Mathematical Programming 33 (1985) 243-259
North-Holland

SOLVING MATCHING PROBLEMS WITH
LINEAR PROGRAMMING

M. GROTSCHEL

Lehstuhl fiir Angewandte Mathematik II, Universitdt Augsburg, Memminger Str. 6,
8900 Augsburg, FR Germany

O. HOLLAND

Institut fiir Okonometrie und Operations Research, Universitdt Bonn, Nassestr. 2,
5300 Bonn, FR Germany

Received 30 July 1984
Revised manuscript received 30 April 1985

In this paper we describe an implementation of a cutting plane algorithm for the perfect

matching problem which is based on the simplex method. The algorithm has the following features:

- It works on very sparse subgraphs of K, which are determined heuristically, global optimality
is checked using the reduced cost criterion.

- Cutting plane recognition is usually accomplished by heuristics. Only if these fail, the

Padberg-Rao procedure is invoked to guarantee finite convergence.

Our computational study shows that—on the average—very few variables and very few cutting
planes suffice to find a globally optimal solution. We could solve this way matching problems on
complete graphs with up to 1000 nodes. Moreover, it turned out that our cutting plane algorithm
is competitive with the fast combinatorial matching algorithms known to date.
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1. Introduction

The development of the matching algorithm by Edmonds (1965a, 1965b) was one
of the milestones in the theory of good algorithms. Edmonds characterized a
polyhedron associated with the matchings of a graph. He used this characterization
to design a combinatorial methcd (based on ideas from linear programming) for
the solution of the matching problem with polynomial running time. The particular
feature of the associated linear program is that it has a number of inequalities which
is exponential in the number of edges. This seems prohibitive at first sight, but
Edmonds’ results show that the ‘structure’ of an inequality system is what matters
and not the number of inequalities. Based on these results a number of further
combinatorial algorithms for the matching problem have been developed, see for
instance Edmonds (1965a), Lawler (1976), Cunningham and Marsh (1978), Burkard
and Derigs (1980).

The current best worst-case bounds for the running time of weighted matching
algorithms are O(|V|*) resp. O(|V||E|log|V]|) for dense resp. sparse graphs G =
[V, E], see e.g. Lawler (1976), Derigs (1983), Ball and Derigs (1983).
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Using the polyhedral results of Edmonds and the minimum odd cut algorithm
of Padberg and Rao (1982) the ellipsoid method can be employed to obtain a quite
different polynomial time algorithm for the matching problem, see e.g. Grotschel,
Lovasz and Schrijver (1981) and Padberg and Rao (1981). This method however
appears to be impractical because of the many deficiencies of the ellipsoid method
and the rather poor (though polynomial) worst-case bound on the running time.

Due to quite successful implementations of cutting plane algorithms for NP-hard
combinatorial optimization problems (see Crowder and Padberg (1980) for the
travelling salesman problem, and Grotschel, Jiinger and Reinelt (1984) for the linear
ordering problem) we were tempted to try this approach also for the well-solved
matching problem. The basic idea is to use the theoretical cutting plane framework
of the ellipsoid method, but to replace the ellipsoid method by the simplex algorithm.
Moreover, the alglrithm resulting this way is enhanced with various heuristic features
which empirically show considerable run time improvements.

The outcome of this development is a theoretically nonpolynomial cutting plane
algorithm based on the simplex algorithm which—to our surprise—is competitive
with the fastest combinatorial matching algorithms known to date (see Section 5
for a. discussion of this ‘comparableness’).

More details about the theoretical background of the algorithm are given in
Section 2. Section 3 contains a description of our algorithm and implementational
details. Computational results are reported in Section 4.

2. Theoretical background

We denote an (undirected)graph by G =[V, E] where V is the node set and E
the edge set. Multiple edges and loops do not play a role in what follows, so we
assume that all our graphs are simple. The complete graph on n nodes is denoted
by K,. If G=[V,E] is a graph and Wc V, then E(W):={ije E|i,je W} and
8(W)={ijje E|lie W,je V\W}. For ve V we write 8(v) instead of 8({v}). Every
edge set 8( W) is called a cut. If |W| is odd then 8§( W) is called odd cut.

A matching in a graph G={V, E] is a set of edges M < E such that no two edges
in M have a common endnode. A matching M is called perfect if every node of G
is contained in an edge of M. If c: E >R is a weight function on the edges of G,
then, for any subset M < E,

c(M)= Y <
eeM
denotes the weight of M. The problem of determining a perfect matching in G of
minimum weight is called the ( perfect) matching problem. This problem is trivially
equivalent to the problem of finding a maximum weight (possibly nonperfect)
matching in G. We restrict our attention here to the case of perfect matchings, and
therefore, we will often simply say ‘matching’ instead of ‘perfect matching’.
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An incidence vector of a subset M < E is a vector ™ eR” satisfying x»’ =1 if
ec M and xY =0 if e M. The convex hull of the incidence vectors of the perfect
matchings of a graph is called the matching polytope P(G) of G, i.e.

P(G) = conv{x™ € R® | M c E perfect matching}.

The vertices of P(G) correspond in a 1-1 way to the perfect matchings in G.
Edmonds (1965b) proved

(2.1) Theorem. For every graph G=[V, E], P(G) is the solution set of the following
system of equations and inequalities:

x(8(v))=1 forallveV, (2.2)
x(E(W)=<3(|W|-1) forall Wc 'V, |W| odd, (2.3)
x,=0 forallecE. 0O (2.4)

It is easy to see that P(G) can also be described by the system of equations and
inequalities (2.2), (2.4) and

x(8(W))=1 forall We V, |W| odd. (2.5)

Thus the matching problem can be solved by solving the linear programming
problem

min ¢x, x satisfies (2.2), (2.3), (2.4) (resp. x satisfies (2.2), (2.4), (2.5)). (2.6)

It follows from the ellipsoid method (see Grotschel, Lovéasz and Schrijver (1981),
Padberg and Rao (1981)) that the linear program (2.6) can be solved in polynomial
time if and only if the following separation problem for P(G) can be solved in
polynomial time.

(2.7) Separation problem for P(G). Given a vector y € QF, decide whether y € P(G),
and if y is not in P(G) find a hyperplane separating y from P(G).

Since P(G) is given by the system (2.2), (2.3), (2.4) the separation problem for
P(G) can solved by deciding whether a given vector yeQF satisfies (2.2), (2.3),
(2.4) and if this is not the case to find one of these equations resp. inequalities
which is violated. Using Edmonds’ algorithm for finding a minimum weight perfect
matching and the ellipsoid method a polynomial time separation algorithm can be
designed, but Padberg and Rao (1982) found a much more effective combinatorial
algorithm to solve this problem.

In fact, given y€ Q¥ we can check by substitution whether y satisfies (2.2) and
(2.4). If not then we have a desired separating hyperplane (cutting plane). The
number of inequalities in (2.3) (resp. in the equivalent system (2.5)) is exponential
in|E|, so it is prohibitive to check all these inequalities one by one. But the separation
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problem for (2.5) can be turned into an optimization problem solvable in polynomial
time as follows.

Given y € QF (we may assume that y satisfies (2.2) and (2.4)), consider the values
y., ec E as capacities on the edges of G. Determine an odd cut §(W*) of G of
minimum wieght y(8( W*)). Clearly, if y(8( W*)) =1 then y satisfies all inequalities
(2.5), otherwise y(8( W*)) <1 and x(8( W*)) =1 gives a cutting plane. Now Padberg
and Rao (1982) showed that a variant of the Gomory-Hu procedure to determine
a minimum cut in a graph solves this odd cut problem. The running time of the
Padberg-Rao algorithm is (n—1) times the complexity of the max-flow algorithm
used to solve certain subproblems. So for dense graphs, the running time of the
minimum odd cut algorithm is O(n*).

Incorporating the Padberg-Rao algorithm as separation subroutine in the ellipsoid
method yields a polynomial time algorithm for the solution of (2.6), and (since
vertex solutions can be found by the ellipsoid method) also for the matching problem.

This method is a theoretical polynomial time algorithm, but we have serious
doubts that it will work in practice, in particular for large problems. Still, the scheme
seem appealing and we describe in the next section how we have modified it to
make it practical.

3. Description of the algorithm

Since the real-world problems we have at hand are defined on complete graphs
(and since all the combinatorial algorithms which we knew of and wanted to
use for comparisons are designed for complete graphs) we decided to write the
code for such graphs. However, this is only a superficial restriction, since we
actually work on very sparse subgraphs of K, which we extract from K, by certain
heuristic rules. It needs almost no changes to modify the code for the treatment
of general graphs. So we assume that the input to our algorithm is 2 list
C12, C13y - « 5 Cins €23, €24y - - - - » Cn_1.n OF (integral) edge weights of K, n even.

We also point out that our code has been developed for solving large problems
(e.g. atleast 300 nodes which means 44 850 and more variables). The largest problems
we report about here have 1000 nodes, i.e. 499 500 variables.

As mentioned before we replace the ellipsoid method by the simplex method and
obtain what is usually called a cutting plane procedure. In each iteration a linear
program has to be solved to optimality. The optimum solution is analyzed, and
either new cutting planes or new variables have to be added. Clearly, the first case
comes up if the LP-solution is nonintegral, the second case may occur since we do
not work on the whole set of variables. The restriction to a subset of the variables
is a computational necessity, since otherwise the linear programs (e.g. with several
hundred thousands of variables) would not be manageable. Furthermore, our compu-
tational experience has shown that for most problems relatively few variables suffice
to produce a globally optimum solution.
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In Fig. 3.1 we give a schematic description of our algorithm which shows the
general strategy. Tactical issues will be discussed by describing the contents of the
boxes of our flow chart.

We now describe the details necessary to understand the boxes of the flow chart
given in Fig. 3.1.

Box 1. A set E'c E of so-called ‘candidate edges’ to be used as the variables of
the initial LP is chosen. For each node we determine the NN (1=NN=<|V|-1)
shortest (with respect to their objective function value) edges incident to it. E’ is
the union of these edges. The algorithm has been tested for various values of NN.
It turns out (see Section 4) that

5<NN=10

is a good choice. For problems of size 500-1000 this means that the number of
variables actually used is less then 1% of the total number of variables.

Box 2. The edges of E’ are sorted via Quicksort in nondecreasing order with
respect to their weights. Then we find a matching M E'in a greedy fashion using
the above ordering. If M is not a perfect matching, arbitrary pairs of yet unmatched
nodes are connected by taking edges from E\E’. To guarantee feasibility of the
subproblem defined by E’ we add the edges M\E' to E’. The matching M found
this way does not only guarantee feasibility of the initial LP, but is also used for
optimality checks and set-up purposes.

Box 3. The first linear program to be solved is the trivial relaxation

min cg Xg
xeg(8(v))=1 forall veV,

x,=0 forall ecE’,

of the subproblem induced by E'. This LP has the desirable feature that the set of
feasible integral solutions of it is the (nonempty) set of all incidence vectors of
perfect matchings in [V, E’].

For an initial basic solution of this LP we use the variables corresponding to the
matching M determined in Box 2.

Box 4. The linear programs are solved with IBM-MPSX/370 using PRIMAL. In
a general step, the optimum solution obtained in the previous step is used as a
starting basis. This is computationally profitable since it avoids total reoptimization
of the whole LP. If new cuts have been added, this basis is infeasible for the primal
problem but feasible for the dual. In this case (the usual one) a dual variant DUAL
of the simplex method is used before calling PRIMAL. Let x* be the optimum
solution of the current LP.

Box 5. We construct a capacitated graph G,- which represents the LP-solution
and serves as input for the cutting-plane recognition phase of the algorithm as
follows. Set G,»=[V, E,+] where E,.:={ije E'|x*> 0}, and define edge capacities
k:E,->R by k;:=x%. At the same time, we test whether x* is integral (to avoid
scanning x* twice).
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Read problem data
K, =[V, E], weights ¢;

!

_l_l Determine a set E'c E
of “candidate edges™

-

2 Use a heuristic to find
a matching M c E and
set E=E'UM
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_E_I Set up initial LP
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Y
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Fig. 3.1.
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7. I Cutting plane
recognition for x*

_7'_1_l Try Heuristic 1

using G,.
yes
no
12 Try Heuristic 2
using G2.
yes

Cuts found?

73 I Run (modified)

on Gi.

Padberg-Rao procedure

Fig. 3.2.
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Box 6. If x* is integral, it induces an optimum perfect matching for the subproblem
considered at present. In this case global optimality is checked (Box 9). Otherwise
cutting planes chopping off x* are determined (Box 7).

Boxes 7 and 8. A detailed description of Box 7 (the ‘key box’) is given later. The
algorithms of Box 7 guarantee that at least one inequality of type (2.3) (resp. (2.5))
which is violated by the current fractional solution x* is found. All cutting planes
found in Box 7 are added in Box 8 to the current LP using the MPSX procedure
REVISE. Hereafter we return to Box 4.

Box 9. The optimum solution of the current LP is integer and therefore determines
a minimum weight perfect matching of [ V, E']. This may not be an optimum perfect
matching of K,! To check this we calculate for each edge e€ E\E’ the reduced
cost of the variable corresponding to it. Let VAR denote the set of edges which
could lead to an improvement. If all reduced costs have the correct sign, i.e. VAR = 9,
the current solution also determines an optimum perfect matching of K,, thus we
can stop having found an optimum solution. In VAR # §, then we set E'=E'OUVAR
and add the corresponding variables—after generating their columns—to the current
LP through REVISE. Afterwards we return to Box 4.

The crucial part of our algorithm is the cutting plane recognition procedure. To
~ outline our strategy in more detail we have expanded Box 7 of Fig. 3.1 into the flow
chart shown in Fig. 3.2. We now describe the contents of Box 7 of Fig. 3.1, resp.
of the boxes of Fig. 3.2.

Box 7. The optimum solution x* of the current LP is fractional and therefore not
in P(G). We have to find a cutting plane and would like to do this as fast as possible.

First observe that the systems of inequalities (2.3) and (2.5) are theoretically
equivalent, but (2.3) has some numerical advantages. Namely, if W< Vis an odd
set, then the three inequalities x(E(W))=<3(W|—1), x(E(V\ w))<3(|V\W|)-1
and x(8(W)) =1 determine one and the same face of P(G). So, if x* violates one
of these inequalities it also violates the other two. For numerical reasons we want
to keep our LP as sparse as possible, and it is easy to see that (with respect to K,,)
always one of the two inequalities of type (2.3) has fewer nonzeros than the
equivalent inequality of (2.5). This counting may not apply to our sparse graphs.
So one should actually test which of the inequalities has the fewest nonzeros and
add this one. However, this causes additional computation and the use of another
data structure for the second type of inequalities. Therefore we have evaluated the
number of nonzeros in the two types of equivalent cuts empirically, and it turned
out that in the vast majority of cases the inequalities of type (2.5) were less sparse
than those of type (2.3). Thus we enlarge our LP by adding cutting planes of type
(2.3) only.

We have mentioned before that the Padberg-Rao procedure to solve the separation
problem for the inequality system (2.5) (and hence for (2.3)) runs in O(n*) time.
This is prohibitive for large problems and therefore we try to avoid the use of this
procedure by invoking cutting plane recognition heuristics.
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Box 7.1. Using Depth-First-Search we check whether the graph G,- (defined in
Box 5) has odd components (i.e. connected components with an odd number of
nodes). If so, each odd component, say [V, E;], of G,~ yields an inequality

x(E)=<3(Vil-1)

which is violated by x*. We do not continue the search for cutting planes and go
to Box 8 adding all cutting planes found. Note that the complexity of this step is
O(| E,»|). Empirically it has turned out that G, is quite sparse (not only because of
our choice of E’), so the empirical complexity of this step is O(n).

Box 7.2. If no violated inequality of type (2.3) has been found in Box 7.1, we
determine a new graph G2 by eliminating all edges from E,. whose capacity is less
than &> 0. In our code we have chosen £ =0.3. Then we apply the algorithm of
Box 7.1 to G2.. (Roughly speaking, we determine ‘weak’ components of Gjs.) If
this algorithm finds odd components of G2. we have to check whether x* violates
the corresponding inequalities (this may not be the case!). If so, cutting planes have
been found and we proceed to Box 8 adding all cutting planes found. Again, this
heuristic runs in O(n) time empirically.

Our empirical observation is that the two heuristics work surprisingly well. In 50
out of the 58 problems on which we report in Section 4, the cutting planes found
by the two heuristics described above were sufficient to determine an optimum
perfect matching. Furthermore, the total number of cutting planes added to the 58
problems was 1309, and only 46 of these were not recognized by our heuristics.

Only in case our heuristics fail to produce a cutting plane we call the Padberg-Rao
procedure.

Box 7.3. Let V. denote the set of nodes of G,- which are incident to an edge
e € E_» with capacity one. Remove V, and all edges incident to a node in V; from
G,~. Denote the new graph by G..=[V’, E}x]. Clearly, each minimum capacity
odd cut in G« determines a minimum capacity odd cut in Gis, and vice versa.
(Note also that the number of nodes of G« is even.)

As shown by Padberg and Rao (1982) a minimum capacity odd cut of G+ can
be found by determining the Gomory-Hu tree of G’ and finding an edge of this
tree having minimum capacity among those edges whose removal splits the tree into
two components of odd size.

Since x* is not in the matching polytope this procedure must yield at least one
odd cut, say 8( W), of G- of capacity less than one. So x(E(W))<3(|W|-1) is
an inequality of type (2.3) violated by x* (we add the inequality corresponding to
the smaller of the two sets X, VA W).

The Gomory-Hu procedure to determine the Gomory-Hu tree uses a max-flow
algorithm as subroutine. We have compared a number of max-flow algorithms
available to us on flow-problems of the type that come up in our cutting plane
algorithm. Among the algorithms we have tested were variants of the Ford-Fulkerson
(1957) algorithm, the Dinic (1970) algorithm, the Karzanov (1972) algorithm, the
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3-Indians (Malhorta et al. (1978)) algorithm and the primal network flow algorithm
(Glover et al. (1979)). The primal algorithm turned out to be the clear winner with
respect to empirically observed running times.
" To save time spent in this computationally expensive step 7.3 we do not grow the
full Gomory-Hu tree unless necessary. As soon as we have found an odd cut of
capacity less than one in one of the intermediate steps we stop and go to Box 8.
Altogether in the 58 problems discussed later, 46 cuts were found in this step 7.3,
and for this a total of 212 max-flow calculations had to be performed. Determining
these 46 cuts by growing the full Gomory-Hu tree approximately 9000 max-flow
calculations would have been necessary.
This finishes the description of our algorithm for the perfect matching problem.

4. Performance of the algorithm

The algorithm was run on the IBM 4331 model 2 of the Institut fur Okonometrie
und Operations Research of the University of Bonn under VM/BSEP. The program
was written in PL/I and ECL standard control language of MPSX. To get com-
parisons, this program was also executed on an IBM 4361 model LKS (Institut fur
Okonometrie und Operations Research, Universitdt Bonn), an IBM 370/168, and
an IBM 3081 (both of the Rechenzentrum der Universitdt Bonn). The running times
on the 4331 reported here were about 3, 15 resp. 45 times as long as those on the
other three machines.

4.1. Test problems

Real-world instances of the matching problem in its pure form are rather rare.
Matching problems, however, come up frequently as subproblems of hard problems;
and a number of combinatorial problems (resp. certain aspects of these problems)
can be formulated as matching problems. For instance, the matching problem plays
a role in the solution of certain shortest path and max-cut problems (cf. Grotschel
and Pulleyblank (1981)), and the Christofides-heuristic for the travelling salesman
problem needs a perfect matching algorithm for complete graphs as a subroutine.
We are using our code and modifications of it in several ways to solve travelling
salesman problems (e.g. in the Christofides heuristic), therefore we have chosen
seven real-world TSP-problems with

24,42, 48, 96, 120, 202, 666

nodes available to us to demonstrate the performance of our code for this type of
‘real-world problems’.

Furthermore, we report here about 10 random problems with the following
numbers of nodes:

100, 200, . . . ., 1000.
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The integer objective function values for these problems were distributed uniformly
in the interval 1 to 5000. Each problem was run with different values for NN, see
Box 1 in Section 3. All problems were run on NN =35, 10, some problems also on
NN=2,15and n—1.

4.2. Computational results

Table 4.1 shows the running times in CPU-minutes (counting input, output, set-up
etc.) on the IBM 4331/2 depending on the number of next neighbour variables NN,
see Section 3, Box 1.

For the seven real-world problems, the shortest running times were obtained for
NN =5 (three times) or NN =10 (four times). For the random problems, NN = 5
always was the best choice with one exception (n=200). On the average (also
counting further problems not reported about here) the code performed superior
with NN =S5.

It turned out that, for all problems, the edges used in the optimum matching
found were among the edges given by the ten next neighbours of any node, cf. SP
in Tables 4.2, 4.3. Therefore, it is clear that increasing NN to a number larger than
10 resulted in poorer running times.

The first experiments with NN =2 showed that the gap between the optimum
solution of the first subproblem solved and the global optimum solution was sO
large that it caused nearly all variables to enter the next subproblem (cf. Section 3,

Table 4.1
Running times (depending on NN)

NN 2 5 10 15 n—1*
n
24 — 0:14 0:15 0:16 0:18
42 —_ 0:40 0:34 0:42 1:09
48 — 0:33 0:30 0:55 1:03
96 — 1:07 1:09 1:27 5:34
120 — 6:18 5:38 7:19 34:50
202 — 3:24 3:29 4:32 7:52
666 — 73:01 62:31 70:51 108:09
100 0:59 0:40 0:48 — —
200 3:46 1:45 1:28 — —
300 5:43 3:45 3:56 — —
400 10:51 6:06 7:26 — —
500 17:27 9:19 13:04 — —
600 21:17 14:15 18:28 — —
700 31:08 23:42 35:18 —_ —
800 56:30 33:55 47:46 —_ —_
900 77:37 50:22 63:35 — —
1000 113:46 61:09 142:51 —_ —

* For n =202 we used NN =30, for n =666 we used NN =25.
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Table 4.2
n NN VAR LP C HC MF SP
24 5 80 1 0 0 0 1
10 150 1 0 0 0 1
15 217 1 0 0 0 1
23 276 1 0 0 0 1
42 5 135 8 12 12 0 2
10 259 6 10 10 0 1
15 389 6 10 10 0 1
41 861 4 10 10 0 1
48 5 153 4 4 4 0 2
10 290 3 4 4 0 1
15 433 3 4 4 0 1
47 1128 3 4 4 0 1
96 5 302 8 16 16 0 2
10 712 7 16 16 0 1
15 1063 7 16 16 0 1
95 4560 7 16 16 0 1
120 5 379 39 63 44 77 2
10 712 29 54 45 46 1
15 1063 29 54 45 46 1
119 7140 24 50 46 20 1
202 5 639 12 36 36 0 2
10 1262 10 34 34 0 1
15 1891 10 34 34 0 1
30 3928 10 34 34 0 1
666 5 2101 27 162 162 0 3
10 4055 37 184 184 0 1
15 6083 37 184 184 0 1
25 10 201 37 184 184 0 1

Box 9). Therefore, in this case we restricted the size of VAR to n+500 to keep the
problem manageable. This resulted in a large number of subproblems to be solved
(cf. SP in Tables 4.2, 4.3) but also to unexpectedly large total numbers of variables
used, and the running times were considerably larger than those for NN=5. In
particular, the time consuming Box 9 was entered more often than in all other cases.
There may be more intelligent ways to select new variables VAR (e.g. choosing a
limited number of new variables taking the values of the reduced costs into account),
but we believe that NN = 2 is just a bad initial choice. Our computational experience
shows that in the problem range we have considered (24<n=< 1000) a good choice
for the initial set E’ of variables is obtained by setting S<NN=10.

In Tables 4.2 and 4.3 we report results which—in our opinion—are at least as
significant as the running times. The rows of these tables correspond to the test
problems (described before), the column labels have the following meaning:

Ax e s o g




PESTT N

M. Grétschel, O. Holland | Matching via linear programming - 255

Table 4.3

n NN VAR LP C HC  MF SP

100 2 203 3 2 2 0 2

5 314 2 2 2 0 1

10 574 2 2 2 0 1

200 2 1011 4 5 4 3 4

5 631 4 5 4 3 1

10 1128 4 5 4 3 1

300 2 1285 5 2 2 0 4

5 958 2 0 0 0 2

10 1772 1 0 0 0 1

400 2 1735 6 4 4 0 6

5 1279 2 0 0 0 2

10 2378 1 0 0 0 1

500 2 1916 1 12 12 0 5

5 1568 3 2 2 0 2

10 2942 2 2 2 0 1

600 2 2406 9 8 8 0 5

5 1903 4 6 6 0 1

10 3563 4 6 6 0 1

700 2 2781 7 6 6 0 4

5 2237 2 0 0 0 2

10 4121 1 0 0 0 1

800 2 3144 17 22 18 14 5

5 2554 5 6 6 0 2

10 4711 4 6 6 0 1

900 2 3238 8 4 4 0 6

5 2856 3 2 2 0 2

10 5295 2 2 2 0 1

1000 2 4602 9 4 4 0 7

5 3174 4 4 4 0 2

10 5876 2 2 2 0 1

NN 2 number of next neighbour edges chosen (see Box 1, Section 3),

VAR 2 total number of variables (initial ones plus all the ones added later) used
in the linear programming phase,
LP 2 total number of linear programs solved (calls of MPSX),
C 2 total number of cuts added to the initial linear program of Box 3,

HC 2 number of cuts found by the heuristics desciibed in Boxes 7.1 and 7.2,
MEF 2 total number of max-flow calculations (in the Padberg-Rao algorithm),
SP 2 number of LP-subproblems solved (number of times Box 9 is entered).
Tables 4.2 and 4.3 show that, for instance, for NN =5 in all cases less than 1%
of all variables were sufficient to find an optimum integral LP-solution and to prove
global optimality. The total number of linear programs solved (LP) is extremely



256 M. Gréischel, O. Holland / Matching via linear programming

small, in particular for all random problems and all large problems (n =200). The
total number of cuts (C) added is at most n/2, and moreover, almost all cuts were
found by the heuristics (HC). Only in 8 of the 58 problems documented in Tables
4.2 and 4.3 the Padberg-Rao procedure to identify violated constraints had to be
invoked. But also in these 8 problems very few calls of*the max-flow algorithm

(MF) were sufficient to determine a violated cut. The number of subproblems solved

(SP), i.e. calls of Box 9, with the costly calculation of reduced costs is very small.
For NN =5 no more than 2 (exception n =666) subproblems were generated. For
NN = 10 the inital set of variables always contained the optimum perfect matching,
so SP=1 in all cases with NN=10. '

Summing up our computational experience with the Simplex-based cutting plane
algorithm described before we can state the following empirical observations.

For the problems considered the running times grew roughly linearly with the
number of edges. This result has been surprising to us since we implemented an
algorithm with nonpolynomial worst-case time bound. The reasons for this seem to
be the following

- less than 1% of the total variables were needed to provide an optimum solution,
the number of subproblems (optimality checks) has been very small,
the total number of cuts needed has been less than |V|/2,
nearly all cuts were identified by fast heuristics,
the modification of the Padberg-Rao procedure used worked quite effectively.
And the simplex algorithm is fast on the average!

The performance of the LP-code used (IBM’s MPSX) was, however, not totally
satisfactory. For instance, we observed that for each of the two linear programs
which had to be solved for the 1000 nodes problem with NN =35 took about 23
minutes. About 90% of this time was spent on I/O-activities. Thus the numerical
calculations were performed in about 2.5 minutes. The reason for this behaviour
seems to lie in the design of MPSX which has been developed in the late sixties to
run on machines with considerably less memory than available today. So it might
be possible to get a speed-up by a factor 10 in the pure LP phase. Moreover, the
LP-update facilities (MPSX-procedure REVISE) for adding rows and variables are
quite time consuming due to their design for occasional use. Again, substantial
speed-up may be obtained in these phases of the algorithm.

In our opinion there is need for new and better LP-codes which are adequate to
the requirements of a cutting plane procedure, which also have an interface to a
language ‘faster’ than PL/I, and which take more advantage of the storage capacities
available today. With such an LP-code our algorithm would probably show an even
better computational behaviour.

5. Comparisons with other codes and conclusions

As mentioned in Section 1 there are several combinatorial matching-codes available.
They have been compared by U. Derigs with a code published in Burkard and Derigs

.
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(1980). This code turned out to be superior to all other combinatorial codes used
in this study. Thus we could restrict ourselves to a comparison with the Burkard &
Derigs procedure, called SMP, which is implemented in FORTRAN IV, see also Derigs
(1983).

Table 5.1 reports the results we obtained. T(SMP) is the total CPU-time in minutes
(on the same IBM 4331/2) needed with the combinatorial code SMP. The right
column (T(5)) contains the running times for the cutting plane procedure with
NN =35 (cf. Chapter 3, Box 1, and Tables 4.2 and 4.3). The times include total
computation, input, output, etc.

This table, in fact, was the real surprise of our computational study. It shows that
the performance of our cutting plane procedure is comparable with the best com-
binatorial code for the perfect matching problem available today.

Clearly, for small problems the overhead costs (set-up etc.) of the LP-code are
significant, and usually a combinatorial code has terminated before the first LP has
been started. But for n =300 our code is really competitive and sometimes faster.
(Our initial guess was that it would be about 10 to 50 times slower.) We should
however be careful with such a conclusion since it may not only depend on the
codes, it may also depend on the computers used (due to special processors favouring
the operations of one of the codes).

We are sure that the combinatorial codes have not reached their limits yet. One
reason is certainly that most of these codes were designed and programmed by
people who only occasionally implement algorithms. (In contrast to this, most of
the commercial LP-codes like MPSX have been implemented by professionals, and
our 4dlgorithm certainly benefits from this.) Some possibilities for speed up are the
following. All the combinatorial codes we know use the full set of variables all the

Table 5.1

Comparison with the best combinatorial code

n T(SMP) T(5)
24 0:02 0:14
42 0:03 0:40
48 0:04 0:33
96 0:11 1:07

100 0:10 0:40

120 0:21 6:18

200 1:02 1:45

202 1:52 3:24

300 4:07 3:45

400 5:04 6:06

500 10:31 9:19

600 24:43 14:15

666 56:09 73:01

700 51:04 23:42

800 69:47 33:55

900 59:05 50:22

1000 66:35 61:09
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time. We believe that reducing the number of variables heuristically, performing
optimality checks by calculating reduced costs, and applying sparse graph techniques
could considerably improve the empirical (but not the theoretical) running times.
Moreover, only few of these combinatorial codes have heuristic features (e.g.
intermediate search for a good matching, or using a good matching as a starting
solution) which usually result in a better performance on the average. Implementing
these ideas might give the lead again to the combinatorial codes, but these gains
might be matched by our algorithm through the use of better LP-codes as indicated
in Section 4.

Overall, it is our opinion that LP-codes provide more flexibility, in particular if
one wants to solve problems which are not pure matching problems (this is the
usual case in practice). Even if the additional constraints destroy integrality of the
LP, good bounds (depending on the type of problem) for a (fast) branch & bound
procedure may be obtained. Furthermore, cutting-plane procedures can be used as
subroutines for difficult (e.g. NP-complete) problems.

Within this conceptual framework we are currently working on a special code
for the perfect 2-matching (with applications to the travelling salesman problem)
and for the general capacitated b-matching problem, and we have good hopes for
a reasonable numerical behaviour of these codes.

There is, however, one drawback of the cutting plane LP-codes which we should
mention. They are by far not as easy to code and to make reliable as it might appear
from our description.

Note added in proof. After completion of our study U. Derigs, see Derigs (1984),
has applied the sparse graph techniques and heuristic enhancements described in
the present paper to his primal combinatorial matching codes. This resulted in
substantial running time improvements which make his new codes faster than our
cutting plane procedure.
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