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Abstract

in this paper we consider the so-called Sequential Ordering Problem (SOP) introduced
in [4] that has a broad range of applications, mainly, in production planning for manu-
facturing systems. Given a set of nodes, the SOP consists of finding a Hamiltonian
path, such that precedence relationships among the nodes are satisfied and a given
linear function is minimized. In [4] an efficient inexact algorithm for obtaining fea-
sible solutions is described. Here, we present a strong formulation of the problem and
procedures for identifying subtour elimination constraints and precedence forcing
constraints that are most violated by the optimal soiution of a LP relaxation of the ori-
ginal problem. The complexity of these separation procedures is O(n*) and Oo(rn®),
respectively, where n denotes the number of nodes and r is the number of precedence
relationships.

1. Problem Definition

Let s denote a Hamiltonian path through a given set of nodes, say V. Let i —»j mean
that node i is immediately ordered before node j in a given . Let the acyclic
directed graph {(or digraph) P = (V,R), where R is the set of directed arcs, such that
(i) € R means that node i has to be ordered (immediately or not) before node j in any
feasible . We clearly may assume that P is transitively closed.

Let the complete digraph D, = (V,A;) and the matrix C = {c;;} be such that ¢, for
(i) € A, gives the cost associated with i —j. Define

= {616 = RY -
(i,k) | 3 st. (i4).G.k) € R}

and let us define the digraph D=(V,A) by setting

A=AMRUR) (1.2)
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it is obvious that no feasible J# contains an arc from R U R. The Sequential Ordering
Problem (SOP) consists of finding a Hamiltonian path # with minimum weight in
digraph D, such that the precedence relationships given by R are not violated.

The SOP has a broad application field. An obvious application is the ATSP with fixed
city-origin and city-destination. The sequencing of the cities may require to satisfy
some precedence relationships. Another typical application [6] is the sequencing of
the operations’ execution, mainly in scheduling manufacturing systems. See in [18]
an interesting application and an inexact algorithm for the related STSP with preced-
ence relationships.

The paper is organized as follows. Section 2 presents our favorite 0-1 model for the
SOP. It also outlines the procedure for obtaining an optimal solution. It is based on
an iterative tightening of the relaxations of the Subtour Elimination Constraints (SECs)
and Precedence Forcing Constraints (PFCs). Sections 3 and 4 are devoted to the pro-
cedures for identifying violated SECs and PFCs, respectively. These procedures have
complexity O(n*) and O(rn?), respectively, where n = {v] and r = |R|. Finally, we offer
some conclusions and outline future work.

2. The 0-1 Model

Let x,, be a 0-1 variable such that x,, = 1 means that / - (in a feasible J’) and, other-
wise, it is zero. Since x,, = 0 must be satisfied for all (ji))e R U R we can drop these
variables. Incidentally, a key step in any practical implementation of this approach is
the preprocessing procedure for reducing the cardinality of set A; i.e., arc (ij) should
be deleted from A if it has been detected that i-»j in any feasible .#’, or in any better
solution than the incumbent one (if any). An efficient algorithm for the SOP preproc-
essing is described in [4].

There are several 0-1 models for the SOP; see, e.g., [1,4]. Our favorite 0-1 model is as
follows

min c'x (2.1)
subject to

x(A) = n—-1 (2.2)

x(67(v)) < tforallveV (2.3)

x(6T(v)) < 1forallveV (2.4)
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0 < x; < tforall (ij)e A (2.5)
X(A(W)) < |W]—1forall WeV,2 < |W|<n—1 (2.6)
x;j € {0:1} for all (ij) € A (27)
x((:W)) + x(A(W)) + x(W:0) < (W] 2.8)

for all (i) € R and all WeW{ij}, W # 0

where

x(F) = Z Xij» 57(v) = {(wyv) e A}, 8T (v) = {(v,w) € A},
(ij) e F
AW) - {(ij)c Alije W), (W)= {(w)e Alw ¢ W} and (W:i) = {(w.i) e Alwe W.

We restrict ¢ in (2.1) to the coordinates A<A,. Constraint (2.2) defines the number of
arcs in any . Constraints (2.3) (resp., (2.4)) prevent that more than one node is
sequenced immediately before (resp., after) any other node. Constraints (2.6) are the
Subtour Elimination Constraints SECs (see e.g. [14]). Constraints (2.8) are the Pre-
cedence Forcing Constraints PFCs.

Note that (2.1)-(2.7) can be easily converted into the classical Asymmetric Traveling
Salesman Problem (ATSP). Let the AP-like LP problem (2.1)-(2.5) be named LPAP.

The basic methodology of the exact algorithm that we are using for solving (2.1)-(2.8)
has the following main steps: (1) Obtaining an initial feasible solution. The inexact
algorithm described in [4,5] can be used. (2) Optimizing a relaxation of the original
problem. We start with LPAP. (3) Reduced cost based variable fixing coupled with an
implication fixing analysis. We use the preprocessing procedure described in [4]. 4
Cutting plane generation by identification of a most violated SEC (Section 3) and PFC
(Section 4). We also consider (see [1,10,12]) some types of lifted SEC’s and PFC’s. (5)
The new constraints are added, and non-active constraints previously appended are
deleted from the current LP relaxation. (6) The dual-based optimization of the new
problem is performed. (7) If there is not any violated constraint except (2.7), a branch-
and-cut phase is executed. We should emphasize the synergetic effect of combining
the procedures for obtaining initial feasible solutions, performing reduced cost fixing
and implications, and generating violated constraints. The overall framework of this
methodology has been previously described and its computational results have been
extensively analyzed in [3,6,11,13,14,16,17] among others. Elsewhere [1] we report



our provisional computational experience on some real-life problems. In [8] a dif-
ferent approach for getting strong lower bounds for the ATSP imbedded in the SOP is
described. See related work in [2.7].

3. Identifying Violated Subtour Elimination Constraints

The problem of determining a violated subtour elimination constraint (2.6) is reduced
(in the obvious way) to the same problem for the symmetric case. We outline here the
procedure for completeness.

Let us assume that X is the optimal solution of problem (2.1)-(2.5) where some con-
straints (2.6) and (2.8) may have been appended. We now consider the values X,, as
capacities of the arcs (ij) € A. The goal consists of identifying a node set W<V such
that the related constraint (2.6) is a most violated SEC (if any). Then, the set W will be

W = arg.max{x(A(W")) — [W'| + 1> 0} for all W'eV,2 < |W'|<n - 1. (3.1)

For this purpose we will construct a symmetric directed graph, say D, for which a
certain mincut problem is to be solved. But, first, let us introduce additional notation.
Let

7, = X(67(v)) + X(6*(v)) forall ve V. (3.2)

Next, we define an (auxiliary) digraph, say Do = (Vo, A), as follows:

V, = VU {0}, where 0 is a new node , (3.3)

Ag=AU{ (O |veVyULGiI(ij)eAand (i)¢A}.

(That is, we add to V a node 0 (the “source”), and we add to A arcs (O,v) forall veV
and all reverse arcs but do not create parallel arcs). Let us define the following
capacities for D,

y,forallveV (3.4)

TR

0. _
CO,V._1—

(Note that ¢§, > 0 for all v eV, where c§, =0 whenever the related constraints (2.3)
and (2.4) are satisfied as equalities). Further, we set

Cii=Cp=

%= =1 (% + %) for all (if) € AM(OV)lv e V} (3.5)
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(1f (ij)¢A (resp., (j,)¢A) we set X, ;. = 0 (resp., X, =0).)

Let 8,(W) denote the minimum capacity cut in Do = (Vo.A,) with respect to the capaci-
ties (3.4) and (3.5), such that 0¢W, and let c(5o(W)) denote the associated capacity. it
follows from our construction that if

(55 (W) = 1 (3.6)

is satisfied then there is no SEC violated by the current LP solution X. Otherwise, the
SEC induced by W is a most violated constraint (2.6).

We now construct a symmetric directed graph, say D: = (V,, A), related to digraph
Do = (V,, Ad), by setting

A:= Ay U {(v,0)lve V} (3.7)

with capacities

&= = ¢y =, for all (i) ¢ A (3.8)
G0 = Coy forallveV (3.9)

(D is a symmetric digraph since if any two nodes, say u and v are linked by an arc
then both arcs {(u,v) and (v,u) are in the digraph). The underlying undirected graph

G = (Vo.£) of D = (V,, A) is defined by

E={ij|(ij)e A and (ji)e A} (3.10)

with capacities

i=5,=¢ foralljeE (3.11)

It has the property that for each W<V,
E(B(W)) = c(85 (W) (3.12)

where (W) = {ij eElie WW,j e wi}.

Thus, a minimum capacity cut 6(W) in G corresponds to a minimum capacity cut é5(W)
and vice versa. Such a cut §(W) can be obtained with the Gomory-Hu procedure.
Padberg and Rinaldi [15] describe a practically efficient version of this procedure.



The main loop of the algorithm requires at most n major iterations. At any major iter-
ation two nodes at least are “contracted” or “shrunk” into a a single node. Two main
steps are executed at each major iteration: first, a series of tests are designed to
shrink as many nodes as possible; and, second, a max-flow algorithm is executed by
selecting any two nodes of the shrunk graph as nodes “source” and “sink”. The algo-
rithm described by Goldberg and Tarjan [9] is used in the second step; its complexity
is p(n) = O(mnlog(n?/m)), where m = |E|. The tests that are performed in the first
step have a complexity not worse than p(n). Then, the overall complexity is O(n*).
Although this is not better than the complexity of other published algorithms, the
”shrinking” mechanism suggests a better efficiency in practice; this is confirmed by
extensive computational experience reported in [16,17]. Since the algorithm obtains
successively a series of better cuts till an optimal one is reached, we may generate
the related induced SECs if they are violated, instead of using only a ‘best’ one.

4. ldentifying Violated Precedence Forcing Constraints

We now describe how one can decide whether a given point satisfies all precedence
forcing constraints, and if it does not, how one can find a (most) violated PFC (2.8).
Let us assume that a vector X, for practical purposes the current LP-solution, is given.
For every (j,i)e R we do the following. Construct a new digraph D;, = (V;,, A;;) from
D=(V,A) by deleting some arcs (those which never appear in (2.8)) and by shrinking
the nodes i and j. Formally, set

ij = W{ij} U {le,'} (4.1)
where v;, is a new ‘special’ node representing j and /, and

A=Ak (kD) e A, ké{ij}, 1¢{ij}}
U4 D1 G € A, 1803 (42)
U {(k! Vj,i) l (k,l) € Av k¢{lx/}}

Figure 1 shows the digraph D,, induced by shrinking the nodes i and j in digraph D.
Note that we throw out every arc directed into j and every arc directed from i; by
definition, (j,/)¢A. Every arc a € A;; gets a capacity X, that is nothing but the value X, of
the corresponding arc a in D = (V,A). Note that a PFC (2.8) for the old digraph D can
be written as

X(Aj,i(W)) < W] -1 (4.3)

25



26

Figure 1. Original and shrinking graphs of precedence relationships

with respect to the new digraph D,,, where W= W U Av,.)

Our goat is to find a set W in D, with v, ¢ W and w = 2 such that the related con-
straint (4.3) forcing the precedence relation (ij) is a most violated one or to show that
no violated constraint of that type exists. To do this, we create an auxiliary digraph D,
from D, (exactly in the same way as D, was constructed from D in Section 3) and
determine a minimum capacity cut in D, that separates 0 from v, .. This can be done by
applying any max-flow algorithm. Suppose do(W) is such a cut with O¢Wand v, .« w,
and let y - c*(d,(W)) be its capacity. One can show that the following holds.

if y~ 1 then no PFC related to (ij) is violated by x. If y -~ 1 then W > 2 and letting
W= W\{v,,} the PFC

X(G:W) 1 x(AW)) 1 x(Wi)) = W] (4.4)

is violated by X, in fact, this is a most violated constraint forcing the precedence
relation (ij).

For obtaining a minimum capacity cut (30(W) separating 0 from v,, we use the algo-
rithm described in [9]; its complexity is O(n?).

For illustrative purposes let us consider the complete digraph D, = (V, A,) for n =7
and the matrix C shown in Table 1. The set R will be R = {(1,)} U {(i,5)} for j=4,5,6,7
and i=1,46,7. Our inexact algorithm [4] gives the feasible solution
{24-52-7-6-5—-3 The value of the objective function is Z =21.25. The
LPAP optimal value is z = 18.00 and, then, there is a 14.11% gap. The current imple-
mentation of our (exact) algorithm adds 8 cuts. The strongest LP lower bound is
z=20.75 (then the gap is 2.29%). A branch-and-cut phase requires two nodes to
prove the optimality of the initial solution. We currently have a PC and a mainframe
implementation of the algorithm described above. The PC-version solves problems up
to n = 100 nodes and r =280 precedence relationships in less than two and a half
CPU hours. The mainframe version does this in a few seconds.



\n2
\ 1 2 3 b 5 6 7
ni\
! - 1.668] 2.00} 0.75| 0.00] 3.00f 1.00
2 4.00 - 5.00{ 3.25| 4.00| 6.00f 0.00
3 7.00{ 8.00 - 5.50| 7.00] 9.00| 8.00
L 2.75| 2.50] 2.25 - 2.75¢ 5.25] 2.50
5 0.00f 1.00] 2.08f 0.75 - 3.00f1 1.00
6 |10.60{11.00]12.00{10.75]10.00 - 11.00
7 4.00| 0.00| 5.00| 3.25} 4.008| 6.00] -

Table 1. Matrix C
Conclusions

In this work we have presented a 0-1 model for the Sequential Ordering Problem. It is
stronger than the model introduced in [45]. We have also outlined an (exact)
LP-based algorithm. An extensive computational study is in progress. More theore-
tical work is required mainly for identifying in reasonable polynomial time violated
lifted SECs and PFCs. In any case, we believe that the LP-based approach is a most
promising way to get strong lower bounds on optimal solutions for this type of prob-
lems.
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