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A subset P of R"  is called a polyhedron if there exists an
(m,n)-matrix A and a vector b€ R" such that P = {x€ R" 1Ax < b}.
If A is an (m,n)-matr'ix and b € R™ we denote by P(A,b) the
polyhedron {x € RrR" (AX < b}. We shall always assume that

M= {1,2,....,m 1is the set of row indices of A and that

E .= {1,2,...,n} is the set of column indices of A. The i-th row of
the inequality system Ax < b is dencted by A, X < by

By the well-known theorem of Weyl there is an equivalent definition of
polyhedra P L R", namely P = conv(V) + cone(E), where Vv and E
are finite subsets of R", conv(V) denotes the convex hull of V,
and cone(E) the conical hull of E, i.e. the set of nonnegative
linear combinations of elements of E.

A bounded polyhedron is called a polytope, and a polyhedron P with
the property that Ax € P for all x €P andall A > 0 is called a
polyhedral cone. For any set SC R", rec(s) := {y € Rlix+Ay €S
for all x €S and all a 20} denotes the recession cone of S.

It is well-known that if P = P(A,b) = conv(V) + cone(E) is a
polyhedron then rec(P) = P(A,0) = cone(E), and therefore rec(P) is
a polyhedral cone.

Let P < R" be a polyhedron. We call cx s¢c @ valid inequality
for P if xS ¢/ holds for all x € P. A subset FcP isa face
of P if F={x¢e P 1cx=¢y) holds for some valid inequality

X s Cy of P, and this face F is proper if F#P.

Denote by F'(P) the set of nonempty faces of a polyhedron P. Set

Fo 1= nF and F(P) = FI(P) U {F}
FeF' (P) 0
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Then it is easy to see that F(P) 1is a finite lattice under set
inclusion.

If P=P(A,b) C R" isa polyhedron then we introduce the mapping
(2S denotes the power set of S)

p ___>2M

eq: 2
POF b—>{i e M| Ai X = bi for all x € F} C M,
thus eq(F) is the set of all row indices of A such that the
corresponding inequalities are binding for F, eq(F) is called the
equality set of F.

If the polyhedron P is given as P = conv(V) + cone(E) C R" we can
define similar mappings as follows: Given a vector x € conv(V) + cone(E),
then we say that u € V convexly supports x with respect to (V,E)

is x has a representation x = L ANV L oue such that Ay > 0,
vev ect
and we say that f € E conically supports x if x has a represen-

tation x = L ANV + L uee such that . > 0. We define for F CP
vev ect

exV(F) := {veV | v supports some vector x € F
convexly with respect to (V,E)}

exE(F) := {e € E | e supports some vector x € F
conically with respect to (V,E)},

and combining these notions we define the mapping

P

ex 1 28— 2% 2F

P>F +—> ex(F) := (exV(F), exE(F)) C (V,E).

The set ex(F) is called the extreme set of P. Clearly, if F dis a
face of P then exV(F) contains all vertices of P contained in

F, and exE(F) contains all extreme vectors of F, and thus

F = conv(exV(F)) + cone(exE(F)). Note that for the empty face of P

we have exv(ﬂ) =9, exE(Q) = @, and that F C P is empty if an only
if exV(F) =p.

As usual cone polarity is denoted by "o", i.e. for a set S C R",

0 = {y € R" yx < 0 for all x € S}. With this notion we can define
t-honogenization as follows:
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Definition Let $CF', TCE'! and 1€ (-1,0,1},
then we call the set
t—hag(5) := {(%) e ¥ o1 zes)
the 1-homogenization of S. The set
t=dhog(T) := {x € B' 1 (}) €1)
is called the l;dgﬂnggﬁrglzation of T.

oo

The idea of homogenization is very natural and has been implicitly
considered in many papers. It was known to Minkowski and for instance
employed by Goldman (195€), but we could not find out the first
explicit use of it. To our knowledge Stoer-Witzgall (1970) were the
first who developed homogenization techniques in a broader sense.

We found some extensions of their notions very useful.

n+l

For sets $,5,,5, ¢ R", T,T{T, C R and © € {-1,0,1}, § € {-1,1}

the following calculation rules are abvious

a) If 5,C 5, then 1—hog(51) C 'r—hog(SZ).

1
b) 'I:—dhog(Tl n T2) = T—dhog(TZ) n T—dPlog(Tg)

e) §(1-hog(§)) = (&t)-hog(8s).
d) &(t-dhog(T)} = (&1)-dhog(sT).

Note that +t-dhog and t-dhog could have been defined for any t € R,
but a moment's reflection shows that the cases t € {-1,0,1} are the
essential ones and all other 1-homogenizations (r—dehomogenizations)
can be obtained from the above given ones by simple scaling. The
t-homogenization of a polyhedron can be characterized as follows:

Theorem Let P = P(A,b) = ecomv(V) + cone(E) be a nonempty

polyhedron and let 1 € {--1,1}. Then

hog(P) = {(%) € 7

| Ax - thz < 0, 12 2 0}

A, tb)
0,- 1

cone (((2) lvevy+ {(5) | e€ED

P(B _,0), where B ::(
T T

)
= cone (DT), where DT = T]TJOT

The next result shows how information about P can be derived from in-
formation about t-hog(P).
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Theorem Let P be a nonempty polyhedron and 1 € {~1,1} then
p = t-dhog(t~hog(P)) and
yec(P) = o-dhog(1-hog(P)).

This theorem shows that t-hog{P) 1in a sense contains both P and its
recession cone rec(P). It is also possible to describe the faces of
1-hog(P) which correspond to faces of P, namely these are exactly
those faces which have a nonempty intersection with ((;) € R"+1|z =1h

For the sake of clarity we shall shorten our notation and denote by

H(P) = (Fe F(<-hog(P)) 1 3% € R" (’T‘) € Fyu{{0})

the set of all faces of the t-homogenization which have a nonempty
intersection with the t-hyperplane ((2) e R™! | z = 1} or which
equal the face {0} of <-hog(P). By

H (P) = (F € F(x-hog(P)) ! F C R" x {0}

we denote all those faces of the t-homogenization which lie completely
in {(;) € Rn+1 Iz = 0}. Clearly,

F(t-hog(P)) = H (P) U K (P)
and HO(P) as well as HT(P) are lattices with respect to set

inclusion.

Theorem Let P be a nonempty polyhedron and let
1 € {~1,1}. Then the mappings
(a) 1-hog : F(B) =+ HT(P)

(b) 1-dhog : HT(P) + F(P)
(e) O-hog : F(rec(P)) ~ HO(P)

(d) o0-dhog : HO(P) » F(rec(P))
are bijections with
(T—hog)_l = t~dhog and
(O—hog)-l = 0-dhog. In particular
(e) for all nonempty faces F of P = P(A,b) we have
_ 4 /x Xy
1~hog (F) = ((z) € P(BT,O) | (Br)eq(F). (z) = 0}.

(f)  for all nonempty faces F of P = conv(V) + cone(E) we
wave -hog(F) = cone({(%) 1 v € exy(F)} + () le € exy(EJ})
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(g)  for all nonempty faces F of rec(P) = P(A,0)
and I := eq(F) U {r+1} (here eq is taken with respect
o P(A4,0)) we have 0O-hog(F) = {(%) € P(B,0)]
;. 70

(h)  for all nonempty faces F
0-hog(F) = cone(((i) I e € exE(F)))

(here ax 1is taken with respect to cone(E)).

of rec(P) = cone(E)

Corollary Let P be a nonempty polyhedron and let t € ( -1,1}.
The race lattice F(P) s isomorphic to the face lattice HT(P)
and the face lattice F(rec(P)) is isomorphic to the face lattice
H (P).

Corollary If P isa polytope, then the face lattices F(P) and

F(t-hog(P)) are isomorphic.

Proposition Let P be a nonemyty polyhedron and let 1€{-1,1}. Then
(a) for all F € F(P)
dim(t-hog(F)) = dim(F) + 1.
(b) for all F € F(rec(P))
dim(O-hog(F)) = dim(F).
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