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Abstract

In this paper we describe recent developments in the theory and algorithm design of
combinatorial optimization that are related to questions concerning ground states of
spin glasses. In particular, we outline an approach, based on polyhedral combinatorics,
that has led to the implementation of a cutting plane method for calculating exact
ground states of spin glasses in the Ising model. With this method exact ground states
for planar grids of size up to 40 X 40 with periodic boundary conditions and exterior
magnetic field can be determined in reasonable running times.

1. The Max-Cut Problem

We now introduce a few notions of graph theory needed in the sequel and describe the
max-cut problem to which the ground state problem of spin glasses can be reduced.

For our purposes, a graph G = (V, E) consists of a finite nonempty set V of nodes
and a set E of edges which are unordered pairs of different nodes, the endnodes of
the edges. We denote an edge e with endnodes { and j simply by i7 and say that 2
and j are joined by e = 7. This notation leads to no confusion since our graphs do
not have parallel edges (several edges with the same pair of endnodes). The number
of nodes of a graph G is called the order of G.

A walk in a graph G between two nodes u, v (short: (u,v)-walk) is a sequence
of edges i113,1213,- - .y Sk_2ik—1,1k—11k Such that u = iy and v =i, If u=v the walk
is called closed, otherwise it is called open. An open (i1,4%)-walk such that ip # &g
(1<p<qg<k)is called a (i,,ik)-path, a closed (3y,1x)-walk such that ip # ig
(1<p<g<k)iscaleda cycle. So acycleis a (41,ik_1)-path together with the
edge 11%k—1-

Two nodes that are joined by an edge are called adjacent or neighbors. The set
of edges having a node v € V' as one of their endnodes is denoted by 6(v). The number
|6(v)| is the degree of node v € V. More generally, if W C V, then §(W) denotes the
set of edges with one endnode in W and the other endnode in V \ W, i. e,

sW)=6(V\W)={ij€E|ieW,jeV\W})

Any edge set of the form §(W) is called a cut.
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For a graph G = (V, E) with weights ¢, € R for all e € E, the weight ¢(F) of an
edge set F C E is the sum of the weights of the elements of F, i. e.,

o(F)=_ ce
ecF

The max-cut problem is the following task. Given a graph G = (V, E) with
weights ¢, € Rfor all e € E, find a cut §(W), W C V, such that c(6(W)) is as large as
possible.

Cut problems of various types are among the most important problems in com-
binatorial optimization; the max-cut problem, for instance, was one of the first to be
shown NP-complete — see KARP (1972). By considering weights —c, forall e € E, of
course also a minimum weight cut can be found via solving a max-cut problem. Let
us point out here a subtlety in terminology. Whenever a min-cut problem is consid-
ered in combinatorial optimization (e. g., in the famous max-flow min-cut theorem),
it is assumed that all weights ¢, are nonnegative, that G is connected, and that a
nonempty cut of minimum weight is to be found. In contrast to the max-cut problem,
this problem can be solved in polynomial time (by any max-flow algorithm).

2. The Spin Glass Model

The mathematical approach we are going to outline can handle any spin glass model
that is described by a Hamiltonian of the form

H=-Y_J;S:S;,
ij

where S; = +1 (i = 0,1,...,n) is an Ising variable. Ising spins are fundamental for our
Ansatz, but we can handle any type of interaction function (e. g., the Gaussian or the
+J model). There is no restriction on the dimension of the spin system, long range or
short range models can be treated, exterior magnetic forces are allowed, we may have
a random field. We are not restricted to special topological interaction structures like
2-dimensional or 3-dimensional grids.

The approach works in general, but — of course — knowing specific features of
the model, definitely helps designing faster algorithms. We come back to this later.

Let us now describe the reduction of the ground state problem, i. e., finding a spin
configuration of minimum energy, to a max-cut problem. We assume that we have
a spin glass with n magnetic impurities 1,2,...,n and an exterior magnetic field 0.
We set V = {0,1,...,n} and consider V as the node set of a graph G = (V, E), the
interaction graph associated with the system. For a pair 1, of nodes, G contains
an edge ij if the interaction Ji; between the magnetic impurities (resp. the field) is
nonzero. With each impurity and with the exterior field ¢ an Ising variable S; € {+1}
is associated. For symmetry reasons the variable Sy corresponding to the field may be
fixed, to So = +1, say. Given a spin configuration w, i. e., an assignment of values +1
or —1 to the variables, the value of the Hamiltonian is

Hw) =~ Y J;;5:5;.

$JEE
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In the case of a uniform field with strength A, this specializes to

n
Hw) =- 3 1555, -h) 5

iJ€E i=1

67>0
Observe that each spin configuration w induces a partition of the node set V of the
interaction graph G into node sets V* and V7, where V+ = (i€ V | §; = +1} and
V-={#eV|8= —1}. So the energy of the spin configuration w can be written in
the form:

Hw)=- 3, JuSiSi— 2 JuSiSi— Y Ji5SiS;

IFEE(VH) iJEE(V-) iJES(VT)
D S 7R DI TR DR
iJEE(VH) 1JEE(V ™) iJES(VH)

where, for W CV, E(W):={ij€E | 1,7 € W}. Setting C := Yijer Jij we see that

Hw)+C =2 Z Jiss
7E8(V 1)

and defining ¢;; := —Ji; for all ij € E, the problem of minimizing H is, therefore,
equivalent to maximizing
(6= D, cil

ijeé(Vt)

over all V+ C V. This problem is 2 weighted max-cut problem in the interaction graph
G associated with the spin glass system. Thus, finding a ground state in the Ising
model of a spin glass is equivalent to finding an optimum solution of the corresponding
max-cut problem.

3. Complexity

A problem is said to be solvable in polynomial time if there is an algorithm that solves
any instance of the problem in a running time that is bounded by 2 polynomial in the
encoding length of the instance. Such an algorithm is often called a good algorithm.
The class of problems sclvable in polynomial time is denoted by P. In the case of the
max-cut problem, an instance is defined by specifying a graph G = (V, E) and the
weights ¢, € E. (The encoding of G peeds at least |V'| + | E| bits. If the weights ¢, are
integers, for instance, the encoding length of the weights is Y eex((loga(lce| + n+1),
binary encoding assumed.) There is no polynomial time algorithm known to solve the
max-cut problem for general graphs. In fact, the max-cut problem is NP-hard — see
GAREY & JOHNSON (1979) for a formal treatment of the theory behind this.
Informally, NP-hardness can be defined as follows. /e say that a problem belongs
to the class NP, if one can verify in polynomial time that a proposed solution is indeed
a solution. For the max-cut case, this means the following. For a graph G with
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edge weights and an additional bound B we must be able to check whether a given
edge set F is a cut 6(W) with weight ¢(F) at least B. This is trivial of course, and
in this sense, the max-cut problem belongs to NP. Note that nothing is required
about how to find a cut §(W) with weight at least B. (We imagine that we have
a “magic guessing module” that provides us with “good” cuts; our only task is to
check in polynomial time that the guesses are really good.) NP is short hand for
“nondeterministic polynomial time”, and this name stems from a formal version of
the “guessing” interpretation given above. We say that a problem II is NP-hard (or
NP-complete) if it has the following property: The existence of a polynomial time
algorithm for IT implies the existence of a polynomial time algorithm for all problems
in NP. There are indeed such problems, and the max-cut problem is among them. The
importance of NP-hard problems is connected with one of the major open problems in
algorithmic mathematics and computer science, namely the question whether P = NP
or not. Trivially, P C NP, but so far nobody was able to find a problem in NP
that is not in . Now, the existence of a polynomial time algorithm for any NP-hard
problem would imply P = NP. Specifically, showing that there is a polynomial time or
that there is no polynomial time algorithm for the max-cut problem would settle the
PE NP problem. This justifies saying that the max-cut problem is among the hardest
problems in combinatorial optimization.

This observation implies that one cannot expect to be able to design an algorithm
that works equally well for all possible instances of an NP-hard problem. Restriction to
particularly structured subproblems and design of special purpose algorithms for these
is necessary. For the max-cut case, this means, that one should restrict the attention
to special classes of graphs (for instance those that arise in various models of spin
glasses) and design algorithms that utilize the structure of these graphs. Unfortunately,
however, the max-cut problem is also NP-hard for many important special types of
graphs.

We will survey now what is known in this respect and how these results relate to
the ground state problem of spin glasses.

A graph is planar if it can be drawn in the plane (a node is represented by a
point, an edge i by a line linking the points representing ¢ and 7) such that no two
lines (representing edges) intersect, except possibly in their endpoints. ORLOVA &
DORFMAN (1972) and HADLOCK (1975) have found a reduction of the max-cut prob-
lem in planar graphs to a so-called T-join problem by employing planar duality. The
T-join problem can be solved in polynomial time for general graphs by an algorithm
of EDMONDS & JOHNSON (1973) that ingeniously combines shortest path methods
and matching techniques. A primal version of this algorithm was described in BARA-
HONA, MAYNARD, RAMMAL & UHRY (1982). It aimed — successfully — at solving
2-dimensional spin glass problems with nearest neighbor interactions. This algorithm
is particularly useful to perform postoptimality analysis, e. g., to study existence of
long range order. Planar spin glass problems on grids of size up to 50 x 50 have been
handled with this method — see ANGLES D’AURIAC & MAYNARD (1984).

A graph G is said to be contractible to another graph H if H can be obtained
from G by repeated deletion of nodes and edges and contraction of edges (an edge
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is contracted by deleting it and identifying its endnodes). A graph G = (V,E) is
bipartite if its node set V can be partitioned into two nonempty subsets V;,V; such
that each edge ¢ € E has one endnode in V; and the other in V2. G is complete
bipartite if each node of V, is joined to each node of V;. The complete bipartite
graph with [Vi| = m, [V,| = n is denoted by Kma- A graphis complete if every pair
of nodes is joined by an edge. The complete graph of order n is denoted by K. The
k-sum of two graphs Gy, Gz is a glueing operation in which a complete subgraph of
order k in G, is identified with a complete subgraph of order k in Gz, and afterwards,
all edges of this complete subgraph are removed.

BARAHONA (1983) proved that if the max-cut problem can be solved in polynomial
time for graphs G, and Gj then it can also be solved in polynomial time for any
9.sum and any 3-sum of G; and Gz (see GROTSCHEL & TRUEMPER (1986) for
generalizations of this result). WAGNER (1937) proved that the class of graphs not
contractible to Ks (resp. to Kj3) can be obtained by taking k-sums, k = 2 or 3, of
planar graphs and a finite number of small special graphs. Combining the results of
Barahona and Wagner yields that the max-cut problem is solvable in polynomial time
for the class of graphs not contractible to K and for the class of graphs not contractible
to Ka3. Both classes contain planar graphs since, by the Kuratowski-Wagner theorem,
planar graphs are neither contractible to Ks nor to K3 3.

There are a few further classes of graphs resp. objective functions for which the
max-cut problem is solvable in polynomial time. If all weights are nonpositive the
empty cut is a maximum weight cut. But, as mentioned before, in this case one
can even find a maximum weight nonempty cut using max-flow algorithms. If all
edge weights are nonnegative, the max-cut problem can be solved for so-called weakly
bipartite graphs — see GROTSCHEL & PULLEYBLANK (1981). This class of graphs
contains the graphs not contractible to Ks and those not contractible to K33 — see
FONLUPT, MAHJOUB & UHRY (1984). Further, there are polynomial time algorithms
(that are probably not of too much practical value) for the max-cut problem in graphs
of bounded tree-width (DRESS (1986)), graphs without long odd cycles (GROTSCHEL
& NEMHAUSER (1984)), and graphs of bounded genus and the additional restriction
that all edge weights satisfy c. € {0,+1, —1} (BARAHONA (1981)).

The results described above imply the following. The ground state problem can
be solved in polynomial time for all interaction graphs that are planar, so in particular
for the standard 2-dimensional grid model. It can also be solved in polynomial time
for all toroidal interaction graphs, provided interactions have value +J only; a special
case is the typical 2-dimensional grid model with periodic boundary conditions and +J
interactions. Moreover, it follows from results of PICARD & RATLIFF (1975) —see
BARAHONA (1985) — that ground states of a random-field Ising ferromagnet can be
computed in polynomial time. Here 2ll nonzero interactions between magnetic spins
are positive, while interactions with the exterior field may be positive or negative.

Let us now turn to the negative results. The above mentioned solvable cases seem
to cover only few small classes of graphs. But there are a aumber of results showing
that these classes cannot be enlarged significantly. The max-cut problem was shown
to be NP-complete for
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- general graphs (KARP (1972)),

- cubic graphs (YANNAKAKIs (1978)); these are graphs where each node has degree
exactly three,

- graphs not contractible to Kg (BARAHONA (1983)),

- almost planar cubic graphs (BARAHONA (1983)); these are graphs that contain a
node whose removal results in a planar cubic graph,

- 3-dimensional grid graphs (BARAHONA (1982)),

— two layer grid graphs with weights 0,+1 (BARAHONA (1982)),

- planar grid graphs with weights 0, +1 and a universal node (BARAHONA (1982)).

These results imply that the problem of determining ground states of spin glasses
is NP-complete, e. g., for the following interaction graphs
- 3-dimensional grids,
- 3-dimensional grids with two layers in the +J model,

- planar grids with +J interactions and with exterior magnetic field of strength
h=1J.

So most of the interesting spin glass configurations lead to NP-hard models. Let
us mention that one case is open. Is there a polynomial time algorithm for the max-cut
problem in toroidal graphs (more specifically for toroidal grid graphs) with arbitrary
weights? As mentioned before, this can be solved for the +J model, but for arbitrary
weights on a planar grid with periodic boundary conditions, no good algorithm is
known.

4. Exact Methods

Let us recall that we focus on exact methods, i. e., algorithms that are designed with
the intention to find maximum weight cuts and that end up with a proof of optimality.
Of course, heuristics may also produce optimum solutions but one can never be sure of
this. So, whenever we say that a problem is “solved” we mean that not just a feasible,
but a true optimum solution is found and its optimality is proved. This makes a
substantial difference, often overlooked in the physics literature on this subject.

As outlined in Section 3 there are good algorithms for a few special cases of
the max-cut resp. ground state problen. Some of them, in particular those that are
enumeration methods designed to handle particular types of graphs efficiently, can be
applied to any graph to obtain maximum weight cuts. But outside their special range
they exhibit exponential running time — not only in the worst case, it shows up always.
Examples of this kind are the algorithms in GROTSCHEL & NEMHAUSER (1984) and
DRESS (1986). These remarks also apply to the transfer matrix method described in
MORGENSTERN & BINDER (1980) and MORGENSTERN (1983). The latter method
is the only one of these for which computational experience has been reported. It can
handle planar grids with exterior magnetic field of size up to 18 x 18. But even much
faster (or parallel) computers with more memory than available today cannot push
the “solvable grid size” much larger, say double it, due to the exponential explosion of
time and space requirements.
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A branch & bound method for general Ising models was proposed by HARTWIG,
DASKE & KOBE (1984). It was applied to spin glass systems of up to 80 spins. An
algorithm — in the spirit of the method we are going to describe — for 3-dimensional
grids was described in BARAHONA & MACCIONI (1982). It can handle 5 x 5 x 5 grids.

Assuming (as we do) that P # NP, there will never be an algorithm for the max-
cut problem that runs fast on every type of graphs. It is vital for the empirical success
of an algorithm for this problem to take special structures of the graphs considered
into account and exploit them by studying their particular properties and by develop-
ing data structures that can handle these graphs quickly. Moreover, we believe that
enumeration techniques should be avoided as much as possible. The reason is that
enumerative methods usually have running times that are exponential for all problem
instances and not only in the worsi-case. We aim at methods that have stopping crite-
ria, that is, if an optimum solution is found at an early stage, a proof of its optimality
can be given. Such methods show much better performance empirically on the average.
Of course, exponential running times will show up in some (hopefully only few) cases,
otherwise we would have shown P = NP —a unlikely event. To achieve such goals
more (and frequently new) theory has to be developed, in particular special techniques
that yield proofs of optimality.

To put this last remark in a general perspective, it is not only necessary to produce
good lower bounds for the value of a max-cut problem (with heuristic methods, say),
it is important to design algorithms that provide sharp upper bounds for this value.
In fact, the method we will describe only produces upper bounds together with an
optimum solution of a certain relaxed problem. If the optimum solution of the relaxed
problem is 2 cut, an optimum solution of the max-cut problem is found, otherwise the
relaxation is strengthened and we repeat.

5. Polyhedral Combinatorics

We will now describe the theoretical background of our method. It is based on ideas of
polyhedral combinatorics. This is a subfield of combinatorial optimization which aims
at describing combinatorial optimization problems as linear programs and solving these
with special purpose methods. We outline the approach for the max-cut problem for
general graphs.

Recall first that a polytope in R" is the convex hull of finitely many points, or
equivalently, a polytope is a bounded subset of R that is the intersection of finitely
many halfspaces. Those points of a polytope P which are not representable as a convex
combination of other points in P are the vertices of P.

The dimension of a polytope P C R™ is the maximum number of affinely in-
dependent points in P minus 1. P is full-dimensional if its dimension is n. An
inequality cTz < a is valid for PCR"{PC{zeR"]| Tz <a}. Tz < aisvalid
then F := {z € P | ¢Tz = a} is a face of P. A facet is a face of dimension one less
than the dimension of P. An important theorem of polyhedral theory states that for
2 full-dimensional polytope every facet is defined by a unique (up to multiplication by
a positive constant) inequality (i. e., fF={zeP|cTz=0a}={z€P] dTz = )
is a facet of P and cTz < o and dTz < ff are valid for P then ¢ = pd for some p > 0),
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and moreover, that every system of inequalities describing P completely must contain,
for each facet F of P, at least one inequality defining F. This shows that in order to
describe P in the form P = {z | Az < b} one has to know the inequalities defining
facets of P. “Hunting” inequalities that define facets of certain polytopes associated
with combinatorial optimization problems is one of the main issues in polyhedral com-
binatorics.

Let us now turn to the max-cut problem. Suppose a graph G = (V, E) with
edge weights c;; for ij € E is given. We associate with G the real vector space RE,
where the components of the vectors are indexed by the elements of E. For each cut
§(W), W C V, we define its incidence vector x*W) € RE by setting xf(w) =1if
e € §(W) and xﬁ‘“” =0 if e ¢ §(W). This yields a 1-1-correspondence of the cuts
with certain {0,1}-vectors in RE. The cut polytope CUT(G) of G is the convex hull
of all incidence vectors of cuts of G, i. e,

CUT(G) = conv{x’™) e R¥ | W C V}
={zeRF|z= AP L A W)
for some k < |E| + 1, some Wy,...,W, CV,
and some Aq,...,Ax >0 with X, + ...+ Ax =1}

The problem of finding a cut §(W) in G with ¢(§(W)) as large as possible can be
written (considering ¢ as a vector in RE) as the linear program

max{cT z | z € CUT(G)},

since the vertices of the polytope CUT(G) are exactly the incidence vectors of the
cuts of G, and vice versa. In order to apply linear programming techniques to solve
this linear program one has to represent CUT(G) as the solution set of an inequality
system. General results in polyhedral combinatorics imply that, since the max-cut
problem is NP-hard, one cannot expect to find a complete system describing CUT(G).
But ~— as we shall see later — also partial systems may be useful in solving the max-
cut problem. The polyhedral structure of CUT(G) and the closely related bipartite
subgraph polytope has, for instance, been studied in BARAHONA, GROTSCHEL &
MAHJOUB (1985), BARAHONA & MAHJOUB (1983). We summarize here some of
the results known about the facial structure of CUT{G) mentioned in BARAHONA &
MAHJOUB (1983).

The cut polytope is full-dimensional, i. e., dim(CUT(G)) = |E|. This implies
that each facet-defining inequality is unique up to multiplication by a constant. Since
CUT(G) is in the unit hypercube of RE, the trivial inequalities 0 < z. < 1 are valid
for CUT(G).

(5.1) Theorem. For e € E, the following statements are equivalent:

(a) z. > O defines a facet of CUT(G).
(b) z. <1 defines a facet of CUT(G).
(c) e does not belong to a cycle with three edges (triangle).
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A consequence of (5.1) for the ground state problem, for instance, is that, for all
edges e of a typical 2- or 3-dimensional grid model, the inequalities 0 <z, <1 define
facets of CUT(G) since grids do not contain triangels. But if an exterior magnetic field
with nonzero interaction with all spins is added, none of these inequalities defines a
facet of CUT(G).

We know from graph theory that a cut and a cycle intersect in an even number
of edges. This observation yields that the odd cycle inequalities

z(F) - z(C\F) < |F| -1 for all cycles C C E
and all F C C, |F|odd

are satisfied by all incidence vectors of cuts. A chord of a cycle C is an edge of G
which joins two nodes of C but does not belong to C.

(6-2) Theorem. Let CC E be a cycle and F C C, |F| odd. Then
2(F) — (C\ F) < |F| 1

defines a facet of CUT(G) if and only if C has no chord.
a

A graph is called a bicycle p-wheel if it consists of a cycle of length p and two
further nodes adjacent to each other and to every node of the cycle.

(5.3) Theorem. Let (W, F) be a bicycle (2k + 1)-wheel, k > 1, contained in G.
Then the inequality
#(F) < 2(2k+ 1)

defines a facet of CUT(G).
g

(5.4) Theorem. Let K, = (W, F) be a complete subgraph of order p of G. Then

the K,-inequality
= < [3]13]

is valid for CUT(G); this inequality defines a facet of CUT(G) if and only if p is odd.
0

There are further classes of facets of CUT(G) known. In particular, there exist
interesting methods $o construct new facet defining inequalities from given facet defin-
ing inequalities. Especially notable are the techniques of changing the sign of a cut
and of subdividing an edge. The exact definitions of these operations are technically
a little complicated and therefore omitted.

Observe that, for many classes of graphs, ihe number of facet defining inequalities
listed in Theorems (5.1),...,(5.4) grows exponentially with |E[. In fact, these are by
far not all inequalities that define CUT(G) completely. Thus, the whole approach
seems somehow ridiculous since we replace an optimization problem over 2iV1-1 points
by an optimization problem over even more inequalities. However, there are general
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results that show that the number of inequalities is not important. Important for the
polynomial time solvability of a linear programming problem is whether one can check
in polynomial time whether a given point satisfies all inequalities or not.

Let us state this more precisely for the cut polytope CUT(G). Let K be a class of
linear inequalities valid for CUT(G); for instance, K could be any of the classes listed
in (5.1),...,(5.4). The separation problem for K is the following:

Given y € QF, decide whether y satisfies all inequalities in K,
and if y does not, find an inequality in K violated by y.

The importance of the separation problem stems from the fact that the polynomial time
solvability of the separation problem for K implies the existence of a polynomial time
algorithm for the optimization problem max{cTz | z satisfies all inequalities in K'}
— see GROTSCHEL, LOVASZ & SCHRIJVER (1981, 1987). Although the optimiza-
tion algorithm obtained this way (it utilizes the ellipsoid method) does not seem to
be practically efficient, experience gained in the recent years shows that these op-
timization problems can indeed be solved reasonably well in practice by using the
simplex method plus certain special techniques — see for instance CROWDER & PAD-
BERG (1980), CROWDER, JOHNSON & PADBERG (1983), GROTSCHEL & HOLLAND
(1985), GROTSCHEL, JUNGER & REINELT (1984).

This is an astonishing recent development that shows a somewhat funny interac-
tion between theory and practice. First, there were general cutting plane algorithms
(of Gomory-type, say) that performed rather poor in practice. Then a few special
cutting plane methods — based on the separation principle — were designed, but were
not tried for many really large scale problems. After that, the ellipsoid method (and
simultaneous diophantine approximation) came up and proofs were given that one can
obtain (theoretically) good algorithms with it. (Most of this theory is sumimarized in
GROTSCHEL, LOVASZ & SCHRIJVER (1987).) The combination of these techniques
did not work in practice. But using the theory as a guideline, replacing the ellip-
soid method by the simplex method and enhancing it with various heuristic features
resulted in algorithms with quite good empirical behaviour.

Concerning the separation problem for the classes of inequalities listed in (5.1), ...,
(5.4) the following is known. We assume that a graph G = (V, E) and a point y € QF
are given. We want to solve the separation problem for y.

Trivial inequalities (5.1): The separation problem is trivial. We simply substitute
y into the inequalities 0 <z, < 1, e € E.

0dd cycle inequalities (5.2): (We can assume here that 0 < y. < 1 holds.) We
define a new graph H = (V/UV* E'UE"U E") = (W, F) which consists of two copies
of G, say G' = (V', E') and G" = (V", E""), and the following additional edges E".
For each edge uv € E we create the two edges u’v"’ and u"v’. The edges u'v' € E' and
u'y” € E" get the weight yu,, while the edges u'v"”, u"v' € E" get the weight 1 — y,,,,.
For each pair of nodes u/,u” € W we calculate a shortest (with respect to the weights
just defined) (u/,u")-path in H. Such a path contains an odd number of edges of E'?
and corresponds to a closed walk in G containing u. Clearly, if the shortest of these
(u',u")-paths in H has length less than 1 there exists a cycle C C E and an edge set
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F C C, |F| odd, such that y violates the corresponding odd cycle inequality. (C and
F are easily constructed from a shortest path.) If the shortest of these (u!, u'")-paths
has length at least 1, then y satisfies all these inequalities. So the separation problem
can be solved in polynomial time.

Bicycle wheel inequalities (6.3): GERARDS (1985) has shown that the separation
problem for this class of inequalities can be reduced to a sequence of shortest path
calculations in a similar way as described above for the odd cycle inequalities. Hence,
this separation problem is also polynomially solvable.

K,-inequalities (5.4): Trivially, for p fixed, one can check all K,-inequalities in
polynomial time by enumeration — but this is ridiculous. It is not known whether
there is a polynomial time algorithm to solve the separation problem for all complete
subgraph inequalities. It is also not known whether there is a good algorithm to solve
the separation problem for the class of inequalities obtained from the Kg-inequalities
by edge subdivision and changing the sign of a cut. The latter is a challenging open
problem.
The remarks above show that the following LP-relaxation of the max-cut problem
can be solved in polynomial time
max cTz
0<z, <1 foralle € E,
z(F)-z(C\F) <|F|-1 for all cycles C C E and
all F C C, |F| odd,
z(F) < 2(2k +1) for all bicycle
(2k + 1)-wheels (W, F).

In the special application we are going to treat (planar grids with periodic boundary
conditions and exterior magnetic filed), bicycle p-wheels do not occur; thus we can
disregard these inequalities and concentrate on the remaining two classes. (Actually
the same is true for the Kp-inequalities p > 5, but not for their edge subdivisions.)
Let us therefore define the polytope

Po(G):={zeRF|0<Lz <1 forall e € E,
z(F)—z(C\ F) £|F|-1 for all cycles C C E and all
F C C, |F| 0dd}.

Observe that
CUT(G) = conv{z € Pc(G) | = integer},

SO

maxcTz

zE Pc(G)
z integer

is an integer programming formulation of the max-cut problem. Moreover, the follow-
ing has been shown by BARAHONA & MAHJOUD (1983).
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(5.5) Theorem. P (G) = CUT(G) if and only if G is not contractible to Ks.
a

This theorem and our remarks above prove that the max-cut problem is solvable in
polynomial time for the class of graphs not contractible to Kj. Since — by the Wagner-
Kuratowski theorem — planar graphs are those graphs which are not contractible to
K5 or K, 3 we have Pc(G) = CUT(G) for all planar graphs. So this observation also
implies the polynomial time solvability of the max-cut problem for planar graphs and
graphs not contractible to Kjs, respectively, in a way completely different from the
methods of Orlova & Dorfman, Hadlock and Barahona.

Some observations in spin glass theory can be related to our approach. For the
ground state problem in spin glasses, TOULOUSE (1977) introduced the concept of
“frustrated contours” and states “There is no way of choosing the orientations of the
site spins around a frustrated contour without frustrating at least one bond”. If one
translates this sentence into our terminology this suggests to consider the following
system of inequalities

Z z;; > 1 for all frustrated contours C C E,
JEC
zi;j 20 forallij€E,

where frustrated contours are cycles in the interaction graph G with an odd number
of negative interactions. For the 2-dimensional grid case or any planar interaction
graph, this system defines an integral polyhedron. This follows from the Chinese-
Postman-Theorem of Edmonds and Johnson, as has been pointed out in BARAHONA,
MAYNARD, RAMMAL & UHRY (1982). For random-field Ising ferromagnets the
system also defines an integral polyhedron. This is a consequence of the max-flow
min-cut theorem of Ford and Fulkerson and was shown by BARAHONA (1985). This
system, however, is not integral for 3-dimensional Ising grid models, but it provides a
tight LP-relaxation, as can be seen from the computational experience with it reported
in BARAHONA & MACCIONI (1982). It is also not integral for planar or toroidal spin
glass systems with exterior magnetic field, the case we are going to consider in the
sequel.

6. A Cutting Plane Method

We shall now describe how the theory described in Section 5 can be applied. We want
to design a so-called cutting plane algorithm that will be based on the simplex method.
The simplex method — although not a polynomial time algorithm from a theoretical
point of view — shows very good behaviour in practice and is therefore prefered to the
ellipsoid (or other) methods.

The idea underlying such a cutting plane method is the following. We choose a
system S of linear inequalities whose solution set P contains CUT(G) and for which
the separation problem can be solved in polynomial time. Moreover, S has to have
the property that CUT(G) = conv{z € P | z integral } = conv{z | z satisfies all
inequalities in S and z integral}. Our aim is to solve maxcTz, z € P (instead of
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max Tz, z € CUT(G)). If the optimum solution over P is integral it is the incidence
vector of a cut and thus we are done. If this is not the case we have to resort to
branch & bound (in principle). The system S we choose is (usually) very large and it
is impossible to write down all inequalities in polynomial time. Therefore we proceed
as follows. We choose an initial “small” system S) € S and solve the LP maxcTz, z
satisfies all inequalities in S;. We check whether the optimum solution of this LP is
the incidence vector of a cut. If this is so, we are done. If not, we enter a “separation
phase” to find inqualities in S violated by the optimum solution. Such inequalities are
called cutting planes, since they are used to cut off the present (infeasible) optimum
LP-solution. If cutting planes have been found they are added to the current system
S, and the process is repeated. If not, our separation algorithms yield a proof that
the current optimum solution is an optimum solution for maxcTz, z € P that is
nonintegral. Then branch & bound must be applied.

Let us mention that the choice of the system S is very important. One should
choose a system that is a rather tight relaxation of CUT(G) and, moreover, all in-
equalities in S should define facets of CUT{G) because facets define — in a sense
that can be made precise — the deepest possible cutting planes. It has been observed
empirically that cutting plane methods that use facet defining inequalities are by far
superior compared with methods using just some valid inequalities. This fact is one of
the reasons why the theory described in Section 5 was developed.

Our cutting plane algorithm for the max-cut problem was not implemented to treat
all possible graphs. Our objective was the development of a special purpose computer
code for max-cut problems coming up in the spin glass application. Although we
exploited the special structure of this problem class (e. g., by designing special purpose
cutting plane generation heuristics) our approach is general in principle. Only a few
heuristics have to be exchanged and some data structures have to be modified in order
to treat arbitrary graphs.

We study 2-dimensional Ising spin glasses on a grid with nearest neighbor inter-
actions, an exterior magnetic field and periodic boundary conditions. This leads to
the class of graphs consisting of a k x k-grid embedded on a torus and a further node
joined to all grid nodes. So, for n := k2, our graphs have n +1 nodes and m = 3n
edges.

Now we outline our strategy for generating and eliminating cutting planes. For the
set S of inequalities to be considered we have chosen the trivial inequalities (5.1) and
the odd cycle inequalities (5.2). The initial set S, consists of just the upper and lower
bounds on the variables. The nonnegativity constraints and the upper bounds (of value
1) on the variables are automatically handled by the simplex method and no separation
routine has to be designed. We implemented the exact separation algorithm for the
odd cycle inequalities outlined in Section 5. Using Dijkstra’s shortest path method
and labelling techniques, an O(n?)-implementation can be achieved. For practical
purposes this is rather slow. Therefore, we have added faster heuristics for finding
violated odd cycle inequalities in order to avoid calling the exact separation routine.
These heuristics run in linear or at most quadratic time and usually find many odd
cycle inequalities violated by the current optimum LP solution. But if they do not
produce a violated odd cycle inequality there is no guarantee that such an inequality
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does not exist. In this case the exact separation method has to be called. We describe
the heuristics in the order we call them in the algorithm.

Suppose y € QF is the optimum solution of the last linear program. We have to
check whether y is the incidence vector of a cut, and if not, find odd cycle inequalities
violated by y, if there are any.

CIBCAG (Check Integrality, Bipartiteness, Cut, and Generate Cutting Planes)
For 0 < £ < L we define the graph G = (V, E) as follows:

E.:={¢ecE|y <cory.>1-c¢}

We try to 2-color the nodes of G, with red and green, say. First we pick an arbitrary
node v € V and color it red. For all neighbors w of v in G, we do the following:
If wis not colored, w receives the color of v if ¥,y < &, otherwise w receives the
complementary color. If w is already colored, there are two cases. If w has the same
color as v and yyw < € or if v and w have complementary colors and yyew > 1 — €, we
continue. Otherwise we have found a cycle C with an odd number of edges of value at
least 1 —¢. Let F be the set of these edges. We check whether y(F)—y(C\F) > |F|-1.
If this is the case, a violated odd cycle inequality is found. When all neighbors of »
have been considered, we pick a new, colored node, consider its neighbours etc. and
proceed in breadth first search manner.

If y is integral — which we check on the run — and not a cut, this procedure
guarantees that a violated odd cycle inequality will be found. So, if for an integral
y, CIBCAG does not produce a violated inequality, y is the incidence vector of a
maximum weight cut in G. The breadth first search tree built up by CIBCAG allows
us to generate the violated odd cycle inequalities efficiently. The worst-case running
time of our implementation of CIBCAG depends on the structure of G, and is between
0(n) and 0(|E|log n). Empirically it is 0(n) and extremely fast.

GEN4CYC (Generate 4-Cycles) Due to the special structure of our graph, the
unchorded 4-cycles of the graph correspond exactly to the grid squares. There are n
such 4-cycles. We scan through all these and check each of the eight associated odd
cycle inequalities for violation. This can be done in 0(n) time.

GEN3CYC (Generate 3-Cycles) All 3-cycles (triangles) in G must contain the
node 0 corresponding to the exterior magnetic field. By scanning through all grid
edges vw we check the four possible odd cycle inequalities that can be derived from
the triangle Ovw. This algorithm has time complexity o(n).

SHOC (Spanning Tree Heuristic for Odd Cycles) We calculate a maximum and a
minimum weight spanning tree Tray and Trmin of G where an edge e has weight y..
For any non-tree edge e, we consider its fundamental cycle C and try to find an odd
cardinality subset F' C C such that the corresponding odd cycle inequality is violated
by y. In the “Tyax-case”, we expect F' to contain C\ e, and in the “Tyjy-case”, we
hope F = {e}. Using Kruskal’s algorithm, this heuristic runs in time 0(n log n) on the
average, and 0(n?) in the worst case.

The above described heuristics are called in the following order.
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- CIBCAG with user specified parameter EPSILON; if this way no cut
can be generated, CIBCAG tries again with EPSILON = 0.49

-  GEN4CYC if less than GENCYC-LIM cutting planes have been produced
by CIBCAG

- GEN3CYC if less than GENCYC-LIM cutting planes have been produced
by CIBCAG and GEN4CYC

- SHOC if less than SHOC-LIM cutting planes have been produced in
the previous steps.

Finally the exact separation routine named OC (0Odd Cycles) is called if all heuris-
tics together found less than OC-LIM cutting planes. This kind of parameterization
keeps the program flexible by allowing us to test various cutting plane generation
strategies.

Elimination of cutting planes. To keep the linear program “handy” we eliminate
inequalities in the following way: Whenever the objective function value has decreased
by more than some DELTA (to be specified) compared to the previous solution value,
all inequalities nonbinding at the current optimum solution are eliminated, otherwise
no elimination is performed.

The features described above are the basic components of our cutting plane algo-
rithm. The algorithm provably produces an optimum vertex of the polytope Pc(G). If
this algorithm finds an optimum solution which is integral, it provides a ground state
of the spinglass. The algorithm, however, carries no guarantee to find an optimum
integral solution. Formally, we could add a branch & bound phase to give such a
guarantee. But, as shown in Section 7, it turned out that this is unnecessary.

7. Some Computational Results

To give an idea about what problem sizes can be handled by the method outlined in
Section 6 we report here about some typical running times. Let us mention that it is
a nontrivial task to tune such a cutting plane method so that it is practically efficient.
That is, by performing computational experiments one has to find out which choices
of all the parameters left open in our description, result in good running times and a
numerically stable method. Crucial issues are the following:

(7.1) One has to determine a parameter MAXGEN which controls the maximum
number of cutting planes added in one iteration. Choosing MAXGEN too
small results in too many iterations of the cutting plane generation phase,
choosing it too large produces too large linear programs, hardly solvable by
the current LP-methods.

(7.2) One has to decide in which order the cutting plane heuristics are called and
whether a further heuristic should be called, although a previous one found
some cutting planes.

In our case, good choices for (7.1) and (7.2) turned out to be the most important
factors. Further, but not so crucial prameters are:
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(7.3) The parameter DELTA used to eliminate cutting planes.
(7.4) The choice of ¢ for the graph G, considered in the heuristic CIBCAG.

It is impossible to report here how these and other selections have been made
and describe exactly what our parameters are. The paper BARAHONA, GROTSCHEL,
JUNGER & REINELT {1986) contains many details of this type. Nevertheless, we are
still experimenting with our code, since the results are not completely satisfactory in
one case to be explained later.

Tables 1 and 2 contain the computational results for 30 x 30 and 40 X 40 grids, re-
spectively, with periodic boundary conditions and exterior magnetic field. The columns
of these tables have to be interpreted as follows.

Column 1 Z h = strength of the exterior magnetic field,

Column 2 £ Ph — npumber of cutting plane phases = number of LP’s
solved,

Column 3 = 4C = number of calls of GEN4CYC,

Column 4 = 3C = number of calls of GEN3CYC,

Column 5 =z 0C = number of calls of OC,

Column 6 2 #iter = total number of simplex pivots used for solving all
the LP’s,

Column 7 = size = number of rows of the final LP,

Column 8 2 time = total computation time in min:sec including input,
output etc.,

Column 9 2  Energy = ground state energy per spin,

I

Column 10

The magnetization per spin of a spin configuration is defined as the number of
spins whose magnetic orientation agrees with that of the field minus the number of
those with opposite orientation divided by the total number of spins.

Note that, in the current version of our code, the spanning tree heuristic SHOC
described in Section 6 is not called at all. For our special toroidal grid graphs it did
not contribute to running time improvements.

The experiments were executed on an IBM 3081-D32. The running times reported
are total running times including input, output etc. Our code is written in ECL (an
extension of PL/I) and uses IBM’s LP-solver MPSX as a subroutine.

Mag = ground state magnetization per spin.
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The results of Tables 1 and 2 are for the Gaussian model. The total sequence
of experiments was conducted as follows. First, for all next neighbor pairs 1,5 on a
toroidal kx k grid the interaction Ji; was chosen according to a Gaussian distribution
with mean 0 and standard deviation 1. All spins interact with the exterior field with
h — 4.0. Then we determine a ground state for this system. In the next run the spin
interactions remained the same, only the strength of the field was decreased from 4.0
to 3.8. The optimum basic solution for b = 4.0 was used as the starting basis for
h = 3.8. This was repeated until & = 0.0. The 2A-case showing up in the 30 x 30 table
will be explained later.

30 x 30

h PL 4C 3C OC #lter Size Time Energy Mag
4.0 4 3 3 0 941 1203 1:45.87 -4,0200 0.9622
3.8 1 1 1 0 17 1212 0:11.96 -3.8371 0.9578
3.6 1 1 1 0 26 1249 0:12.62 -3.6470 0.9444
34 1 1 1 0 28 1291 0:13.24 -3.4591 0.9356
3.2 1 1 1 0 13 1331 0:12.12 -3.2734 0.9200
3.0 1 1 1 1] 30 1359 0:12.55 -3.0916 0.8933
2.8 1 1 1 0 58 1422 0:14.06 -2.9139 0.8822
2.6 1 1 1 0 72 1472 0:13.99 -2.7416 0.8333
2.4 1 1 1 0 88 1544 0:15.28 -2.5784 0.8067
2.2 2 2 2 8} 118 1682 0:26.49 -2.4200 0.7800
2.0 2 2 2 0 137 1794 0:25.72 -2.2652 0.7644
1.8 2 2 2 0 158 1905 0:27.20 -2.1164 0.7067
1.6 2 2 2 0 178 2027 0:30.14 -1.9797 0.6622
1.4 3 3 3 1} 230 2190 0:42.01 -1.8511 0.6222
1.2 2 2 2 0 284 2358 0:36.00 -1.7310 0.5822
1.0 3 3 3 0 424 2593 0:56.78 -1.6205 0.5200
0.8 2 2 2 0 521 2738 0:54.17 -1.5212 0.4556
0.6 (i} 6 6 0 860 2846 2:03.89 -1.4373 0.3578
0.4 10 10 10 0 1411 3014 4:16.49 -1.3754 0.2467
0.2 7 7 7 0 2920 2990 6:55.81 -1.3334 0.1489
2A 49 49 49 2 4191 3048 22:38.29 -1.3187 0.0222
0.0 4 4 4 2 151 3080 5:03.82 -1.3187 0.0222

Table 1
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40 x 40

h Ph 4C 3C OC #1ter Size Time Ene? Mag
4.0 5 2 2 0 1623 1885 5:42.05 -4.0207 0.9625
3.8 1 1 1 0 36 1936 0:38.98 -3.8285 0.9575
3.6 2 2 2 0 60 2032 1:09.72 -3.6387 0.9425
3.4 1 1 1 0 49 2099 0:40.79 -3.4508 0.9325
3.2 1 1 1 0 68 2085 0:42.24 -3.2654 0.9187
3.0 2 2 2 0 93 2285 1:12.29 -3.0849 0.8925
2.8 1 1 1 0 106 2423 0:46.19 -2.9082 0.8737
2.6 2 2 2 0 124 2584 1:17.68 -2.7355 0.8537
2.4 2 2 2 0 172 2333 1:17.48 -2.5682 0.8200
2.2 2 2 2 0 212 2585 1:23.02 -2.4080 0.7825
2.0 2 2 2 0 210 2795 1:24.07 -2.2547 0.7512
1.8 2 2 2 0 271 3047 1:30.20 -2.1079 0.7175
1.6 2 2 2 0 325 3280 1:34.49 -1.9688 0.6700
1.4 4 4 4 0 493 3678 2:56.80 -1.839% 0.6262
1.2 2 2 2 0 589 4014 2:00.92 -1.7195 0.5787
1.0 4 4 4 0 751 4298 3:27.26 -1.6129 0.4975
0.8 3 3 3 0 960 4539 3:24.35 -1.5192 0.4475
0.6 3 3 3 0 1367 4743 4:33.53 -1.4375 0.3725
0.4 8 8 8 0 2739 4820 12:15.49 -1.3710 0.2837
0.2 7 7 7 0 5181 5035 19:55.33 -1.3236 0.2012

Table 2

Table 3 reports on a series of experiments with +1-iteractions on a 22x22-grid with
periodic boundary conditions and exterior magnetic field. Column headings are the
same as those for Tables 1 and 2, also the sequence of runs was executed analogously.
The percentage of negative interactions ranges from 12% to 32% with an increase of
4% per step. The strength of the exterior field starts in each case with A = 1.0 and
is decreased to 0.2 by 0.1. For each percentage of negative interactions the 1.0-field
problem was solved “from scratch” whereas for the eight subsequent problems with
lower field the optimum basic solution of the previous problem served as a starting
basis. The interactions were chosen as follows. First we determined 2 random linear
ordering of the grid edges. In the first run, the first 12% of the edges in this order
received a —1-value all other edges a +1-value. In the second run the first 16% of the
edges were considered negative interactions, all other edges positive interactions, etc.
By comparing running times and the total pnumber of pivots of the various instances one
can see that by increasing the percentage of negative interactions and by decreasing the
field strength the problem becomes harder for our code. Nevertheless, considering the
fact that we deal with an NP-hard problem, the running times seem quite reasonable.
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22 x 22
¢ neg h Ph 4C 3C 0OC #1ter Size Time Energy Mag
125 1.0 3 3 3 0 201 302 0:12.64 -2.5496 0.9711
0.9 1 1 1 0 49 311 0:02.44 -2.4525 0.9711
0.8 0 0 0 0 0 311 0:01.33 -2.355h4 0.9711
0.7 0 [} 0 0 1 311 0:01.33 -2.2583 0.9711
0.6 1 1 1 0 8 315 0:02.48 -2.1620 0.9587
0.5 0 0 0 0 0 315 0:01.33 -2.0661 0.9587
0.4 2 2 2 0 46 350 0:04.43 -1.9702 0.9587
0.3 2 2 2 0 66 389 0:05.10 -1.8744 0.9587
0.2 1 1 1 0 28 399 0:03.13 -1.7810 0.9298
16% 1.0 6 6 6 0 295 422 0:22.34 -2.4215 0.9298
0.9 1 1 1 0 58 443 0:03.44 -2.3285 0.9298
0.8 0 0 0 0 0 443 0:01.35 -2.2355 0.9298
0.7 0 0 0 0 2 443 0:00.00 -2.1426 0.9298
0.6 2 2 2 0 38 474 0:05.22 -2.0496 0.9298
0.5 0 0 0 0 1 474 0:01.32 -1.9566 0.9298
0.4 2 2 2 0 67 517 0:05.12 -1.8636 0.9298
0.3 2 2 2 0 82 558 0:05.62 -1.7727 0.9091
0.2 1 1 1 0 88 585 0:04.67 -1.6843 0.8802
20% 1.0 5 5 5 0 463 548 0:26.08 -2.2893 0.5008
0.9 2 2 2 0 72 587 0:05.88 -2.2017 0.8760
0.8 0 0 0 0 2 587 0:01.34 -2.1140 0.8760
0.7 1 1 1 0 12 589 0:00.00 -2.0264 0.8760
0.6 2 2 2 0 52 614 0:05.45 -1.0388 0.8760
0.5 1 1 1 0 27 629 0:04.05 -1.8512 0.8760
0.4 2 2 2 0 120 682 0:07.09 -1.7686 0.8264
0.3 3 3 3 0 151 755 0:11.16 -1.6868 0.8017
0.2 2 2 2 0 156 833 0:09.57 -1.6083 0.7686
24% 1.0 6 6 6 o] 604 718 0:33.61 -2.1612 0.8554
0.9 2 2 2 0 118 759 0:06.90 -2.0764 0.8471
0.8 1 I3 1 0 11 766 0:03.56 -1.9917 0.8471
0.7 1 1 1 Q 20 775 0:02.86 -1.9070 0.8471
0.6 2 2 2 0 75 785 0:05.22 -1.8248 0.8099
0.5 1 1 1 0 52 806 0:05.11 -1.7438 0.8099
0.4 4 4 4 0 195 890 0:13.92 -1.6661 0.7769
0.3 3 3 3 0 206 975 0:13.74 -1.5963 0.6653
0.2 4 4 4 0 239 1003 0:17.38 -1.5339 0.6033

Table 3
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22 x 22

% neg h Ph 4C 3C 0OC #lter Size Time Energy Mag
28% 1.0 6 6 6 0 685 776 0:38.05 -2.0248 (1.8223
0.9 2 2 2 0 154 815 (:07.17 -1.9450 0.7975

0.8 0 0 0 1] 12 8158 0:01.32 -1.8653 0.7975

0.7 2 2 2 Q 76 838 0:07.85 -1.7876 0.7769

0.6 2 2 2 0 166 859 0:09.94 -1.7140 0.7149

0.5 3 3 3 0 125 881 0:09.95 -1.6426 0.7149

0.4 2 2 2 0 259 965 0:14.08 -1.5717 0.6488

0.3 2 2 2 0 248 993 0:13.80 -1.5169 0.6074

0.2 5 S 5 0 405 1079 0:27.86 -1.4612 0.5083

32% 1.0 9 8 8 0 915 903 0:55.34 -1.9421 0.7769
0.9 3 3 3 0 190 941 0:10.53 -1.8678 0.7438

0.8 1 1 1 0 52 961 0:04.95 -1.7967 0.7066

0.7 1 1 1 0 108 1001 0:06.62 -1.7281 0.6860

0.6 3 3 3 0 214 1037 0:12.99 -1.6645 0.6116

0.5 2 2 2 0 133 1056 0:09.35 -1.6054 0.5826

0.4 3 3 3 0 328 1113 0:21.37 -1.5521 0.4917

0.3 1 1 1 0 234 1144 0:12.69 -1.5070 0.4504

0.2 4 4 4 0 424 1178 0:29.46 -1.4675 0.4215

Table 3

Note that our code only solves an LP-relaxation of the max-cut problem and that
there is no guarantee that the optimum LP-solution is integral (and thus a maximum
weight cut), unless we enter an additional branch & bound phase. However, in all
cases reported here the LP solution was indeed integral and no further enumerative
technique had to be used. There are a few exceptions to this and they always occured
at O-field. This is a strange phenomenon that we cannot explain properly yet.

Recall that the max-cut problem is NP-hard for toroidal graphs with exterior
field, but solvable in polynomial time without exterior field and +1-interactions. It is
not known whether this also holds for Gaussian interactions and 0-field. This made
us expect the 0-field problem to be much easier. The contrary is the case, and our
code is able to solve quite large (much larger than reported here) k x k toroidal grid
problems with strong field (just look at the rather small running times in Tables 1
and 2), while 0-field problems take much longer. There is one trick that worked in
the 30 x 30-problem of Table 1. Before solving a O-field problem we solve a problem
with h = 2A, A a very small number. We observed frequently that the solution of this
problem also gives a ground state for the h = O problem. This is the case in Table 1,
but not in Table 2. Here, in fact, we obtained a nonintegral optimum solution in the
2A- and O-field case. So we could not read a ground state from the linear program.
The same phenomenon occurs, even more frequently, in the +1-model, and although
the 0-field problem here can be solved in polynomial time it seems to be harder for our
approach.
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We are currently working on a feature that will be employed in cases of small
fields. Our algorithm will be enhanced by max-cut heuristics that exploit the structure
of fractional LP solutions and are based on fixing techniques similar to those used in
standard branch & bound methods. Again, such observations show that structural
knowledge has to be utilized to achieve reasonable running times. We are confident
that the methods outlined above work so that we can solve 0-field problems as easily
as the others.

Let us mention a few additional informations we can derive from our method.

Frequently, one is not only interested in calculating just one ground state; knowing
all ground states or knowing certain properties of ground states (like the rigidity of
bonds) are of equal importance. To obtain this type of information the algorithmic
approach described in this paper is particularly well suited.

The computational experience described in this section shows that for all but a few
ground state problems the optimum solution of our LP-relaxation of the max-cut prob-
lem is integral. This gives all tools of postoptimality analysis of linear programming
to our disposal. For instance, using LP-duality we can often derive results like:

— the ground state is unique,
_ a certain cluster of spins will have the same relative orientation in all ground states
(rigidity of the ground states).

Actually, in the examples before, we frequently observed that the ground states
are unique. If the ground state is not nnique we can use reduced cost criteria to exhibit
alternative ground states. We cannot produce all ground states (in reasonable time)
since there may be exponentially mapy. Even so, LP-duality can be used to prove
that certain edges have value one or zero in all ground states. From this information
we can derive that certain clusters of spins have the same relative orientation in all
ground states. And thus, our methods enable us to determine the existence of long
distance order. Let us remark that information of this type is hardly obtainable from
enumerative or branch & bound methods.

There are a number of variations of the ground state problem that are relevant for
the understanding of spin glasses. Let us mention just one question due to A. J. Bray
and M. A. Moore (personal communication with W. Kinzel). Suppose a spin glas
(Gaussian model) on a toroidal k x k-grid without exterior magnetic field is given. Let
w be a ground state and E, be its energy. We pick a column of spins of the grid and
we take an adjacent column of spins. The spins in the first column are fixed to its ori-
entation in w while the spins in the second column are fixed to the orientation opposite
to the one in w. This fixing can be achieved by adding an “artificial” exterior field and
use +M and zero forces, M a very large number. Let E; _ be the ground state energy
subject to this side condition. Set AE := |E, — E4_|. It has been conjectured that
(AE)? ~ k7. In particular, that v is negative. For the straightforward generalizations
of this question to 3-dimensional grids, it is believed that « is positive. Using the
algorithm described in this paper, estimates for 4 can be obtained numerically.

It is also possible to contribute to an open problem mentioned in ANGLES D'AU-
RIAC & MAYNARD (1984) by calculating ground states under the additional condition
that the magnetization is zero. We can “misuse” the exterior magnetic field to for-
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mulate this problem as an integer linear program, but further polyhedral studies are
necessary before this approach can be used algorithmically.

8. Heuristic Methods

Proposals for heuristics to “solve” the max-cut problem are uncountable. The most
successful ones — at least with respect to the applications in physics considered here
— seem to be exchange methods, as proposed by Kernighan and Lin, for instance,
and simulated annealing. We will not discuss the methods here in detail, but would
like to mention that our cutting plane algorithm makes it possible to find out how
good these heuristics really are. In fact, we have made a large number of computer
experiments — exact details will be reported elsewhere — to compare the solutions
found by simulated annealing and other heuristics with optimum solutions.

Exchange methods of Kernighan-Lin type did not show striking results, they were
outperformed by other improvement techniques developed by us. In particular, these
improvement methods are very fast and can handle problems of almost any size, a
point of considerable importance in application oriented optimization. This is not so
for simulated annealing.

To obtain a “good” simulated annealing code is a difficult matter by itself. An-
nealing schedules, experiments per temperature, restart features etc. have to be chosen
carefully so that good solutions are obtained in “finite time”. Of course, by increasing
time bounds, one eventually will obtain better results, but then it might even be better
to perform complete enumeration. We have compared simulated annealing with the
results of other heuristics and we can summarize our findings in these experiments as
follows:

(8.1) Very long running times (many steps at constant temperature, very slow
cooling) lead to very good results. Minimum energy and magnetization of
the ground state are closely approximated.

(8.2) Long running times (in our case, this means running times that are about as
long as the cutting plane method needs to produce an exact ground state)
result in relatively good approximations of the ground state energy and mag-
netization, but sometimes runaways, where simulated annealing fails, occur.

(8.3) Improvement heuristics obtain spin configurations with energies similar to
those found by simulated annealing with strategy (8.2), but in much shorter
time. However, for small fields, the magnetization of the ground state is not
as well approximated as by simulated anpealing.

(8.4) Giving to simulated annealing no more time than the improvement heuristics
need, much worse results are obtained than by improvement methods.

Based on these observations we have determined a set of parameters that, using
the running time bounds of (8.2), shows satisfactory behaviour. It works with restarts
and typically has a behaviour as shown in Figure 1.
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Poena.

Figure 1

On the z-axis of Figure 1 the experiments are recorded linearly. The y-axis represents
the energy. The long bar above the z-axis shows the experiment where the best spin
configuration was found. After a certain number of experiments usually no significant
changes of the energy of the spin configuration obtained by single spin flips occur and a
restart is performed by accepting solutions with higher energy with higher probability.
The time bound given to simulated annealing was about the running time our cutting
plane code needed to solve the given problem exactly. This seems fair to us.

In Figure 2 we show one example of 11 experiments where the energy obtained by
simulated annealing is compared to the minimum energy of a ground state. This is a
Gaussian 30 x 30 problem with exterior field of strength A = 0,0.2,...,2.2 and periodic
boundary conditions. Nearest neighbor spin interaction values are chosen according to
a Gaussian distribution and remain fixed for all the experiments. For h =0,0.2,...,2.2
the ground state energy per spin is determined with our cutting plane algorithm and
approximated by simulated annealing. The lower curve gives the exact value of the
ground state energy per spin, the upper curve the approximate value.
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It turns out that the solution values of simulated annealing are good approximations
of the minimum energy and get better with increasing strength of the exterior field.
Moreover, the ground state magnetization is also closely approximated — see Figure

3 for the same series of experiments as described for Figure 2.
10 T

!

magnetisation/spin 1.0 20
Figure 3




349

However, we also compared the configurations obtained by simulated annealing to
optimum solutions (as we could prove with our algorithm these are frequently unique),
and we realized that they rarely show structural similarities. One (random) example of
this type is shown in Figures 4 and 5. The spin configuration in Figure 4 is an optimum
solution to a Gaussian 30 x 30 grid problem with periodic boundary conditions and
an exterior field of strenght 0; for the same instance the spin configuration shown in
Figure 5 was found by simulated annealing.

Figure 5
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9. Final Remarks

The recent years have shown increasing interest of physicists in combinatorial optimiza-
tion problems, in particular in the traveling salesman problem (TSP), and it seems,
sometimes, that optimization is becoming a part of physics. Indeed, Toulouse (1983)
states “... that the main spinoff of spin glass physics, so far, has been the transfer of
Monte-Carlo annealing techniques to optimization problems”. It is true that simulated
annealing arose considerable excitement among mathematicians and a lot of research is
devoted to it at present. Related procedures like Monte Carlo methods, the Metropo-
lis algorithm, or the evolution techniques of Rechenberg have been around for quite
some time but were neglected for several reasons. The main objection against these
heuristics and against simulated annealing — that still holds — is that these methods
are much too slow for practical purposes, say a TSP on several thousand cities to
determine the route of an NC machine, and that they are inferior to special purpose
heuristics developed for such problems. But the activities of physicists have given the
area of stochastic methods a new impetus that has certainly put these methods into a
new perspective.

TOULOUSE (1983) also writes “A less wellknown stream exists in the opposite
direction with the use of Edmonds’ algorithm to find various exact ground state prop-
erties of spin glasses and this stream may well grow in the future®. We consider the
work presented here as a contribution to the growth of this stream from optimization
to physics. In fact, it would be fair to call it “the contribution of the traveling salesman
problem to physics”. Namely, the subarea of polyhedral combinatorics dealing with
hard problems — on which our approach is based — was largly developed in terms of
the TSP. Among important papers that have been writien on this subject let us men-
tion DANTZIG, FULKERSON & JOHNSON (1954), in many respects a seminal paper
of this field. Research in this area has been quite active in the fifties, calmed down in
the sixties, and was taken up again in the seventies to become one of the most flour-
ishing branches in combinatorial optimization. Among the main contributions was the
development of the polyhedral theory for the TSP — see, e. g, GROTSCHEL (1977),
GROTSCHEL & PADBERG (1979a,b) — and the design and implementation of success-
ful cutting plane algorithms — see for instance CROWDER & PADBERG (1980). Most
of this development is documented in the recent book LAWLER, LENSTRA, RINNOOY
KAN & SHMOYS (1985).

The methods developed for the TSP turned out to be general. In particular, the
whole approach, the proof techniques, and the principle algorithmic ideas for cutting
plane methods carry over to almost all other combinatorial optimization problems.
The success in this area also motivated us to try the polyhedral approach to the max-
cut problem with the aim to develop a practically efficient cutting plane algorithm for
certain ground state problems. Our work is not complete yet, but the computational
results reported here seem promising.
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