness of clique tree inequalities in a code as described here.

5. Computational results

We report here about a set of 31 symmetric travelling salesman problems and the
execution of 129 runs on this set of data. The problems are named by a number
and possibly a further letter. The number gives the number of cities. The additional
letter is used to distinguish between problems and to denote randomly generated
problems. If a name ends with a letter “R” it is a random problem; otherwise it is
a real world problem. The problems named

17,21, 24, 48, 96, 137, 202, 229, 431, 442, 666

are new problems. 442 is a drilling problem for a printed circuit board, all other
problems are geographical problems, partly based on road distances, partly based
on great circle distances on the globe. Data for these problems can be found in the
appendix. The other problems are from the following sources:

42: Dantzig, Fulkerson and Johnson (1962);

48H: Held and Karp (1962);

57: Karg and Thompson (1964);

70: Smith and Thompson (1977);

100A-E: Felts, Krolak and Marble (1971);

120: Grotschel (1977),

318: Lin and Kernigham (1973);

532: Padberg and Rinaldi (1987).

(Remark: The 318-city problem is a hamiltonian path problem. We added an
edge of length —9999 connecting the endpoints of the path to turn the problem in
a TSP instance.)

The random problems have sizes 100, 200, ..., 1000. The random distances were
generated uniformly from the range 1,...,5000. We have run all these problems
with our code using the next neighbour parameter NN € {0, 2, 5, 10}. There are two
exceptions. The problems 532 and 666 were not run for NN =35 and NN =10. We
expected prohibitive execution times.

The tests we report on have been performed on an IBM 3081D computer under
the VM-operating system. As subprograms we used IBM’s MPSX and MIP for the
solution of the linear and integer programs. To communicate with these standard
packages we used the ECL language feature of MPSX which is provided for PL/1.
Thus most programs had to be implemented in PL/1.

In Tables 5.1 and 5.2 we report about the cutting plane phase (see Section 3.2)
which uses the separation routines described in chapter 4. The first two columns of
all tables that follow define the run by giving the name of the problem (column
“Problem”) and the number of next neighbours (column “NN”’} which has been

168

Table 5.1

Statistics on cutting plane phase

M. Grétschel, O. Holland |/ Large-scale TSP’s

Problem NN Rows Var LP Pivots SP LB Time
17 0 28 39 7 337 4 2 085.0000 2%
17 2 28 40 7 406 4 2 085.0000 2%
17 5 28 57 4 148 1 2 085.0000 1
17 10 28 105 4 167 1 2 085.0000 1*
21 0 21 28 4 167 4 2 707.0000 2%
21 2 21 32 2 61 2 2 707.0000 1%
21 5 21 68 1 27 1 2 707.0000 1%
21 10 21 128 1 25 1 2 707.0000 1%
24 0 26 41 3 129 2 1272.0000 1%
24 2 27 48 4 251 2 1.272.0000 1%
24 5 28 30 3 172 1 1 272.0000 1%
24 10 27 150 2 97 1 1272.0000 3%
42 0 58 139 15 1729 4 699.0000 7%
42 2 56 113 7 818 4 698.0000 4
42 5 56 134 12 1363 2 699.0000 S
42 10 56 258 9 830 1 698.0000 4
48 0 102 127 38 6 545 5 5 041.0000 33
48 2 99 116 33 5427 3 5039.2500 20
48 5 91 154 26 3867 2 5039.5000 15
48 10 105 289 26 4119 1 5039.5000 19
48H 0 58 74 9 745 3 11 461.0000 3%
48H 2 63 84 10 1060 3 11 461.0000 3
48H 5 62 152 6 673 1 11 461.0000 2%
48H 10 62 300 6 692 1 11 461.0000 3%
57 0 79 122 26 4839 5 12 955.0000 20%
57 2 107 112 20 2804 2 12 955.0000 11%
57 5 121 186 26 4397 2 12 955.0000 21%
57 10 97 369 20 3363 1 12 955.0000 13
70 0 117 171 41 10450 4 675.0000 39+
70 2 157 164 37 10028 4 675.0000 39
70 5 155 224 22 5222 2 675.0000 32
70 10 140 414 31 7616 1 675.0000 38+
96 0 269 287 80 46 462 5 55113.7500 186
96 2 291 270 77 40 652 4 55123.5000 179
96 5 238 316 60 26 581 2 55052.3754 141
96 10 206 573 44 16 860 1 55 108.3000 101

100A 0 223 318 47 20940 5 21 262.5000 61
100A 2 218 318 51 18 026 5 21 262.5000 55
100A 5 191 312 50 18 319 3 21 270.5000 73
100A 10 206 592 43 16 198 2 21271.5000 67
100B 0 273 331 78 40 808 4 22 114.0000 183
100B 2 250 317 63 30033 4 22 101.0000 110
100B 5 266 342 56 26 570 3 22 114.0000 136
100B 10 244 583 56 26993 1 22 128.6667 124
100C 0 170 274 46 15480 5 20 710.0000 32
100C 2 182 238 48 14 478 3 20 710.0000 41
100C 5 212 307 52 19 021 4 20729.3333 70
100C 10 172 590 30 7958 1 20 710.0000 39
100D 0 191 346 47 17 666 5 21 269.0000 46
100D 2 183 293 39 13 863 5 21 294.0000 42%

M. Grétschel, O. Holland | Large-scale TSP’s 169
Table 5.1—continued
Problem NN Rows Var LP Pivots SP LB Time
100D 5 184 324 42 14719 3 21 294.0000 46+
100D 10 157 577 21 5896 1 21 269.0000 19
100E 0 290 333 86 42372 4 22 032.2500 195
100E 2 273 308 98 46716 4 22 039.1667 213
100E 5 294 327 64 37475 2 22 033.0000 193
100E 10 268 580 63 28 094 1 22032.2500 162
100R 0 101 178 3 602 2 9 663.0000 3=
100R 2 101 198 3 696 2 9 663.0000 4
100R 5 101 310 2 311 1 9 663.0000 3%
100R 10 101 571 2 343 1 9 663.0000 3%
120 0 256 298 61 34115 4 6 942.0000 109
120 2 245 288 58 28 112 4 6 942.0000 104
120 5 263 393 56 25150 3 6 942.0000 184
120 10 232 713 37 15166 2 6 942.0000 99
137 0 230 387 54 22 626 4 69 661.0000 116
137 2 234 365 55 23 571 4 69 733.8095 98
137 5 236 425 47 20299 2 69 733.8095 104
137 10 257 806 44 18296 1 69 753.4000 135
200R 0 227 411 19 7611 3 9 583.4836 73
200R 2 236 433 17 6402 1 9 583.5000 69
200R 5 220 631 12 4787 1 9 583.4500 46
200R 10 255 1162 17 6681 1 9 583.5000 126
202 0 457 469 91 74 860 5 40 154.3571 732
202 2 441 465 73 53603 4 40 153.3000 472
202 5 469 663 71 58 181 2 40 157.5000 555
202 10 402 1263 55 36 651 1 40151.6154 399
229 0 517 636 142 266 427 5 134 309.7728 1098
229 2 553 588 119 188 456 4 134 355.6111 1076
229 5 577 733 96 143 342 3 134 2759782 994
229 10 579 1389 115 156 575 1 134 344.3203 925
300R 0 305 613 4 2 866 2 10 286.0000 12+
300R 2 305 644 4 3435 2 10 286.0000 14
300R 5 304 980 4 2824 2 10 286.0000 14+
300R 10 304 1764 3 1821 1 10 286.0000 16%
318 0 599 907 102 214671 4 31327.3857 1167
318 2 617 903 84 183704 3 31333.0286 1651
318 5 706 1145 66 93 186 4 31319.7429 902
318 10 666 2020 69 92 848 2 31327.7071 846
400R 0 403 792 4 3211 2 9 501.0000 15%
400R 2 403 829 5 4816 3 9 501.0000 18x%
400R 5 403 1273 3 2213 1 9 501.0000 16%
400R 10 403 2365 3 2117 1 9 501.0000 20%
431 0 880 1117 166 544 179 7 171 172.2195 5068
431 2 876 993 130 311250 4 171 150.8823 3601
431 5 846 1407 99 211394 4 171 081.4944 2648
442 0 803 963 124 219843 5 5065.2273 1576
442 2 781 946 110 175428 4 5065.3333 1409
442 5 806 1374 92 107 581 5 5065.5357 783
442 10 756 2552 71« 77652 1 5065.5000 1025
500R 0 504 1025 5 6267 3 9 166.0000 28
S00R 2 502 1057 3 3616 2 9 166.0000 24

170 M. Grotschel, O. Holland | Large-scale TSP’s

Table 5.1—continued

Problem NN Rows Var LpP Pivots SP LB Time
S500R 5 504 1571 3 3244 1 9 166.0000 27
S00R 10 502 2924 2 2213 1 9 166.0000 28
532 0 972 1410 172 598 756 6 27 633.5908 3654
532 2 1011 1450 191 897 066 6 27 639.0466 6 004
600R 0 605 1224 6 9309 2 9 579.0000 104
600R 2 607 1278 8 11124 2 9 579.0000 132
600R 5 612 1907 8 20 052 2 9 579.0000 124
600R 10 610 3515 S 8 601 1 9 579.0000 123
666 0 1286 1644 154 610026 6 293 972.71577 5177
666 2 1363 1623 191 904 099 8 294 053.6900 10298
666 5 1331 2202 141 543 450 5 294 035.9669 6575
700R 0 705 1469 5 9160 2 10 129.0000 173
700R 2 705 1526 5 8740 2 10 129.0000 176
700R 5 703 2254 3 5656 1 10 129.0000 45%
700R 10 705 4104 4 9021 1 10 129.0000 164
800R 0 802 1729 4 11813 3 10 101.0000 278
800R 2 808 1787 5 20 806 3 10 101.0000 301
800R 5 802 2597 3 17 544 2 10 101.0000 301
800R 10 802 4682 2 5995 1 10 101.0000 261
900R 0 902 1951 3 12 005 2 10 006.0000 73%
900R 2 907 2011 6 20052 2 10 006.0000 166%
900R 5 902 2892 2 6475 1 10 006.0000 81x
900R 10 910 5272 5 24 506 1 10 006.0000 206%

1000R 0 1006 2129 9 24558 2 9971.0417 537
1000R 2 1006 2205 9 34941 2 9971.0417 546
1000R 5 1006 3222 9 37792 2 9971.0147 554
1000R 10 1006 5842 8 44 347 1 9971.0417 554

used to define the first linear program (see Boxes 2 and 3 of Figure 3.2, also see
Section 3.6). So, for most of the problems, four runs are documented.

We now describe Table 5.1. The column named “Rows” indicates the total number
of rows of the last LP that had to be solved during the cutting plane phase. We
delete rows according to the strategy described in Section 3.2. Thus this number
does not necessarily give the maximum number of rows that occurred in an LP
instance, but it is more significant as it indicates the complexity of the input for the
branch & bound phase. The final number of inequalities (in the last LP to obtain
the lower bound) is equal to “Rows” —|V/|. For all problems, this number is less
than 2| V| and for large problems it exceeds | V| only in a few cases. Observe that,
for the randomly generated problems, only a few (namely, 1-55) inequalities had
to be added.

The number of variables of the last LP (that had to be solved during the run of
the lower bound determination phase) is given in column “Var”. For the problems
with more than 200 nodes, 0.05% to 4% of the total number of variables of the
original problem were needed to obtain the lower bound given in column “LB”
which, on the average, is less than 0.1% off the optimum solution.

M. Grétschel, O. Holland | Large-scale TSP’s 171
Table 5.2
Details on cutting plane recognition

Prob. NN CG CD DC HS H2M HC MHC ES MS E2M M2M
17 0 11 11 0 11 0 0 0 0 0 0 0
17 2 11 11 0 11 0 0 0 0 0 0 0
17 5 1 11 0 11 0 0 0 0 0 0 0
17 10 11 11 0 11 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0
21 2 0 0 0 0 0 0 0 0 0 0 0
21 5 0 0 0 0 0 0 0 0 0 0 0
21 10 0 0 0 0 0 0 0 0 0 0 0
24 0 2 2 0 0 2 0 0 0 0 0 0
24 2 3 3 0 1 2 0 0 0 0 0 0
24 5 5 4 0 3 2 0 0 0 0 0 0
24 10 3 3 0 3 0 0 0 0 0 0 0
42 0 17 16 0 7 6 4 370 0 0 0 47
42 2 15 14 0 10 0 0 116 2 4 3 49
42 5 16 14 0 7 4 2 292 2 4 1 53
42 10 16 14 0 7 4 0 71 2 10 3 40
48 0 102 54 28 10 16 48 1570 8 181 20 724
48 2 82 51 8 11 21 25 1090 9 114 16 478
48 5 68 43 8 17 12 17 533 5 110 17 515
48 10 86 57 6 17 12 24 416 8 129 25 601
48H 0 11 10 0 9 2 0 0 0 0 0 0
48H 2 18 15 0 16 2 0 0 0 0 0 0
48H 5 19 14 0 17 2 0 0 0 0 0 0
48H 10 19 14 0 17 2 0 0 0 0 0 0
57 0 69 22 29 15 14 34 766 6 33 0 149
57 2 59 50 1 17 6 8 327 6 56 22 244
57 5 82 64 0 15 10 23 859 8 124 26 490
57 10 54 40 -0 15 10 8 255 7 50 14 295
70 0 106 47 26 18 22 37 2281 9 198 20 964
70 2 144 87 19 22 16 58 1697 10 244 38 1020
70 5 119 85 21 22 12 51 1413 10 125 24 600
70 10 108 70 12 22 10 31 1295 10 223 35 1016
96 0 315 173 80 26 23 142 7542 29 1500 95 4884
96 2 362 195 84 30 22 167 6397 31 1453 112 4672
96 5 261 142 50 24 8 103 4764 33 1303 93 4038
96 10 216 110 40 24 8 66 2381 35 738 83 2498
100A 0 176 123 1 19 36 38 731 42 278 41 1160
100A 2 164 118 1 31 45 17 492 35 304 36 1317
100A 5 189 91 39 26 41 48 570 28 365 46 1454
100A 10 157 106 1 29 22 25 395 26 421 55 1770
100B 0 338 173 70 24 45 153 4729 38 1220 78 3977
100B 2 261 150 42 32 24 87 2434 39 1035 79 3394
100B 5 281 166 46 36 10 116 2 808 34 972 85 3420
100B 10 249 144 39 35 10 85 1649 28 973 91 3588
100C 0 107 70 0 29 36 0 93 9 115 33 728
100C 2 135 82 6 25 38 19 652 19 178 34 986
100C 5 161 112 5 25 22 25 1546 20 491 69 2389
100C 10 111 72 8 23 18 10 204 11 190 49 1064
100D 0 135 91 8 25 41 30 676 20 162 19 663
100D 2 107 83 1 30 27 12 709 14 78 24 440

172

Table 5.2—continued

M. Grotschel, O. Holland | Large-scale TSP’s

Prob. NN CG CD DC HS H2M HC MHC ES MS E2M M2M
100D 5 141 84 3 28 29 11 433 40 204 33 749
100D 10 76 57 0 25 14 0 94 14 64 23 279
100E 0 426 190 66 23 29 147 8686 39 856 188 4354
100E 2 484 173 121 22 35 199 10571 42 940 186 4991
100E 5 399 194 50 24 12 125 4683 36 1159 202 4698
100E 10 351 168 37 27 12 77 2988 34 1041 201 4858
100R 0 1 1 0 1 0 0 0 0 0 0 0
100R 2 1 1 0 1 0 0 0 0 0 0 0
100R 5 1 1 0 1 0 0 0 0 0 0 0
100R 10 1 1 0 1 0 0 0 0 0 0 0
120 0 265 136 47 20 32 90 1397 46 761 77 2592
120 2 246 125 42 20 23 85 1397 53 990 65 3083
120 5 289 143 86 22 g 138 4794 47 1279 74 3925
120 10 163 112 21 23 8 53 1641 41 535 38 1794
137 0 172 93 25 24 28 57 2504 22 425 41 1399
137 2 151 97 11 25 20 27 1971 25 607 54 1780
137 5 184 99 28 34 16 37 1723 32 587 65 1887
137 10 195 120 15 35 12 47 2321 27 572 74 1793
200R 0 47 27 19 6 6 27 687 1 334 7 799
200R 2 58 36 19 9 4 35 1514 1 304 9 755
200R 5 41 20 18 9 4 19 432 1 159 8 386
200R 10 83 55 25 9 4 58 1249 1 333 11 817
202 0 500 255 145 40 18 286 17289 66 2160 90 8126
202 2 447 239 121 45 18 217 6955 57 1479 110 5793
202 5 449 267 124 48 24 242 10923 58 1723 77 6563
202 10 327 200 61 49 25 126 5498 54 1370 73 5174
229 0 780 288 185 48 46 305 34219 136 6589 245 20407
229 2 783 324 190 45 52 330 34726 121 5536 235 16967
229 5 658 348 104 48 23 256 29926 119 5715 212 16 843
229 10 670 350 98 48 23 233 17123 118 6 106 248 18969
300R 0 7 5 0 7 0 0 0 0 0 0 0
300R 2 7 5 0 7 0 0 0 0 0 0 0
300R 5 7 4 0 7 0 0 0 0 0 0 0
300R 10 7 4 0 7 0 0 0 0 0 0 0
318 0 684 281 193 79 28 256 32234 161 3631 160 13589
318 2 631 299 123 91 36 201 20222 143 3134 160 11813
318 5 514 388 16 100 6 171 26101 104 2932 133 10799
318 10 498 348 23 100 4 129 23378 105 2791 160 11176
400R 0 3 3 0 1 2 0 0 0 0 0 0
400R 2 3 3 0 1 2 0 0 0 0 0 0
400R 5 3 3 0 1 2 0 0 0 0 0 0
400R 10 3 3 0 1 2 0 0 0 0 0 0
431 0 1062 449 268 68 53 460 82058 228 12284 253 37886
431 2 1067 445 265 101 19 416 39071 205 9683 326 32055
431 5 593 275 62 100 10 95 3813 139 2786 249 10493
442 0 683 361 109 35 6 144 6548 176 4818 322 14348
442 2 722 339 108 49 48 131 9155 160 3706 334 11374
442 5 473 364 20 39 55 34 1732 96 2758 249 9347
442 10 489 314 79 37 44 93 1941 80 2714 235 8 766
500R 0 6 4 0 4 2 0 0 0 0 0 0
S00R 2 2 2 0 0 2 0 0 0 0 0 0

M. Grétschel, O. Holland | Large-scale TSP’s 173

Table 5.2—continued

Prob. NN CG CD DC HS H2M HC MHC ES MS E2M M2M

S500R 5 6 4 0 4 2 0 0 0 0 0 0
500R 10 2 2 0 0 2 0 0 0 0 0 0
532 0 1318 440 295 100 86 390 10722 262 11242 480 41152
532 2 1474 479 380 95 67 509 21059 376 16618 427 58837
600R 0 7 5 0 4 2 0 272 0 55 1 143
600R 2 10 7 0 4 4 1 878 0 121 1 310
600R 5 18 12 0 5 2 0 688 1 120 10 306
600R 10 10 10 0 1 2 1 538 2 81 4 205
666 0 1187 620 158 107 104 322 15069 288 13742 366 48075
666 2 1521 697 386 128 74 598 93317 299 20682 422 71003
666 5 1193 665 193 135 103 397 17989 246 13081 312 47541
700R 0 6 5 0 2 4 0 254 0 12 0 46
700R 2 6 5 0 2 4 0 254 0 12 0 46
700R 5 3 3 0 1 2 0 0 0 0 0 0
700R 10 6 5 0 2 4 0 127 0 6 0 23
800R 0 6 2 0 6 0 0 708 0 81 0 213
800R 2 12 8 0 6 0 0 708 2 112 4 286
800R 5 6 2 0 6 0 0 472 0 54 0 142
800R 10 6 2 0 6 0 0 236 0 27 0 71
900R 0 3 2 0 3 0 0 0 0 0 0 0
900R 2 10 7 0 3 0 3 526 1 39 3 121
900R 5 3 2 0 3 0 0 0 0 0 0 0
900R 10 12 10 0 3 0 2 636 0 60 7 167
1000R 0 15 6 0 13 2 0 1088 0 124 0 290
1000R 2 12 6 0 9 2 0 1088 1 127 0 315
1000R 5 12 6 0 9 2 0 1088 1 127 0 315
1000R 10 12 6 0 9 2 0 544 1 79 0 182

The number of linear programs which had to be solved (column “LP’’) exceeds
only in a few runs 3| V|. Column “Pivots” gives the total number of pivot-steps that
had to be performed (summed over all LP calls). The 532- and the 666-city problems
required the largest number of pivot-steps: about 900 000.

The number of times we had to enlarge the edge set of the subproblem considered
so far, i.e., the number of times Box 14 in Figure 3.2 had to be executed, is given
in column “SP”. Let us mention that in most runs only a few variables (usually less
than 10% of the number of variables given in column “Var’) were added during
the run to the initial LP defined in (5) of Section 3.2.

The time in seconds spent in the cutting plane phase of our algorithm, i.e., the
total execution time of Figure 3.2,.is given in column “Time”. One of the runs for
the 666-city problem took almost 3 hours while all the runs for the 1000-city problem
terminated after less than 10 minutes.

A “x” in the final column indicates that the cutting plane phase produced a
provably optimum tour, i.e., these problems did not enter the branch & bound phase:

174 M. Grétschel, O. Holland |/ Large-scale TSP’s

In all four 700R runs the cutting plane phase terminated with the optimum tour
value. But the optimum solution found was the incidence vector of a tour in only
one of these cases.

Table 5.2 describes the behaviour of our cutting plane recognition procedure
described in chapter 4. For each of the runs described above and identified by
columns “Prob” and “NN”, the following data have been recorded:

column “CG”: total number of cutting planes generated,

column “CD”’: total number of cutting planes deleted (the last LP solved during
the cutting plane phase contained CG— CD inequalities).

column “DC”: deleted comb inequalities.

The columns “HS”, “H2M" and “HC”’ give the number of heuristically determined
subtour-elimination-, 2-matching- and comb constraints. Note that, according to
our strategy, we run the second subtour elimination heuristic and the 2-matching
heuristic only in the first ten calls (of each major iteration) of the separation routine.
From our experiments we convinced ourselves that it pays off with respect to the
overall efficiency to use “good” cutting planes. During the first ten calls of the
separation routine we observed nicely-structured LP-solutions which allowed the
heuristic determination of ‘‘good” cutting planes. Because subtour elimination
constraints induced by connected components of the LP-solution graph are maximal
with respect to the violation of the right hand side, the first subtour elimination
heuristic has been called in all runs.

The number of cutting planes determined by our exact recognition procedures is
given in column “ES” for the subtour elimination constraints and column “E2M”
for the 2-matching constraints. As we grow in both cases a complete flow-equivalent
tree to determine as many violated inequalities (of a certain quality, cf. chapter 4)
as possible, the total number of performed max-flow calculations, reported in column
“MS” for the subtour elimination procedure and in column “M2M” for the exact
2-matching procedure, is a significant indicator for the total computational effort
that is necessary for the exact recognition procedures.

The number of max-flow calculations performed by the recognition procedure
for violated comb inequalities is reported in column “MHC”. The large numbers
reported here justify our strategy to execute this heuristic only if all other recognition
procedures fail.

For our present code there is no strong need to tune the cutting plane recognition
procedure in the sense of Padberg and Rinaldi (1990a), because the time spent in
these procedures (on the average about 25% of the execution time of the complete
LP-phase) is approximately the same as the time required to update the linear
programs (which is rather time-consuming with MPSX). But if the LP-package used
is better suited for a row generation process than MPSX is, the total speed-up
obtained by faster recognition procedures might be worth the higher programming
effort.

Table 5.3 reports on the branch & bound procedure described in Section 3.3.
Obviously, we did not run this procedure if the cutting plane phase ended with a

M. Grétschel, O. Holland | Large-scale TSP’s 175
Table 5.3
Statistics on branch & bound phase

Prob. NN M C T Fy Fy CR D S SV BV Piv Time Opt
42 2 1 0 0 46 14 41 0 10 17 113 104 3 699
42 10 1 0 0 193 15 41 2 11 16 258 118 3 699
48 0 1 0 0 31 12 74 1 6 13 128 308 4 5046
48 2 1 0 0 17 11 71 0 7 15 120 230 4 5046
48 5 1 0 0 53 11 57 0 6 13 154 209 3 5046
48 10 1 0 0 189 11 77] 7 14 289 210 4 5046
96 0 1 0 0 52 13 165 0 6 24 309 1128 22 55209
96 2 1 0 0 40 13 178 0 8 25 285 997 22 55209
96 5 1 0 0 49 10 119 0 5 21 344 789 22 55209
96 10 1 0 0 334 15 119 0 7 30 573 594 13 55209
100A 0 1 0 0 102 24 162 1 14 41 319 687 11 21282
100A 2 1 0 0 108 22 155 1 15 43 321 491 10 21282
100A 5 1 0 0 103 22 130 0 15 40 317 525 10 21282
100A 10 1 0 0 381 24 151 0 15 41 593 479 11 21282
100B 0 1 0 0 105 20 198 0 10 33 340 820 18 22141
100B 2 2 3 0 79 21 175 1 12 36 335 1458 20 22141
100B 5 1 0 0 109 21 193 0 10 33 353 870 20 22141
100B 10 1 0 0 370 26 182 3 14 36 585 785 12 22141
100C 0 2 1 0 60 19 91 0 11 35 288 1002 9 20749
100C 2 2 1 0 27 25 115 0 14 46 258 897 10 20749
100C 5 2 1 0 93 23 145 1 11 32 310 957 11 20749
100C 10 2 1 0 371 21 100 0 12 33 590 818 10 20749
100D 0 1 0 0 140 25 133 0 14 41 352 571 10 21294
100D 10 1 0 0 359 23 93 0 12 41 577 348 8 21294
100E 0 1 0 0 104 25 225 2 11 38 349 873 17 22068
100E 2 1 0 0 78 21 203 0 12 36 318 868 21 22068
100E S 1 0 0 86 25 225 1 11 35 336 1429 24 22068
100E 10 2 3 0 312 19 193 0 9 34 580 1614 28 22068
137 0 2 3 0 55 16 90 0 9 37 439 1608 21 69 853
137 2 2 3 0 68 22 114 0 14 37 393 1400 16 69853
137 5 1 0 0 124 25 116 1 14 37 445 609 14 69853
137 10 1 0 0 492 24 144 0 15 38 806 609 19 69853
200R 0 2 0 1 275 81 194 13 36 78 573 4128 32 9589
200R 2 2 0 1 271 75 204 7 35 77 573 4014 32 9589
200R 5 2 0 1 378 83 177 16 34 74 672 4075 28 9589
200R 10 2 0 1 859 78 245 9 38 80 1162 4837 23 9 589
202 0 3 3 1 278 53 497 2 26 79 656 6 666 131 40160
202 2 4 6 1 289 51 453 1 29 86 673 8998 179 40160
202 5 3 3 1 390 70 564 13 29 83 753 6 648 96 40160
202 10 5 7 1 888 52 402 3 27 83 1272 106094 138 40160
229 0 10 18 2 200 13 314 0 8 64 1165 83270 6489 134602
229 2 10 13 3 170 15 319 0 7 55 1015 77858 4018 134602
229 5 9 16 2 193 11 223 0 7 46 1248 82800 8190 134602
229 10 9 18 2 562 12 228 0 7 53 1471 56472 3355 134602
318 0 1 0 0 244 85 426 1 45 97 958 3750 121 31346
318 2 2 4 0 258 93 453 8 44 97 918 6926 162 31346
318 5 3 4 1 685 82 772 3 25 112 1495 13280 558 31346
318 10 4 4 2 1324 88 791 3 31 125 2056 22912 511 31346
431 0 13 26 3 5146 20 441 0 10 74 8024 209738 38052 171414
431 2 19 44 5 5170 17 277 1 8 69 8283 444034 58053 171414
431 5 17 29 4 5862 7 75 0 4 39 11112 315688 54190 171414
442 0 36 52 1 1870 45 388 2 31 90 2806 206560 7728 5069
442 2 29 54 2 1786 47 401 1 31 1006 2702 188323 12252 5069
442 5 41 99 2 1853 37 485 1 31 99 2774 334871 20 850 5069
442 10 39 66 2 2155 49 394 2 38 114 3074 179752 3105 5069
532 0 12 66 1 43 15 240 0 13 66 1411 173929 18 445 27 686

176 M. Grotschel, O. Holland | Large-scale TSP’s

Table 5.3—continued

Prob. NN M C T F, F, CR D 5 8y BV Piv Time Opt
+532 0 21 0 75 36 389 0 20 125 2657 197854 45081 2-7 636
532 2 i5 45 1 64 22 296 0 18 90 1451 154201 15766 27686
+532 2 11 30 0 73 19 298 0 12 99 3150 184210 29605 27636
600R 0 5 4 2 5505 251 477 53 145 233 6320 9174 161 9 580
600R 2 5 4 2 5498 250 484 50 147 229 6315 8496 170 9580
600R. 5 4 1 2 5538 269 511 69 141 223 6342 11171 157 9580
600R 10 4 4 1 5508 248 464 46 145 220 6331 149554 600 9 580
666 0 13 25 5 35 19 358 0 13 57 1645 198268 17674 294358
+666 0 3 2 0 55 22 215 0 14 93 5189 46663 9855 294358
666 2 16 27 7 43 23 491 0 15 61 1624 326517 33395 294358
+666 2 3 4 0 41 30 359 0 16 92 4195 35053 5879 294358
666 5 20 58 5 144 27 622 0 17 87 2203 399295 46081 294358
+666 5 3 4 0 166 31 317 0 20 128 4578 32138 4531 294358
700R 0 1 0 1 0 0 0 0 0 0 9561 1538 12 10129
700R 2 1 0 1 0 0 0 0 0 0 9570 1466 1210129
700R 10 1 0 1 0 0 0 0 0 0 9563 2267 12 10129
800R 0 2 0 1 11851 359 630 90 200 291 12930 6012 232 10102
800R 2 11 22 2 11848 347 693 87 186 311 12929 33249 803 10102
800R 5 10 18 2 11883 355 681 99 172 297 12958 43932 816 10102
800R 10 11 21 2 11797 343 658 91 168 294 12934 34246 805 10102
1000R 0 10 24 1 0 0 0 0 0 0 19815 27908 1616 9972
1000R 2 7 14 1 0 0 0 0 0 0 19842 25855 849 9972
1000R 5 7 16 1 0 0 0 0 0 0 19829 28063 1016 9972
1000R 10 7 14 3 0 0 0 0 0 0 19859 40629 1072 9972

tour. This was the case in 51 runs out of 129 runs. In Table 5.3 every run where
branch & bound was called is identified again by columns “Prob” and “NN”.

The total number of calls to MIP (see Box 6 in Figure 3.3) is given in column
“M”. Thus MIP provided us with M —1 integral solutions, from which T (column
“T”Y were tours. The number of subtour elimination constraints generated by Box
9 of Figure 3.3 is given in column “C”.

During the run of the branch & bound procedure F, (F;) variables have
been fixed to 0(1) by the procedure in Box 4 of Figure 3.3 and consequently
could be deleted from the integer program, which initially (after the execution of
Box 3 of Figure 3.3) contained “BV” variables. Fixing variables caused “CR”
rows to be changed. From the initial set of the | V] degree-equalities, “D” rows
obtained a right hand side of zero and could therefore be deleted from the integer
program.

Furthermore, fixing of variables allowed the introduction of S special ordered
sets (see Box 5 of Figure 3.3), involving “SV’” variables. As mentioned above, the
determination of these sets has been rather arbitrary and was not optimized with
respect to the number of variables involved or any other objective function.

The total number of pivot operations performed is reported in column “Piv”. To
obtain and “prove” the optimality of the shortest tour found which has length
“Opt”, “Time” seconds were needed.

M. Grétschel, O. Holland / Large-scale TSP’s 177

As described in Section 3.3, if the number of variables that would have to be
added according to Box 3 of Figure 3.3 exceeded 20 000, we did not add any variable
at all. We first executed the branch & bound phase on the smaller set of variables
to obtain a better upper bound. This has been necessary for the following runs:
Prob =532, NN € {0, 2}; and Prob =666 and NN € {0, 2, 5}. The second run with the
improved upper bound, which turned out to be the overall optimum solution in all
of our runs, is marked by the + sign in Table 5.3.

6. Conclusions

We would like to mention a few things that might improve the approach presented
here.

We are sure that the separation routines can still be improved with respect to
speed and success in finding cutting planes. In particular, there is much to be done
concerning comb constraints, clique tree inequalities and further classes of
inequalities not mentioned here.

A basic design error we made was to use a black box LP-solver. Commercial
LP-solvers like MPSX are certainly much faster than any such code we can come
up with. That is why we used it. But from a certain size on, in using MPSX most
time is wasted by communicating between the various parts of the code, setting up
and revising data structures. LP-solving, cutting plane addition, and branch & bound
have to be married in order to be really successful.

For instance, the branch & bound routine MIP of MPSX gives only very global
control to the user, and cutting planes cannot be added on the run. We tried, thus,
to write our own branch and bound environment. But although our branching
trees were considerably smaller we could not beat MIP in overall performance
because we had to access MPSX and its subroutines through slow communication
interfaces.

Padberg and Rinaldi (1987) use R. Marsten’s XMP code. This is certainly a
slower LP-solver than MPSX, but it can be adjusted to special needs. We believe
that this contributed significantly to the greater success of this code. It may, in fact,
well be that LP-solvers have to be run with special column and row selection rules
for LP-relaxations of combinatorial optimization problems in order to be really
efficient. Investigations of this type still have to be done.

It also remains to be checked whether the new interior point methods can help
to solve combinatorial optimization problems. What we need are efficient ways to
add and delete rows and columns dynamically and to resolve LP’s adjusted this
way frequently. The rumours that interior point methods are particularly successful
for solving large scale linear programs might give rise to hopes that also the solvability
of problems like the TSP can be pushed an order of magnitude further. There is
still much to be done.

178 M. Grétschel, O. Holland |/ Large-scale TSP’s

7. Appendix. Data and optimal solutions of new problems

The problems 17, 21, 24 and 48 are derived from road maps. The corresponding
distance matrices are defined in the sequel as upper triangular matrices with main
diagonal (=0) stored columnwise.

The problems 96, 137, 202, 229, 431 are subproblems of the 666-city-problem,
which is defined by the list of coordinates in Table 7.5 and the PASCAL procedure
of Table 7.6 for the determination of great circle distances. The subproblems are
defined by the following coordinates of the 666-city-problem:

96: 139-234, 137: 2-138, 202: 235-436, 229: 437-665, 431: 235-665.
The 442-node problem is a drilling problem for a printed circuit board and is

defined by the integral distances d(x, y) obtained from the coordinates (rowwise
notation) in Table 7.7 by the following formula:

d(x, y) = SQRT((x, = x,)*+ (31— y2)*) + 0.5,
where SQRT denotes the FORTRAN IV real # 4 square root function.

Table 7.1
Data of the 17-city-problem

0 633 0 257 390 0 91 661 228 0 412 227 169 383 150 488 112
120 267 0 80 572 196 77 351 63 0 134 530 154 105 309 34 29 0
259 555 372 175 338 264 232 249 0 505 289 262 476 196 360 444 402 495

0 353 282 110 324 61 208 292 250 352 154 0 324 638 437 240 421 329
297 314 95 578 435 0 70 567 191 27 346 83 47 68 189 439 287 254

0 211 466 74 182 243 105 150 108 326 336 184 391 145 0 268 420 53
239 199 123 207 165 383 240 140 448 202 57 0 246 745 472 237 528 364
332 349 202 685 542 157 289 426 483 0 121 518 142 84 297 35 29 36
236 390 238 301 55 96 153 336 0

(=]

Table 7.2
Data of the 21-city-problem

0 510 0 635 355 0 91 415 605 0 385 585 390 350 0 155 475 495
120 240 0 110 480 570 78 320 96 0 130 500 540 97 285 36 29 0
490 605 295 460 120 350 425 390 0 370 320 700 280 590 365 350 370 625

0 155 380 640 63 430 200 160 175 535 240 0 68 440 575 27 320 91

48 67 430 300 90 0 610 360 705 520 835 605 590 610 865 250 480 545

0 655 235 585 555 750 615 625 645 775 285 515 585 190 0 480 81 435
380 575 440 455 465 600 245 345 415 295 170 0 265 480 420 235 125 125
200 165 230 475 310 205 715 650 475 0 255 440 755 235 650 370 320 350
680 150 175 265 400 435 385 485 0 450 270 625 345 660 430 420 440 690

77 310 380 180 215 190 545 225 0 170 445 750 160 495 265 220 240 600
235 125 170 485 525 405 375 87 315 0 240 290 590 140 480 255 205 220
515 150 100 170 390 425 255 395 205 220 155 0 380 140 495 280 480 340
350 370 505 185 240 310 345 280
105 380 280 165 305 150 0

M. Grétschel, O. Holland | Large-scale TSP’s 179

Table 7.3
Data of the 24-city-problem

0 257 0 187 196 0 91 228 158 0 150 112 96 120 0 80 19 88
77 63 0 130 167 59 101 56 25 0 134 154 63 105 34 29 22 0
243 209 286 159 190 216 229 225 0 18 86 124 156 40 124 95 82 207
0 214 223 49 185 123 115 86 90 313 151 0 70 191 121 27 83 47
64 68 173 119 148 0 272 180 315 1838 193 245 258 228 29 159 342 209
0 219 83 172 149 79 139 134 112 126 62 199 153 97 0 293 50 232
264 148 232 203 190 248 122 259 227 219 134 0 54 219 92 8 119 31
43 58 238 147 84 53 267 170 255 0 211 74 81 132 105 150 121 108
310 37 160 145 196 99 125 173 0 290 139 98 261 144 176 164 136 389
116 147 224 275 178 154 190 79 0 268 53 138 239 123 207 178 165 367
86 187 202 227 130 68 230 57 86 0 261 43 200 232 98 200 171 131
166 90 227 195 137 69 82 223 90 176 90 0 175 128 76 146 32 76
47 30 222 56 103 109 225 104 164 99 57 112 114 134 0 25 99 89
221 105 189 160 147 349 76 138 184 235 138 114 212 39 40 46 136 96
0 192 228 235 108 119 165 178 154 71 136 262 110 74 96 264 187 182
261 239 165 151 221 0 121 142 99 84 35 29 42 36 220 70 126 55
249 104 178 60 96 175 153 146 47 135 169 0

Table 7.4
Data of the 48-city-problem

0 593 0 409 258 0 566 331 171 0 633 586 723 874 0 257 602 522
679 390 0 91 509 325 482 598 228 0 412 627 506 663 227 169 383 0
378 755 634 791 397 175 349 167 0 593 416 564 721 271 445 509 293 429

0 150 598 414 571 488 112 120 267 233 541 0 659 488 630 787 205 5i1
575 304 470 76 607 0 80 566 382 539 572 196 77 351 317 563 63 629

0 434 893 699 856 524 231 405 303 138 595 289 606 373 0 455 417 433
590 313 304 371 228 394 158 399 224 425 530 0 134 583 399 566 530 154
105 309 275 575 34 638 29 298 434 0 649 945 824 981 446 423 620 357
280 649 504 648 588 416 584 564 0 259 364 180 337 555 272 175 338 446
403 264 469 232 549 265 249 656 0 505 354 110 70 819 619 421 602 730
660 509 728 478 795 529 494 920 276 0 710 117 375 354 679 693 626 720
848 533 715 610 683 986 534 700 1038 481 345 0 488 784 663 820 289 262
459 196 119 488 .343 502 427 255 423 385 161 495 759 877 0 353 641 520
677 282 110 324~ T61 125 353 208 364 292 261 288 250 315 352 616 734 154

0 324 275 91 248 638 437 240 421 549 486 329 552 297 614 348 314 739

95 187 392 578 435 0 605 287 431 588 313 445 520 470 598 143 610 215
577 734 144 595 788 352 527 404 627 484 385 0 372 229 39 196 686 485
288 469 597 511397 578 345 662 396 361 787 143 135 346 626 483 54 377

0 330 484 361 518 378 119 260 150 278 323 174 389 276 414 185 207 468
193 475 577 307 164 276 326 324 0 581 877 756 913 370 355 552 289 212
581 436 571 520 348 516 478 84 583 852 970 93 247 671 720 719 400 0
154 460 276 433 612 298 63 453 419 460 190 526 158 475 322 175 690 126
372 577 529 396 191 471 239 250 622 0 70 523 339 496 569 191 27 346
312 515 83 589 47 368 385 68 583 189 435 640 422 287 254 534 302 249
515 115 0 606 183 216 147 715 719 522 703 831 549 611 615 579 896 546
596 1021 377 139 209 860 717 288 416 242 558 953 473 536 0 585 427 563
720 179 437 501 196 362 80 532 108 558 498 163 567 552 395 659 544 391
256 478 154 526 318 484 452 515 556 0 544 840 719 876 311 318 515 252
175 508 399 494 483 311 479 441 154 551 815 933 65 210 634 683 682 363

180

Table 7.4—continued

M. Grétschel, O. Holland |/ Large-scale TSP’s

77
435
128
307

395
211
572
475
391

425
721
700
512
558
340
656
778
488
779
235
436
142
556
759
523
284
168
429

94

116
436

84
349
423

585 479
387 162
336 0
732 88
648 68
412 95
660 476
777 271
137 295
254 609
654 151
262 103
299 0
1005 457
179 777
828 330
775 438
593 364
174 289
724 738
473 425
571 0
861 217
220 513
597 402
137 177

81 188
193 777
131 310
240 495
165 384
369 205
385 322
108 332
297 263
222 466
299 500

916
393
317
201
316
782
633
184
452
466
319
908
710
583
229
575
387
659
386
704
427
446
207
187
663
450
255
634
208
208
421
289
512
343
570
162
212

399
441
289
406
362
639
466
391
437
255
266
765
239
279
353
880
120
332
585
765
622
162
279
223
295
589
596
205
303
525
577
446
369
218

35

55
347

0 496
427 691
105 262
571 428
584 598
333 285

74 182
492 439
428 391
138 241
755 167
336 428
487 546
844 701

0 585
332 481
652 104
649 455
741 618
893 558

1015 655
111 268
700 557
391 289
612 459
722 675
636 439
297 159
279 92
291 225
454 92
537 328
149 238
290 421
636 29
583 562

525
646
631

21
564
287
243
166
452
309
570
290
616
490
135
215
289
349
132
793
718
624
128
226
387
196
620
475
367
682
429
286
230
164
319
429

595
280
430
407
625
482
171
364
580
702
751
606
660
310
385
719
121
846
431
624
343
559
325
360
827
495
648
870

32
302
355
209
354
432
381

751
145
233
68
753
875
489
252
271
342
879
1001
626
458
458
576

202
426
761
565
362

82

189
389
430
390
235
283
254
483
605
201

36
294

147 253 468
509 249 558
414 542 479
269 o664 184
418 653 434
515 578 209

66 555 150
145 673 438
480 337 448
405 287 278
561 659 627
521 584 122
687 815 443
544 937 577
499 535 501
365 200 356
246 373 183
279 490 685
395 434 630
1031 555 778
978 663 487
543 671 458
398 793 313
166 437 247
343 554 666
459 498 694
528 496 496
453 119 437
371 187 344
488 521 378
432 489 364
371 375 437
237 300 352
149 0 121
534 236 482
625 96 452

85
239
332
247
621
425
227
327
718
665
627
568
715
640
562
419
340
542
505

1083
138
451
376
404
531
569
813
833
581
103
165
343
378
570
687
631

251
373
545
302
891
838
351
327
268
376
944
964
509
393
690
812
745
157

535
855
524
175
749
221

80
427
535
348
384
569
554
568
386
373
687

208
538
290
471
415
523
108
384
465
277
558
666
683
450
333
452
472
525
788
552
307
419
463
435
589
635
513
219
151
150
224
269
445
543
238
562

351
430
607
627
638
347
432
715
770
167
644
350
953
900
590
515
237
144
208
188
284
736
756
150
208
290
938
139
364
219
154
360
172
518
301
336

236
654
341
503
943

326

222
542
1069
169
440
548
399
318
528
383
456
922
138
455
563
590
372

294
590
469
614
301
673
281
142
581
765

Table 7.5
Data of the 666-city-problem

No.

City

Coordinates

. City

Coordinates

= N S

North Pole
Barrow
Fairbanks
Anchorage
Juneau
Vancouver

90.00
71.17
64.51
61.13
58.20
49.16

0.00
—156.47
—147.43
—149.53
—134.27
—123.07

[o R |

10
11
12

Edmonton
Calgary
Regina
Saskatoon
Winnipeg
Churchill, Can

53.33
51.03
50.25
52.07
49.53
58.46

—-113.28
—114.05
—104.39
—106.38
~97.09
-94.10

M. Grétschel, O. Holland | Large-scale TSP’s 181
Table 7.5—continued
No. City Coordinates No. City Coordinates
13 Toronto 4339 -79.23 64 Villahermosa 17.59 -92.55
14 Ottawa 45.25 —75.42 65 Merida 20.58 —89.37
15 Montreal 4531 —73.34 66 Belize 17.30 —88.12
16 Quebec 46.49 —71.14 67 Guatemala City 1438 —90.31
17 Halifax, Can 4439 —63.36 68 San Salvador 1342 —89.12
18 St. John’s, Newf 47.34 —52.43 69 Tegucigalpa 14.06 —87.13
19 Seattle 4736 —122.20 70 Managua 12.09 —86.17
20 Spokane 47.40 -—117.23 71 San Jose 9.56 —84.05
21 Sacramento 38.35 -—121.30 72 Panama 8.58 -79.32
22 San Francisco 37.48 -—122.24 73 La Habana 23.08 —82.22
23 Los Angeles 34.03 ~118.15 74 Santa Clara 2224 —79.58
24 San Diego 3243 -117.09 75 Santiago de Cuba 2001 —75.49
25 Salt Lake City 40.46 —111.53 76 Kingston, Jam 18.00 —76.48
26 Phoenix, Ariz 33.27 -112.05 77 Port-au-Prince 1832 -72.20
27 Denver, Colo 39.43 —105.01 78 Santo Domingo 18.28 —69.54
28 Albuquerque 3505 -—106.40 79 San Juan, P Rico 18.28 —66.07
29 El Paso, Tex 3145 -106.29 80 Port-de-France 1436 —61.05
30 Duluth, Minn 46.47 —92.06 81 Bridgetown 13.06 —59.37
31 Minneapolis 4459 —93.13 82 Port of Spain 1039 —61.31
32 Omaha 41.16 —95.57 83 Willemstad 12.06 —68.56
33 Kansas Clty 39.07 —94.39 {4 Cayenne 4.56 —52.20
34 Oklahoma City 35.28 -97.32 85 Paramaribo 5.50 5510
35 Dallas 3247 -96.48 86 Georgetown, Guy 6.48 —58.10
36 Houston, Tex 29.46 —95.22 87 Caracas 10.30 —66.56
37 Milwaukee 43.02 8755 88 Maracaibo 1040 —71.37
38 Chicago 41.53 8738 89 Barranquilla 10.59 —74.48
39 St. Louis 38.39 —90.25 90 Medellin 6.15 —75.35
40 Memphis 35.08 —90.03 91 Bogota 436 —74.05
41 New Orleans 29.58 —90.07 92 Cali 3.27 -76.31
42 Detroit, Mich 4220 —83.03 93 Villamil, Galap -0.56 —91.01
43 Pittsburgh 40.26 —80.00 94 Quito -0.13 —78.30
44 Cincinnati 39.06 —84.31 95 Riobamba —1.40 —78.38
45 Atlanta, Ga 3345 —84.23 96 Guayaquil -2.10 ~79.50
46 Boston, Mass 42.21 —71.04 97 Iquit()s —3.46 —-73.15
47 New York 4043 —74.01 98 Trujillo -8.07 -79.02
48 Philadelphia 39.57 —75.07 99 Lima, Peru -12.03 -77.03
49 Washington 38.54 —-77.01 100 Cuzco —13.31 -71.59
50 Jacksonville, Fl 30.20 —81.40 101 Arequipa —-16.24 -71.33
51 Miami 25.46 —80.12 102 La Paz, Bol -16.30 —68.09
52 Nassau, Bahamas 25.05 -77.21 103 Santa Cruz —17.48 —63.10
53 Chihuahua 28.38 —106.05 104 Potosi —19.35 —65.45
54 Torreon 25.33 —103.26 105 Antofagasta -2339 -70.24
55 Monterrey 25.40 —100.19 106 Santiago de Chi —33.27 —=70.40
56 Tampico 2213 9751 107 Concepion —36.50 —73.03
57 San Luis Potosi 22.09 -100.59 108 Punta Arenas —-53.09 -70.55
58 Guadalajara 20.40 —103.20 109 Stanley, Falkl -5142 -57.51
59 Ciud. de Mexico 19.24 -99.09 110 Bahia Blanca —38.43 —62.17
60 Puebla 19.03 -98.12 111 Mar Del Plata —38.00 —57.33
61 Veracruz 1920 —96.40 112 Montevideo -3450 —56.12
62 Acapulco 16.51 —99.55 113 Buenos Aires -34.36 —58.27
63 Oaxaca 17.03 -96.43 114 Rosario, Arg —32.57 —60.40

182

Table 7.5—continued

M. Grouschel, O. Holland | Large-scale TSP’s

No. City Coordinates No. City Coordinates
115 Cordoba, Arg -31.24 —64.11 166 Djibouti 11.36 43.09
116 Mendoza —32.53 —68.49 167 Nouakchott 18.06 —15.57
117 Tucuman -2649 —65.13 168 Dakar 1440 -17.26
118 Asuncion -25.16 —57.40 169 Banjul 1328 —16.39
119 Porto Alegre -30.04 -51.11 170 Bissau 11.51 —1535
120 Florianopolis —27.35 —4834 171 Tombouctou 16.46 -3.01
121 Curitiba —25.25 —49.15 172 Bamako 12.39 —8.00
122 Sao Paulo -23.32 —46.37 173 Kankan 10.23 -9.18
123 Rio de Janeiro —22.54 —43.14 174 Conakry 931 -—13.43
124 Ouro Preto —20.23 —43.30 175 Freetown 830 -—13.15
125 Belo Horizonte —19.55 —43.56 176 Monrovia 6.18 —1047
126 Campto Grande —20.27 5437 177 Abidjan 5.19 -4.02
127 Cuiaba -1535 —56.05 178 Kumasi 6.41 ~1.35
128 Goiania —16.40 —49.16 179 Accra 5.33 -0.13
129 Brasilia —15.47 4755 180 Lome 6.08 1.13
130 Salvador -12.59 -38.31 181 PortoNovo, Ben 6.29 2.37
131 Recife —-8.03 —34.54 182 Ouagadougou 12.22 -1.31
132 Natal —-547 -3513 183 Niamey 13.31 2.07
133 Fortaleza -3.43 3830 184 Kano 12.00 8.30
134 Teresina —5.05 —42.49 185 Maiduguri 11.51 13.10
135 Sao Luis —-231 -—44.16 186 Ndjamena 12.07 15.03
136 Belem —-1.27 —48.29 187 Lagos 6.27 3.24
137 Manaus -3.08 —60.01 188 Enugu 6.27 7.27
138 Porto Velho —8.46 —63.54 189 Sao Tome 0.20 6.44
139 Praia, Cp Verfe 1455 —23.31 190 Malabo 3.45 8.47
140 Las Palmas, Can 28.06 —15.24 191 Yaounde 3.52 11.31
141 Funchal, Madeira 3238 —16.54 192 Bangui 422 18.35
142 Marrakech 31.38 -8.00 193 Libreville 0.23 9.27
143 Casablanca 33.39 ~17.35 194 Brazzaville —4.16 15.17
144 Rabat 3402 -651 195 Kinshasa -4.18 15.18
145 Fes 34.05 —4.57 196 Mbandaka 0.04 18.16
146 Tanger 35.48 —5.45 197 Kananga —5.54 22.25
147 Oran 35.43 —0.43 198 Kisangani 0.30 25.12
148 Alger 36.47 3.03 199 Bujumbura -3.23 29.22
149 Tamanrasset 22.56 5.30 200 Kigali -1.57 30.04
150 Constantine 36.22 6.37 201 Kampala 0.19 32.25
151 Tunis 36.48 10.11 202 Nairobi -1.17 36.49
152 Sfax 34.44 10.46 203 Mogadisho 2.01 45.20
153 Tarabulus 32.54 13.11 204 Mombasa -4.03 39.40
154 Banghazi 32.07 20.04 205 Zanzibar —6.10 39.11
155 Al-Iskandariyah 31.12 29.54 206 Dar-Es-Salaam —6.48 39.17
156 Bur Said 31.16 32.18 207 Luanda ~8.48 13.14
157 As-Suways 29.58 32.33 208 Huambo —12.44 15.47
158 Al-Qahirah 30.03 31.15 209 Lubumbashi —11.40 27.28
159 Aswan 24.05 32.53 210 Kitwe -12.49 28.13
160 Bur Sudan 19.37 37.14 211 Lusaka —15.25 28.17
161 Al-Khurtum 15.36 32.32 212 Bulawayo —20.09 28.36
162 Al-Ubayyid 13.11 30.13 213 Salisbury -17.50 31.03
163 Al-Fashir 13.38 25.21 214 Blantyre —15.47 35.00
164 Asmera 15.20 38.53 215 Beira, Moc —-19.49 34.52
165 Addis Abeba 9.00 38.50 216 Maputo —25.58 3235

M. Grétschel, O. Holland / Large-scale TSP’s 183

Table 7.5—continued

No. City Coordinates No. City Coordinates
217 Saint Helena —15.57 —5.42 268 Le Havre 49.30 0.08
218 Tristan Da Gunha -37.15 —12.30 269 Paris 48.52 2.20
219 Walvisbaai —22.59 14.31 270 Reims 49.15 4.02
220 Windhoek —22.34 17.06 271 Dijon 47.19 5.01
221 Luederitz —26.38 15.10 272 Nancy 48.41 6.12
222 Gaborone —24.45 25.55 273 Strasbourg 48.35 7.45
223 Pretoria —25.45 28.10 274 Luxembourg 49.36 6.09
224 Johannesburg -26.15 28.00 275 Liege 50.38 5.34
225 Bloemfontein —-29.12 26.07 276 Bruxelles 50.50 4.20
226 Durban —29.55 30.56 277 Lille 50.38 3.04
227 East London -33.00 27.55 278 Gent 51.03 3.43
228 Port Elizabeth —33.58 25.40 279 Antwerpen 51.13 4.25
229 Cape Town —33.55 18.22 280 Eindhoven 51.26 5.28
230 Tulear -23.21 43.40 281 Rotterdam 51.55 428
231 Antananarivo —18.55 47.31 282 Amsterdam 52.22 4.54
232 Diego-Suarez —12.16 49.17 283 Utrecht 52.05 5.08
233 Pt. Louis, Maur -20.10 57.30 284 Groningen 53.13 6.33
234 Victoria, Seych —4.38 55.27 285 Plymouth 50.23 -4.10
235 Pt. Delgada, Azr 3744 -25.40 286 Bournemouth 50.43 —1.54
236 Lisboa 38.43 -9.08 287 Brighton 50.50 —0.08
237 Porto 41.11 —-8.36 288 Cardift 51.29 -3.13
238 Sevilla 37.23 -5.59 289 Bristol 51.27 —2.35
239 Cadiz 36.32 —6.18 290 London 51.30 -0.10
240 Malaga 36.43 -4.25 291 Birmingham 52.30 -1.50
241 Granada 37.13 -3.41 292 Liverpool 53.25 —2.55
242 Cordoba, Esp 37.53 —4.46 292 Manchester 53.30 —2.15
243 Alicante 38.21 -0.29 294 Sheffield 53.23 -1.30
244 Valencia 39.28 -0.22 295 Leeds 53.50 —1.35
245 Barcelona 41.23 2.11 296 Newcastle Up. T 54.59 —-1.35
246 Zaragoza 41.38 -0.53 297 Edinburgh 55.57 -3.13
247 Madrid 40.24 -341 298 Glasgow 55.53 —4.15
248 Valladolid 41.39 —4.43 299 Dundee 56.28 -3.00
249 Bilbao 43.15 —2.58 300 Aberdeen 57.10 -2.04
250 La Coruna 43.22 —8.23 301 Lerwick, Shetl 60.09 -1.09
251 Ibiza 38.54 1.26 302 Torshavn, Faeroe 62.01 —6.46
252 Palma de Mallor 39.34 2.39 303 Cork 51.54 —8.28
253 Andorra 42.30 1.31 304 Limerick 52.40 —8.38
254 Bordeaux 44.50 —0.34 305 Dublin 53.20 —6.15
255 Toulouse 43.36 1.26 306 Belfast 54.35 —5.55
256 Marseille 43.18 5.24 307 Londonderry 55.00 -7.19
257 Nice 43.42 7.15 308 Reykjavik 64.09 —21.51
258 Monaco 43.42 7.23 309 Godthab 64.11 —51.44
259 Bastia, Fr 42.42 9.27 310 Thule 76.34 —68.47
260 Limoges 45.50 1.16 311 Hammerfest 70.40 23.42
261 St. Etienne 45.26 4.24 312 Narvik 68.26 17.25
262 Lyon 45.45 4.51 313 Qulu 65.01 25.28
263 Grenoble 45.10 543 314 Tampere 61.30 23.45
264 Brest 48.24 —4.29 315 Turku 60.27 22.17
265 Rennes 48.05 —1.41 316 Helsinki 60.10 24.58
266 Nantes 47.13 ~1.33 317 Trondheim 63.25 10.25

267 Tours 47.23 041 318 Bergen 60.23 5.20

184

Table 7.5—continued

M. Grotschel, O. Holland |/ Large-scale TSP’s

No. City Coordinates No. City Coordinates
319 Stavanger 58.58 5.45 370 Graz 47.05 15.27
320 Oslo 59.55 10.45 371 Torino 45.03 7.40
321 Goeteborg 57.43 11.58 372 Milano 45.28 9.12
322 Malmoe 55.36 13.00 373 Verona 45.27 11.00
323" Linkoeping 58.25 15.37 374 Venezia 45.27 12.21
324 Stockholm 59.20 18.03 375 Trieste 45.40 13.46
325 Visby 57.38 18.18 376 Genova 4425 8.57
326 Arhus 56.09 10.13 377 Bologna 44.29 11.20
327 Odense 55.24 10.23 378 Firenze 43.46 11.15
328 Kobenhavn 55.40 12.35 379 San Marino 43.55 12.28
329 Bremen 53.04 8.49 380 Cagliari 39.20 9.00
330 Hamburg 53.33 9.59 381 Roma 41.54 12.29
331 Kiel 54.20 10.08 382 Napoli 40.51 14.17
332 Rostock 54.05 12.07 383 Foggia 41.27 15.34
333 Muenster 51.57 7.37 384 Bari 41.07 16.52
334 Hannover 52.24 9.44 385 Taranto 40.28 17.15
335 Magdeburg 52.07 11.38 386 Messina 38.11 1533
336 Berlin 5231 13.24 387 Catania 37.30 15.06
337 Aachen 50.47 6.05 388 Palermo 38.07 13.21
338 Bonn 50.44 7.05 389 Valetta, Malta 3554 1431
339 Koeln 50.56 6.59 390 Szczecin 53.24 14.32
340 Duesseldorf 51.12 6.47 391 Gdansk 54.23 18.40
341 Schwelm 51.17 7.17 392 Bydgoszcz 53.08 18.00
342 Essen 51.28 7.01 393 Poznan 52.25 16.55
343 Bochum 51.28 7.13 394 Lodz 51.46 19.30
344 Herne 51.32 7.13 395 Warszawa 52.15 21.00
345 Dortmund 5131 7.28 396 Bialystok 53.09 23.09
346 Kassel 51.19 9.29 397 Wroclaw 51.06 17.00
347 Erfurt 50.58 11.01 398 Katowice 50.16 19.00
348 Halle 51.29 11.58 399 Krakow 50.03 19.58
349 Leipzig 51.19 12.20 400 Lublin 51.15 22.35
350 Karl-Marx-Stadt 50.50 12.55 401 Plzen 49.45 13.23
351 Dresden 51.03 13.44 402 Praha 50.05 14.26
352 Saarbruecken 49.14 6.59 403 Ostrava 49.50 18.17
353 Frankfurt/Main 50.07 8.40 404 Brno 49.12 16.37
354 Heidelberg 49.25 8.43 405 Bratislava 48.09 17.07
355 Wuerzburg 49.48 9.56 406 Kosice 43.43 21.15
356 Nuernberg 49.27 11.04 407 Budapest 47.30 19.05
357 Karlsruhe 49.03 8.24 408 Debrecen 47.32 21.38
358 Stuttgart 48.46 9.11 409 Pecs 46.05 18.13
359 Regensburg 49.01 12.06 410 Szeged 46.15 20.09
360 Muenchen 48.08 11.34 411 Timisoara 45.45 21.13
361 Geneve 46.12 6.09 412 Clyj 46.47 23.36
362 Lausanne 46.31 6.38 413 Iasi 47.10 27.35
363 Bern 46.57 7.26 414 Sibiu 45.48 24.09
364 Basel 47.33 7.35 415 Brasov 45.39 25.37
365 Zuerich 47.23 8.32 416 Bucuresti 44.26 26.06
366 Innsbruck 47.16 11.24 417 Constanta 44.11 28.39
367 Salzburg 47.48 13.02 418 Ljubljana 46.03 14.31
368 Linz 48.18 14.18 419 Rijeka 45.20 14.27
369 Wien 48.13 16.20 420 Zagreb 45.48 15.58

M. Grétschel, O. Holland | Large-scale TSP’s 185
Table 7.5—continued
No. City Coordinates No. City Coordinates
421 Split 43.31 16.27 472 Samarkand 39.40 66.48
422 Sarajevo 43.52 18.25 473 Dusanbe 38.35 68.48
423 Beograd 44.50 20.30 474 Wulumugqi 43.48 87.35
424 Dubrovnik 42.38 18.07 475 Irkutsk 52.16 104.20
425 Skopje 41.59 21.26 476 Ulaan Baatar 4755 106.53
426 Tirane 41.20 19.50 477 Cita 52.03 113.30
427 Sofija 42.41 23.19 478 Jakutsk 62.13 129.49
428 Plovdiv 42.09 24.45 479 Anadyr 6445 177.29
429 Varna 43.13 27.55 480 Petropavlovsk 53.01 158.39
430 Burgas 42.30 27.28 481 Magadan 59.34 15048
431 Kerkira 39.36 19.56 482 Blagovescensk 50.17 12732
432 Thessaloniki 40.38 22.56 483 Komsomolsk 50.35 137.02
433 Patrai 38.15 21.44 484 Chabarovsk 48.27 135.06
434 Athinai 37.58 23.43 485 Juzno-Sachalinsk 46.58 142.42
435 Iraklion 35.20 25.09 486 Vladivostok 43.10 131.56
436 Levkosia 35.10 33.22 487 Istanbul 41.01 28.58
437 Murmansk 68.58 33.05 488 Izmir 38.25 27.09
438 Archangelsk 64.34 40.32 489 Ankara 39.56 32.52
439 Leningrad 59.55 30.15 490 Kayseri 38.43 35.30
440 Tallinn 59.25 24.45 491 Sivas 39.45 37.02
441 Riga 56.57 24.06 492 Erzurum 39.55 41.17
442 Kaliningrad 54.43 20.30 493 Diyarbakir 37.55 40.14
443 Vilnius 54.41 25.19 494 Adana 37.01 35.18
444 Minsk 53.54 27.34 495 Halab 36.12 37.10
445 Lvov 49.50 24.00 496 Hims 34.44 36.43
446 Kijev 50.26 30.31 497 Dimashq 33.30 36.18
447 QOdessa 46.28 30.44 498 Bayrut 33.53 35.30
448 Moskva 55.45 37.35 499 Amman 31.57 35.56
449 Gorkij 56.20 44.00 500 Hefa 32.50 35.00
450 Kazan 55.45 49.08 501 Tel Aviv 32.04 34.46
451 Kujbysev 53.12 50.09 502 ‘Yerushalayim 31.46 35.14
452 Voronez 51.40 39.10 503 Al-Madinah 24.28 39.36
453 Charkov 50.00 36.15 504 Juddah 21.30 39.12
454 Dnepropetrovsk 48.27 34.59 505 Makkah 21.27 39.49
455 Sevastopol 44.36 33.32 506 Sana 15.23 44.12
456 Rostov-na-donu 47.14 39.42 507 Al-Hudaydah 14.48 42.57
457 Volgograd 48.44 44.25 508 Aden 12.45 45.12
458 Astrachan 46.21 48.03 509 Al-Mukalla 14.32 49.08
459 Thilisi 41.43 44.49 510 Masqat 23.37 58.35
460 Jerevan 40.11 44.30 511 Dubayy 25.18 55.18
461 Baku 40.23 49.51 512 Ad-Dawhah 25.17 51.32
462 Perm 58.00 56.15 513 Al-Manamah 26.13 50.35
463 Sverdlovsk 56.51 60.36 514 Ar-Riyad 24.38 46.43
464 Vorkuta 67.27 63.58 515 Al-Kuwayt 29.20 47.59
465 Norilsk 69.20 88.06 516 Al-Basrah 30.30 47.47
466 Omsk 55.00 73.24 517 Baghdad 33.21 44.25
467 Novosibirsk 55.02 82.55 518 Kirkuk 35.28 44.28
468 Krasnojarsk 56.01 92.50 519 Al-Mawsil 36.20 43.08
469 Karaganda 49.50 73.10 520 Tabriz 38.05 46.18
470 Alma Ata 43.15 76.57 521 Rasht 37.16 49.36
471 Taskent 41.20 69.18 522 Tehran 35.40 51.26

186 M. Grétschel, O. Holland | Large-scale TSP’s

Table 7.5—continued

No. City Coordinates No. City Coordinates
523 Kermanshah 34.19 47.04 574 Bangkok 13.45 100.31
524 Abadan 30.20 48.16 575 Pinang 525 100.20
525 Esfahan 32.40 51.38 576 Kuala Lumpur 310 101.42
526 Shiraz 29.36 52.32 577 Singapore 1.17 103.51
527 Kerman 30.17 57.05 578 Medan 3.35 98.40
528 Mashhad 36.18 59.36 579 Padang -0.57 100.21
529 Herat 34.20 62.12 580 Palembang —2.55 104.45
530 Quandahar 31.32 65.30 581 Jakarta —6.10 106.48
531 Kabul 34.31 69.12 582 Bandung —6.54 107.36
532 Rawalpindi 33.36 73.04 583 Yogyakarta —7.48 110.22
533 Lahore 31.35 74.18 584 Surabaya —7.15 112.45
534 Lyallpur 31.25 73.05 585 Denpasar —8.39 115.13
535 Multan 30.11 71.29 586 Kupang -10.10 12335
536 Quetta 30.12 67.00 587 Banjarmasin -3.20 11435
537 Sukkur 27.42 68.52 588 Kuching 1.33 110.20
538 Hyderabad, Pak 25.22 68.22 589 Brunei 4.56 114.55
539 Karacht 24.52 67.03 590 Samarinda -0.30 117.09
540 Dehra Dun 30.19 78.02 591 Ujung Pandang -5.07 11924
541 Delhi 28.40 77.13 592 Manado 1.29 12451
542 Jodhpur 26.17 73.02 593 Ambon -3.43 128.12
543 Jaipur 26.55 75.49 594 Tual —5.40 13245
544 Kanpur 26.28 80.21 595 Davao 7.04 12536
545 Varanasi 25.20 83.00 596 Cebu 10.18 123.54
546 Patna 25.36 85.07 597 lloilo 10.42 12234
547 Calcutta 22.32 88.22 598 Manila 14.35 121.00
548 Ahmadabad 23.02 72.37 599 Hongkong 2217 114.09
549 Nagpur 21.09 79.06 600 Kaohsiung 2238 120.17
550 Cuttack 20.30 85.50 601 Taipei 25.03 121.30
551 Bombay 18.58 72.50 602 Lasa 29.40 91.09
552 Hyderabad, India 17.23 78.29 603 Lanzhou 36.03 103.41
553 Vishakhapatnam 17.42 83.18 604 Xian " 3415 108.52
554 Hubli 15.21 75.10 605 Chengdu 3039 104.04
555 Bangalore 12.59 77.35 606 Chongging 29.39 106.34
556 Madras 13.05 80.17 607 Kunming 25.05 102.40
557 Tiruchchirappa. 10.49 78.41 608 Guangzhou 23.06 113.16
558 Madurai 9.56 78.07 609 Fuzhou 26.06 119.17
559 Colombo 6.56 79.51 610 Wuhan 30.36 11417
560 Katmandu 27.43 85.19 611 Nanjing 32.03 118.47
561 Thimbu, Bhutan 27.28 89.39 612 Shanghai 31.14 121.28
562 Dacca 23.43 90.25 613 Zhengzhou 3448 113.39
563 Chittagong 2220 91.50 614 Qingdao 36.06 120.19
564 Mandalay 22.00 96.05 615 Taiyuan 37.55 11230
565 Rangoon 16.47 96.10 616 Tianjin 39.08 117.12
566 Chiang Mai 18.47 98.59 617 Beijing 39.55 116.25
567 Luangphrabang 1952 102.08 618 Luda(Dairen) 38.53 12135
568 Viangchan 17.58 102.36 619 Shenyang 41.48 123.27
569 Hanoi 21.02 105.51 620 Haerbin 45.45 126.41
570 Hue 16.28 107.36 621 Pyongyang 39.01 125.45
571 Da-Nang 16.04 108.13 622 Soul 37.33 126.58
572 Saigon 10.45 106.40 623 Pusan 35.06 129.03

573 Phnum Penh 11.33 104.55 624 Sapporo 43.03 141.21

M. Grétschel, O. Holland | Large-scale TSP’s 187
Table 7.5—continued
No. City Coordinates No. City Coordinates
625 Akita 39.43 140.07 646 Brisbane —27.28 153.02
626 Sendai 38.15 140.53 647 Townsville —-19.16 146.48
627 Tokyo 35.42 139.46 648 Alice Springs —23.42 133.53
628 Nagoya 35.10 136.55 649 Dunedin —45.52 170.30
629 Kanazawa 36.34 136.39 650 Christchurch —43.32 172.38
630 Kyoto 35.00 13545 651 Wellington —41.18 174.47
631 Osaka 34.40 135.30 652 Auckland —36.52 174.46
632 Hiroshima 3424 132.27 653 Nukualofa, Tonga -21.08 —175.12
633 Nagasaki 32.48 129.55 654 Paga Pago, Samoa —-14.16 —-170.42
634 Kagoshima 31.36 130.33 655 Suva, Fiji —18.08 178.25
635 Naha, Okinawa 26.13 127.40 656 Noumea, N. Caled =22.16 166.27
636 Guam 13.28 144.47 657 Honiara, Solomon -9.26 159.57
637 Jayapura, Irian -2.32 140.42 658 Nauru —0.32 166.55
638 Rabaul -4.12 15212 659 Bikini 11.35 165.23
639 Port Moresby -9.30 147.10 660 Honululu 21.19 -157.52
640 Darwin -12.28 130.50 661 Christmas Isl. 1.52 —-157.20
641 Perth -31.56 115.50 662 Hiva Oa, Marques —-9.45 —139.00
642 Adelaide —34.55 138.35 663 Papeete, Tahiti —17.32 —149.34
643 Melbourne -37.49 144.58 664 Pitcairn —25.04 —130.06
644 Hobart —42.53 147.19 665 Pascua, Isla de -27.07 —109.22
645 Sydney -33.52 151.13 666 South Pole -90.00 0.00
Table 7.6
Conversion routine for the 666-city-problem
Rrogrom camgisi{igput-output); .

r = 6378.388; equator radius of the ea th}
max_n =1000; {maximum number oi pointsi
var n, number of points
lauf, _
:I)lj,bb roaid"

: array(.1..max_n.) of real;

d

: array(.1..max_n,1..max_n.) o
function acos (x:real) : real;
:= pi/2.0 — arctan(x/sqrt(1.0 - x * x));

begin
acos
end;

function radian(degrees :
real;

var deg,min :
begin

deg :=

min =

radian :="pi
end;
function dist(bi
var cbdiff,cldif
begin

cldiff := cos(l
cbdiff := cos(b
cbsum := cos{b
dist = r *a

trunc(degrees);
degrees —~ deg:
i * (deg + 5.0 * min / 3.0) / 180.0;

real) : real;

real; {computg distance
wo p0|nts§
.0+ cidiff) * cbdiff
.0 — cldiff) * cbsum)) + 1.

eographic latitude in rad}
Egeogroghic longitude in rad}

ﬁdistance table}
real ;

{compute arcus cosine}

{convert degrees into radian}

between}

0;

188 M. Grétschel, O. Holland / Large-scale TSP’s

Table 7.6—continued

begin {main
rgsez(gnput}.
read(n);
if gn <'1) or {n > max_n)
hen begin
rewrite(output);
zr;%eln *“Number of points too large or not positive’);
a »
end; B
for i:= 1 to n do begin {input of coordinates}
read(bb,ll).
b{.i.) := radian(bb
| .i.g := radian(||
end;
gor i:=1 to n do
egin
Wiy = o
end;
fo; i:= 1 to n1—t1 dod {distance calculation}
or j:= 1 + o n do . . .
d(i,j.) i=dist(b(.i.),1(.i.),0(.5.).1C.5.))

rewrite(output);

writeln('10’)
writeln g
writein (1§ I)');
lauf :=
for j:= fo n
be? outgut of dlstance table}
or | =
begin
if lauf = 12 then
begin

writeln ;
Iauf = 6

end
wrlte(trunc$ (.i
lauf := lauf + 1
end ;
end;
writein ; H
end.

1J)):8);5

Table 7.7
Coordinates for the 442-PCB-problem

20 40 20 50 20 60 20 70 20 80 20 90 20 100
20 110 20 120 20 130 20 140 20 150 20 160 20 170
20 180 20 190 20 200 20 210 20 220 20 230 20 240
20 250 20 260 20 270 20 280 20 290 20 300 20 310
20 320 20 330 20 340 20 350 20 360 30 40 30 50
30 60 30 70 30 80 30 90 30 100 30 110 30 120
30 130 30 140 30 150 30 160 30 170 30 180 30 190
30 200 30 210 30 220 30 230 30 240 30 250 30 260
30 270 30 280 30 290 30 300 30 310 30 320 30 330
30 340 30 350 40 40 40 50 40 60 40 70 40 80
40 90 40 100 40 110 40 120 40 130 40 140 40 150
40 160 40 170 40 180 40 190 40 200 40 210 40 220
40 230 40 240 40 250 40 260 40 270 40 280 40 290

M. Grétschel, O. Holland | Large-scale TSP’s 189

Table 7.7—continued
40 300 40 310 40 320 40 330 40 340 40 350 40 360
50 150 50 183 50 310 60 40 70 30 70 60 70 150
70 160 70 180 70 210 70 240 70 270 70 300 70 330
70 360 80 30 80 60 80 103 80 150 80 180 80 210
80 240 80 260 80 270 80 300 80 330 80 360 90 30
90 60 90 150 90 180 90 210 90 240 90 270 90 300
90 330 90 360 100 30 100 60 100 110 100 150 100 163
100 180 100 210 100 240 100 260 100 270 100 300 100 330
100 360 110 30 110 60 110 70 110 90 110 150 110 180
110 210 110 240 110 270 110 300 110 330 110 360 120 30
120 60 120 150 120 170 120 180 120 210 120 240 120 270
120 300 120 330 120 360 130 30 130 60 130 70 130 113
130 150 130 180 130 210 130 220 130 240 130 270 130 300
130 330 130 360 140 30 140 60 140 93 140 150 140 180
140 200 140 210 140 240 140 250 140 270 140 282 140 290
140 300 140 330 140 360 150 150 150 180 150 190 150 210
150 240 150 270 150 280 150 286 150 300 150 330 150 360
160 110 160 130 160 150 160 180 160 210 160 240 160 270
160 300 160 330 160 360 170 120 170 150 170 180 170 210
170 240 170 360 180 30 180 60 180 123 180 150 180 180
180 210 180 240 190 30 190 60 190 300 190 352 200 30
200 37 200 60 200 80 200 90 200 100 200 110 200 120
200 130 200 140 200 150 200 160 200 170 200 180 200 190
200 200 200 210 200 220 200 230 200 240 200 250 200 260
200 270 200 280 200 290 200 300 200 310 200 350 210 30
210 60 210 320 220 30 220 47 220 60 220 320 230 30
230 60 230 340 240 30 240 60 240 210 250 30 250 80
260 40 260 50 260 80 260 90 260 100 260 110 260 120
260 130 260 140 260 150 260 160 260 170 260 180 260 190
260 200 260 210 260 220 260 230 260 240 260 250 260 260
260 270 260 280 260 290 260 300 260 310 260 340 270 70
270 80 270 90 270 100 270 110 270 120 270 130 270 140
270 150 270 160 270 170 270 180 270 190 270 200 270 210
270 220 270 230 270 250 270 260 270 270 270 280 270 290
270 300 270 310 270 320 270 330 270 340 270 350 270 360
270 370 270 380 280 90 280 113 290 40 290 50 290 140
290 240 290 300 300 70 300 80 300 90 300 100 300 110
300 120 300 130 300 150 300 160 300 170 300 180 300 190
300 200 300 210 300 220 300 230 300 250 300 260 300 270
300 280 300 290 300 300 300 310 300 320 300 330 300 340
300 350 300 360 300 370 300 380 15 350 15 355 47 255
47 335 47 345 54 233 54 243 62 365 62 371 75 255
85 52 85 70 85 228 94 74 95 222 91 260 105 105
115 135 117 228 122 221 135 75 135 170 135 214 145 77
155 30 155 50 155 185 165 105 169 268 171 31 171 51
175 75 179 258 172 261 179 333 172 341 183 270 183 280
183 345 206 165 205 315 217 190 211 200 212 275 215 325
229 140 222 282 228 325 239 130 232 150 245 71 262 365
275 52 276 236 285 220 285 270 285 335 293 95 295 175
295 205 52 320 230 350 232 315 53 210 255 71 75 49

0 0

190 M. Grétschel, O. Holland |/ Large-scale TSP’s

The optimal solutions are given in Tables 7.8, ..., 7.18 and Pictures 7.1, ...,7.7.
The tours are defined by the sequence of cities to be visited which is given in a
rowwise fashion.

Table 7.8
Optimal 17-city-tour, length: 2085

16 12 9 5 2 10 11 3 15 14 17 6 8 7 13 4 1

Table 7.9
Optimal 21-city-tour, length: 2707

Table 7.10
Optimal 24-city-tour, length: 1272

16 11 3 7 6 24 8 21 5 10 17 22 18 19 15 2 20 14 13 9 23 4 12 1

Table 7.11
Optimal 48-city-tour, length: 5046

29 7 28 44 41 46 18 34 23 25 3 19 4 30 38 20
35 42 39 40 2 45 43 47 37 24 15 10 12 31 5 33
8 22 21 17 27 32 9 14 6 2 36 11 16 48 13 1

Table 7.12
Optimal Africa-Tour (96 cities), length: 55209

29 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17
20 18 19 21 25 24 23 22 26 28 27 65 96 94 95 93
92 77 76 68 67 66 64 63 62 61 60 59 71 72 73 75
74 84 86 85 78 88 87 89 90 N 83 82 81 80 79 70
69 57 56 58 54 48 47 46 50 52 53 55 51 49 43 42
41 40 39 44 45 11 33 34 35 38 37 36 32 31 30 1

M. Groischel, O. Holland | Large-scale TSP’s 191
Table 7.13
Optimal America-Tour (137 cities), length: 69 853
2 3 4 5 18 19 7 6 9 8 26 24 20 21 22 23
25 27 28 52 53 54 55 56 57 61 58 59 60 62 63 64
65 66 67 68 69 70 92 97 98 99 100 101 104 103 102 126
125 117 116 114 115 105 106 107 108 109 110 111 112 113 118 119
120 121 122 123 124 127 128 129 130 131 132 133 134 135 83 84
85 136 137 96 94 95 93 91 90 89 71 88 87 82 86 81
80 79 78 71 76 75 74 51 73 72 50 49 44 43 42 48
47 46 45 16 17 15 14 13 12 41 36 37 38 39 40 35
34 33 32 31 30 29 10 11 1
Table 7.14
Optimal Europe-tour (202 cities), length: 40 160
1 3 16 14 13 12 15 20 26 33 32 31 30 51 69 70
71 72 73 64 63 65 66 62 61 60 59 58 57 54 55 52
56 53 34 35 36 40 118 38 37 28 27 29 127 128 129 131
130 39 123 124 120 119 121 122 125 126 132 133 134 167 168 117
116 115 114 113 112 99 111 110 109 108 107 106 105 104 103 41
42 43 44 45 46 47 49 48 50 95 100 101 102 156 98 96
97 93 92 94 88 87 86 83 84 85 67 68 74 75 76 77
78 79 80 82 81 90 89 91 157 158 159 163 160 161 162 166
165 164 169 170 135 171 173 172 174 178 180 181 179 182 183 195
196 202 201 200 199 197 198 194 193 191 192 190 187 188 189 177
176 175 186 136 184 185 141 140 139 143 144 145 147 148 149 150
151 152 153 155 154 146 25 142 138 137 24 23 22 21 19 11
18 17 10 9 7 6 8 4 5 2
Table 7.15
Optimal Asia-tour (229 cities), length: 134 602
1 28 29 31 32 39 40 41 42 45 44 43 224 225 226 229
228 227 218 217 219 220 216 215 214 213 208 207 206 209 210 211
203 202 221 222 223 200 201 158 204 212 205 149 148 147 146 145
144 143 142 139 140 141 152 153 154 151 155 150 157 156 159 160
161 162 164 165 173 163 172 174 175 176 199 198 197 187 196 195
194 192 193 191 190 189 188 49 47 48 46 184 50 186 185 183
182 178 180 181 179 177 168 167 169 170 171 133 134 135 136 137
138 132 131 130 129 128 127 126 111 114 117 113 116 120 123 122
121 119 118 115 112 103 102 101 100 94 93 92 36 35 37 95
96 97 98 99 106 107 105 104 108 109 110 124 125 166 38 34
33 30 27 26 15 14 13 12 16 17 18 20 21 22 23 24
56 57 83 82 81 87 84 25 85 86 89 88 80 79 90 91
74 75 76 77 78 73 72 70 71 69 68 67 63 66 65 64
62 61 60 59 58 54 55 53 52 51 19 11 10 9 8 7

6 5 4 3 2

192

Table 7.16

Optimal Australia-Asia-Europe-tour (431 cities), length: 171 414

M. Grotschel, O. Holland / Large-scale TSP’s

1 2 5 4 8 6 7 9 10 17 18 11 19 21 22 23
24 137 138 142 25 146 154 155 153 152 151 150 149 148 147 145
144 143 139 140 141 185 184 18 187 190 188 189 177 176 175 173
174 178 180 181 182 183 195 196 194 193 198 191 192 197 199 200
201 254 253 255 221 213 179 212 220 219 218 222 223 224 225 226
286 227 287 288 291 292 281 290 282 289 283 284 285 259 258 257
256 260 261 262 263 264 202 266 267 268 265 269 270 271 273 272
274 275 280 279 278 277 276 293 294 295 296 302 305 304 303 301
300 299 298 297 239 238 237 236 240 368 327 326 312 311 310 306
307 309 308 314 317 320 321 323 324 325 322 318 315 319 316 313
328 329 330 331 332 333 334 340 339 338 337 336 335 373 372 371
369 370 379 381 383 382 384 385 387 388 380 378 377 376 374 365
375 367 366 364 363 362 361 358 359 360 406 352 357 353 356 355
354 343 342 341 344 345 346 347 348 349 350 351 407 414 413 412
411 408 409 410 415 416 417 418 422 421 419 420 429 430 431 428
427 426 425 424 423 404 405 403 402 401 400 399 389 398 397 396
394 395 393 392 391 390 251 249 250 252 386 248 243 242 241 234
233 235 232 229 228 217 216 215 214 205 206 82 81 80 79 78
77 203 204 230 231 244 247 246 245 76 75 74 68 67 85 84
83 86 87 89 90 91 207 209 210 162 208 157 158 159 163 160
161 166 211 172 165 164 169 170 171 135 136 134 133 132 126 125
167 168 117 116 115 114 101 102 156 98 88 94 92 93 97 96
95 100 112 113 122 121 119 120 124 123 39 130 131 129 128 127
29 27 28 37 38 118 40 41 103 104 105 106 107 108 109 110
111 99 50 48 49 47 46 45 42 44 43 36 35 34 53 56
52 55 54 57 58 59 60 61 62 66 65 63 64 73 72 71
70 69 51 30 31 32 33 26 20 15 12 13 14 16 3
Table 7.17
Optimal tour of the PCB-problem (442 nodes), length: 5069
1 2 3 4 5 6 7 8 41 42 9 10 43 44 11 12
13 14 15 16 17 18 51 52 19 20 53 85 381 382 86 54
21 22 23 56 55 87 378 88 89 90 91 92 60 59 58 57
24 25 26 27 28 61 93 101 111 123 133 146 158 169 182 197
196 195 194 181 168 157 145 144 391 132 122 110 121 385 109 120
388 131 143 156 167 180 192 193 204 216 225 233 408 409 412 413
404 217 205 206 207 208 218 219 209 198 183 170 159 147 134 124
112 436 94 62 29 30 31 32 376 377 33 65 64 63 95 379
96 380 97 98 384 383 113 125 135 148 160 171 184 199 210 220
226 411 410 414 237 265 437 275 423 438 272 420 268 416 264 263
236 262 261 422 419 260 259 258 257 256 255 254 253 418 417 252
251 250 415 249 248 247 246 245 244 243 242 241 407 228 235 240
267 271 270 274 277 426 280 440 308 309 283 284 310 339 311 285
286 312 340 313 287 288 314 315 289 424 421 425 290 316 317 291
292 318 319 293 294 320 321 295 278 297 296 322 323 430 429 324
298 299 300 325 326 301 302 327 431 328 303 304 329 330 305 306
331 332 333 432 334 307 335 336 427 337 338 375 374 373 372 371
370 369 368 345 367 366 365 364 363 362 344 361 360 359 435 358
357 356 434 355 354 353 343 352 351 350 349 433 348 347 346 342
341 428 282 281 279 276 273 269 266 238 239 234 227 405 406 401
400 185 172 161 149 136 126 114 103 102 441 104 115 386 127 387

M. Grétschel, O. Holland | Large-scale TSP’s 193
Table 7.17—continued
389 116 138 392 152 151 137 150 162 173 186 174 396 399 187 175
211 403 229 221 212 230 222 213 200 188 176 163 393 153 139 140
128 117 105 106 107 118 129 141 154 165 164 397 177 189 201 202
402 214 223 231 232 224 215 203 190 191 398 178 179 394 395 166
155 142 390 130 119 108 439 84 83 82 50 49 81 100 80 48
47 79 78 46 45 77 99 76 75 74 73 72 40 39 71 70
38 37 69 68 36 35 67 66 34 442
Table 7.18
Optimal world-tour (666 cities), length: 294 358
1 465 464 463 462 451 450 449 448 452 453 454 456 457 458 459
460 520 461 521 522 525 526 515 524 516 523 517 518 519 493 492
491 490 494 495 496 497 498 436 500 499 502 501 156 155 158 157
159 161 162 163 186 185 184 149 183 182 171 172 173 167 139 168
169 170 174 175 176 177 178 179 180 181 187 188 190 189 193 191
192 196 194 195 207 208 217 218 219 220 221 229 228 227 225 226
216 223 224 222 212 213 211 210 209 197 198 199 200 201 202 204
205 206 214 215 230 231 233 232 234 203 165 166 508 509 506 507
164 160 504 505 503 514 513 512 511 510 527 528 529 530 536 537
538 539 548 551 554 555 557 558 559 556 552 549 553 550 547 562
563 564 566 565 574 568 567 569 570 571 572 573 575 578 576 577
579 580 581 582 583 584 585 587 588 589 590 591 586 640 648 641
642 643 644 645 646 647 639 638 657 658 659 636 637 594 593 592
595 596 597 598 600 601 609 599 608 610 611 612 635 634 633 623
632 631 630 628 629 627 626 625 624 485 483 484 482 620 486 622
621 619 618 614 616 617 615 613 604 603 605 606 607 602 561 560
546 545 544 540 541 543 542 535 534 533 532 531 473 472 471 470
474 469 466 467 468 475 476 477 478 481 480 479 2 3 4 5
6 19 20 8 7 10 9 12 11 30 31 32 33 39 40 41
36 35 34 27 25 21 22 23 24 26 28 29 53 54 55 56
57 58 62 59 60 61 63 64 65 66 67 68 69 70 71 93
665 664 662 663 661 660 654 653 655 656 652 651 650 649 666 108
109 111 110 107 106 116 115 114 113 112 119 120 121 122 123 124
125 128 129 130 131 132 133 134 135 136 84 85 86 137 138 127
126 118 117 105 104 103 102 101 100 99 98 97 95 96 94 92
91 90 72 89 88 83 87 82 81 80 79 78 77 76 75 52
74 73 51 50 45 44 38 37 42 13 43 49 48 47 46 14
15 16 17 18 235 141 140 142 143 144 145 146 239 240 241 242
238 236 237 250 248 247 246 249 254 255 253 245 252 251 244 243
147 148 150 380 259 376 372 371 258 257 256 263 262 261 260 267
266 265 264 285 303 304 305 306 307 298 297 299 300 296 295 294
293 292 291 288 289 286 290 287 268 269 270 277 278 276 279 280
281 283 282 284 333 345 344 343 342 341 340 339 3383 337 275 274
352 272 271 361 362 363 365 364 273 357 358 354 353 355 356 347
346 334 329 330 331 327 326 328 322 332 390 336 335 348 349 350
351 402 401 359 360 366 367 368 370 420 418 419 375 374 373 377
378 379 381 382 383 384 385 386 387 389 388 151 152 153 154 435
488 434 433 431 432 428 427 425 426 424 421 422 423 411 410 409
407 405 369 404 403 398 399 394 397 393 392 391 442 396 395 400
445 406 408 412 414 415 416 417 429 430 487 489 455 447 413 446
444 443 441 440 316 439 438 437 311 312 313 314 315 324 325 323
321 320 317 318 319 301 302 308 309 310

194 M. Grotschel, O. Holland | Large-scale TSP’ s

FUNCHAL « HADE IRA

AL-ISKANDARI YA,
LAS-PALMAS. CAN

AL~OAHIRAK

|
't

TAMANRASSET

NOUAKCHOTT

|
TM

AL-UBAYYID
NDIAMENR

DIIBOUTL

ABIOIAN

QGADISHD

'BRAZZAU
KINSHASA

LE

HonBASA
UICTORIA, SEYI

ZANZIBAR
NDQR'E5>SALFQH

LUBUHBASHT
KITHE

O IEGO-SUAREZ

FANANARTUO

HALUTSBART @ PT.~LOUIS, MALR

R ISTAN-DA-CUNHR \

Picture 7.1. Optimal Africa-tour (96 cities).

M. Grotschel, O. Holland | Large-scale TSP’s

195

i CHUREHTLL, CoNg

EOMONTON

BUADALATYRA

LP RICO
RACAPULCD

ORT-DE-FRANCE
BRIDBETOWN

RT OF SPAIN

GEQRGETDWN, BUY
R ARAMAR B0
EAYENNE

GILLAHTL, GALAP

18
FORTALEZA
R

p NATAL

RECIFE

AREOUIPM

"mﬂ

ANTOFAGASTA

HONTEUIDEQ

2,
AR DEL PLATA
BAHIA BLANCA

| A STANLEY. FALKL
FUNTR RRENAS

Picture 7.2. Optimal America-tour (137 cities).

196

M. Grotschel, O. Holland / Large-scale TSP’s

PT. ~DELGADALW

TRONDHEIH

BERLIN /
D2NAN _ehrbzaun
DRESDEJTELAH
R FRANKFURT?:
RENRES N\, PA Lux. PRAHA
ToURS STUTYGART
SR 'MUENCYEN
LIN HIEN
LIMOBES LDrRgsT
BORDEAUX BENEUE.
HILEND eLIeg
TOULDUSE
2ZABRER 'BEOGRAD ururdbr
AcN - 4
v o ARRIEVD
HARSEILA
eURCELONA I ‘
{
RANE)

n CORDOBA. ESP
>,

“PRi-MA=QE -}
Biza R '%
maNADECH

HALABH

UALETTA. HALTR

N

IRAKLION LEUKOSIR

Picture 7.3. Optimal Europe-tour (202 cities).

197

M. Grétschel, O. Holland / Large-scale TSP’s

"(sen 677) Inoj-eisy-eijensny ewndQ pL 3Imdld

NONOTOS *Bat INDR /NGBS 3N0H-

198 M. Grétschel, O. Holland / Large-scale TSP’s

HIUA~0A, MARGUES
A,
PITCATE
FASEHA E
Ve
e

PAPEETE, TAHIT

IONTARA. SOLONO}

{PETROPAULDUSY

Picture 7.5. Optimal Australia-Asia-Euruope-tour (431 cities).

M. Grétschel, O. Holland | Large-scale TSP’s 199

Picture 7.6. Optimal tour of the 442-PCB-problem.

d / Large-scale TSP’s

O. Hollan

M. Grotschel,

s

N

B

T

% .,‘ «_.,rp P
W

~ Q
AN Vﬂ
A

N

Ve

R _), o ‘

AR NS

<\

e
.

M. Grétschel, O. Holland | Large-scale TSP’s 201

Note added in proof

The data of the TSP examples mentioned in this paper are part of the library TSPLIB
of traveling salesman problem instances. For a detailed description of this library cf.:

G. Reinelt: TSPLIB - A Traveling Salesman Problem Library, Report No. 250,
Schwerpunktprogramm der Deutschen Forschungsgemeinschaft, Universitét
Augsburg, Augsburg, 1990, to appear in: ORSA Journal on Computing.

The library is available via E-Mail either from NETLIB or from the Computer
and Information Technology Institute, Rice University.
(a) To get a description of the general NETLIB index use

mail netlib@ornl.gov
send index

(b) To get a description of available data at Computer and Information Tech-
nology Institute, Rice University, use

mail softlib@rice.edu
send README
send INDEX

send CATALOGUE

References

R.E. Bland and D.F. Shallcross, ““Large travelling salesman problems arising from experiments in X-ray
crystallography: a preliminary report on computation,” Technical Report No. 730, School of OR/IE,
Cornell University (Ithaca, NY, 1987).

H. Crowder and M.W. Padberg, “Solving large-scale symmetric travelling salesman problems to optimal-
ity,” Management Science 26 (1980) 495-509.

G.B. Dantzig, D.R. Fulkerson and S.M. Johnson, “Solution of a large scale traveling-salesman problem,”
Operations Research 2 (1954) 393-410.

J. Edmonds, “Maximum matching and a polyhedron with 0, 1-vertices,” Journal of Research of the
National Bureau of Standards B 69 (1965) 125-130.

W. Felts, P. Krolak and G. Marble, “A man-machine approach toward solving the travelling-salesman-
problem,” Communications of the ACM 14 (1971) 327-334.

F. Glover, D. Klingman, J. Mote and D. Whitman, “A primal simplex variant for the maximum flow
problem,” Center of Cybernetic Studies, CCS 362 (Austin, TX, n.d.).

R.E. Gomory and T.C. Hu, “Multi-terminal network flows,” Journal of the Society for Industrial and
Applied Mathematics 9 (1961) 551-570.

M. Grétschel, Polyedrische Charakterisierungen kombinatorischer Optimierungsprobleme (Hain, Meisen-
heim am Glan, 1977).

M. Grétschel and O. Holland, “Solving matching problems with linear programming,” Mathematical
Programming 33 (1985) 243-259.

M. Grotschel and O. Holland, “A cutting plane algorithm for minimum perfect 2-matchings,” Computing
39 (1987) 327-344.

M. Grétschel, L. Lovasz and A. Schrijver, “The ellipsoid method and its consequences in combinatorial
optimization,” Combinatorica 1 (1981) 169-197.

202 M. Grétschel, O. Holland | Large-scale TSP’s

M. Grotschel, L. Lovdsz and A. Schrijver, Geometric Algorithms and Combinatorial Optimization (Springer,
Berlin, 1988).

M. Grotschel and M. W. Padberg, “On the symmetric travelling salesman problem I: inequalities,”
Mathematical Programming 16 (1979) 265-280.

M. Grotschel and M.W. Padberg, “On the symmetric travelling salesman problem II: lifting theorems
and facets,” Mathematical Programming 16 (1979) 281-302.
M. Grotschel and M.W. Padberg, “Polyhedral theory,” in: E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy
Kan and D. Shmoys, eds., The Traveling Salesman Problem (Wiley, Chichester, 1985) pp. 251-305.
M.W. Padberg and M. Grotschel, “Polyhedral computations,” in: E.L. Lawler, J.K. Lenstra, A H.G.
Rinnooy Kan and D. Shmoys, eds., The Traveling Salesman Problem (Wiley, Chichester, 1985)
pp- 307-360.

M. Grétschel and W.R. Pulleyblank, “Clique tree inequalities and the symmetric travelling salesman
problem,” Mathematics of Operations Research 11 (1986) 537-569.

M. Held and R.M. Karp, “A dynamic programming approach to sequencing problems,” SIAM Journal
on Applied Mathematics 10 (1962) 196-210.

M. Held and R.M. Karp, “The traveling-salesman problem and minimum spanning trees,” Operations
Research 18 (1970) 1138-1182.

M. Held and R.M. Karp, “The traveling-salesman problem and minimum spanning trees: part 2,”
Mathematical Programming 1 (1971) 6-25.

O. Holland, Schnittebenenverfahren fiir Travelling-Salesman- und verwandte Probleme, Doctoral Thesis,
University of Bonn (Bonn, 1987).

R.L. Karg and G.L. Thompson, “A heuristic approach to solving travelling salesman problems,”
Management Science 10 (1964) 225-247.

S. Lin and B.W. Kernighan, “An effective heuristic algorithm for the traveling-salesman problem,”
Operations Research 21 (1973) 498-516.

M.W. Padberg and M.R. Rao, “Odd minimum cut-sets and b-matchings,” Mathematics of Operations
Research 7 (1982) 67-80. .

M.W. Padberg and G. Rinaldi, “Optimization of a 532-city symmetric travelling salesman problem by
branch and cut,” Operations Research Letters 6 (1987) 1-7.

M.W. Padberg and G. Rinaldi, “An efficient algorithm for the minimum capacity cut problem,” Mathe-
matical Programming 47 (1990a) 19-36.

M.W. Padberg and G. Rinaldi, “Facet identification for the symmetric travelling salesman problem,”
Mathematical Programming 47 (1990b) 219-257.

T.H.C. Smith and G.L. Thompson, “A LIFO implicit enumeration search algorithm for the symmetric
traveling salesman problem using Held and Karp’s 1-tree relaxation,” Annals of Discrete Mathematics
1 (1977) 479-493.

