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GROTSCHEL, M.; JoNGER, M.; REINELT, G.

Via Minimization with Pin Preassignments and Layer Preference

Das Problem der Via-Minimierung mit Anschlufrorbelegungen und Lagenbevorzugung tritt beim V LSI- bzw. Leiter-
platten-Entmrf auf. Es kann als Problem des maximalen Schnittes in einem Graphen formuliert werden. In diesem
Aufsatz berichten wir dber die Anwendung approzimativer Algorithmen fir dieses Problem zur Minimierung der Anzahl
der Vias industriell gefertigten elekironischen Schaltkreisen.

The problem of minimizing the number of vias subject to pin preassignments and lnyer preferences comes up in VLSI
respectively printed circuit board design. It can be formulated as a maz-cut problem. In this paper, we discuss the application
of approxzimative algorithms for the maz-cut problem to minimize the number of vias of (real-world) electronic circuits.

3dajaya MMHMMU3ANUM YHUCIIA NEPECONPUIOCHOBEHMI OTHOCHTENbIO JAKPEILTeHUna 1IpeHas3laucut u cioe-
BHIX IpeRnouTenutt Bupacrter B CGVIC 1 B KOHCTPYKUMH IIAT ¢ NedaTHolt cxeMoli, cooTBercTBedHo. Moxkilo
dopMyaHpOBATH 3Ty 3amady B BUME 3ala4i MaKCHMAJbHOro cedennda. B aTolt craThe o0cy:HIacTes npume-
HeHUe NPUGIM3NTEIBHEIX AJArOPUTMOB Ha 3ajlauy MaKCHMalbLHore paspesa, urobsl MMHMMHU3NDOBATL YACI0
nepecoNnpUKOCHOBeHU B (PealIICTHYeCKMX) DJIEKTPOHUYECKHX LelAX.

1. Introduction

The physical layout of integrated circuits is usually split up into phases like placement, routing, layer assignment,
and compaction. Assuming that placement and routing is completed we focus here on the layer assignment phase.
The objective of this phase is to assign wire segments to layers such that crossing (or touching) segments belonging
to different nets are assigned to different layers. The places where wires change layers are called vias. Vias need
additional space, they are obstacles in the compaction phase, and the yield in production decreases with the number
of vias. Thus it is desirable to find a layer assignment such that the number of vias is as small as possible.

For the case of two layers (and assuming that the transient routing contains no k-way junctions for k = 4),
PinTER [6] and CHEN, K AJ1TANT and CHAN [3] have shown independently that this problem is solvable in polynomial
time by giving reductions to a max-cut problem in a planar graph. However, these reductions do not cover certain
side constraints required in practice. In many cases one of the two layers is preferred and pins are preassigned to
some layer. For instance, in standard cell design in 3-4-CMOS technology there are & polysilicon (poly) and an
aluminum (alu) layer. Preferably, wires should be in the alu-layer whereas pins are usually in the poly-layer. In
ECL technology we have two metal layers (alu 1 and alu 2), and pins are usually preassigned to one of the layers.

BARAHONA, GROTSCHEL, JUNGER and REINELT [2] pointed out that PiNTER’S reduction can be generalized to
the via minimization problem subject to layer preference and pin preassignments. However, the max-cut problem
that results from this reduction is NP-hard. We outline this transformation in Section 2, discuss several heuristic
approaches to solve this problem approximatively in Section 3, and present computational results on real-world

layout problems in Section 4.

2. Transformation

The max-cut problem is a standard model in combinatorial optimization. An instance of it can be described as
follows. Given a (undirected) graph G = (V, E) with edge weights wy for all 4j ¢ E, find a cut ¢ < E such that
3wy is as large as possible. (Here, & cut is an edge set C < EwithC = {ije B|lie W,je V \\ W} for some node

:;g W < V. The transformation of the via minimization problem (given two layers) with layer preference and pin
x-cut problem consists of a sequence of reductions which we describe now. )
We suppose that all cells are placed on a chip and sll nets have been routed but that the assignment of wire
segments to layers has not been performed yet (i.e., a so-called iransient routing is given). A net may connect:, two
or more pins. In the latter case, the net may contain 3-way junctions, but we assume that there are no 4-way junc-
tions. (Fortunately they seldom occur in practice.) Figure 1 shows a transient routing of eight nets, one of w_hxch
(net 2) is & 4-pin net, one of which (net 1) is a 3-pin net, and the rest are 2—pm nets. .Thgre are three 3-Yv?,y junctions.
The first step of the transformation is the following. We partition e'ach wire into ff'ee and cz-ztwal segments,
such that vias are allowed on free but forbidden on critical segments. Obviously, at crossings of dlfferegt nets no
vias are allowed. There may be further design rules which restrict the placement of vias su(fh a8: two wires which
run parallel at minimum feasible distance within a certain interval may not contain a via within this mtgrya]
(placing a via on one of the wires here may create a contact with the other wire). In Figure 2 there are 24 cntcha]
segments (drawn solid and numbered 1, ..., 24), the free segments are drawn dotted and are not numbered. Note
that, by construction, free segments never cross. _ e o
We represent the topology of the free and crl_tlcal segments in a layout graph G = (V, E) and assign certain
weights wy; to some of the edges ij of E. Each node in V corresponds to a critical segment, and there are two kinds
i are joined by a conjlict edge ij whenever the associated critical segments must be on

of edges in E. Nodes ¢ and J , 2} . S
differ%nt layers. Nodes 4 and j ate joined by a continuation edge 4j whenever the associated critical segments are

preassignments to a ma
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connected by a free segment. So ¥ = 4 u B, where 4 are the conflict edges and B the continuation edges. If the
critical segments 4, j, k are joined by a 3-way junction, the three resulting continuation edges receive the weight
wij = Wiz = wy; = 1/2, whereas all other continuation edges 4j obtain weight w;; = 1. Conflict edges do not get
weights. In our example the layout graph looks as shown in Figure 3. Here the conflict edges are represented by
solid lines, the continuation edges with weight 1 by dotted lines, and the continuation edges with weight 1/2 by
broken lines.

If the conflict subgraph H = (V, A) of & is not bipartite it is easy to see that there is no feasible assignment of
wire segments to the two layers (in this case the transient routing has to be corrected). Otherwise H partitions into
connected bipartite components (¥, 4,), ..., (Vi, 4.). (In our example, there are seven such components.) Clearly,
the assignment of one node (respectively, its corresponding wire segment) of a component (¥, 4;) to a layer implies
the agsignment of all other nodes of V; to some layer. The via minimization problem can now be phrased in terms of
the layout graph @ as follows. Find a cut € of G that contains all conflict edges 4 such that the sum of the weights

Fig. 3

of the continuation edges in €' is as small as possible. This is a max-cut problem with an additional side constraint.
To formulate this as & max-cat problem without a further constraint we proceed as follows.

We construct a reduced layout graph R = (W, F) in the following way. For each component (¥, 4;) of H we
arbitrarily select & ‘‘representative” node v and set W = {v,, ..., #;}. F contains an edge linking v; and v,, if and
only if ¢ contains a (continuation) edge linking some node in V; to some node in V,. Note that two nodes of & com-
ponent (Vy, 4,) may be linked by a continuation edge, so R may contain loops. Observe also that each edge of R
represents some free wire segments. Since these segments do not cross, R is a planar graph. (In graph theoretic
terms, R is obtained from @ by contracting the node sets V1, ..., ¥ to single nodes and replacing multiple edges by
single edges.)

For each edge vy, v, # v, in F we define two weights «; and §;; in the following way.

oy := sum of the weights of all those continuation edges in @ linking nodes in V; to nodes in ¥, which are assigned
to different layers if the representing nodes v, and v, are assigned to the same layer.
By 1= sum of the weights of all those continuation edges in @ linking nodes in V; to nodes in ¥, which are assigned

to different layers if the representing nodes v; and v; are assigned to different layers.
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For the loops vw; in F we define

& := sum of the weights of all those continuation edges in G connecting nodes in V; which have to be assigned to
different layers.

ﬂ,‘i = 0.
The reduced layout graph of our example is shown in Figure 4. For each component (Vy, 4:) of H an arbitrary
representative node is chosen. The edge weights in this figure are (a, Bi;).
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A layer assignment corresponds — by construction — to a partition W+, W- of W. Given such a partition the
number of vias is

VIAW W)= 3 o5+ X o5+ 3 Bi-

vy F vweF vogel
vi, DWW+ 4,09 W™ vieW*
W
Defining C := 3 «; we get
vivje P
+ -
VIAWS, W) —C = 3 (B; — i)

viwjeF

vie Wt

vge W=

and so for ¢;; := oy — P the problem of minimizing the number of vias is equivalent to the max-cut problem in
R = (W, F) with the weights ¢;; on the edges vw; € F. If M is the maximum weight of a cut in R, then ¢ — M is
the smallest number of vias needed to make a feasible layer assignment. Since max-cut problems in planar graphs
can be solved in polynomial time (using matching techniques) the minimum number of vias can be computed in
polynomial time. In our example, we have C = 17, and the edge weights c;; are shown in Figure 5. The loops do not
play a role anymore and are left out.

A maximum weight cut in this graph is induced by partitioning W into {12} and {4, 8, 15, 17, 19, 21} and
therefore at least C — 3 = 4 vias are needed. The corresponding (optimal) layer assignment is shown in Figure 6.
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We will now show how preferal of one layer to the other is taken into account. We start from a given transient
routing and, after having defined free and critical wire segments as before, we subdivide each free segment (further)
into a free segment followed by a critical segment followed by a free segment. From this new set of critical and free
wire segments the layout graph ¢ = (V, E), V = {1, ..., n}, and the weights w;; of the continuation edges are con-
structed as described before. An additional node, called 0, is associated to the preferred laye:'. WeAjoin each node 1,

1 =i < m, to 0 by a continuation edge. Let us call this graph the extended layout graph G = (V, E). With each
continuation edge 04, i € V, we have to associate a weight wy;. For each particular problem instance, this has to be
done by the layouter individually. The weights wy; should reflect the degree to which segment ¢ is attracted to the
preferred layer (negative values mean attraction to the preferred layer, positive values mean attraction to the other
layer). The individual assignment of values wy; to the wire segment can also be used to reflect various technological
requirements.

Let us remark here that via minimization and layer preference are conflicting goals. By increasing the number
of vias more wire segments can be placed on the preferred layer. Large absolute values for the wi’s give strong
emphasis to layer preference while setting w;; = 0 for all s ¢ V results in via minimization without side constraints.
This suggests to introduce a parameter, to be set by the user, with which the relative emphasis given to the two
goals can be controlled. We will suggest a way to handle this in Section 4.

Starting from G = (V, 1’7}\) we can construct a reduced layout graph R= (W, ﬁ) with weights ¢; = ay; — By
for all edges 4§ € F' as described before. We will denote the node of & representing the new node 0 of G by v,. Every

maximum weight cut in R corresponds to an optimum solution of the via minimization problem subject to the
given layer preferences.

Pin preassignments are handled as follows. For each preassigned pin we introduce a critical segment starting
at that pin. In the extended layout graph this pin is represented by some node. Let % be such a node. One way to
realize the preassignment of the corresponding pin would be to join node % to node 0 by a continuation edge. We
set the weight wo, = — M if the pin has to be on the preferred layer or wg, = M if the pin has to be on the other
layer, where M is a very large positive number. But this would produce many edges in the reduced layout graph.
A better way to achieve pin preassignments works as follows. If the pin is preassigned to the preferred layer then
we identify node » with node 0, otherwise we connect u to 0 by a conflict edge. All preassignments are now repre-
sented by node v, in the reduced extended layout graph.

The reduced layout graph coming up in the above construction is in general not planar, but it is almost planar
in the sense that the removal of one node (node v, in this case) results in a planar graph. The max-cut problem for
almost planar graphs is NP-hard (BaraHoNA [1]). So one cannot expect to find a fast algorithm for this type of
problems. However, if there is no layer preference but possibly pin preassignments then the problem is polynomially
solvable provided that all pins are on the outer border of the transient routing because in this case the reduced
extended layout graph is still planar. Note that this is frequently the case in channel routing problems.

3. Heuristics

The max-cut model for the via minimization problem under side constraints introduced above provides a clean
model for attacking this problem with techniques from combinatorial optimization. In this note we concentrate on
the heuristic approach, i.e. the design and implementation of fast approximative algorithms. We will now briefly
outline the heuristic procedures (and their combinations) we have used in our computational experiments. We

apply our heuristics to the reduced (extended) layout graph K. In the following we assume that we deal with the
reduced extended layout graph containing node v,

Construetion heuristics

The purpose of these heuristics is to find a suitable initial solution very fast.

Cl) Trivial heuristics

(a) Trivial Cut (all nodes on one side of the cut)

(b) Random Cut

(¢) All nodes v; with negative ¢, on the side of the cut containing node v, and the others on the other side

It may seem strange to consider such heuristics, but in previous work on other combinatorial optimization
problems we frequently found that some improvement heuristics perform best if initialized with a ‘‘well-chosen
bad’’ starting solution.

(02) Greedy-type heuristic
Starting with § = {v,) and T = 0 we successively assign the remaining nodes to § or 7'. In each step we compute
the increase of the objective function for all nodes in W\ (8 u 7) when put into §, respectively 7, and assign a
node with maximum increase to S or 7 until Su 7T = W.

C3) Spanning tree heuristic
This heuristic is motivated by the goal to have edges with large positive weight in the cut and edges with large
negative weight not in the cut. To achieve this we compute s maximum weight spanning tree in R with edge weights
|euny|- The tree induces a bipartition of W where the nodes v;, v with positive ¢,y are on different sides of the cut,
and the nodes with negative c,,, are on the same side.
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Improvement heuristics
Starting with some initial solution these heuristics perform local modifications to improve the current solution.

I1) 1-Exchange heuristic
For each node it is checked whether the objective function grows when it is moved to the other shore of the cut, and
if it grows, the exchange is made. This is done until no more improvements are possible.

12) Local enumeration heuristic
For each node v; (except for node v,) we find the best possible assigment of v; and all of its neighbours in R by
complete enumeration. This is done until no more improvements are possible. (This is feasible for our application
because the degrees of the nodes v,, ... , v are usually small.)

I3) Kernighan-Lin exchange heuristic
One often observes that local improvement heuristics which only allow the exchange of few nodes (as e.g. 1-exchange)
get stuck in local minima. KERNIGHAN and Liv [4] formulated an exchange procedure which is relatively fast and
allows the exchange of many nodes in each step. This method is well known so we do not describe it here.

Obviously, the three exchange heuristics described above can be embedded into a Monte Carlo respectively
gimulated annealing schen}e.

4. Results

We do not intend to give a complete and detailed analysis of the performance of each possible combination of a
construction heuristic with an improvement heuristic. Qur experiments showed that, on the average, running the
spanning tree heuristic (C3) first and improving this solution by the local enumeration heuristic (I2) afterwards
produced the best results. This observation is, however, based on a rather small sample of small to medium sized
real-world problems; so further computational testing is necessary to derive a definitive conclusion about the rela-
tive merit of these heuristics. Anyway, the improvements we obtained compared with what is used in industrial

applications is encouraging.
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To give an idea about the improvements that can be obtained with the heuristic (spanning tree and local
enumeration) proposed here we will now describe some via minimization experiments with a real-world design of
one channel in a standard cell circuit that we obtained from SIEMENS Germany. The channel consists of 216 nets
connecting 573 pins, and there are 630 viss in the original layout. The whole channel is too large to be displayed
here, so we use small extract of it (the final part of the channel) to explain our experiments. Figure 7a shows the
original layout of this part which has 34 vias. Note that all horizontal wire segments are on the white layer, and
almost all vertical wire segments are on the black layer. This is a usual situation in industrial design which is not
due to technological requirements but to features of the commonly used channel routing algorithms.

Figure 7b shows the result of a pure via minimization with no pin preassignments or layer preference. It
containg 24 vias, i.e., 10 vias less than the original design. If we preassign the pins as they are given in the original
design we can save only those four (unnecessary) vias which are caused by the strict assignment of horizontal wire

segments to the white layer.

In our experiments we handle layer preference as follows There are two parameters 4 and A. For each free
wire segment of length y greater than or equal to A, we introduce a critical segment as described in Section 2 and
attract it with ‘“force” u « h to the preferred layer. The parameter & is the control parameter for the user to decide
on the relative emphasis given to the conflicting goals. The stipulation & = 0 results in a via minimization subject
to preassignments of some pins and wire segments, while || large enough favours one of the layers strongly. Clearly,
some care has to be given to setting A.
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Figure 8 shows the tradeoff between via minimization and layer preference. The parameter 1 is set so small
that practically every free segment is affected. As an example, Figure 9 shows the layer assignment if the white
layer is preferred by setting b = 6.
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The results for the complete channel are the following. For pure via minimization the reduced layout graph
has 925 nodes and 1740 edges.
e Original design: 630 vias, 649, of the wiring area on the white layer.
e Pure via minimization with all pins preassigned: 585 vias, 68%, of the wiring area on the white layer.
e Pure via minimization without pin preassignment: 525 vias, 31% of the wiring area on the white layer.

We also ran a layer preference example as described above. We set b = —6 to prefer the black layer. The resulting
reduced layout graph had 4056 nodes and 6521 edges.
e Layer preference (b = —6) without pin preassignment: 666 vias, 28% of the wiring area on the white layer.

Finally we show the pure via minimization results on five more channels (all supplied by SIEMENS) in Table 1.

Table 1

Cl Cc2 C3 C4 Cs
nodes in reduced layout graph 828 980 ‘ 1327 1202 1366
edges in reduced layout graph 1445 1776 2480 2234 2606
vias in original design 421 434 683 650 782
via minimization with preassignments 302 376 563 504 645
via minimization without preassignments 272 347 513 475 610

All these results were obtained with Pascal programs running in a few minutes on the Motorola 68000 based
Unix microcomputer CADMUS 9230. .

We have also experimented with simulated annealing. Of course, by running this procedure long enough, one
will always find some improvement (or the optimum solution). We spent considerable time on fine-tuning the para-
meters for the simulated annealing scheme for this special case. In all our experiments simulated annealing was
allowed to run ten times longer than the slowest of all our other heuristics. Despite these efforts simulated annealing
never produced a better solution than the one found by the combination of C3 and 12, actually it rarely found a
solution of similar quality. Thus, in our opinion, simulated annealing does not appear to be an attractive alternative.

5. Conclusion

We feel that our success in decreasing the number of vias in industrially designed chips indicates that our approach
is a promising one even if only heuristics are used. The large scale max-cut problems arising in determining ground
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states of Ising spin glasses (BARAHONA, GROTSCHEL, JUNGER and REINELT [2]) which we solved optimally with
a cutting plane approach are very similar in structure to the problems in the context of via minimization. This makes
us confident that even optimal solutions to the via minimization problem (subject to side contraints like layer
preference and pin preassignments) can be found within reasonable computation time. We are quite certain that
good lower bounds on the necessary number of vias can be found efficiently (using methods from polyhedral com-
binatorics) so that optimality up to a few percent can be guaranteed.

A critique to the approach described above is necessary. The via minimization problem comes up only because
the layout problem is hierarchically split into many subproblems. It would (probably) be a good idea to combine
the routing and layer assignment phase and design routing algorithms which take the number of vias into account.
However, at present such a methodology is not available and via minimization as described above is indispensable.

This research has been partially supported by Deutsche Forschungsgemeinschaft, Forschungsschwerpunkt ,,Anwendungs-
bezogene Optimierung und Steuerung®.
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