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GRAPHS WITH CYCLES CONTAINING GIVEN PATHS

M. GROTSCHEL
Institut fiir Okonometrie und Operations Research, D—353 Bonn, Nassestrafle 2, FR.G.

In this note we establish a sufficient condition for the following property of u graph: given any
path of length r there is a cycle of length at least m 2r +3 containing this path. The theorem
implies the well-known theorem of Chvital [4] on hamiltonian graphs and the theorem of Pasa [7]
which gives sufficient condltions for a graph to contain cycles of a certain length. It is shown that
the thearem is neither stronger nor wenker thun the theorem of Bondy [3] and the still unsettled
conjecture of Woodall [8].

1. Notation

The graphs G = (V, E) considered are undirected, loopless, and without multiple
edges. The degree d(v) of a vertex v € V is the number of edges e € E containing
v. A non-decreasing sequence di, dz, .. ., d, of nonnegative integers will be called a
degree sequence if there is a graph G with n vertices vy, ..., U such that d(v) = d,
i=1,...,n. A sequence t,...[» majorizes a sequence dy, ..., d, it 4 =d, i=
l,....n A sequence P =(v,...v,) of distinct vertices of V is called a path if
{vov,. }EE for all i=1,...,p— 1. The length of the path is p—1I. P=
(Dw Uy 1, ..., 1) is also a path and will be called the reverse of P. If furthermore
{v.,v,} € E, P is a cycle of length p and will be denoted by [vi,.... t]. Sometimes
we will write [vi, ..., v, v,] instead of [vi, ..., u,] for clarity. A path from v, to v,
g <p, along P will be denoted by (v, P, v,). If two paths P'=(vi,...,v;) and
P"= (v}, ...,v") have exactly one vertex v;=v| in common then P =
(v}, P', v}, P", v2) is a well-defined path from v} to vi. By N(v) we denote the set of
neighbours of v, i.e. the set of vertices w € V' such that {v,w}E E. |[M| is the
cardinality of a set M. [ x| is the greatest integer k with k < x, x] is the smallest
integer k with k = x.

2. Properties of h-connected graphs

As 1 tool for further proofs we cite and prove some results concerning A-
connected graphs, i.e. graphs which remain connected after the deletion of any
h —1 vertices.

The first theorem is due to Bondy, see [1, p. 173].
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Proposition 1 (Bondy). Let G be a graph with degree sequence d,, ..., d, such that
for some integer h < n the following holds:

d=k+h—-1 forall 1sksn—d,..—1. M
Then G is h-connected. O

A well-known property of #-connected graphs is the following, cf. [1, p. 168]:

Proposition 2. If G is h-connected then the induced subgraph obtained by removing
one vertex is (h — 1)-connected. [

The next two theorems can also be found in [1, p. 169]:

Proposition 3. Let G = (V,E) be h-connected. Let W ={w,,...,w,} be a set of
vertices, | W |=h. If vE V ~ W, there exist h vertex -disjoint paths (v,..., w,),
i=1,...,h, joining vand W. [J

Proposition 4. Let G be a h-connected graph, h = 2. Then there is a cycle passing
through an arbitrary set of two edges and h —2 vertices. [

A frequently used theorem is the following, see [2, p. 192]:

Proposition 5§ (Menger-Dirac). Let P = (ao, ai,...,a,) be a path. If G is 2-
connected then there exist two paths P' and P" with the following properties:

(a) the endpoints of P' and P" are a, and a,,

(b) P' and P" have no other points in common,

(c) if P' (or P") contains vertices of P, then they appear in P' (or P") in the same
order as they do in P, [

We now give an extension of Proposition 3 which will be of interest later.

Proposition 6. Let G be a 3-connected graph and P = (a.,...,a,) be a path, let
{a., a...} be an edge of this path. Then there exists a pair of paths P', P" with the
following properties:

(a) The endpoints of P' and P" are a, and a,,

(b) P’ and P" have no other points in common,

(c) if P’ (or P") contains vertices of P, then they appear in P’ (or P") in the same
order as they do in P,

(d) P' contains {a., a,.1}.

Proof. By induction.
(1) Let P =(aq a,), i.e. P is an edge. Then necessarily s =0. As G is 2-
connected, there is another path P” from a, to a,. Take P'= P.



Graphs with cycles containing given paths 235

(2) P = (au ai, as), s = 1. By Proposition 3 there are two vertex-disjoint paths
P, =(au...,a) and P, = (ay,..., ;). Define P'= (a,, P, ai, a;), P’ = P,. The case
§ =0 is similar. ‘

(3) P = (auw, ai, as;a,), s =1. By Proposition 3 there are three vertex-disjoint
paths (G is 3-connected): P, = (aq,..., &1), P» = (au, ..., @2), Px= (4o, ..., as). Define
P'=(ay, P\, a,, as, a;) and P"= P,. All other cases are similar.

Now suppose the theorem is true for paths of length k. We prove that it is true for
paths of length k + 1.

Let P=(au, ai ..., Qx+1)y Py = (a0, P, ac)-

We may assume that s <k —1, otherwise we take the reverse P of P. By
assumption there exist paths P} and P/ connecting ao and a. having the desired
properties with respect to P,. From G we now remove the vertex ax and add the
edge {au, a. .1}, if it does not already exist. By Proposition 2 the new graph G'is
2-connected. By Proposition 4 there is a cycle in G’ containing the edges {a,, ..}
and {au, Gx..}. Thus there is a path Q@ = (aw, al,..., aj dc+1) in G connecting a, and
a1, which contains the edge {a,, a,+1} and does not contain the vertex a.

Let x be the vertex of path Q which is as close as possible to a..: and is contained
in the union of the vertex sets P,, P}, and P¥. Clearly x lies between a,., and a., on
the path Q as a,,; isin Q and in P{. If x isin Pj then x lies between a.., and a, in
P{. We now have to investigate several cases.

() x = @i (a) xE P, P' = (aq, Pi, x),
P"= (au, PY, ax, ak+|),
(b) x € PY P’ =(au, P, e, ak-ll):
P" = (ay, P, x).
(ii) x notin P (a) x € P{ P' =(aq, P}, x, Q, Gx+1),
P'= (au, PY, ay, ak+l):
(b) x € PY P' = (ao, Pi, @ Qi+1),
P" = (ao, P, x, Q, ars).

(iii) x in P but x# .., say x = a,, r =5+ 1. Let p <r be the largest index such
that a, is contained in the union of the vertex sets of P and Py.

(a) a, EPI P =(ao, Pl,a, P a, Q,a)
P" = (ay, P, ax, Qc+1),

(b) a, € PY P' = (ao, P}, ay, au+1),
pP"= (aU’ Pi, ap, P a, Q, ak+|)-

These are all the cases which have to be considered and hence we are done. [

Corollary 7. Let G be (r+ 2)-connected and P = (ao, ..., @) be a path, r <p, let
Q = (a, ..., a,) be a path of length r contained in P. Then there exists a pair of paths
P', P" with the following properties:

(a) the endpoints of P' and P" are ay and a,

(b) P' and P" have no other points in common,
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(e) if P’ (ar P") contains vertices of P, then they appear in P' (P") in the same order
as they do in P,
(d) P' contains the path Q.

Proof. r =(: Then by definition Q is an empty path and Corollary 7 reduces to
Proposition 5.

r=1: This is Proposition 6.

r>1: Remove the r — | vertices a,.1, das3,..., dsr- and add the edge {a, a,,.}.
The resulting graph G' is 3-connected by Proposition 2. The path P, =
(au, ... Qs Oyen ..., ), contains the edge {a, a,.,}. Application of Proposition 6
gives two paths P{ and PY{, and P{ contains {a,a,..}. The path P'=
(a\, Py, a, Q, G, Pi, a,) is well defined in G. Define P"= P, then the pair P’, P"
has the desired properties. (]

3. The theorem and its corollaries

The following theorem establishes a sufficient condition —in terms of the degree
sequence —for the following property of a graph: given any path of a specified
length, there exists a cycle containing this path and having a certain minimum
length. Formally the theorem is very like a theorem of Berge [1, p. 204], which is an
extension of a theorem of Chvital [4] on hamiltonian graphs. The proof of case (i)
below is a slight variation of their proof which —in spirit—is due to Nash-Williams
[6]. Case (ii) of the proof was motivated by Pésa’s proof of his own theorem [7]
which is also included in the following:

Theorem 8, Letd,,...,d. be the degree sequence of a graph G = (V, E). Let n 23,
m=n, 0=<r=<m =3, and let the following condition be satisfied:

desk+r = d,....=zan—k forall 0<k<i(m-—r) 2)

Furthermore, let G be (r+2)-connected if {(n—r)sn—d,.,..—1 holds and
de >k + rholds forall 0 < k <3i(m — r). Then for each path O of length r there exists
a cycle in G of length at least m which contains Q.

Proof. (1) We prove: G is (r + 2)-connected. Let h = r+ 2 <n, then (2) is equiva-
lent to

de<sk+h=-2=d,ha=n—-k forall0<k<i(m-h+2). (29

(a) Suppose there exists a j such that 0<j<i(m —h+2)and d, <]+ h -2,
Condition (2') implies d,-yw2-;=n—j. AS d,ne =da-ns2 j, we obtain j>
n—-(n—j)-l=n-d,.,s.,—~1. Thus if dy<k+h—1, then k>n—-d, ,..— I
Therefore the conditions of Proposition 1 are satisfied and G is h-connected.

(b) Suppose de =k +h—1forall 0<k <i(m —h +2), then G is h-connected
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by Proposition 1 if ¥m—-h+2)>n—d.ni— 1. Otherwise h-connectedness
follows from the assumption. We note for the following that (r + 2)-connectedness
implics d, Zr +2.

(2) 1t is an easy exercise to sec that a graph G' obtained from G by adding any
new cdge to G also satisfies (2) and the other conditions of the theorem.

(3) Suppose now that G is a graph satisfying the required conditions but which
contains a path Q of length r such that Q is not contained in a cycle of length = m,
By adding new edges to G we construct a ““maximal’ graph (also called G) which
satisfies all the conditions of the theorem, contains a path Q of length r, has no
cycle of length = m containing Q, and has the property that the addition of any
new cdpe to G creates a cycle of length 2 m which contains Q. In the following we
shall deal with this maximal graph G.

(4) Let u, v € V be two nonadjacent vertices of G. The addition of the edge
{u, v} will create a cycle with the desired properties. Thus there exists a path

Pi=(Uy..olly), U = Uty =0, pZmM
of length = m — 1 connecting u and v, and which contains

Q:=(uy... Us..), wheres€{l,....,p—r}
Let
S:={iE{l,...,p}:{u,,u,,.,}eE}ﬂ({l,...,s—l}U{s+r,...,p})

T:={i€{l,...,p}: {u,u} € E}.

(a) We prove: S N T =¢. Suppose i ES N T, then [uy, iy, P, s ty P u)is a
cycle with the desired properties. Contradiction!

() |S|+|T|=<|P|-1 because pgSUT.

(5) The degree sequence of G necessarily has exactly one of the following
properties:

Case (i) there is a ko, 0 < ko<i(m —r), such that dy, < ko,

Case (ii) di >k +r forall 0<k <i(m —r).
These cases will be handled separately.

Case (i).

(6) As d,=r+2 and as the degree sequence d,,..., d, is increasing there is a
j < kg such that d; = j + r. (2) implies du-,-=n—J, i.e. there are [+ r + 1 vertices
of V having degree at least n — j. The vertex having degree j -+ r cannot be adjacent
to all of these. Thus there exist two nonadjacent vertices a, b € V such that
dla)+db)=n+r

(7) Among all nonadjacent vertices of G choose u, v such that d(u)+ d(v) is as
large as possible. Define P, S, T, Q as in (4). We calculate d{u)+ d(v). Obviously

d(v)=|T|+a where a <| V- P|
and
du)<|S|+r+p where B<|V—-P|.
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Suppose there is a w& V—P which is adjacent to both u and s Then
(U1, U2, .. ., 4, w] would be a desired cycle. Therefore o + B =<|V-P|, which
leads, using (4) (a) and (b), to

d(u)+d(@)<|T|+a+|S|+r+p
S|P|-14+a+B+r
<|P|+|V-P|+r—-1

<sn+r-1.
By (6) d(u)+ d(v) cannot be maximal. Contradiction!

Case (ii).

(8) Among all longest paths in G containing Q choose a path such that the sum
of the degrees of the endpoints is as large as possible. As G is maximal, the length
of this path is at least m — 1, and the endpoints are not joined by an edge. Let this
path be P =(u,,...,u,) and Q, T, § be defined as in 4).

(9) We prove: d(u)=5(m +r), d(u,) =4(m +r). Suppose d(u,) <i(m + r). All
neighbours of u, and u, are contained in P, otherwise P would not have maximal
length. As d,=r + 2, we have d(u,)>r + 1 and therefore |S|=d(u)-r>1. Al
vertices U, ieS, have degree at most d(u;), otherwise
(U, Wy oo Uy Uiey, Wiegy. .. u,) would be a path of the same length as P and
d(u)+d(u,)>dw)+du,), contradicting the maximality assumption on the
endpoints of P. Let jo: = d(u,), then there are | § | = j, — r vertices of degree at most
jo. As we are in case (ii), di > k +r holds for all 0<k <i(m —r), which is
equivalent to d;_. > for all r <j <i(m +r). Therefore Jo=1 (m +r). By similar
arguments d(u,)=3(m +r).

(10) From (9) it follows that

|S|+r+|T|=du)+d(u)=m +r.

Thus [ § |+| T | = m, and from (4) (b) we have | P|=m + 1. Therefore if m = n we
have n =| P|> n which is a contradiction, and in this case we are done.

(11) Let N:= N(u)) UN(u,) U {w, ..., thee} U {us, u,}. We prove: | N|=m. As
rsm =3, [{uy ..o s N {uy, up}] < 1.

(a) Suppose max{i € S}<min{j € T"}, where T = T—{s,...,s+r}. This
means that the index of a neighbour of u, which is not among Uy, ..., U.,, 1S less than
or equal to the smallest of the indices of the neighbours of u, not among u,, . . ., ussn
Thus [(N(W) NN ) = {wsy . . oy thyor}] S 1, Obviously

INT= N~ {ie oy i H + [ N(p) = {t ., ter}]
F{ss o e H A+ {0} = [N @) ON(0)) = {2y}
= Hu oyt N {2y, 1, }|
=|S|— 14| T +(r+1)+2-1-1

Z|S|+|T|=2m.
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(b) Suppose max{i € S} =min{j € T'}. Let
d:=min{(i+1)—j:i €S, jE T such that i =i},

then we have d > 0. Now let iy +1—ju=d.
(b;) iy+ 1= s By definition jy<s and no vertex of the path P between u,, and
u, is linked to u, or u, by an edge. Thus

[uh Uigi1a Wigras + o oy Upy Ugys Uity 0 o u|]

is a cycle containing the path Q, all vertices u;, | € S, with the possible
exception of i = iy, and all vertices u,, j € T'. It also contains u, and u,. Thus
the length of this cycle is at least:

(r+2)+|S[-1+|T'[=|S|+[T|=m

which is impossible by assumption.

(bs) r+ s < jo. Define the same cycle as in (b)) and by the same arguments we
obtain a contradiction.

(ba) ju<s, lg>r+s. Define

jri=min{j € T'} < ji, i=max{i+1:i€8}=r+s+1.
The conditions of case (bs) imply the following:
ul# un url# Ussry

none of the vertices u, j, < i < s, can be linked to u, by an edge, none of the vertices
u, iy < i<p,is a neighbour of u,, thus

N(ul) C{“Zl ey ull} U {u.H'h ey ull}:

none of the vertices u, 1<i <], is a neighbour of u, none of the vertices u,,
§+r<i<i, is a neighbour of u, thus

N@,) C{uy, oo Ueer U {1t Up—1}.

Furthermare
lN(H])_{us, o “:+r}[ = |S .

| N(ttp) = {thss - thoes} = | T'].

The only vertices which might be neighbours of both u, and u, are u,, 4, and
U, o1, ... Ues This implies

(N () NN () = (e oo U}
Therefore

IN[BIN(u,)—{u,,...,u,,,}|+|N(u,,)——{u,,...,u,+,}|+(r+'l)+2—2—l

<2

=[S|+|T|+r

=|S|+|T|=m.
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These are all the cases which can occur, therefore | N|=m is proved.

(12) Among all pairs of paths satisfying Corollary 7 with respect to P and Q
choose a pair P’, P" such that the cycle K = [u,, P', u,, P", u,] contains as many
vertices of P as possible.

(13) To show that K has length = m, we will prove: K contains all vertices of N.
Suppose there is a vertex of N which is not contained in K. Trivially the vertex is
either in N(u,)—{u,, ..., uss,} orin N(u,)—{u, ..., .. }. Without loss of generality
we assume that the vertex u, € N(u,) —{u,, ..., ..} is not contained in K. Let

o=max{i lw, ENNK, i<k}, jo=minlijuu e NNK,i>k}
(a) Suppose u,, u, € P’, then

P = (ui, P, uy, Puy, P',u,),

"= P",

is a pair of paths satisfying Corollary 7, and K, = [u,, P!, u,, P!, u,] contains more
vertices of P then K does. Contradiction! If u,, u,E P” the contradiction follows
similarly.

(b) Suppose u,€ P’, u, € P". Let

P; = (“l) Pa uim Pl! up)’
PV = (uy, Uy, P, uy, P", u,).

If ip<s, then Q is contained in (u,, P’, u,), otherwise Q is contained in (u,, P, u,).
Therefore Pi and P1 satisfy the conditions of Corollary 7, and K, contains more
vertices of P then K does. Contradiction!
(c) Suppose u,E P", u, € P,
(c1) io=s: this implies jy<s.
Take
Pl=(u,, i, P, uy, P', )

P‘; = (ul, P, Uy, P", u,,).

(ca) ioz=r+s:
Let
P =(u11P, U, P", up):

Pl: = (ul; Uiy P, U, Pl, u,,).

These pairs of paths satisfy Corollary 7. The contradiction follows as above.
Thus in Case (ii) we have constructed a cycle K of length = m containing the
path Q, which contradicts the assumption that G does not contain such a cycle, and
we are done. [
Theorem 8 has some immediate Corollaries and also includes some of the
classical theorems on graphs containing cycles of a certain minimum length.
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Corollary 9. Letd,,...,d, be the degree sequence of a graph G = (V, E). Let n =3,
g =2 and let the following condition be satisfied:

dkSk-éq—l‘-f;>d..—k?n—k. (3)

Furthermore, let G be 2-connected if g — 1 < n — du-1 — 1 holds and di > k holds for
all 1<k <g—1. Then G contains a cycle of length at least min{n, 2q}.

Proof. Take r =0 in Theorem 8. (O

One of the well-known theorems implied by Theorem 8 is the following due to
Pésa [7], which generalizes results of Dirac [5].

Corollary 10 (Pésa [7]). Let di,....d, be the degree sequence of a 2-connected
graph G. Let g =2, n=2q. If
d >k forall k=1,..,9-1, 4)

then G contains a cycle of length at least 2q.
Proof. Immediate from Corollary 9. (1
For bipartite graphs a simple trick yields:

Corollary 11, Let G =(V,W,E) be a bipartite graph with degree sequences
d{v)< - <sd(v,) and d(w)< - <d(wy,), n<m If

dw)<sk=n-1= dv.-.)=m—-k+1, ®)
then G contains a cycle of length 2n.
Proof. Construct G* = (V U W, E*) by adding all edges to E which have both
endpoints in V. Clearly G* contains a cycle of length 2n if and only if G does. If G

satisfies (5) then G* satisfies (3). As (5) implies that d(w,)=2 and V defines a
clique in G*, G* is 2-connected. []

Standard theorems giving sufficient conditions for a graph to be hamiltonian can
also be derived from Theorem 8.

Corollary 12 (Berge, [1, p. 204]). Let G=(V,E) be a graph with degree sequence

di,....d. Letrbe an integer,0<<r<n—3.If for every k with r < k <i(n+r)the
following condition holds:
di <k = diw=zn—k+n (6)

then for each subset Q of edges, | Q | =r, that forms a path there is a hamiltonian
cycle in G that contains Q.
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Proof. Clearly (6) is equivalent to (2) if m = n. We have to prove that (6) implies
(r + 2)-connectedness.

If there is a k with r < k <3 (n + r) such that d, .. <k, then by the arguments of
the proof of Theorem 8, Section (1) (a) (r + 2)-connectedness is assured.

If do., >k for all r <k <j (n+r), we have d, =g +r, where q: = [nz——rll

Furthermore 29 =n—-randgq<n-—-r—1(asr<sn-3),thusq+r<d,<d,, ..
This implies

g=2q—q=n~(r+tg)>n—-(g+r)-1=zn—-d,.,.,— 1.

Thus condition (1) of Proposition 1 is satisfied and G is (r +2)-connected. [J

Actually Berge proved a stronger theorem saying that Q only has to be a set of
edges of cardinality r such that the connected components of Q are paths.

Corollary 13 (Chvital [4]). If the degree sequence d,, ..., d, of a graph G, n =13,
satisfies

dk£k<%n $du—k2n_’kr (7)

then G contains a hamiltonian cycle.
Proof. Take r =0 in Corollary 12. (O

Furthermore, Chv4ital showed that this theorem is best possible in the sense that
if there is a degree sequence of a graph not satisfying (7) then there exists a
non-hamiltonian graph having a degree sequence which majorizes the given one.
This proves that Theorem 8 is also best possible in this special case. Moreover
Chvital (see [4]) showed that most of the classical results on hamiltonian graphs are
contained in his theorem, and therefore are also implied by Theorem 8.

A trivial consequence of Corollary 13 which however is not too “workable' is

Corollary 14. Let G' be an induced subgraph of a graph G having m < n vertices. If
the degree sequence di,...,d, of G' satisfies (7) then G contains a cycle of
length m. O

4. Some examples

(a) We first show that the number m implied by Theorem 8 giving the minimum
length of a cycle containing a given path cannot be increased, i.e. we give an
example of a graph G with a path Q of length r such that the longest cycle
containing Q has length m,.

Consider a graph with two disjoint vertex sets A and B. A is a clique of g
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vertices, and B consists of p isolated vertices. Each vertex of A is linked to each
vertex of B by an edge. Suppose that 1<q—r and p=q— r+1. The degree
sequence of G is

44 .4 n—1,..,n—-1.

. J i
ng Y

p times g times

Hence we have

d>i+r fori<qg-un
d«'—r=(q—r)+r=q1
d..-(q-,,~,=d.,-,,=q<q+1=(2q—r)+1—(q—r)$n-(q—-r).

By Theorem 8 for each path Q of length r there is a cycle of length 2g —r
containing Q.

If we choose a path Q of length r such that all vertices of Q are contained in A it
is obvious that no longer cycle containing Q exists.

(b) We give an example shawing that the assumption of (r + 2)-connectedness in
Theorem 8 under the specified conditions is necessary.

Consider the graph G consisting of three vertex sets A, B, C. A and B have k
vertices and are complete, C has r + 1 vertices and is complete. Each vertex of C is
joined to each vertex of A U B by an edge. Hence G is (r + 1)-connected but not
(r +2)-connected. Take a path Q of length r in C. Clearly the maximal length of a
cycle containing Q is k +r+1. The degree sequence of this graph is

k+r...,k+r n—1,..,n—1.

2k times r-+1 times

We have d;>i+r for 0<is<k—1, therefore Theorem 8 would imply the
existence of a cycle of length at least 2k + r containing Q.

(c) We give an example showing that Corollary 14 is not stronger than
Corollary 9.

Consider a graph consisting of two disjoint cliques A, B, each having m vertices.
Link A and B by two disjoint edges. Obviously this graph is hamiltonian. The
degree sequence is

m-—1,...... ,m—1,mmmm
—

2m —4 times

Corollary 9 implies that there exists a cycle of length =2m —2, but Corollary 14

does not imply a cycle of length =2m —2.
(c)) Delete 2 vertices of A, both must necessarily be distinct from the two

vertices linking A to B. The degree sequence is
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m—3,...,m—3,m—2,m—2,m—-1,...,m—1,‘m,m

e Y

m — 4 times m —4 times

which does not satisfy (7).

(c;) Delete one vertex of A and one of B, again both must be distinct from the
vertices linking A to B. The degree scquence is
m-—2,...... m-2m—-—1Im-1m-1,m-1

2 (m —3) times

which also does not satisfy (7).

It is clear that Corollary 9 does not imply Corollary 14.
(d) Bondy proved (see [3]) the following

Theorem (Bondy). Let G be a 2-connected graph with degree sequence d,, . . ., d,. If
d,-g.j,dkﬂk(j?fk)@d,ﬁ-dk?c, (8)

then G has a cycle of length at least min (c,n). O

Chvital showed that in the case ¢ = n his theorem (Corollary 13) implies Bondy’s
theorem, thus in the hamiltonian case Corollary 9 is stronger than the theorem of
Bondy. In general this is obviously not true, nor is the converse as the following
example shows: The graph has three vertex sets A, B, C. A ={a,,a,, ai},
B ={by, by, bs, by}, | C| = m. The edges are the following: {a,, b:}, {ai, ba}, {as, by},
{@3, ba}, {as, b3}, {as, bs}, {a, bs}, and all edges having both endpoints in B U C. The
degree sequence is

2,2,3,n—-4,..,n—-4,n-3,n—-2,n-2.n-2.
h—r——l
m times

d2<2 and d,<3. By Pésa’s theorem there is a cycle of length =4, by Bondy’s
theorem there exists a cycle of length =5. As d,.,=n—-2and d, ,=n —3 and
dy >i, 4<i<3n, G is hamiltonian by Corollary 9.

(e) In [8] Woodall stated the following (to my knowledge unsettled)

Conjecture. Let d,,...,d, be the degree sequence of a 2-connected graph G,
m <n —3, and let the following condition be satisfied :

{dk+ln >k for ls k <%(n -m _]), (9)
Gesmn >k if k=3(n—-m—1).

Then G contains a cycle of length at least n — m. [J

Obviously Corollary 9 does not imply Woodall’s Conjecture, but surprisingly nor
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does the Conjecture imply Corollary 9, although in most cases Woodall's
Conjecture —if true—would be “better” than Corollary 9.

We give an example: Let n and m be both odd (or even), j =4(n — m —2) and
j= L (n+ m) (which is a solvable condition).

Consider the following graph consisting of three vertex sets A, B, {v}. B hasj + 1
clements and is complete, v is linked to all elements of B by an edge. A consists of
j 4 m isolated vertices, each element of A is linked to exactly j vertices of
B such that each element of B is linked to at least m + 1 vertices of A. This is
possible as (j+m)j=jm+j’zim+i(n+m)=jm+j+m+1=(m+1)(j+1).
The degree sequence of this graph is

Jooonins it Lmyg oo VM
j+m tumes j+1 times
where my2n—j fori=1,..,j+1. We have

dk|m>k fm’lSkgj—],
divm=j and j<i(n—-m-—1)

Thus Woodall's Conjecture does not imply a cycle of length = n — m. On the other
hand

d >k forl<sk=<j-1,
d,=j and d,,..,-=m;?n—j.

Hence by Corollary 9 there exists a cycle of length =2(+1)=n—m.
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