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STRONG BLOCKS AND THE OPTIMUM BRANCHING PROBLEM

Martin Gr&tschel

A complete characterization of the branching polytope on an
arbitrary digraph in terms of linear inequalities was given

by J. Edmonds, c.f. [2]. This description was refined by R.
Giles (c.f. [3]) who showed which of these inequalities are
essential, i.e. define facets of the branching polytope.

R. Giles characterized the facets of the polytope which is
obtained by intersecting two matroid polytopes. As the bran-
ching polytope can be viewed as the intersection of two
matroid polytopes (c.f. [3]) he obtaines this characterization
by an appropriate graphical interpretation of the matroidal
conditions.

This note aims at a purely graph theoretical and linear alge-
braical proof of the facial characterization of the branching
polytope which i1s at the same time elementary and in its basic
idea applicable to many other situations in polyhedral combi-
natorics.

1. NOTATION

With some minor exceptions (defined below) we use
the graph theoretical terminology of Berge [1]. We consider
directed, loop-free graphs only and call them digrapha,
denoted by G = (V,E), where V is the set of nodes and E
thebfamily of arcs. Multiple arcs are allowed. A node v with
dg(v) = da(v) =1 4is called a ecarrier. A branching is a
forest with the property that every node is the terminal node
of at most one arc, an arborescence is a connected branching.

For our purpose blocks of a digraph must contain at least two
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nodes. Digraphs which have at least two nodes and are strongly
connected and 2-connected are called atrong blocks. The digraph
obtained from G by removing one arc e is denoted by G - e.
A strong block G with the property that the removal of any
arc e destroys at least one of the two defining properties is
called minimal, i.e., G -~ e 1is not a strong block for all

e € E. For W CV the family of arcs in E having both end
nodes in W 1s denoted by E(W). For TI' C E the set of nodes
that are contained in at least one arc of F i1s denoted by
V(F).

A polytope P C R™ is the convex hull of finitely
many vectors of R™ . The dimension of P(dimP) is the maximal
number of affinely independent points in P minus one. A
linear inequality ax < a_ 1s called valid with respect to P

o]
if PC {x € R": ax < aj}. A valid inequality ax < a, 1is
called a facet of P if dim (PN {(x:ax = ao}) = dimP - 1.
A useful criterion for checking linear independence

is the following

LEMMA 1.1. Let Zj,...5%ps Y € BR"  and let ax < ay bz < b,
be twe inequalities. If ax, = a,, bzi = bo’ for 4 = 1,...,k,

and ay = a,, by ¥ b, holds, then y 1is Llinearly <independent
from Tgseens®ye

PROQF : Suppose there are h1,...,hk € R such that
y = E Aixi, then
=1 X X X
a, = ay = a( ii1hixi) = 1£1Ai (axi) = (ii1ki)ao contradicts
k k k
b, = by = b(i£1xix ) = £1Ai(bxi) = (1517‘1) by- a

Lemma 1.1. 1is often applicable in polyhedral combinatorics when
a set of lineary independent incldence vectors Xy Y is
constructed which all satisfy ax = a and where all Xy have
a common component (e.g. of ones) while Yy has a different
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entry (zero) in this component.
For variables indexed by a set E the summation

I x 1s abbreviated by x(E).
e
ecE

2. THE BRANCHING POLYTOPE AND ITS TRIVIAL FACETS

Let G = (V,E) be a digraph, and let 03 be the set of all
branchings (which are sets of arcs)in G . With each B € &3
we associlate an incidence veetor xb € liElhy setting xZ =1

if e € B, xz =0 1f e # B. The convex hull of the incidence
vectors of branchings

(2.1.) I;B(G) = conv(xB € ]RlEl: Bel3}

1s called the branching polytope of G. Clearly, if a weight
function ¢ : E - R is given, the problem of finding an
optimum branching can be solved via the linear program

(2.2.) max ox, X € ﬁB(G).

Edmonds [2] proved that a certain system of
lnequalities is a complete linear characterization of
5B(G) by displaying an algorithm that produces a branching
of total weight c*, and showing that there exists a solution
of the corresponding dual linear program with the same
objective value c*. His system of inequalities, however, is
quite redundant. By applying his theory of the intersection
of two matroid polytopes Giles [3] could show which of these
inequalities are essential, i.e. define facets of ﬁB(G).

For both the sufficiency part and the necessity part
we shall give new proofs using elementary graph theory and
linear algebra only.

The branching polytope ﬁB(G) has full dimension
|E| because the empty set and all sets consisting of a single
arc are branchings and their incidence vectors are affinely
independant. Therefore, no hyperplane contailns §B(G), and for
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any valid inequality ax s a, there is a vector y € 5G(B),
such that ay < a .

In order to prove that a valid inequality ax s a
is a facet of 5B(G) it is sufficient to show that

o

B, = éB(G) 0 {x:ax =ag)

contains |E| affinely independent incidence vectors of
branchings. Let B, := (B el3: B¢ H,}. For a valid inequality
ax < a, we define the induced digraph G, = (Vo1Eg) by setting
E, :={e € Eza, ¥ 0o} and V, := V(E,).

For convenience we will say that a set of branohings
i8 affinely or linearly independant if the corresponding
iﬁcidence vectors are affinely or linearly independent.

It is obvious that the inequalities

(2.3) X >0 for all e € E,

e
(2.4) x(o (V) < 1 for all v EV

are valid with respect to EB(G) and it is easily seen which
of the inequalities (2.3.) and (2.4.) are facets of PB(G).

DEFINITION 2.1. Let G = (V,E) be a digraph, then

vV  :={vevVv: 3weEYV such that Eg(u) = {w} and v € r;(w)}
U{v € ¥ : Tgw) = ¢} O

PROPOSITION 2.2. Let G = (V,E) be a digraph, then

a) z, 2 0 18 a facet of ?B(G) for all e € E,

b) z(w (v)) <1 <8 a facet of ?B(G) if and only if

veEV-V.
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PROOF: a) The zero vector and all but one unit vectors satisfy
X, 2 O with equality, they are contained in ﬁB(G),
and are affinely independent.

by If Pa(v) =@ then x(o (v)) = O.x<1 is clearly not
a facet.
If Tg(v) = {w} and v € Ig(w) then x(o (v)) <1 1is

dominated by x(E({v,w}) <.1 and therefore not a facet.

Let v €V - V , then for ever} f ¢ o (v) there is an arc
e; € o (v) such that {f,e;} is a branching. The |E|
branchings {e} for all e € w (v) and {f,e;} for all

f € E —u (v) are cbviously linearly independent and satisfy
x(0 (v)) <1 with equality. O

Because of thelr simple structure the inequalities

of type (2.3), (2.4) which define facets of ﬁB(G) are called
trivial.

3. THE OTHER FACETS

In general, §B(G) does not only have trivial facets.
To get a complete linear description of PB(G) we will use the
following technique: We assume that ax < ao 1s a nontrivial
facet of PB(G) and conclude from this assumption that (a,ao)
and the induced digraph G, have to have certain properties
that render a universal characterization.

The following facts about branchings are well known.
Let G be a digraph and B be a branching of G. If v 1is a
root of B and e € o (v) then A:=BU{e} is a branching if and
only if A does not contain a circuit containing e.

) In the following let ax < a, be a nontrivial facet
of ﬁB(Gl, and let G, = (V,,E,), H,,B, be definfd as above.
If x € PB(G) and O <y £ x then clearly y € PB(G).

This property implies that all coefficients of a are
nonnegative, i.e. ag >0 for all e € Ea.
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LEMMA 3.1 Ga i8 strongly connected.

PROOF & It 1is clear that Ga has to be connected. Suppose
o{W) = @ (W) is a cocircuit in Ga' Let S CW be the set of
nodes which are terminal nodes of at least one arc of o (W).
Let B € B, be any branching and suppose there is a node

v € 8 such that v 1s a root of B. By assumption v 1s the
terminal node of an arc e € o (W). The arc set A:=BU{e)
cannot contain a circult containing e since there 1is no arc
going from W to V-W, thus A is a branching. But then

axA = axB + a, > ag contradicts the validity of ax < a,.
Therefore, if B € B_ then xP satisfies x(w (v)) < 1 with
equality for all v € S. This contradicts the assumption that

ax < aj 1is nontrivial. a

LEMMA 3.2. Ga 18 2-connected.

PROOF: Suppose Ga contains an articulation point v. Then
there are induced subdigraphs G1 = (V1,E(V1)), 62 = (VZ,E(Vz))
satisfying V, UV, =V, V, 0V, = {v}, E(V,) 10+ EW,),
E(V1) u E(Vz) = Ea. Since ax < aj is nontrivial there is a
branching B € B, rooted at v. Define B,:=B N E(V1),

.= smaxB1 B2
Bz.— BN E(Vz), and b1.—ax X 4.

' b2:=a
Let A € B, be any branching and

A=A N E(V1), A,:=A N E(VZ)' By constructicg, D, = B, g A, and

D, = B, U Ay are branchings of G,, i.e. ax T < ag, ax 2 < a.

Since 2A,B € B,. equality has to hold in both of these

inequalities. This implies axA1 = b,I and axAZ = bz, hence

ax < a, cannot be a facet. Contradiction. O

LEMMA 3.3. All branchings B € B, are arborescences of G,.

PROOF: Suppose B € Ba is not an arborescence of Ga' We may
assume that B has two components, say B1 and 32' such that
V1 Uv, =v, Eholds for BV1:=V(B1),V2==V(Bz). _

Let b, := ax 1, b, = ax 2, The sets E, = E(V;) U o (V).

E, = E(VZ) U o (V2) define a partition of E,-
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Let A € B, be any branching and A1 =ANE
A2 = AN E2' Then D1 = B1 u A2 and D2 = 82 u A1 age
branchings of G,. It follows from A,B € B, and ax 1<a
axP2 < a, that ax® = b1 and axA2 = bz'have to hold.

This is a contradiction to ax < a, being a facet. (]

1l

ol

Since every arborescence of Ga contains exactly

al — 1 arcs we get

PROPOSITION 3.4. All nontrivial facete of ?B(G) are of the
form

(3.1) z(E(W)) < |W| ~ 1

where (W,E(W)) 18 a an induced subdigraph of G which 18 a
strong block.

PROOF: Given a facet ax X a, then by Lemma 3.3 all vectors

x € H, satisfy x(E,) = |V,| - 1. Since facets of fully
dimensional polytopes are unique up to a constant factor this
implies that a = a x(Ea) and aj = q(IVa] - 1) for some a > O.
Since all branchings (V_,E(V,)) contain at most JVaI - 1 arcs,
the inequality x(E(V,)) < |v | -1 is a valid inequality for
PB(G)’ and as x(Ea) < x(E(Va}) holds we necessarily have

E_= E(Va). Thus, any nontrivial facet is of the above form.

a
By Lemma 3.1 and 3.2 (Va,Ea) is a strong block. O

To prove the converse of Proposition 3.4 we utilize
a result on minimal strong blocks which states that every
minimal strong block contains at least two carriers (c.f£. [5]).

LEMMA 3.5. Every strong block G = (W,F) contains |F| linearly

1ndependent arborescences.

PROOF: By induction on |F|. A strong block with two arcs

necessarily has two nodes, and the lemma clearly holds for
jv| = 2.

- e o e e e — e ——— ————
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Now let G = (W,F) be a strong block with m + 1
arcs and n > 3 nodes. By our induction hypothesis the lemma
is true for strong blocks with m arcs. There are two
possibilities: either G 1is a minimal strong block or not.

1) G 1is not minimal, i.e. there exists an arc
e € F such that G - e 1s a strong block. By the induction
hypothesis G - e contains m linearly independent
arborescences. As G 1is strongly connected there is an
arborescence B in G containing e. Since ncone of the m
arborescences in G - e contains e, B is linearly
independent of these by Lemma 1.1, hence |F| = m+1 linearly
independent arborescences of G are found.

2) If G is a minimal strong block then by a result
of [5] ¢ contains a carrier v € V. Let (u,v), (v,w) € F.
Define G':=(V-{v}, (F-{(u,v),(v,w) DuU{{u,w)}). G' is clearly 2
strong block with m arcs and - by induction hypothesis - G'
contains m linearly independent arborescences A{,...,Aﬁ.

Let Ai

(a] - {(u,w) Hu{(u,v),(v,w)} if (u,w) € A;, and

'
A Ai

U {(u,v)} 41f (u,w) § Al
i 1
The arc sets A, are linearly independent
arhorescences of G by construction, and they all contain the
arc (u,v)..As G 1s strongly connected, G contains an

arborescence Am with root v, hence, Am+1 does not contain

+1
{(u,v). By Lemma 1.1. Am+1 is linearly independent of the
arborescences A; ... Ay and the Lemma is proved. B

The above Lemma immediately implies

PROPOSITION 3.6. Let G = (V,E) be a digraph and W C V,
|W| 2 2, such that (W,E(W)) 18 a strong block, then

(3.1) z(E(W)) s |W| - 1

i8 a facet of ?B(G).
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Proof: If (W,E(W)) is a strong block then by Lemma 3.5 it

contains a set I of |E(W)| linearly independent arborescences,

l.e., branchings of G, the incidence vectors of which satisfy
(3.1) with equality.

Let f € E - E(W), and let v be the terminal node of
f. If v € W, then because of strong connectivity there is an
arborescence A, in (W,E(W)) with root v. If v ¢ W take
any arborescence Af in (W,E(W)). Define Bf:= Af U {f} for
all f € E - E(W). By construction the incidence vectors of the
branchings By satisfy (3.1) with equality. Clearly the set

IU{Bg:f€EE-1}EMW]|} is a set of [E| Ilinearly independent

branchings, which proves the Proposition. {0
Summing up the Propositions 2.2, 3.4, 3.6 we obtailn
THEOREM 3.7. ([2], [3]) Let G = (V,E) be a digraph. Then a

camplete and non-redundant characteriaation of the branching
polytope ?B(G) {8 givan by

(3.3) €, 20 for all e EE
(3.4) x(w (V)) s 1 for all v €V -V
(3.56) «(E(W)) s |W| - 12 for all W €V

sueh that (W,E(W)) <8 a strong block. O

The induction technique used in Lemma 3.5 can be used
in several other problems of polyhedral combinatorics. In
general the induction in the case of a non-minimal situation is
straightforeward while for the case of a minimal object
(e.g. a minimal strong block) a problem~-specific result
(like the existence of a carrier) has to be exploited.

We would like to mention an application of the above result.
The n-city asymmetric travelling salesman problem can be
represented as the intersection of the branching problem

and a partition - matroid problem on a modified complete
digraph Kﬁ+1 on n+ 1 nodes (c.f. [4]). It was shown

in [4] that all inequalities of types (2.3), (2.4), (3.1) that
are facets of iB(K'n+1) are also fasets of the monotone |
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