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Abstract. This article is about adaptive column generation techniques for the 
solution of duty scheduling problems in public transit. The current optimization 
status is exploited in an adaptive approach to guide the subroutines for duty 
generation, LP resolution, and schedule construction toward relevant parts of 9. 
large problem. Computational results for three European scenarios are reported. 

1 Introduction 

Duty scheduling is the activity of operational planning in public transport 
that deals with the construction of the daily shifts of driving work. Duty 
scheduling is a central operational issue. It has also economic significance: The 
average German bus company spends half of its operating budget on driver 
salaries, see [41,42, both articles in German]. The duty scheduling problem 
has been studied extensively in the OR literature, see the proceedings of the 
last four CASPT conferences ([56], [18], [26], and [19]) for an overview. 

This article deals with column generation methods for duty scheduling. 
Column generation is one of the best established optimization approaches to 
duty scheduling. The methodology is based on techniques such as 

- duty generation by constrained shortest path computations ([32], [24], 
[27-29]), 

- large scale techniques such as sifting, core, and active set strategies ([12], 
[16], [15], [51]), 

- LP and other acceleration techniques ([33], [23]), 
- heuristics ([5], [8], [36], [54], [16], [15]), 
- and other contributions (see [7], [30], [52], [21] for surveys). 

Likewise, column generation modules form the optimization cores of several 
commercial duty scheduling systems, among them (in alphabetical order) the 
GENCOL optimizer of the HASTUS CREW-OPT system (see [25], [31], [22]), 
the PROBl solver in the CARMEN system (see [55], [2]), the TURNI system 
(see [34]), and our optimizer DS-OPT which is available in the BERTA and 
MICROBUS systems (see [14, in German] and [40, in German]). 

This article discusses the three main algorithmic modules of our column 
generation system for duty scheduling. These modules use relaxations to 
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speed up the identification of "improving" .duties, the computation of shadow 
prices, and the construction of feasible schedules. The techniques are "adap­
tive" in the sense that they resort to the current optimization status in order 
to identify relevant parts of a problem. This helps to tackle large instances 
without ad hoc eliminations of degrees of freedom. 

The article is subdivided into five parts. Section 2 lists notation and 
concepts on column generation and introduces an approximation algorithm 
that provides the basis for our duty scheduling system. Section 3 studies the 
constrained shortest path problem that comes up in the pricing subroutine 
of the algorithm. We propose an integer linear programming formulation for 
this problem that we solve using Lagrangean relaxation techniques. Section 4 
investigates the solution of the master LP using coordinate ascent methods. 
Section 5 deals with the construction of feasible schedules. We describe a 
variable fixing heuristic that is based on scoring and probing techniques. 
Computational experience for three European duty scheduling scenarios is 
reported in Sect. 6. 

2 Duty Scheduling 

We list in this section notation, terminology, and concepts on duty scheduling 
that we will use in this paper. This notation is quite extensive. We have 
therefore tried to present a structured listing that is easy to reference. We do 
not discuss application and modelling aspects here; such information can be 
found in [50], [30], and [14, in German]. 

2.1 Terminology 

The mathematical terminology follows [38]. We use the following extensions: 
- We often scale by a quantity 1 -h £ and denote that by 

x = (l + 6)x. (1) 

- [•]* : R -> E, x H-> max {a, min {x,6}}, [•]+ = [-]$°°. 
- min^ S denotes the z-th minimum of a multiset S = {$i, . . . , $&}, i.e., given 

some ordering Sjx < Sj2 < • • • < Sjk, we define min* S = Sjv i = 1, . . . , fc, 
and mini S = oo, i > k. 

- argmin x€D f(x) denotes some optimal solution of the optimization prob­
lem minx€£> /(#), ties are broken arbitrarily, argmax is analogous. 

- We denote arcs in digraphs by uv and (u,t;); the latter notation is used 
in cases such as (m, m + 1). We write tail(ut;) = u, head(uv) = v. 

- We sometimes interpret matrices as sets of column vectors and use nota­
tion such as (dij) U b to add a column b to a matrix (a^) if an identical 
column is not already present. 

We use Latin symbols in a network context, and Greek ones in a set parti­
tioning context. 
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2.2 Network Model 

The duty scheduling problem can be formulated in terms of a network model. 
This model involves an acyclic digraph D = (V,A), the duty scheduling 
network We number the nodes V = {0,1 ,2 , . . . ,m ,m + 1}. Nodes M — 
{ 1 , . . . , m} are the duty elements or tasks They correspond to indivisible units 
of work that arise from cutting vehicle blocks at relief points. Two tasks u and 
v are joined by an arc or link if the same driver can conduct v immediately 
after u. Nodes 0 and m + 1 serve as universal source and sink nodes in D. 
They represent the start and the end of every duty. Source and sink are 
linked with sign-on and sign-off arcs <5+(0) = {(0,1), (0 ,2) , . . . , (0,m + 1)} 
and 6~(m + 1 ) = {(0, m + 1), (1, m + 1 ) , . . . , (m, m + 1)}, respectively. Note 
that <T"*(0) = 0 = <5+(m + 1) because D is acyclic. 

Duties correspond to directed (0,m + l)-paths in this duty network, but 
not every path is a duty. Legality and cost of a duty are determined by the 
rules of so-called duty types.Typic&l duty types are straight, split, and part 
time duties. A special duty type are the trippers, duties that contain exactly 
one duty element. A precise model of a duty type will be given in Sect. 3. 

The duty scheduling problem (DSP) is to find a minimum cost set of duties 
(each duty valid for at least one given duty type) that covers all tasks exactly 
once. 

2.3 Set Partitioning Model 

Let J = { 1 , . . . , h} denote the set of all feasible duties, let £,, j € J , be a 0/1 
decision variable for the inclusion/exclusion of duty j , let u> € R+ be a vector 
of nonnegative duty costs, and let finally $ e {0, l}mx™ be the task-duty 
incidence matrix. The duty scheduling problem can be formulated as a set 
partitioning problem 

(SPP) min u>% # | = 1 , | €{0,1}*. (2) 

The constraints <P£ = 1 are the task partitioning constraints; they stipulate 
that each task is covered by exactly one duty. We associate with SPP the 
following LPs: 

(MLP) min u% £ | = 1, i < | (3) 

(RMLP) min u;T£, #£ = 1, £ < £ (4) 

(RDLP) max 7tTr) + u \ TTT# < uT. (5) 

We further associate with any vector 7r £ Rm the pricing problem 

(PRICE) 3 j e J : S,- = ojj - iFfrj < 0. (6) 

MLP is an LP relaxation of (2), called the master LP. Its special form allows 
fixings of variables by a 0/1 vector of lower bounds £ £ {0, l } n . A restricted 
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primal master LP (RMLP) and its dual (RDLP) are obtained from MLP by 
restriction to some subset of variables J = { l , . . . , n } C { l , . . . , Ä } . We shall 
use the following notation and conventions: 

- * is supposed to indicate the "closure" J = { l , . . . , n } = { l , . . . , f i} . 
- Si < 1, # £ < 1, i.e., we always assume pairwise compatible fixings. 
- f\ = 1 — Si and 7} — \ — $i denote the incidence vector of the residuum 

of rows not covered by fixed variables. 
- An MLP does never contain a zero column $.j = 0. 
- Any MLP contains a tripper duty of (high) cost L E 1 + for each task i, 

i.e., 

VieM: 3j € J : u>j = L and S.j = e*. (7) 

- v = i/(&, #, i) and i/(a;, $, 4) denote the optima of MLP and RMLP (or 
RDLP), respectively. Note that assumption (7) guarantees finiteness and 
well-definition. 

- Uj = üj — nTS.j is the reduced cost associated with duty j (and 7r). 

2.4 Pseudocode 

We list in this subsection the data types of a C type pseudocode that we use 
to describe algorithms: 

- typedef double pos; 
Holds a nonnegative real number. 

- typedef struct { int |A|; int * x } path; 
Holds a vector x € {0,1}A . 

- typedef struct {int m; double * 7r; } dual; 
Holds a vector TT € Rm (and later TT E R R ) . 

- typedef struct {int n; pos * £; } primal; 
Holds a vector £ € R£. 

- typedef struct {int ra; int n; int * £«cnt; int * £_ind; } matrix; 
Holds a 0/1 matrix $ € Rm X n in column major format. • 

- typedef struct { pos 7; dual </>] } col; 
Holds objective 7 and task incidence vector <j> of a duty. 

- typedef struct { primal a;; matrix #; primal ;̂ dual 7r; } rdlp; 
Holds objective a;, task incidence matrix $, lower bounds i, and dual 
multipliers TT of an RDLP. 

2.5 Column Generation Method 

Figure 1 describes a column generation algorithmfor the solution of the MLP 
(3). This algorithm, denoted by cgen, is approximative with quality control 
parameters e > 0 and S > 0. Three subroutines, aug, price, and test , are 
called in a loop, aug is an approximate RDLP solver, price is an approximate 
pricing routine, and tes t is an approximation control predicate. We stipulate 
the following properties for these subroutines: 
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nr rdlp cgen( rdlp {u>,#,^, 7r}, pos e, pos S ) | 
2 { * 
3 int k<r-Q; 
4 rdlp {u>k,$k,4,TT*.} 4- {u>,#,€,TT}; 
5 col {7fc,0fc}; 
6 do { 
7 fc*-fc + l; 
8 7Tfc <-aug({cjfe_i,#AJ-lJ^7Tfe-l}); 
9 {7/C0A:} ^ - p r i c e ^ c j j b - i , ^ . ! , ^ ^ } ^ ) ; 

10 {wfc,*j f e ,4}4-{a;jb-.i ,* f c_1 ,4.i}U{7fc,0 f c ,O}; 
11 }; 
12 while ({tük,$k} it {uk-l,$k-l} 
13 kk test({a;fc,#fc,4,7rfc},e,$) = 0); 
14 return { ^ , ^ , 4 , ^ } ; 
15 } 

Fig. 1. cgen column generation algorithm 

- dual aug( rdlp {u;,$,^,7r} ); 
aug must produce for an arbitrary, but fixed input RDLP {a;, $, ■£, 7r} an 
iteration sequence (nk)keN0 by means of the recursion 

7r0 = 7r and irk = aug({a>,#,^,7rfe_i}), fc € N. ' (8) 

This sequence is required to have the following properties: 

(AUG1) lim sup TTJ* < J1 (9) 

(AUG2) lim TTJJ? + uT£ = v(u, #, £). (10) 

These conditions formulate feasibility and optimality of the sequence (irk) 
in the limit. Note that v(u,$,£) < oo implies that every limit point of 
(7Tfc) is optimal. 
Conditions (9) and (10) allow aug implementations as subgradient algo­
rithms, as well as spacer step derivatives of such algorithms, in addition 
to simplex and interior point implementations. 

- col price( rdlp {a;,#,^,7r}; pos S ); 
If the ö-pricing problem 

(«-PRICE) 3 ( ^ ) € ( f ) : ^ = ( l + 5)7-7rTci<0, (11) 

has a solution, price must return such a column; if no such 6-negative 
(reduced cost)column exists, price can return an arbitrary column. S-
PRICE requires only the identification of duties of "significantly" nega­
tive reduced cost; the problem is hence a weakening of the "strict" pricing 
problem (6), 
Section 3 discusses such an approximate pricing algorithm. 
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- i n t t e s t ( rd lp {u;,#,£,7r}; pos e\ pos 8\ ); 
t e s t returns l if the following two conditions, together referred to as 
eS-optimality,hold, and 0 otherwise (recall (1) for the definition of a;): 

((^-feasibility) irT$ < Q (12) 
(e-optimality) (1 + e)irTr] > v{u, £, t) - UJT£ (13) 

t e s t can be implemented by LP techniques. 

It is not hard to see that the e- and ^-accuracies of the subroutines carry 
over to the entire column generation algorithm. 

Proposition 1. Let rjk = l—$kt>k> Algorithm cgen has these properties: 
i) cgen terminates after a finite number of iterations K. 

Hi) P-CjTl>{l + S)^7^nK. 

Proof, i) RDLP is a sub-LP of an LP of finite dimension, namely, the dual 
of MLP. Hence, line 10 can only see a finite number of genuine additions 
of columns. Prom that point on, cgen merely iterates aug. This produces 
a sequence of multipliers that approaches the set of optimal solutions of 
RDLP, see (9) and (10). When (12) and (13) are satisfied, t e s t breaks 
the main loop and cgen terminates at some iteration k = n. 

ii) (1 + e)i$qK > v(wK,$K,iK) - u% > i/(u>,#,t) - u>T! = J> - uTl 
The first inequality follows from (13), the second holds because each 
column is a constraint in RDLP. 

iii) (1 + 5)(i> — LUT£) = (1 + 5) max irTfj = max 7TTT) > 7rJ?7«. 
7rT^<a>rr 7rT^<(l+<5)a>rr 

The final inequality holds because t e s t guarantees ir^K < (1 + 8)u% for 
all RDLP columns at iteration ft, see (12), while p r ice takes responsibil­
ity for ir^S < (1 + ö)üT for all remaining columns, see (11). 

Proposition 1 justifies the use of approximation algorithms in the LP 
resolution and pricing subroutines of a column generation algorithm. Such 
approximate procedures can help to bypass algorithmic bottlenecks in the 
subproblems. 

Our system DS-OPT implements a heuristic cgen derivative: 

- aug is implemented as a dual ascent heuristic as described in Sect. 4. 
- p r i ce heuristically limits the search space, see Sect. 3. 
- t e s t terminates cgen if the relative progress (717̂ 77*;+$ — 7T^rjk)/7T^rjk 

made in some last I iterations falls below e. 

We close this subsection with the remark that Proposition 1 shows a way 
to compute a global lower bound for the entire master LP, and hence for the 
duty scheduling problem itself. The algorithmic challenge in the computation 
of such a bound is the solution of the ^-pricing problem (11). The potential 
of our methods with respect to the computation of lower bounds will be the 
subject of future research. 
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2.6 Duty Scheduling Method 
The approximate solution of MLP is only a first step in duty scheduling. 
What we really want is an "acceptable" feasible integer solution. 

Figure 2 gives pseudocode for an LP plunging heuristic to produce such a 
solution. This dsopt procedure is the top level routine of our duty scheduling 
system DS-OPT. 

1 rdlp dsopt ( rdlp {u>,4>,^,7r}, pos e, pos 6, pos r ) | 
2 { 
3 int fc«-0; 
4 int j k ; 
5 rdlp {wk,$k,£k,irk}*-{ü;,$,£,ir}i 
6 dual 7]k <- a - $k£k > 
7 double 0 < oo; 
8 while ( # J 4 < a ) do { 
9 k*-k + l; 

10 if lir'£fik+(J£ek>0) { 
11 {wk,$k,£k,irk} «- cgen({o;fc-i ,^fc-i ,4-i ,7r f c-i} ,e,Ä); 
12 0 ^ ( l + r)(7r^+a;j4); 
13 >J 

14 j k <- chuzc({u;fc,#fc,4,7rfc}); 
15 4 <- 4 _ i + ejk ; | 
16 *?fc +-»7fc-i-(#*).,**; 
17 TT*. <- aug({a; fc,* fc,4,7r fc}); 
18 }; 
19 return {wki$k,£k,vk}i 
20 J_ 

Fig. 2. dsopt duty scheduling heuristic 

dsopt calls the subroutines cgen and chuzc in a loop, chuzc is a routine 
to select a variable that is subsequently fixed to 1 in lines 15 to 16 of dsopt. 
The calls to cgen are controlled by a branch-and-generatescheme involving 
parameters r > 0 and 0. These subroutines work as follows: 

- int chuzc ( rdlp {u>,$,£,7r} ); 
chuzc returns an ^-compatible column j , i.e., $(£ + tj) < 1. 
An implementation will be described in Sect. 5. 

- Branch-and-Generate Scheme. 
dsopt monitors a trust region 

i$flk+Wktk<e (14) 

for the RDLP objective ir^rik + u;£4 at hand. As long as this value stays 
below 0, RDLP is considered as an acceptable approximation of the 
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global MLP and cgen is bypassed. Such a "fast iteration" merely fixes 
a variable and adjusts the RDLP solution by a call to aug in line 17. 
When the objective goes above 0 , this is taken as an indication that the 
variable fixes have potentially changed the RDLP to such an extent that 
it does no longer approximate the (also changed) global MLP well. In 
this situation, cgen is rerun to update the RDLP and a new trust region 
is established up to r percent above the updated objective value. 
We have learned about such a control scheme from a talk of Marsten, who 
termed it branch-and-generate (BANG) and implemented it in the DOC 
(Delta Optimizer for Crews) system. BANG does, however, not seem to 
have been documented in the literature. 

We remark that an efficient dsopt implementation will safeguard against 
the generation of incompatible coliunns (7^, $J), i.e., (ß^k^k ^ 0 in the cgen 
column generation routine. A convenient, but notationally not always elegant 
way is to set 7r* = —00 for rji = 0. 

Our system DS-OPT is not designed to produce optimal solutions to duty 
scheduling problems. The focus is on the ability to process large scenarios in 
a reasonable way. In particular, we aim to exploit all degrees of freedom in 
the duty network and in the duty types. DS-OPT implements this strategy 
using approximative and, where we think it expedient, heuristic techniques. 

3 Constrained Shortest Paths 

This section deals with the solution of the 5-pricing problem (11). We propose 
an integer linear programming formulation for this problem that we tackle 
with Lagrangean relaxation techniques. It turns out that such a relaxation 
gives rise to lower bounds that can be used to speed up enumerative pricing 
algorithms. 

We model the pricing problem in terms of acyclic constrained shortest 
path problems (ACSPs). The different constraints of different duty types 
are handled using separate ACSPs. We will discuss in the remainder of this 
section the treatment of a single duty type. 

3.1 Integer Programming Model 

Denote by x E {0,1}A the incidence vector of a directed (0, m + l)-path 
in the duty scheduling network D = (V, A) representing a duty, by c E RA 

a vector of costs associated with the arcs, and by N E {—1,0, l } y x > l the 
node-arc incidence matrix of D. Let further W E RRxA be a matrix that 
records in each entry wra the consumption a so-called resource r on traversal 
of the arc a, let br be a goal or best resource consumption for a duty, let 
sr = (s+,s~) be a pair of slack and surplus variables, respectively, that 
gather deviations from this goal value, let ur = (u+,u~) E (R+ U {oo})2 be 
upper limits for such deviations, and let dr = (d+,d~) E R+ be nonnegative 
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objective penalties associated with the slack and surplus variables. (We do 
not discuss the treatment of bonuses.) We remark that we use this resource 
constraint model also to express "infeasible path constraints", see below. Let 
finally 

cTx + dTs = cTx + d+Ts+ + d~Ts- (15) 

be the genuine cost associated with a vector (x,s) € Rm x 1 Ä x I Ä , let 
7T € W71 be some vector of shadow prices, and consider a transformed cost 

771 

fx + Fs = (1 + S)(cTx + dTs) - ] T ] T TTjXij (16) 
j=l ijeA 

that arises from the genuine one by a scaling operation (recall (1)) and a 
subsequent subtraction of certain shadow prices. 

We propose to model the single duty type pricing problem as an ACSP 
subject to linear side constraints and linear objective penalties: 

(ACSP) min fx + Fs (17) 
Nx = em+i - e0 (18) 

Wx + 5+ - s~ = b (19) 
0 < s < u (20) 

x£{0,l}A. (21) 

We list two conventions that will be used in the following discussion: 

- s(x) = (a+(x),8-(x)) = ([6 - Wx]+, [Wx - b]+). 
- M(x) = {1 < i < m : x(6+(i)) = 1}. 

(18) are flow conservation constraints that define an (0,ra + l)-path. (19) 
and (20) are called resource constraints. Note that our assumption d > 0 sets 
the penalties automatically to the right values s(x). Let finally (x,s(x)) be 
an ACSP solution of genuine cost 7 = cTx + Fs(x), and let </> = xM^ be 
the task incidence vector of the visited duty elements. Consideration of the 
transformed objective (16)/(17) 

m 

fx + cPs = (1 + 6)(cTx + dTs) -J2Y1 *iXii = t1 + S^ ~ *T<t> 
j=l ijeA 

shows that ACSP is equivalent to the J-pricing problem (11) for a duty type 
that is given by the constraints (19) and (20) and the genuine objective (15). 

Linear resource constraints are not only versatile modelling tools. Perhaps 
even more important, such constraints arise naturally in duty scheduling 
applications. We list some important types in a simplified format that can 
easily be transformed into the general form (19) and (20): 
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- Max constraints Wr.x < br 
Max constraints can be used to stipulate upper limits on the consumption 
of resources such as driving time, working time, duty time, shift time, 
number of pieces of work, number of parts of work, etc. 

- Min constraints Wr.x > br 
Min constraints can set lower limits on the same quantities. They can also 
be used to enforce absolute and, in the form Wr.x > q • Wr.x, 0 < q < 1, 
relative minimum break: times in a duty. 

- Opt constraints Wr.x + s+ - s~ = br with penalties d+s+ + d~s~ 
Opt constraints and the associated objective penalties can model linear 
overtime bonuses and the like costs. 

- Infeasible path constraints Xpx < |-P| - 1 
Some difficulties come up in the treatment of "nonlinear" rules that 
govern, e.g., break positions in a duty. Such constraints can be fitted 
within a linear framework using infeasible path constraints (IPCs) that 
rule out individual infeasible paths. We call a set of IPCs that represent 
a nonlinear rule an IPC rule complex. Such constraints must be treated 
implicitly. IPCs were introduced in [4] in the context of asymmetric TSPs 
with time windows. 

Typical duty scheduling problems feature duty types with about 10 dif­
ferent explicit linear resources and half a dozen implicit IPC rule complexes 
on break positions, sign-on and sign-off issues, the construction of composite 
duties with several parts, and certain compensations. 

The ACSP is well studied in the literature, see [46] for a survey. The 
problem is JV^-hard already for a single resource constraint, see [37, A2.3, 
ND30]. For any fixed number of resources, fully polynomial approximation 
schemes exist, see [53]. Pseudopolynomial algorithms have been developed 
and successfully used in practical applications, see [24] and others, including 
penalty treatment, see [25]. Enumerative approaches using Lagrangean lower 
bounding techniques have been studied in [39], [48,49], and [9]. A computa­
tional comparison of different methods can be found in [46]; this reference 
gives also a combinatorial algorithm of low complexity to solve the LP relax­
ation associated with ACSP for the case of a single resource constraint. 

However, as far as we know, the model ACSP has not played a role in 
the context of duty scheduling. The duty scheduling literature focuses on 
alternative and well-known time window formulations, see [32], [24], [27-29]. 

3.2 Lagrangean Lower Bound 

We follow now [39] and [9] in using a Lagrangean relaxation of the ACSP 
to derive a class of lower bounds that will be used to establish an efficient 
backtracking criterion in an enumerative ACSP algorithm; this idea has also 
been used in [46] to develop essentially the same algorithm. 
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The Lagrangean shortest path relaxationLSP that we use is obtained by 
transferring the resource constraints (19) into the objective: 

(LSP) max P(y) + Q(y) + yTb (22) 
y£RR 

(SP) P(y) = min (f - yTW)x, Nx = em+1 - e0, x > 0 (23) 
(BP) Q(y) = min (J+ - y)Ts+ + (dT + y)Ts~, 0<s<u. (24) 

LSP decomposes into an acyclic shortest path problem SP and a simple linear 
program BP over a box. BP has a closed formula solution, e.g., 

s* = s*(y) = - \J - diag (sign(d+ - y), sign(<T + y)j J u. (25) 

An optimal solution x* = x*(y) of SP can be obtained combinatorially using, 
e.g., the reaching algorithm as proposed in [1]. We are also interested in an 
optimal solution h* = h* (y) of the dual 

(DP) max hm+i - /*o, ^ T ^ < cT - yTW. (26) 

Such a solution can be interpreted in terms of distance labels /i* that give, for 
each node v, the minimum distance hl—h^ from the source with respect to the 

—T 
objective c — y^W. These values underestimate, in particular, the distances 
along all constrained paths. Combining this bound with the solution of BP 
suggests to consider the following Lagrangean distance labels: 

g:=g*v(y) = K(y)-h*0(y) + Q(y)+yTb, v€V. (27) 

Lemma 2. Let x1 and x2 be the incidence vector of a (0, v)- and a (v, ra-f-1)-
path in D, respectively. Suppose that x1 +x 2 is feasible for ACSP. Let y E RR 

be any vector of Lagrangean multipliers for LSP and g*(y) be the associated 
Lagrangean distance labels (27). Then: 

g*v(y) + (cT- yTw)x2 < fix1 + x2) + dFsix1 + x2). (28) 
Lemma 2 is useful in an algorithm that constructs ^-negative paths "back­
wards" starting from the sink, working toward the source. (28) can be used 
in such an algorithm to prune the search whenever gl{y) + (c — yTW)x2 > 0. 

3.3 Lagrangean Distance Computation 

The quality of the distance labels g*(y) depends on the identification of 
suitable multipliers y. This task can be tackled by a subgradient algorithm. 
The work per iteration consists in solving SP and BP. 

We state on this occasion a characterization of the subdifferential 9(t/), 
which is readily available in this application, see [10, Prop. 6.1.2]. 
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Corollary 3. Let y G RR by a vector of Lagrangean multipliers for LSP. 
Let h* be the solution of the associated shortest path problem DP. Denote 
by A = {a G A : ca — yTW.a > h*TN.a} the set of all arcs that can not be 
contained in an optimal solution to SP. Then: 

d(y) = conv{6 - Wx - s*+ + s*~ : Nx = em+1 - e0) x > 0, x(A) = 0}. 

1 dual lsp ( dual y ) 
2 { 
3 primal x\ 
4 dual s+, s~ ; 
5 int Q\ 
6 for (;;) { 
7 Q <r- [select r £ R with W.rx + st — sr — br ^ 0]; 
8 x<^x*(y); 
9 s^-s*(y); 
10 ye ^-yQ-\- 0( [stepsize control] )sign(W.rx + sfi — s^ — br); 
11 if [convergence] return y\ 
12 } ; 
13 j_ 

Fig. 3. lsp Lagrangean distance computation 

It turns out, however, that a coordinate ascent method is good enough in 
practice. Pseudocode for such an algorithm, which adjusts a single multiplier 
in each iteration, is given in Fig. 3. 

3.4 Constrained Shortest Path Algorithm 

Figure 4 gives pseudocode for a depth first search enumeration algorithm for 
the ACSP that uses the Lagrangean distance labels (27) as a backtracking 
criterion. The distance labels are derived from a relaxation of the ACSP that 
one obtains by simply ignoring all IPCs. Starting from the sink, the algorithm 
computes recursively all possible (0, m + l)-paths. A backtrack is done in the 
following cases: 

- Line 10. 
The path x violates an IPC. Checking an entire duty for IPC violations 
is in general not a problem, because the rules are made for this purpose. 
Detecting inevitable violation as early as possible in a partial duty is, 
however, certainly difficult. We use heuristic criteria that would take a 
detailed description of data structures in order to be discussed. 

- Line 11. 
The source is reached, an improving duty is found (line 12), or not. 
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1 col price ( rdlp {u;, #, .£, 7r}, dual y ) 
2 { 
3 dual g* <-g*(y); 
4 return dfs ( 0, g*, (+oo,0) ); 
5 
6 

} 

7 col dfs( path x, dual g*, col (7, <j>) ) 
8 { 
9 int v «— tail(x); 
10 if (x [violates an IPC]) return (7,<j>)\ 
11 if (v = 0) { 
12 if (cTx + <Fs(x) < 7) 
13 (7,^)^(STx + cF5(x),xM(a:)); 
14 return (7, <j>); 
15 } 
16 if ([search limit exceeded]) return (7,cj>)\ 
Il7 forall (u e 7~(v)) { 
18 if (c x -f Cuv + gu ̂  max{7,0}) continue; 
19 (7, (f>) <- dfs(x + euv,p*, (7,0)) J 
20 } 21 return (7, (f>); 
22 } 

Fig. 4. price column generator (single duty type) 

- Line 16. 
Some search limit is exceeded. Such search limits can help to adjust the 
performance of an implementation to a particular scenario. There is, how­
ever, another use that is even more important. Our dsopt implementation 
differs from the one in Fig. 4 in generating not only one (^-negative duty, 
but bunches of several thousands of such duties. We use search limits as 
a heuristic means to produced "diverse" paths in an attempt to speed 
up the overall convergence of the algorithm. Diversification techniques of 
this type have been mentioned in the literature, e.g., in [23]. 

- Line 18. 
The Lagrangean lower bounding criterion shows that the path x can not 
be extended into a (^-negative reduced cost duty. 

We remark that we also use the Lagrangean distance labels for prepro­
cessing purposes, see [9] for details. 

4 Coordinate Ascent 

We study in this section the eJ-optimal solution (recall (13) and (12)) of 
RDLP. Such a solution can be obtained using sophisticated LP codes. Large 
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RDLPs beyond 1,000 rows are, however, often hard to solve leading to LP per­
formance problems as frequently reported in the literature, see, [2, p. 241/242], 
see also [45], [43], [13], and [33]. 

The search for alternatives focuses on subgradient algorithms and on dual 
ascent methods that are both based on Lagrangean relaxations. Subgradient 
algorithms have been used in [16], [15], and [34]. Dual ascent methods have 
been studied, among others, in [5], [8], [36], and [54]. See also [35, p. 9] for a 
survey on dual ascent applications in general. 

4.1 Coordinate Ascent for RDLPs 

We recall in this subsection the basics of coordinate ascentin an RDLP con­
text. Starting point is the following Lagrangean relaxation of the RDLP: 

(LRDLP) maj^ min ^(TT,£) , £ < £ < 1 (29) 

where 

A(TT, 0 = u;T£ - T T T ( ^ - 1) = 5JT£ + 7rTfl. (30) 

For fixed 7r, LRDLP has the closed formula solution(s) 

£ = £(*) = < 
1, iiZJjKO 
* j < # < l , if 57̂  = 0 ; (31) 
£j, iiuJj > 0. 

For given 7r, the line search problem along the i-th coordinate is 

(LS) max min A(ir + a • c7-, £)> ^ < ^ < 1 
= max 7rTfl + a + min (Ü7T - a • #*.)£, £<£<!. 

LS has also a closed formula solution 

(32)' 

a* € < 
f [min Uj, min2 LJA , if rji = 1 

(—oo,min a;,], if rji = 0. 
(33) 

a* can be determined easily by a sweep over the nonzeros of the i-th row of 
the matrix $. 

The basic coordinate ascent method simply iterates such line searches 
along the coordinates. It is well known that this method is not globally 
convergent, because it can get stuck at a nonoptimal point from which it 
is impossible to ascend along any coordinate axis, see, e.g., [10, § 6.3.3]. 
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4.2 Boxstep 

A problem that we have observed in coordinate ascent computations is that 
some of the multipliers tend to take unreasonably large values in early iter­
ations that are hard to readjust later on. This phenomenon has been docu­
mented before in a simplex context in [33]. We use boxstep, a framework due 
to [44], to counterbalance this effect. 

Boxstep is a method to optimize a concave and upper semicontinuous 
function v : D —> R on a compact domain D C Rm 

(GLOBAL) max I/(TT). (34) 

The method associates with each point TTO E D a local problem 

(LOCAL) max I/(TT), TT € D, \\ir - 7r0||oo < ß (35) 

and iterates the recursion 

TTfe+i = argmax i/(7r), TT e D, ||TT - 7rfe||oo < /?, (36) 

until z/(7Tfe-f-i) < v(irk) + s. ß > 0 is a parameter that controls the size of 
the domain in the local problem, and e > 0 is a termination parameter. 
It has been proven in [44] that boxstep terminates in a finite number of 
iterations K with a solution TTK such that v(7rK) > max v{D) — 2eA/ß, where 
A = diamD = maxX)3/€D \\x — 3/H2 denotes the diameter of D. This result 
carries over to our situation as follows. 

Corollary 4. Suppose RDLP contains the "tripper" duties f M E (^ J, 
i = 1 , . . . , m, of cost L E M+. TAen: 

î  RDLP has an optimal solution ir* E [—(m — l)L,L]m . 
üj Boxstep finds, for any starting point TTQ E [—(ra — 1)L, L]m , m yimte £ime 

an RDLP solution nK such that ir^rj > v{w, $, £) - 2emz/2L/ß. 

Proof i) Note that 7rTJ < L1T because of the trippers. The further restric­
tion 7T > —(m — 1)L1 does not change the optimum: 

max 7rTl + XT£, irT$ + AT = u;T, —7rT < (m — 1)L1T, A > 0 
= min wT£ + ( m - 1 ) I 1 T / J , <2>£ - / J = 1, £ > 4 /* > 0 
= min wT£, #£ = 1, £>e 
= min wT£, #£ = 1, t < £ < 1. 

The second equation follows by replacing overcovers with trippers. 
ii) diam[-(m - \)L, L]m = Vm -m2L2 = m3'2L. 
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FT" dual aug( rdlp {a;,̂ ,̂ ,7r} ) | 
2 { 3 int 14-0,fc*-0; 
4 double a; 
5 for ( ;; ) { 
6 for (i — 1; 1 < ra; i++) { 
7 if 7]i — 0 continue; 
8 

9 
10 

a-h-'d min ujj + (1 — #) min2 üL-; 

a<-[a]ij; 
fli «- 7Ti + a; 

11 > ; 

12 if ([convergence]) break; 
13 }; 14 return 7r; 
15 } 

Fig. 5. aug coordinate ascent algorithm 

4.3 Coordinate Ascent Algorithm 
Figure 5 gives pseudocode for a coordinate ascent heuristic that combines 
a coordinate search algorithm with a boxstep steplength control in line 9. 
The solution formula for the line search problem in line 8 contains a control 
parameter 0 < # < 1 that is used for performance adjustments. 

5 Variable Fixing 
We discuss in this section the heuristic fixing of duties in the branch-and-
generate phase of our algorithm. The fixings are derived in two stages from 
the Lagrangean relaxation LRDLP associated with the current restricted dual 
master LP. The first stage selects a set of candidates using scoring techniques. 
The second stage selects a variable from this candidate set by Lagrangean 
probing. Figure 6 gives the pseudocode for such a variable selection scheme. 

To explain the routine, recall the Lagrangean relaxation 
(LRDLP) ma^min wT£ - T T T ( ^ - 1 ) , * < £ < ! . (37) 

Let 7T e Rm be some vector of multipliers and £* = £*(7r) (cf. (31)) be the 
associated primal solution. We want to identify in this situation a variable 
that is likely to be contained in an "acceptable" feasible solution for SPP. 

5.1 Stage 1: Scoring 
The literature suggests the computation of a score value function 

^i=f lr j (wj»^*-j^)» j = l , . . . , n (38) 
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nr int chuzc( rdlp {a/,#,^, 7r} ) 
2 { 
3 int j ; 
4 primal <7, J , 0; 
5 for 0 = 1; j < n\ j++) 
6 <Tj <- Qpfil = 0 ? Uj/Q^ri : +oo; 
7 J i- {arguing a,..., argmin2o cr}; 
8 foral l (j eJ){ 
9 dual A i- aug({a;, #, I + ej, 7r}) ; 

10 ^;+-AT(77- #.,•)+ ^ ( Z + c^; 
11 } | 
12 j ^-argmin j 6 J c9; 
13 return j ; 
14 JL 

Fig. 6. chuzc duty fixing 

for each variable as a heuristic measure for the attractiveness of fixing this 
variable. A variety of rules have been studied, see [5], [8], [36], [16], and [15]. 
Among the more popular scores is the "average reduced cost per uncovered 
row" 

cTj^Uj/^ (39) 

which is a major component of the score that we use. Selecting a set J of 
some 20 compatible candidates of smallest score concludes stage 1 of our 
fixing heuristic. 

5.2 Stage 2: Lagrangean Probing 
Stage 2 tries to improve the scoring information by tentatively fixing variables 
and exploring the consequences in an LRDLP reoptimization. This technique 
is called probing and is discussed, e.g., in [47] and, in a strong branching 
context, in [3]. We compute for each candidate variable j € J with our aug 
routine an up-penalty 

9j= aug o; T c;+7r T (^~] l ) , ^ + c i < f < l , j 6 J, (40) 
7r€Rm 

and fix the one with the smallest penalty. 

6 Computation 

We report in this section computational results obtained with our duty schedul­
ing system dsopt. All tests have been performed within the MICROBUS II 
system on commonplace PCs. 
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probl prob2 prob3 

# vehicle blocks 63 56 59 
incl. spares yes no no 

# duty elements 727 1065 1968 
# tasks (nodes) 7037 24284 51488 
# links 93725 261971 277681 
duty type categories straigths straigths straights 

splits splits splits 
shorts shorts 

opt working time 7:42/7:42 8/8/5 5:00-5:45 

manual DS in MICROBUS II 

status 100% 99% 100% 
# duties 88 73 122 
0 working time 7:27 7:03 n.a. 

DS-OPT 

status 100% 100% 100% 
# duties 85 63 111 
0 working time 7:06 7:50 5:41 

running time 0:45* l:20a 5:30b 

required MB 150 230 230 
a Pentium III 650 MHz, 578 MB memory, Linux 2.2.14, gcc-2.95.2 
b Pentium III 500 MHz, 1 GB memory, Windows NT, VC++ 6.0 

Table 1. Solving duty scheduling problems with dsopt 

Table 1 lists characteristics and results for three European scenarios. 
probl and prob2 are urban bus crew scheduling problems from German 
operations, prob3 is a subway driver scheduling problem from a European 
metropolis. 

The top of the table gives some information about the characteristics 
of these problems. The rows " # vehicle blocks" ("#" means "number of") 
and "including spares" are self-explanatory and show that we deal here with 
relatively, albeit not extremely large problems on multiple lines, i.e., we allow 
changeovers and do not plan on a line-by-line basis. Cutting the vehicle blocks 
from line " # vehicle blocks" at the relief points, we obtain the " # duty 
elements" as listed in the next line. The large number in prob3 results from 
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this company's willingness to relieve basically anytime at any subway station. 
The duty scheduling network is set up from this data in two steps. First, nodes 
for possible extension elements (extension elements take care, e.g., of sign-
on and sign-off activities) are added. (We enumerate all possible extensions 
and add a node for every single one, see [14, in German] for details.) This 
results in a large "# nodes", but it encapsulates the treatment of extensions 
in the network data. It also turns out that such an a priori enumeration has 
no negative effect on the running time. The network is completed by adding 
the given "# links" for locally feasible transitions among duty and extension 
elements. We attach importance to the inclusion of all possible links in this 
step, because each link is a potentially valuable degree of freedom. The next 
three lines give information on "duty type categories". Each listed category 
represents several duty types. The last line reports, as one example of the 
duty type parameters, the desired average working time. 

The second part of the table reports statistics on the best solutions that 
have been obtained by the companies. The third part lists the DS-OPT 
solutions. The numbers show that the optimized solutions contain sometimes 
significantly less duties, while the scheduling quality in terms of rule compli­
ance is at least comparable ("status" is the percentage of duty elements that 
have been scheduled into duties). 

Time and memory requirements for these runs are listed in the fourth part 
of the table. It is apparent that, also from this point of view, optimization 
systems such as DS-OPT definitely qualify as production tools for operational 
planning in public transit. 
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