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ABSTRACT

it is shown that strong blocks, i.e., digraphs that are strongly connected
and have no cutnodes, have an ear-decomposition. This result is used to
prove that the number q of arcs of minimal strong blocks is bounded by
p=<gq=<2p-3 and that minimal strong blocks contain at least two nodes
with indegree and outdegree equal to one.

1. NOTATION

The purpose of this paper is to characterize (minimal) strong blocks
constructively and to use this characterization for the derivation of certain
properties of these digraphs.

We adopt the graph-theoretical notation of Harary [4, Chap. 16], using
the terms node instead of point and edge instead of line, but briefly recall
some definitions. The graph G of a digraph D =(V, A) has the same
node set as D and contains an edge uv if (u, v)€ A or (v, u)e A.

A connected digraph is called strong if every arc is contained in a cycle.
A digraph is called a block if its graph is 2-(node)-connected. A strong
block with the property that the digraph obtained by removing any of
the arcs is not a strong block, is called minimal. A node with both indegree
and outdegree equal to one is called a carrier. If D =(V, A) is a digraph
with node set V and arc set A and F< A, then V(F) is the set of nodes
of V that are contained in at least one arc of F. The number of nodes
of a digraph is denoted by p, the number of its arcs is denoted by q.

2. STRONG BLOCKS

Many classes of graphs and digraphs (e.g., connected, 2-connected
graphs, strong digraphs) have a constructive characterization called
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ear-decomposition (c.f., Ref. 6) of the following kind:

Take a ‘“‘basic” graph or digraph (e.g., tree, cycle) and add *‘ears”
(e.g., edges, paths) repeatedly in a well defined way.
If the bases and ears are appropriately defined, then one can often show
that a graph belongs to a certain class of graphs if and only if it can be
constructed (or decomposed) in the above way. Such a characterization
also holds for strong blocks.

Theorem 2.1. Let D=(V, A), A# @, be a digraph, let F=(J, and let
the following algorithm be given:

(2.1) Take any cycle C in D, and add the arcs of C to F.

(2.2) Take any path P=v,,0,,...,0 in D with the following
properties: v,, v, e V(F), v,#v, ypeV-V(F) for i=
2,...,k—1. Add the arcs of P to F.

(2.3) Repeat (2.2) until no path P with the required properties
exists.

Then the algorithm terminates with A =F if and only if G is a strong
block.

Proof. The above algorithm clearly creates a strong block, thus, if a
digraph can be constructed this way, it is a strong block.

Let D =(V, A) be a strong block, and suppose the algorithm generates
a cycle (a cycle always exists) and a sequence of paths and terminates
although A# F.

If there were an arc (4, v)€ A — F with u, v € V(F), then this arc would
be a path with the desired properties, thus under the above assumption
no such arc exists and V- V(F)# .

Since D is strong, every node in V— V(F) can be reached from the
nodes in V(F) by a path, hence there is a node v € V(F) contained in arcs
(v, v)eF, (v, w)e A—F, ie., we V—V(F). The 2-connectedness of D
implies the existence of a semicycle Z containing (i, v) and (v,w). Let S
denote the semipath in Z from v to v’ where v'(#v) is the first among
the nodes in V/(F) that is reached by traversing Z from v in the direction
of (v, w). Call the arcs in S that have the same orientation as (v, w)
positively oriented and call the others negatively oriented.

If all arcs in § are positively oriented, then S is a path satisfying the
requirements of (2.2), a contradiction. Since D is strong, every negatively
oriented arc x € § is contained in a cycle C,. Substituting the path C, ~{x}
for each negatively oriented arc x in the path S we obtain a walk W from
v to v’. W contains a path T from v to v’ and T clearly contains a path
that satisfies all properties required in (2.2), contradicting the
assumption. [
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Corollary 2.2. Strong blocks have an ear-decomposition where the basis
graphs are cycles and the ears are paths with distinct endnodes.

3. MINIMAL STRONG BLOCKS

Theorem 2.1 also renders possible a simple but useful characterization of
minimal strong blocks.

Proposition 3.1. A strong block D is minimal iff there is no ear-
decomposition of D in which a path of length one is added in one of the
steps (2.2).

Proof. If D is not minimal, then there is an arc x € A such that D—x
is a strong block. Any ear-decomposition of D —x and the addition of x
to D—x gives an ear-decomposition of D where the path added in the
last step (2.2) has length one.

Let D be a strong block for which in an ear-decomposition in the kth
execution of step (2.2) a path of length 1, i.e., an arc x =(u, v)e A —F, is
added to the previously constructed arc set F. The digraph D —x can be
constructed by the ear-decomposition where only the kth execution of
step (2.2) is left out and all other steps are performed as in the ear-
decomposition of D. Therefore D—x is a strong block and D is not
minimal. 1
Corollary 3.2. Every minimal strong block D contains at least one
carrier.

Proof. Take any ear-decomposition of D. The path added in the last
execution of (2.2) has length 2 or more by Proposition 3.1. This path and
hence D contains at least one carrier. |

Other properties of minimal strong blocks now follow.

Proposition 3.3. If D=(V, A) is a minimal strong block, then the
following holds:

(a) D contains no parallel arcs.

(b) If p=3, then (u, v)e A implies (v, u) ¢ A.

(c) No cycle in D has a chord.

(d) No graph of any 4-node induced subdigraph of F is isomorphic
to K,.

Proof. The first three parts (a), (b), (c) are obvious.

Suppose that the graph of the subdigraph H induced by the nodes
W={1, 2, 3, 4} is isomorphic to K,, thus id,;(v)+ody(v) =3 for all ve W.
We consider several cases.
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Case 1. ody(1)=3. Since D is strong, there exists a cycle C in D
containing the arc (1, 2). The nodes 3 and 4 cannot be contained in C
because of (c). Suppose (3,2)€ A, then (1,2) is a chord of a cycle.
Similarly, (1, 3) is contained in a cycle not containing the nodes 2 and 4.
If (2, 3)€ A, then (1, 3) is the chord of a cycle. Therefore the graph of H
does not contain the edge 23, a contradiction.

Case 2. idy{(1)=3 is contradicted analogously to Case 1.

Case 3. odg(1)=2, idy(1)=1. Without loss of generality let (1,2),
(1,3), (4, 1)e A. Since odg(4)=3 leads to a contradiction, so by sym-
metry we may assume that (4, 2), (3,4)€ A. As idg(2) =3 is impossible,
we must have (2,3)eA. But then (1,3) is the chord of the cycle
(1, 2, 3, 4), a contradiction.

Case 4. id,(1)=2, ody(1)=1 is contradicted as in Case 3. 1
Exploiting the ear-decomposition characterization of minimal strong
blocks given in Proposition 3.1 we get:

Theorem 3.4. Let D =(V, A) with p =3 be a minimal strong block. Then
p=<q<2p-3
and these bounds are best possible.

Proof. Let C be acycle in D of length ko; Proposition 3.3(b) implies
ko=3. We reconstruct D with the algorithm given in Theorem 2.1
starting with C in step (2.1) and adding paths in step (2.2).

Let m be the number of times step (2.2) was carried out, and let k;,
i=1,...,m, be the length of the paths that were added. By Proposition
3.1 every path added in step (2.2) has length at least 2, hence contains at
least one new node not contained in the previously constructed digraph
(V(F), F). This implies m <p —3. Therefore we obtain:

q=Y k, p=kot ) (k=1)=2 k—m=q-m
=0 im1 im0
which gives g <2p—3.
A digraph with less than p arcs is neither strong nor 2-connected. A
cycle is 2 minimal strong block with p arcs. Example 3.5 now shows that
the upper bound is also best possible. 1

Example 3.5. We give two classes of minimal strong blocks of all orders
p =3 that have 2p —3 arcs.
(a) Let V:={ay, Gy, -+ -, Qi b1, bay ..., b} where k=2, je{k—1, k}.
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Let

A:={(a, a.):i=1,...,k—1}
U {by, bisy):i=1,...,j-1}
U{(awbi-i):i=2,..., k}
Ui, a):i=1,...,1}

! 2 3 ay -1 %
by b, by b, by By
Clearly the removal of any of the arcs (a, a,.1) or (b, b)) destrays

2-connectedness and the removal of any of the other arcs destroys strong
connectedness.

(b) Let V:={a, by, by, ..., b}, k=2 and let
A:={(a,b):i=1,...,k and i odd}
Ui, a):i=1,...,k and i even}
U {(bu bisy):i=1,...,k—1 and i odd}
U {1, b):i=2,...,k—1 and i even}

The removal of any of the arcs (a, b;), (b, a) destroys strong connected-
ness, the removal of any of the other arcs, 2-connectedness. The node

a € V has the maximal possible degree p—1, c.f., Proposition 3.3 (a) and
(b).
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Minimally 2-connected graphs are treated extensively in Refs. § and 7
while minimally strongly connected digraphs were characterized in Refs.
1, 2, and 5. Plummer [7] proved that any minimally 2-connected graph
has at least two nodes of degree two, it is shown in Ref. 1 (p.31) that
every minimal strong digraph contains at least two carriers, and Geller [2]
proved that the same holds for minimally strongly connected blocks. Thus
it seems likely that Corollary 3.2 can be sharpened. We proceed to do so.
The following properties of digraphs are easily verified:

Lemma 3.6. Let D =(V, A), p=2, be a digraph.

(@) If D is strong, then every block of D is strong.

(b) If D is a minimal strong block and if for some xe A, D—x is
strong, then every block of D —x is a minimal strong block.

() Every arc is contained in at most one block.

We can now prove
Theorem 3.7. Every minimal strong block contains at least two carriers.

Proof. Let D=(V, A) be a minimal strong block, If D is minimally
strongly connected, the assertion follows from Ref. 1 (p. 31). Therefore
we may assume that p=3 and that D contains an arc x such that D —x is
strongly but not 2-connected.

Let C be a cycle in D that contains x. We carry out an ear-
decomposition of D starting with C in step (2.1). D — x contains s blocks,
where s=2, and all are minimal strong blocks by Lemma 3.6(b). (Note
that none of these minimal strong blocks has a single edge (i.e., K,) as its
underlying undirected graph.) In every execution of step (2.2) in the
ear-decomposition of D a path P is added to the previously constructed
digraph (V(F), F) where only the endpoints v,, v, of P are in V(F). As
(V(F), F) is 2-connected there is a semipath S from v, to v, with arcs in
F—{x}. Thus the union of S and P is a semicycle, which proves that all
arcs in P are contained in the same block of D—x. By Lemma 3.6(c)
different blocks have no arc in common, therefore an ear-decomposition
of D starting with C reconstructs D “blockwise.”

To each of the s blocks of D—x a “last” path is added in some
execution of step (2.2). By Proposition 3.1 each of these “last” paths
contains at least one carrier, hence each of the s=2 blocks of D—x
contains at least one carrier, which proves the theorem. |

The proof of Theorem 3.7 shows that the statement can be formulated
in a sharper way:
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Corollary 3.8. Let D=(V, A) be a minimal strong block, and let
S:={xe A:D~x is strong}. Let

max {r: D —x contains r blocks}, if S# &
2, ifS=

then D contains at least s carriers.

§:=

Theorem 3.7 has a nice application in polyhedral combinatorics since it
makes a short proof of the facial characterization of the branching
polytope possible which uses elementary linear algebra and the above
result only, c.f. Ref. 3.
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