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Abstract — Zusammenfassung

A Cutting Plane Algorithm for Minimum Perfect 2-Matchings. We describe an implementation of a
cutting plane algorithm for the minimum weight perfect 2-matching problem. This algorithm is based on
Edmonds’ complete description of the perfect 2-matching polytope and uses the simplex algorithm for
solving the LP-relaxations coming up. Cutting planes are determined by fast heuristics, or. if these fail,
by an efficient implementation of the Padberg-Rao procedure. specialized for 2.matching constraints.
With this algorithm 2-matching problems on complete graphs with up to 1000 nodes (i.c.. 499.500
variables) have been solved in less than | hour CPU time on a medium speed computer.

AMS Subject Classificutions: 05-04, 05C45. 90C10.

Kev words: Matching. cutting plane algorithm, polyhedral combinatorics.

Ein Schnittebenenverfahren fiir minimale perfekte 2-Matchings. Wir beschreiben die Implementicrung
cines Schnittebenenverfahrens zur Bestimmung minimaler gewichteter perfekter 2-Matchings. Der
Algorithmus baut auf der vollstindigen Beschreibung des perfekten 2-Matching-Polytops. die Edmonds
angegeben hat, auf und verwendet die Simplexmethode zur Losung der im Verfahren auftretenden
LP-Relaxierungen. Schnittebenen werden entweder mit schnellen Heuristiken bestimmt. oder. falls diese
nicht erfolgreich sind. mit ciner eftizienten und auf 2-Matching-Ungleichungen abgestimmten Imple-
menticrung des Padberg-Rao-Verfahrens. Mit diesem Algorithmus konnten 2-Matching-Probleme in
vollstindigen Graphen mit bis zu 1000 Knoten. d_h. mit bis zu 499.500 Variablen. in weniger als ciner
Stunde CPU-Zeit auf cinem Rechner mittlerer Leistung geldst werden.

1. Introduction

Just as matching theory is onc of the central topics of graph theory, the development
of efficicnt matching algorithms has been a major issue in combinatorial optimi-
sation and computer science — see [9] for the state-of-thc-art and the history of this
subject. Algorithmic research has mainly concentrated on the design of fast methods
for the perfect 1-matching problem — to which, in fact, many of the other types of
matching problems can be reduced. Usually, however, thesc reductions enlarge the
size of a problem significantly, and it is much more appropriate to design special
purpose algorithms if other matching problems are of intercst.

The problem we are aiming at is the weighted minimum perfect 2-matching problem
which we call just 2-matching problem henceforth. An instance of this problem is
specified by a graph G=(V, E) (we assume, without loss of gencrality that G has no
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loops und no multiple edges) and edge weights ¢, € R for all ¢ e E. We want to find a

perfect 2-matching M in G with minimum total weight ¢ (M):= Y c.. A perfeet 2-
ce M

matching (henceforth just 2-matching) is an edge sct M such that cach node is

contained in cxactly two edges of M.

In his seminal paper [2] Edmonds proved that the 2-matching problem can be
solved in polynomial time. He also gave a complete description of the 2-matching
polytope — see Section 2. However, implementing Edmonds’ algorithm cfficiently is
a nontrivial task. The only working implementation we arc aware of is the code of
Edmonds, Johnson and Lockhart described in [3]. But this code can handle only
rather small graphs of no more than 1500 edges. We will describe an implementation
of a cutting planc algorithm for this problem. Qur code is theoretically non-
polynominal — it could be made polynominal, though — but empirically quite
efficient. Tt has successfully solved 2-matching problems on graphs with hall a
million edges.

The main interest in the 2-matching problem stems from the fact that it is a nice
relaxation of the symmetric travelling salesman problem. This applies to our case
also. We have designed the algorithm described here mainly to solve relaxations of
the TSP and to get good lower bounds. This code will be merged with another code
for the 1-matching problem — see [7] — modificd and enhanced by further “tricks™
to solve large travelling salesman problems. We found out empirically, however,
that 2-matching and travelling salesman problems have to be handled differently.
This means that the most efficient versions of our codes for the 2-matching problem
and the TSP usc diffcrent stratcgies for recognizing 2-matching constraints. and so
there are significant differences between these algorithms.

The remaining part of this paper is organized as follows. In Section 2 we outline the
theoretical background (polyhedral combinatorics, separation ctc.) of our algo-
rithm. A description of our version of the Padberg-Rao procedurce for finding 2-
matching constraints is given in Section 3. The complete cutting planc algorithm is
stated in Section 4 and computational results are reported in Section 5.

2. The Polyhedral Approach to the 2-Matching Problem

We will now describe the polyhedral background of our approach.
Let a graph G=(V, E) be given. For an edge sct F ¢ E, the vector 7F =) with
yF=1ifeeFand yf =0if ee E\F is called the incidence cector of F. The 2-matching
polytope Q(G) of the graph G is the convex hull of all incidence vectors of 2-
matchings of G, i.e.,

Q(G)=conv {y* e R | M c E 2-matching}.
A major result of [2] is the complete description of Q (G) by linear inequalities and
equations. To state this, let us introduce the following notation.

For W< V, the symbol E (W) denotes the set of all edges of G with both endnodcs in
W, while 8 (W) denotes the set of edges of G with one endnode in W and the other in
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VW, 8 (W) is called a cut. For any xe [ and any & . the sum Vv, s abbreviated
) . . ) e U

by ~(F ).TRecull that an inequality a’ x <z is called ralid for a polvtope P it

Poix|u” x<) and that, fora valid inequality o ¥ =< Frooixe Piatx 7 is

callc_d a fuce of P. A face of Pisa fucer if dim(Fy=dim P11 where dimPhis the

maximum number of affinely independent points in P minus 1.

Since Q(G) is contained in the unit hypercube the incqualities

2.1 O<x.<l forall cell

are valid for 0 (G). Asevery nade of G is contained in exactly 2edges of a 2-matching,
every point in @{GQ) satisfies the equations

2.2) x(de)=2 forall rel.

Observe that every 2-matching is the disjoint union of circuits. And since every
circuit intersects every cut inan even number of edges. every 2-matching interseets
every cul in an even number of cdges. This graph-theoretical observation implics
that every point in Q(G) satisfies the following system ol incqualities

N(N—-x(EW).N<ITI-1 for all < 1 and all

(2.3)
' Toa(H) with 77 odd.

By adding, to any of the inequatlitics of (2.3). the equation Nox (o) =21 L wesee

-

that the system (2.3) is equivalent to oW
| TI-1 -
2.4 x(EM)+x(D<IWi+s 5 for all Wl

and all 7o (W) with | 1] odd.
Using, for each vector X € R with 0 <x < 1, the vector X € sik defined by xoo- 1 — X,
one immediately notices that the system (2.3) s also equivalent to
f(D+x(6W N=1 for all Wb and all

2.5
(2.3 T o (W) with] T odd.

The inequalities (2.3). (2.4). or (2.5) arc psually called domatching constraines.
Edmonds [2] proved. that the inequalities (210 (2.2). and the 2-matching
constraints suffice to describe Q(G). i.c.

(2.6) Theorem: For every gruph G=(}.E).
Q(G)= (€ RF | x satiyfies (2.1). 12.2). and (2.3)1.

As mentioned above, the system (2.3)cun be replaced either by the incquality system
(2.4)or by (2.5). For various reasons, it is important o consider only inequalities that
define facets of Q (W). For the complete graph K, on n nodes. the case we will be
concerned with later, the facets of O (K,) have been characterized in (6], From this
the following description of Q(K,) can be derived.

(2.7) Theorem: The Sollowing system of incqualitics and equations ix d complvte and
nonredundant characterization of Q(K,). nz5:

W 0<x, <1 forull ceE.

e
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(i) x(d (v))=2 for all eV,
(iii) x(D—x(d(WN\T)<| T|—1 for all WSV and all T<3(W) such that
(¢) T is a matching,
(h) | T|23and | T odd, or | T|=1 and 4<|W|<n—4
(¢) We¥ where ¥ is any set of subsets of V' such thut
Wet < V\Weg1 .

These results imply that the 2-matching problem can be solved by solving the lincar
program

(2.8) min¢T x, x satisfies (2.1), (2.2), and (2.3).

Instead of the system (2.3). the system (2.4), or (2.5), or the one described in (iii) of (2.7)
can be used in (2.8). The number of constraints of (2.8) is cxponential in the encoding
length of the graph G, but this is not too important since one can derive from the
ellipsoid method — sce [8] — that the lincar program (2.8) can be solved in
polynomial time if and only if the following separation problem can be solved in
polynomial time.

(2.9) Separation Problem for Q (G):Given a vector ye QF, decide whether ye Q(G)
and if y is not in Q(G), find a hyperplane separating y from Q(G).

Since Q(G) is defined by, e.g., the inequalities (2.1), (2.2), and (2.3), the separation
problem for Q (G) can be solved by checking whether a given vector y€ Q* satisfies
(2.1), (2.2), and (2.3). By substituting y into (2.1) and (2.2) it is of course trivial to
check these inequalities. It is not obvious 1o see whether y satisfies all inequalities
(2.3). But Padberg and Rao [10] found an algorithm — to be outlined in the next
section — with which this can be done in polynominal time.

A combination of this separation algorithm with the ellipsoid method results in a
polynominal time solution procedure for the 2-matching problem. This procedure,
howevcr, is quite inefficient in practice.

We have replaced the ellipsoid method by the simplex method, added a few
heuristics, designed special data structures and scarch techniques etc. to make it
work in practice. These modifications will be described in the next two sections.

3. The Separation Subroutine

We will now outline the algorithms we have implemented to solve the separation
problem for the system (2.1), (2.2), (2.3). In fact, the initial linear program we solve
consists of the bounds (2.1) and the equations (2.2). So these inequalities and
equations will be satisfied by any point to be considered. Checking the system (2.3) is
the crucial point.

As remarked before, we have implemented our algorithm for complete graphs K,
since all our applications are 2-matching problems on complete graphs. We will
describe later how arbitrary graphs can be handled and restrict our attention now to
the complete case. Define, for the complete graph K,=(V, E),

(3.1) n.={xeRE|x satisfies (2.1) and (2.2)}.
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It is casy to see that

O (K,)=conv {xeQilx intcgral] .
$O
(3.2) max ¢ x. xe QF, x integral
is an integer programming formulation of the 2-matching problem. The vertices of
Q" arc either incidence vectors of 2-matchings or fractional points with nice
structural properties. Namely, all fractional components of a vertex y of Qf have
value §, and moreover, the set ofedges Fi=1{c€E[y. =11 is the disjoint union of an
even number of circuits of odd length. This fact in mind, we have designed a heuristic
that scarches for such structures and may produce violated inequalities of type (2.3).
It is guarantecd to find, for each fractional vertex y of Q%, 2 2-matching constraint
violated by y; but it frequently also finds cutting planes if vertices of other (tighter)
L P-relaxations are given 10 it.

(3.3) A Separation Heuristic for the Inequalities (2.3):
Input: A point y€ Q" satisfying (2.1) and (2.2) and a rational number 0 <g<}.

1. Construct the graph G,:=(V,E,) defined by E,:={ecE{e<y. < 1 —¢}.

. Determine the connected components (V1. Ey), oos(Vi, E)) of G, with | V|=3,
i=1,...k

1. FOR i=1, ...,k DO the following:

a) Sort the edges e€ E with eed(V) and y,>1—¢in nonincreasing order to
obtain a sequencc ¢, ..., e, of edges. (If pis cven, then add a largest edge ¢ with
yo<e)

b) Set z:=y(E(¥))+Y., and j:=1.

¢) WHILE j<p DO;

IF z>| V| +(i—1)/2, THEN
DO;

Ti:={eg, ... )5

STORE (¥, To):

LEAVE while-loop,

END;
SET z:=z+ ;. FVejear
SET j:=j+2;

END WHILE;

All pairs (¥}, T;) stored during the execution of (3.3) define inequalities
x(EM)+x (L)< VI T =1)/2

that are violated by y. By running experiments with fractional solutions that came
up in our algorithm we found thate: = 0.3 is a good choice for the heuristic described
in (3.3). The worst-case running time of (3.3) is 0(n?); for our choice of ¢ and the
inputs supplied by the cutting plane algorithm, it is empirically linear on the
average.
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All violated inequalities found in heuristic (3.3) will be added to the current LP.
Typically, in the first iterations of the cutting plune procedure. heuristic (3.3) Is quite
effective and finds many culting plancs. 1f it fails to find any violated incquality. the
Padberg-Rao procedure, that provably will produce such an incquality. if any exists.
is called. We outline this method now.

The first step in this method is a procedure that repluces every edge by two cdges in
scries and labels nodcs in & certain way.

(3.4) Labeling Procedure:

Input: A graph G =(V.E) with edgc weights #.e R such that 0< . <1 and a set
TV, |T) even.

Output: A graph G* =(V* E*) with edge weights z,, 0<z, <1, and a set THC V*
| 7| even.

I. Set V*:=k*. =@, T*:=T.
2. Order the edges in E arbitrarily, say ¢;,....¢,,.

3. FOR k=1TO m DO;
Suppose ¢, = ur, set V*:=V* U {u,1.i,} (where i, is a new node representing
the edge ¢,), E*:=E* U {ui,,.vi,,) (so ur is replaced by two cdges in serics),
T*:=T*Alu,i,} (where A denotes thc symmetric difference), and set

(g
=1

z . =] —i z.
St Jen et SOkt

END O

It is convenient to call the nodes in the final set T* the nodes labeled odd and to call
the nodes in V*\T* labcled exen. A cut S(W*), W*c V¥ in G* is called odd iff
| T* n W*| is odd.

Let, as before, K, =(V, E) be the complete graph on i nodes and assume that we have
a point y € @* that satisfies (2.1) and (2.2). We first construct the graph G, =(V.E,),
where

E,:={ecE|y,>0}.

Now the Padberg-Rao procedure calls the labeling method described in (3.4) with
input G, =(V.E,), weights V., ¢€ E, and 7:=0 to construct the new graph
G*=(V* E*) with weights z,,¢€ E*, and an even sct T*< V* of odd nodes.

For each odd cut 8 (W*) of G* we can construct a corresponding cut in G, by setting

W=W*nV
and

T:=1{ured(W)|ui.e3(W?*) with z,;_ has been set to 1 —y,, where e=ur}.
Notc that | 7| is odd since d(#*) is an odd cut in G*. By definition
2(8(W*)=y (0 (WNT)+3(T),

and so, 3 (W*) is an odd cut of z-wcight less than 1 if and only if the corresponding
incquality ¥(7T)+x (S(WNT)=1 of type (2.5) is violated by y.
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1t follows that v satisfies all incqualitics (2.5) {or equivalenily. all inequalities (24 or
(2.3)) if and only if the minimum weight of an odd cut in G¥ is at least 1.

Padberg and Rao (107 have shown that an odd cut of minimum weight can be
determined by a modification ol the Gomory-Hu procedure — sce [5]or (9] This
algorithm is polynomial but requires O (| F'i+ | E_‘,l)‘] operations in the worst-tasc.
Tao get a practically efficient separation routine it is vital to reduce this time bound
considerably for the type of problems that arise in this context. This can be done by
various preprocessing procedures and modifications of the standard Gomory-Hu
algorithm. We will bricfly explain a few that have resulted in significant empirical
running time improvements.

The Padberg-Rao procedure continues as follows. Starting with ¢* = (}* E*and
an even set T*<V* a Gomory-Hu tree (or flow-cquivalent-tree) H s build up
recursively in the following way.

Initially. the tree H consists of one trec-node. representing all nodes b* of G*. and
no trec-cdge. We call a tree-node exhausted if it represents a node set W< ¥ with
[ T% A WH|=1. 1 all tree-nodes are exhausted the algorithm stops. Otherwise we
pick an unexhausted tree-node w*. This node represents some set W¥ e 1%, Let
Wi..... W, denote the node sets of the components of H —w* and let. fori=1..... k.
W# be the union of the node sets in G* represented by the nodes in W;. Construct
a graph G% from G* by shrinking suceessively the nodes scts Wi, . WE o
nodes wi. ...,wy, say,and modify the edge weights accordingly. Then we choose two
nodes i, r e T# m W# and determine a minimum weight cut 8 (U*)in G separating
u and r. The tree-node w* is now replaced by two new nodes u*. representing
U* ~ W#*, and r*. representing the nodes {xe W*|x¢ U*}. The Gomory-Hu-trecis
updated in a certain way and the process is repeated until all tree-nodes are
exhausted.

Padberg and Rao have shown that every tree-cdge with weight less than 1in the final
Gomory-Hu-trec that scparates the tree into two odd components yiclds a cut o (W)
and an odd subset T of 3(W)such that the corresponding inequality (2.5) is violated
by v. If no such trec-cdge cxists. all these inequalities are satisfied by 1.

In a former version ofour a jgortthm we stopped constructing the Gomory-Hu-tree
as soon as a tree-edge of the present Cromory-Hu tree had been determined whose
weight was less than 1 and scparated the present tree into two odd components. The
corresponding culling plane was added to the current LP and no attempt 10 find
further violated inequalitics was made. By comparing this procedure with the
strittegy to build up the whole Gomory-Hu-tree and adding all cutting planes
provided by the trec we found that the latter strategy 1s supcrior with respect 1o
overall running time — sec Section 5. So this strategy is part of our present code.

Let us now discuss four features that contributed to considerable speed-ups of the
Padberg-Rao algorithm.

Note first. that to build up the whole Gomory-Hu-tree. a max-flow algorithm has to
be called | 7% — 1 times. In the worst-case | T#|=| V[+|E,|.In general | E, [may be
O( ¥1?). but in our application |E |<c| VI holds empirically for a rather small
constant ¢. Moreover. by preprocessing and applying the jabeling method in a
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special way, we can get
[ T*|<|{ee L, |0 <y, <1]] +r(G).

where «(G') is the number of components of G* defined below. This is best possible.
The preprocessing consists simply of removing all edges ¢ from E, with y.=1,
labeling the cndnodes of such edges, and deleting those nodes from G, that are
endnodes of two cdges with y-weight equal to 1. More exactly, wc set Vi={reVlr
is incident to at least onc edge e with O<y,<lj, E':={ce EJO<y, <l
G':=(V,E')and T':={ve V| visincident to exactly one e with y, = 1}. Now we call
the labeling procedure (3.4) with input G =(V", E), y'(which is the vector y restricted
to E'), and T" to obtain a graph G* =(V*, £¥) with cdge weights = and an even set
T*< V*.Itis casy to scc that a Gomory-Hu tree obtained from this graph hasa tree
cdge of weight less than | scparating the Gomory-Hu tree into two odd components
if and only if a Gomory-Hu tree derived from the graph G* obtained by the labeling
method (3.4) with input G, y, and T=0 has such an edge.

Moreover, instead of ordering the cdges of E in step 2 of (3.4) arbitrarily, we proccss
them using depth-first scarch as follows. We start depth-first search with an
arbitrary node rq € V. A node u is processed after all its successors (in the depth-first
search tree) have been processed. Let ¢ be the number of edges in (1) that are not
edges of the DFS-tree, let [=1 if ueT* and /=0 otherwise, and lct p be the
predecessor of u. First, for all edges e=uveds(u) not in the DFS-trec we set
2=1=Tu 2= Jo, and T*:= T* U {i,}. Then, for e=up, if g +1 is even we set
24t = For 2pii =1 =P T*:=(T"\{u}) A {i,,p}, and if g +1is odd we set z,;,: =1 — Ve
25, = Per T*: =(T*\{u}) U {i,}. Obviously, for each component Vi, E})of G' we have
| T'nV;|<|Ei|, and it is easy to see that this labeling procedure stops with
| T* A Vi|=|E;| if |E{|+|T nV;| is even and with |T*n Vi|=|E/|+1 if
|E{|+| T n Vil is odd. Clearly, this is the best possible labeling that can be
achieved.

The performance of the max-flow algorithm (which is called | 7%[—1 times in the
Gomory-Hu procedure) is quite crucial. We have compared various max-flow
algorithms on the type of graphs that come up in this application. Our own
implementation of the variant of the primal simplex algorithm described in [4] was
the best method with respect to empirically observed running times.

Recall from the outline of the Gomory-Hu procedure that the graphs, to which the
max-flow algorithm is applied, are constructed from G* (and T*) by shrinking
certain node sets that can be read from the current Gomory-Hu tree. As mentioned
above, we can replace the graph G* constructed from G, by a (usually) much smaller
graph, and also the size of T* can be controlled efficiently. We observed in a former
version of our algorithm that the shrinking procedure, if programmed in a
straightforward way, is rather time consuming. In our present version we proceed,
roughly, as follows. We do not shrink from scratch every time. After having
determined a minimum weight cut in some current graph G =( 7, E) we immediately
construct the (at most) two possible new graphs that can be derived from the new
Gomory-Hu tree by shrinking certain node sets in G and store these two graphs for
future processing on a stack and remove G from the stack. To save storage space we
place the graph with the smallest number of nodes in T* (but at least two) on top of
the stack.
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Moreover, by carefully analysing the speciul structure of the graphs that come up,
one can see that the whole subdivision procedure (replacing an edge ut by the two
edges ui, and ri, in serics) does not have to be performed explicitly for the max-flow
caleulation. The max-flow algorithm can be run on graphs obtained from the
original graph G .. even better from ', by shrinking certain node sets. This is due to
the fact that 2 minimum cut that separates two nodes v and r will always contain the
edge ui, or ri, with the smaller z-value. The only edges that have to be subdivided
explicitly are those incident to the two nodes s, 1 in 7% for which a minimum weight
[s.1]-cutis to be determined. Since T* contains only new nodes i, of degree two, with
at most onc possible exception, this shows that all max-flow calculations can be
performed essentially on minors of G, resp. G'. This observation and its (tedious)
implementation resulted in considerable running time improvements.

The outline of our version of the Padberg-Rao resp. Gomory-Hu procedure may
seem rather superficial. We have tried to explain the basic ideas. The technical
details, data structures etc. are quite involved and their exact description is beyond
the scope of this paper and its page limits.

4. The Cutting Plane Algorithm

We now give an outline of the cutting plane algorithm we have designed for solving

the 2-matching problem on complete graphs K, =(V, E) with weights ¢, € R for all

ee E. As our LP-solver we use 1BM’s lincar programming package MPSX. For this

reason the code is written in PL/I and ECL.

(4.1) Input: The following data are read: The edge weights ¢;;, 1 <i<j<n, the
parameters NN, D, C (NN is short-hand for “next neighbour™ and is used in
(4.3) to select the initial set of variables; D and C arc parameters that control
row elimination and cutting plane rccognition, respectively — see (4.7) and
(4.8)).

(4.2) A Heuristic for 2-Matching: We run a greedy-type algorithm to find a “good”
2-matching M.

(4.3) Selection of Variables: Weset Fq:= M and, depending on the parameter NN,

we add to E,, for each node t, the N' N edges in 4 (¢) with smallest weight. Eq is
our initial set of variables. By construction E, contains a 2-matching.

(4.4) Initial LP- We set up the data structures for the constraints of the initial LP
x(8()nEy)=2 forallveV
0<x, <1 for all ee Ey.
We set up a starting basis using M, and definc k:=1.
(4.5) Wecall PRIMAL to obtain a minimum solution x* of the current LP and save
the basis.

(4.6) Optimality Check and Addition of Variables: 1f x* is integral, x* provides an
optimum solution of the 2-matching problem — see(3.2) — on the current set
of edges E,. For every edge ¢ € E'\E, we generate the corresponding column of
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(4.7)

(4.8)

(4.9)
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the current LP (this has to be implemented very carcfully) and caleulate the
corresponding reduced cost. We also set ki=1.

Ifall the reduced costs have the correct sign, x* is globally optimal and thus a
minimum weight perfect 2-matching for the initial problem. In this case we
stop.

Otherwise we add cdges (o E, that may lead to an improvement. We never
add more than n + 300 edges to Eq, but usually, much less edges have reduced
costs with the wrong sign. We call REVISE, restore the old basis and go (o
(4.5).

Elimination of Cuts: In this case x* is not integral. 1f D=1 and k=5 we
climinate all 2-matching constraints from the current LP that are nonbinding
at the current optimum solution x* and set k:= 1. (So, using strategy D=1,
about every fifth time we reduce the size of our LP. We have tested a few values
between | and 10 the number § scemed to be the best compromise: but it is
still quite arbitrary. If D=0 incqualities will never be eliminated.) Otherwisc
we set ki=k+ 1.

Cutting Plane Recognition: Since the current optimum solution x* s
nonintegral, a 2-matching constraint violated by x* does exist.

(a) We call heuristic (3.3). If it finds at least one violated 2-matching
constraint we go to (4.9), otherwise we continuc with (b).

(b) We run the modificd version of the Padberg-Rao procedure described in
Section 3.

If ¢ =0, we immediately stop growing the Gomory-Hu tree as soon as a tree
edge of weight less than one is found that separates the current Gomory-Hu
tree into two odd components. This edge provides one 2-matching constraint
violated by x*, and we go to (4.9).

if C =t we grow the full Gomory-Hu trec and take all cutting plancs that can
be read from the final tree. (We have analysed the results of several runs Lo see
whether it pays to check whether the inequalities found define lacets of O (K,)
— see Theorem (2.7) — and to add only those that define facets or to modify
the found ones so that the resulting incqualities that are obtained from the
Gomory-Hu trec define faccts. We observed that most of the incqualities
found do indeed define facets and that the additional searching and medifying
to get facets only is a waste of time. So we simply add, whatever is found.)

Addition of Inequalities: The algorithm in (4.8) (a) and (b) provide us with sets
(Wi, Ty). ... (W,. T,) such that W V. T, 8{W),| T;| odd and the inequality
of type (2.3) (resp. (2.4) and (2.5)) corresponding to W and T.i=1..... pis

violated by x*. Fori=1..... p. we arc free to add any of the following three
incqualities:
(i) x()=x@W)T)<|T|-1,
| T1--1

() NEM)+x(D <| W[+
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To maintain sparsity one should add the one with the smallest number of
nonzeros. We have found empirically that frequently the one of the two
incqualities (i) or (iii) with the amaller set Wiresp. 1 1 of nodes is best in this
respect. So we have decided to use only 2-matching constraints of type (2.4).
The restriction to one type of inequalities has the additional advantage that
the data structures for gencrating new columns in (4.6) hecome casier and thus
column generation (needed in {4.6)) more efficient.

(4.10) We call REVISE to add the incqualities selected in the way deseribed above,
restore the old basis, call DUAL and go to (4.5). O

This finishes the description of our cutting plane algorithm.

Note that the performunce of the procedure depends on the choice of the parameters
NN.D.and C. 1t will follow from the computational results reported in Section 3
that, on the average, 5< NN <10 D=1 and C=1 is the hest choice.

2-Maiching problems on graphs G=( 17 E) that are not complete can be solved by
adding all edges not in the graph with large weight. However, it is much better to
adjust the selection of initial edges E, by setting o1 = E.if G is sparsc. or choosing in
(4.3) only certain edges that are in G. (In such a case, PRIMAL may report in (4.5)
that the current LP is infeasible which proves that the current graph has no perfect
2-matching. Then either further edges of G have to be added or G has no 2-
matching.) Morcover, the optimality check in (4.6) through reduced cost calculation
should be restricted to the edges in G. It is trivial to implement thesc changes.

5. Computational Results

We will now demonstrate the influence of the various still open choices of our cutting
plane algorithm on the total running time of the code. This way we have determined
empirically a procedure which — in our opinion -- performes quite reasonably. We
have solved 2-matching problems with up to 1000 nodes and thus 499500 variables.
The best version of our cade handles such probicms in less than ] hour CPU-timcon
an IBM 4361 Model 5. Of course. since our code has no guaranteed polynonia lupper
bound we cannot be sure that this good behaviour will show up always, there maybe
runawalys in some cascs; but due to our computational experience s0 far we believe
that this will not be too frequent. Morcover, we do not know of any further 2-
matching code that would be able at all to solve problems of similar size.

We discuss two types of test problems; a few randomly generated problems and
some real-world travelling salesman problems. Some of these travelling salesman
problems havc appeared in the literature — see for instance [1]. We identify a
problem by the number of its “cities™ and, if this is ambiguous, by an additional
letter. We report on a total of 22 different real-world instances named
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17, 21, 24, 42, 48, 48 H, 57, 70,
96, 100 A, 100 B, 100C. 100 D. 100 E, 120,
137, 202, 229, 318, 431, 442, 666.

Moreover, we report here on further 10 random problems
100R, 200R, ..., 1000 R,

where “R™ stands for “random”. The edge weights ¢;;, 1 <i<j<100,...,1000, for
thesc problems have been selected from the set of integers {1, 2, ..., 5000} randomly
and independently.

Table | shows the performance of the code for various choices of NN, D, C on the
real-world TSP-problems. For cach problem, with a few cxceptions, we have run 12
different versions of the code that are obtained by setting

NN=510,0r 15; D=0or |; C=0or I.

In Table 1, the total running time is, for each case, recorded in 135-th of a second. The
time includes input, output ctc. under VM on the IBM 4361, but does not include
system overhead. (The system overhead heavily depends on additional users of the
machine.)

Table 1 (and further runs) indicate clearly that, in the large majority of cases,
C=D=1is the best choice of the parameters C and D. This means that the full
Gomory-Hu tree should be grown in the Padberg-Rao procedure and that cut
climination should be performed as outlined in(4.7). N N =15 is obviously inferior to
the other two choiccs of N N. In some cases N N =S5 is better than NN = 10, but there
are a number of exceptions where N N = 10 shows superior results. The picture here
is not clear. As can be seen from Table 5, for the random problems, the choice
N N =5 dominates NN =10 by a significant margin.

Based on this, we think that any choice for N N between 5 and 10 is reasonable for
the range of problems in question. There are a few “—""in Table 1. In these cases
MPSX failed to solve some linear programs that have been gencrated in the cutting
planc algorithm. Due to poor error messages we were unable to recover the reasons
for failure. We belicve that the breakdown was due to a combination of storage and
numerical problems.

For fixed choiccs C=D=1, and NN in the range 5, 10, 15, Tablc 2 shows further
characteristics of our code that indicatc the success of our choice of initial variables,
the cutting plane heuristic, etc. The first column of Table 2, named NU M, identifies
the problem, the second gives the value for N N, the third column, labelled VALUE,
contains the optimum objective function value. The further columns have to be read
as follows:

Column4=VAR: total number of variables in the last LP solved,

Column 5= ROWS: the number of cquations plus the total numbcr of 2-matching
constraints of the final LP,

Column 6= CUTS: total number of cutting planes generated at all,
Column7=HC: number of cutting planes found in heuristic (3.3).
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T
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Table 2

NUM NN VALUE VAR ROWS CUTS HC LP IT MFC
17 5 1684 58 17 0 0 1 1 0
17 10 1684 107 17 0 0 1 1 (]
17 15 1684 135 17 0 0 1 1 4}
21 5 2707 71 21 0 0 1 1 0
21 10 2707 129 21 0 0 1 1 0
21 15 2707 184 21 0 0 1 1 0
24 5 1227 82 26 2 2 2 1 0
24 10 1227 152 26 2 2 2 1 0
24 15 1227 217 26 2 2 2 1 0
42 5 646 135 50 8 8 6 2 0
42 10 646 261 54 12 12 7 1 0
42 15 646 391 54 12 12 7 1 0
48 5 4805 152 65 18 10 7 1 27
48 10 4805 290 65 18 10 7 1 27
48 15 4805 433 60 12 [ 5 1 23
48H 5 11197 156 48 0 0 2 2 0
48H 10 11197 302 48 0 ] 1 1 0
48 H 15 11197 460 48 0 0 1 1 0
57 5 12679 185 76 19 19 17 2 0
57 10 12679 a7l 71 14 14 9 1 0
57 15 12679 561 71 14 14 9 1 1]
70 5 607 220 109 58 41 32 2 130
70 10 607 415 76 8 6 3 1 0
70 15 607 608 78 8 8 4 1 0
96 5 53069 309 135 44 17 15 2 98
96 10 53069 576 149 55 19 17 2 111
96 15 53069 856 121 30 22 12 1 27
1004 5 19564 309 119 19 18 11 2 9
100A 10 19564 591 119 18 18 9 1 9
1004 15 19564 875 118 19 18 9 1 9
100B 5 20664 331 171 178 80 64 2 494
100B 10 20664 587 193 132 48 34 1 465
100B 15 20664 879 193 132 48 34 1 465
100C 5 19861 304 139 50 34 22 2 54
100C 10 19861 592 145 48 22 13 1 109
100C 15 19861 871 1435 48 22 13 1 109
100D 5 20269 323 154 65 58 29 2 49
100D 10 20269 582 148 66 59 29 1 49
100D 15 20269 886 148 66 59 29 1 49
100E 5 20752 315 123 25 16 8 2 31
100FE 10 20752 584 121 22 12 7 1 27
100E 15 20752 871 121 22 12 T 1 27
120 5 6694 383 220 166 49 46 2 838
120 10 6694 718 151 40 28 19 1 82
120 15 6694 1068 151 40 28 19 1 82
137 5 67008 428 176 42 36 11 3 25
137 10 87009 813 161 24 18 9 1 25
137 15 67009 1223 161 24 18 9 1 25
202 5 38576 643 258 65 48 20 2 86
202 10 38576 1266 258 65 48 20 2 86
202 15 38578 1891 260 87 50 20 1 86
229 5 128353 727 343 239 118 79 3 481
229 10 128353 1398 315 122 99 36 1 124
229 15 128353 2108 315 122 99 38 1 124
431 5 163905 1365 617 251 166 58 2 384
318 5 39266 1065 507 740 228 105 4 3846
318 10 39266 2008 521 549 184 76 2 2919

318 15 -
431 10 163905 2653 583 263 134 42 2 551
431 15 163905 3004 583 263 134 41 1 551
442 5 5029 1355 609 432 232 158 3 1634
442 10 50290 2550 579 200 124 82 2 658
442 15 5029 3737 559 336 193 127 1 1661
666 5 286428 2127 1048 797 271 132 3 2237
666 10 286428 4062 980 634 224 151 1 2242
666 15 286428 6090 973 633 225 145 1 2044
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Column § =1.P: number of calls of PRIMAL.
Column9=1T: number of times (4.6) has been exceuted.
Column 102 MFC: total number of max-flow calculations.

Table?2 is self-cxplaining. It shows that very few cutting planes and very few
variables suffice to prove optimality for the whole problem. In fact. looking at. for
instanee, the problems 442 and 666 with strateay NN =5. C=D=1.wesce that. for
problem 442, 1355 of 97461 variables and 609 out of many more than band
inequalities. and for problem 666. 2127 of 221445 variables and 1048 out of many
more than 2°°5 incqualities were cnough to produce a globally minimum 2-
matching. Table 2 also indicates that our heuristic finds many of the cutting planes
and that the number of reiterations (additions of variables and new starts) Is very
small. The results recorded in Table 2 justify our choices of heuristics, parameters
ete. in the design of the cutling planc algorithm.

The distribution of the running time is analysed in Table 3 for the same sct of
problems and the same choices of parameters as in Tuble 2. The total running time 7°
is recorded in the third column of Table 3 in Lg-thof a second. All further columns of
Table 3 contain percentages of this total running time 7. The column INP gives the
percentage of T needed to read the input: column HEU records the percentage of T
spent in executing (4.2) and (4.3): column CON gives the percentage needed for (4.4):
and column LP contains the pereentage of 7'spent in calls of PRIMAL, DUAL, and
RESTORE (this is essentially the time share needed to solve the lincar programns).
Column R records the percentage of T spentin constructing the graph G, running
the cutting plane heuristic, the Padberg-Rao procedure and handling the internal
data structures that are needed for adding new cutting planes and doing all kinds of
bookkeeping. Column HR contains the share of the time spent in the cutting plane
heuristic (4.8) (a): column UP gives the pcreentage of T needed to prepare data
structures for REVISE, to add or delete rows, and to cxecute REVISE itself. Column
OPT records the sharc of T that was necessary 10 generale the columns and
calculate the reduced costs in (4 6): the percentage of Tnceded to add new variables
through REVISE is given in column MO.

The percentages do notadd up to 100”,. The remaining part of the time was spent in
loading the program. moving control output on the screen etc.

‘Table 3 shows that the time spent in cutting planc recognition (column R) is
marginal, compared to the enormous share used by REVISE and LP-solving. It
scenis to us that by setting up more cfficient revise utilities than MPSX offers,
significant running time improvements can be obtuined. But this probably makes a
complete redesign of such a package necessary. For the 10 random problems, the
running time characteristics are displayed in Tables 4 and 3. Table 4 is build up in
the same way as Table2, Table 5 in the same way as Table 3.

Tables 4 and 5 show that random problems of the type described above are much
casier lor our code thun real-world problems. Optimality is proved with astonish-
ingly few cutting planes and variables. For instance, in problem 1000 R with NN = S
less than 0.7¢,, of the variables were involved and only two 2-matching constraints.
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0.00
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5.22
0.00
0.00
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0.00
8.84
0.00
0.00
4.62
0.00

5.41
0.00
0.00
5.89
0.00
0.00

10.69

0.00
0.00
4.83
0.00
0.01

12.86

0.00
0.00
4.16
4.08
0.00
3.26
0.00
0.00
4.27
1.52

2.52
1.42
0.00
1.48
1.40
0.00
1.68
0.00
0.00
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Tuble 4

NUM NN VALUE VAR ROWS CUTS HC LP IT MFC

100R 5 9639 315 100 0 0 1 1 Q

100R 10 9639 574 100 Q 0 1 1 0

200R 5 9554 647 208 8 8 6 2 0

200R 10 8554 1182 221 22 8 7 1 144

300R 5 10283 1000 300 0 0 3 3 0

300R 10 10283 1789 300 0 0 1 1 0

400H 5 9494 1310 404 4 4 6 4 0

400R 10 9494 2392 402 2 2 2 1 0

500R 5 9166 1614 502 2 2 4 3 0

500R 10 9166 2952 502 2 2 2 1 0

600R 5 9579 1947 602 2 2 3 2 0

600R 10 9579 3558 602 2 2 2 1 0

T700R 5 10129 2301 737 41 17 13 2 258

700R 10 10129 4148 774 109 12 20 1 1712

800R 5 10100 2631 800 0 0 3 3 0

800R 10 10100 4743 800 0 0 1 1 0

900R 5 10003 2936 905 5 4 6 3 97

900R 10 10003 5331 900 0 0 1 1 0

1000R 5 9970 3280 1002 2 2 4 3 0

1000R 10 9970 5913 1002 2 2 2 1 0

Tahle 5

NUM NN S/100 INP HEU CON LP R HR UpP OPT MO
100R 5 1116 14.70 15.68 15.05 41.58 0.90 0.00 0.18 6.09 0.00
100R 10 1452 11.71 17.98 17.36 40.77 0.76 0.00 0.14 5.30 0.00
200R 5 4867 9.00 7.17 5.65 47.26 2.49 0.21 7.73 10.07 5.79
200R 10 6926 6.04 7.88 6.25 52.32 3.58 0.25 15.19 6.12 0.00
300R 5 10849 8.26 5.37 3.80 59.19 0.86 0.00 0.06 7.38 11.29
300R 10 12930 6.44 6.86 5.07 77.56 0.25 0.00 0.02 2.27 0.00
400R 5 17498 9.00 4.84 3.03 51.62 1.41 0.05 1.90 13.62 10.44
400R 10 16153 8.96 7.87 5.47 70.43 0.51 0.02 1.62 3.47 0.00
500R 5 29990 7.37 3.90 2.19 69.57 0.68 0.01 0.66 7.25 6.23
500R 10 38079 5.56 4.46 2.86 83.05 0.27 0.01 0.80 2.14 0.00
600 5 38717 7.92 3.91 2.01 76.12 0.47 0.02 0.58 5.57 2.06
600R 10 118807 2.55 1.83 1.08 92.88 0.10 0.00 0.28 0.95 0.00
700R 5 71773 5.74 2.69 1.23 6573 1768 0.11 7.20 11.54 3.07
T00R 10 127905 3.18 2.09 1.13 67.68 3.10 0.12 12.42 9.88 0.00
800R 5 63642 8.56 3.70 1.64 69.65 0.39 0.00 0.01 7.03 7.29
BOOR 10 104286 5.11 3.11 1.66 87.98 0.08 0.00 0.00 1.54 0.00
900R 5 120045 5.80 2.42 1.01 72.53 0.59 0.02 1.01 7.83 7.73
900R 10 172660 3.97 2.25 1.17 91.03 0.06 0.00 0.00 1.15 0.00
1000R 5 134142 6.34 2.55 0.98 71.31 0.30 0.01 0.25 6.42 10.77
1000R 10 437568 1.88 1.02 0.50 95.59 0.05 0.00 0.12 0.68 0.00

Thus, almost all of the time is spent in solving the initial linear program set up in
(4.4).

Since there are no other 2-matching codes available that work for the same problem
range as our algorithm, we could not compare the performance of our code with
others. Our code for the 1-matching problem described in [7], however, belongs to
the best 1-matching codes available. By running this 1-matching code on the same
machine and thc samc problems we found that, for random problems, the 2-
matching code nceds not more 2 o/ — 30% more time. For the real-world problems
there is no clear picture. Sometimes the running times for the 2-matching problems
are shorter (not too often), sometimes comparable, more frequently about 50%
slower, but occasionally they are 3 times as long as the times nceded to find a

21 Computing 39 4
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shortest perfect [-matching on the same data set. The 2-matching problem I8
senerally considered to be — inasense - harder than the 1-matching problem. This
is in some way reflected by these comparisons. But it seems to us that there is no way
{0 solve 2-matching problems as fast as we can do it with our code by reducing them
to 1-matching problems.

=
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