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We generalize the classical concept of adjacency of vertices of a polytope to adjacency of
arbitrary faces of a polyhedron. There are three standard ways to describe a polyhedron P,
namely, P is given as the intersection of finitely many halfspaces, ie., P = P(A b)=
{x|Ax=b)}, as the convex and conical hull of finitely many vectors, ie, P=
conv(V) + cone(E), or P is given by its face lattice #(P). The adjacency relation of faces is
characterized by means of all these three descriptions of a polyhedron. Our main tools in case
of the descriptions P = P(4, b) resp. P = conv(V)+cone(E) are “good" characterizations of
the equality set and extreme set of a face, respectively. These “good” characterizations
enable us to present polynomial algorithms to check adjacency of faces. As a by-product we
also obtain polynomial algorithms to make an inequality system Ax = b nonredundant and to
find 2 minimal generating system (basis) of a polyhedron. All these algorithms are based on
the ellipsoid method which checks emptiness resp. nonemptiness of polyhedra in polynomial
time.

Key words: Theory of Polyhedra, Adjacency, Face Lattice, Redundancy, Ellipsoid
Method.

1. Introduction

Good characterizations of adjacency of vertices of polyhedra have often led
to successful algorithms (e.g. the Simplex algorithm; see also [4]) or have given
more insight into the combinatorial structure of a polytope (cf. [3,7,9]). Since
the combinatorial properties of a polyhedron are to a large extent reflected by
the face lattice of the polyhedron, better knowledge of general properties of this
face lattice will provide more effective tools e.g. for polyhedral combinatorics.

The concept of adjacency is usually developed for vertices of polytopes only.
Since vertices constitute the smallest nontrivial elements of the face lattice of a
polyhedron, it is natural to ask how this concept can be generalized. In this
paper we consider arbitrary polyhedra and define an adjacency relation for any
two faces of a polyhedron which is a generalization of adjacency of vertices.

This paper is organized as follows. In the rest of the introductory section we
make the necessary definitions and notations used available. In section 2 we
present characterizations of adjacency which are independent of a description of
a polyhedron and use properties of the face lattice only. To obtain description

* Supported by SFB 21 (DFG), Institut fiir Operations Research, Universitdt Bonn, Bonn.
1



2 A. Bachem, M. Grétschel| Adjacency of faces of polyhedra

dependent results we show in Section 3 how equality sets and extreme sets of
faces can be calculated. These theorems are then utilized in Section 4 to give
polynomial algorithms to decide whether two faces are adjacent or not. Finally,
the appendix serves as a reference for some technical results concerning
polyhedral theory which we need in our proofs and which can be found
elsewhere. As a by-product of the results of Section 3 we present polynomial
algorithms for finding a nonredundant subsystem of an inequality system Ax<b
and finding a minimal generating system for a polyhedron.

A matrix A= (a;) (where g;ER, i=1,..,m and j= 1,...,n) with m rows
and n columns is called an (m, n)-matrix. For simplicity we usually assume that
M={1,2,...,m} is the set of row indices and N ={1,2,...,n} is the set of
column indices. We shall extensively use the following notations to denote
submatrices of A. Let I = (iy, iz, ... » ir) (J = (f1, J2» .-- + Js)) be a vector of pairwise
different row (column) indices, i.e., {i1, ... , i} C Mi{js, ..., s} C N, then Ay or just
Ay denotes the following submatrix of A

dm,, ey Ay,
Au =( : )

Qs +o0 s ay,/ .
In case J =(1,2,...,n) I=(1,2,..,m)) we write A, or A, (A; or A). If
I=@andJ=(1,2,..,n) (J =()and I =(1,2,..., m)) we write A, or AL (A, or
A,), ie., A, is the i-th row of matrix A (in the sequel A, will always be
considered as a row vector) and A, is the j-th column of A. Often the order of
the components of I or J is completely unimportant. Therefore, if I C M and
J C N we shall also write A;; to denote a submatrix of A. But such a matrix is
only defined up to row and column permutations.

A polyhedron P CR" is the intersection of finitely many halfspaces, i.e., P can
be represented in the form P ={x ER"| Ax =b} where A is an (m, n)-matrix
and bER™. If A is an (m,n)-matrix, b ER™, we denote by P(A,b) the
polyhedron {x €R" | Ax =b}. By the well-known theorem of Weyl there is an
equivalent definition of polyhedra, namely P = conv(V)+ cone(E), where V and
E are finite subsets of R", conv(V) denotes the convex hull of the elements of V
and cone(E) the conical hull of E (i.e. the set of all vectors which are
nonnegative linear combinations of E, the linear hull of E is denoted by lin(E)).
For convenience we shall often consider V and E as matrices containing the
elements of V, E resp. as its columns. A bounded polyhedron is called a
polytope. A polyhedron P with the property Ax € P for all x €P and all A 20
is called a polyhedral cone. A polyhedron P CR" such that x+ P is a cone for
some x € R" is called a polyhedral cone in general position.

For any set SCR", rec(S):={y &R"|x+ Ay €S for all x€ S and all A 20}
denotes the recession cone of S. It is well-known that if P=P(A,b)=
conv(V) + cone(E) is a polyhedron, then rec(P) = P(A, 0) = cone(E). For any set
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S CR" we denote by lineal (S):={y Erec(S) | — y Erec(S)} the lineality space
of S. Again, if P =P(A, b)=conv(V)+cone(E), then lineal(P)=
{x ER" | Ax = 0} = cone({e € E | - ¢ € cone(E)}).

By 1 we denote a vector all whose components are one. Its dimension is
always clear from the context.

Let P CR" be a polyhedron. We call ¢x = ¢, a valid inequality for P if ex S ¢
holds for all x € P. A subset FC P is a face of P if F ={x € P | cx = ¢o} holds
for some valid inequality ¢x < ¢, of P, and this face F is proper if F# P. The
empty set is a face, called the empty face of P. It is obviously the smallest face
contained in any face of P. A proper face which is nonempty is called nontrivial.
It is clear from the definition that the intersection of any number of faces of P is
again a face of P. A nontrivial face which is not contained in any other proper
face of P is called a facet of P. Every face itself is a polyhedron, hence we can
consider faces of facets of P. A maximal proper face of a facet of P is called a
subfacet of P. Note that a facet is by definition never empty, but a subfacet may
be empty.

For deriving lattice theoretical results about polyhedra the object we would
like to deal with is the collection of nonempty faces %'(P) of P. However, #'(P)
does not necessarily contain a minimal element, i.e. a nonempty face which is
contained in any nonempty face of P, as the example of polytopes shows. Thus,
in order to get a lattice we take the smallest face of P

Fo: = m F
FE(P)

contained in all nonempty faces of P and add it to %(P). The set F(P):=
F'(P) U {Fy} is a finite lattice under set inclusion called the face lattice of the
polyhedron P and denoted by (%(P)C) or just F(P). As usual we denote by
FvG the join and by FAG the meet of F, GEF(P), ie, Fv G=
N{H € F(P)| FUG C H} is the smallest face of P containing both F and G,
and F A G = F N G is the largest face contained in both F and G. Two faces F, G
are called noncomparable if neither F C G nor G C F holds. A face G iscalled a
cover of a face F if F# G, F C G and there is no face H different from F and G
with FCHCG.

The dimension of a face Fe& F(P), denoted by dim(F), is the maximal
number of affinely independent points in F minus 1. The dimension of the empty
face is — 1. The dimension of a facet of P is dim(P)~— 1, and the dimension of a
nonempty subfacet of P dim(P)— 2. A face of dimension 0 is called a vertex and
a face of dimension 1 an edge. In the following we shall denote a vertex {x} of P just
by x for ease of notation. A polyhedron which has a vertex is called pointed. IfPisa
pointed polyhedron and E an edge of P, then it is well-known that E has either one
vertex or two vertices. In case E has one vertex, say x, then E = x + cone(e) holds
for some vector e ER", in case E has two vertices, say x and y, then E=

conv({x, y}).
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Let F,, F, € #(P) be two faces of a polyhedron P and assume that dim(F;) =
dim(F), then F; and F; are called adjacent on P if

F,v F, is a cover of F;, (1.1
F, is a cover of F; A F,. (1.2)

If F, GE %(P) are faces of a polyhedron and if G covers F then it is
well-known that dim(F)=dim(G)—1 holds if either F#@ or if P is pointed.
Therefore, if F;, F, € %(P), dim(F,) = dim(F;), and P is pointed or F; » F;# 8,
then F, and F, are adjacent if and only if

dim(F; v Fy) = dim(Fy) + 1, (1.3)
dim(F, A F3) = dim(F) - 1. (1.4)

In case P is not pointed, then the dimension of any cover of the empty face
equals the dimension of the lineality space of P, thus if F, F, € F(P), dim(F;) =
dim(F,), P is not pointed and F; A F, = @, then F; and F; are adjacent if and only if

dim(F, v F;) = dim(F;) + 1, (1.5)
dim(F)) = dim(lineal(P)). (1.6)

Note that the definition given above of adjacency of faces is based on properties
of the face lattice only and therefore does not rely on descriptions of a
polyhedron P of the form P = P(A, b) or P = conv(V) + cone(E).

To give an example; in the unbounded, nonpointed polyhedron P in Fig. 1.1 any
two noncomparable faces of P are adjacent except F, and F; because Fya F3 =
P and dim(F,) = dim(F;) = 2 but dim(lineal(P)) = 1, i.e., (1.6) is not satisfied. For
a further example consider the pyramid P shown in Fig. 2.1 and the subsequent
discussion of the adjacency relations on P.

NV,

Fig. 1.1,
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2. Characterization of adjacency by means of the face lattice

To give a motivation of our definition of adjacency we start by proving three
simple observations

Proposition 2.1. (a) If x and y are different vertices of a polyhedron P, then x and
y are adjacent if and only if conv({x, y}) is an edge of P.

() If F and G are different facets of a polyhedron P, then F and G are
adjacent if and only if FN G is a subfacet of P.

(¢) If F and G are noncomparable faces of a polyhedron P such that F is a
facet and G is a cover of the minimal face of P (e.g. G is a vertex if Pis pointed), then
F and G are adjacent.

Proof. (a) If x and y are adjacent, then E:=x v y has dimension 1, thus E is an
edge of P. Since x and y are vertices of P and contained in E, they are also
vertices of E, hence E = conv({x, y}) holds. It is clear from the definition of
“join” that conv({x, y}) C x vy holds. If conv({x,y}) is an edge of P, then
conv({x, y}) is a face of P of dimension 1 containing x and y, hence xvy
C conv({x, y}). Therefore x vy covers x and since x covers @=xry x and y
are adjacent.

(b) If F and G are adjacent facets of P, then by definition F is a cover of
FAG=FnNG, hence FNG is a subfacet of P. Conversely, if F and G are
different, then obviously P is a cover of F and G. If F N G is a subfacet of P,
then F and G are covers of F A G. Therefore F and G are adjacent.

(c) Clearly FvG =P and FAG=M, where M is the minimal face of P,
hence F v G covers F, and G covers F A G, i.e., F and G are adjacent.

For a polytope P, the condition conv({x,y}) is an edge of P is clearly
equivalent to the condition that every z € conv({x, y}) has a unique represen-
tation as a convex combination of vertices of P. It is this kind of uniqueness
characterization that is usually used to define adjacency of vertices on poly-
topes, thus our adjacency relation covers the well-known concepts. The follow-
ing example serves to illustrate the adjacency relationship geometrically.

Example 2.2. In the pyramid P, shown in Fig. 2.1, vertex 1 is adjacent to every
other vertex, but vertices 2 and 4 resp. 3 and § are not adjacent since their join
(the ground facet) has dimension 2. The ground facet is adjacent to every other
facet, but the facets with vertices 1, 2, 3 and 1, 4, 5 are not adjacent since their
meet has dimension zero. The edges with vertices 2, 3 and 4, 5 are not adjacent
since their meet has dimension zero, and the edges with vertices 1, Jand 1,5 are
not adjacent since their join is P. The facet with vertices 1, 2, 3 and the edge
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1

Fig. 2.1.

with vertices 3, 4 are adjacent, but this facet is not adjacent to the edge with
vertices 4, 5.

The following lemma states one of the most important properties of the face
lattice of a polyhedron.

Lemma 2.3. If a subfacet F of a polyhedron P is the intersection of facets of P,
then F is the intersection of exactly two facets of P. In particular, if a subfacet F
is nonempty, then it is the intersection of exactly two facets of P.

For a proof see e.g. [10, Theorem 2.13. 9, p. 71].

Since a subfacet which is the meet of facets is the meet of two unique facets
we can rewrite Proposition 2.1(b) as follows: two facets of a polyhedron which
have a nonempty meet are adjacent if and only if there are no two other facets
with the same meet. Similarly, Proposition 2.1(a) can be rephrased as: two
vertices of a polytope are adjacent if and only if there are no two other vertices
which form the same join. This motivates our next definition.

Definition 2.4. Two faces F,, F, of a polyhedron P are called join-meet am-
biguous if there exist faces Fy, F, € F(P) < {F,, F,, F\v Fy, F, A F3} such that
FavF4=F v F, and FsA F,= F A F, holds, otherwise F, and F, are called
join-meet unique.

We shall show in the sequel how this concept can be used to characterize
adjacency of faces (cf. Theorem 2.10). The main tool for our proofs will be the
following

Theorem 2.5. Let F C G C H be nonempty faces of a polyhedron P, then there
exists a face G of P, called the ‘relative complement’ of G, with

(@) GvG=H,GrG=F, and

(b) dim(G) + dim(G) = dim(H) + dim(F).
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This theorem can be proved by repeated application of Lemma 2.3. (cf. [10], p
71), the statement of Theorem 2.5 here is a little more general than in [10].

Lemma 2.6. Let F C H be two faces of a polyhedron P and assume that F is the
iftersection of facets of H. Then for every cover G C H of F there exists a facet
G of H, called the ‘complement’ of G, such that G A G=Fand GvG=H.

Proof. Let {F, F,..., F,} be the set of all facets of H containing G; since G
covers F, G is nonempty, therefore G = M}, F. Now let Fiv1, Fysa, ..., Fy be all
other facets of H containing F. By assumption » >k and F = (M {-1 F; holds. We are
now looking for a smaller representation of F as the intersection of facets Fj, and
consecutively proceed as follows. We delete F,, F,;, F,—; etc. until we obtain an
index j such that F = ({%} F; and F# N}, F;. Since G = N}, F;, we have j Z k.
Suppose j >k, then F # (M |- F, C G,butsince G covers F, G = M {.; F hasto hold,
therefore j = k by the choice of k. Set G = Fj;1, then G A G = F, and since G is a
facet of H and GZ G, G v G = H holds.

A converse of Lemma 2.6 obviously also holds, namely, if there are proper
taces G, G' of H with F=G A G"and H = G v G’, then F is the intersection of
facets of H.

If the empty face F is the intersection of facets of H, we conclude from the
lemma above that for every cover GCH of F we can find a complement G.
Note however that such a complement does not necessarily exist for a face
G C H which is not a cover of F. Consider the following.

Example 2.7. In Fig. 2.2 the empty face is the intersection of all facets of P. Now
take F =@, G: = F,, H: = P, then there is no face G of H with G A G = F, hence G

has no complement.

The next observation shows that join-meet uniqueness is not very helpful in
case of faces of different dimension.

G,
. & R B
A A O
VI ,_5 V2 . o

Fig. 2.2
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Proposition 2.8. If Fi and F, are noncomparable faces of different dimension of a
polyhedron P, then F, and F, are join-meet ambiguous.

Proof. Let F:=F A F; and H : = F, v Fa. Since F; and F, are noncomparable
they are nonempty, this implies that F; and F. are intersections of facets of H
and therefore F is also the intersection of facets of H. Assume dim(F;) <
dim(F,), then F, is not a facet of H and there exists a proper face G of F, which
is a cover of F. By Lemma 2.6 there is a facet G of H such that G A G = F and
G v G = H, by construction G, G € #(H) ~ {F,, F,, F, H}.

Note that in the case where F, and F; are adjacent and have different
dimension the proofs of Lemma 2.6 and Proposition 2.8 yield that we can find
F3, Fy € %(P)~{Fi, Fs, F,v F;, F| A F,} such that dim(F;) = dim(F3), dim(F,) =
dim(F,) and Fs A Fy= F, A F,, F5 v F;= F; v F; holds.

Proposition 2.9. If F,, F, € %(P) are different nonadjacent faces of a polyhedron
P of equal dimension such that FiA F,#@, then F, and F, are join-meet
ambiguous.

Proof. Let us assume that dim(F; A F;) = dim(F,) — 2, then there is a face G such
ttlat Fya F;g G gF, and by Theorem 2.5 there exist_s a relative complement
G of G with respect to Fia F; and F,v F;; clearly G# F,. If F,# G we are
done, otherwise let F, H be faces such that FiAa F,CF C H C F, v F3, H covers
F,, and F, covers F. By Lemma 2.3 there exists a unique facet F; of H with
F>A Fy3=F, F,v F;= H. By Theorem 2.5 there is a relative complement F; of F;
with respect to F, A F,, F, v F;. By the dimension formula (b) of Theorem 2.5
dim(F;) < dim(F)), and thus F; and F, are the desired faces which show that F,,
F, are join-meet ambiguous. In case dim(F,v F;)=dim(F;)+2 the proof is
analogous to the one above.

Note, that Proposition 2.9 does not hold without the assumption F, A F,# @.
Consider the polyhedron P of Fig. 2.2, here the facets F; and F; are nonad-
jacent, of equal dimension, and F; A F5= @, but F,, F, are join-meet unique.

Theorem 2.10. Let F;, F,€ #(P) be two different faces of a polyhedron P of
equal dimension and F, A F;# Q. Then F, and F, are adjacent if and only if they
are join-meet unique.

Proof. “<&” by Proposition 2.9.

“>" If F, and F, are adjacent, of equal dimension and F; A F;#, then
Fy A F, is a subfacet of F,v F, and hence by Lemma 2.3 is the unique inter-
section of two facets of F, v F,.
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Corollary 2.11. If P is a polyhedral cone in general position and F,, F,€ %(P)
are two different faces of equal dimension, then F, and F, are adjacent if and
only if F| and F; are join-meet unique.

Proof. Two faces of a polyhedral cone in general position never have an empty
intersection.

To show the same result for polytopes we introduce the 7-homogenization of
a set. Let SCR" be a set and 1 €{— 1,0, 1} then

r-hog(8) : = [(’T‘) ER™|xE s}m @1

where for T CR™!, T®: = {y ER"'|xy =0Vx € T} denotes the polar cone of
T. If P is a polyhedron, then 7-hog(P) is a polybedral cone.

Lemma 2.12. If  €{~ 1,1} and P CR" is a polytope, then the face lattices F(P)
and F(r-hog(P)) are isomorphic.

Proof. See Theorem 2.14.4 in [10].

The existence of a lattice isomorphism between F(P) and %(r-hog(P)) im-
mediately implies

Corollary 2.13. If F,, F,€ F(P) are two different faces of equal dimension of a
polytope P, then F, and F; are adjacent if and only if F, F, are join-meet unique.

Our discussion shows how the concepts of join-meet uniqueness and ad-
jacency are related to each other; it turns out that the adjacency characterization
in Proposition 2.1(a) and (b) can only be generalized for faces of equal dimen-
sion and that join-meet uniqueness is of no use in case of faces of different
dimension.

One might be tempted to strengthen the join-meet uniqueness condition a little
bit to include also faces of different dimension. One concept we believed to be
appropriate is the following: Call two noncomparable faces Fy, F; of a poly-
hedron P “join-meet ambiguous™ if there exist faces Fs, F € F(P)~(Fy, Fy,
F,v Fz, Fl A Fz} such that FivF,=Fv Fy, F1 AF= Fy A F4 and dlm(Fl) =
dim(F;), dim(Fy) =dim(F,) holds, otherwise call Fi, F; “join-meet unique”.
However, this concept does not help characterizing adjacency, because Theorem
2.10 does not hold any more with the restricted definition of join-meet unique-
ness. Consider the polytope P which is obtained by gluing two equally sized
regular tetrahedra together (see Fig. 2.3). P has two vertices u and v which are
not adjacent and are join-meet unique in the sense of the restricted definition,
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Fig. 2.3.

since there are no two other vertices of P having P as join. This polytope P is a
counter-example to the validity of Corollary 2.13 in the case of the restricted
join-meet uniqueness definition and the 1-homogenization of P gives a coun-
terexample to Theorem 2.10.

3. Calculating the equality set and the extreme set of a face

Since the adjacency relationship is defined by means of properties of the join
and the meet of faces, we have to show how these can be calculated given some
description of the polyhedron. With the help of these results we can then deduce
the description dependent adjacency characterizations.

The main tools we shall use to derive our results utilize the following
concepts. If P = P(A, b) CR" is a polyhedron and M = {1, 2, ..., m} is the row
index set of A then we introduce the mapping (2° denotes the power set of S)

{eq:2’—>2’“, 3.1)
POF - {iEM|Ax=b forall xEF}CM, '

thus eq(F) is the set of all row indices of A such that the corresponding
inequalities are binding for F, eq(F) is called the equality set of F. The mapping

{fa:ZM—>2’,

(3.2)
MDI - {xeP |Ax=b forall iel}

associates with every set I of row indices of A the subset F of P such that all
points in F satisfy the inequalities given by I with equality. Clearly, fa(I) is a
face of P, called the face defined by L

If the polyhedron P is given as P = conv(V)+cone(E) CR" we can define
similar mappings as follows: Given a vector x € conv(V) + cone(E), then we say
that u € V convexly supports x with respect to (V, E), if x has a representation
x=Y,ev A+ .ceme such that A, >0, and we say that f EE conically
supports x if x has a representation x = ¥,,eyA,0 + X.eriee such that pu, > 0.
We define for FC P

exy(F):= {s € V|v supports some vector x € F
convexly with respect to (V, E)}, (3.3)
exg(F):={e € E | e supports some vector x € F ’
conically with respect to (V, E)},
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and combining these notions we define the mapping

{ex 1 2P 5 2Vx2E,

P D F — ex(F): = (exy(F), exg(F)) C (V, E).
The set ex(F) is called the extreme set of F. Clearly, if F is a face of P, then
exy(F) contains all vertices of P contained in F, and exg(F) contains all
extreme vectors of F, and thus F = conv(ex y(F)) + cone(exg(F)). Note that for
the empty face of P we have exy() =9, exe(9) =@, and that F C P is empty if
and only if exy(F)=0.

To define a mapping converse to ex we first set

gen 2Yx2E-2° 3.5)
{(V. E)D (S, T) > conv(S)+cone(T)C P.

3.4

Note that gen(S, T) is in general not a face of P, but using the mappings ex and
gen we can obtain the desired mapping as follows:
sp:2¥ x2E52F, (3.6)
{(V, E) D (S, T) ~ gen(ex(gen(S, T))),
One can show that for any set (S, T), sp(S, T) is a face of P called the span of
(S, T), and sp(S, T) is the smallest face F of P such that SCexy(F) and
T C exg(F) holds. Note that gen(S, T) is empty if and only if S is empty.
Furthermore, ex(sp(S, T)) = ex(gen(S, T)) holds.

Theorem 3.1. Let P = P(A, b) beapolyhedron,IC M ={1,2,...,m}, K:=M~ 1,
and let F={x € P|A;x =b;} be a nonempty face of P. Then for all JEM,
j Eeq(F) if and only if

(A;, b)T € lin((A,, b))™) — cone((Ak., bx)").
Proof. Define cT: =31 Ai, Co:= i bi then clearly F={xEP |cx=co}
holds. By (A.1), cf. appendix, we obtain

eq(F)={j € M | Ju R such that uTA=c", ub = cq, 4, >0}.

Therefore, if j€eq(F), there exists uz0 with ;>0 such that
Ap=—1TAyog.+ (u) I"AL  and by =— 0 by gy + (1/u)lb,
where  vT = (1/w)(Uy, -, Wj-1, Ujsi, oo Um). This implies
(A;, b)T €1in((A;, b;)") — cone((Ax. bx)).

Conversely, suppose (A;, b)T € lin(A,, b;)") — cone((Ax, bk)"), i.e., there exist
u R, pERT such that A =u"A,—vTA and b= u"b,—v"b holds. Define
d:=uTA; and dp : = «"b;. The inequality dx = d, is a conic combination of valid
inequalities of P and therefore also valid for P. Set G: ={x EP | dx = dp}, then
by definition of G, FC G holds. This clearly implies eq(G) C eq(F), thus it
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suffices to show j € eq(G). Now, A; = d"— v"A, b; = dy~ v"b and, setting 7 =
for i#j, and 5; =v;+1 we have d"=175"A, do=7" b. Since #; > 0, Proposition

A.l implies that j € eq(G) which proves the theorem.

A simple calculation shows that if (A, b;) = A™(Ay, b)) — wT(Ak, bx), A ER,
p ERK, then every index k € K for which w, >0 is also contained in the
equality set of F, i.e., only those k € K can have a positive coefficient u;, which
are in the equality set of F. This way we have shown:

Corollary 3.2. For all jEM, j€eq(F) if and only if (A,b)E
lin((Ay, b1)") — cone((Aer)s bear)D)-

Example 3.3. Given the following pyramid P = P(A, b) CR?* (see Fig. 3.1):

1) —x +x3=0,
2 - X2+ x3 =0,
3) X1 A =2,
4) X+ x3 =2,
&) - X =0,
(6) - X2 =0,
7 -x; =0.

The inequalities (5) and (6) are redundant, inequality (7) defines the ground facet,
inequality (1) the left facet, (2) the front facet, (3) the right facet, (4) the back
facet. Now consider the row index set I ={2,4}, then F={x€ P |Az,x =0,
Asx =2} is the intersection of the front and back facet. Obviously, F is the
vertex (1,1,1). The vector (A, b;) corresponding to inequality (1) can be
obtained by adding up the vectors defining inequalities (2) and (4) and subtract-
ing the vector corresponding to inequality (3); and (As, b3) can be obtained by
adding up the vectors defining inequalities (2) and (4) and subtracting (A, b,).
This implies that (1) and (4) are also in the equality set of F, and it is simple to
see that (5) is not in the equality set of F, thus eq(F)={1, 2,3, 4} (which is
obvious from the picture).
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Corollary 3.4. Let P = P(A,0) be a polyhedral cone, I C M, then for all jE M,
j € eq(fa(l)) if and only if A] € cone((—AT, A]).

Proof. Note that fa(I)={xE€P |A,, x =0} is a nonempty face of a polyhedral
cone P.

If P is a polytope, then the face lattices of P and the 1-homogenization of P
are isomorphic by Lemma 2.12, furthermore by (A.2) the equality set lattice of P
and the face lattice of 1-hog(P) are anti-isomorphic. Applying Corollary 3.4 to
the 1-homogenization of P and exploiting this latter anti-isomorphism we can get
rid of the nonemptiness assumption in Theorem 3.1, i.e., we have

Corollary 3.5. Let P = P(A, b) be a polytope, 1 C M, K : =M ~ 1, then for all
j € M, j eeq(fa(l)) if and only if

(A;, b)" € lin((A;, b)T) — cone((Ax, bx)").
With the help of the ellipsoid method, cf. [5, 8], we obtain

Theorem 3.6. Given a polyhedron P = P(A,b)CR" where Ais a rational (m, n)-
matrix and b €Q™, and given I CM, then the equality set eq(fa(I)) can be
determined in time polynomial in the length of a binary encoding of the data A, b
and I

Proof. First determine whether F:=fa(I)={xE€P |A,,x = b;} is empty or not,
this can be done in polynomial time with the ellipsoid method. If F =§, then
eq(fa(I)) = M. Otherwise, for every jEK:=M~1I determine whether the
following polyhedron

Py ={u", v ER" | u"(Ay, b)) — v"(Ak, bx) = (A, by), v 20}

is nonempty. If P, is nonempty, then jEeq(F) by Theorem 3.1, otherwise
j€ eq(F). Again, with the ellipsoid method the emptiness of Py can be deter-

mined in polynomial time.

Using the polyhedron P defined by the valid inequalities with respect to P, the
r-homogenization of P and isomorphism relations between various lattices
associated with these polyhedra we can derive

Theorem 3.7. Let P = conv(V)+cone(E) be a nonempty polyhedron, (S, T)C
(V,E), and F = sp(S, T) be a face of P.
(a) Forallv €V, v Eexy(F) if and only if there exists § =0 such that

v € (1+ 8)conv(S) — Sconv(V) + lin(T) — cone(E ~ T),
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(b) For all e € E, e €Eexg(F) if and only if there exists A Z 0 such that
e € A conv(S)— A conv(V)+1in(T)—cone(E ~ T)
or equivalently e € cone((S— V)U (- E)UT).

Proof. By Proposition A.4 there exists an anti-isomorphism of face lattices
o F((—1)-hog(P)) > F(P"). Define the mapping @: F(P) — F(P*) by ¢ =
o°(—1)-hog and recall that for

ocr=7((z )(o))

cf.(A.3), y-eq(Q)=(V', E') where V' is the set of all v € V such that cv = ¢,
for all ({) € Q” and E’ is the set of all e € E such that ce = 0 for all () € Q7 (cf.
A.5). By (A.6), ex(F) = y-ex(®(F)), and

o@={(S)eri(z: )(E)-0}

Since P is a cone, the equality set of @(F) and thus y-eq(®P(F)) can be
determined by Corollary 3.4, namely for » € V, we have v € y-eq(P(F)) if and
only if there exists

v - V, ""E, S, T £}
(_ 1) € cone(( 11 05 —lg 0 )) ( )
and for all e € F we obtain
e -V, -E S, T
(el 5 T)

By simple calculations (*) is equivalent to
v € (1+ 8)conv(S)— & conv(V) +1lin(T) — cone(E < T) for some § =0

and (**) is equivalent to

e €\ conv(S)— A conv(V)+1in(T)—cone(E <~ T) for some A =0.

One can verify (a) and (b) of Theorem 3.7 alternatively by direct computation
using the fact that exy(F)=exy(gen(S, T)) and exg(F)=exg(gen(S, T)). An
argument of this kind will be given in the proof of Theorem 3.10. As usual
polyhedral cones and polytopes behave better than general polyhedra, namely we
obtain from Corollaries 3.4 and 3.5 immediately

Corollary 3.8. Let P = cone(E) be a polyhedral cone, T C E and F = sp({0}, T),
then for all e € E, e € exg(F) if and only if e €lin(T)— cone(E ~ T).

Corollary 3.9, Let P =conv(V) be a polytope, S C V, and F = sp(S, @), then for
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all v €V, vEex,(F) if and only if v E(1+38) conv(S)— 8 conv(V) for some
8 =0, or equivalently v € conv(S) + cone(S — V).

The results above show how one can determine all vertices and extreme
vectors of the face spanned by some vertices and extreme vectors. The next
theorem in addition shows that these vectors can be calculated in polynomial
time too.

Theorem 3.10. Given a polyhedron P =conv(V)+cone(E) where V and E are
finite sets of rational vectors and given (S, TYC(V, E). Let F =sp(S, T) be the
face spanned by (S, T), then the vertices exy(F) of F and the extreme vectors
exg(F) of F can be determined in time polynomial in the length of a binary encoding
of the data V and E.

Proof. For w € V we know that w € exy(F) if and only if w € exy(gen(S, T)).
Now x € gen(S, T) if and only if there are « €RY, B eRT 3 ,es @, =1, with
x = 3,es0:8 + der B t. Further, w €ex(gen(S, T)) if and only if there exist
xEgen(S, T) and y ERY, 8ERE, S.ey v, =1, 7, >0 such that x = F.ev 100
+3,ex 8.6 Therefore w € ex,(F) if and only if the set

Pw:z{(aTy BT’ ‘)’T, 81) | @ ERE': ;S o=14 ERLTI:
YERV, 3 v =18 ERF
vE

is nonempty. The emptiness resp. nonemptiness of P, can be checked in time
polynomial in an encoding of V and E with the ellipsoid method, hence for
every w € V we can determine in polynomial time whether w € ex,(F) or not.

Defining a set P, for all e € E in a similar manner and using the ellipsoid
method to check P, =@ we can decide in polynomial time whether e € E belongs
to exg(F) or not.

We now show as a by-product that the algorithm presented in Theorem 3.6 can
be utilized to check nonredundancy of an inequality system.

3.11. Finding a nonredundant linear description of a polyhedron

Given an inequality system Ax =<b with rational (m, n)-matrix A and b € Q™
Let M =1{1,2,..., m} be the set of row indices and P = P(A, b).

(3.11.1) Set I =4, then fa(I) = P. Using the algorithm of Theorem 3.6, deter-
mine the equality set eq(P) of P.
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(3.11.2) Using Gaussian elimination calculate the rank of A and find an
index set I Ceq(P) such that A; has full row rank and rank(A;) = rank(A e))-
(By construction, {x €R" |A,,x= b;} is a nonredundant representation of the
affine hull of P.) Set M':= M ~ eq(P). .

(3.11.3) For every j € M’ calculate the equality set eq(fa({j})) by means of the
algorithm of Theorem 3.6. Let all j € M' be unlabeled.

(3.11.4) If every j € M’ is labeled » STOP.

(3.11.5) Otherwise, pick an unlabeled j€ M’. Check, whether there is a
k € M’ such that eq(fa({k})) is properly contained in eq(fa({j})).

(3.11.6) If yes, then remove j from M’ and go to (3.11.4). (In this case, A;, = b
is clearly a redundant inequality with respect to P.)

(3.11.7) If no, then label j, remove all indices contained in eq(fa({j})) ~ eq(P)
except j from M’ and go to (3.11.4). (In this case A;x = b; defines a facet of P. We
remove all those inequalities which are equivalent, i.e., define the same facet of P as
A;x = b; does.)

After termination of the algorithm clearly
P={xER"| Aix =b;, Ay.x = by}

holds, and by construction this representation of P is minimal, i.e., the removal
of any equation A;x=b, i €EI, or any inequality A;x =b, j& M’ results in a
polyhedron which properly contains P.

Since the algorithm of Theorem 3.6 is called at most m times, only one rank
calculation and some comparisons are performed, the overall running time of
algorithm(3.11) is polynomial in any (binary) encoding of A and b.

Similarly, we can eliminate all superfluous vectors of a generating system of a
polyhedron:

(3.12) Construction of a minimal generating system of a polyhedron

Given finite sets of vectors V, E C Q" and let P =conv(V)+ cone(E) be the
polyhedron generated by V and E. Let all vectors in V and E be unlabeled.
(3.12.1) If every v €V is labeled, go to (3.12.5).
(3.12.2) Otherwise, pick any unlabeled w € V and check with the ellipsoid
method whether

P,,={AT, HAz0, u=0, =1, w= Ay 0+ ,}
( “)| H UEZ\(W) vE \{w]'ov ¢g‘1#‘e

is empty or not.
(3.12.3) If P, is empty, label w and go to (3.12.1).
(3.12.4) If P, is nonempty, set V:= V < {w} and go to (3.12.1).
(3.12.5) If every e € E is labeled —» STOP.



A. Bachem, M. Gritschel| Adjacency of faces of polyhedra 17

(3.12.6) Otherwise, pick any unlabeled f € E and check with the ellipsoid
method whether Py = {A | A=0,f =2 .cp A€} is empty or not.

(3.12.7) If Py is empty, then label f and go to (3.12.5).

(3.12.8) If P; is nonempty, then set E : = E < {f} and go to (3.12.5)

Clearly a vector w € V is superfluous in a generating system (V, E) if and only
if w can be generated by the other vectors of a generating system, and similarly,
a vector e € E is superfluous if and only if e is in the cone spanned by the other
vectors of E. Therefore, by successively eliminating vectors w € V in Step
(3.12.4) and vectors f € E in Step (3.12.8) we finally end up with a generating
system which is minimal. Note however, that this system is not necessarily of
minimum cardinality. Only in case P has a basis, i.e.,, P is pointed, it is
guaranteed that after termination of the algorithm the final set (V, E) is of
minimum cardinality, since if P has a basis, the basis is unique.

As the ellipsoid method is called exactly |V|+|E| times and the ellipsoid
method runs in time polynomial in an encoding of V and E, the overall running
time of algorithm (3.12) is polynomial.

4. Polynomial algorithms to check adjacency

We now assume that the polyhedron P is given by P =P(A,b) or P =
conv(V) + cone(E) (or both), and we want to show, how these descriptions of P
can be utilized to characterize and check adjacency of faces of P. The following
lemma is well-known.

Lemma 4.1. Let P =P(A, b)=conv(V)+cone(E) be a polyhedron and F a
nonempty face of P. Define I :=eq(F) and (S, T) = ex(F), then

(a) dim(F)=n —rank(A4;),

(b) dim(F)=arank(SU(S+T))—-1.

Here arank(S) denotes the affine rank of S, i.e., the maximum number of
affinely independent points in S.

Lemma 4.1 tells us how we can calculate the dimension of a face given some
description of P resp. F. To check whether two faces are adjacent we have to
determine the dimensions of these two faces and the dimensions of the join and
the meet of these faces. To do this we shall utilize the results obtained in Section
3.

Lemma 4.2. Let P = P(A, b)=conv(V)+cone(E) be a nonempty polyhedron
and F,, F, two faces of P.

(a) eq(F, v Fy) = eq(F;) N eq(F), :

(b) If exy(F) Nexy(F) #8, then ex(F; A F,) = ex(Fy) Nex(F,),
otherwise ex(F, » F,) = (8, 8).
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Proof. (a) By Proposition A.2 the mapping eq: %(P)-EQ(A, b) from the face
lattice F(P) of P into the equality set lattice EQ(A, b) of P is an anti-isomorphism
which implies (a), since eq(Fy) A eq(Fy) = eq(Fy) N eq(F).

(b) Assume exy(F;) N exy(F,) # @. Recall the definitions of the mappings ¢, o
and the y-equality set y-eq (cf. (A.5) resp. the proof of Theorem 3.7), then

ex(F, A F,) = y-eq(¢(F; A Fy)) (by Proposition A.6)
= y-eq(o °(—1)-hog(F, A F3))
= y-eq(a((—1)-hog(Fy) A (—1)-hog(F?)) ((~1)-hog is a

homorphism)
= y-eq(o((—1)-hog(F)) A o((—1)-hog(F2))) (o is an anti-
= y-eq(¢(F1) v ¢(F2) isomorphism)
= y-eq(¢(F1)) N y-ea($(F2)) (by part ())
=ex(F) Nex(Fy) (by Proposition A.6).

If exy(F)) A exy(Fy) =@, then F;a F, =4 and thus ex(F, A F;) = (@, ).
Theorems 3.1 and 3.7 immediately imply

Theorem 4,3. Let P = P(A, b)= conv(V) + cone(E) be a polyhedron and Fy, Fa
two faces of P.
(a) If F;AF#0 and I : = eq(F) Ueq(F), then

eq(F, A Fy) = {i €{l,..,m}| (A, b)TE cone((_AK’ _b'b )T)}

(b) Let (S, T) = ex(F,) U ex(F,) then

exy(FivF)={veVv | 36 =0 with v €(1 + 8)conv(S)— & conv(V)
+1in(T) — cone(E ~ T)}

exg(F,v F;) ={e €E | e Econe((S— V)U(-E)U T)}.

Since adjacency can be defined by dimension formulas, cf. (1.3), (1.4) resp.
(1.5), (1.6), we can determine the adjacency of faces Fi, F; by calculating the—- .
dimensions of Fy, F, Fiv F, Fya F. Lemma 4.1 tells us how the dimension of a
face F can be obtained using the equality set eq(F) of F, Lemma 4.2 and
Theorem 4.3 show how we can get the equality sets and extreme sets of the join
resp. meet of faces. :

The results above and the ellipsoid method enable us to check in polynomial
time whether two faces of a polyhedron are adjacent or not. This can be done as
follows: ‘

4.4. Suppose an inequality description P = P(A,b) is given, let clx=cl,
cx=c} be two valid inequalities with respect to P, and let F;=
{xeP | c'x=cl}, R={x€P ‘ ¢2x = cf}, and assume all data are rational.
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(4.4.1) Add the inequality c'x =c{ as constraint m+ 1 to the constraints

Ax = b obtaining a system A'x = b’ which also describes P. Setting I : ={m +1},

calculate the equality set I{ C{1,..., m, m + 1} of F; with respect to P(A', b') by
the algorithm given in Theorem 3.6. Since ¢'x = ¢} is redundant, I; = I{ ~{m + 1}
is the equality set of F; with respect to P(A, b). In the same way calculate the
equality set I, of F, with respect to P(A, b). If one of the equality sets I, I, is
empty or is the whole index set M, then stop, since one of the faces is equal to P
or minimal and therefore F, and F, are not adjacent.

(4.4.2) Calculate the rank, say ki, of Ar, and the rank, say k; of A, We may
assume that k,=k, holds, thus by Lemma 4.1, n—k;=dim(F)) < dim(F;) =
n-— kz.

(4.4.3) Let J :=1;NI, then by Lemma 4.2 J is the equality set of F,v F,.
Calculate the rank j of A, If j#k,— 1, F, and F, are not adjacent-> STOP.

(4.4.4) Let K:=I,UL, then F;anF={x ER"| Axx =bx, Ax=b}. Check
whether F; A F, is empty or not using the ellipsoid method.

(4.4.5) If F; A F; =0, then calculate the rank k of A. The number n — k is the
dimension of the lineality space of P. If k; = k, then F; and F; are adjacent, since
dim(F;) = dim(lineal(P)), otherwise F and F, are not adjacent.—» STOP.

(4.4.6) If F; A F,# @, then using the algorithm of Theorem 3.6 for A, b and K
determine the equality set L of Fy A Fa. Calculate the rank € of A, If £ =k, +1,
then F, and F, are adjacent, otherwise not. STOP.

Since we have used the algorithm of Theorem 3.6, the ellipsoid method and
rank calculations only the algorithm above runs in time polynomial in a binary
encoding of the data A, b, c!, c?, c{, c}. Next we show that adjacency can also
be checked in polynomial time if the polyhedron is given by its vertices and
extremals.

4.5. We assume that P is given by P =conv(V)+ cone(E) where V and E
are finite sets of rational vectors in R". We also assume that we have two faces
F, and F,. These could be given in two ways:

(4.5.1.a) Suppose two nonempty sets (S}, T)C(V,E) are given and F, =
sp(S), T}, i=1,2. Using the algorithm of Theorem 3.10 we can determine
(S, T)) = (exy(F), exg(F)), i =1,2 in polynomial time.

(4.5.1.b) Suppose two valid inequalities ¢'x < c{ and c¢%x = c} are given and
F:={x€P|cx=c{}, i=1,2. Then v €V belongs to exy(F) if and only if
¢'v = cl. In case exy(F;) =@ we know that exg(F,) = @. If exy(F) #@ then e € E
belongs to exg(F)) if and only if c'e =0. Thus we can determine ex(F;) and
ex(F,) in time polynomial in the input length.

If one of the exy(F;) is empty then one of the faces is empty and we can stop
with Fy, F, not adjacent.

(4.5.2) Calculate the affine ranks, say k, of S;U(S;+ T)), i = 1,2, which by
Lemma 4.1 determine the dimensions of F,. We may assume that, k; < k; holds.

(4.5.3) We now calculate the dimension of F;v F; as follows. Set (P', Q") =
ex(F,) U ex(F,), then by Theorem 4.3 using the algorithm of Theorem 3.10 we
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can calculate (P, Q) = ex(F; v F,) in polynomial time. The affine rank, say j, of
P U(P + Q) is the dimension of F;v Fy, hence if j# ka+1, F; and F, are not
adjacent and we can stop.

(4.5.4) Set (R, S) = ex(Fy) N ex(F,).

(4.5.5) If R# ¢, then F; A F; =@ and we have to calculate the dimension of the
lineality space of P. For every e€E we check with the ellipsoid method
whether P, = {A 20| e = — EA}is empty or not. The set L of e € E for which P is
nonempty generates the lineality space of P. We calculate the rank ¢ of L, in case
L=@set £=0.If £ =k then F, and F;, are adjacent, otherwise not, and we can
stop.

(4.5.6) If R =4¢ then by Lemma 4.2, (R, S)=ex(F; A F;) and we calculate the
affine rank of RU(R+S), say k. If k=k,—1, then F, and F; are adjacent,
otherwise not. STOP!

The above algorithm uses the ellipsoid method, the algorithm of Theorem 3.10,
rank and affine rank calculations only, therefore the overall computational time
is bounded by a polynomial in a binary encoding of V and E, resp. ¢, cb if the
faces F; are given by inequalities.

Appendix A

In the following we list some concepts and results of polyhedral theory which
are partly well-known or can be found in [2], see also [1, 6 and 10].

We assume in the following that a polyhedron P CR" is given and 2 linear
deseription P = P(A, b) with an (m, n)-matrix A and b €R™ is known, and also
that we know finite sets V, ECR" such that P = conv(V)+ cone(E). We set
M={1,2,..,mk.

Proposition A.4. The mapping F —(—1)-hog(F) is an injective homomophism from
existsu €R™u =0 withu"A =c",ub = co. If forthisu,I ={ieM | u; > 0}, then for
every x € P the following holds:

cx=ub ifandonlyif Ax=Db foralli€l
Moreover, if F={xE€P f cx = cg} # @, then
eqF)={ieM | Juz0, uTA=c", ub = co, 4, >0}

On the set M of row indices of A we define the so called equality set lattice
EQ(A, b) C2¥ as follows

EQ(A, b) = {I C M | 3F € %(P) such that I = eq(F)}.

EQ(A, b) is obviously a lattice under set inclusion, moreover we have:
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Proposition A.2. The equality set lattice EQ(A, b) is anti-isomorphic to the face
lattice #(P). Furthermore, if P is a polytope, then EQ(A, b) is anti-isomorphic
to the face lattice F(r-hog(P)) of the T-homogenization of P for r €{— I, 1}.

For any S C R" we define the y-polar of S to be
S = {(: ) ER"! | cxsc, forall x € S}.
0

Thus, S” is the set of all vectors (¢,) defining a valid inequality cx = ¢, for S. In
case S is the polyhedron P we have:
Proposition A.3. The following equation holds.

PY =((- 1)-hog(P))’

anlll 9)-#((% 2).0)

In particular P” is a polyhedral cone. (Note that V and E are considered as
matrices here where the elements of V and E are the columns).

The y-polar P* of P serves as a connection between the two representations
P =P(A,b) and P =conv(V)+cone(E) and is the main tool for deriving the
following results.

Proposition A.4. The mapping F —(—1)-hog(F) is an injective homomorphism from
F(P) to F((—1)-hog(P)). Furthermore there exists an anti-isomorphism
a: F((—1)-hog(P))-» F(P).
The composite function ® = o o (— 1)-hog is an injective anti-homomorphism
b F(P)-> F(P).

With respect to P it is notationally convenient to define the mapping eq and
the equality set lattice in a slightly different way. Since by (A.3)

P=p((e 9))

we set:

Definition A.5.
v-eq: P12V x2E
P'2Q~-(ST)

where




e
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S={vEV|uy=zf0rall (Z)EQ},
T={eEE|ey=0forall (i)eo}

The difference between the mappings eq and y-eq is that in case of eq we use
sets of row indices as images and that for y-eq we use the row vectors (without
the last component) corresponding to the row indices as images and that these in
addition are split into two parts. It is therefore obvious that the equality set lattice of
P and the y-equality set lattice (defined analogously) are isomorphic.

The following result justifies the use of the y-equality mapping.

Proposition A.6. For every face F € ¥(P) we have
ex(F) = — y-eq(®(F)),
in particular, if (S, T) = ex(F), then

om={(S)erl (3 ) (5)=0}
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