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Complete Descriptions
of Small Multicut Polytopes

M. DEZA, M. GROTSCHEL, AND M. LAURENT

ABSTRACT. We introduce various new classes of polytopes that are associ-
ated with certain cut, equicut, multicut, equimulticut, and balanced multi-
cut problems on graphs. We have computed complete and nonredundant
descriptions of these polytopes numerically for the complete graphs of order
4 and 5, and we list and classify in this paper the facet-defining inequalities
that we found. Quite a number of new classes of such inequalities arose.
We generalize some of the inequalities and prove that they define facets for
certain of these polytopes, but many are still waiting for a proper under-
standing.

1. Introduction

The area of polyhedral investigations of certain cut (or equivalently par-
titioning) problems has received considerable attention recently. The reason
is that many real world problems can be formulated as cut (or partitioning)
problems and that cutting plane methods that are based on polyhedral re-
sults have shown to be highly efficient algorithms for the solution of these
problems.

Without aiming at completeness we mention a few references that corrob-
orate our statements. Long lists of practical problems that can be phrased as
certain cut problems can be found, for instance, in [W, GW]1, BJR, BGJR].
Polyhedral results on various cut, equicut, or multicut polytopes are con-
tained, for example, in [BMa, DL, CRS, DFL, W, GW2, CR1, CR2]. Re-
ports about the computational experience with cutting plane algorithms that
are based on such polyhedral investigations are, for instance, [BGJR, BJR,
BM, GW1].

There are many more interesting practical problems that can be modelled
as certain cut problems, in particular, a number of questions that are ad-
dressed in clustering and qualitative data analysis. The aim of this paper
is to introduce some of the cut problems that arise in these applications, to
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define the associated polyhedra, and to present complete and nonredundant
descriptions of these polyhedra for small dimensions. These linear descrip-
tions have been calculated by means of a computer program. We classify
the facet-defining inequalities that we found. Some of these belong to well-
known classes of inequalities, but quite a number are new and are waiting
for proper understanding and generalization.

That is, the main purpose of this paper is to provide instructive material
(in particular many interesting classes of facets) for those polyhedral com-
binatorialists who are working in the area of cut polytopes. We believe that
starting with these numerically computed classes of inequalities large new
classes of facet-defining inequalities may be found and we hope that these
inequalities will help to solve practical problems by means of cutting plane
methods.

The paper is organized as follows. The polytopes we consider are intro-
duced in §2. In §3 we discuss these polytopes for the complete graph on five
nodes and give a complete and nonredundant description of each of these.
A list and partial classification of all the classes of facets that we determined
can be found in §4 together with a large table summarizing the results.

In §5 we report about some observations we made by analyzing the material
of §4 and give a few theoretical explanations. In particular, we generalize
some of the inequalities we found and prove that they define facets for certain
multicut polytopes. Complete and nonredundant descriptions of the multicut
polytopes for the complete graph on four nodes are provided in §6.

2., Multicut and balanced multicut polytopes

Let G = (V, E) be an (undirected) graph with node set ¥ and edge
set E. The number »n will always denote the cardinality of V. If SCV
we denote the set of edges of E with both endnodes in S by E(S), ie.,
E(S) = {uv € E|lu, v € S}. It is customary to denote the cut induced by S,
ie., theset {uv € Elue S, v € V\S}, by 6(S). In order to have smooth
notation available for more general types of cuts we do not use this symbol
and introduce the following variation. Let S, ..., S, be a partition of V',
ie, S;NS; =@ for i#j, S;#@ for i=1,...,k,and UL, 8=V,
Then

(S5 ..., Sp) ={uv € E|3i, j with i # j such that u € S, and v €S}

We call the edge set 6(S|,...,S,) a multicut and the sets S,, ..., S, the
shores of the multicut. If we want to stress that the partition of ¥ consists

of exactly k sets (shores) we will call 3(S,,...,S,) a k-multicut or just a
k-cut. There is only one 1-cut, namely &(¥) = @&, and one n-cut, namely
o({v,}, ..., {v,}) = E. The (usual) cuts are our k-cuts with k € {1, 2}.

The most intensively studied optimization problem in connection with
these problems certainly is the max-cut problem (i.e., given weights ¢, for
all ¢ € E find a k-cut with & € {1, 2} of maximum weight; see, e.g.,
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[BMa]). Also, the problem of finding a multicut of maximum weight is of
particular practical interest. This problem is equivalent to the clique parti-
tioning problem since a clique partitioning (in the complete graph K,) is
nothing but the complement E \ 6(S,, ..., S,) of a multicut (see [GW1,
GW2)).

There are further types of multicuts of practical interest.

DerNITION 1. Let G = (V, E) be a graph and s be an integer with
0<s<|V|-1. A multicut (S, ...,S,), where k > 2, is called s-
balanced if

1S, - 1S, <5 forigi<j<k.
For two sets S;, §; the number | |S;| = 18,1 is called their discrepancy.

To turn optimization problems for multicuts into linear programs and
questions about multicuts into questions about polyhedra we introduce poly-
hedra associated with certain sets of multicuts.

Let G = (V, E) be a graph and RE the vector space of vectors x =
(X,)ecr » Where the components of x are indexed by the edges in E. For
every subset F of E, we define its incidence vector XF 3 by xf =1 if
e€ F and xeF =0 if e ¢ F. We are particularly interested in incidence
vectors x"(sl""’sk) of multicuts 8(S,, ..., S;)- To be able to vary names a
bit we will also call x's(sl s+ 3 multicut vector or k-cut vector. We will
now introduce the multicut polyhedra considered in this paper.

DEFINITION 2. Let G = (V, E) be a graph with 7 nodes. Let k and s
be integers with 1 <k <n and 0<s<n—1. Set

MC(G) = conv{x°® " e R¥|8(S,, ... , S,) a multicut of G},
MCE(G) = conv{x" > e R¥|a(S,, ..., &) an h-cut of G

with h < k},
MCZ(G) = conv{x" " e R¥|8(S,, ..., §) an h-cut of G
with h > k},
= . O(Sy 5w S)) E
MC} (G) := conv{y "' W e RT|6(S,, ..., S;) ak-cut of G},

s-BMC(G) := conv{x*® % e R®|8(S,, ..., S) an s-balanced
multicut of G},

s-BMC,f(G) = conv{x’j(s"""s") € RElé(Sl, ..., S,) an s-balanced
h-cut of G with h <k},

s-BMCf(G) = conv{x's(s"""sh) € RElJ(S1 , ..., S,) an s-balanced
h-cut of G with & >k},

s-BMC,(G) := conv{x's(s' S g REIé(Sl , ... S,) an s-balanced
k-cut of G}.

In case G is the complete graph K, we will write MC(n), etc. instead
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of MC(K,), etc. We call MC(G) the multicut polytope and s-BMC(G) the
s-balanced multicut polytope of G . MC,f(G) is called the Sk-cut polytope,
MCZ(G) the Zk-cut polytope, MCy(G) the k-cut polytope, s-BMCS(G) the
s-balanced Sk-cut polytope, s-BMCE(G) the s-balanced Zk-cut Dpolytope,
and s-BMC,(G) the s-balanced k-cut polytope of G. In case it is not
necessary to be precise we will simply speak of a multicut polytope MCE (G),
etc.

Note that the standard cut polytope (i.e., the convex hull of all incidence
vectors of (usual) cuts) of a graph is our $2-cut polytope MC;( G), and the
equicut polytope (i.e., the convex hull of all incidence vectors of cuts, where
both shores differ in cardinality by at most one) of a graph is our 1-balanced
<2-cut polytope 1-BMCS(G).

The polytopes most intensively studied in the literature are

e the cut polytope MC25(G) (see, e.g., [BMa, DL] and the references
therein),

* the multicut polytope MC(G) (see [CR1, DGL, GW2, W),

e the equicut polytope 1-BMC5(G) (see [CRS, DFL]),

o the Zk-cut and the Sk-cut polytopes MCE(G) and MCE(G)
(see [CR1, CR2, DGLY]),

while not much work has been done yet on all the other polytopes. To provide
examples and ideas for generalizations we give complete descriptions of all
polytopes mentioned above for the complete graphs on 4 and 5 nodes. Let
us mention that similar work has been done for small equicut and inequicut
cones in [DFL].

3. The multicut polytopes for n = §

We will now discuss the multicut polytopes introduced in Definition 2 for
the complete graph Ky = (V, E) and provide complete and nonredundant
descriptions of all polytopes of interest. For the complete graph K, , similar
lists can be found in §6.

By making all possible combinations of the parameters one can see that
there are almost 100 cases to be considered for n = §. However, some can
be easily derived from others for theoretical reasons and, due to the small
dimension, quite a number are trivial or very simple. We will now rule out
all trivial cases, discuss the simple cases, and list the interesting ones that will
be investigated later.

There is no obvious order of the polytopes since there are many contain-
ment relations. We follow here and later the following lexicographic order
of the polytopes. We always treat MC(n) first. Then the multicut polytopes
MC}(n) are studied. Here and further we use the symbol “*” to denote one
of the symbols “<”, “>” “=» The parameter k specifying a bound on
shores is considered in increasing order, “<” is treated before “> ” and this,
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in turn, before “=". For the s-balanced multicut polytopes we treat the poly-
topes with largest s first and, within this class, follow the lexicographic rules
for MC;’C(n). Then we decrease s by 1 and continue this way.

To be able to give short definitions of all multicut polytopes we now list
and number all 52 multicut vectors for n = 5. We simply specify the parti-

tions S|, ..., S) from which the incidence vectors xﬁ(sl""’sk) € R® canbe

derived and number them as follows.
1: 12345 2: 11,2345 3:2,1345
4: 3,1245 5: 4,1235 6: 5,1234
7: 12,345 8: 13,245 9: 14,235
10: 15,234 11: 23, 145 12: 24,135
13: 25,134 14: 34,125 15: 35,124
16: 45,123 17: 1,2, 345 18: 1,3,245
19: 1,4, 235 20: 1,5,234 21: 2,3,145
22: 2,4,135 23: 2,5,134 24: 3,4,125
25: 3,5,124 26: 4,5,123 27:1,23,45
28:1,24,35 29: 1,25, 34 30: 2,13,45
31: 2,14,35 32: 2,15,34 33: 3,12,45
34: 3,14,25 35: 3,15,24 36: 4,12,35
37: 4,13,25 38: 4,15,23 39: 5,12,34
40: 5,13,24 41: 5,14,23 42:1,2,3,45
43:1,2,4,35 44: 1,2,5,34 45:1,3,4,25
46: 1,3,5,24 47: 1,4,5,23 48:2,3,4,15
49: 2,3,5,14 50: 2,4,5,13  51:3,4,5,12

52:1,2,3,4,5
To explain the notation, consider number 29. The partitionis S, = {1}, §,=
{2,5},8; = {3, 4} which gives the 3-cut vector xé(s"S”S3) = (2> X13>
cr Xgs) = (1,1, 1, 1,1,1,0,0,1,1),1ie, this is our vector number 29.

To shorten notation, we will now write equations like MC?(S) =

conv{17, 18, ..., 52} which means that in order to get the polytope MC32(5)
we have to take all convex combinations of the multicut vectors with numbers
17,18, ...,52.

After all these preparations we are now going to discuss the multicut poly-
topes introduced in Definition 2. For each polytope, we give the number v
of vertices and the number f of facets and list the classes of facets that are
needed to describe the polytope completely and nonredundantly. The classes
of facets are numbered (1), (2), ..., (47). These are defined and discussed
in §4. Most of these polytopes have dimension |E| = 10. We mention
whenever a polytope has dimension less than 10 or is particular in some way.

MC(5) = conv{l, 2,..., 52}, wv=352, f=242,
facets : (1), (8), (9), (10), (11), (13), (20), (44), (45), (46).

This polytope, of course, contains all other multicut polytopes. Since the
containment relations between the polytopes are quite obvious we do not
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make any further remarks on this issue. All inequalities valid for MC(n) are
also valid for all other multicut polytopes.

Polytopes of the type MC;“(n) are irrelevant, MCIZ(n) = MC(n) and
MC3(n), MC (n) consist of the single point 0.

MC5(5) = conv{l1,2, ..., 16}, v=16, f=S56,
facets : (4), (8), (9), (12), (15).
This is the cut polytope of K;. In fact, a complete description of the cut

polytope is known for every complete graph up to seven nodes (for details
see [DL]).

MC5 (5) = conv{2, 3,..., 52}, v=51, f=264,
facets : (1), (8), (9), (10), (11), (13), (17), (20), (27), (44),
(45), (46).
This polytope is obtained from MC(5) by deleting point 1 (the zero vector).
The neighbors of zero are, however, not on a common hyperplane and so
Msz(S) cannot be derived from MC(5) by adding one “cutting plane”.

Compared with MC(5) no facet-defining inequality of MC(5) disappears,
but the two new classes (17) and (27) appear.

MC; (5) = conv{2, 3, ..., 16}, v=15, f=468,
facets : (4), (8), (12), (15), (17), (27).

MC7 (5) arises from the cut polytope MC25(5) by removing one vertex, the
zero vector. The class (9) of certain hypermetric facets disappears and two
new classes of inequalities, (17) and (27), come up. Observe the difference
to the transition from MC(5) to MC22(5). Here also the zero vector is
removed, facets (17) and (27) appear, but (9) remains a class of facets of
MCZ(5).

MC5(5) = conv{l, 2, ..., 41}, ©v=41, f=1333,
facets : (1), (3), (8), (9), (10), (11), (14), (20), (38), (41),
(43), (44), (45), (46),
MC3(5) = conv{l7, 18, ..., 52}, v=136, f=0218,
facets : (1), (6), (8), (11), (13), (16), (23), (24), (25), (30),
(31), (40),
MC5(5) = conv{17, 18, ..., 41}, v =25, f=099,
facets : (1), (3), (6), (14), (16), (30), (31), (38), (40),
MCZ(5) = conv{l, 2, ..., 51}, v=>51, f=243,
facets : (1), (2), (8), (9), (10), (11), (13), (20), (44), (45), (46)
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MCf(S) arises from MC(5) by deleting vertex 52, i.e., the all-ones vector
xE . Using the adjacency characterization on the clique partitioning polytope
of [W], which, by complementation, gives an adjacency characterization of
the vertices of the multicut polytope MC(n) , one can show that the neighbors
of xE are the 4-cut vectors 42,43, ..., 51. These points lie on the hyper-
plane {x|x(E) = 9}. So it follows that MCf(S) = MC(5) N {x|x(E) < 9}.
(In fact, this argument holds for general n, see §5.) It may be, though, that
some inequalities defining a facet of MC(5) are redundant with respect to
MCf(S). But it is easy to see that xF is only contained in the facets de-
fined by the upper bound constraints (1) x, <1 which also define facets of
MCf(S) (see §5). So MCf(S) has one vertex less and one facet more than
MC(5) . (For that reason we will not discuss MCf(S) further in §4.)

MCZ(5) = conv{42, 43, ..., 52}, w=1L, f=1L.

MC42(5) is a full-dimensional simplex in RE. The facets are the upper
bounds (1) x, < 1 and the cardinality constraint x(E) = 9. MCf (n)

is a simplex for any n (see §5). We do not discuss this polytope MC;?(S)
further.

MC3(5) = conv{42, 43, ..., 51}, v=10, f=10.

MC;(5) isa 9-dimensional simplex in R® arising from MC4Z(5) by turning
x(E) > 9 into an equation. We will not consider MC; (5) in the sequel any
more.

Based on this analysis, the multicut polytopes of interest are MC(5),
MC5 (5), MCZ(5), MC; (), MCS(5), MC5(5), MC3 (5) -

We now turn our attention to the balanced multicut polytopes - BMCZ(S) .

Note that for any k-cut 6(S;, ..., S;) in Ky, k22, the discrepancy
[1S;] = 1S5 | of any two sets S; # S; is never larger than 3. So, any polytope
4-BMC;(5) is the same as the polytope 3-BMC;(5) for k = 2,...,35.
Moreover, there is no k-cut 6(S;, ..., S.), k€ {2,...,4}, in K with
discrepancy | |5, - |Sj|] =0 forall i # j. Thus the polytopes 0-BMC;(5),
k = 2,3, 4, are empty. The polytope O-BMC';(S) consists of the single
point xE and is also irrelevant., Furthermore, any polytope s-BMC(n),
se{0,1,...,n- 1}, is equal to the polytope s-BMCns__l(n), so we do not
consider the former polytopes in the sequel.

Thus the remaining range of parameters of interest is § = 3,2, 1 and
k=2,3,4,5. Wewill analyze these cases. It will turn out that some of the
polytopes are equal to polytopes already considered. In these cases we state
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this fact without discussing the polytopes further.

3-BMC5(5) = MC3(5),
3-BMCZ(5) = MCZ(5),
3-BMC; (5) = MC}(5),
3-BMC5(S) =conv{2, 3, ..., 41}, v =40, f =355,
=facets : (1), (3), (8), (9), (10), (11), (14), (17),
(20), (27), (38), (41), (43), (44), (45), (46).

This polytope has the second largest number of facets among all polytopes
investigated in this paper.

3-BMC5 (5) =MCZ(5),

3-BMC; (5) = MC3(5),

3-BMC§(5) =conv{2, 3, ..., 51}, v =50, f =265,
facets : (1), (2), (8), (9), (10), (11), (13),
(17), (20), (27), (44), (45), (46).

3- BMC45(5) arises from MC(5) by deleting the “top vertex” y% =1 and
the “bottom vertex” xg = 0. Analogously, 3-BMCf(5) can be derived from
MCf(S) by deleting the zero vector, or from MCS"( 5) by deleting XE . As the
computation shows (and one can verify theoretically) 3-BMC45(5) inherits
all facets of MC3(S), MCS(5), and of MC(5).

3-BMCZ(5) = MCZ(5),
3-BMCJ (5) = MC;(5),
2-BMC5(5) = 1-BMC5(5).
Note that the 2-cuts §(S, ¥\ S) in K have discrepancy ||S| - [V \ S|

equal either to one or to three. For this reason the last equation above holds
and thus we discuss this polytope later.

2-BMC5(5) = conv{7, 8, ..., 52}, v =4S, f =308,
facets: (1), (5), (8), (11), (13), (18), (20), (21),
(23), (29), (32), (35), (36), (39), (42),
2-BMC; (5) = 1-BMC; (5) (see remark after 2- BMCZS(S)),
2-BMC3(5) = conv{7, 8, ..., 41}, v= 35, f=1379,
facets : (1), (3), (5), (8), (11), (14), (18), (20), (21),
(23), (29), (32), (35), (36), (38), (39), (42), (43).
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This is the polytope with the largest number of facets considered here. There
are 18 different classes of facets.
2-BMCZ(5) = MC3(5),
2-BMC; (5) = MC3 (5),
2-BMCS(5) = conv{7, 8, ..., 51}, v=45, f=309,
facets: (1), (2), (5), (8), (11), (13), (18), (20),
(21), (23), (29), (32), (35), (36), (39), (42).

2- BMC (5 ) arises from 2- BMC—( ) by deleting the vertex xE All facets

of 2- BMC (5) are inherited, and the cardinality constraint (2) x(E) <9
appears. The behavior can be explamed with the same arguments given in
the discussion of the polytope MC (5).

2-BMCZ(5) = MCZ(5),
2-BMC; (5) = 1-BMC; (5)..
There is no 4-cut in K, where two shores have discrepancy 2. So all 2-

balanced 4-cuts are in fact 1-balanced, and thus we discuss this polytope
later.

1-BMCS(5) = conv{7,8,...,16}, v=10,f=10
facets : (12) or equivalently (29), dimension = 9.
This polytope is a 9-dimensional simplex in RZ. It lies on the hyperplane
{x|x(E) = 6}. All inequalities (12) and (29) are facet-defining but the two
classes are equivalent in this case. 1- BMC (5) is known in the literature as
the equicut polytope.
1-BMCZ(5) = conv{7,8, ..., 16,27,28,..., 52}, v=36, f=113,
facets : (1), (5), (8), (20), (26), (33), (34), (37),
1-BMC; (5) = 1-BMC5(5),
I-BMC35(5) = conv{7,8,...,16,27,28,..., 41}, v =24, f=169,
facets : (1), (3), (5), (8), (15), (20), (26), (28), (34), (37),

(47),

1-BMCZ(5) = conv{27, 28, ..., 52}, v=26, f=26,
facets : (1), (7 ) (19) (22),

1-BMCj (5) = conv{27,28, ..., 41}, v=15, f=25,

facets : (1), (14) or equivalently (22), (19) or
equivalently (28), dimension = 9.

This polytope lies in the hyperplane x(E) =9, the inequalities (19) are in
this case equivalent to the inequalities (28), and the class (14) is equivalent
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0 (22).

1-BMC5(S5) = conv{7, 8, ..., 16, 27,28, ..., 51}, v=35, f=114,
facets : (1), (2), (5), (8), (20), (26), (33), (34), (37).

1- BMC<(5) arises from 1- BMC>(5) by removing vertex ¥ =1, Asin
two previous cases (cf the discussion behind MC (5)) l-BMCf(S) keeps
all facets of 1- BMC (5) and only one new facet, ( ) X(E) <9, appears.

1-BMCZ(5) = MC(5),

1-BMC§(5) = MCZ'(S).
This finishes our discussion of the multicut polytopes for # = 5. For conve-

nient reference we list in Table | which of the polytopes are equal and which
are of further interest.

TABLE 1
1. MC(5)
2. MC<( 5) = 3-BMCS(5)
3. MCZ(5) = 3-BMC3(5)
4, MC2( ) = 3-BMC; (5)
5. MC;5(5)
6. MC3(5) = 3-BMC3 (5) = 2-BMCZ(5)
7. MC3(5) = 3-BMC; (5) = 2-BMC;(5)
8. 3-BMC;(5)
9. 3-BMC;(5)
10.  2-BMCZ(5)
11.  2-BMC;(5)
12, 2-BMC;(5)
13.  1-BMC5(5) = 1-BMC5 (5) = 2-BMC5(5) - 2-BMC; (5)
14, 1-BMCZ(5)
15, 1-BMCS(5)
16. 1-BMC3(5)
17.  1-BMC;(5)
18.  1-BMC3(5)
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FIGURE 1

The following polytopes will not be considered further.

MC; (5)
MCZ (5) = 3-BMC3 (5) = 2-BMC; (5) = 1-BMCZ(5),
MG, (5) = 3-BMC; () = 2-BMC; (5) = 1-BMC, (5).

4. A dictionary of the facets of the multicut polytopes for n =35

We will now list all classes of inequalities that came up in our numerical
calculations and that define facets of at least one of our multicut polytopes
listed in Table 1. As before, K, = (V, E) denotes the complete graph on
five nodes and ¥V = {1,2,...,5}. Fora convenient description of the
inequalities it seems more appropriate to use numbers as indices rather than
letters. Instead of saying that the inequality x;; < 1 defines a facet for
every edge ij € E, we will simply state that x, < 1 defines a facet. This
is justified since the property of an inequality to define a facet is preserved
under permutation of indices. In other words, writing that x ,+X,3+%X;; < 2
defines a facet means that the inequalities x;;+X;; +X; < 2 define facets for
all i,j,keV, i#k#j#i. Whenever we list a representative of a class
of inequalities we list in brackets the number of permutations of {1, ..., 5}
that lead to different facet-defining inequalities.

We will also present some drawings of the (weighted) support graphs of the
inequalities. The convention is that a solid line represents a + 1-coefficient,
two parallel solid lines a +2-coefficient, etc., while a broken line represents
a —l-coefficient and two parallel broken lines represent a —2-coeflicient, etc.
For example, the inequality

=2, = Xyg Xy~ Xys Xy~ Xgg T Xos <0

is depicted by the graph shown in Figure 1.
With each class of inequalities we provide a list of those polytopes for
which this class defines facets. We restrict reference to the 18 (interesting)

polytopes of Table 1.
In the sequel we will drop the “(5)” in the names of the multicut pelytopes

to avoid unnecessary symbols, i.e., instead of “MC?(S)" we will simply write
“MC2” etc.
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(4.1) Upper bounds. Since all multicut polytopes are 0/1-polytopes, the
upper bound inequalities

N X, <1 (10 permutations)

are valid for these polytopes. In fact, they define facets for all the 18 polytopes
except MC2S » MC; , and 1-BMC§ . It is interesting to note that no lower
bound inequality x, >0 ever defines a facet.

(4.2) Cardinality constraints, We call constraints of the type x(E) < u,
where u is some positive integer, an upper cardinality constraint, and simi-
larly we call x(E) > [ alower cardinality constraint. Such constraints appear
as facet-defining inequalities with different right-hand sides as follows:

(2) x(E) <9 (1 permutation)

is facet-defining for 3-BMCJ, 2-BMC, 1-BMCS ;

(3) x(E) <8 (1 permutation)

defines a facet of MCS, MC5, 3-BMC5, 2-BMCS, 1-BMCS ;
(4) x(E)<6 (1 permutation)

defines a facet of MC§ » MC5 . The lower bound

(5) x(E)>6 (1 permutation)

defines a facet of 2-BMCF,2-BMCS,2-BMCS, 1-BMCZ, 1-BMCS,
1-BMCS ;

(6) x(E)>17 (1 permutation)
is facet-defining for MC32 and MC7 ; and
@) Xx(E)>8 (1 permutation)

defines a facet of 1-BMC5>- .

(4.3) Hypermetric inequalities. We first define some symbols to make no-

tation easier. If b = (bys..., bs) is a vector of integers and x € R® then
we set
Q) x:= Y bbx,.
ijeE

Moreover, if ¢ := EL b, then the inequality
Q(b)-x < jo(o~1)

is called the hypermetric inequality associated with b. For any integral vec-
tor b, the hypermetric inequality associated with b is valid for MC and
thus for all multicut polytopes considered here (see [DGL]). We now list the
hypermetric inequalities that come up for n=5:

(8) Q(1,1,-1,0,0)-x <0 (30 permutations)
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(8) can be written (in a less sophisticated way) as X, — X3~ X33 < 0} this in-
equality is also known under the name triangle inequality. It is facet-defining
for all multicut polytopes except MC?, 1-BMC5, 1-BMCZ , l—BMCEf .

(9 Q,1,1,-1,-1)-x<0 (10 permutations)

is facet-defining for MC, MCS, MCZ , MC§ , 3-BMC§ , 3-BMCF;
(10) Q(,1,1,1,-2)x<1 (5 permutations)

is facet-defining for MC, MCZ, MC§ , 3-BMC5 , 3-BMC} ;

(an o1,1,1,-1,0)-x<1 (20 permutations)

is facet-defining for MC, MCZ, MCS, MCZ, 3-BMC5, 3-BMCj, 2-BMC3,
2-BMCS, 2-BMC5 ;

(12) Q(1,1,1,0,0) -x<2 (10 permutations)
is facet-defining for MCS , MC; , 1-BMC5 ;
(13) ou,1,1,1,-1)-x<3 (5 permutations)

is facet-defining for MC, MC3 , MC5 , 3-BMCS, 2-BMC3 , 2-BMCS .

(4.4) Q-inequalities. It turns out that the left-hand sides of some inequal-
ities we found can be written in the form Q(b) - x but that the right-hand
sides differ from the value fo(o — 1) of the hypermetric inequalities. We
will call these inequalities Q-inequalities.

(14) Q(1,1,1,1,0)-x<5 (5 permutations)

can also be viewed as an upper bound on any complete subgraph K, of Kj.
It is facet-defining for MCS , MC; , 3-BMC5 , 2-BMC5 , 1-BMC; .

(15) Q(,1,1,1,-1)-x<2 (5 permutations)
is facet-defining for MCS , MC; , 1-BMC5 .

(4.5) Lower bounds on cycles. The next inequalities are of the form x(C) >
I, where C is a 3-, 4-, or 5-cycle in Kj and / is some positive integer.

(16) Xy Xgy+ Xgq +Xgs + X523 (12 permutations)

specifies a lower bound of 3 on any pentagon in K. This inequality defines
a facet of MCBZ, MC; . Similarly,

an Xyp + Xgy + Xaq + X5 + Xy >2 (12 permutations)

specifies a lower bound of 2 on any S5-cycle in K. It is facet-defining for
MCZ, MC; , 3-BMC; , 3-BMC} .

(18) Xppt Xpy + Xy + x4 22 (15 permutations)
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FIGURE 2

requires that each feasible multicut contains at least two edges of every 4-
cycle. (There is only one such 4-cycle inequality.) (18) is facet-defining for
2-BMC3, 2-BMC; , 2-BMC; .

(19) X5+ X3+ X322 (10 permutations)

specifies a lower bound of 2 on any triangle. (19) defines a facet of 1- BMCa2 ,
1-BMCj} .

(4.6) 2-chorded odd cycle inequalities. The next inequality can be viewed as
a combination of two 5-cycles. It comes from the general class of 2-chorded
odd cycle inequalities introduced in [W, GW2]. Its form, in our special case,
is as follows. Let C be any 5-cycle in K and C its complement (which is
also a 5-cycle). Then

(20) x(C)-x(C)<2 (12 permutations)

is valid for MC and thus for all multicut polytopes. (20) defines a facet of
MC, MC3, MC5, 3-BMC;, 3-BMC;, 2-BMCF, 2-BMCS, 2-BMCY,
1-BMC3, 1-BMC;, 1-BMC5 . A picture of a 2-chorded 5-cycle inequality
is shown in Figure 2.

(4.7) Degree conditions. Some polytopes have degree constraints requiring
that among all edges incident to any node at least a certain number have to
be in a feasible multicut. The first lower bound on a star is of the form

(21) Xip+ X3+ X, +X522 (5 permutations)

and is facet-defining for 2- BMCZ,Z, 2- BMCf, and 2- BMC45. The second
degree bound reads

(22) Xjg+ X3+ X,4+X5>3 (5 permutations)
and defines a facet of 1-BMC5>- and 1-BMC3 .

(4.8) Crowns. A crown in K, is an edge set C = E\ T, where T isa
triangle. (Figures 3 and 4 make it clear why such edge sets are called crowns.)
Crowns are supports of seven different classes of facet-defining inequalities
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(a) (b ©
FIGURE 3

for multicut polytopes. The first three classes are characterized by the fact
that the two nodes of the “basis” of the crown are linked by an edge with
weight —2 and that exactly three of the edges linking these two nodes to the
other three (nonbasis) nodes have weight +1 and —1, respectively.

The first class, shown in Figure 3(a), is of the form
(23) =200,y — X3 — X4 — Xps X3 + X T X5 <0 (20 permutations),
ie., all edges linking one node of the basis to the three nonbasis nodes
have weight —1 while the edges leaving the other basis node have weight
+1. These inequalities define facets of MC3Z , 2- BMCZ , 2- BMC35 , and
2-BMCj .

In the second class of crown inequalities, one of the basis nodes is linked
to exactly one nonbasis node by an edge with weight —1 while the other basis
node is linked to the other two nonbasis nodes by edges with weight —1 (see
Figure 3(b)), i.e., these inequalities are of the form

(24) =25 — Xy3+ Xp4 + X5+ X3 = Xoq = Xp5 £ 0 (30 permutations).

These inequalities induce facets of MC3Z .

In the third class of inequalities (see Figure 3(c)) one basis node is linked
by two edges of weight —1 to two nonbasis nodes, the other basis node is
linked by one edge of weight —1 to one of the nonbasis nodes that is already
incident to a negative edge, so one nonbasis node is always incident to two
positive edges. Thus, these inequalities are of the form

(25) —2X)y = X3 = X4 + X5 = Xy F Xpu + X5 <0 (30 permutations) .

They define facets of MC3Z .

(®) - ()

FIGURE 4
The other four classes of crown inequalities have nonzero coefficients +1
and —1. In the first of these, the two basis nodes are linked by a — 1-edge, all
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other edges leaving one of the basis nodes have weight —1, the other edges
leaving the other basis node have weight +1 (see Figure 4(a)). Thus, they
can be written as

(26) =Xy — X3 — X4 = X5+ Xp3 + Xy + X,5 <0 (20 permutations).

They define facets of 1-BMC3 , 1-BMC; , 1-BMCY .

In the second version of this type of crown inequalities, the two basis
nodes are linked by a —1-edge, all other crown edges have weight +1 (see
Figure 4(b)), i.e., we have

(27) =X+ X3+ X4+ Xy5 + Xp3 + Xy + X5 22 (10 permutations).

Inequalities (27) define facets of MC5, MC;, 3-BMC5, 3-BMC5 .

Finally, there are two types of inequalities that specify an upper bound
and a lower bound, respectively, on the edges in a crown C shown in Figure
4(c). The first cardinality constraint reads

(28) x(C)< 6 (10 permutations)

and defines a facet of l-BMC3-<‘ and 1-BMC3=; the lower bound constraint
requires

(29) x(C) =4 (10 permutations)
and is facet-defining for 2-BMCZ, 2-BMCj , 2-BMC5, and 1-BMCS .
(4.9) Bipartite inequalities. A further class of inequalities specifies a lower

bound on the edge set of any complete bipartite graph K, , contained in
K, . It is of the form

(30) X3+ X4+ X5+ Xo3 + X5 + X, >4 (10 permutations)

and defines a facet of MC32 and MC7 . It is a special case of the class of
bipartite inequalities introduced in [CR1] for MCf(n).

(4.10) Casserole inequalities. We call the next type of inequalities casserole
inequalities since their supports resemble a casserole (see Figure 5).

They come in three classes. The first one, shown in Figure 5(a), specifies a
lower bound on the edges of a casserole, but where the edges of the “handle”
are counted twice, i.e.,

(31)  2Xp5 + Xp3 + Xpg + Xg5 + Xgy + X35+ X45 > 5 (20 permutations).
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These inequalities define facets of MC32 and MC;. The second one (see
Figure 5(b)) is of the form

(32) 2,y + 2Xps + 2Xpy + 2Xy5 + Xy + X35+ X452 6 (20 permutations)

and is facet-defining for 2-BMCZ, 2-BMCj , and 2-BMC5 .
The third class of casserole inequalities—the support is shown in Figure
5(c)—is of the form

(33) =X, = Xy3 — X4 — Xps + X34 + X35+ X4 S0 (20 permutations)

and is facet-defining for l-BMCZ2 and I-BMCf.

Observe that the left-hand side of (31) can be written as 2x;, +
x(E({2, 3, 4, 5})), while the left-hand sides of (32) and (33) can be viewed
as 2x(6(2))+x(T) and x(T)—x(6(2)), respectively, where T is the triangle
on the nodes 3,4, 5.

(4.11) Inequalities with low-connectivity support. One usually expects the
support graph of a facet-defining inequality to be highly (at least two) con-
nected. The casserole inequalities already provide a support graph that is
not 2-connected. There are two more classes of inequalities with such low-
connectivity support graph. In the first case (see Figure 6(a)), the support
graph is disconnected and can be viewed as the sum of twice an edge minus
a triangle, i.e.,

(34) 2X[y = X34 — X35 — X5 <0 (10 permutations) .

These inequalities define facets of 1-BMCj, 1-BMCj , and 1-BMCj .
The second class has a 1- but not 2-connected support graph (see Figure
6(b)), and reads

(35)  Xyp+ X3+ Xgy + 2Xgy + 22Xy — 22,5 22 (30 permutations).
These inequalities are facet-defining for 2-BMCZ, 2- BMC3S ,and 2-BMC4S .

(4.12) Further inequalities. From now on we will make no attempt towards
classifying the remaining inequalities further. Their common characteristic
is that their support graph is the complete graph with at most two edges miss-
ing. With two exceptions all inequalities have coefficients that are different
from 0, +1. In order to be able to draw some of the support graphs a little
more nicely and to display structure we will sometimes group the nodes into
“supernodes” (large ellipses) and link ellipses by edges. If two ellipses are
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linked by an edge, then all nodes of one ellipse are linked to all nodes of the
other ellipse by an edge (of the same weight). Nodes inside an ellipse are not
necessarily connected by edges.
We begin with the two classes of pure 1nequa11tles (all coefficients are
0, £1). The first one, displayed in Figure 7(a), reads
—Xyy = X3~ Xp3 F Xyq + Xys T Xy,
(36) + Xp5 + Xg4 + X35 2 1 (10 permutations)
and is facet-defining for 2- BMCZ, 2- BMC3S ,and 2- BMCf .
The second pure class is almost identical, Just one more positive coeffi-
cient, the last missing nonzero, appears. It is of the form (see Figure 7(b))
=Xyp = Xp3 T Xg3 F Xyg F X5+ Xog + Xys
(37) + Xgy + Xgg + Xy = 2 (10 permutations)
and is facet-defining for 1-BMC5, 1- BMC; , and 1- BMCS If we denote
the triangle on nodes 1,2, 3 by T, the edges of X, 5 (w1th 1,2,3 on
one side) by F, and the edge between 4 and 5 by e, we can write (36) and
37, respectlvely, as
-x(T)+x(F) 21,
—x(T) +x(F)+x,22.
Another way to view (36) and (37) in our Q-notation is
—Q(la 1,1,-1, "'1)'-7C+.xe2 1,
-Q(1,1,1,-1,-1) - x+2x,2> 2.
All further inequalities have some coefficients whose absolute value is at
least 2. The largest coefficient appearing has absolute value 4.
The support of the next class of inequalities is the complete graph K.

All coefficients have value +2, except for one triangle, where all edges have
value 1. In Q-notation, it reads as follows:

(38) 20Q(1,1,1,1,1)-x-0Q(1,1,1,0,0).x <14 (10 permutations)
and is facet-defining of MCj , MC5, 3-BMC; , and 2-BMCj .



COMPLETE DESCRIPTIONS OF SMALL MULTICUT POLYTOPES 239

T

=

(a) (b) ©
FIGURE 9

The support graph of inequality

=Xy = Xy3+ Xg3 + 2Xp4 — 2,5+ 2%y
(39) — 2%y~ 2X,5 <0 (60 permutations)

is shown in Figure 8(a). Inequalities of type (39) define facets of 2-BMCZ,
2-BMCS, and 2-BMCj .
The inequality depicted in Figure 8(b) reads

2X)y + 21y = Xy + Xgg F Xos T Xy
(40) + Xyg + X5 25 (30 permutations)

and defines a facet of MC3Z and MC3.

The support graphs of the next three classes of inequalities are shown in
Figure 9.

The inequality depicted in Figure 9(a) reads

—4x, + 3%y + 3X )+ 3% — 2Xy3 ~ 2%y
(41) = Xy + Xgy + Xg5 + Xy5 S5 (20 permutations)

and defines a facet of MC3S and 3- BMC§<' . In Q-notation we can write it
as
Q(3s -2,1,1, 1)'X+2X12_<_5.




240 M. DEZA, M. GROTSCHEL, AND M. LAURENT

(a) (b) (c)
FIGURE 10
The inequality shown in Figure 9(b) is
4%y = 3x13 — 34 + 3xy5 + 3%y, + Xy
(42) — Xgy F Xg5+ Xy 2 1 (60 permutations)
and is facet-defining for 2-BMCZ, 2-BMC; , and 2-BMC; .
The inequality belonging to Figure 9(c) can be written as
=2Xy F 2X)3 + 204 = Xp3 — Xpy + Xos
(43) + Xy + X35 T X45 <5 (60 permutations).
In Q-notation, we can view it as
0(2,-1,1,1,1) - x~2x5+2x,5< 5.
It is facet-defining for MC5 , 3-BMC5 , and 2-BMC; .

Figure 10 shows three further weighted support graphs. The inequality
belonging to Figure 10(a) reads

4x, +4x3 = 3%, — 3X 5 + 2X55 ~ 2X,4 — 2X,5
(44) —2X34 — 2%+ X, <2 (30 permutations)
and can be written in @-notation as
03,2,2,-1,-1)-x~-20Q(1,1,1,0,0)-x < 2.
It is facet-defining for MC, MC5 , MC5 , 3-BMC; , and 3-BMCj; and is
a special case of the generalized cycle inequalities introduced in [CR2] for
MC5 (n).
The next inequality
2X15 = Xy4 = X5 — 2Xp3 — 2Xg4 — 2X5
(45) +2X34 +2x35 + X4, <2 (60 permutations)
is depicted in Figure 10(b) and can be written in Q-notation as
Q(—1,-2,2,1,1) x4+ 2(x;5+xy) <2.
It is facet-defining for MC, MC7, MC5 , 3-BMC;, and 3-BMC; . The
inequality shown in Figure 10(c) has the form
=2X 5 = 2X)3 = Xy — Xyg + 2X5 + 2Xyg
(46) +2X5, — X35 < 2 (60 permutations)
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and is facet-defining for MC, MCZ, MCS , 3-BMCj , and 3-BMC . So the

classes (44), (45), and (46) are facet-defining for the same multicut polytopes.
Finally, the class of inequalities represented by

Xpp X3 = Xq = X5+ 3Xgy + Xgg = Xps
(47) — Xy Xys — x5 < 2 (60 permutations)

and shown in Figure 11 is facet-defining for I-BMCSS .

This finishes our list of inequalities. In Table 2 we give a comprehensive
overview over all multicut polytopes of K, and their facets. The polytopes of
Table 1 index the first 18 rows of the table. The column labeled v contains
the number of vertices, the column labeled f the number of facets, and the
column labeled 4 the dimension of each polytope. The columns labeled
(1), (2), (3), ..., (47) correspond to the 47 classes of facets listed above.
An entry “x” in the table denotes the fact that all inequalities of the class
of facets of its column define a facet of the polytope of its row. The last
three rows specify whether inequality is of “<” or “>” type, the value of the
right-hand side of each inequality in the class, and the number of different
inequalities in the class, respectively.

Without going into too much detail we mention a few artifacts that can be
read from Table 2. The range of right-hand sides of the inequalities (assuming
that they are in “<” form with integral and coprime coefficients) is —8 to 14.
Only few facets appear frequently, namely the upper bounds (1), the triangle
inequalities (8), and the 2-chorded 5-cycle inequalities (20). Four classes are
facet-defining for just one polytope: (7), (24), (25), and (47). And there are
clusters of facets that always appear together. For instance,

classes (18), (21), (29), (32), (35), (36), (39). (42)

define facets of 2-BMCZ, 2-BMC5, and 2-BMCj but not of any other
polytope (disregarding the lower-dimensional polytope 1-BMC25). These
polytopes, in fact, have 303 common facets in total. Moreover,

classes (6), (16), (30), (31), (40)
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are only facet-defining for M(33Z and MCj,
classes (10), (44), (45), (46)

are only facet-defining for MC, MCZ, MC?, 3-BMCSS , and 3- BMCf and
do not appear anywhere else. Similarly,

classes (7), (19), (22)

are only facets of l-BMC32 and do not appear anywhere else (disregarding
the lower-dimensional polytope 1- BMC3),

classes (14), (38)

are only facet-defining for MC32 , MC5, 3—BMC35, and 2- BMCS, and fi-
nally
classes (24), (25)

only define facets of the polytope MC3Z and of no other multicut polytope.
5. Some observations

(5.1) On (n — 1)-cut polytopes. We observed that the multicut polytopes
MC, (5) and MC%(S) are both simplices in R of dimension 9 and 10, re-
spectively; also, that the polytope MCE(S) can be deduced from the polytope
MC(5) simply by adding the following cardinality constraint: Y jeE Xij <9.
In fact, these observations remain valid more generally for the multicut poly-
topes MC(n), MC,_,(n), MCf_l(n) , and MCnS_l(n) defined, respectively,
as the convex hull of all incidence vectors of multicuts, all (n — 1)-cuts, all
k-cuts with k > n—1, and all k-cuts with k < n—1, of the complete graph
K,=(V,E) on n nodes.

The polytope MCf_l(n) has (;) +1 vertices, all linearly independent, so
MCf_l(n) is the (g)-simplcx in RE defined completely and nonredundantly
by

(48) MCf_l(n) = {x cRf xSl forallij e E, E Xy 2 (g) - 1} .
ij€E
The polytope MC,_,(n) has precisely one vertex less than MCfﬁl(n),

namely the incidence vector of the n-cut, i.e., the vector xE whose coordi-
nates are all equal to 1, is a vertex of MCf_l(n) but not of MC,_,(n). So,
MC,_,(n) is the ((8) - 1)-simplex defined completely and nonredundantly
by

= E, . _(n
(49) MC,_,(n)= {x eR®:x; < 1forallij €E, };:xij_ (2) - 1} )
ijEE
Moreover, the polytope MCf_l(n) has precisely one less vertex than
MC(n) ; namely, the only multicut vector that is not a vertex of MCnS_l(n}
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is the n-cut vector x“ . The cardinality condition Yeer¥e < (3) =1 clearly
defines a facet of MCf_l(n) , 50 the following inclusion holds: MCf_l(n) -
MC(r)N{x € REI ZijeEx,.j < (’2') — 1} . Using the fact [W] that the vertices
of MC(n) which are adjacent to xE on MC(n) are precisely the (n ~ 1)-
cut vectors, i.e., the multicut vectors lying on the hyperplane defined by the
equation ;X = (3) — 1, we deduce that MCS_,(n) indeed coincides
with MC(n) N {x € R¥| Lijer Xy < (5) — 1} . Furthermore, every inequality
defining a facet of MC(n) also defines a facet of MCf_I (n). This is clear
for facets that do not contain xE . Note that the only facets of MC(n) con-
taining XE are those defined by the upper bound conditions (1) x; < 1.
To see this, take a facet F of MC(n) containing y”. Then the vertices of
F adjacent to xE together with xE form a set of rank (g) — 1. Since, as
mentioned above, the multicut vectors adjacent to xE are the (n — 1)-cut

vectors, we deduce that F contains a set of rank (5) — 1 consisting of y*

and (n - 1)-cut vectors and hence F is indeed supported by some upper
bound condition (1). Summarizing these observations we obtain

PROPOSITION 1. For n > 3, the facets of MCfml(n) are those of MC(n)
together with the cardinality condition o jeE X S %) = 1. Moreover, the
Jollowing equality holds:

MC,_,(n) = MC?

One can observe, by looking at the table of facets (Table 2), that the fol-
lowing equality holds:

(M) NMCS ().

5-BMC5 (5) = s-BMCZ (5) N {x eR’

Exij59} fors=1,2,3.

ijEE
Generally, the polytope s- BMCE_1 (n) has the same vertices as the polytope

5~ BMCE(n) except the nm-cut vector XE which is cut off by the cardinality
condition 37, - x;. < (3) — 1. It seems that the equality

HJEE ™ij =
n
Zx.. < ( ) -1
ij€E Y 2 }

holds for any n > 5 and that the facets of s-BMCf_l(n) are those of
- BMC22(n) together with the cardinality condition hM jepXi; < () -1.

s-BMC5_,(n) = s-BMCZ (n) N {x eR”

(5.2) Connectivity of the facet support graphs. One can observe that, among
the inequalities listed in §4, those defining a facet of some multicut polytope
MCE (5) forsome k € {2, 3, 4, 5} have a support graph that is 2-connected.
More generally, one has the following result.
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PROPOS[TIO<N 2. The support graph of an inequality defining a facet of the
polytope MC(n), for some 2 < k <, is 2-connected, i.e., the smallest
number of nodes whose removal disconnects the graph is greater than or equal
to 2.

ProOF. The proof is a direct extension of the proof given in [D] for the
case k = 2, i.e., for the cut polytope case. Take an inequality vTx < o which
defines a facet of MCf(n) and let us assume that its support graph G, =
(V, E(v)) is not 2-connected. Suppose first that G, admits an articulation
node iy. So V=V, UV,, E()=E,UE, with VNV, = {iy}, and E; is
the edge set of G, induced by v, for i=1, 2. Denote by v; the vector of
RY whose projection on R% coincides with the projection of v and whose
projection on REME s the zero vector, for i = 1,2, Thus, v = v, + 7,
holds.

Set o, = max{'uiTx|x € MCf(n)}. Then the inequality 'ul.Tx < a is
valid for MCkS(n) for i =1,2. We prove that o = + 0, holds. First,
inequality o < a; + o, holds trivially. To prove the converse inequality,
take a multicut vector x; of MC,f(n) satisfying v,.T X, =a;, for i = 1, 2.
So x, is the incidence vector of an h-cut of the form &(S;, Sy, .-+ )
with A <k, and Xx, is the incidence vector of an I-cut 6(Ty, ..., T}) with
| < k. We may assume that </ and that node i, belongs to S| N 1.
Consider the multicut vector x whose shores are the sets (S N yHu (Tj nwy)
for 1<j<h,and T;N v, for h+1 < j<1.So x isthe incidence vector
of 2 multicut having at most / < k shores and satisfying 'vl.T X = viT X =0
and, thus, vix = o, +a, <a. Therefore, the inequality vTx < a can be
written as the sum of two valid inequalities, contradicting the fact that it is
facet inducing. The proof is analogous in the case when the support graph is
disconnected. O

This result does not extend to the case of the other multicut polytopes
MCf(n), MC, (n) or the s-balanced multicut polytopes. For instance, the
casserole inequalities (31), (32), (33) are connected, but not 2-connected.
(See also the example of the facets from Proposition 4.) Moreover, the sup-
port graph of inequality (34) is disconnected.

(5.3) Cycle inequalities. We introduce a class of inequalities containing
inequalities (17), (18), (19) as special cases. We call them cycle inequalities
since their supporting graph is a cycle C and they are of the form:

(50) >ox22
ijeC
Note that a multicut vector violates inequality (50) if and only if one of
its shores contains all nodes of the cycle C. This implies easily that, for
2<p<n-—1,if C isacycle of length p + 1, then the cycle inequality

(50) is valid for the polytopes MC5_,,(n) and (P - 1)-BMCZ_, . Denote
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by 1,2,...,p+1 thenodes of C and by p+2,...,n the remamlng
nodes. Onc checks easily that the roots of inequality (50) in MC,,_p(n) ie.,

the multicut vectors x of Mci_p( ) that satisfy inequality (50) at equality,
are, setting I, :={1,2,...,u—1, u} for 1 <u < p, as follows.

x isamulticut vector with shores I, {1, ..., p+1}\I,, and
(50a) the singletons {i{} for p+2 <i<n. So x is the incidence
vector of an (n — p + 1)-cut that is (p — 1)-balanced.

x is a multicut vector with shores I,U{j}, {l,...,p+1}\
I, and the singletons {i} for p+2 < i< n, i# ] with
p+2<j<n.So x is the incidence vector of an (n—p)-cut
and is (p — 1)-balanced if u #p.

(50b)

Hence, if p < n—1, inequality (50) does not define a facet of MC— _pr1(h),

since the only multicut vectors in MCn ot \(n) satisfying inequality (50) with
equality are those described in (50a). But these also satisfy the equation
x,, = 1. The next result indicates that (50) is indeed facet-defining in the
remaining cases.

PROPOSITION 3. 1. Let C be a cycle of length n. Then the cycle inequality
(50) defines a facet of the polytopes MC; (n) and MCf(n).

2. Let C beacycle of length p+1, 2 <p < n-—1. Then the cycle
inequality (50) defines a facet of the polytope (p — 1)-BMCnZ~p(n) .

ProoF. We shall use the description given in (50a), (50b) of the roots of
inequality (50).

1. Take an inequality v7x > o that is valid for MCZ(n) and is sat-
isfied with equality by all the roots of inequality (50) in MC;(n). Set
S:={2,...,u} for 2<u <p—1; then we have

UTXJ(S) UTXJ(SU{l}) TXJ(SU{uH} UTX:S(SU{I Lutl}) —a,

from which one easily deduces that v = 0. Hence, by symmetry, ;=0

1 u+1 ]
for every edge ij that is not an edge of C. Using the fact that v7 5({1} =

w0 = T x*2 = o | one deduces the Uy = Uyy = /2. Therefore,
we obtam that inequality vix > a 1s a multiple of inequality (50), implying
that inequality (50) indeed defines a facet of MC; (n) and thus of MCZZ(n)
too.

2. Take again an inequality v Tx 2 o that is valid for (p —1)- BMC;_p( )
and admits the same roots in (p — 1)- BMCn_p(n) as inequality (50). Set
S:={2,...,u}for 2<u<p-1and & :={u+2,...,p+1}. Let
9, (respectively, 0y, 05, d4) denote the multicut whose shores are the sets .S
and S'U{1, u+ 1} (respectlvely, Su{l} and S'U{u+1}, SU{l,u+1}
and §', SU{u+1} and S'U {1}) together with the singletons {i} for
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p+2<i<n. Sod,d,, 05,4, are of type (50a). Using the fact that
s —vTy% = o"y% v y% = 0, one deduces easily that Vyuy = 0. Take
je{p+2,..., n}. Thenboth multicuts with shores {1}, {2, ... , p+1} and
singletons {i} for p+2 < i < n and with shores {1, j}, {2, ... ,p+1} and
singletons {i} for p+2 < i <n, i# j,areroots (of type (50b)) yielding that
v, = 0. One now deduces easily that v x > o is a multiple of inequality
(50), which indeed shows that (50) defines a facet of (p— 1)-BMCZ_,(n). O

Finally note that, if C is a cycle of length 7, then the inequality )Y jec Xij

> k is trivially valid on MCZ(n).

(5.4) A class of “casserole” facets. We saw that the casserole inequality
(31) defines a facet of the polytope MC?(S) . The following inequality can
be seen as an extension of inequality (31):

n—1
(51) > x,.j+2x1n_>_( 5 )—1

1<i<j<n—1

PROPOSITION 4. Inequality (51) defines a facet of the polytopes Mciz(n)
and MC,_,(n) for n>5.

ProoF. Validity of inequality (51) for MCE_Z(n) is easy to check. Its
roots are the following multicut vectors x:

(1) x is the incidence vector of an (n—2)-cut whose shores are singletons
except two shores that are pairs {1, n}, {i,jyfor2<i<j<n=-1.

(2) x is the incidence vector of an (n—2)-cut whose shores are singletons
except one shore that is a triple which is either {1,i, j} with 2 <
i<j<n-—1,o0r {1,n,i} with 2<i<n-1,or {i, j, k} with
2<i<j<k<n—1.

Using the above description of the roots, it is not difficult to show that any
inequality vl x > o which is valid for MC;,_,(n) and is satisfied at equality
by the multicut vectors defined in (1), (2), (3) above is indeed a multiple of
inequality (51). 0O

(5.5) Some classes of “crown” facets. We introduce two classes of inequal-
ities (52), (53), which contain as special cases the “crown” inequalities (23),
(24), and (27), respectively.

PROPOSITION 5. Consider a partition of {1,2, ..., n} into subsets A, A,
and {1, n}. Then the inequality
(52) (= 3%y + 00— Xy D (X1} S0
ied icd

defines a facet of MC?(n) fornz5.
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Proor. One can easily check that inequality (52) is valid for MC5>- (n) and
that its roots in MC?(n) are the incidence vectors x of the multicuts for
which either

o both nodes 1, n belong to the same shore of the multicut, or

o the multicut is of the form &(4' U {1}, 4\ {i}u{n}, {i}) for some
ieA,or

o the multicut is of the form &(4'\ {i} U {1}, 4U{n}, {i}) for some
ied.

Then one can verify that the set of roots of (52) has rank (})—1 implying
that inequality (52) defines a facet for MC§>-(n). m]

Note that inequality (52) is not valid for MCj (n). It is, in fact, violated
by the incidence vector of the 2-cut §(AU{n}) but by no other 2-cut vector.
Note also that, for n = 5, inequality (52) coincides with (23) if |4| =3 and
with (24) if |4]=1 or 2.

PrOPOSITION 6. The inequality

(53) (n—4)x,, - Z (X +%x;,) £ -2
2<i<n-2

defines a facet of the polytopes MC; (n), Msz(n) .

ProOF. It is easy. We simply mention that the roots of inequality (53) in
MC; (n) are the incidence vectors of the 2-cuts d({i}) for 2<i<n-1,
and 6(SU{n}) for any subset S of {2,3,...,n—1}. O

Note that inequality (53) for n =5 coincides with inequality (27).

(5.6) On the polytopes 1—BMC§_2(n), MC, _,(n). The balanced multicut

polytope l-BMCSZ(S) has 26 vertices and 26 facets which are of one of the
following four types:

¢ upper bound condition (1) x,, <1,

¢ cardinality condition (7) 3=,z X; 28,
e lower bound on 3-cycle condition (19) x, + X3+ Xy 22,
¢ degree condition (22) Ef=2 x,;23.

All of them extend to the general balanced multicut polytope
1-BMCZ ,(n) . The polytope 1-BMCZ ,(n) has 4(2)("3!)+ (%) +1 vertices
that are incidence vectors of the #n-cut, the (n— 1)-cuts, and the (7 — 2)-cuts
whose shores are singletons except two shores which are pairs. First, the
upper bound condition (1) clearly defines a facet of I-BMCf_Z(n). The
cardinality condition for general n is as follows:

(54) 3 ox 2 (’;) -2.

1<i<j<n
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One can easily check that inequality (54) indeed defines a facet of

1~BMC%_2()1). We already proved in Proposition 3 that the lower bound
on a 3-cycle defines a facet of l-BMCf_Z(n). Finally, the degree condition

for general n is as follows:
n

(55) Sxyzn-2,
=2

and it is easily verified that inequality (55) defines a facet of 1- BMC?_Z(n) .

We finally mention another multicut polytope for which all its facets admit
an easy generalization. This is the case for the polytope MC; (5) that has
nine types of facets, namely those defined by inequalities (1), (3), (6), (14),
(16), (30), (31), (38), and (40). All of them extend to the polytope MC_,(n)
forany n > 5. The polytope MC,_,(n) has as vertices the incidence vectors
of the (n — 2)-cuts, i.e., the multicuts whose shores are all singletons except
two pairs, or all singletons except one triple. For each of the facet-defining
inequalities of MC5(5), we can state a general inequality that is valid for
MC;_,(n) as follows:

e as an extension of the cardinality constrdints (3), (6), the inequalities

(B)ss 5,

1<i<j<n

are valid for MC, _,(n),
e as an extension of (14), inequality

Z x;jﬁ(nzl)*l

1i<j<n—1

is valid for MC>_,(n),
e as an extension of (16), inequality

> xzn=1,
ijeC

where C is a cycle of length n, is valid for MC%_Q(n) R
¢ as an extension of (30), inequality

n
ST xRy XXyt Xg) 2 ) O
1<i<j<n
is valid for MC,_,(n),
o as an extension of (31), we have the casserole inequality (51) which
is facet-defining for MC,_,(n) (see Proposition 4),
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¢ as an extension of (38), inequality

n
2y x‘.j~(x12+x13+x23)52(2>—6

1<i<j<Ln

is valid for MCf_z(n) s
o as an extension of (40), inequality

n-1
Z xij+2(x1n+x2n‘x12)2( 2 )"1

1<i<j<n—~1

is valid for MCZ _,(n).

6. Complete descriptions of the multicut polytopes for 1 = 4

For completeness we now list also all multicut polytopes introduced in
Definition 2 for the complete graph K 4 = (V, E). Our numerical compu-
tations did not produce any new and interesting class of inequalities. All
classes of inequalities that appear as facet-defining inequalities for at least
one of the polytopes belong to some general type.

As in §3 we number the 15 different multicut vectors to be able to give
short definitions of the polytopes of interest. We do this as follows:

1: 1234 2:1,234 3: 2,134
4: 3,124 5: 4,123 6: 12, 34
7: 13,24 8: 14,23 9:1,2,34
10: 1,3,24 11: 1,4,23 12: 2,3, 14
13: 2,4,13 14: 3,4, 12 15:1,2,3,4

So if we sort the edges ij of E as 12, 13, 14, 23, 24, 34, then the 4th
multicut vector, for instance, is the vector x(’m}’{' 24 (0,1,0,1,0, 1),
We now list all polytopes that arise for n = 4, k = 2 ,3 and 5 =
0,1, 2, 3 leaving out trivial cases of polytopes that are empty, single points,
or otherwise trivial or those that are equal to some other polytope listed. The
facets mentioned will be introduced in the sequel. The ordering follows the
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same lexicographic scheme as explained for n = 5.
MC(4) = conv{l, 2, ..., 15}, v=15, f=22,
facets : (56), (64), (65),
MCS(4) = conv{l,2,...,8}, v=8, [f=16,
facets : (59), (64),
MCZ(4) = conv{2, 3,...,15}, wv=14, [f=25,
facets : (57), (61), (64), (65),
MC; (4) = conv{2, 3, ..., 8}, v=T, f=1,
facets : (59), (61),
MCS(4) = conv{1, 2, ..., 14}, v=14, [=23,
facets : (57), (58), (64), (65),
MCZ(4) = conv(9, 10, ..., 15}, v=7, f=7,
facets : (57), (60),
_ MC; (4) = conv{9, 10, ..., 14}, v= 6, f=6, dimension =35,
facets : (57), equation: (56),
2-BMCS(4) = conv{2, 3, ..., 14}, v=13, [=26,
facets : (57), (58), (61), (64), (65),
1-BMCZ (4) = conv{6, 7,..., 15}, v=10, f=14,
facets : (57), (62), (63),
1-BMCS (4) = conv{6,7,..., 14}, v=9, [f=14,
facets : (57), (58), (62), (63).
The polytopes MC; (4), MC3( ), and MC;(4) are simplices.

The following equatlon defines an affine space that is spanned by one of
the polytopes:

(56) x(E)=35.
Upper bounds on edge sets
(57) x,<1 (6 permutations),
(58) x(E)<1 (1 permutation),
(59) x(T)<2 (T atriangle) (4 permutations).

Lower bounds on edge sets

(60) x(E)>5 (1 permutation),
(61) x(C)>2  (Cad4-cycle) (3 permutations),
(62) x(T)=22 (T a triangle) (4 permutations),
(63) x(8(1)) 2 (4 permutations).
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Hypermetric inequalities

(64) Q(1,1,~1,0)-x<0 (triangle inequalities) (12 permutations),
(65) Q(1,1,1,-1)-x<1 (4 permutations).

This finishes our list of facet-defining inequalities for multicut polytopes
of K
4
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