JOURNAL OF COMBINATORIAL THEORY. Series B 40, 40-62 (1986)

On the Cycle Polytope
of a Binary Matroid

F. BARAHONA* AND M. GROTSCHEL'

* Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, Ontario N2L 3G 1, Cunada, und
* Mathematisches Institut, Universitét Augshurg,
Memminger Strasse 6, D-8900 Augshurg. West Germany

Conumunicated by the Editors

Received August 7, 1984

The convex hull of the incidence vectors of the cycles of a binary matroid is
studied. We prove that a description of the facets of this polytope can be obtained
from a description of the facets that contain any given vertex. The facet-inducing
inequalities are given for matroids with no Ff. Ry, or M(K)* minor. We also
characterize adjacency on this polytope. 1986 Academic Press, Inc.

1. INTRODUCTION

Let M be an m x n matrix with zero-one coefficients and » a vector in
{0, 1} In this paper we study the polytope

P(M, b):=convixe {0, 1}"| Mx=h(mod 2}},
ie., the convex hull of the set of zero-one solutions of Mx = h(mod 2). A

related polyhedron, called the binary group polyhedron, has been
investigated by Gastou and Johnson [6]. It is defined as follows

P(mC,, M, b) :=conv{xe {0, 1,2,..}" | Mx=h(mod 2}

P(mC,, M, b) is the dominant of P(M, b), that is,
P(mC,, M, b)=P(M,b)+R",.

It is easy to see that for ce R",
min{cx | x& P(mC,, M, b)} =min{cx | xe P(M, b)}

if ¢>0. But this relation does not hold if we wish to maximize the linear
function cx. This, however, is the problem in which we are interested and
which led us to study P(M, b) in more detail.
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Namely, we are currently trying to develop practically efficient cutting
plane algorithms for a number of real-world problems (e.g., determining
the ground state of spin glasses at 0°K, or solving certain quadratic 0/1-
problems) which can be phrased as max{cx | xe P(M, b) }, where M and b
have particular properties. After investigation of these special cases it tur-
ned out that most of our results for these cases could be stated in the more
general framework to be studied here. Moreover, almost all of our proofs
became shorter and more elegant. So we decided to present our theoretical
investigations in this framework.

Let us mention first a few similarities of and differences between P(M, b)
and P(mC,, M, b). Clearly, every vertex of P(mC,, M, b) is a vertex of
P(M,b), but mot vice versa. If ax<a, defines a bounded facet of
P(mC,, M, b) then it also defines a facet (in fact, the same) of P(M, b), but
P(M, b) has other bounded facets.

We shall prove that P(M, b) has a nice property that P(mC,, M, b) does
not have: to characterize the facet defining inequalities of P(M, b) it is
enough to characterize the facets that contain a given vertex. Roughly
speaking, the cones associated to each vertex are all the same.

This property enables us to use a result of Seymour to characterize the
matrices M such that P(M,b) is defined by the so-called cocircuit
inequalities.

We shall characterize adjacency on P(M,b), and we shall prove the
Hirsch Conjecture for P(M, b) in the case that M does not contain a cer-
tain minor. We shall assume familiarity with matroid theory. For an
introduction to it see Welsh [11]. Given a set F< E the incidence vector x*
of F is defined by

, {1 if eeF
xl‘ —

0 if eeE\F.

The symmetric difference between F and G, (F\G)u(G\F), will be
denoted by F A G.

Let us also recall some notions of the theory of polyhedra. If P is a
polyhedron, the inequality ax < « is valid for P if every x e P satisfies it. The
face induced by the valid inequality ax <a is {xe P | ax=a}. A face F# J
of P is called a facet of P if the dimension of F is equal to the dimension of
P minus one.

If Pis a polyhedron and

P={x| Ax=b,Cx<d},

then Ax=b, Cx<d is a minimal linear system defining P if and only if

(i) {x| Ax=b} is the affine hull of P and the rows of 4 are linearly
independent,
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(ii) each inequality of Cx<d induces a facet of P, and no two
inequalities induce the same facet.

2. Basic PROPERTIES OF P(M, b)
AND THE RELATION TO BINARY MATROIDS

First, we shall prove that the polytope P(M, b) can be obtained from
P(M,0) by a simple transformation. For xeR" with 0<x<1, and
ye {0, 1}7, the vector x@® yeR" is defined by

1—x; if y=1,
X = . )
x@) {x,- if y,=0.
Note that for 0/1-vectors x, y, the operation x@ ) is just componentwise
additon modulo 2.

(2.1) LemMA. Let ye {0,1}" such that My =b (mod 2).

(a) P(M.b)={x®yeR"|xe P(M,0)},

(b) xeR"is a vertex of P(M, Q) iff x@® y is a vertex of P(M, b).

(¢) ax<a is valid for (resp. defines a facet of) P(M,0) iff
a(x @ y) <« is valid for (resp. defines a facet of ) P(M, b).

Proof. (b) If x is a vertex of P(M,0) then xe{0,1}", and hence,
x@® ye {0, 1}" Moreover, it is easy to see that x@® ye P(M, b). This
implies that x@y is a vertex of P(M, b). Similarly, x@® y is a vertex of
P(M, b) implies that x is a vertex of P(M,0).

(a) If xeP(M,0)then x=3 4;x/, with 2,20, x’ a vertex of P(M,0),
for all j, and ¥ A,= 1. This implies that

x@y=Y X ®y)

Since x’@y is a vertex of P(M,b) for all j, by (b) we conclude
x@® ye P(M,b).

Conversely, let us suppose that z e P(M, b), z=Y% 1,2, with 4,20, o a
vertex of P(M,b), for all j, and 3 4,=1. By (b) /@ is a vertex of
P(M, 0), for all j. Set x :=3.4,(2/@® y); then xe P(M, O)and z=x@ ).

(c) The equivalence of the validity of the two inequalities is clear. To
prove that one of the inequalities defines a facet iff the other does, observe
that the vectors x,.,x, are affinely independent vertices of P(M, Q)
satisfying ax =« iff the vectors x; @ y,... X, @ ) are affinely independent
vertices of P(M, b) satisfying a(x@® y)=ao |
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Lemma (2.1)(c) in particular implies that if ye P(M, b} {0,1}" and if

n
Z a;x;<a; for i=1,.,%
j=1

is a system of inequalities for P(M, 0) which is valid (nonredundant, com-
plete) then the system of inequalities

Y agx,— Y ayx;<o—Yazy,  for i=1..,k

hyi=0 hyi=1

is valid (nonredundant, complete) for P(M, b).

Lemma (2.1) shows that the polyhedra P(M, Q) are the essential objects
for the investigation of the polyhedra P(M, b). Therefore we shall study
only the polyhedra P(M, 0) in the sequel.

The zero-one matrix M defines a matroid as follows. Let us denote the
column index set of M by E. Consider E as the ground set of a matroid M
in which a set ScE is dependent if and only if the columns of M
corresponding to S are linearly dependent in the m-dimensional vector
space over GF(2). This matroid M is binary.

A set C< E in a binary matroid M is called a ¢ycle if either C= @ or C
is the disjoint union of circuits. It follows immediately from our definitions
that the 0/1-solutions of Mx=0 (mod 2) are the incidence vectors of the
cycles of M. Thus P(M,0) can be viewed as the convex hull of the
incidence vectors of the cycles of M. In fact, many different matrices may
lead to one and the same binary matroid M and the same polyhedron
P(M, 0). All the results we state in the sequel are independent of the par-
ticular matrix M chosen to define P(M, 0). All characterizations of P(M, 0)
can be stated (much more nicely) in terms of the associated binary matroid
M.

Therefore, from now on we take the matroid viewpoint. In the sequel M
(instead of the notationally inconvenient M) denotes a binary matroid with
ground set E, and P(M) (instead of the longer P(M, 0)) denotes the convex
hull of the incidence vectors of the cycles of M.

Before going on let us remark that there is a third way to look at the
subject we address. If 4 is a zero-one matrix, the set {xe {0, [}"| Ax=0
(mod 2)} is a linear subspace of (GF(2))". Of course, every subspace of
(GF(2))" can be represented as the GF(2)-solutions of an equation Ax =0,
ie, as the kernel of a linear mapping. So the problem we aim at is to
describe the convex hull (considered in R”) of the linear (resp. affine) sub-
spaces of (GF(2))".

Note that the set of cycles of M is a family of subsets of the ground set £
closed under symmetric difference. So, if x¢ and x? are incidence vectors of
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cycles C and D of M, then x® @x? is the incidence vector of the cycle
CAD.

If M is graphic (M can e.g. be defined as described above by a matrix
whose rows are the incidence vectors of all cuts of a graph G), then P(M) is
the convex hull of the incidence vectors of Eulerian subgraphs of G. In this
case P(M) can be obtained from matching theory, cf. [3-5,9]. If M is
cographic (the rows of a matrix defining M are, e.g., the incidence vectors
of all cycles of a graph), then P(M) is the cut polytope which has been
studied in [2].

Let M* denote the dual matroid of M; a cocvele of M is a cycle of M*.

When Z < E, M\Z denotes the matroid obtained by deleting Z, M/Z is
the matroid obtained by contracting Z. We will write M'e instead of
M\ {e}. If Cis a cycle and D a cocycle of M then |C n D| is an even num-
ber (since M is binary).

3. FacEes oF P(M) aND THE “‘SuM OF CIRCUITS PROPERTY”

In this section we show that the polytopes P(M) are—in a sense to be
made precise—highly symmetric; we introduce some valid inequalities and
derive from a deep theorem of Seymour [10] that these inequalities suffice
to describe P(M) if M has the “sum of circuits property.” We begin with a
transformation theorem for faces of P(M).

(3.1) THEOREM. If ax < x defines a face of P(M) of dimension d, and C
is a cycle of M, then the inequality ax<3a also defines a face of P(M) of
dimension d, where

P __{ a, if e¢C,
“"l—a, if eeC,
and & ;=% — ax€.

Proof. First, we shall prove that ax <& is valid for P(M). Let us sup-
pose that B is a cycle of M such that ax®>a. This implies
ax“*F=qgx? “+axC P =ax? C4ax —axB0C
=ax?+ax“>a+ax=q,

which contradicts the validity of ax < a.
By assumption, there are d+ ! cycles D,,.., D, such that ax®=a, for
i=0,..., d, and the vectors x? ;=0,..., d, are affinely independent. Set

Fi:=D,AC, i=0,..4d.
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Then ax® = ax®N¢ 4+ gx\Pi = gxPAC — gx€\P = g — gxPin¢ _
(ax€—ax?") = a—ax=a

Suppose the vectors x™ are affinely dependent. We may assume that
xf=%4 A1x" and Y9  i,=1 Then by Lemma (2.1) x?@x =

4, A x5 @ x), and this implies x®=3¥"7_, 4,x?, a contradiction.

The arguments above show that dx <& defines a face of dimension at
least 4. If the dimension was greater than d we could apply the same trans-
formation to the inequality ax < &, and this would imply that ax <a would
define a face of dimension greater than d. ||

From this we can derive a somewhat surpirsing symmetry property of
vertices of P(M).

(3.2) CorOLLARY. Let v, w be two vertices of P(M), and let F (v, d) and
F(w, d) be the sets of faces of dimension d that contain v and w, respectively.
Then there exists a bijective mapping

[ F (v, d) = F(w, d).

Proof. The vertices v and w are incidence vectors of cycles of M, say V
and W. Let F be a d-dimensional face containing v defined by ax <. Apply
the transformation of Theorem (3.1) using C:=V¥ A W. Then the set
F:={xeP(M)|ax=a} is a face of P(M) of dimension d containing w. It
is easy to see that Fi— F is the desired bijection. ||

This corollary shows that in order to describe P(M) completely it is
enough to know all the facets of P(M) containing a given vertex. Since O is
a vertex, it is sufficient to describe all facets of P(M) containing 0, i.e., the
“homogeneous” facets of P(M). We will see that this property will help us
to describe P(M) completely for some binary matroids M,

Now let us look for inequalities which are valid with respect to P(M). As
P(M) is contained in the unit hypercube we know that the rrivial
inequalities

0<x, g1 forall eeFE (3.3)

are valid. Moreover, since M is binary we know that the cardinality of the

intersection of a cycle and a cocycle is even. This implies that the cocircuit

inequalities

x(F)—x(C\F)Y<|F]—1 for all cocircuits CS E and all F= C, |F| odd
(3.4)

are valid with respect to P(M). (As usual we abbreviate the sum ¥, . x,
by x(F).) A natural question to ask is: when do the inequalities (3.3) and
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(3.4) suffice to describe P(M)? By Corollary (3.2) this is equivalent asking
when the homogeneous among these inequalities contain all the facets con-
taining 0, i.e., when is

CONE(P(M)) :={reRE| y=ix, i20,xe P(M)]
defined by

X, —x(C\{e})<0  for all cocircuits C= E and all ee C,
-x,<0 for all ee E.

This is called the “sum of circuits property” by Seymour [10]. Actually
Seymour proved that M has this property if and only if M has no F¥, Rjo
or M(Ks)* minor. (M{Ks)* is the cographic matroid of the complete graph
K;, F¥ is the dual Fano matroid, see Section4, and R,y is the binary
matroid associated with the 5x 10 matrix whose columns are the ten 0/1-
vectors with 3 ones and 2 zeros. The matroid Ry, is regular but neither
graphic nor cographic.} Thus, we can state

(3.5) THEOREM. The cycle polytope P(M) of a binary matroid M is equal
to the polytope defined by the inequality systems (3.3) and (3.4) if and only if
M has no F¥, Ry, M(K5)* minor.

Note that this theorem provides a complete characterization of the
Eulerian subgraph polytope of any graph and of the polytope of cuts of a
graph not contractible to K, see (4.23) and (4.24) for a more concise
description.

4. DIMENSION AND FACETS OF P(M)

In this section we shall study the problem of characterizing linear
inequalities which, for a given binary matroid M, define facets of P(M). To
be able to do this we have to know the dimension of P(M).

Let us first give one more definition. If {e, f} is a cocircuit of M we say
that e and f are coparallel (e.g., if M is graphic, two elements are coparallel
if they form a cut of size two in the corresponding graph; if M is cographic,
then coparallel elements correspond to parallel edges). Recall that a coloop
of M is a loop of M* (e.g., if M is graphic then a coloop is a bridge in the
corresponding graph, if M is cographic a coolop is an ordinary loop in the
graph). A coparallel class of M is a maximal subset F< E which contains
no coloops, so that every two distinct members of F are coparallel.

(4.1) THEOREM. The dimension of P(M) is equal to the number of
coparallel classes of M.




CYCLES IN BINARY MATROIDS 47

Proof. First, observe that every vector x e P(M) satisfies the following
systems of equations

x,=0 for each coloopec E, (4.2)

Xgp— X =0 for each coparallel class, F= {eg, €,,..., € }
with k=1 and i=1,.., k. (4.3)

Clearly Egs. (4.2) and (4.3) are linearly independent which implies that the
dimension of P(M) is at most the number of coparallel classes of M.

Now suppose that ax =o is an equation satisfied by all x € P(M). Since
0¢ P(M) we must have ¢ =0, and moreover, by adding appropriate linear
combinations of Eqs. (4.2) and (4.3) we may assume that

a,=0 if e is a coloop and
a,=0 fori=1,., kif F={ey ey,.., e} is a coparallel class.

This implies that we can restrict our attention to the matroid M
obtained from M by:

(i) deleting coloops,
(ii) contracting {e,,.., e;} for each coparallel class F= {eq, €},..., € }.

M has no coloops and no two elements which are coparallel.

Seymour [10, Theorem (3.2)] proved that if M has no coloops then
there is a number > 0 and a list of circuits L such that every element of M
is in precisely 7 circuits.

By assumption we have that ax¢ =0 for each Ce L. If we sum up these
|L} equations we obtain

and hence
Yy a=0 (4.4)
ee E(M)
Now, pick any feE(#). M\f has no coloop (because # has no
coparallel elements). For the same reasons as above we conclude that
Y, a,=0. (4.5)
ce E(M\f)

Equations (4.4) and (4.5) imply that a,=0, i.e.,, a is the zero vector. Hence
the dimension of P(M) is equal to the number of elements of A. This
proves our claim. |

582b/40/1-4
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In fact, Theorem (4.1) also follows from the proof of Corollary (3.3} in
[107]. The proof of the preceding theorem also shows

(4.6) CorOLLARY. If P(M)< {x|hx =0} then for each coparallel class
F={eq, €, e} of M we have

%
S b, =0.
i=0

It follows from the proof of Theorem (4.1) that the equation system (4.2)
and (4.3) is a2 minimal system of equations defining the affine hull of P(A1).
In what follows we will exhibit some classes of facet-defining inequalities of
P(M). If

ax<x (4.7)

defines a face F of P(M) and ax <4 is obtained from (4.7) by adding a
linear combination of Egs. (4.2) and (4.3), then dx <4 induces the same
face F. Thus we can assume that a,=0 for each coloop e of M, and for
each coparallel class F= {e, e,.., e, } we have a,=0 for i=1..., k. Then
we can restrict our attention to facet-defining inequalities of P(M), where
M is the matroid defined in the proof of Theorem (4.1). The same
inequalities will define facets of P(M). Let us first study the trivial
inequalities (3.3).

(4.8) THEOREM. Let M be a binary matroid without coloops and without
coparallel elements. If f € E does not belong to a cotriangle (a cocircuit with
three elements), then the inequality

x;z0
defines a facet of P(M).

Proaf. Suppose fe E does not belong to a cotriangle of #. Clearly, the
set F:={xeP(M)|x;=0} and its projection P(M" f) have the same
dimension. Since f does not belong to a cotriangle, A/ has no coloops
and no coparallel elements. Thus, by Theorem (4.1) P(#4" ) has dimen-
sion |E| — 1, which proves our claim. [

(4.9) COROLLARY. Letr f be defined as in Theorem (3.2); then the
inequality

x<1

defines a facet of P(M).
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Proof. Pick a cycle that contains f (such a cycle exists, since # has no
coloops) and apply Theorem (3.1) to the inequality x,>0. |l

Now, we shall study the inequalities (3.4) associated with cocircuits. For
a cotriangle T= {e, f, g}, formula (3.4) gives the following four inequalities
valid for P(M).

X, —X;— X, <0, (4.10)
—x,+x—x,<0, (4.11)
—x,— X+ x, <0, (4.12)

X+ X+ x, < 2. (4.13)

Let us note that (4.11) and (4.12) imply x, >0, and (4.10) and (4.13) imply
x.<1, so if e is in a cotriangle the inequalities 0< x, <1 do not define
facets of P(M).

But the inequalities (4.10)-(4.13) also do not always define facets. For
instance, the binary matroid associated with the following matrix

0

—_— = O
—_ e O
—_ O = =
S O O =
o O = O
o - O O

0
0
1

is the dual Fano Matroid F¥. The incidence vectors of the cycles of F¥ are
the columns of

1f1r o0 10110
210 1 01 10 1 O
3j0o 01 011 10
410 1t 1 1 01 0 O
51 01110 00
6]1 1 001100
70111 00 0 1 O

The polytope P(F¥) is full-dimensional by Theorem (4.1) because the dual
of F¥, the Fano Matroid F,, contains no loop and no circuit of cardinality
two. P(F7) has eight vertices which form an affinely independent set. Thus
P(F¥) is a 7-dimensional simplex in R’.

The set {2, 3, 4} is a cotriangle of F¥, but as one can easily see, there are
only 6 cycles in F¥ whose incidence vectors satisfy

X,—X3—x4<0
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with equality. Hence this cotriangle inequality does not define a facet of
P(F¥). Note that P(F¥) has only one facet which does not contain the
origin. This facet is defined by

X X+ Xt X+ X+ X <4 (4.14)

All the other facet-defining inequalities of P(F¥) are obtained by
applying Theorem (3.1) to the inequality (4.14). Thus, a minimal system
that defines P(F¥) is

1
]

O U U T T A N 4
-1 1t 1 1-1-=1-=1 'v‘ 0
1 -1 t =1 1 —-1-—1 t 0
i1 1t —-1-—-1-—-1 1-=1 '\;‘<o
1 -1 t—-1-1 1 1 'r“ =1 o
-1 -1 1 —-1t-1 1 'Ys 0
-1 1 -1-1 1-1 1 L't" 0
7 0

-1 -1 -1 1 1 11

We shall prove that if M has no FF minor then the cotriangle
inequalities (4.10}-(4.13) define facets of P(M).

To shorten our proofs the following notation will be convenient. If M is
a binary matroid without coloops, S< E, and he E\ S then C(A, S) denotes
the coparallel class of 4 in M\ S. The following lemmas will be used.

(4.15) LEMMA. Let M be a binary matroid without coloops and without
coparallel elements.

(a) |Ch, {fIN<K2 forall fheE.
(b) Cih, {f)nClh, {g})={h} for all different f, g, he E.

(c) If. in addition, M has no F¥ minor, T={e, f, g} is a cotriangle,
and |C(h, {f ) =|C(h, {g})| =2 then

Ch, T)=C(h, {fNuCl(h, {g}) forall heE\T.

Proof. (a) Suppose i, j,heC(h, {f}), then T,:={ih f} and
T, :={j, b, f} are cotriangles of M, and so T, A T,=/{j, j} is a cocycle,
i.e., the elements / and j are coparallel or coloops, which contradicts our
assumption.

(b) follows in the same way.

(c) Suppose C(h, {f})={h,i}, C(h,{g})

={h,j} and keC(h, T)
with i, j, k different. Then T, :={i, h, f}, T,:={j, h,

h g} and 7= {e!f; g}
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are cotriangles of M. Since ke C(h, T) there must be a cocircuit of M con-
taining A, k£ and some members of 7. We have to discuss several cases.

Assume first that S={e, , k} is a cocircuit of M. Then consider the
4 x 7 matrix whose rows are formed by the incidence vectors of T, T, T,
and § A T. This matrix is the matrix 4 (the sequence of column indices is
h, g, 1, e, i, j, k) defined above which gives the matroid F¥, ie., M contains
a F¥ minor, which is a contradiction.

Second, assume that S§'={e, f,h,k} is a cocircuit of M. Then
TAS AT,={jk}, ie, {j, k} is a cocycle which implies that j, k are
either coparallel or coloops, a contradiction. The other two cases follow
similarly. |

(4.16) LEMMA. Let M be a binary matroid. If C={e,, e,,..., e} is a
cocircuit of M, there exist cycles D,,..., D, of M such that

CnD;={e, e} for =2,k

Proof. 1f k=2, the assertion is true, otherwise e, or e, would be a
coloop contained in C. Let us proceed by induction and suppose that the
statement is true for 2 <k < p. If the cocircuit C of M has p+ 1 clements,
C\{e,.} is a cocircuit of M\{e,,,}. Then by the induction hypothesis
there exist cycles D,,.., D, of M\{e,, } and thus of M such that Cn D, =

{e), e;}.
Since e,,, is not a coloop of M there is a circuit F of M such that
€,.1€F and |FnC| is a positive even number. If FAC=

{elﬁ €350y eZI+ 13 en+ 1 }7 set

F:=FAD,A AD,,,.
IfFnC={e;, €3, €31, €, 4}, set
F:=FAD,A- A Dy,
In both cases F' is a cycle of M satisfying
FlmC:{elsep+l}' I

(4.17) LemMa. If C={e,, e,,.., e, } is a cocircuit of M, then there exists
a cycle D such that DN C={e,, e,,.., ey}, for every | with 1 <I<k/2.

Proof. By Lemma (4.16) there exist cycles D, such that
DnC={ey,e;}, 2<i<?2l Set

D=D,AD,A-- A D, 1|
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(4.18) THEOREM. Let M be a binary matroid without coloops, without
coparallel elements and without F¥ minor. If T={e, . g1 is a cocircuit of M
then inequality (4.10)

x,—x~Xx,<0
defines a facet of P(M).
Proof. Let us denote inequality (4.10) by ax <0, and let us assume that

{xe P(M)|ax=0}< {xe P(M) | bx=p}

for a facet-defining inequality bx < B. Since O€ {xe P(M)|ax=0}, we have
B=0. Pick any A E\T. By Lemma (4.15)(a), the coparallel classes of # in
M\ f and M\ g have size at most two. We have to discuss several cases. Let
us first suppose that both coparallel classes have size two, say

Clh, {f}1)={hil,
Clh, {g})=1{h.J}.
Then Lemma (4.15)(c) implies that
Clh, T)={h i, j}.

Let a’ (resp. b’) denote the vectors in R/ which arise from a (resp. b)
by deleting the component corresponding to f. Clearly, the inequalities
ax<0 and bx<0 are valid for P(M\f) Moreover,
{xe P(M\f)|a'x=0}<c {xeP(M\f)|b'’x=0}. But ¢ and g form a
coparallel class in M\ f, and so a'x=0 and thus &'x =0 are satisfied by all
xe P(M\f) by Theorem (4.1).

Corollary (4.6) now implies

b,+b,=0.
And using the same arguments we can conclude
by, +b;=0,
b, +b,+b;=0.
The only solution of these three equations is 0, hence b, =0.

If one of the two coparallel classes C(4, {f}) and C(#, { g}) has size one,
b, =0 follows immediately. Thus we can conclude

b,=0 for all heE\T.
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By Lemma (4.16) there are a cycle C, with TnC, = {e, f} and a cycle
C, with TnC,={e, g}, so

bx € =bu+b_/'= 0,
be2=b1.+bg=Oi

and thus b,= —b,= —b, which implies b= aa. Since bx <0 is valid, > 0.
This completes the proof. |

(4.19) CoROLLARY. Let T be defined as in Theorem (4.18); then the
inequality

x(T)<2
defines a facet of P(M).

Proof.  Apply Theorem (3.1) to the inequality x, —x,—x,<0, with a
cycle that contains {f, g}. Clearly such a cycle exists, since both f and g
are contained in circuits of M. |

Given a cocircuit C then he E\C is called a chord of C if there exist two
cocircuits D and F such that DnF={h}, and D A F=C.

(4.20) THEOREM. If the binary matroid M has no F¥* minor, and
C={e\, e;,.., &,}, k=3, is a cocircuit without chord, then the inequality

x,—x({ey,... e, 1) <0
defines a facet of P(M).

Proof. As for Theorem (4.1) it suffices to prove the theorem for the
matroid M which has no coloops and no coparallel elements. We denote
the ground set of M by E. Let us use induction. By Theorem (4.18) the
statement is true if C has three elements. We assume that the theorem is
proved when C has p >3 elements, and we will study the case when C has
p+1 elements. Let us denote the inequality x,, —x({e,,.., e,.1})<0 by
ax< 0. As in the preceding theorems we suppose that

{xeP(M)| ax=0} < {xe P(M) | bx =0},

for a facet defining inequality bx < 0. First, we shall prove that b, =0 for all
he E\C.

Since C has no chord, the cocircuits C\{e,,,} and C\{e,} have no
chord in M\e,,, and in M\e,, respectively. Now consider the coparallel
classes of 4 in these matroids. Suppose {4, i}=C(h, {e,}), and {h, j} =
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C(h, {e,, }). Since A is no chord of C. we have i, je E C. By the induction
hypothesis

L | 1
ax:=x,—x(C le,1}<0
and

a"x:=x,—x(C.le,, <0,

define facets F, and F,, , of P(M\e,)and of P(M e, ), respectively. Our
assumption on b implies F, < {xe P(M'e,}} Lop, beX. =0}, s=p, p+1.

Let b' (resp. b") denote the vectors obtained from b by deleting com-
ponent e, (resp. e, ;). Since a'x < 0 defines a facet of P( M‘\e,,) we can con-
clude that &' =pa’ + 3 i,c, with p >0, i,e R where ¢, are the left-hand
sides of Egs. (4.3). (Note that A e, has no coloops.) Since {h, i} is a
coparallel class in M\e, and a, =a,=0 we obtain

by=bj=a,+ 4

bi=b=a,—4,
for some 4, and hence
by, +b,=0.
Similarly, we get
by+b;=0.

If the coparallel class of jin M'e, or the coparallel class of / in M ¢,
has size one we immediately obtain from the arguments given above 5,=0
or b,=0, and hence 5,=0. Now suppose C(j, {¢,})=1{jk} and
Cli, {e,.1))={ik'}. This implies that T,={e, h i}, To= e, jk},
Ty=1{e,,,hj} and T,=le,,,i,k'} are cotriangles, and hence
T,ANT,AT;AT,=1{kk'}isa cocycle which is impossible, i.e., at least
one of the sets C(j, {e,}), C(i, {e,,}) must have size one. Therefore, we
can conclude

b,=0 forall heEMC.

By Lemma (4.16) there are cycles D,..., D, such that D,nC={e;, e;}.
From bx? =0, for i=2...., p, we conclude

b=ua.

Clearly x>0, because bx <0 is valid. Our proof is complete. |
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On the other hand, if C is a cocircuit, and if there exist two cocircuits D
and F such that DnF={h} and D A F=C, then—assuming
e € D\{h}—the inequality

x,—x(C\{e})<0
is the sum of
x,—x(D\{e})<0
and
x,—x(F\{h})<0.
So x,—x(C\{e}) <0 does not define a facet if the cocircuit C has a chord.

(4.21) COROLLARY. Under the hypotheses of Theorem (4.20) the
inequality

X(F)—x(C\F)<|F|—1, F=C, |F| odd,
defines a facet of P(M).

Proof. Apply Theorem (3.1) with a cycle D such that D C= F\{e},
to the inequality

YE—X(C\{E})SO I

With the results about facets of P(M) shown above we can strengthen
Theorem (3.5) as

(4.22) THEOREM. The system

(a) x,=0 for each coloop e € E,

(b)  X,—x.,=0 for each coparallel class F={eq, e,,.., e,} and each
ie{l,.. k},

() 0<x,<1 for each ee E(M) such that e does not belong to a
cotriangle,

(d) x(F)—x(C\F)<|F|—1 for each cocircuit C of M with no chord
and each F< C, |F| odd,

is a minimal system that defines P(M) if and only if M has no F¥, R,
M(K)* minor.

From Theorem (4.22) one can derive the following known special cases,
see for instance Schrijver [9], Barahona and Mahjoub [2]. (Recall that an
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Eulerian subgraph of a graph is a subgraph (not necessarily connected| in
which each node has even degree.)

(4.23) CoROLLARY. Let G=(V, E) he a graph, le1 E, he the edges not
contained in a cut of size at most 3 and let E' he a maximual set of edges not
containing bridges or cuts of size two. Then the convex hull of the incidence
vectors of the edge sets of the Eulerian subgraphs of G is given by

(a) x,=0 for each bridge e€ E,
(b) x,—x,=0 for each minimal cut {e. f | of size two,
(¢) 0<x,<1 for each ee ENE,,
(d) x(F)—x(C\F)<|FI—1 for each minimal cut Cc E' with no
chord and each F< C, |F| odd.

Moreover, the system above is nonredundant.

(4.24) CorROLLARY. Let G=(V, E) be a graph not contractible to Ks.
Let E, be the edges not contained in a cycle of size at most 3, and let E" he a
maximal subset of E which does neither contain loops nor parallel edges. The
convex hull of the incidence vectors of the cuts of G is given by

(a) x,=0 for each loop e€ E,
(b) x.—x,=0 for each pair {e, f'} of parallel edges,
(¢) 0<x,<1 for each e€eE"\E;,

(d) x(F)—x(C\F)<|F—1 for each cycle C< E' with no chord and
each F< C, |F| odd.

Moreover, the system above is nonredundant.

5. ADJACENCY AND THE HirRsSCH CONJECTURE

We shall now study adjacency on P(M), give an upper bound on the
diameter of P(M), and verify the Hirsch conjecture of P(M) for binary
matroids without F¥ minor.

Giles [7] has given a characterization of adjacency of vertices of the
Chinese Postman Polyhedron, which is a special case of the binary group
polyhedron P(mC,, M, b). This characterization applies also to the latter,
as was shown by Gastou and Johnson [6]. Morcover, the same criterion
also describes adjacency of vertices of P(M), see also [2].

(5.1) THEOREM. Two different vertices of P(M) are adjacent on P{M) if
and only if the symmetric difference of their supports is a circuit of M.
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Proof. Let x* and x® be two vertices of P(M ), i.e., A and B are cycles
of M. Suppose first that A A B is not a circuit. Since 4 A B# & is depen-
dent in M, A A B contains a circuit, say C. By elementary calculation we
get

%XA-F%XB:%XAAC‘*'%XBA C.
Since C#A A B, the incidence vectors of 4 A C and B A C are different
from those of 4 and B. Thus x* and x# are not adjacent.

Now suppose that 4 A B is a circuit. We shall construct an objective
function which is maximized by x* and x? but by no other vertex of P(M).
Define ce RZ by

1 if eeAnB
¢, = 0 if ecAAB
-1 if e¢AUB

for all e E. Clearly
max{cx | xe P(M)}=|4n B,

and the maximum is attained at x* and x® Let x° be any vertex which
gives this maximum. Then clearly AnB< DcAuUB. Since DA A is a
cycle, DA A< AN BandA A Bisa circuit we must have that D A A=
BAAor DA A=, and thus D=B or D=A holds. 1

Given a polytope P, we can associate a graph G(P) with P such that
every vertex of P corresponds to a node of G(P), and between two nodes of
G(P) we put an edge if the corresponding vertices are adjacent on P. The
distance between two vertices of P is the cardinality of the shortest path
between the corresponding nodes in G(P).

(5.2) THEOREM. Let A and B be two cycles of M, then the distance from
x* 10 x® on P(M) is bounded from above by the number of circuits contained
in AN B.

Proof. By induction on the number k of circuits contained in 4 A B.
By the theorem above our statement is true for k =0, 1. Suppose it is true
for k>1and let A A B=C,u - uC,,, be the disjoint union of k+1
circuits. 4 A C, is adjacent to A, and we have (4 A C,) A B=
C,uU -+ UCy,,. Then the distance between A and 4 A C, is 1, and
A A C, has a distance of at most k to B; thus the distance between x* and
xBisatmost k+1. 1

(5.3) COROLLARY. The diameter of P(M) is at most |E|.
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This bound can be achieved. If M is defined by a matrix consisting of
one row with only zeros (i.c., all singletons are loops of M) then P(M}isa
hypercube in R¥, and thus P(M) has diameter |E|.

It is of course more natural to assume that the matrix from which M is
derived has no zero column (ie., that M has no loops). In such a case every
circuit has at least two elements, so the diameter is at most |E|/2. Again,
this bound can be achieved. Consider the matrix [/, /], (two identity
matrices); the distance from the origin to the all-ones vector in the
corresponding polytope P(M) is |E|/2.

The well-known Hirsch conjecture which is related to the diameter (and
thus to lower bounds for the number of iterations of edge-following LP-
algorithms like the Simplex method) states that every d-dimensional
polyhedron P with k facets has diameter at most & —d. Let us say that P
has the Hirsch property if the Hirsch conjecture is true for P.

(5.4) THEOREM. If the binary matroid M has no F¥ minor then P{M) has
the Hirsch property.

Proof. Let us work again with the matroid A7 defined in the proof of
(4.1). P(M) and P(M) have the same diameter and the same number of
facets. E(M) can be partitioned into E, and E,, where E, consists of the
elements that belong to a cotriangle. Let T..., T, be the cotriangles of M.
P(M) has at least

4p+ 2 |E,|
facets (cotriangle and trivial inequalities). Since p > |E,|/3,
4p+2 |E,| —dim(P(M)) = |E\|/3 + | E.l.

On the other hand, by Theorem (5.2) a bound for the diameter of P(if) is
the maximum number of circuits that can be contained in a cycle. This
number is at most

|E1|/3 + ]E:|-
That finishes our proof. |

In fact, P(F¥) also has the Hirsch property, but we do not know suf-
ficiently many facets for the cycle polytopes of binary matroids with F¥
minor to draw the same conclusion.

6. RELATIONS BETWEEN P(M, b) aAND P(mC,, M, b)

In this section let M denote again an m x n-matrix with zero-one coef-
ficients, b a vector in {0, 1}™, and let E denote the set of column indices of
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M. Since P(mC,, M,b)=P(M, b)+R" , it is natural to see whether an
inequality inducing a facet of one of these polytopes also induces a facet of
the other. Gomory [8] has shown that all facet-defining inequalities of
P(mC,, M, b) can be written as nonnegativity constraints

x, =0, ecE,
or as
ax>1

with @ >0. Since P(mC,, M, b) is always full dimensional, these represen-
tations of facets are unique up to multiplication by positive constants.
There are various difficulties in exploring the facet relation between the two
polyhedra. P(M, b) may have any dimension between —1 and |E|, while
P(mC,, M, b) is always empty or full dimensional. Since P(M,b)<
P(mC,, M, b) it is clear that every inequality valid for P(mC,, M, b) is also
valid for P(M, b). Of course, this does not hold the other way around. But
it is easy to see that every valid inequality ax >« for P(M, b) with a>0 is
valid for P(mC,, M, b). Now, we will explore the relation between the faces
induced by these inequalities.

(6.1) THEOREM. (a) Let ax>1 define a facet of P(mC,, M, b); then
F={xeP(M,b)|ax=1} is a face of P(M,b) with dimension at least
|E| — 1 minus the number of O-coefficients of a.

(b) If ax=1, a=0, defines a facet of P(M,b) then
G:={xeP(mCy, M,b) | ax=1} is a face of P(mC,, M, b) of dimension at
least dim P(M, b)— 1.

Proof. (a) P(mC,, M,b) is full dimensional; thus there are n=|E]
affinely independent points in P(mC,, M, b) spanning the facet defined by
ax 2 1. Since P(mC,, M, b) is pointed, we may choose such a set of points
in the following form

Vfgos Uy Uy + €4 4 150y U] F €,

where v,,.., v, k=1, are vertices of P(mC,, M, b) and e, _ ,,.., e, are in
the recession cone (i.e, in R" ). Moreover the number k should be as large
as possible. We clearly have in this case

av; =1, i=1,.,k,
ae;=0, i=k+1,.,n

Since every vertex of P(mC,, M, b) is also a vertex of P(M, b), the
dimension of F is therefore at least k— 1. Since a >0, e, 0, and ae; =0, we
necessarily have that the support of  and the support of e, have an empty
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FIGURE 1

intersection. Thus the vectors e, span a space that is contained in
{xeR"|x,=0for all € E with a,=0)}. Therefore the assertion follows.

(b) As remarked above ax>1 is valid for P(mC,, M, b) and each
vertex of P(M,b) contained in the face of P(M, b) defined by this
inequality is contained in G. This implies the statement. ||

The statements made in (a) and (b) are in a sense best possible. We
know of examples where the dimensions of the faces F resp. G attain
exactly the lower bound.

Finally, we would like to give an example showing how one can apply
the results described before and also showing some differences between
P(M, b) and P(mC,, M, b).

Let G be the graph with 3 nodes and 5 edges shown in Fig. 1. Consider
the polytope

P(M, b) :=convi{xe0, 1}°| x;+ X2+ X3 =0 (mod 2),
X+ X, +x,=1(mod 2),

x3+x,=1 (mod 2)}.
P(M, b) has the following 8 vertices

D, Uy Uz Uy Us Dy Dy Uy

10 0 1 1.0 0 1 1
2(0 000 1 1 11
3|0 01 11 1 00
4110000 11
s5ilo1 010101

In graph theoretic terms, these eight vertices correspond to the T-joins of
G for T={u,v}. Now transform P(M,b) into P(M,0) as described in
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Lemma (2.1). The vertices of P(M,0) are the points v;,®v,, i=1,.., 8.
These points correspond to the edge sets of the Eulerian subgraphs of G.
By Corollary (4.23) P(M, 0) is defined nonredundantly by the system

Xy—x,=0, (6.2)

0<xs<], (6.3)

x1+x3+x3<2,
X, —x;—x3<0, (6.4)
—x‘+x2—x3<0,

—X;—X,+x;<0.

Now we have to transform the inequalities above to get a description of
P(M, b). If ax <« is valid (a facet) for P(M, 0) then a(x@v,)<a is valid
(a facet) for P(M, b). So, a nonredundant system defining P(M, b) is given
by

Xatxg=1 (6.5)

and the inequalities (6.3), (6.4) above. Clearly, the dimension of P(M, 0)
and P(M, b) is four.

The dimension of P(mC,, M, b) is five, and the vertices of P(mC,, M, b)
are just the points v,, v4 and vs. It follows from [6] that P(mC,, M, b) is
described nonredundantly by the following system

X320, i=1..,5, (6.6)

X3+X4>1, (67)
Xi+Xs+x,2 1. .

So P(mC,, M, b) has 6 facets, but no bounded facet, while P(M, b) has 7
facets (which are all bounded). Apparently the systems describing P(M, b)
and P(mC,, M, b) look quite unrelated. Moreover, each vertex of P(M, b)
is contained in 4 facets (ie, P(M, b) is nondegenerate) while vertex v, is
contained in 6 facets of P(mC,, M, b) and v, vs are contained in 5 facets of
P(mC,, M, b). In particular, v, is degenerate.
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