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A ‘ Abstract * ,

Designing low-cost networks that survive certain failure situations is one of the prime
tasks in the telecommunication industry. In this paper we survey the development of models
for network survivability used in practice in the last ten years. We indicate how algorithms
integrating polyhedral combinatorics, linear programming, and various heuristic ideas can
help solve real-world network dimensioning instances to optimality or within reasona.ble .
quality guarantees in acceptable running times.

The most general problem type we address is the followmg Leta commumcatxon demand
between each pair of nodes of a telecommunication network be ngen We consider the
problem of choosing, among a discrete set of possible capacities, which capacity to install
on each of the possible edges of the network in order to satisfy all demands and to minimize
the building cost of the network. In addition to determining the network topology and the
edge capacities we have to provide, for each demand, a routing such that no path can carry
more than a given percentage of the demand and no path in the routing exceeds a. ‘given
length. We also have to make sure that for every single node or edge failure, a certain
percentage of the demand is reroutable Moreover, for all failure mtuatxons feasible routings
must be computed.

The model described above has been develop in cooperation ‘with a German mobile

. phone provider. We present a mixed-integer programming formulatan of this model and
computatmnal results with data from practice.

1 Int‘roduction and Survey '

In this paper we describe a series of mathematical models that have been developed in the recent
years to describe and solve various telecommunication network design problems. Along with the
solution methodology the users of these models have become more sophisticated, demanding
the integration of tasks into one model that have traditionally been solved in a hierarchical
fashion. A typical sequence of such decisions consists, among other issues to be considered, of
the choice 'of technologies to be used, the topological design of the network, the planning of the
capacities of the network components, a decision about routing strategies, and the treatment
of failure situations. Some companies, such as our partner e-plus, handle this complex suite of
decisions in one integrated mixed-integer linear programming model, as we will describe later.
Before reviewing the literature on telecommunication network design we present a framework
" that enables us to classify the models. ‘ |

The problems we consider have the following in common. The input consists of two graphs on .
the same node-set V, the supply graph G = (V,E) and the demand graph H = (V, D).
The set V' consists of the nodes of the logical transport network. In the application we will
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focus on, V is the set of MSC locations (MSC = Mobile Switching Center); in some cases BSC

locations are included (BSC = Base Station Controller). The edge-set E of the supply graph G

is the set of all physical links that may potentially be used (in the planning period). Different

types of links (representing d1fferent technologies, e.g., microwave connections, copper or fiber

optic cables, leased lines, etc.) are represented by parallel edges. The demand graph H (for

the planning period) contains an edge whenever there is a positive demand between its two end
= nodes. For each edge uv € D of the demand graph, the value c

® dyy €2, is the communication demand between nodes u and v.

While the cha.ra,ctenstlcs of the supply graph are relatively stable (they change, e.g., with
“hardware and supphers), demand predictions are based on statistics and marketing forecasts.

They are altered frequently, and scenario analysis has to be made to take different possible
evolvements of the market into account. ‘

Given this as basic input there are several levels of possible network design problems.

Capacltxes

It may be that the network designer is only interested in the topological structure and has
decided to determine link capacities in a later stage. It may also be that capacities are no issue
since the standard technology supplies enough for the application in question. We label this

+ situation no capacities. If capacity planning is heces’sa.ry capa.cify may be selected arbitrarily
from a certain range, or only finitely many choices may be available. We label these poss1b1ht1es
continuous capacltles and dlscrete capacities.

Survivability

It has become common to call a network survivable if it has been designed in such a way
that the network is operational (in some sense to be made specific) even if certain network
components fail. If the network components are very reliable and impact on the components
from outside is unlikely, survivability may not be an issue. We say that no survivability
is considered. A frequently used method to guarantee topological survivability is to require
that the supply network to be designed contains, for each pair of nodes, a certain (node-pair
dependent) number of node- and Jor edge-disjoint paths between these nodes. Making reference
to the graph theoretical background of this concept we say that k-connectivity is required.
If routing is an integral part of the network design problem a reasonable strategy to keep the
network “alive” in failure situations is to require, that for every pair of demand nodes, no
path of the network carries more than a certain percentage of the total traffic between the two i
nodes. This concept runs under the name diversification. In case a model integrates capacity *
planning and routing, a.natural variation of the k-connectivity concept is to require, that, for
every pair of demand nodes and for every failure situation, a certain percentage of the traffic
demand between the node pair can be routed. This concept is called reservation. We present
in Section 2 two different reservation methods which differ in the way the rerouting is treated.
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Path length

In case of very tight capacities, some connections, i.e., paths carrying traffic between demand
nodes, turn out to be long. For various reasons (e.g., to reduce time delay or computer load) it
may be advisable to restrict the length of commumcatlon paths. Thus there are models with
a.nd without path-length restriction.

Network Dimensioning Mbdels: A Surirey

In the last years several groups of authors considered various combinations of capacity and
surv1vab111ty models. We briefly review the four main directions.

No capacities and k—connectivity \

The uncapacitated problem with connectivity requirements was one of the first network design
problems investigated. It includes the Steiner-tree problem as a special case. Monma and -
Shallcross present a heuristic approach for the 2-connectivity case in [15]. Their heuristics
produce good solutions for the “LATA networks” of Bellcore (with up to 116 nodes) in short
running times. Theoret1cal mvest1gat10ns on the structure. of optimal solutions can be found
in Monma, Munson and Pulleyblank [14]. Grétschel, Monma and Stoer develop in 8,9 a
framework (based on branch&cut methods) to solve the LATA networks of ‘Bellcore for low-
connectivity (k < 2) instances to optimality. Furthermore, Stoer [17] reports that special
high-connectivity problems (k > 2) can be solved to optimality for up to 500 nodes. A detailed
survey of the work on this type of survivable networks can be found in [10].

Continuous capacities and reservation

Minoux [13] was the first to consider survivability in a generalized multicommodity-flow model
with continuous capacities. He reports that instances with up to 40 nodes can be solved
with an accuracy of about 5%. In cooperation with France Telecom, Lisser, Sarkissian and
Vial [11] develop another model including non-discrete capacities and survivability. In [11]
two survivability models are presented, both different from ours. ‘In both models, part of the
demand is routed in a separate network, called spare network, in case of a failure. The local-
survivability model routes only the failing flow, and the global-survwabzlzty model routes only
‘the affected demands in the spare network. Tests with up to 53 nodes are reported.

Discrete capacities and no survivability

~ Several models in the literature consider the installation of discrete capacities without address-
'ing survivability issues. Moreover, these models restrict the possible capacities to multiples of
one or two basic capacities. Bienstock and Giinliik [5] solve ATM network design problems
_ with real-life data for instances of up to 16 nodes to optimality. Their model includes flow
costs, and the capacities can be chosen as. combinations of two basic technologies (OC3 and
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OC12 facilities). In another study with one basic 'technology Bienstock, Chopra, Giinliik, and

' Tsai (see [4]) solve “New York area problems” with up to 15 nodes and “Norwegian Problems”
‘with up to 27 nodes (supplied by M. Stoer) almost to optimality. Magnanti, Mirchandani, and

Vachani [12] investigate the same problem without flow costs and solve randomly generated
instances with up to 15 nodes with gaps about 10%. Considering a relaxation (based on cut
inequalities) of a network de81gn problem for one basic technology Barahona [3] solves instances
with up to 47 nodes with an accuracy of 5-10%. \

Discrete capacities and diversification/reservation

* Dahl and Stoer [6, 7] were the first to consider a discrete capacity structure and survivability

issues in the same model (for Norwegian Telecom Research) ‘They solve a large number of

the instances (from 37 to 118 nodes with a very sparse supply graph) to optimality. But they

also report considerable difficulties with some of the instances. Their work is the basis of our
investigations. We are, in particular, grateful for the contributions of Mechthild Stoer who was
a member of the project team at ZIB (Konrad-Zuse-Zentrum fiir Informationstechnik Berlin)
in the beginning of our study Models that incorporate discrete capacities and surv1va.b111ty are

. the main topic of the fo]lowmg sections.

2 DISCNET - Models

After having rev:ewed various models considered by other a.uthors, we now present the models
that we developed for e-plus Mobilfunk GmbH, one of the mobﬂ&commumcatmn service

providers in Germany. We distinguish between different capacity and surv1vab1hty models. In

particular, we consider two ways to model the discrete capacity structure and three ways to
achiéve survivability in the network. Any combination of the two leads to a different mixed-

integer programming formulation. All of these are integrated in our network dimensioning

tool DISCNET (DImensioning Survivable Cellular-phone NETworks). Our solutlon approach is

sketched in Section 3 and computa.txona.l results are descnbed in Section 4. ‘

2.1 Capacity Models | , .«

We distinguish between two different capac1ty models. First, we conS1der the case of an arbi-
trary, but finite, set of poss1b1e capacities for each edge of the supply graph. Then we discuss
the case where a small set of basic capacities is- given such that each capacity is an integral
multiple of each smaller capacity, a reasonable assumption in telecommunications. In Germany,
for instance, Deutsche Telekom offers the basic capamt1es 30, 480 and 1920 channels and in the
United States the technolog1es DS0, DS1 a.nd DS3 (DS = Digital Signal Level) come along with
capacities 1, 24 and 672. '

In our practical application, it was natural to assume that every edge e € E of the supply graph
is already equipped with an lmtlal ca.paclty Ce € Z4 (possibly CY = 0) of cost K9 = 0, the

N ’
N
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Cy

so-called free\capa‘city. This applies to both capacity models.
DISCR.ETE CAPACITIES

For ea.ch e€E, there is a ﬁmte set of capamt:es spec1ﬁed by the followmg data:

o T, € Z.,., where T is. the number of p0351b1e addxtxonal capacities that can be«
installed, «

N

o« Ct e Z., 1< <t<T, the potential capacltles (we assume that C9 < 01 < < CT=),

o Kt €Qy,1<t<Te, the cost of msta.llmg capacity C"

It has turned out to be useful to ca.ll the capacities C.,.. C’T e brea.kpomt capacltles, and
hence T the puniber of breakpoints, and to consider the 1ncremental capvacxtxes and costs

ecli=Ct— 0*“11<t<Te,
o kb =K., - Kt‘11<t<Te,

instead of the original values For notatlonal reasons, we set ) := CY and kJ := KJ.

For each edge e € E we introduce an ordered set of 0 /1 variables z8 > gl > .. > zT-. Since
‘we assume that a free capacity C? is always installed, we set z0 := 1. Choosmg‘ capacity C7 ,
‘0<1-<Te,1seqmva.lenttosett1ngz =gl=. ;-:ce—la'ndzz+1‘ =z, =0. :

The objective is to minimize the total cost of installing the necessary capacxtles on the edges of '
the supply graph. ‘This i is formulated as ,

mmz: Z kﬁzt o : (1)
e€Et=1 , , ‘
‘The 0 / 1-variables associated with a supply edge must satisfy the ordermg constraunts
1=20>gl>..->3% >0 foraueeE S )
/ anci ‘the integrality constraints | | |
xﬁef{o,l}’ ' \fora,lle!elEan‘dtél,‘...,Te, | - ®
by definition. For“notatioﬁal‘ 'conveﬁieﬁ@e‘, we iﬁtroduce ‘au;i:iliary-w‘iariables |

Y -—Zce:ce forallgG,E, o 4
Ct=0 ‘

representing the capacities installed on the supply edges.
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DivisiBLE Basic CAPACITIES

In the second capemty modei we can mstall'on all supply edges combmetlons of a common set
of basic capacities. These basic capamtles satisfy the property that each capacity is an mtegral ‘
multiple of each sma.ller capacity.

‘We are given a set T = {71,... ,Tp} of technologres, one for each dﬂferent type of line that can
be installed on a supply edge. With each technology 7 € T', we associate a basic capacity C”
(assuming w.l.o.g. C™ <-.- < C™) and the edge dependent installation costs (which include
a fixed cost and a length-dependent cost that varies with the total length of a link). We assume
.that the basic ca.pacmes satisfy the d1v131b1hty property, ie.,

C"':-\‘-l
foralli=1,... ,n— 1. We refer to the smallest basic cepacity}a.s' the unit capacity. ,
* For each supply edge e € E we are given a set t(e) C T of available technologies. The capacities
that can be installed on edge e are integer combinations of the basic capacities of the available
technologies. For this purpose we introduce, for every eupply edge e € E and every technology
7 € t(e), a nonnegative integer variable z7'to denote the integral multiple of C”. The variables
z7 may be restricted by an upper bound ug. For each 7 € t(e) we denote by K7 the cost of
installing the basic capa.cn;y C" on supply edgee€ E.. N
Again, the objective is to minimize the total cost of msta.lhng the necessary ca.pa,cmes on the
~ edges of the snpply graph. “This is formulated as '

mzzmgr:p_ \‘ @

e€E r€t(e)

i

ez+

The constra.mts that must be satisfied are the nonnegat1v1ty, the mtegrahty, and poss1bly the
upper bound constraints , . .

0<el<ul  and s e forangeEandanr,ei(e), ()
where the ca.pamty ye of a supply edge e€ E is ; .
ZC’% o

Tet(e)

2. 2 Combmmg Capac:tles, Dema.nds and Routings

Combining any of the two capacity. models with the mult1commod1ty flow condltlons for the
non-failure situations, to be described below, we obtain the basic maxed-mteger programmmg
formulations mentioned in the beginning.

* For the network we want to design, we also wish to determme the routmgs of the demands
‘uv € D for each operatmg state s of the network The operating states are

e the normal state (s = 0), which is the state with all nodes and edges operatxona.l

¢
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and, in case we wish to consider failure situations,

e the failure states, wh1ch (m our case) are the states with a single node U (s = u) or a
single edge e (s = e) nonoperational.

We denote by Gs = (V;, E;) the supply gra.ph for the operating state s, where V; is the set of
nodes that are still operational in operating state s, and, likewise, E; is the set of the operatmnal
edges in operating state s. Similar notational conventions apply to the demand graph.

We impose another condmon to the paths used to route the dema,nds in the normal operating
state. For each demand wv € D we introduce

e 0y, € Z., the path length restriction; Zu,, is the maximum number of supply edges
allowed in any path on which demand between u and v is routed. ‘

For each operating state s and each demand edge uv € D;, let P(s, uv) denote the set of valid
[u,v]-paths in G;. If s is the normal operating state, a [u,v]-path in G = Gy is valid if its
length (number of edges) is at most £y, We call such a path short. If s is a failure state then
any [u.v]-path in G, is valid. For each operating state s, each edge uv € Ds, and each path
P € P(s,uv), we define a variable f(s,uv, P), called flow or routing variable, that represents
~ the communication traﬁic between the nodes u and v routed on path P in operating state s.

The constraints for the routmgs in the normal operating state are the: capaclty, demand and
nonnegativity constralnts. The capacity constraints imply that for each supply edge e € E the
flow through e may not exceed its capacity; the routing variables must be chosen in such a way
that all the demands dy, in the anmal operating state are satisfied. This yields the demand
constraints. Putting this together with the nonnegativity of the routing variables we get

Z Z f(0,uv, P) S ye forallee FE, / 8) -
wvED PeP(O,uv) e€P L A ‘
> f(O,uv, P) =dy, foralluweD, 9
PG‘P(O,m:) :
Ff(0,uv,P) >0 foralluv€ Dand P e P(0,uv). (10)

Combining the capacity constraints (1) - (4) or (5) - (7) with the routing constraints (8), (9),
(10) for the normal operatmg state we obtain two network design models that do not incorporate
survivability at all

(ND1)- defined by the DISCRETE CAPACITIES constraints (1) - (4) and (8), (9), (10), and
(ND2) _deﬁned by the DIVISIBLE BASIC CAPACITIES constraints (5) - (7) and (8), (9), (10)

If we only use one or two different technologies and if we do not impose any length restriction

on the paths our basic model (ND2) is exactly the model studled in [12 5, 3] (see the pa.ra.graph\
“Discrete ca.pamtles and no survwa,blhty in Section 1). :
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2.3 Surv1vab1hty Models

We now consider three different concepts to model surv1vab1hty Usmg daversxﬁed paths to
satisfy the demands, i.e., node-disjoint paths that do not carry more than a certain percentage
of a given demand, it is possible to achieve survivability with the advantage of no maintenance in
case of a component failure. However, as an obvious disadvantage it is not possible to guarantee
saving 100% of the demands in case of a failure; and, e.g., for more than 50% of each demand to
survive, at least three paths are required for each demand. An additional empirical drawback is
the high cost of implementing diversification. In order to satisfy a specified percentage of each
demand, in case a network component fails, the two other concepts make use of rerouting. If the
network designer opts for the reservation concept he also decides that, in case of a component
failure, the routings for all demands can (and in general have to be) changed. An alternative is
to consider the rerouting of those demands only that are affected by a failure. Both concepts
* require higher maintenance efforts, but yield smaller network dimensioning costs. '

Diversification
To implement this concept, the network designer has to speéify

e the diversification parameter §yy, 0 < Jyy b< 1, for all uv e D; byy is the maximum
fraction of the demand dy, allowed to ﬂow through a.ny supply edge or node (other than
nodes u and v).

4

The node-flow constra.ints r

Z " F(0,uv, P) < Supduy foralluv € D and w € V\{w,v} , : (11)
PeP(0uv):weP . .

and the edge-flow éons&aints ,
f(0,uv,P) S duydyy  foralluv € D and P = {uv} (12)

are the diversification constraints. The summation in the node-flow constraints is over all
short paths between nodes « and v that contain node w. These constraints restrict the amount
“of flow dedicated to a particular demand that goes through a particular node, i.e., they ensure
that in the normal operating state, no more than a fraction &y, of the total demand d,, between
nodes u and v flows through a single node w. The node-flow constraints imply that every edge
e € F carries no more than yydyy of the traffic between u and v, unless'e = uv. To cover
the latter case, the edge-flow constraints are used. These are employed only, of course, if E
contains edges between u and v (which are considered as paths P = {uv}). The constraints
(11) and (12) yield that the flow between u a.nd v is diversified, i.e., is routed on at least l’;—‘l
node-disjoint paths.

Reservation

‘ Here, the network designer has to'specify
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o the reservatlon pa.rameter Puvy 0 < puy £ 1, for a.11 uy € D Puy is-the fraction of the
dema.nd dyy that must be satisfied in a single node fa.llure or a single supply edge fallure

The ca.pamty and demand constramts for fa,llure sxtuatxons are

Z Z f(s,uv,P) <uye. for a.ll‘s #0 and e e Es, (13)
m)GD, Pe‘P(s,u'u) eEP ’ L
Z f (s,uv,P) = pm,dm, for alls#0 and uv € D, . (14)
y PeP(s,uv)

‘With inequality (13), the flow through a supply edge does not exceed 1ts ca,f)amty in fa.rlufe

situations, and with inequality (14), 1000y percent of the demand d,, sutvive the failure of an
edge or a node, in case the network routing is sthched to the new routmgs

}

. Rerouting of Aﬁ'ected Demands

For this concept the network desxgner has to speclfy

e the reroutmg para.meter Oups 0 S04y <1 for a.ll uv. € D Oy is the fra»ctxon of the
"demand dy, that must be satisfied in a single node failure or a single supply edge failure,
without rerouting the paths that are not affected by the particular failure situation.

Here, the capacity and demand constraints for failure situations have to take care of the
unaffected normal - operatmg state routings. Since we posslbly impose a length-restriction on
the paths used to route a demand in the normal opera.tmg state, we introduce for each demand
uv € D, and each failure situation s (# 0) the symbol Ps(0, uv) to denote the set of short paths
in P(s,uv), ie., P € ‘Ps(O uv) iff P € P(s,uv) and P has at most lm, supply edges We get the '
additional constraints

S Y fowP+ Y | f(s;.uv,P)) ".<_y¢ s‘#O‘eéEs, (1)

uveD, PePs(0,uv):e€P - . P€P(s,uv):e€P
> fOuw,P)+ > f(s,uv, p) > au,,d,w s ;é 0, uv € D,. (16)
) PEP:(O,WU) PEP(s,uv) '

N
Note, in case the normal operating state routings suffice’ to satisfy a demand upw € Dina
particular failure situation s, i.e., if Y PEP,(0u0) F(0,uv, P) > oypdyy, there is no rerouting at

" all necessary. Thus the mamtena.nce effort is reduced.

2.4 Mixed-Integer Linear Programming Formuletipns

Combining the two capacity and the three survivability models we gét six mixed-integer linear
programming models for capamtated network dimensioning problems taking Survwablhty issues
into account. . : .

i
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Divisible basic capacities + Diversification -

Divisible basic capacities + Reservation

Divisible basic capacities + Reroutmg of affected demands
Discrete (arbitrary) capacities -+ Diversification

Discrete (arbitrary) capacities + Reservatlon .
Discrete (arbitrary) capacities + Reroutmg of aﬁected demands ‘

S Ot 0N

Dahl and Stoer investigate the models 4. and 5. in 6, 7]. If we COn81der continuous mstead
of discrete capacities then 2. (or 5.) is the model Minoux mvest1gates in [13], and'3. (or 6.) »
is the model of Lisser, Sarkissian and Vial (see [11]), if the affected demands are rerouted ina
separate network. y : :

3 Algorithmic Ap'proach
In this section we. pl'OVlde a h1gh-1eve1 descnptlon of the cuttmg-pla.ne a.lgonth.m based on linear

progra,mmmg and polyhedral combinatorics, we developed to solve the problems descnbed in
the previous section. Fxgure 1 shows the flow chart of the algorithm.

Fxgure I: Flow chart of the a.lgonthm

The algorithm consists of three’ ma,m parts

\ 1. the multlcommodlty flow problems (FP) to test the fea.sxblhty of glven capacities,
2. the cutting plane part to obtain a lower bound for the optuna.l solutlon value, and,
3. the heuristic algonth.ms to obts.m feasible solutmns
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The multicommodity flow problems are given by the constraints (8), (9), (10) plus the appro-
priate survivability constraints. These are, for diversification, the constraints (11) and (12); for
reservation the constraints (13) and (14), and for the survivability model rerouting of affected
demands the constraints (15) and (16). We apply a solution approach suggested by Minoux
and already used by Dahl and Stoer. See [13], [6] and [1] for details. If we use rerouting of
affected demands as the survivability model then the multlcommodlty flow problems a.re much
more complicated than in the other two cases, because the different operatmg states are linked
through the normal operating state routing.

In the cutting plane part we solve at each iteration a linear programming relaxation of the
integer program defined by the decision variables z of the chosen capacity model. In particular,
we relax the integrality conditions and we add 1terat1ve1y inequalities valid for the polyhedron
defined by the mtegral feasible z-vectors. ‘ .

For the capacity model DISCRETE CAPACITIES, the valid mequa.htles we use are

1. strengthened band inequalities, introduced by Dahl and Stoer [6],

2. strengthened metric inequalities, see [1}, and

3. diversification bands, see [1], if dwerszﬁcatzon is the chosen. survlva.blhty model,
and, for the capacity model DIVISIBLE BASIC CAPACITIES, the valid inequalities we use are
"1, partition mequahtles introduced by Pochet and Wolsey [16],

2. strengthened partition mequahtles see [2], -

3. strengtheried metric inequalities, see [2], and’

4. diversification-cut inequalities, see [2], if diversification is the chosen surv1vab1hty model.
Various exact and heuristic separation algorithms (see [6, 16, 1, 2]) have been developed for these
classes of inequalities. We iterate the separation algorithms and the multicommodity-flow algo-
rithms, for the solution of (FP), as long as we can find violated inequalities. When this process

- stops, the fractional solution in z-variables permits feasible solutions to all multlcommodlty-ﬂow
problems, i.e., given these' fractional capacities we can determine routings for all demands in all
operating states. If the z-variables are integral we have found an optimal solution. Otherwise,
we resort to heuristic algorithms (see [1, 2]) to obtain “good” integer solutions. In our present
mplementatmn we run 12 heuristics whmh are parameter controlled variants of two different
design principles. ‘

The cutting plane phase prov1des a lower bound and the best heuristic solution provides an
upper bound for the optimal solution value (the minimum cost for dimensioning the network).
Thus, our solutlons have a guaranteed quahty "

4 Computational Results

In this paper we have indicated various ways to define and mathematically model “survivability”
of telecommunication networks. We have described a general model that integrates several
concepts and sketched a cutting plane algorithm to solve it. This algorithm is the core of the
. network design tool DISCNET that we developed for e~plus Mobilfunk GmbH. The tool has
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been implemented in C++ and is in use at e-plus.

Our algorithm is able to produce reasonable solutions for practical instances in acceptable
running times. The e-plus instance sizes range from 11 nodes, 34 supply edges, 24 demand
~edges to 17 nodes, 64 supply edges, 106 demand edges resulting in mixed-integer programs with
up to 1,000 integral and 100,000 continuous variables. The time to compute a lower and an
upper bound for the optimﬁm‘value with our cutfing plane algorithm and our set of 12 heuristics,
respectively, ranges from a few seconds up to several hours, depending on the used survivability
model. The solutions calculated with diversification as survivability model turned out to be
the most expensive. We expected this result since, in this model, the edge capacities for the
normal operating state must be chosen in such a way that all failure situations can be handled
‘without rerouting of traffic. The cheapest solutions are produced with the reservation concept,
which, however, requires additional hard- and software for the rerouting effort in failure cases.
The best compromise between cost and mamtena.nce effort seems to be obtainable with the
survivability model rerouting of affected demands. The solutlons are not much more expensive

than the comparable reservation solutions, and the rerouting effort is relatively small.

The quality of the solutions our methodology produces is, from a theoretical point of view,
not satisfactory yet. The “integrality gap” may be small for sparse graphs with few possible
capacities. But upper and lower bound may differ by 50% - 60% for particularly difficult cases.
We believe that this is due to a poor lower bound since, in this complex mix of models, our
* cutting planes tend to be rather weak. Further mvestlgations of the polyhedral structure of the
convex hull of the feasible solutions are necessary. :

However, the solutions we determine are about 15% — 20% better than the ones produced by the

network designers (using more traditional techniques) and result in considerable savings. More-

over, with our approach we do guarantee that all side constraints are satisfied. Our program

DISCNET has become an intensively used planning tool. The designers compute the network

topology and edge capacities under several different assumptions and parameter settings and,

. after analyzing all results, choose a network dimensioning suitable for the company needs that
provides a good compromxse between msta.llatmn a.nd maintenance costs. ‘
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