
PREFACE

In its thousands of years of history, mathematics has made an extraordinary ca-
reer. It started from rules for bookkeeping and computation of areas to become the
language of science. Its potential for decision support was fully recognized in the
twentieth century only, vitally aided by the evolution of computing and communi-
cation technology. Mathematical optimization, in particular, has developed into a
powerful machinery to help planners.

Whether costs are to be reduced, profits to be maximized, or scarce resources to
be used wisely, optimization methods are available to guide decision making. Opti-
mization is particularly strong if precise models of real phenomena and data of high
quality are at hand – often yielding reliable automated control and decision proce-
dures. But what, if the models are soft and not all data are around? Can mathematics
help as well?

This book addresses such issues, e.g., problems of the following type:

– An elevator cannot know all transportation requests in advance. In which order
should it serve the passengers?

– Wing profiles of aircrafts influence the fuel consumption. Is it possible to con-
tinuously adapt the shape of a wing during the flight under rapidly changing
conditions?

– Robots are designed to accomplish specific tasks as efficiently as possible. But
what if a robot navigates in an unknown environment?

– Energy demand changes quickly and is not easily predictable over time. Some
types of power plants can only react slowly. When do you switch on which type
of power plant to produce the right amount of electricity at every point in time?

– A complicated interplay between pressure, temperature, and feed determines the
behavior of a chemical reaction over time. How do you adjust these parameters
to minimize undesired by-products and energy consumption, and to keep the
process safe?

The last two decades have witnessed a growing scientific interest in processes
where – due to the nature of these processes – data are incomplete and uncertain and
where decisions have to be made under tight time restrictions. This development
was fueled, in particular, by crucial problems in computer science, engineering, and
economics and has led to the emergence of online and real-time optimization. What
do these terms mean?

In optimization the typical situation is as follows. We assume that an optimiza-
tion problem is given in general terms (such as optimizing the moves of an elevator
system) and that we want to solve a particular instance of this problem algorithmi-
cally. In “ordinary optimization” we require knowledge of all data of the instance
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before we start solving it (e.g., we need to see the list of all transportation tasks prior
to scheduling the elevator moves). In “online optimization” the data, in contrast, ar-
rives sequentially “in pieces”. And each time a piece arrives, we have to make a
decision that is irrevocable. (These are the usual side constraints under which eleva-
tor control systems operate.)

In online optimization we do allow (in theory) the use of unlimited computing
power. The main issue is: incomplete data; and the scientific challenge: How well
can an online algorithm perform? Can one guarantee solution quality, even without
knowing all data in advance?

In real-time optimization there is an additional requirement, decisions have to
be computed very fast, fast in relation to the time frame of the instance we consider.
If the elevator control algorithm is slow people may have to wait a little longer, a
nuisance, but if there is imminent danger of an explosion of a chemical reactor, our
control algorithm ought to be quick.

Online and real-time optimization problems occur in all branches of optimiza-
tion: linear, nonlinear, integer, stochastic. These areas have developed their own
techniques but they are addressing the same issues: quality, stability, and robustness
of the solutions.

To fertilize this emerging topic of optimization theory and to foster cooperation
between the different branches of optimization, the Deutsche Forschungsgemein-
schaft (DFG) has supported a Priority Programme (Schwerpunktprogramm) “On-
line Optimization of Large Systems”. This program with a total budget of about
DM 15,000,000 over six years has financed 25 projects in all areas of online op-
timization at 28 universities and research institutes all over Germany. It supported
conference participation, mutual visits, and the organization of workshops for about
1,000 mathematicians that were involved in these projects for all or part of these six
years.

Instead of writing a final report for the files of DFG, the participants decided to
publish a book of a novel kind. It is neither a proceedings volume, nor a monograph
or a textbook, it is neither a report of latest research nor a collection of survey
articles. This book is all of this, to some extent, at the same time.

The aim of this book is to show the current state of online and real-time op-
timization to a broad audience. The book comprises 12 introductory articles that
are written on the level of an advanced student. These surveys, marked with an “ � ”
in the table of contents, cover all areas of online optimization. They introduce the
basic techniques of the analysis of online problems in the individual areas, provide
illustrative examples, and survey important results. The introductory papers provide,
at the same time, the grounds for the research surveys contained in this book. The
research-oriented articles summarize the results of the various topics of the Schwer-
punkt and, in this way, demonstrate the progress achieved in the years 1996–2001.

The editors and authors hope that this book will find readers inside mathematics
and, as well, in the application areas that are covered. The research results obtained
in the Schwerpunkt have moved the area a big step forward. However, online and
real-time optimization are still in their infancy. There are more questions than an-
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swers and a lot of research ground is ahead of us to be ploughed by concepts and
techniques yet to be discovered.

We do hope that the book achieves its aim to popularize the area of online opti-
mization, to get more mathematicians and computer scientists acquainted with this
topic and to show to the application areas that there are already quite a number of
topics where mathematics can make a difference.

The book is subdivided into various sections. Sections are defined by mathemat-
ical approach and not by application area. We suggest to those not too familiar with
online optimization to start reading the articles with an “ � ”.

We are indepted to numerous referees who provided valuable comments, evalu-
ations, and suggestions on the material in this book. Without them this book would
not have been possible.

June 2001 Martin Grötschel, Sven O. Krumke, Jörg Rambau
Editors

The research in this book was supported by a Priority Programme
(Schwerpunktprogramm SPP-469) of the Deutsche Forschungsgemeinschaft

(DFG).
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Abstract Basic results for sensitivity analysis of parametric nonlinear programming prob-
lems [11] are revisited. Emphasis is placed on those conditions that ensure the differentiabi-
lity of the optimal solution vector with respect to the parameters involved in the problem.
We study the explicit formulae for the sensitivity derivatives of the solution vector and the
associated Lagrange multipliers. Conceptually, these formulae are tailored to solution algo-
rithm calculations. However, we indicate numerical obstacles that prevent these expressions
from being a direct byproduct of current solution algorithms. We investigate post-optimal
evaluations of sensitivity differentials and discuss their numerical implementation. The main
purpose of this paper is to describe an important application of sensitivity analysis: the devel-
opment of real-time approximations of the perturbed solutions using Taylor expansions. Two
elementary examples illustrate the basic ideas.

1 INTRODUCTION

The literature on optimization problems uses two different notions of sensitivity
analysis. One conception of sensitivity analysis appears in the calculation of the ob-
jective function and the constraint partial derivatives for determining search direc-
tions and optimality conditions. The second form is related to parameter sensitivity
analysis where one studies the impact of a change in the design parameters on the
optimal solution vector and the objective function. In this paper, we review those
results and conditions which ensure that the optimal solution is differentiable with
respect to the design parameters. The fundamental results in this area go back to
Fiacco [10, 11] and Robinson [14] who independently used the classical implicit
function theorem for proving solution differentiability.

This approach also provided explicit formulae for the parameter sensitivity de-
rivatives of the optimal solution vector, the associated Lagrange multiplier and the
optimal value function. Fiacco [11] has spent a great effort in popularizing these
ideas by pointing out that the sensitivity information is a natural and highly useful
byproduct of solution algorithms. Armacost, Fiacco, Mylander [1, 2] have imple-
mented sensitivity analysis by interfacing it to the optimization code SUMT which is
based on penalty techniques. In the last two decades, considerable progress has been
made towards the development of efficient optimization codes that are able to han-
dle large-scale optimization problems. One prominent class of algorithms is that of
SQP-methods (Sequential Quadratic Programming). Beltracchi and Gabriele [4, 5]
have presented a more detailed study of sensitivity derivatives computations via
SQP-methods. They found that the explicit formulae for the sensitivity derivatives
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can not be tied directly to iterative calculations in SQP-methods since the employed
low rank updates of the Hessians usually do not converge to the exact Hessian. As a
consequence, they propose a post-optimal analysis of the sensitivity derivatives.

In the present paper, we take up the idea of post-optimal sensitivity analysis and
endeavour to advertise its practical importance by relating it to the current imple-
mentations of SQP-methods. We discuss the numerical issues of (a) checking sec-
ond order sufficient conditions which constitute the theoretical basis of sensitivity
analysis and (b) computing the Hessian with high accuracy. Beyond revitalizing the
methods of sensitivity analysis, our main purpose with this article is to use them for
the real-time optimization of perturbed optimal solutions. The principal idea behind
real-time optimization is to approximate perturbed solutions by their first Taylor
expansions with respect to the parameters. This approach will be further extended
in [7–9] to develop real-time control approximations of perturbed optimal control
solutions.

2 PARAMETRIC NONLINEAR OPTIMIZATION PROBLEMS

2.1 Necessary Optimality Conditions for Nonlinear Optimization Problems

We consider parametric nonlinear programming problems (NLP-problems) involv-
ing a parameter ���������
	�� . The optimization variable is denoted by �����	�� .
The unusual notation  for the optimization variable and the dimensional notation�

used here and hereafter in the constraints of the problem are adapted to the fact
that the optimization problem often results from a suitable discretisation of a dy-
namic optimization problem; cf. [8]. The parametric NLP-problem with equality
and inequality constraints is given by

NLP �����
��� �� min� ������ ���!�

subject to "$#%��&�'���)(�*+�-,
(/.0� � � �1� �32 �" # ��&�'���546*+�7,
( � 2�8 .0� � � �1� �:9
�

(1)

For simplicity of exposition, the functions �<;=��	 �
> ��?@� and "$#�;=��	 ��> �A?@� ,,�(B.C� � � �D� �E9 � are assumed throughout to be of class C
�

on ��	�� > � . The setF �G���); (IH'J�A�5KML0" # ���� ���)(�*+�J,�(B.C� � � �D� � 2 �" # ���� ���546*N�O,�( � 2�8 .0� � � �D� �:9 �QP (2)

is called the set of admissible vectors or points or simply the admissible set. An
admissible ¯:� F �G��� is called a local minimum of the NLP-problem (1), if a neigh-
bourhood RB�I��	�� of ¯ exists, such that

��� ¯+� ���54����S�� ���T� UVW� F �����NX3R � (3)

A point ¯E� F ����� is a strong local minimum of the problem (1), if a neighbourhoodR/�6��	�� of ¯ exists such that

��� ¯+�'���ZY[���S�� ���T� UVW� F �����NX3R��\^]( ¯ � (4)
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Any (strong) local minimum ¯ of NLP ����� is called an optimal solution. With ¯ we
associate the following active sets of indices:� � ¯+�'���Z; ( H .0� � � � � �^2 P��EH',��^H �32 8 .0� � � �1� � 9 P+L0"$#%� ¯&�'���)(�*5P � (5)

The Lagrangian function �E;=� 	�� > � 	�� > ��� ? � for the constrained nonlinear
optimization problem NLP �G��� is defined as� �S��	��� ���Z; ( ���S�� ��� 8 ��
 "���&�'���!� (6)

where we have used the function "��S�� ��� ; ( � " � ���� ���!� � � �1� " 	 � �S�� ���!� 
 and the
Lagrange multiplier � ( ��� � � � � �D�	� 	 � � 
 � � 	�� . Henceforth, the symbol ��S� 

denotes the transpose. We introduce the active constraints and the multiplier corre-
sponding to the active constraints by

"��J; ( � " # � #������ ��� ��� �����E�A� 	�� � � � ; ( #
� ���� ��� � (7)

In the sequel, partial derivatives of first or second order are denoted by subscripts
referring to the specific variable. First order necessary optimality conditions for an
optimal solution ¯ of NLP ����� may be found in any textbook on nonlinear optimiza-
tion; cf., e.g., Fletcher [12]. We shall recall these so-called KKT-conditions under
the strong regularity condition (constraint qualification) that rank � " �� � ¯&�'���!� ( � �
holds, i.e., the Jacobian of " �� � ¯+�'��� has full rank. This strong regularity condition
will be needed again for second order sufficient conditions (SSC) and the sensitivity
analysis based thereupon.

Theorem 1 (Strong Necessary Optimality Conditions for NLP ����� ). Let ¯ be an
optimal solution of NLP �G��� for which the Jacobian " �� � ¯+�'��� has full rank

� � . Then
there exist a uniquely determined multiplier � � ��	�� satisfying� � � ¯+�	��� ���Z(�� � � ¯�� ��� 8 � 
 " � � ¯+�'���)( *+� (8)�)# �6* U:,��3H .0� � � � � � 9 P � �)#�( * UE,O]� � � ¯+� ��� � (9)

2.2 Post Optimal Calculation of Lagrange Multipliers

In general, numerical algorithms for computing an optimal solution ¯ also yield a
satisfactory approximation for the multipliers � . Otherwise, an accurate value of �
can be calculated post-optimally once an optimal solution ¯ has been determined.
The procedure uses an appropriate !#" -factorisation of a matrix as described in Gill,
Murray and Saunders [13]. Since rank � " �� � ¯��'���T� ( � � , there exist a

� � > � �
matrix " and an orthogonal

� � > � � matrix ! with

" �� � ¯+�'���)($"�! � (10)

The matrices " and ! can be partitioned into

"A(&% " � ;=*�'Q�(!B( ) ! �! �+* � (11)
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with an upper triangular
� � > � � matrix " � having positive diagonal elements

and a
� � > � � matrix ! � , resp., a � � � � � � � > � � matrix ! � . In view of the

fact that �)# ( * for all ,O]� � �S��'��� , equation (8) gives:� � � � ¯+� ���)( � � � � 
 " � ! �
� (12)

Since the matrix " � is regular, we get the explicit expression

� � ( � � � � � ¯�� ��� ! 
 � "�� �

��� 

� (13)

2.3 Second Order Sufficient Optimality Conditions

Second order sufficient conditions (SSC) are needed to ensure that any point ¯ which
satisfies the KKT-conditions (8) and (9) is indeed an optimal solution of problem (1).
Another important aspect of SSC appears in the sensitivity analysis of the problem
NLP ����� where SSC are indispensable for showing that the optimal solutions are
differentiable functions of the parameter � ; cf. Theorem 3 below. The following
strong SSC are well known, cf. Fiacco [11].

Theorem 2 (Strong Second Order Sufficient Conditions for NLP �G��� ).
For a given parameter � , let ¯ be an admissible point for problem NLP �G��� which
satisfies the KKT-conditions (8) and (9). Assume that
(a) the gradients in " �� are linearly independent, i.e., rank � " �� � ¯&�'���!� ( � � ,
(b) strict complementarity � ��� * of the Lagrange multipliers holds,
(c) the Hessian of the Lagrangian is positive definite on ker � " �� � ¯�� ���!� ,

� 
 � � � � ¯&� �
�'��� � � *+� U � ](�* with " �� � ¯�� ��� � (�* � (14)

Then there exist 	 � * and a constant 
 � * such that

������ ��� �6� � ¯+� ��� 8 
��  � ¯�� � � U^�� F �����T��  � ¯�� � 4�	�� (15)

In particular ¯ is a strong local minimum of NLP ����� .
It is not apparent how one may check the SSC in (14) since positive definite-

ness of the Hessian is restricted to the null space of the Jacobian of the active con-
straints. A numerical check of the SSC may be performed as follows. Consider the� � > � � � � � � � matrix � with full column rank whose columns span the kernel
ker � " �� � ¯�� ���!� . Any vector � � ker � " �� � ¯&�'���!� can be written as � (���� for some
vector � � �
	�� � 	�� . Then condition (14) may be restated as

� 
��#
�� � � � ¯�� �
� ������� � *+� U�� � � 	 � � 	 � ��� ](6* � (16)

The matrix � 
 � � � � ¯&� �
�'����� is called the projected Hessian. It follows from
(16) that the positive definiteness of the projected Hessian on the whole space� 	 � � 	 � is equivalent to the positive definiteness of the Hessian � � � � ¯�� �
� ��� on
ker � " �� � ¯&�'���!� . Thus the test for SSC proceeds by showing that the projected Hes-
sian has only positive eigenvalues.
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One efficient method to compute the matrix � is the "�! -factorization as de-
scribed in (10) and (11). Suppose, that a "�! -factorization (10) and (11) is given.
Then � ; ( ! 
� forms an orthogonal basis for ker � " �� � ¯+�'���!� which follows from

" �� �/($" ! ! 
� ($" ) ! �! � * ! 
� (&% " � ;0*�' ) *
� 	 � � 	 � * (6* � (17)

Here and in the sequel,
� 	 � � 	 � denotes the identity matrix of dimension

� � �� � . The matrices ! � and " � in (11) are unique while ! � is not. If ˜! 
� is another
orthogonal basis for the null space of " �� � ¯�� ��� , then the corresponding projected
Hessian is a matrix which is similar to � 
 � � � � ¯��	��� ��� � . Thus, the eigenvalues of
the projected Hessian are independent of the orthogonal basis for ker � " �� � ¯�� ���!� .

3 SENSITIVITY ANALYSIS FOR PARAMETRIC NONLINEAR OPTIMIZATION

PROBLEMS

3.1 First Order Sensitivity Analysis of the Optimal Solution

For a fixed reference or nominal parameter ���J��� , the problem NLP ����� � is called
the unperturbed or nominal problem. We shall study the differential properties of
optimal solutions to the perturbed problems NLP ����� and the related optimal values
of the objective function with respect to parameters � in a neighbourhood of the
nominal parameter � � . The strong SSC presented in Theorem 2 have the important
consequence that the optimal solution and the Lagrange multipliers become differ-
entiable functions of the parameter. Moreover, explicit formulae for the parameter
derivatives, the so-called sensitivity differentials, can be given in terms of quantities
that depend alone on the nominal solution. The following principal result may be
found in Fiacco [11].

Theorem 3 (Differentiability of optimal solutions). Let the pair �S����	��� � be an
admissible point and multiplier which satisfy the strong SSC of Theorem 2 for the
nominal problem NLP ��� � � . Then there exists a neighbourhood � � � � of � � and
continuously differentiable functions <;C� � � ? ��	�� and ��;0� � � ? ��	�� with the
following properties:

(i) N��� � �)(6 � ���$��� � �)( � � ,
(ii) the active sets are constant in � � , i.e.

� ��N�����!�'����� � �S � � � � �VU�� �A� � ,
(iii) the gradients in " �� ��+�G���!� ��� are linearly independent, i.e.

rank � " �� �SN�G���T� ���!� ( � � UW� ����� ,
(iv) For all � � �	� , the pair �SN�G���T�	�$�����!� satisfies the strong SSC in Theorem 2

for the perturbed problem NLP ����� . In particular �SN�����T�	���G���!� is a strong local
minimum of NLP ����� .

It is instructive to sketch the main steps of the proof since the analysis additionally
leads to explicit formulae for the sensitivity derivatives of the optimal solutions
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and multipliers. Due to the strict complementarity condition � �� � * , the KKT-
conditions (8) for the unknown pair ����	� � �
( ��N�����!� � � �����!� can be written in the
form� �S��	� � � ���Z; ( � � � �S��	� � � ���" � ��&�'����� ( � � � �S�� ��� 8 � � � � 
 " �� �S�� ���" � ��&�'��� � (�* � (18)

At the nominal solution, the Jacobian of the mapping
� ��&� � � �'��� with respect to the

variable ��&� � � � is given by� �� ����	� � � �� ���	���� � � � � ( � � � � �S � �	� �� �'� � ��" �� �S �&� � � � 
" �� �S �&�'� � � * � � (19)

One easily shows that this so-called Kuhn-Tucker matrix is regular since the SSC
in (14) are assumed to hold. Hence, we are in the position to apply the classical
implicit function theorem to equation (18). This yields the existence of differentiable
functions �(�N����� and � � ( � � ����� satisfying the equation

� ��N�����!� � � �����!�'���5(* identically for all parameters � in a neighbourhood of � � . The differentiation of
the identity

� �SN�����T�	� � �����!�'��� � * at the nominal parameter � � then yields the
following system of linear equations for the sensitivity differentials of the optimal
solutions and multipliers:� � � � �� �&�	� �� � � � � " �� �� ��� � � � 
" �� �S �&� � � � * ����� �� � ��� �&�

�
	 �� � ��� � ��� 8 � � � � �S � � � �� �'� � �" �� �� � � � � � � (6* � (20)

Hence, we obtain the explicit formulae for the sensitivity differentials

� � �� � ��� � �
�
	 �� � ��� �&� � ($� � � � � �S �&�	� �� �'��� � " �� �� �&� � � � 
" �� �S �&�'����� * � � � � � � � �S �&�	� �� �'��� �" �� �� � �'� �&� � �

(21)
The structure of this formula brought Fiacco [11] to argue that “sensitivity anal-

ysis can be invariably be tailored to solution algorithm calculations” and that “it
appears natural and efficient to calculate sensitivity as a byproduct” of solution
point algorithms. This statement follows from the fact that, at least conceptually,
the Kuhn-Tucker matrix appears in all iterative solution algorithms that apply New-
ton’s method to the KKT-system (18), e.g., in SQP-methods. However, the exact
computation of the Jacobian (19) in every iteration is by far too expensive. This
has lead to the development of Quasi-Newton methods where one uses low rank
approximations of the Jacobian; cf., e.g., the BFGS update matrices described in
Gill et al. [13]. In general, the Quasi-Newton approximations do not converge to
the Kuhn-Tucker matrix in (19). This means that the information gained in the solu-
tion process can not be used directly for an accurate computation of the sensitivity
differentials (21); cf. the examples in Beltracchi and Gabriele [4, 5]. This fact may
have impaired a computational sensitivity analysis as a direct byproduct of modern
solution algorithms.

Accurate values for the sensitivity differentials can be obtained from a post-
optimal analysis. First, one has to perform an exact calculation of the Kuhn-Tucker
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matrix in (19). This needs a rather accurate calculation of the first and second order
derivatives appearing in (19) which can be achieved by appropriate finite difference
schemes; details may be found in Büskens [6]. Then sensitivity differentials can be
computed through a ��" -factorisation of the Kuhn-Tucker matrix. Another method is
to use the techniques of " ! -factorisation for solving the linear equation (18). These
methods are similar to the ones developed in section 2.3 and are described in greater
detail in [6]; cf. also Fiacco [11].

3.2 First and Second Order Sensitivity Analysis of the Optimal Value Function

A formula for the first order sensitivity derivative of the optimal value function is
found as follows. Since � � �� ���	� �� � � � �)(�* and � 	 � �S �&� � �� � � � �)(/" � �� ��� � �&�+(�* ,
we obtain � �� � �SN�G���T�	� � �G���T� ���QL ��� ��� ($� � �S � � � �� �'� � � � (22)

The sensitivity derivative of the objective function is given by� �� � �SN�����T� ���QL ����� � (�� � �S �&�'� �&� � � � ��� �&� 8 � � �� ��� � �&� � (23)

Upon evaluating the second component in relation (20), we get

"��� �� � �'� �&� � � � ��� �&�)( �J"��� �� �&� � � � � (24)

Hence, together with equations (18) and (22) relation (23) reduces to� �� � ��+�G���!� ����L ��� � � ($� � �S � �	� �� �'� � � � (25)

Note that in contrast to (23), where second order information is required to calculate� �� � ��� �&� , only first order information is needed in equation (25) which allows for a
more efficient calculation of the optimal value sensitivities.

The differentiablity of optimal solutions is the basis for the second order sen-
sitivity analysis of the optimal value function. Observe that the formula (25) holds
identically in � , i.e., we have � �� � �SN�����T� ���5( � � ��N�����!� � � �����!�'��� for all � � ��� . A
further differentiation of this identity yields the second order derivative� � �� � � % � � 'Z( � � � � �G� � � � 
 � � � % � � ' 8 � � � �� � �G� � � � 
 " �� % � � ' 8 � � � % � � 'Q� (26)

where the notation % ��� ' stands for all nominal arguments. Multiplying the upper part

of equation (18) from the left by
� � �� � �G� �&��� 
 and inserting the equation (24) into

(26), we find the alternative formulae� � �� � � % � � ' ( � � � � ��� �&� � 
 � � � % � � ' � � � ��� �&� 8	� � � � � % � � ' � � � ��� �&� � 
 8 � � � % � � ' �
(27)
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The numerical advantage of this second representation is its independence from
the Jacobian of the constraints and the derivative of the multipliers. Among others,
equations (26) and (27) can be used to estimate the error of the first order real-time
approximation (31) given below.

3.3 Linear Perturbations

The formula (21) for the sensitivity differentials of optimal solutions simplifies con-
siderably if the constraints (1) involve linear perturbations in the form " � �S��'���5(" � �S�� � � and if the objective is independent of � , i.e., ���S�� ���$( ����&� . Then we
have � � � �S � � � �� � � � � (6* and " �� �S � �'� � �)($� � 	 � . Let

��� # � � � # � � � � ������� � 	 ��� 	 � ( � � � � � " �� � 
" �� * � � �

denote the inverse of the Kuhn-Tucker matrix in (18).
Then with � ( ��� � � � � � � � 	 � � it follows that�  #� � � �G� � � (�� # � � � 	 � � ,�( .0� � � �D� � � �
	 (B.C� � � �D� � � �� � �#� � � �G� � � (�� # � 	 � � � � 	 � � ,�(B.C� � � �D� � � ��	 (B.C� � � �D� � � � (28)

Moreover, the sensitivity differential (25) of the optimal value function reduces to� �� � # % � � 'Z( � �E��� �� � # � for ,$� � �� � � � � �T�*+� for ,O]� � �� � � � � � � (29)

Noting that this relations also holds identically in � , we may differentiate again and
obtain the second derivative which also follows directly from (26):

� � �� � �# % � � ' (
�� � � � � �#� � ��� � �!� for ,$� � �� � � � � �T�

*+� for ,O]� � �� �&� � �&� � (30)

Linear perturbations in the objective are not of interest as they represent only an
additive factor.

4 REAL-TIME OPTIMIZATION OF NLP PROBLEMS

4.1 Real-Time Approximations by Taylor Expansions

The differentiability properties of optimal solutions to the parametric NLP prob-
lems which we discussed in the previous section are of fundamental importance for
real-time approximations of perturbed solutions. The knowledge of the nominal so-
lution  � (6N��� �&� and the sensitivity differentials � �� � �G� �&� allow to approximate the
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perturbed solution N����� by its first order Taylor expansion:

N�������[ � 8 � � � �G� �&����� � � � �+� (31)

Both the nominal functions N�����&� and the sensitivity differentials � �� � �G� �&� can be
computed off-line. Hence, if the parameter � deviates from the nominal parame-
ter � � , equation (31) provides an on-line approximation whose computation is very
fast since it requires only matrix-multiplications. Should the first order approxima-
tion not be accurate enough, a further improvement of the real-time approximations
in view of optimality and admissibility can be achieved by applying the ideas in [7].
Otherwise it is advantageous to use the approximation as a starting point for calcu-
lating the exact solution.

One way to estimate the quality of the real-time approximation (31) is to evalu-
ate the Taylor-expansion of the objective function

����N�����!�'�����[� �S �&� � � � 8 � �� � % � � 'T��� � � � � � (32)

The error in the first order approximation can further be estimated from the second
order Taylor expansion

����N�����!�'����� ������ � � � 8 � �� � % � � '!�G� ��� � � 8 .� �G� ��� � � 
 � � �� � � % � � 'T��� ��� � �!� (33)

where � �� � % � � ' and � � �� � � % � � ' are calculated from equations (25) and (27).

4.2 A Numerical Example

Consider the optimization problem in two variables  ( �S � �! � � :
Maximize ˜� ��&�'���)( ��* � � 8 �����  �

8 ��* � � � ���  �

subject to  �
8  � 4B.0�- � �6* � .��

The nominal parameter is chosen as ���V( * . Before applying the KKT-conditions
(8) and (9) we have to observe that we are minimizing the function ���S��'����; (� ˜������ ��� . It is easy to see that the optimal solution for parameters � in a small
neighbourhood of ��� (�* is given by

 � �����)( � * � � 8 �. � � � � �

�- � �����)(B. �  � �G���T����� ����� ( � �� �����)(�* � � ��� �
The active set is

� ��N�����!�'��� ( H . P and hence the Lagrangian is� �S � �! � � � � �)($� � * � � 8 ��� �  � � � * � � � ���  �
8 � � �S �

8  � � .0� �
The nominal solution is  ��( ��* � � � �T* � � � � and � �� ( * � � . Though the Hessian� � � �S � �	� �� � � � ��( � .3** * � is not positive on the whole space � �

, the SSC in (14)
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are satisfied in view of " �� �S �&�'� �&��( �Q.0�D.C� and ker � " �� �� ��� � � �!�$( �$N� .C� �W.0� .
The matrices in (21) for the nominal solution are� � � � � " �� � 
" �� * � (

�� . *6.* *6.. . *
��

� � � � �" �� � (
�� �W..*

��
�

Then the formula (21) for the sensitivity differentials yields
� �� � �! � � � � ��� � � (� � � � � � ��.C� 
 from which we get the following first order approximation (31):��  � ����� � ������ � �����

��
�

�� * � � �* � � �* � � *
�� 8 �� �� ��W.

��
� �

To illustrate the quality of this approximations, let us consider the perturbation � (* � * � . The exact solution is computed from the above formula as

�SN��* � * � �!�Q � ��* � * � �T�	� � � * � * � �!�5( ��* � �����	� � ���T* � 
 � 
 � ���N�!* � � � � �
The first order approximation yields the value ��* � � � �T* � 
 � �!* � � � � which is in an

acceptable agreement with the exact value. The sensitivity analysis of the optimal
value function is as follows. The exact functional value is � % * � * � 'M( � * � 
�.�0* � 
 .
The first order formula (25) yields

� �� � � ( � � ($� �  �
8  � (6* � � � whereas the

second derivative is computed from (30) as
� � �� � � � ( � � � � � � ( �W. . Then the

first order expansion (32) gives the value � * � 
�. � � which can be improved by the
second order expansion (33) where we obtain the value � * � 
+. � .

4.3 Prediction of the Sensitivity Domain

When dealing with real-time approximations of the form (31) one has to ensure
that a change of the parameter � does not change the set of the active constraints� �� ��� � �&� . In general one has to distinguish two cases: a constraint enters the active
set or a constraint leaves the active set. This section is concerned with the predic-
tion of the sensitivity domain to determine when a perturbation � is too large to
apply formula (31). The following analysis is based on [4, 5]. A first order Taylor-
expansion of the active Lagrange multipliers is given by

� � ������� � � ��� � � 8 � � �� � �G� � ���G� � � �&�+� (34)

where the derivative �
	 �� � ��� � � is obtained from (21). A constraint will leave the
active set when the corresponding Lagrange multiplier will go from some nonzero
value to zero. Hence, if one of the multipliers in (34) approximates zero,

*J( � �# �G��� � � �# ��� � � 8 � � �#� � ��� � � � � # � � � � �7,$� � �S � �'� � �!� (35)
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it follows from (35), that an approximation of the perturbation � # ( ��� #
� � � � �1� � # 	�� � 


causing a constraint "$# to leave the active set is given by

� # � � �G� � � � � � �# ��� �&�
� 	 ��� ��� �G� � � �7,$� � �S �&�'�����!� 	��^H .0� � � � � � � PT� (36)

provided that �
	 ��� ��� ��� �&��](�* . The situation where a constraint enters the active set is

rather similar. In this case a constraint " # , ,O]� � �� � � � � � , is zero:

*�(/" # ��+�G���!� ����� " # �S � �'� � � 8 � "$#� � �S � �'� � � � � # ��� � � �7, ]� � �� � � � � �T� (37)

where� "$#� � �� � � � � �)( � "�#�  �� � � � � � � � � �G� � � 8 � "$#� � �� � � � � �!�7,O]� � �� � � � � � � (38)

Hence an approximation of the perturbation � # ( ��� #
� � � � � � � # 	 � � 
 causing the con-

straint "$# to enter the active set is given by

� # � � �G� � � � � " # �S � �'� � �
� � �� ��� �S � �'� � � �7,O]� � �S � �'� � �!� 	
�3H .0� � � �D� � � PT� (39)

provided that � � �� ��� �� � �'� �&�O](B* . We summarize our findings as follows. The sensi-

tivity domain �	� is determined by those values � # � in (36) and (39) which are closest
to the nominal perturbation ��� � � � :

��� � � �

� > � �

� >    > � 	 �� �
� �� ; ( )

max
¯
����� � � � ��� � ¯� � � ¯� �
	 � min

¯
����� � � � ��� � ¯� � � ¯� �	 * �

¯� � ; ( � � # � L ,�(B.0� � � �1� � 9 	 �:H ��� � 8 ��P �
	5( .0� � � �D� � � � (40)

4.4 Handling of Larger Perturbations

This section will be based on ideas in Beltracchi and Gabriele [4]. In general, sen-
sitivity derivatives do not exist at points where the active set changes. However, one
can show that at least directional sensitivity derivatives exist. Hence, one method
for dealing with changes in the active set is based on calculating directional deriva-
tives. Based on the arguments of the preceeding section, we propose the following
strategy for dealing with constraints entering or leaving the active set:

1. Calculate the optimal solution �SN��� �

� �T�	� � ��� �

� �T� and the sensitivity differentials� � �� � �G� �

� �!� �
	 �� � ��� �

� �!� at the nominal value � �

� ( ��� .
2. Calculate the sensitivity domain as described in (40). Let � �

� denote the pertur-
bation that causes a constraint to enter or to leave the active set.
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3. Calculate the sensitivity differentials � � �� � ��� �

� �!� �
	 �� � ��� �

� �T� at the value � �

� with
the active set updated to reflect the change indicated by step 2. Let ��� denote
the updated Lagrange multiplier and remember � 	 �� � ��� �&�)(�* , ,O]� � �S ���'� � � .

4. Calculate the first order changes
�  ; ( � �� � ��� �

� � �G� �

� � � �

� � 8 � �� � �G� �

� � ��� � � �

� �!�
� ���3; ( �
	 �� � �G� �

� � ��� �

� � � �

� � 8 �
	 �� � ��� �

� � ��� � � �

� � � (41)

5. Calculate the new first order approximations by

N�������� � 8 � �� � � �G��� � � � � 8 � � � � if � � � �

� �I*N� (42)

otherwise by (21).

Note that the approximations (42) also lead to first and second order Taylor approx-
imations of the optimal value function.

4.5 A Numerical Example for Predicting the Sensitivity Domain

The purpose of this section is to illustrate the theoretical results presented in Sec-
tions 2–4 by a numerical example which is taken from [4,5]. Consider the following
linearly perturbed NLP-problem with optimization variable  ( �� � �! � � 
 � � �

and perturbation parameter � � � :

min� ���S�� ��� ( �S �
8 .0� � 8 �� � � � � � �

subject to " � ���� ($�  �
8 � 46*N�" � ���� ( �  �
8  � � 
I46* (43)

The nominal perturbation is assumed to be ��� (B. . The discussion of the necessary
optimality conditions in Theorem 1 yields the optimal candidate  ��( � .C� � � and� �� ( � � �!*N� with active constraint " � . The optimal nominal value is ���� �&�'�����)( � .
The SSC in (14) obviously hold in view of � � � ( �

� . It is straightforward to see
that the optimal perturbed solution is given by �� � �����!�! � �����!� ( �G��� � �T� � � ����� (� ��� 8 .0� for ��.O4���4 �

and has the optimal value ����N�����!�'���5( ��� 8 .0� �

.
Let us compare this exact solution with the approximate solutions in (31)–

(33). Applying formula (21), the sensitivities of the optimization variables and La-
grange multipliers are calculated as � �� � � .C��(7� .0�T*+� 
 and �
	 �� � � .0� ( �

. Since
the perturbation appears linearly in the constraints we can employ equations (29)
and (30) to get the first and second order sensitivity differentials of the objective:

� �� � � .0��( � and � � �� � � � .C�<( �
. The sensitivity domain is calculated from (36) and

(39) as ��� (&% �W.0� � ' .
Now we apply the real-time approximation ideas of Section 4 for the perturba-

tion �[( �
. Since the perturbation is inside the sensitivity domain ��� , we can use

formula (31) for real-time optimization. We get N� � � � � � � � � 
 which agrees with
the exact solution. This is due to the fact that both the constraints and the perturba-
tion are linear. The first order Taylor expansion (32) of the objective function yields
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Figure 1. Real-time optimization of perturbed NLP problems

���SN� � �!� � � � � . The second order Taylor expansion (33) of the objective function
gives ����+� � �!� � � �$# which agrees with the exact optimal value.

Next we investigate a perturbation � ( �
�

�
outside the sensitivity domain. With-

out using equation (42) we obtain from (31) the non-admissible point +� � � � ��(� � � � � � �^]� F � � � � � . Step 2 of the strategy for handling larger perturbations tells us
that the constraint " � enters the active set when � ( � �

� ( �
. For values of �

greater then � �

� the position of the optimum is along the intersection of constraint" � and " � . The new search direction along constraints " � and " � is determined in
step 3 as � �� � � � � ( �Q.0� � � � . Then formula (42) gives an estimate for the new position
of the optimum, namely +� � � � �5( � � � � �1.0� , which agrees with the optimal solution;
cf. Figure 1).

We should probably not expect that good results in more general optimization
applications. However, at least we can expect better predictions of the new optimum
for small changes in those parameter which cause a change of the active set.
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Sensitivity Analysis and Real-Time Control of
Parametric Optimal Control Problems Using
Boundary Value Methods
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Abstract Parametric nonlinear control problems subject to mixed control-state constraints
and pure state constraints are investigated. Parameters are introduced to model perturbations
of the control system and may appear in all system data. We review conditions under which
the optimal solutions are differentiable functions of the parameter. In the theoretical part,
these conditions are related to regularity conditions and to second order sufficient condi-
tions. On the numerical side, the conditions are connected to shooting methods for solving
the boundary value problems that characterize the optimal solution. We discuss methods for
computing the sensitivity differentials of the optimal solutions with respect to parameters.
The calculated sensitivity differentials can be used to construct real-time approximations of
the perturbed solutions via first order Taylor expansions. Two numerical case studies are dis-
cussed in detail to illustrate the numerical methods for mixed control-state constraints and for
pure state constraints.

1 INTRODUCTION

We study parametric optimal control problems that are subject to mixed control-state
constraints and pure state constraints. There exist numerous papers on applications
of optimal control problems with control-state constraints, e.g., [9, 30–33, 45, 48,
49, 57–60] or pure state constraints, e.g., [7, 9, 11, 12, 15, 16, 19, 20, 30, 32, 33, 42,
46, 47, 53, 55, 59, 60]. Parameters in the control system play the role of modelling
perturbations of system data in a deterministic way. We adopt the deterministic point
of view since the stochastic approach to perturbations is by far too difficult for the
general control problem under consideration.

Stability analysis of parametric control problems is concerned with Lipschitz
continuity of optimal solutions with respect to the parameters [17,18,38]. Sensitivity
analysis aims at a stronger property of optimal solutions. Namely, conditions are de-
rived that establish differentiability of optimal solutions [39–41, 49]. Moreover, the
theory is tied to numerical methods which allow to compute the sensitivity differ-
entials. The interest in conditions for solution differentiability originates in the real-
time computation of perturbed solutions under parameter changes. The basic ideas
of using first order approximations of perturbed solutions for real-time control go
back to the sixties (see [9] and other work cited in this book) and have been refined
later to treat control problems with control and state constraints [8, 31–33, 59, 60].
The approach in these papers uses boundary value methods for computing both the
nominal unperturbed solution and the real-time approximations of perturbed solu-
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tions. The shooting method [10,54,65] turned out to be an efficient method for both
tasks yielding highly accurate solutions.

Recently, the theory underlying solution differentiability was developed in [39–
41] in such a way that all needed conditions were related to shooting methods. The
essential prerequisite for solution differentiability is the property that the nominal
solution satisfies second order sufficient conditions (SSC), cf., [48, 50, 51, 56, 68].
It was shown that SSC can be checked via a bounded solution of Riccati equations.
This test could also be related to shooting methods.

The present article intends to give a survey on sensitivity analysis and the numer-
ical tools to compute sensitivity differentials. The reader is assumed to have a basic
knowledge on optimal control problems as conveyed in the textbooks [9], [27], [63].
The material is presented as to make the article self-contained both with respect to
the theory and the numerical methods. In section 2, we consider a general optimal
control problem subject to control and state constraints and sketch a basic idea for
real-time computations for perturbed solutions which is based on Taylor expansions.
Section 3 is devoted to sensitivity analysis of control problems with mixed control-
state constraints and summarizes the work in [39,49]. Section 4 treats the Rayleigh
problem (the optimal control of an electric oscillator) with a pure control constraint
and with a mixed control-state constraint. We have strived for a complete account of
both the nominal solution and the sensitivity differentials. State constraints are con-
sidered in section 5 where for simplicity of exposition only a scalar state constraint
is studied. The theory is illustrated by a case study in section 6: the optimal control
of a Van-der-Pol oscillator under a state constraint.

To readers, who are not familiar with optimal control theory, we recommend
starting with the numerical examples in sections 4 and 6 which may provide a better
insight into the technical assumptions needed for the theory in sections 3 and 5.

2 PARAMETRIC OPTIMAL CONTROL PROBLEMS AND THE PRINCIPLE OF

REAL-TIME CONTROL

We shall study optimal control processes on a time interval % *+������' with a fixed final
time ��� � * . The state of a system at time � � % *+������' is denoted by the vector � ���C� �� K . The system is steered by a control vector � �	�C�E�/��
 . The control function
��; % *+��� � 'Z? � 
 is assumed to be an essentially bounded function, i.e., an element
of the Banach space �� ��*+��� ��� � 
 � which is endowed with the norm L L � L L  ; (
������� �)�<H�L � ���C�!L �W* 4���4�� � P � Here L  L stands for the Euclidean norm in � 
 .
The state function �:;�% *+��� � ')?@�5K is an element of the space �

� �
:� *+��� ��� �5K � of

uniformly Lipschitz-continuous functions which is a Banach space under the normL L �ZL L � �
 ; (/L � ��*+�!L 8 L L ˙� L L  .

All data of the control problem may depend on a parameter � � � where� ����� is an open set of finite-dimensional parameters. The following parametric
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optimal control problem will be denoted by OC(� ):

OC �G��� Determine a pair � � � � � � �5� �
� �
 ��*+��� � � � K � > �  � *+��� ��� � 
 �

that minimizes the cost functional

��� �)� �M� ��� ( � � � � *+�!��� �	���=�!�'��� 8 ����
��� � ��� �	�C�!��� �	�C�!� ��� � � (2.1)

subject to the dynamics, boundary conditions and constraints

˙� �	�C�)( � � � �	�C�!� � ���C�T� ��� for a.e. �O� % *N������'Q� (2.2)� ��� � *+�!��� �����\�!�'��� (�*+� (2.3)	 ��� ���C�!��� �	�C�!�'����46* for a.e. �O� % *+������' � (2.4)F � � ���C�T� ��� 46* for all � � % *+������' � (2.5)

where � ;=� K^> � K^> ��? ��� � � ;0� K^> � 
 > �A?@�$� � ;=� KV> � 
 > � ?@� K � � ;� K > �5K > �A?@��
N�Z.O4� 4 ��� � 	 ( � 	 � � � � � � 	�� �Z;=�5K > � 
 > ��? � � andF ;)�5K > �[? � . The inequality constraints (2.4) are called mixed control-state
constraints whereas (2.5) constitutes a pure state constraint. At first sight, the dis-
tinction between mixed control-state (2.4) constraints and the pure state constraint
(2.5) seems to be artificial since the constraint (2.5) is formally included in the con-
straint (2.4). However, for the mixed control-state constraint (2.4) we tacitly assume
that any function

	 # � �)� �M� ���T�&,�( .0� � � �D���)� contains at least one control component,
i.e., � � 	 # ]� * . The precise assumption will be formulated in the regularity condi-
tion (AC-1) in section 3. This distinction between mixed control-state and pure state
constraints will lead to a significant difference in theoretical and numerical solution
techniques for both types of constraints; cf. the examples in sections 4 and 6.

In (2.5) we have considered only a scalar state constraint since the general case
of vector-valued state constraints would complicate the technical exposition consid-
erably. Non-autonomous control problems can be reduced to the above autonomous
problem by treating the time � as a new state variable. Similarly, control problems
with a free final time ��� can be reduced to an augmented control problem with a
fixed final time. This can be achieved by the time transformation �<( � �� � where
the new time variable � � % *+�D. ' is introduced; cf. [27, 48].

The general standing assumptions (AG-1)–(AG-3) made in this section are sup-
posed to be satisfied throughout the paper. Hereafter, assumptions referring to mixed
constraints will be denoted by (AC-1)–(AC-5) in section 3, whereas those for the
pure state constraint will be called (AS-1)–(AS-6) in section 5.
(AG-1) There exist open sets �3K/� �5K and � 
 � � 
 such that the functions� � � ��� � �

� � 	 � F are twice differentiable in ���Z��� � and once in � on � K > �^K > �
and on �^K > � 
 > � , respectively. All derivatives are assumed to be uniformly
Lipschitz-continuous in � �)� �M� ��� . In case of a state constraint of order � � . (cf.
section 5), the functions are assumed to be of class C

��� � �

.
For a fixed reference parameter ���E��� , the problem � 	 �����&� is considered as the
unperturbed or nominal problem.
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(AG-2) There exists a local solution ��� �&����� � of the reference problem OC �G���&� such
that the control � � is continuous.

The continuity assumption for the optimal control is restrictive but holds in
many practical examples. The continuity property holds, e.g., for control problems
with a regular Hamiltonian function. We note that the continuity assumption can
be dropped, see [38], but this approach requires a refined technical exposition of
sensitivity analysis which is beyond the scope of this paper.

One basic prerequisite for sensitivity analysis is an assumption on the structure
of the optimal solution, i.e., on the number of active intervals for the inequality
constraints (2.4) and (2.5). An interval % � � ��� � ' is called a boundary arc for the , -th
component

	 # of the mixed constraint (2.4) if it is a maximal interval on which	 # � � ���C�T� � ���C�T� ��� ( * for all � � % � � ��� � ' . The points � � and � � are called entry
and exit point for the , -th constraint or, more simply, junction points. A boundary
arc for the pure state constraint (2.5) is defined in a similar way by

F � � ���C�T� ��� (�*
for all �[� % � � ��� � ' . A point � � % *+��� � ' is called a contact point for the state
constraint if it is an isolated point at which the trajectory touches the boundary.
Taken together, entry, exit and contact points are called junction points. We denote
by
� 	 �# the set of junction points for the , -th mixed inequality constraint (2.4) and

put
� 	 � ; ( � 	 � � �    � � 	 �� . Similarly,

� F � denotes the set of junction points for
the pure state constraint (2.5). We assume:
(AG-3) The set

� � ; ( � 	 � � � F � ( H � � � � � � � ��� �	 P of all junction points is finite
with *I4 � � � Y   
Y � �	 4 � � . The intersections of these sets are disjoint and
satisfy

� 	 �# X � 	 �� (��N�AU:,O]( 	 � and
� 	 � X � F � (�� .

The second part of this assumption means that every point � �# is a junction point
for exactly one constraint in either (2.4) or (2.5).

We briefly sketch now the sensitivity result that leads to a real-time control ap-
proach of perturbed optimal solutions. The next section summarizes conditions that
ensure the property of solution differentiability for optimal solutions. Namely, it will
be shown that there exists a neighborhood � � ��� of the nominal parameter � � such
that the unperturbed solution ��� � � � � � can be embedded into a family of perturbed
solutions to the perturbed problems OC(� ),

��� �N���C�!�����N���C�!��� ��� �	�C� ���!��� �	�C� ���!� U � � ���C�
with the property that the partial derivatives (sensitivity differentials)

� ���C�); ( � �� � �	�C� � � � � ���C�); ( � �� � ���C�'� � �
exist for all � except at the junction points. Moreover, these partial derivatives sat-
isfy a linear inhomogeneous boundary value problem which is easily solvable. This
property allows to approximate the perturbed solutions by a first order Taylor ex-
pansion

� �	�C� ��� � � � �	�C� 8 � �� � ���C�'� � � ��� � � � �T� � ���C�'��� � � � ���C� 8 � �� � ���C� � � � ��� � � � �!�
(2.6)
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for all � which are not junction points. The right sides represent quantities which
allows for a very fast on-line computation since they require only matrix multi-
plications after the unperturbed solution and the sensitivity differentials have been
computed off-line. This approximation of the perturbed solution has been used in a
more or less general situation by various authors, cf., e.g., [8, 9, 31–33, 49, 57–60].
The practical benefit of this approach has strongly stimulated the systematic study
of sensitivity analysis. The approximations in (2.6) represent the counterpart to the
first order sensitivity analysis for finite-dimensional optimization problems [25].
This approach has been exploited in [13, 14] by applying nonlinear programming
techniques to a discretized version of the optimal control problem.

We point out that some care has to be taken before using these approximations
on the whole time interval. Pesch [57]– [60] gives a computationally efficient mod-
ification of the Taylor expansion in a neighborhood of the junction points.

3 SENSITIVITY ANALYSIS FOR OPTIMAL CONTROL PROBLEMS WITH MIXED

CONTROL-STATE CONSTRAINTS

3.1 Constraints Qualifications and Second Order Sufficient Conditions

To simplify notations, we shall treat the mixed control-state constraint (2.4) and
the pure state constraint (2.5) separately. In this section, we concentrate on control
problems with control-state constraints (2.4) only and give a survey of the sensitivity
results in [38, 39]. The first order necessary conditions for an optimal pair � ���&� � �&�
are well known in the literature [27, 52]. The unconstrained Hamiltonian function
� � � resp., the augmented Hamiltonian � are defined as

� � ���Z��� ���Z� ���)( � �����Z��� �'��� 8 �
�

� � �)� �M� ���!� (3.1)

�V� �)��� ���Z���)�'��� ( � � � �)� �M���Z�'��� 8 �
� 	 � �)� �M� ���!� (3.2)

where � � �5K denotes the adjoint variable and � � � � is the multiplier as-
sociated with the control-state constraint (2.4); the asterisk denotes the transpose.
Henceforth, partial derivatives will either be denoted by the symbols ����� � � or
by subscripts. Likewise, second derivatives are denoted by � �

��� � � �

� � or by dou-
ble subscripts. The nominal solution corresponding to the nominal parameter � � is
marked by the subscript zero.

Now we need two regularity assumptions in order to formulate first order nec-
essary conditions in a normal form with a non-zero cost multiplier.

Let
	 ( � 	 � � � � �1� 	�� � be the vector defining the constraint (2.4). Consider the

set of active indices resp. the vector of active components:

�
�N���C�)( H',��3H .0� � � � � �+P L 	 # � � �+���C�T� � �+���C�T� � � �)(�*=P � 	 ��; ( � 	 # � #��	� � � � � �

For an empty index set
�
�����C� ( � the vector

	 � is taken as the zero vector. The fol-
lowing regularity assumption concerns linear independence of gradients for active
constraints; cf. [34–36, 39, 50, 68].
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(AC-1) The gradients � � 	 # ��� �+���C�T� � �����C�!�'� �&� are uniformly linear independent
for all ,$� �

�����C� and all � � % *N��� � ' .
(AC-2) (Controllability condition) For each � � � 
 there exist functions � �� ���*+����� � � 
 � and � � �

� �
V� *+����� � � K � which satisfy the following equations

for a.e. � � % *+������' :
˙� ���C�)( � � � � � � ���C�T� � � ���C�T� � � � � �	�C� 8 � � � � � � ���C�T� � � ���C�T� � � � � �	�C�!�� � � � � � ��� � ��*+�T� � � �����\�T� � � � � � *+� 8 � � � � � � � � � � � *+�!��� � �����\�T� � � � � �����=�)(��5�� �
	 � � � � ���C�T� � � ���C�T� � � � � �	�C� 8 � � 	 � ��� � ���C�!��� � ���C�!�'� � � � �	�C� (�* �

Usually, it is difficult to verify the controllability condition. A numerical check
will be provided by the shooting method in section 3.2. The last two assumptions
guarantee that the following first order necessary optimality conditions are satisfied.
There exist Lagrange-multipliers

� � � ��� ����� �&�5� �
� �
 ��*+��� � � � K � > �  � *+��� � � � � � > � 


such that the following conditions hold for a.e. � � % *+��� � ' ,
˙� �����C�)($� � � ��� �N���C�!�������	�C�!��� �+���C�T��� �+�	�C�!�'��� � � � (3.3)

� � � ����*+�T��� �+�	� � �!�)( � � � � � ��� � � � � � � � � 8 �
�

�
� � � ��� �+��*+�T� � �+�	� � �!� � �&�T� (3.4)

� � ��� � ���C�T� � � ���C�T��� � ���C�T��� � ���C�!�'� � �)(�*+� (3.5)

� � ���C� �6* and � � ���C� � 	 � � � �	�C�!� � � �	�C�!� � � �)( *+� (3.6)

�V� � �����C�T� � �+���C�T��� �����C�T��� �N���C�!�'� �&��� const. (3.7)

The stationarity condition (3.5) can be sharpened to the following minimum condi-
tion for the optimal control

� � ��� ���	�C�!�����+�	�C�!��� �����C�!�'� �&�
( min
� ����� H � � ��� �+���C�T� �M��� �����C�T� � �&�5L 	 ��� �N���C�!��� �'� � � 4I*5P �

Let � #
� denote the , -th component of the multiplier � � in (3.6) and consider the set

of indices �
�N���C�Z; ( H ,$�VH .0� � � �1� �+P5L � #

� ���C� � *5P �
To facilitate the analysis and to prepare sensitivity analysis, we introduce already at
this point the following assumption on strict complementarity.
(AC-3) (Strict complementarity condition) The index sets

�
� ���C� and

�
� �	�C� coincide

for every �O� % *+��� � ' which is not a junction point with the boundary.
It follows from this hypothesis that the only points where the index sets

�
�+���C�

and
�
�N���C� do not coincide are the junction points since the respective component of

the multiplier � ���C� vanishes at a junction point; cf. Lemma 2 in section 3.1.
To simplify notations in the sequel, the argument of all functions evaluated at

the reference solution � � �&� � � � � �&� will be denoted by % � ' , e.g.,

� % � ' ; ( � ��� �����C�!�����N���C�!�'� � � and � % � ' ; ( �V� � �+�	�C�!� � �����C�T��� �+�	�C�!� � �+���C�T� � � � �
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Under the hypothesis of the strict complementarity condition, the modified strict
Legendre-Clebsch condition from [35,36,39,50,68] takes the following form whereL �DL denotes the euclidean norm:
(AC-4) (Strict Legendre-Clebsch condition) There exists 
 � * such that for all
�O� % *N������' the estimate holds:

� � � � � % � ' � � 
 L � L � U � �A� 
 � 	 �
�
% � ' � (6* �

We note that the strict Legendre-Clebsch condition is already a consequence of
the stronger coercivity condition (AC-5) below. Nevertheless, it is convenient to in-
troduce the strict Legendre-Clebsch condition explicitly since this condition will be
needed in the formulation of the Riccati equations (3.12) and (3.16). The following
coercivity condition constitutes the essential part of second order sufficient condi-
tions (SSC) and can be retrieved from a study of the properties of the second varia-
tion with respect to the variational system associated with equations (2.2)–(2.4). We
do not formulate this condition in full generality (cf. [23, 24, 48, 50]) but present a
form which is appropriate for practical verification. Let us introduce the function

"�� � � *+�!��� �	� � �!�'���Z; ( � � � ��*+�T� � ��� � �!� ��� 8 �
� � � � ��*N�!� � �	� � �!� ���T� � ��� 
 �

In the sequel, we shall use the notations
� % *+������' ( � ��� � � *+�!��� � �����\�T� � � � and"#% *+������'�( "�� � � ��*+�T� � � �	���\�!� � � � . Second order derivatives of the function " are

denoted by

" � ��% *+��� � ' ( � �

� � � � � � � � "#% *+��� � ' � " � 
 % *+��� � ' ( � �

� � � � � � ��� � " % *+��� � 'Q� etc.

Whenever it is convenient, we shall denote partial derivatives with respect to � and
� by subscripts.

(AC-5) (Coercivity conditions)
(a) There exists a symmetric matrix ! � �

� �
V��*+��� ��� � K���K � and 
 � * such

that

� � � � � � � � ˙!3���C� 8 !3�	�C� � � % � ' 8 � � % � ' � !3���C� 8 � � � % � ' L � � � % � ' 8 !3���C� � � % � '� � � % � ' 8 � � % � ' � !3�	�C� L � � � % � ' � � �� �� 
 L � � � � �!L �

(3.8)

holds uniformly for all � � % *N������' and all vectors � � � � � ���5K > � 
 with	 �� % � ' � 8 	 �
�
% � ' � (�* � (3.9)

(b) The boundary condition

��� �� ��� � � � � " � � % *+������' 8 !3��*N�EL�" � 
 % *+������'" 
 � % *+��� � ' L�" 
 
 % *+��� � '�� !3��� � � � � � �� � � � * (3.10)

is valid for all ��� � ��� � ��� �5K > �5K���H � *+�!*+� P satisfying

� � � � � � % *+������'	� � 8 � � � � � � � % *+������'�� � (�* � (3.11)

The next theorem summarizes the SSC for a weak local minimum which are to
be found in [39, 50, 61, 68].
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Theorem 1. (SSC for control problems with mixed control-state constraints.)
Let � � � �����&� be admissible for problem OC(��� ). Suppose that there exist multipliers� � �&� � � ��� �&��� �

� �
 ��*N��� ��� � K � > �  � *+��� � � � � � > � 
 such that the necessary con-

ditions (3.3)–(3.7) and assumptions (AC-1)–(AC-5) are satisfied. Then there exist

 � � * and � � * such that

� � �)� �M� � � � � � � � �&� 8 
 �ZH L L � � � � L L �

� � �
8 L L ��� ��� L L �

� P
holds for all admissible � �)��� � with L L ��� � � L L � �


8 L L � � � � L L  4�� . In particular,� � � � � �&� provides a strict weak local minimum for problem OC(��� ).

The remarkable fact in the last theorem is that the estimate of the functional val-
ues �����Z��� � from below involves the � �

-norms in a �  -neighborhood of the nominal
solution. This phenomenon is a consequence of the two-norm discrepancy; cf. Mau-
rer [44], Malanowski [35–38].

Extensions of SSC to control problems with free final time or to multiprocess
control systems may be found in [5,48]. The SSC in the previous theorem are usually
not suitable for a direct numerical verification in practical control problems. In order
to obtain verifiable sufficient conditions we shall strengthen the SSC in Theorem 1
in the following way. We observe that the definiteness condition (3.8) is valid if the
matrix in (3.8) is positive definite on the whole space � K > � 
 and if conditions
(3.10) and (3.11) are satisfied. Firstly, this leads to the requirement that the strict
Legendre-Clebsch condition

� � � % � ' � 
  � 
 U � � % *+������' � 
 � *+�
is valid on the whole interval % *+��� � ' . Secondly, by evaluating the Schur complement
of the matrix in (3.8) and using the continuous dependence of ODEs on system data,
the estimate (3.8) follows from the following assumption: there exists a solution of
the Riccati equation

˙! ( �#! � � % � ' � � � % � ' � ! � � ��� % � '8 � � � � % � ' 8 ! � � % � ' ��� � � % � ' � � � � � � % � ' 8 ! � � % � ' � � � (3.12)

which is bounded on % *+��� � ' and satisfies the boundary conditions (3.10) and (3.11);
cf. [50], Theorem 5.2.

However, in some applications these conditions still may be too strong since
the Riccati equation (3.12) may fail to have a bounded solution; cf. the Rayleigh
problem in [45] which will be discussed in the next section. A weaker condition is
obtained by introducing the following modified or reduced Riccati equation. Recall
the definition of the vector

	 � ( � 	 # � #��	� � � � � of active components and let � ���	�C�)(
# � � �����C�T� denote the number of active components. Then the matrix

	 �
�
% � ' of partial

derivatives has dimension � �+�	�C� >�� . For simplicity, the time argument will be
omitted in the sequel. The pseudo-inverse of the matrix

	 �
�

is given by the � � > � � )-
matrix � 	 �

�
� � ; ( � 	 �

�
� 	 �
�

� � ��� � 	 �
�
�
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Let � 	 �
�

� � denote the � � > � � � � � �T� -matrix whose column vectors form an or-
thogonal basis of

� � �&� 	 �
�

� . Consider the matrices; cf. [23, 24, 50, 68]:

� ; ($� � 	 �
�

� � 	 �� � � ; ( � �
8
� � ��� � ; ( � 	 �

�
� � � (3.13)

� ����; ( � � � 8 � � � � 8 � � � � �
8 � � � � � ��� � � � ; ( � � � 8 � � � � � � (3.14)� � � � � � � � � ; (��$��� � � � � �
��� � � � � (3.15)

Note that the �/> � -matrix � � � � � � � � �
in (3.15) is well defined due to assumptions

(AC-1) and (AC-4). Studying again the Schur complement of the matrix in (3.8), it
follows that the estimate (3.8) holds if the matrix Riccati equation

˙! ($�#! � � � � ! � � � � 8 � � � � 8 ! � � � � � � � � � � � � � � � � 8 ! � � � � (3.16)

has a bounded solution on % *+������' which satisfies the boundary conditions (3.10) and
(3.11).

In general it is rather tedious to elaborate this Riccati equation explicitly. To
facilitate the numerical treatment in practical applications we discuss some special
cases in more detail. On interior arcs with

	 # % � '^Y *+� , ( .0� � � �%� � � we have
� � �	�C� ( * and thus the Riccati equation (3.16) reduces to the one introduced in
(3.12). Consider now a boundary arc with � � �	�C�V( � where we have as many
control components as active constraints. Due to assumption (AC-1) the pseudo-
inverse is given by � 	 �

�
� � ( � 	 �

�
� � �

and, hence, the matrix � ( � 	 �
�

� � ( * in
(3.13) vanishes. Then the matrices in (3.13)–(3.15) become

� ($�E� 	 �
�

��� � 	 �� � ( � � � � � � 	 �
�

� � � 	 �� � � � � � � � � � � (�*+� (3.17)
� � � ( � � � � � � � � 	 �

�
� � � 	 �� 8 % � 	 �

�
� � � 	 �� ' � % � � � � 	 �

�
� � � 	 �� � � � � ' � (3.18)

It follows that the Riccati equation (3.16) reduces to the linear equation

˙! ($��! � � � � ! � � � � � (3.19)

For pure control constraints with
	
� �[* , this equation further simplifies to the

equation
˙! ( ��! � � � � �� ! � � � � � (3.20)

The Rayleigh problem treated in the next section will provide an illustrative appli-
cation. Let us also evaluate the boundary conditions (3.10) and (3.11) in a special
case of practical interest. Suppose that the boundary conditions are separated and
that some components for the initial and final state are fixed according to

� � ��*N� (�� � � ��� � � � H .0� � � � � � P �
� � �	���\�)( � � � ��� � �M� H .0� � � �1� � P � (3.21)

Denote the complements of the index sets by� 9
� ; (IH .0� � � �D� � P � � � � � 9

� ; ( H .0� � � �1� � P � � � �
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Then it is easy to see that the boundary conditions (3.10), (3.11) are satisfied if
the following submatrices are positive definite:% !^� *+��' ��# � ��� ��� �� � � �� � *N� %��#!^�	���\��' ��# � ��� ��� �� � � �� � * � (3.22)

By virtue of the continuous dependence of solutions to ODEs on systems data, one
of these definiteness conditions can be relaxed. E.g., it suffices to require only posi-
tive semi-definiteness,% !3��*+� ' �G# � ��� ��� �� � � �� �6*+� resp., %��#!^�	� � ��' ��# � ��� ��� �� � � �� ��* �
The case study in the next section will benefit from this relaxation.

3.2 Parametric Boundary Value Problem and Solution Differentiability

We formulate an appropriate parametric boundary value problem BVP(� ) which
characterizes optimal solutions to OC(� ) for parameters � in a neighborhood of��� . We begin with a parametric form of the minimum condition (3.5) and consider
the following parametric mathematical program depending on the parameter V(� �)���Z�'���5���5K > � K > � :

MP �S�� minimize � ��� � �V� �)� �M���Z�'��� subject to
	 � �)� �M� ���54�* �

By virtue of assumptions (AC-1) and (AC-4), the control � � ���C� and the multiplier
� � ���C� are a solution, respectively a multiplier, for the problem MP �S�� evaluated
at I(  � �	�C�V( ��� � ���C�!��� � ���C�T� � � � . Using in addition the strict complementarity
assumption (AC-3), the following result has been shown in [39] using an appropriate
implicit function theorem: for every � � % *+������' there exists a locally unique solution
� ��&� of MP �S�� and a unique associated Lagrange multiplier � ���� � � � � � � � � � ���	�C�)(
# � � �����C�T� , which satisfy

� �+�	�C�)( � �� �+���C�T�!� � �+�	�C�)( � �� �N���C�!� �
The functions � ���Z���Z� ��� and � ���Z���Z� ��� are Fréchet differentiable functions of W(� �)���Z�'��� at  � (� � ���C� for � �� � 	 � , i.e., if � is not a junction point. Then, for any
direction

� �A�5K > � K > � and for � �� � 	 � the differentials

� � � �� �N���C�T� � �A� 
 and � � � �S �+�	�C�!� � �A� � � � � �
are given by the formulae� � � � � � � ��� � �� �N���C�!� �� � � � � � ��� � �S �+�	�C�!� � � ( � �	�C��� � � � � � � % � ' � L � � �� % � ' � L � � � � % � ' �� 	 �� �	�C� � L 0 L � 	 �� % � ' � � � (3.23)

where the � � 8
� �����C�T� > � � 8

� �����C�T� -matrix�
� % � ' ( � � � � % � ' 	 �� % � ' �	 �

�
% � ' * � (3.24)
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is nonsingular due to (AC-1) and (AC-4). The preceding formulae are derived again
on the basis of an implicit function theorem. It is noteworthy to evaluate the last two
formulae in the case of a scalar control and constraint, i.e., for � ( � ( . . On an
interior arc with non-active constraints we get

� � � �� � ���C�T�)($� � � � � % � ' � � � � �
� % � ' � � � �	�C�)(�* �

On a boundary arc we find a boundary control �
� ���Z�'��� which does not depend

on the adjoint variable � since it is the locally unique solution of the equation	 ���)� �M� ����( * . Then the minimum condition � � % � '
( * in (3.5) yields the multi-
plier explicitly,

�5� �)���Z�'���)( � � �
�

� �)��� � � �)� ���!���Z� ��� � 	 � ���Z��� � � �)� ���!�'��� �
From (3.23) and (3.24) we obtain the differentials� � � � � �� �����C�!� �� � � �� �+���C�T� � � ( � � 	 � % � ' � � 	 � % � '� � � % � ' 	 � % � ' � � � 	 � % � 'Q� � � � � � % � ' � � 	 � % � ' � �

Now we are able to specify a parametric boundary value problem for a solu-
tion to the perturbed problem OC �G��� . Recall the assumption (AG-3) where it was
required that the set

� 	 � ; ( H � � � ��� �� � � � �1��� �	 P of junction points for the nominal so-
lution is finite with *<; ( � �� 4 � � � Y � �� Y    Y � �	 4 � �	 � � ; ( � � . Moreover, every
junction � �# is the junction for exactly one constraint

	 � �G# � % � '54[* with index 	D� ,D� .
For simplicity we shall assume that * Y � � � and � �	 Y � � hold, i.e., the constraints
are not active at the initial and final time. Hence, by construction we have

�
�����C�)( const. for � �# Y � Y � �# � � �7,�(�*N�D.0� � � �1� � �

In the interval ��� �# ��� �# � � � the solution � �S�� and the multiplier � ��&� to the program
MP �S�� agree with the solution �

� #�� �S�� and the multiplier �
� #�� �S�� of the following

parametric program with equality constraints:
MP

� #�� � �)���Z�'��� minimize � ��� � H �V� �)��� ���Z� ���5L 	 � � �)� �M� ���)(�*N� 	
� �
�+�	�C� P �

The notation % ,�' in brackets is used to distinguish these functions from the , -
th component. The conditions underlying sensitivity analysis have the consequence
that the above structure of the optimal solution is preserved for parameters � in a
neighborhood of ��� . Let �D# be a point in a neighborhood of � �# � ,
(B.0� � � �D� � � such
that * ( � ��Y � � Y   5Y � 	 Y � 	 � � ( � � holds. Then the reference bound-
ary value problem (2.2), (2.3) and (3.3), (3.4) can be embedded into the following
parametric multipoint boundary value problem BVP ����� :
Differential equations for � # Y � Y � # � � � ,
(�*+� � � �D� � :

˙�V( � ���)� � � #�� ���Z���Z� ���!�'���!� (3.25)

˙�^( � � � � �)� � � #�� � �)���Z�'���T���Z� � � #�� ���)���Z� ���T� ��� � � (3.26)
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Boundary conditions and junction conditions:� ��� � *+�!��� ��� � �T� ���)(�*+� (3.27)

� � � ��*+�T��� ��� � �!� ( � � � � � ��� � � � � � � � � 8 �
� � � � ��� � *+�!��� ��� � �T� ���!� (3.28)

˜	 # � � ��� #1�!��� �	� #1�T� ���)(�*+�7,
(B.0� � � �1� � � (3.29)

The functions ˜	 # in the last equations are defined in the following way: if �%# is an
entry-point for the constraint

	 � �G# � then

˜	 # � �)���Z� ���)( 	 � ��# � ���)� � � # � � � � �)���Z�'���T� ���!� (3.30)

and if � # is an exit-point for
	 � �G# � then

˜	 # � �)���Z� ���)( 	 � ��# � ���)� � � # � � � � �)���Z�'���T� ��� � (3.31)

An efficient method for solving BVP(� ) is the shooting method developed in [10,65]
which has been implemented in the code BNDSCO of [54]. The shooting procedure
treats the initial value � ��*+�T��� ��*N� , the multiplier � and the junction points � # �&,W(.0� � � �D� � � as an unknown vector variable

� ( � � � � � � ���+��� � � � � �D��� 	 � ��� K > � K > � 
 > � 	 �

Let � ���C� � �'��� and � ���C� � � ��� denote the solution of the ODEs (3.25) and (3.26) with
initial conditions

� � *+� � � ���)( � � � � � *+� � � ��� ( � �
�

Then the BVP �G��� has a solution for � in a neighborhood of � � if the
����8 � 8 �

nonlinear equations

��� � �'���); (
�
�
�

� � � � ����� � � � � � ���!�'���
� � 8 � � � � � � � 8 � � � � � � � � � � � � � � � ���T� ���
� � � � � � ��� � � � � ��� � � � 8 � � � � � � � � � � � � � � �'���!� ����

˜	 # ��� �	� #D� � � ���T��� ��� #1� � �D� ���T� ��� � # � � ������� � 	
�

�
�

� (�* (3.32)

can be solved for the shooting parameter � as a function of � .
The unperturbed solution � � � ��� �&��� � � corresponds to the shooting variable � �O(� � � ��*+�T��� � ��*+�T��� � ��� � � � � � � ��� �	 � for which ��� � � �'� � ��( * holds by definition. The

classical implicit function theorem is applicable to the parametric equation (3.32)
if the Jacobian of

� ��� � � � � � � � � � with respect to � is regular. One easily finds [39]
that a necessary condition for the non-singularity of the Jacobian is the following
condition on non-tangential junctions with the boundary:
(AC-6) (Non-tangential junction conditions) �� � ˜	 # % � �# '
](�*N�5, (B.C� � � �D� � .
The non-tangential condition and the regularity of the Jacobian usually can only be
checked numerically. A convenient regularity test is provided, e.g., by the multi-
ple shooting code BNDSCO in [54]. Nevertheless, Theorem 3 provide a theoretical
characterization for the regularity of the Jacobian from which the property of solu-
tion differentiability ensues.

The following auxiliary result is useful for the numerical analysis; cf. [39],
Lemma 4.
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Lemma 2. If assumptions (AC-1)–(AC-6) hold then ˙� � is discontinuous at � �# , i.e.,
it holds

˙� � �T��� �# � 8 ��]( ˙� � �T��� �# � ���T� (3.33)

and the multiplier satisfies the relations

�
� ��# �
� �	� �# �)(�*+� (3.34)

˙�
� ��# �
� �T��� �# � 8 � � *+� if � �# is an entry-point for

	 � ��# � � (3.35)

˙�
� ��# �
� �T��� �# � ���)Y[*+� if � �# is an exit-point for

	 � �G# �
� (3.36)

Now we are in the position to state the main sensitivity result for control prob-
lems with mixed control-state constraints; cf. [39]:

Theorem 3. (Solution differentiability for mixed control-state constraints)
Let ��� ��� � �&� be admissible for OC �����&� such that assumptions (AC-1)–(AC-6) hold.
Then there exists a neighborhood ���I� � of ��� and a

	 �

-function � ;$�	��?� � K � 
 � 	 such that the shooting equations � � � �����!�'��� ( * in (3.32) are satisfied
for all ���A��� . The functions

� ���C�'���Z; ( � �	�C� � �����!�'���T� � ���C�'���Z; ( � ���C� � �G���!� ���
are

	 �

-functions for all ���C� ���^� % *+������' > � � . Together with the
	 �

-functions of
multipliers � ;=�	� ?@��
 and junction points �D# ;0���M?@�$� ,
(/.0� � � �%� � � they solve
the parametric problem BVP(� ). The continuous functions

� ;�% *+��� � ' > ���M? � 
 � �^;�% *+��� � ' > ��� ?@� � �
defined piecewisely by

� �	�C� ���Z; ( �
� #�� � � ���C�'���!��� �	�C� ���!�'���!� � �	�C� ���Z; ( �

� #�� � � ���C�'���T��� �	�C� ���!�'���
for all � #%����� 8 4 �O4 � # � � ������� �S,�(�*N�D.0� � � �%� � �T�

are of class
	 �

for �	�C� ��� ]( ��� # �G���!� ���T��,$( .0� � � �1� � . For every ��� � � , the triple
� �  �'���T� � ��S� ���!� � ��S� ��� and the multipliers � ��S� ���T� ���G��� satisfy the second-order
sufficient conditions in Theorem 1 evaluated for the parameter � and, hence, the
pair ��� � S� ���T� � �� �'���!� provides a local minimum for OC ����� .

This theorem provides a justification for the first order Taylor expansion (2.6)
of the perturbed solution and thus will serve as a theoretical basis for the real-time
control approximations of perturbed solutions.

3.3 Computational Sensitivity Analysis and Real-Time Control

Our aim is to perform a computational sensitivity analysis for the perturbed solu-
tions to BVP �G��� for a parameter � ( ��� 8 � � � and a direction

�
. Theorem 3
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leads to the following first order Taylor expansions:

� ���C� ���)( � ���	�C� 8 � �� � ���C�'� � � � 8�� � L � L �!� � �	�C� ���)( � ���	�C� 8 � �� � �	�C� � � � � 8�� � L � L �T�
������� ( � � 8 � �� � ��� �&� � 8�� � L � L �T� � #%�����)( � �# 8 �

� #� � ��� �&� � 8�� � L � L �T� ,�( .0� � � �D� � �
where

� � L � L � �+L � L ? * for L � L ? * uniformly with respect to ��� % *+����� ' . The
differentials

� � ; ( � �� � ��� � � � ��� � ; ( � �� � ��� �&� � ;�% *+��� � ')?@� K � � � ; ( �
�� � ��� � � � ��� 


are
	 �

-functions which are found as solutions to a linear boundary value problem.
Namely, Theorem 3 allows us to differentiate the boundary value problem BVP �����
in (3.25)–(3.29) formally with respect to � . This procedure yields the following
linear inhomogeneous BVP:

˙� � (�� � ���C� � � 8�� � ���C��� � 8 � �	 �	�C� � (3.37)

˙� � (�
 � �	�C� � � ��� � ���C� � � � 8 � �� �	�C� � (3.38)*�( � � � � � � % *N��� � ' � � ��*+� 8 � � � ��� � � % *+��� � ' � � �	� � � 8 � � � % *N��� � ' � � (3.39)

� � ��*+� ( � � �

� � � � � � � � � � 8 �
� � � % *+������' � � � *+�� � �

� � � � � � ��� � � � 8 �
� � � % *N��� � ' � � ��� � �� � �

� � � � � � � 8 �
�

�
� � % *+��� � ' � � � � � � � � % *+��� � ' � � � � (3.40)

� � ��� � � ( � �

� � ��� � � � � � � � 8 �
� � � % *+��� � ' � � � *+�8 � �

� � ��� � � � ��� � � � 8 �
� � � % *+������' � � �	���\�8 � �

� � ��� � � � � 8 �
�

�
� � % *N��� � ' � 8 � � � � � � � % *+��� � ' � � � � (3.41)

The
� > � -matrices � � �	�C�!� � � ���C� and 
 � ���C� are given by

� � �	�C�)( � � % � ' � � � � % � ' � 0 � � ��% � ' � �
� � � � % � '	 �� % � ' � �

� � �	�C�)($�E� � � % � ' � 0 � � � % � ' � �
�
�
�

�
% � '

0
� � �


 � �	�C�)($� � ��� % � ' 8 � � � � % � 'Q� 	 �� % � ' � � � ��% � ' � �
� � � � % � '	 �� % � ' � �

The computation of the inhomogeneous terms � �� ���C� and � �� makes use of (3.23)
and yields

� �	 ���C� ($� � � � % � 'Q� 0 � � � % � ' � � � � � � % � ' �	 �� % � ' � � 8
�
� % � ' � �

� �� ���C� ( � � � � % � 'Q� 	 �� % � ' � � � � % � ' � � � � � � % � ' �	 �� % � ' � � � � � � % � ' � �
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Formulae for the differentials � � �� � �G��� � � � ,W( .0� � � �1� � � can be derived from the
fact that the junction condition (3.29) holds identically in � ,

˜	 # ��� ��� #%�G���T� ���!��� ��� #=�����!�'���T� ���	� * for � � �	�C� ,�(B.0� � � �1� � �

The differentiation yields the relation��
�

˜	 # % � �# ' � � #� � �G� � � � 8 ˜	 #� % � �# ' � � ��� �# � 8 ˜	 # � % � �# ' � � ��� �# � 8 ˜	 #� % � �# ' � (6*+�
which can be solved for � � �� � �G� � � � due to assumption (AC-6) (compare [59], for-
mula (65)):�

� #� � ��� � � � ($� � ˜	 #� % � �# ' � � ��� �# � 8 ˜	 # � % � �# ' � � ��� �# � 8 ˜	 � % � �# ' � � � ��
�

˜	 # % � �# ' � (3.42)

4 NUMERICAL CASE STUDY: THE RAYLEIGH PROBLEM WITH CONTROL

CONSTRAINTS

Consider the electric circuit (tunnel-diode oscillator) shown in Figure 1 where L
denotes inductivity, C capacity, R resistance, I electric current and where D is
the diode. The state variable � �	�C� represents the electric current I at time � . The
voltage � � �	�C� at the generator is regarded as a control function. After a suitable
transformation of � � ���C� we arrive at the following specific Rayleigh equation with
a scalar control � ���C� , cf. [30], [66],

¨� ���C�)( ��� ���C� 8
˙� �	�C���&.�� � � � ˙� ���C� � � 8 � � �	�C� �

The scalar � � * in this equation is considered as a perturbation parameter for
which we choose the nominal value ��� ( * � . � . A numerical analysis reveals
that the Rayleigh equation with nominal parameter � � ( * � . � and zero control
� �	�C�	� * has a limit cycle in the � �)� ˙�Z� -plane. Define the state variables as � � ( �

������ � �� 	
 ���

� � � �� � � �� � � �� � � �� �� ��

�
���

� �
���

� �
���

����
�

Figure 1. Tunnel-diode oscillator

and � � ( ˙� . In [2, 45] we have performed a sensitivity analysis of the following
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parametric control problem with fixed final time � � � * and a perturbation � � * :
minimize the functional

��� �)� �M� ��� (
����
�

��� ���C� � 8 � � �	�C� � � � � (4.1)

subject to

˙� � �	�C�)( � � ���C�T� ˙� � ���C� ($� � � ���C� 8 � � �	�C���&.�� � � � � � ���C� � � 8 � � �	�C�!� (4.2)

� � � *+� ( � � � *+� ($� � � � � �����\�)( � � �	���\� (6*+� (4.3)

L � ���C��L04/. for � � % *N��� � ' � (4.4)

The control constraint (4.4) can be written in the form (2.4) with two control con-
straints 	 � � �)� �M� ���); ( � �[. 46*+� 	 � ���)� �M� ���Z; ( ��� � .O46* � (4.5)

We choose the final time � � ( � � � instead of the final time � � ( �
�

�
considered

in [30], [66]. The larger final time � � ( � � � produces a richer structure of the
optimal control subject to the constraint (4.5). We also note that the final conditions
� � �	���\� ( � � �����\�)( * are not incorporated in [30], [66].

4.1 Boundary Value Problem for the Optimal Control

First, we study the unconstrained control problem (4.1)–(4.3) and omit the control
constraint (4.4). The Hamiltonian (3.1) becomes

� � � � � ��� � � �M��� � ��� � � ���)( �
� 8 �

�

�
8 � � � �

8 � � � � � �
8 � � �Q.�� � �M� � �

� � 8 � � �T� (4.6)

where � � ��� � are the adjoint variables associated with � � � � � . The optimal control
is determined via the minimum condition (3.5):

� � ( � � 8 � � � (6*+� i.e. � �	�C� ($� � � � ���C� � (4.7)

The strict Legendre-Clebsch condition (AC-4) holds in view of � �
� �

�	�C��� � � * .
The adjoint equations (3.3) are

˙� � ( � � � � � � � ˙� � ( �1� � � �
�

� �[.�� � � � � � �
� (4.8)

Note that the boundary conditions (3.4) or (3.28) for the adjoint variables are redun-
dant since the final state is specified. The unconstrained solution is then obtained
by solving the boundary value problem (BVP) consisting of equations (4.2), (4.3)
and (4.8) where the control � is substituted from (4.7). The multiple shooting code
BNDSCO in [54] yields the following initial and final values for the adjoint vari-
ables when � (�� �O(�* � . � and � � ( � � � :

� � ��*N� ($� # � *C* � � �=* 
 ��� � � � *+� ($� � � 
 �	�C* �C* � � �
� � �	� � � ($� * � *	� � � 
=* � � � � � ��� � �)($� * � *0*0*+.D* 
	� 
 � (4.9)



Sensitivity Analysis and Real-Time Control of Optimal Control Problems 33

The nominal cost is

����� � � � � � � � � ( � # � � � . * � � . � �
The corresponding unconstrained control is depicted in the upper part of Figure 2.
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Figure 2. Unconstrained optimal control and constrained optimal control ��� ��� � �����

The unconstrained control in Figure 2 obviously violates the control constraint
(4.4). Hence, when computing the constrained solution, we have to take into account
boundary arcs for the constraints and consider the augmented Hamiltonian (3.2)

�V���Z��� ���Z���)�'��� ( � � � �)��� ���Z� ��� 8 � � � � �[.0� 8 � � � � � � .0�T� (4.10)

where � � ��� � are the multipliers associated with the inequality constraints (4.5).
The multipliers satisfy �N#\�	�C��� * for *�4 �A4 � � � , ( .C� � � and � � ���C� ( * if
� �	�C�)YB.0� resp., � � ���C�)( * if ��. Y � ���C� . The shape of the unconstrained control
suggests that the constraint (4.5) is active with � ���C� � . for * 4 ��4 � � and
� �	�C���&�W. for � � 4 �W4 �! where the junction points �D# satisfy *EY � � Y � � Y
�! 3Y � � . Hence we assume the following control structure; cf. the lower graph in
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Figure 2:

� ���C� (
����� ����

. � *E4 �O4 � �� � � � �	�C�E� � � 4 �O4 � ��W. � � � 4 �O4 �  � � � � �	�C�E� �  4 �O4 � � �
� ���

����
�
� (4.11)

This assumed structure leads us to formulate the parametric BVP(� ) (3.25)–(3.29)
with

� ( � . Moreover, we see that the solutions and multipliers of the parametric
programming problem MP

� #�� ���Z���Z� ��� in Section 3.2 are given by

�
� � � � �)���Z�'���)(B.0� �

� � � � �)���Z�'���Z( �	� � � � � � �T*+�!�
�

� � � � �)���Z�'���)($��.C� �
� � � � �)���Z�'���Z( � *+� � �O8 � � � �!�

�
� #�� � �)���Z� ���)($� � � � � �

� #�� � �)���Z�'���)( ��*+�T*+�!� for ,�( . and ,
( � �
The unconstrained Hamiltonian (4.6) is regular in the sense that it admits a unique
minimum with respect to � . Furthermore, the augmented Hamiltonian (4.10) is
continuous along the optimal solution. From these properties it follows that the con-
trol is continuous at the junction points �1#D�&,
(B.0� � � � . This fact yields the following
three junction conditions in view of (3.29) and (3.30), respectively (4.11):� � � � �	� � �)(B.0� � � � � ��� � �)($��.C� � � � � ���! �� ($�W.�� (4.12)

The adjoint equations ˙� ( � � � agree with those in (4.8) for the unconstrained
solution. In summary, the constrained case requires the solving of a BVP which
consists (1) of the differential equations (4.2) and (4.8) using the control law (4.11),
(2) the boundary conditions (4.3) and (3) three junction conditions (4.12) for three
unknowns � � ��� � ���! . We use the multiple shooting code BNDSCO in [54] to find
the following solution:

� � ��*+� ( ��. � � �=* # # � ��.D*+� � � ��*+� ($� � � � # 
	�N. 
�� �N�
� � � � � � � ( * � * � .�# 
=* � � � � � � � � � � ($� * � . � # #=* � * �+�

� � ( .�� * � .�#�� � � �N� � � (B.�� �=* 
 
	��. *�#��
�  ( �

� � �	� # � � .C.0� ��� � � ��� � �'� � �)( � � � � � *�#�� #=* � �
(4.13)

The constrained control is shown in the lower graph in Figure 2 whereas the state
and adjoint variables are displayed in Figure 3. The constrained solution satisfies
the strict complementarity condition (AC-3). Namely, inserting the values for the
adjoint variable � � �	�C� , it follows that strict complementarity holds with

� � �	�C�)($� � � � � � ���C� � * for *E4 �MY � � �
� � �	�C�)($� � 8 � � � ���C� � * for � � Y � Y �! � (4.14)

In addition, the numerical results show that the non-tangential conditions in assump-
tion (AC-6) are satisfied,

˙� �	� #D�)($� � ˙� � �	� #D�3]( *+�7,�( .0� � � �N� (4.15)

where the derivative is taken from the right for ,$( . and , ( � and from the left
for , ( �

. Moreover, it is easily verified that the multiplier relations (3.34)–(3.36)
hold at the junction points.
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Figure 3. State variables / �10 / � and adjoint variables
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4.2 Second Order Sufficient Conditions

The numerical evaluation of SSC requires a bounded solution of the Riccati equa-
tions (3.12) and (3.20) in view of the relation

	
� � * . Since the Rayleigh problem

has dimension
� ( �

, we consider a symmetric
� > �

matrix !^�	�C� of the form

!3���C�)(
��43

� ���C� 3
� ���C�

3
� ���C� 365 ���C�

��
�

First, an optimality test is performed for the unconstrained control which corre-
sponds to the initial conditions (4.9). The Riccati equations (3.12) are explicitly

˙
3

� ( � 3
�

8 � 3 �

� � � �
˙
3

� ( � 3 �
8 � �%��� � �

� � .�� � � 3 �
8 365 8 � 3 �

365 �
˙
365 ( � � 3 �

8 � � �1� � � �

� � .�� � � 365 8 � 3 �5 8 
 � � � � � �
�

(4.16)

Since the final state is fixed, the boundary condition (3.22) for !3�����\� is automati-
cally satisfied. Searching for a bounded solution that satisfies the boundary condition!^�	� � �3(�* , we find the following initial conditions:

3
� ��*N� ( �

� *0* 
	� � ��� ��� 3
� � *+� (�* � � �0* � . �	� #�� 365 ��*+� ($� * � � � . 
 
 � � � �

Thus the unconstrained solution shown in Figure 2 is a local minimum.
Next we proceed to the constrained control characterized by (4.11) and (4.13). It

is worth-while noting that we could not find a bounded solution of the Riccati equa-
tions (4.16) on the whole interval % *N��� � ' . Fortunately, we may resort to the modified
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Riccati equations (3.20) on the active intervals % *N��� � ' and % � � ���! ' which reduce to
the following linear ODEs:

˙
3

� ( � 3
� � � �

˙
3

� ($� 3 �
8 � �1� � � �

� � .�� � � 3 �
8 365 �

˙
365 ($� � 3 �

8 � � �%����� �

� � .�� � � 365 8 
 � � � � � �
�

(4.17)

Prescribing the boundary condition !3�����\�3( * , we are able to show that these
equations on the boundary intervals combined with the Riccati equations (4.16) on
the interior intervals % � � ��� � ' and % �  ������' possess indeed a bounded solution on% *+��� � ' with initial values

3
� ��*N� ( �

� � #�� � �+.�#=*+� 3
� � *+� (�* � ��#0* � � � � �N� 3 5 ��*+� ($��.�� � 
 
 � *�#�.� �

The solutions are bounded by L 3 # ���C�QL 4 �
�

�
for �<� % *+������' ; cf. Figure 4 depicting

the function
3 5 �	�C� . Thus we arrive at the conclusion that the constrained control

shown in the lower graph of Figure 2 is a local minimum.
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Figure 4. Solution �� ��� � of the Riccati equations (4.16) and (4.17)

4.3 Sensitivity Analysis and Real-Time Control

In the two preceding sections, we have verified numerically that the unperturbed
(nominal) solution for ��� ( * � . � fulfills all assumptions for solution differenti-
ability listed in Theorem 3. Thus the unperturbed solution can be embedded into a
C

�

-family of perturbed solutions

�+#%���C�'���!� ��#%�	�C� ��� �S,�( .0� � �T� � #%�G��� �S,�(B.C� � � �N�!�
to the perturbed problem OC(� ). Our aim now is to compute the sensitivity differ-
entials

� # �	�C�)( � � #� � ���C�'� � �!� � # �	�C�)( � � #� � �	�C� � � ��� ,
(B.0� � �!� �
� #� � ��� � ��� ,
(B.0� � � ���!�
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where formally the direction
� ( .��[� is taken in section 3.3. The variational

differential equations for � #%���C� and � #%�	�C� are obtained by formally differentiating
the BVP(� ) (4.2), (4.3) and (4.8) with respect to the perturbation � . In this way we
get the following ODE corresponding to (3.37) and (3.38):
Unconstrained arcs % � � ��� � ' and % �  ������' :

˙� � ( � � � ˙� � ($� � �
8 .�� � � � � �1� � � �

�
� � � �  � � � � � �

˙� � (�� � � � � � � ˙� � ( ��� �

� � �
8 �1� � � � � � � � � �

8 �
�

� � � ���[.�� � � � � � �
�

(4.18)
Constrained arcs % *+��� � ' and % � � ���! ' :

˙� � ( � � � ˙� � ( � � �
8 .�� � � � � �1� � � �

�
� � � �  � �

˙� � ( � � � � � � � ˙� � ( ��� �

� � �
8 �1� � � � � � � � � �

8 �
�

� � � ��� .�� � � � � � �
�

(4.19)

Since the initial and final state is fixed, we get the boundary conditions from (3.39),

� # ��*+� ( � # �����=�)(�* for ,
(B.0� � � (4.20)

Note that the boundary conditions (3.40) and (3.41) for � � � � � are redundant be-
cause the initial and final state is fixed. The state and adjoint variables � # and ��# in
these equations represent the nominal solution characterized by the data (4.13). The
multiple shooting code BNDSCO in [54] provides the initial and final values

� � � *+� ($� � � �	� # � � �	� #�� � � ��*+� ( � � � � #	�C*N.�+. � �
� � �	� � � ( � * � 
�� # � . �=*N.0� � � ��� � �)(B.�� #�� � � . � *C* �

Figure 5 displays the sensitivity differentials for state and adjoint variables. For-
mulae for the sensitivity differentials � � �� � ��� �&� of the junction points are obtained
upon differentiating the junction conditions (4.12) and applying the general formu-
lae (3.42). Hence, by differentiating the identities � � � � ��� #\�����!�'��� ��� . we get

˙� � �	� # �����T� ���  � � #� � ����� 8 � � �	� # �����T� ���J(�*+�
which yields�

� �� � ��� � �)($� * � � ��#	� 
=*�#��+� �
� �� � �G� � �)( � � �+. � .� � � � � �

�! � � �G� � � ($� � � * ����� � � . � �
The off-line computation of the sensitivity differentials � #=���C�T� ,�(B.C� � � leads to

a real-time computation of the perturbed solution � #%���C�'���T�&, ( .0� � � as outlined in
(2.6). The first order Taylor expansion

� # ���C�'��� � � # ���C�'� � � 8 � # ���C� ��� � � � �!� � # ���C�)( � ��#� � �	�C� � � �!� (4.21)

is used as an easily computable on-line approximation of the perturbed solution
for parameters � in a suitable neighborhood of the nominal parameter � � . In
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Figure 5. Sensitivity differentials of state and adjoint variables

the same way, Taylor expansions (4.21) exist for the perturbed adjoint variable
� ���C� ��� and perturbed control � ���C�'��� . As noted at the end of section 2, these ex-
pansions need a numerical modification in a neighborhood of the junction points
� # ; cf. the discussion in [59, 60]. Taking into account these modifications, Fig-
ure 6 demonstrates the quality of the control approximation for the perturbed par-
ameter �@( * � . 
 . The error in the difference of the perturbed and the unper-
turbed solution is given by L � �	�C� ��� � � �	�C� � � �!LZ4 * � � . This error can be substan-
tially reduced by the real-time approximation (4.21) which leads to the estimateL � ���C�'����� � � ���C�'� � � 8 � ���C� ��� ��� � �!��L 4�* � *+. � .

/

0

1

2354
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Figure 6. Approximate constrained control (solid line) and exact constrained control (dashed
line) for perturbed parameter �;:=<?> �A@
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4.4 The Rayleigh Problem with a Mixed Control-State Constraint

We consider again the Rayleigh problem (4.1)–(4.2) with given initial conditions

� � � *+� ($� � � � � ��*+� ($� � (4.22)

but with free final state � �����\� . We replace the pure control constraint (4.4) by the
following mixed control-state constraint, cf. [30, 66]:

	 ��� �	�C�!��� �	�C�!�); ( � ���C� 8 � � �	�C�
 46* U � � % *+������' � (4.23)

Again, the final time is ���$( � � � . The augmented Hamiltonian (3.2) becomes

�V� �)� �M���Z� �)� ���)( � � � �)� �M���Z�'��� 8 � � � 8 � � � 
��T� ��� �$� (4.24)

where � � is the unconstrained Hamiltonian (4.6). The adjoint equations (3.3) are

˙� � ( � � � � � � � � � 
�� ˙� � ( �1� � � �
�

� � .�� � � � � � �
� (4.25)

It is easy to see that the optimal solution has one boundary arc % � � ��� � 'Q�M*:Y � � Y
� � Y ���\� with respect to the constraint (4.24). Then the optimal control has the
structure

� �	�C� (
� � � � � ���C� � � �� % � � ��� � '��� � ���C� � 
6� � � % � � ��� � '�� � (4.26)

This structure leads us to a parametric BVP(� ) (3.25)–(3.29) with
� ( �

. The
multiplier � is determined on the boundary by the condition � � (�* which gives

�^($� � � � � � � ( .� � � � � � �
� (4.27)

The junction conditions (3.29)–(3.31) are

� ��� # � 8 � � ��� # � � 
<($� � � � ��� # � 8 � � ��� # � � 
J(�*N�7,�(B.C� � � (4.28)

The code BNDSCO from [54] yields the following numerical results for the nominal
parameter � � ( * � . � :

� � � *+� ($�W. * � 
 � � � #	� � �+� � � ��*N� ($� � � . #=* � 
 � � ���
� � (B.�� � �=*C* 
 � � � � � � ( �

� # � ��. � �	�C*+�
� � � � � � � ($� * � � # � �=* � ��.0� � � � � � � �5($�W.�� . � �0* � � *+.0������ � ������� � � � ( � � � �0*	� � #�� 
+.��

The optimal control and the state variable � � are shown in Figure 7. We leave it as a
numerical exercise to the reader to verify that this solution satisfies all conditions for
solution differentiability in Theorem 3. In the same way as in section 4.3 one could
compute the sensitivity differentials by formally differentiating the BVP (4.1), (4.2),
(4.22) and (4.25)–(4.28). Also this procedure is left as an exercise to the reader.
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Figure 7. Optimal control � and state variable / � for the mixed constraint (4.23).

5 SENSITIVITY ANALYSIS FOR CONTROL PROBLEMS WITH PURE STATE

CONSTRAINTS

5.1 Constraint Qualifications and Second Order Sufficient Conditions

As noted in section 2, we shall treat only a scalar pure state constraint (2.5),

F ��� ���C�!�'���546* for all *W4 � 4 � � � (5.1)

A salient feature of state constraints is the so-called order � (see below) of a state
constraint which is responsible for a variety of different phenomena. The exposi-
tion of vector-valued state constraints creates many technical difficulties due to the
fact that the order may be different for different components of state constraints;
see, e.g., the examples in [15, 16]. For vector-valued state constraints, a sensitivity
analysis has been carried out in [40] for state constraints of order �<( . whereas
higher order state constraints are treated in [41] only in the scalar case. For nota-
tional convenience, we will assume in the sequel that there is only one boundary
interval % � � ��� � ' and one contact point �^� ��� � ��� � � . The analysis is exactly the same
if there is any other finite number of junction points. Moreover, to avoid the degen-
eracy phenomenon reported in [1, 64] we assume that the initial and final point is
not an active point for the state constraint, i.e., we have *AY � � Y � � Y � Y ��� .
Nevertheless, the case of an active initial or final point, � � (�* or � � ( � , is tractable
provided that an additional regularity condition holds; cf. the example in [6].

Let us define recursively the following functions [26, 29, 43]:

F � ;=�5K > � 
 > ���?@�$�F � � �)� �M� ���Z; ( F � �)�'���T� F � � � ���)� �M� ���); ( � �
F � � �)��� �'��� � � �)� �M� ��� � (5.2)

The constraint
F ���)� ��� 4 * is called to be of order � � . with respect to the

dynamics ˙�^( � � �)��� �'��� , if

� � F � � �)� �M� ���	�[* � 	5(�*N�D.0� � � �1� � � .0� and � � F � ���)� �M� ���$]� * � (5.3)

The preceding relations mean that the functions
F � � �)� �M� ��� � F � ���Z�'��� are inde-

pendent of � for 	 ( *+�D.0� � � �1� � � . . It can be easily seen that if
F ���)� ��� is of order
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� and � �)� �M� is the solution of ˙�:( � � �)� �M� ��� , then� ��
�
� F � � ���C�T� ���)( � F � ��� �	�C�!�'���T� 	 (�*+�1.0� � � �1� � � .0�F � � � ���C�T� � ���C�!�'���!� 	 (�� � (5.4)

In the sequel, we have to assume that for any � the constraint
F ���)� ���546* has a fixed

order � �/. . For the further analysis, the order � dictates the differentiability require-
ment that all functions are of class C

� �
with respect to their relevant arguments; cf.

the general assumption (AG-1).
There exists a simple formal procedure whereby one obtains necessary and suf-

ficient conditions for a state constrained problem in a way which is quite simi-
lar to that for mixed control-state constraints. Formally, one replaces the function	 ���)� �M� ��� for mixed control-state constraints by the function

F � ���)� �M� ��� defined in
(5.2) and adds junction conditions related to the functions

F � � 	O( *+�D.0� � � �1� � �B. .
This procedure has been justified by the results in [26, 40, 41].

The following two assumptions are analogous to (AC-1) and (AC-2). Due to its
very technical nature, assumption (AC-2) will not be stated explicitly.
(AS-1) (Linear Independence Condition) On the boundary arc we have

� � F � ��� � �	�C�!��� � �	�C�!�'� � ��](�* for all � � % � � ��� � ' � (5.5)

(AS-2) (Controllability Condition) See [40], assumption (I.5), and [41], assump-
tion (A.7).

There are several ways of defining an augmented Hamiltonian depending on
which function

F � � 	 (�*+�1.0� � � �%� � � is adjoined to the unconstrained Hamiltonian � �
in (3.1); cf. [26, 43]. Here we choose the augmented Hamiltonian which is formed
by adjoining the function

F � � �)� �M� ��� of highest order:

�V� �)� �M���Z��� � � ���Z;C( � �N� �)� �M� ��� 8 �
�

� � �)��� �'��� 8
�
� F � � �)� �M� ��� (5.6)( � � � �)� �M���Z�'��� 8

�
� F � � �)� �M� ��� �

Then by virtue of (AS-1) and (AS-2), there exist Lagrange-multipliers

� � � ��� � � ��� �&��� �&� � ���5� �
� �
 � *+��� � � � K � > �  ��*+��� � � �$� > � 
 > � � > �

such that the adjoint equations, transversality conditions and minimum condition
hold for a.e. � � % *+������' ,

˙� �����C�)($� � � ��� �N���C�!�������	�C�!��� �+���C�T��� � � ���C�T� � �&� � � (5.7)

� � � � ��*+�T��� � �	���=�!�)( � � � � � ��� � � � � � � � � 8 �
�

�
� � � ��� � ��*+�T� � � �	���\�!� � � �T� (5.8)

� � ��� �+���C�T� � �+���C�T��� �����C�T��� � � �	�C�!�'��� �)( *+� (5.9)

�V� � � ���C�T� � � ���C�T��� � ���C�T��� � � �	�C�!�'� � �)( 
 � � � ��� (5.10)

We shall use again the notation that the symbol % � ' stands for all nominal argu-
ments ��� �+���C�T� � �+���C�T��� �����C�T��� � � �	�C�!�'��� � . At the entry point � � , resp. at the contact
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point � , the following jump conditions are satisfied with the jump variable � � (� � �� � � � �1� � � � �

� � resp. with
�
� :

� ����� �
8 �)( � ���	� � ����� � � ��

� � � �
�
� � � F � % � � ' � � �

�
� ��*+� (5.11)

� ��� � 8 �)( � �+� ������� �
� � � F % � ' � � �

� ��* � (5.12)

The multiplier �
�
� ���C� satisfies the relations

�
�
� �	�C�)(�*�U � �� % � � ��� � ' �A� �W.0� � � �� � � � � � �	�C� �6*[U � � % � � ��� � 'Q� 	5(6*+� � � �1� � � (5.13)

When adjoining the functions
F � � 	�(/*+�D.C� � � �1� �+� .C� to the unconstrained Hamil-

tonian instead of the function
F �

, one obtains different multipliers and jump condi-
tions. Explicit relations between these multipliers may be found in [26, 41, 43]. It is
now appropriate to add some remarks on the occurence of boundary arcs and con-
tact points with respect to the order � . It was shown in [29] that boundary arcs can
not occur for odd orders � � � if the Hamiltonian is regular, i.e., admits a unique
minimum, and if the control is piecewise analytic. However, for a problem with a
non-regular Hamiltonian, [11, 12] present an example with a boundary arc of order�W( � . To our knowledge, boundary arcs for an even order � � � have not been
reported in the literature. We omit a detailed discussion of this phenomenon. As a
consequence, the following analysis treats boundary arcs only for the orders � ( .
and � ( �

. The situation is different for contact points which usually do not occur
for � (B. but which may be present for all orders ��� �

.
The analogon to the strict complementarity assumption (AC-3) is obtained by

sharpening some inequalities in (5.13); cf. [41]:
(AS-3) (Strict complementarity condition) There exists � � * such that the follow-
ing relations hold;

�	��.0� � � �� � � �
�
� �	�C� ��� � * for � � % � � ��� � 'Q�

�
�
� � �	��.C� � � � � ������ � ����� �

�
� ��� �

8 � � * for � � � �
�	��.C� � � � � ������ � ����� �

�
� ��� � �W� � * for � � � �

�
� � * for � � �

�

� ������
�������

�

(5.14)

(AS-4) (Strict Legendre-Clebsch condition) There exists 
 � * such that the fol-
lowing estimate holds for all � � % *+��� � ' ,

� � � � � % � ' � � 
 L � L � U � ��� 
 � F �
�
% � ' � (�* �

The second order sufficient conditions (SSC) for pure state constraints are sim-
ilar to those for mixed control-state constraints except that we have to admit jumps
for the matrix !3���C� appearing in assumption (AC-5). We can shorten the presen-
tation of SSC by appealing to the fact that one replaces the function

	 ���)� �M� ��� in
(AC-5) formally by the function

F � � �)� �M� ��� .



Sensitivity Analysis and Real-Time Control of Optimal Control Problems 43

(AS-5) (Coercivity condition) There exists a symmetric
� > � matrix !3���C� which

is of class C
�

except at the entry point � � or the contact point � such that the def-
initeness condition (3.8)–(3.11) in (AC-5) are satisfied upon replacing the function	 ���)� �M� ��� by

F � � �)� �M� ��� . In addition, the following jump conditions hold with the
jump multipliers �

�
� from (5.11), resp.

�
� from (5.12),

!^�	� �
8 � ( !^�	� � �W��� � � �

�� � � �
�
� � �

� �
F � % � � 'Q�!^� � 8 �)( !3� ���W��� �

� � �

���
F % � ' � (5.15)

Under these conditions, the SSC given in Theorem 1 carry over to control prob-
lems with pure state constraints. However, we refrain from giving an exact state-
ment. In the same way, the sufficient conditions in (3.12)–(3.22) which are based
on Riccati equations extend to pure state constraints. So far, no formal proof of this
type of SSC can be found in the literature. We are going to show in a future paper
that a proof evolves from a generalization of the techniques in [50, 61]. The work
in [37, 44] gives a proof for strong SSC which are based on the Legendre-Clebsch
condition and the Riccati equation (3.12) on the entire interval % *+��� � ' .
5.2 Parametric Boundary Value Problem and Solution Differentiability

Recall that the nominal solution was supposed to contain only one boundary arc% � � ��� � ' and one contact point � in case � � �
. Under appropriate conditions to be

specified below this property persists for all parameters � near � � . On the interior
arcs % *+��� � ' and % � � ������' , the free control � � �S�� is a function of the variable I; (� �)���Z�'��� which is determined by

� � � �)���Z�'���)( arg min
� ����� �V���Z��� ���Z� ��� � (5.16)

In particular, we have � � �	�C�$( � � � � � ���C�T��� � �	�C�!�'� � � . The boundary control �
� �S��

and the multiplier �
� ��&� are the solution, resp., the multiplier of the mathematical

programming problem depending on  ( ���)���Z� ��� :
MP �S�� minimize � ��� � �V���)� �M���Z� ��� subject to

F � � �)� �M� ���)(�* �
Formulae for the differentials � � � � �S��!� � � � � �S�� and � � � � �S�� are obtained in a
way completely analogous to (3.23) and (3.24) upon substituting the active compo-
nents

	 � by
F �

. Then the reference boundary value problem (2.2), (2.3) and (5.7),
(5.8) can be embedded into the following parametric multipoint boundary value
problem BVP ����� :
Differential equations:

˙�^(
�
� � �)� � � � �)���Z�'���!� ���T� � �� % � � ��� � '
� � �)� � � � �)���Z� ���!�'���T� �O� % � � ��� � ' (5.17)

˙�V(
� � � �� � �)� � � � �)���Z� ���!���Z� ��� � � � �� % � � ��� � '� � � � �)� � � ���Z���Z� ���!���Z��� � � �)���Z�'���T� ��� � � �O� % � � ��� � ' (5.18)
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Boundary conditions:

� � � ��*+�T� � ��� � �!� ���)(�*N� (5.19)� � � ��*N�!��� �	� � �!� ( � � � � � � � � � ��� � � � � 8 �
� � � � � � ��*+�T� � ��� � �!� ��� � (5.20)

Junction conditions:

F � � � ��� � �T� ��� (6*+� 	5(�*+�1.0� � � �1� � � .0� (5.21)
˜F � ��� �	� � �!��� ��� � �W�!�'���)( *+� (5.22)
˜F � ��� �	� � �!��� ��� � �T� ���)(�*+� (5.23)F � � � � �!�'��� (6*+� (5.24)F � � � � � �T� ���)(�* � (5.25)

Jump conditions:

� ��� �
8 � ( � �	� � ����� � � ��

� � � �
� � � F � � � ��� � �T� ��� � � (5.26)

� � � 8 �)( � � ������� � � � F � � � � �T� ��� � � (5.27)

In (5.22) and (5.23) we have used the function

˜F � � �)���Z�'���Z; ( F � � �)��� � ���Z���Z� ���!�'���!� (5.28)

where the free control � � ���)���Z� ��� from (5.16) is inserted. Note that the additional
condition (5.25) follows from the property that the function

F � � ���C� attains a local
maximum at �M( � .

To apply the shooting method to BVP(� ), we recall our earlier statement that a
boundary arc usually occurs only for orders � ( . and � ( �

whereas a contact
point may be present for any order � � �

. The shooting variable is defined as the
vector

� ( � � � � � � � �+� �Z� � ��� � ��� � � � �5��� K > � K > � 
 > � � > � > �  �
We obtain a shooting equation � � � � ��� ( * which is similar to (3.32) and takes
into account the additional equations (5.21) and (5.25). The unperturbed solution
corresponds to the shooting variable � � which satisfies the equation ��� � ��� � �&�)(�* .
Again, we can apply the classical implicit function theorem to the shooting equation��� � �&� � � � ( * provided that the Jacobian

� � � � �&�'��� � � � � is regular. A necessary
condition for the regularity of this Jacobian is the following non-tangential junction
condition:
(AS-6) (Non-tangential junctions)

�� � ˜F � % � �# '
]( *+� ,
(B.0� � � for a boundary arc �F � % � � '
](�* for a contact point � � (5.29)
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For orders � � �
, the further assumption (A.11) has been imposed in [41]. Since

this assumption is rather technical, we shall omit it and indicate only that it can be
verified by checking the regularity of the shooting matrix. Now we can state the
main sensitivity result for pure state constraints; cf. [40, 41]:

Theorem 4. (Solution differentiability for pure state constraints)
Let ��� � � � � � be admissible for OC �G� � � . Suppose that (AS-1)–(AS-6) hold and as-
sumption (A.11) in [41] is satisfied for ��� �

. Then there exists a neighborhood� � � � of � � and a
	 �

-function � ; � � ? � � K � 
 � � � 5 such that the shooting
equations ��� � �����!�'��� (�* holds with

� �G��� ( � � � �G���!� � � �����!� �������!��� �����!� � �����!��� � �G���T��� � �G���!� �)�����T�
for all � � � � . Let

� ; (&% *+��� � ' > ��� and ˜� ; ( � ��H �	� � �����!�'���T�%�	� � �����!�'���!�%� �Z�G���!� ��� P �
Then the state functions � ���C�'���$; ( � ���C� � �G���!� ��� are

	 �

-functions on � whereas
the adjoint functions � ���C�'���Z; ( � �	�C� � �����!�'��� and the multiplier

�
� ���C� ���Z; (

� *+� for � �� % � � �����!��� � ����� '
�
� � � �	�C� ���!��� ���C� ���T� ���!� for �O� % � � �����!��� � ����� '

are
	 �

-functions on ˜� . The control function

� ���C�'���Z; (
�
� � � � ���C�'���!��� �	�C� ���!�'���!� for � �� % � � �����!��� � ����� '
�

� � � �	�C� ���!��� ���C� ���T� ���!� for �O� % � � �����!��� � ����� '
is continuous and is of class

	 �

on ˜� . For every � � � � , the triple � � S� ���!�
� � S� ���!� � � S� ��� and the multipliers �

� ��S� ���T� �������!� � �����!� � ����� solve the para-
metric BVP(� ) and satisfy the SSC analogous to those in Theorem 1 evaluated for
the parameter � . Hence, the pair ��� ��S� ���!��� � S� ���!� provides a local minimum for
OC �G��� .
5.3 Computational Sensitivity Analysis and Real-Time Control

Let us perturb � � in a direction
�

with ��� 8 � ��� . Theorem 4 assures us that the
following sensitivity differentials exist:

� � ���C�Z; (�� �
�
� �	�C� � � � � � � � �	�C�Z; (�� �

�
� ���C�'� � � �

� � ; ( � �� � ��� � � � � �
�
� ; ( � �

�

� � �G� � � � � 	5( *+� � � �D� � � .0�!� � � ; ( � �� � ��� � � � �
These differentials satisfy a linear boundary value problem which is obtained by
differentiating the boundary value problem BVP ����� in (5.17)–(5.27) formally with
respect to � . We refrain from writing down explicitly this BVP since it is rather
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similar to the one for mixed control-state constraint given in (3.37)–(3.41). The case
study in the next section will exemplify this procedure. However, we expand on the
differentiation of the jump conditions (5.26) and (5.27). At the entry point � � � we
find

� � �	� � � 8 �)( � � �	� � � ����� % ˙� � �	� � � 8 ��� ˙� � ��� � � �W� ' � � �� � ��� � ��� � � �

�� � � �
�
� � �

F � % � � � ' �
� � � �

�� � � �
�
�

� � �

� �
F � % � � � '!� � % � � � ' � � �� � ��� � � 8 � � ��� � � �N� 8 � �

� � F � % � � � ' ��� �

(5.30)
At the contact point � � � we get

� � � � � 8 �)(�� � � � � �W��� % ˙� � � � � 8 � � ˙� � � � � �W� ' ���� � �G� � ��� � � � �
F % � � ' �� � � � � �

� �
F % � � 'T� � % � � ' ���� � �G� � � 8 � � � � � �+� 8 � �

� � F % � � ' ��� �

(5.31)

Formulas for the differentials of junction and contact points can derived from the
following identities which hold for all ����� � ;

˜F � � � ��� # �����!�'���T��� �	� # �����T� ���!�'����� * � ,
(B.0� � �!� F � � � � � � �����!�'���!� ���	�[* �
Recall that the function ˜F � is defined in (5.28). Upon differentiating these equations
and using the non-tangential junction condition (AS-6), we obtain the directional
derivatives�

� #� � ��� � � � ( �E� � � ˜F � � � 8 � � ˜F � � � 8 � � ˜F � � � % � �# '�� ��
�

˜F � % � �# 'Q� (5.32)

� �&#� � ��� � � � ( �E� � � F � � � 8 � � F � � � % � � '�� F � % � � ' � (5.33)

The work [3] discusses numerical examples for state constraint of orders ��(/.0� �5(�
and �$( � which illustrate the computational sensitivity analysis presented in the

preceding sections.

6 NUMERICAL CASE STUDY: THE VAN DER POL OSCILLATOR WITH A STATE

CONSTRAINT

The following optimal control model for the Van-der-Pol oscillator with state con-
straints is taken from [67]. A verification of SSC and a sensitivity analysis has re-
cently been carried out in [3, 4] on which the presentation below will be based. The
Van-der-Pol oscillator also refers to the electric circuit depicted in Figure 1 includ-
ing a capacity, resistance, inductivity and a diode. However, in contrast to section 4,
the state variable � � ���C� now represents the voltage and we set � � �	�C�); ( ˙� � ���C� . We
consider the following control problem where the parameter � appears in the state
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constraint:

Minimize � � �)� �M� ��� ( ���
�

�
�

� �	�C� 8 �
�

� ���C� 8 �
�

� �	�C� � � � (6.1)

subject to ˙� � ( � � � ˙� � ( � . � �
�

� �	� � � � �
8 �M� for � � % *+� � 'Q� (6.2)

� � ��*+� ( .0� � � ��*+� ( *+� (6.3)

��4 � � ���C�!� for �O� % *+� � ' � (6.4)

The state inequality constraint (6.4) is of the form (2.5) upon defining the functionF � �)� ���$; ( � � �
8 �/4 * with the scalar parameter � . The nominal parameter is

chosen as � � ( � * � � .

6.1 Boundary Value Problem

In a first step we study the unconstrained problem (6.1)–(6.3) and omit the state
constraint (6.4). The shape of the unconstrained solution reveals that the constrained
solution has one boundary arc with � � �	�C��� � for � � % � � ��� � ' and *<Y � � Y � � Y�
. The function

F �

is computed from (5.2) as
F � � �)��� �'���)( � ˙� � ($� �Q.�� �

�

� �	� �
8

� � � � . Since � � F �

� �W. , the order of the state constraint is ��( . . From (5.7)–
(5.9) we find the following adjoint equations, the control � and the multiplier �

�

associated with the state constraint:

˙� � ($� � � �
8	� � � � � � �

8 � � � �
� � � � � � �

8 .0�!� � � � � �5(6*+� (6.5)
˙� � ($� � � � � � �

8 � � � � �

� � .0� 8
�

� � . � �
�

� �!� � � � � � (6*+� (6.6)

where

��(
� � � �

� � �O� % *+��� � '�� % � � � � ' �
��� �

� � .0�	� �
8 � � � �O� % � � ��� � 'Q� (6.7)

�
� (

� * � � � % *+��� � '�� % � � � � ' �� � � �

� � .0� � �
8 � � �

8 � � � � � % � � ��� � ' � (6.8)

The junction conditions (5.21)–(5.23) at the entry and exit point � � and � � are:

� � �	� � �)(���� (6.9)�
�

�

� ���C��� . � � � ���C� 8 � � ���C� 8 * � � � � ���C� (6*+� at �M( �	� � � �W� �M( � �
� (6.10)

In the last equation, we have used both the control law �6( � � � � � on the interior
arcs % *+��� � ' � % � � � � ' and the continuity of the control at the junction points. Due to
relation (5.11), the adjoint variable � � has a jump at the entry point � � ,

� � ��� � � �)( � � �	� � � � 8
�Z� ���I*N� (6.11)

whereas � � is continuous at � � . The multipoint boundary value problem (6.2), (6.3)
and (6.5)–(6.11) can be solved using the code BNDSCO of [54]. For the nominal
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and multiplier [
� ��� �

parameter � �A( � * � � we obtain the following results for the initial values of the
adjoint variables and the junction points:

� � ��*N� ( �
� 
 
 � � 
 
 # � � � � ��*+� ( * � � � � # � � 
 
 �

� � (�* � 
 � � � � #	� # � � � ( .�� � 
 #=* � � . � �
� � � � � ($� * � *�� � � * �	� #^� � � � � � ( * � * � # � # 
 �0*��

� � (B.�� �	�C*+.C. � � � � � � � � � � � � � � �)( �
� # � ���=*+.�	� �

The nominal optimal solution with state and adjoint variables, control and multiplier
are shown in Figure 8.

Next, we shall verify that the computed nominal solution satisfies all regularity
conditions and the SSC in section 5. The regularity condition (5.5) in (AS-1) and
the strict Legendre-Clebsch condition (AS-4) obviously hold. Moreover, the non-
tangential junction condition (5.29) in (AS-6) is valid since��

�
F � � � �	� � �!� � ��� � � �!� ���)($�W.�� 
 � . � � � � 
 ](�*+���
�
F � � � ��� � �T� � ��� �� �T� ��� ($� * � � � � 
 � * 
�. ]( * �

The strict complementarity condition (5.14) in (AS-3) is satisfied since� � � � � � � � * for �^� % � � � ��� �� 'Q� cf. Figure 8. In order to check SSC it suffices to
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find a bounded solution of the Riccati equation (3.12). With
� ( �

we consider a
symmetric

� > �
matrix

!^�	�C�)(
�� 3

� ���C� 3
� �	�C�

3
� ���C� 3 5 �	�C�

��

and obtain the following explicit Riccati equations from (3.12):

˙
3

� ( � � � � � �
8	� � 3 � � � 8	� � � � � � � �

� � 8 .� 3 �

� �
˙
3

� ($� 3 � � � .�� �
�

� � 3 �
8 � � � � � �

8 .0� 365 8	� � � � � � � �
� � 8 .� 3 �

365 �
˙
3 5 ($� � 3 � � � �Q.�� �

�

� � 3 5 � � 8 .� 3 �5
�

The functions
3 # �&, (-.0� � � � � are continuous at the entry point � � due to the

jump relations (5.15) and � �

� �
F
� * . We are allowed to use a relaxed form of the

boundary conditions (3.22) and impose the boundary conditions
3

� � � � ( 3
� � � � (3 5 � � �V( * . Numerical integration along the nominal solution with � � ( � * � �

shows indeed that there exist a bounded solution with L 3 # ���C�QL 4 
�U �<� % *+������' , cf.
Figure 9. Thus we arrive at the conclusion that the solution shown in Figure 8 is a
local minimum.
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Figure 9. Solutions � V ��� � � X : � 0 Z60%$ � of the Riccati equation

6.2 Computational Sensitivity Analysis and Real-Time Control

In the preceding section we have verified that the unperturbed (nominal) solution
with � �W( � * � � meets all assumptions for solution differentiability in Theorem 4.
Thus the unperturbed solution can be embedded into a family of perturbed solutions

� # �	�C� ���!� � # ���C� ����� ,
(B.0� � �!� � � �G��� � 	5(/.0� � �!� �
� �	�C� ���!� � �G���!�

to the perturbed problem OC ����� . The C
�

properties of these functions are specified
in Theorem 4. The perturbed solution satisfies the boundary value problem (6.2),
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(6.3) and (6.5)–(6.11) identically for all parameter � near � � . The sensitivity dif-
ferentials

� #\�	�C�)( � � #� � ���C�'� � �!� � #%�	�C� ( � � #� � ���C� � � �T� � ,
(B.0� � �!�A� � ( � * � � �
satisfy a linear BVP which we are going to derive now. The ODEs for � #=���C� and
� #%���C� are obtained by formally differentiating the nonlinear equations (6.2), (6.3)
and (6.5)–(6.11) with respect to the perturbation � . This procedure yields the linear
ODEs

˙� � ( � � �
˙� � ($� � � � � � � �

8 �Q. � �
�

� � � � � � �
8 � � �

˙� � ( � � � �
8	� � � � � � � �

8 � � � � � �
8 � � � � � � � 8 � � � �

�
� � � � � �

8 � � � � �� �
�� � � � � � �

8 .C�!�
˙� � ( � � � � � � �

8 � � � � �

� � .0� 8 � � � � � � � � �
�

�

� � � �
8

�
�� � . � �

�

� �!�
where

� � ( � �� � (
� � � �� � �O� % *+��� � '�� % � � � � ' �� � � � � � �

8 � � �

� � .0� � �
8 � � � �O� % � � ��� � 'Q�

�
�� ( �

�
�� � (

� * � � � % *+��� � ' � % � � � � 'Q�� � � � � � �
8	� � � �

� �[.0� � �
8 � � �

8 � � � � � % � � ��� � ' �
Since the initial state is fixed and the final state is free, we find the following bound-
ary conditions from (3.39) and (3.41),

� #%��*N� (�*+� ��#1� � �5(6*+� for ,
(B.0� � �
The differentiation of the junction condition � � �	� � �����!�'��� � � yields the junction
condition � � ��� � �)(B.��

The jump relations for the sensitivity differentials � � � � � at the entry point � �

can be obtained from relation (5.30). When evaluating this formula the reader may
check that the nominal derivatives ˙��#D� , ( .C� � � are continuous at � � due to equa-
tions (6.5)–(6.8). Then we get the jump conditions

� � ��� � � � (�� � ��� � � �!� � � ��� � � �)(�� � �	� � � � 8
�Z� �V( �

�� � ��� �&� �
Finally, the differentials of the junction points �1#%�G���T�&, ( .0� � � are obtained by

differentiating the junction conditions
F � � � �	� � �����!�'���T� ���
( % � �Q. � �

�

� �	� �
8 � �

8
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* � � � � 'T��� #%�G���T� ����� * . The general formulae (5.32) then read explicitly:

�
� #� � ($� � � � � � �

8	� � � �
8 � � � �

� � .0� � �
8 � �� � � �

�

� � � � � �

� � .0� �

� �
8	� � . � �

�

� �	� � � � �

^^^^ � � � � at � � � and � �� �

Again, the code BNDSCO in [54] is used to resolve the BVP for the sensitivity
differentials:

� � � *+� ( # � � � � � � � � # � � � � *+� ($� * � *0* � � � �=* � ��
� � � � � ($� � � *�� � �	��
=* � � �

� � � � � ( 
 � *���� #�� � � # �� � � � � ($� * � � 
 � #0* � � ��� � � � � � ($� * � � � � � � . 
�� �
�^( �

� � � � ( � �
� *N. *0*0*�#�# � � �� � � (B.�� �	� *+.0. � � � �

The sensitivity differentials are shown in Figure 10. On the basis of the computed
sensitivity differentials we may perform a real-time approximation of a perturbed
solution according to the Taylor expansion (2.6). The numerical results and the
quality of the approximation are very similar to those for the Rayleigh problem
in Section 4.3 so that we refrain from discussing them explicitly.
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Abstract We discuss nonlinear programming (NLP) methods for solving optimal control
problems with control and state inequality constraints. Suitable discretizations of control and
state variables are used to transform the optimal control into a finite dimensional NLP prob-
lem. In [8] we have proposed numerical methods for the post-optimal calculations of para-
meter sensitivity derivatives of optimal solutions to NLP problems. The purpose of this paper
is to extend the methods of post-optimal sensitivity analysis and real-time optimization to
discretized control problems. The dimension of the discretized control problem should be
kept small to obtain accurate sensitivity results. This can be achieved by taking only the dis-
cretized control variables as optimization variables whereas the state variables are computed
recursively through an appropriate integration routine. We discuss the implications of this
approach for the calculations of parameter sensitivity derivatives with respect to optimal con-
trol, state and adjoint functions. The efficiency of the proposed methods are illustrated by two
numerical examples.

1 INTRODUCTION

The sensitivity analysis of parametric optimal control problems has been discussed
in Augustin and Maurer [1, 19] on the basis of boundary value methods. This so-
called indirect approach is characterized by explicitly solving the necessary condi-
tions in terms of state and adjoint equations to which one has to add an explicit set
of equations for the sensitivity derivatives. Though these methods yield highly ac-
curate results, the derivation of the boundary value problem may be cumbersome or
may not be provided explictly. A further drawback of this approach is the difficulty
of finding reasonable estimates for the adjoint variables.

Various direct optimization methods have been proposed to avoid the drawbacks
of the indirect approach; cf., e.g., Barclay et al. [2], Betts [3], Bock and Plitt [4],
Büskens [5,7], Enright and Conway [12], Evtushenko [13], von Stryk [22]. All direct
methods proceed by a suitable discretization of the optimal control problem treating
the discretized control and state variables as optimization variables in a nonlinear
programming (NLP) problem. One advantage of direct approaches is that it does not
need any estimates of the values for the adjoint variables. Section 3 discusses two
discretization methods, the full discretization approach and the recursive approach,
whose merits in connection with sensitivity analysis we are going to evaluate in this
paper. In [8], we have proposed a post-optimal sensitivity analysis on the basis of
well known formulae for the parameter sensitivity derivatives. It seems natural and
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appropriate to extend this sensitivity analysis to discretized control problems and to
test its effiency in comparison with boundary value methods.

The evaluation of sensitivity formulae requires a computation of the exact Hes-
sian of the Lagrangian. This fact obliges us to to keep the dimension of the resulting
NLP problem as small as possible. For this reason, we concentrate on the recursive
approach in Section 3.2 where only the discretized control variables are considered
as optimization variables whilst the state variables are computed recursively through
an appropriate integration routine as functions of the control variables. Adjoint vari-
ables can be obtained by a postoptimal calculation using the Lagrange multipliers
of the resulting nonlinear optimization problem. The sensitivity analysis in [8] then
enables us to compute the sensitivity derivatives of the control variables. In a sec-
ond step, the parameter sensitivity derivatives for state and adjoint variables may
be recovered recursively from the control sensitivities. Thus we obtain a complete
picture of sensitivity analysis that is comparable to that gained from the indirect
approach [19].

The articles [5,7,8,19] have documented the usefulness of a computational sen-
sitivity analysis for the design of real-time approximations of perturbed optimal
solutions. Thus the computational methods in this article can be applied directly to
the computation of real-time control approximations in the original optimal control
problem.

We point out that the sensitivity analysis in [19] is restricted to the special class
of optimal control problems for which the strict Legendre-Clebsch condition is sat-
isfied. Thus control problems with control appearing linearly in the system (bang-
bang and singular controls) have to be excluded from the analysis so far. However,
progress is being made towards developing second order conditions and sensitiv-
ity analysis also for this class of control problems. It is interesting to note that the
following numerical sensitivity analysis using direct methods can be carried out for
any class of optimal control problems though this approach is not yet backed up by
a complete theory in all cases.

2 PARAMETRIC OPTIMAL CONTROL PROBLEMS WITH CONSTRAINTS

2.1 Problem Formulation

We consider parametric control problems subject to control and state constraints.
All data may be subject to perturbations that are modeled by a parameter � �� ; (���	�� . The following parametric control problem will be referred to as problem
OCP �G��� .

Minimize � � �)� �M� ��� ( � � � ��� � �!��� �	���\�!�'��� 8 ����
� � � � ��� �	�C�!��� �	�C�!� ��� � �

subject to ˙�)�	�C� ( � � � �	�C�!� � ���C�T� ��� for all �O� % *+������'Q�� ��� ��� � �!��� ��� � �!�'���)(�*+�	 � � ���C�T� � ���C�!�'��� 4I* for all �O� % *+��� � ' �
(1)
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Herein, � ���C� �A�5K denotes the state of a system and � �	�C� � � 
 the control function
in a time interval % � �&��� � ' . The functions � ;&� � K > ��? � , � ��;��5K � 
 > � ? � ,

� ;=� K � 
 > ��? � K ,
� ;0� � K > �A?@� 
 , *E4 �<4 � � � and

	 ;=� K � 
 > �A? � �
are assumed to be sufficiently smooth on appropriate open sets. The admissible class
of control functions is that of piecewise continuous controls. The final time � � is
either fixed or free. A control problem with a free final time ��� can be reduced to
an augmented control problem with a fixed final time by the time transformation
�O( � ���� introducing the new time variable � � % *+�1. ' . A non-autonomous control
problem can be reformulated as an autonomous problem OCP �G��� by considering
the time variable � as an additional state variable. In the sequel, we assume for
simplicity that problem (1) is given in Mayer form with � ��� �)� �M� �����/* . This form
can be achieved by introducing an additional state variable � K � � defined by the
differential equation ˙� K � � ( � �+� �)� �M� ��� with initial value � K � � ��� � �)(�* .

A sensitivity analysis of parametric control problem OCP �G��� in the neighbour-
hood of a fixed nominal parameter � � �/� has been carried out in Maurer and
Augustin [19] to which we shall refer hereafter for assumptions and results. In [19],
mixed state-control constraints and pure control constraints are treated separately.
To shorten the presentation in the present article, we suggest that the formulation of
state-control constraints

	 � � ���C�T� � ���C�!�'���J4 * in (1) also includes pure state con-
straints

	 ��� ���C�!�'����4 * if the function
	

does not depend on the control � . As
in [19] we assume that there are only finitely many boundary arcs or contact points
where the inequality constraints

	 � � �	�C�!� � ���C�T� ���$4 * becomes active. The finitely
many junction points with the boundary arcs are denoted by � � .

2.2 First Order Necessary Optimality Conditions

The theory of first order necessary conditions (minimum principle) for the con-
trol problem (1) is well developed, cf. Pontryagin [21], Neustadt [20], Maurer [18]
and Hartl, Sethi and Vickson [16]. For the sake of simplicity, we suppose that
the inequality constraints are not active at the initial and final state, i.e., we have	 ��� ��� �&�T� � ��� �&�T� ��� Y * and

	 ��� �	� � �!��� �	� � �!�'��� Y * . Let us define the augmented
Hamiltonian function for problem (1) by

�V� �)���Z� �)� �M� ���Z; ( � 
 � ���)� �M� ��� 8 � 
 	 � �)� �M� ���T� (2)

where
�

denotes the transpose, � �/� K is the adjoint variable and �/�B� � is a
multiplier associated with the inequality constraints. Henceforth, partial derivatives
of first and second order are denoted by subscripts referring to the variable, e.g., by

� � and � � � , or by the symbol � � � and � �

� � � . The necessary conditions [16,20] for
an optimal solution � � � � � � � to problem OCP ����� imply that there exists a piecewise
continuous and piecewise continuously differentiable adjoint function �:;�% � � ��� � ' ?� K , a piecewise continuous multiplier function � ; % � � ��� � ' ? � � with � ���C� � *
for ���&% � � ��� � ' , a multiplier � � ��
 , and multipliers � ��� � �<� � � , � �	� � � � * , for
each junction or contact point � � such that the following conditions hold: the adjoint
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equations

˙� ���C� 
 ($� � � � � � ���C�T��� ���C�T��� �	�C�!��� � ���C�T� ���($� � ���C� 
 � � ��� � ���C�T� � � ���C�!�'����� � �	�C� 
 	 �Z� � � ���C�!��� � �	�C�!� ���T� (3)

the transversality conditions

� ��� � � 
 ($� � � � � � � � � 8 � 
 � � � � � ��� � �T� � � �����\�!�'���!�
� ��� � � 
 ( � � � � � � � � 8 � 
 � � ��� � �	� �&�!��� � ��� � �T� ���!� (4)

the optimality conditions

*�( � � � � � ���C�T��� ���C�T��� �	�C�!��� � ���C�T� ���
( � ���C� 
 � � ��� � ���C�T� � � ���C�!�'��� 8 � �	�C� 
 	 � ��� � �	�C�!� � � ���C�!�'���!� (5)

and the junction conditions for a pure state constraint

� �	� �� � 
 ( � ��� �� � 
 � � ��� � � 
 	 � ��� ��� � �!�'��� � (6)

The notation
8

and � in (6) indicates the limit from the left, resp. from the right.
Note that for pure state constraints

	 ��� ���C�!�'���M4 * the function
	 ���)� ��� is directly

adjoined to the Hamiltonian; cf. Hartl et al. [16], Section 4. Alternatively, one may
adjoin a higher order time derivative of the function

	 � �)�'��� to the Hamiltonian
as in [19] and [16], Sections 5 and 6. Relations between the adjoint variables and
multipliers corresponding to different Hamiltonians may also be found in [16].

3 NUMERICAL SOLUTION OF OPTIMAL CONTROL PROBLEMS VIA NLP
METHODS

The numerical solution of optimal control problems with constraints by nonlinear
programming (NLP) techniques is well developed and there exist a number of ex-
cellent methods; cf., e.g., Betts [3], Büskens [5, 7], Barclay et al. [2]. These meth-
ods use a suitable discretization of the the control problem OCP �G��� by which it
is transcribed into a NLP problem. In principal these methods can be divided into
two classes. The first type of methods is characterized by the fact that both the
discretized state and control variables are taken as optimization variables. This ap-
proach leads to a high dimensional NLP problem which has a sparse structure in the
Jacobian of the constraints and the Hessian of the Lagrangian. In the second class
of NLP methods, only the discretized control variables are considered as optimiza-
tion variables whereas the state variables are calculated as functions of the control
variables using appropriate numerical integration methods. One obtains a small but
dense NLP problem where the dimension of the NLP problem does not depend on
the dimension of the differential equation.

To capture the main features of discretization methods, we restrict the discus-
sion to Euler’s method (dating back to 1744) applied to the control problem (1).
Implementations of higher order approximations of control and state functions may
be found in Büskens [5, 7].
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3.1 Numerical Solution by Full Discretization

Let
� � � * be a positive integer representing the meshsize. For notational simplicity

we choose equidistant mesh points � # � ,
(B.0� � � �1� � � , with

�&#�( � � 8 � ,+�[.0�����7,
(B.0� � � �1� � � ����; ( � � � � �� � � . � (7)

Upon denoting approximations of the values � � �+#1� and � � �&#D� by � # � � K and
� # ��� 
 , the control problem (1) in Mayer form with � � � * is replaced by the
problem:

Minimize � ��� � ����	��\�'���
subject to � # � � ( � # 8 � � � �

# ��� # � ���!� ,
(B.0� � � �1� � � � .0�� � � � ����	 � �'���)(�*+�	 ��� # � � # � ���54�*+� ,
(B.0� � � �1� � � �
(8)

Problem (8) defines a perturbed NLP problem NLP(� ) of the form (1) in [8], if
we choose the optimization variables, the objective function and the constraints as
follows:

O; ( � � � � � � �1� � 	��=� � � � � � �1� ��	��0�5����	 � �� �S�� ���); ( � ��� � � � 	��\� ���!�

"��S�� ���Z; (
�
�
�
�
�
�

�
%���� # � � 8 � # 8 � � ���

# ��� # � ����' # � � ������� � 	�� � �� � � � ����	��=�'���	 � � � ��� � � ���
...	 � � 	 � ���
	 � �'���

�
�
�
�
�
�

� ����	�� � (9)

The dimensions are given by
� � ; ( � � 8

� � � � , �32 ; ( � � � � � .0� 8 � and� 9 ; ( � � 8 �)� � � � � 8 � . In may control problems, the boundary conditions are
separated in the form

� ��� ��� �&�T� ���)(�*+� �� � � ��� � �T� ���)(�*+�
with suitable functions � and

��
. It should be clear that one may remove from the

optimization variable  all those components of the initial vector �
�

which are fixed
by the initial condition � � � � � ��� ( * . In particular, if the initial state is given by
the condition � �	� � � ( � ����� then the initial vector �

�

can be eliminated completely
from the optimization variable  . In this way, a free final time ��� can be handled as
an additional state variable in (9) for which the initial condition is not fixed, whereas
other components of the initial state eventually are specified.

3.2 Numerical Solution by a Recursive Approach

In practice, optimal control problems often are of high dimension. In view of our
aim to establish a computational sensitivity analysis it is mandatory to keep the
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dimension of the NLP problem as small as possible. Thus it is useful to reduce
the dimension of the NLP problem (8). This can be done by considering only the
discretized control variables as optimization variables and adding eventually the
unknown initial state:

O; ( � � � ��� � � � � �D� � 	 � �5�A� 	�� � � � ( � 8
�

� �
� (10)

The state variables are computed recursively from the Euler approximation in (8) as
functions of the control variables:

�
� �S�� ���Z; ( �

� �
� # � � �S�� ���Z; ( � # �S��'��� 8 � � ���

# �S�� ���!��� # � ���!�7,
(B.0� � � �D� � � �[.0� (11)

This leads to the following approximation of (1):

Minimize � � � � ��� 	��0���� ���!�'���T�
subject to

� ��� � � � 	 � �S��'���T� ��� ([*+�	 ��� # �S�� ���T� � # � ���54�*+�7,
(B.0� � � �1� � � � (12)

Setting

������ ���); ( � ��� � � � 	�� �S�� ���T� ���!�
"��S�� ���Z; (

�
�
�
�

� � ��� � � � 	 � �S�� ���T� ���	 ��� � �S�� ���T� � � � ���
...	 � � 	�� �S�� ���T� ��	��C� ���

�
�
�
�

� �A� 	��N� � 2 (� � �:9 ( � � � 8 � � (13)

we arrive again at a perturbed NLP problem NLP(� ) of the form (1) in [7]. This
recursive approximation of the control problem results in a dense structure of the
Hessian of the Lagrangian, whereas about 50% of the elements in the Jacobian of
the constraints are zero due to the relation � # �S��'����( � # ��� � � � � � � � �D��� # � � �'��� in
(11).

All calculations described in this and the following sections were performed by
the code NUDOCCCS of Büskens [5,7] which has implemented also various higher
order approximations for state and control variables. The treatment of stiff ODEs or
grid refinement techniques can also be found in [7]. The convergence of solutions
discretized via Euler’s method to solutions of the continuous control problem has
been proven in Malanowski, Büskens and Maurer [17]. This article treats only mixed
control-state constraints. Convergence properties for control problems with pure
state constraints have recently been discussed in Dontchev and Malanowski [11].
Convergence of higher order Ritz discretization schemes has been established in
Felgenhauer [14, 15].

4 POST-OPTIMAL ESTIMATION OF ADJOINT VARIABLES

The general idea behind the post-optimal estimation of the adjoint variables in (2)–
(6) is to employ the necessary conditions (8) and (9) in [8] and to use the La-
grange multipliers (13) in [8] related to the equality and inequality constraints of the
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discretized control problems. In this section two numerical methods are described
which refer to the two discretization approaches in the previous section.

4.1 Estimating Adjoint Variables by the Full Discretization Approach

The Lagrange function for problem (8) is defined by �V;0��	�� > �5K � 	 � � � � > ��
 >� � 	 � > ��� ? � ,

�)��&���Z���+� �)� ���); ( � ��� � � � 	 � � ��� 8 	 � � ��
# � �

� � # � � � 
 � � # 8 � � � �
# � � # �'��� � � # � � �

8 � 
 � � � � � � 	 � � ��� 8 	 ��

# � �
� � # � 
 	 ��� # � � # � ���T�

(14)
with multipliers � # � �5K , ��( � � � � � � �1����	��=� 
 �6�5K � 	�� � � �

, � ����
 , � # �6� � ,
� ( � � � � � � � ��� 	��C� 
 � � � 	 �� . Recall that � ��( � 	 (@* since the inequality
constraint was assumed to be non-active at � � and � � . The evaluation of the KKT
conditions in [8], Equations (8) and (9) yields estimates for the continuous adjoint
variables � ���C� in (2)–(6) as follows. The optimality conditions with respect to the
variable � # are for ,�( � � � � �D� � � �[. :� � � ������Z���+� �)� ��� ( � � # � � � 
 8 �$� � # � � � 
 � � ��� # � � # �'�����/� � # � 
8 � � # � 
 	 � ��� # � � # �'���

( * � (15)

These relations represent the discretized version of the adjoint equation ˙�^( � � � �in (3) if we identify the multiplier � ���C� in the Hamiltonian (2) by � � �+#1� � � # � � .
An approximation of the first transversality condition in (4) is obtained from the
optimality condition� � � �S����Z� �+���)�'���A( � � � � � 8 � 
 � � � � � � � 	�� � ��� 8 � � � � 
 8 �$� � � � 
 � � ��� � � � � � ���

( * � (16)

Defining the multiplier

�
� ; ( � � � � 
 8 � � � � � 
 � � � � � � � � �'���T� (17)

we see that this multiplier �
�

satisfies both the adjoint equation and the first transver-
sality condition in (4). The second condition in (4) follows from

*�( � � �

� �S����Z� �+���)�'��� ( � � �

� � � 8 � 
 � � � � � � � 	�� �'����� � � 	�� ��
 � (18)

The optimality conditions with respect to the control variables yield for , (.0� � � �D� � � � .�
�
� �S����Z� �+���)�'��� ( �$� � # � � � 
 � � ��� # � � # � ��� 8 � � # � 
 	 � ��� # � � # �'���)( * (19)
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which agree with (5) if we use again the identification �5� �+#1� � � # � � . In the case
of a pure state constraint

	 � � �	�C�!� ����4 * we have to modify the identification as
follows. Let � � be an approximation for the junction or contact point � � and let �

�
be

the corresponding multiplier in (15). Then there exists a splitting �
� ( � � 8

˜�
� �

� � 8 � � ��� � � and herewith an approximation of the junction conditions

*J($� � � ��&���Z���+� �)� ����� � � � � � � 
 � � � � � 
 8 �$� � � � � � 
 � � ��� � � � � �'���8 � ˜�
� � 
 	 � � � � ��� � � ��� 8

� � 	 � ��� � � � � �'��� (20)

where � � � � �	� � � is the jump in (6).

4.2 Estimating Adjoint Variables by the Recursive Approach

The Lagrangian function �A;��
	 � > ��
 > � � 	�� > � � ? � for the NLP problem
(12) is

�)������+��� � ���); ( � � 8 � 
 � � ��� � ��� 	 �S��'���T� ��� 8 	 ��
# � �

� � # � 
 	 ��� # �S�� ���T� � # � ��� � (21)

Büskens [7] has shown that an approximation of the adjoint variables � � �N#D� for
the optimal control problem (1) can be calculated a posteriori from the Lagrange
function (21). Because of the lengthy proof we omit the details and sketch only the
main ideas. Observe that

� � ( � 8
�

� � now represents the reduced number of
optimization variables in (10). The recursive definition in (11) allows us to calculate
approximations of the adjoint variables without using Lagrange multipliers for the
discretized dynamics. One possibility is to use the expressions

� � � # � � � # ; ( � � � ������+��� � ���!�-,
(B.0� � � �D� � � � (22)

Again, a careful study of the KKT conditions for the NLP problem (12) shows that
the vectors � # as defined by (22) satisfy the discrete adjoint equations (15)–(18), the
minimum condition (19) and the junction conditions (20); cf. Büskens [7].

A second more intuitive approach for estimating the multipliers � # � � � �&#D� is
to calculate the vector � 	��:( � � �

� � � 8 � 
 � � ��� � � � 	��0� ��� where the multiplier
� ����
 is provided by the SQP-method; cf. Formula (13) in [8]. Then relations (15)
and (16) are used for the recursive calculation of the vectors � # , ,W( � � � � � �1. . A
detailed analysis of the optimality conditions � � �S����+� �)� ��� ( * then reveals that the
necessary conditions (19) hold.

Especially the first method yields accurate approximations even for complicated
and highly nonlinear problems. Readers who are interested in technical difficul-
ties that occur in all direct optimization methods for control problems with mixed
control-state or pure state constraints are referred to Büskens [7].

5 SENSITIVITY ANALYSIS AND REAL-TIME CONTROL

For a fixed reference or nominal parameter ��� we consider problem OCP �G��� � as
the unperturbed or nominal problem. The sensitivity analysis of (1) in Maurer and
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Augustin [19] provides conditions such that the unperturbed solution �������C� , � �+�	�C� ,
���+�	�C� can be embedded into a family of optimal solutions � �	�C� ��� , � ���C�'��� , � ���C�'���
to the perturbed problem OCP ����� . The state functions � �	�C� ��� are of class

	 �

with
respect to both variables ���C� ��� whereas the control and adjoint functions � ���C�'��� ,
� ���C� ��� are at least piecewise of class

	 �

. This differentiability property allows us
to construct an approximation of the perturbed solution � ���C� ���T��� ���C�'���!� � ���C�'��� by
considering the following first order Taylor expansion where the variable � repre-
sents any one of the variables �Z��� ��� :

� ���C�'��� � � � ���C� 8 � �� � ���C�'� � � ��� � � � � � (23)

The optimal solution � � �	�C� and the sensitivity differentials �
	
�
� �	�C� � � � are computed

off-line. In the case that an actual deviation � from the nominal parameter � � is de-
tected, the expression (23) gives an approximation for the perturbed solution which
is quickly computable since it requires only matrix-multiplications. There exist two
methods to calculate the sensitivity differentials �

	
�
� ���C�'��� � in (23). One method is

the boundary value method whose details may be found in [19]. To avoid the well-
known drawbacks of boundary value methods, we propose to apply NLP techniques.
The NLP approach is based on the Formulae (21)–(27) in our companion paper [8]
which are applicable to the discretized control problem (12) and which allow to
compute the sensitivity differentials for state, control and adjoint variables.

In a first step, we evaluate the expression � �� � �G� � � given in the sensitivity deriva-
tive Formula (21) in [8]. This formula yields approximations for the sensitivity of
the perturbed optimal control at the mesh points:

� �� � � � #1� � � ��� �
� #� � �G� �&�!�7,
(B.0� � � �1� � � � (24)

Then the state sensitivities are obtained by differentiating the recursive relation (11)
with respect to the parameter.

� �� � � � # � � � � � �
� #� � �SN��� � �T� � � � ( � � #�  �� � � � � � � � � �G� � � 8 � � #� � �� � � � � � � (25)

In a final step we compute the sensitivity derivatives of the adjoint variables. Note
that the multipliers � # given in (22) depend also on the Lagrange multipliers � (� �+��� � , i.e., we have � # ( � # �S��	��� ��� . The sensitivity derivatives

� � � � � can be
obtained again from formula (21) in [8]. This procedure yields the following ap-
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proximations for the sensitivity derivatives:� �� � � �&#D�'��� � � �
� #� � ��N��� �&�!� ���G��� �T� � �&� (26)

( � � � #�  �� �&�	��� � � �&�!� � � #� � � �S �&� ��� � � � � �
�
�

� � � � ��� � �� � �� � �G� �&�
�

�

�

8 � � #� � �S � � � � �'� � � �
First and second order sensitivities for the objective function are provided by For-
mulae (23)–(27) in [8] which will not be further discussed here. In the special
case that the perturbation � represents a deviation from the nominal trajectory at
� # , i.e., � � �&#D� ( � ��� � #1� 8 � (this includes also perturbations in the initial values
� �	� � �)( � ����� �&� 8 � ), Formula (25) in [8] for the objective functional reduces to� �� � �SN��� �&�T� � � � ( � # �� �&�	��� � � � � (27)

with � # �S � �	� � � � � � defined in (22).
This formula constitutes the well-known marginal interpretation of the adjoint

variable; cf. Büskens and Maurer [9]. Moreover, differentiating (27) yields the sec-
ond order sensitivity for the objective� � �� � � ��+�G� � �!�'� � �)( �

� #� � �� � � � � �'� � �!� (28)

with � � �� � �S � � � � � � � � from (26). Linear perturbations in the terminal conditions of
the form

� � � �����1�T� ���
( � ��� �����\�!� ��� lead to simplifications similar to (28) in [8].
In particular, the first and second order sensitivities are given by� �� � �SN��� � �T� � � � ( ����� � �!� � � �� � � ��N��� � �!�'� � �)( �

�� � ��� � � � (29)

6 NUMERICAL EXAMPLES

The sensitivity analysis [19] of optimal control problems is based on boundary value
(BVP) methods. The case studies in [19] and the more complex problem in [1]
show that the implementation of sensitivity analysis via BVP methods can become
a rather difficult task. However, these implementation efforts are compensated by the
fact that the BVP approach yields highly accurate optimal solutions and parameter
sensitivity derivatives.

In contrast to BVP methods, the implementation of NLP approach poses fewer
problems to any user since NLP methods dispense with adjoint variables which
can be recovered from a post-optimal analysis. To compare the efficiency of both
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approaches to sensitivity analysis we choose three numerical examples from [1, 19]
as reference problems: the Rayleigh problem with a control constraint, the Van der
Pol oscillator under a state constraint and the container crane with a state constraint.
We do not want to dwell on these problems again and report only on some typical
features of the numerical results.

Instead of the simple Euler discretization in (8)–(20) a fourth-order Runge-Kutta
approximation for the state and a linear interpolation of the control variables was
used. All calculations were performed by the code NUDOCCCS [5,7] which works
with an automatic grid-refinement to have the local discretization error equally dis-
tributed and to localize and work out the unknown junction or contact points. The
computations for the nominal solutions and the sensitivity differentials were done
on a one processor PC and took only a few seconds of CPU time.

The grid-refinement was terminated between
� � ( �+. and

� � ( . � 
 mesh-
points when the calculated optimal values of the objective function were exact
within 8 digits as compared to the solutions in [1, 19]. The adapted grids were used
also for the post-optimal calculation of the adjoints functions by means of Formulae
(22) which gave a precision of about 6 digits. The evaluation of the sensitivity dif-
ferentials (26) for the adjoint variables produced an accuracy of about 4 digits. Note
that this accuracy is by far higher than that required for the first order real-time ap-
proximation in (23). More precise solutions can be obtained by a further refinement
of the meshpoints and/or a scaling of Formulae (20) in [8].

For a more complex practical example, e.g., the real-time control of an indus-
trial robot, the reader is referred to [9, 10]. In [6] a demanding problem from flight
dynamics is discussed and, in addition, a method is proposed for reducing the error
in the constraints which is caused by the first order real-time approximation (23).
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Sensitivity Analysis and Real-Time Control of a
Container Crane under State Constraints

Dirk Augustin and Helmut Maurer

Institut für Numerische Mathematik, Westfälische Wilhelms-Universität Münster, Germany

Abstract The sensitivity analysis for state constrained optimal control problems [7, 8] is il-
lustrated by a practically relevant problem: the optimal control of a container crane based on
a model developed in [12]. The container crane is subject to a state constraint on the vertical
velocity. The multiple shooting method is used to determine a highly precise nominal solu-
tion which is still lacking in the literature. Second order sufficient conditions are checked by
showing that an associated Riccati equation has a bounded solution. Sensitivity differentials
of optimal solutions are computed with respect to perturbations in the swing angle and ve-
locity. This allows for a fast computation of real-time approximations of perturbed optimal
solutions.

1 INTRODUCTION

Cargo handling in ship or railroad terminals is mostly operated by container cranes.
Sakawa and Shindo [12] have developed a dynamical control model to improve the
efficiency of crane operations. The critical part of the crane motion, the diagonal
motion, is optimally controlled such as to avoid a large swing of the container load.
In addition, several control and state constraints are imposed. This model has been
chosen by other authors [10, 13] as a test example for optimal control algorithms.
However, the numerical solutions presented in [10,12,13] are not very accurate and
are not complete in the sense that one might verify necessary optimality conditions
of first order. This fact has motivated us to reconsider the problem and to determine
a numerical solution that satisfies optimality conditions with high accuracy.

The numerical solution presented in Sakawa and Shindo [12] is not congruent
with the cost functional (18) or (48) considered by the authors. The optimal con-
trols seem to correspond to a cost functional including a quadratic penalty term for
the controls. For this reason, we will consider in section 2 an optimal control prob-
lem that augments the cost functional in [12] by a control quadratic penalty term
which also enforces the strict Legendre-Clebsch condition. With this modification
the model serves as a rather complex example by which we can illustrate the sensi-
tivity analysis for optimal control problems subject to pure state constraints [7], [8].

We present a numerical solution including the adjoint variables and the junction
points with the state boundary. In section 3, the boundary value problem (BVP) is
derived which characterizes the optimal solution. The formulation of this BVP in-
corporates the assumed structure of the optimal control with respect to the active
state constraint. The numerical solution of this BVP via multiple shooting tech-
niques [9] allows us to check first order conditions with high accuracy. This ap-
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proach clearly shows the advantage of the explicit formulation of the BVP to other
optimization approaches.

We will be able to verify all assumptions for solution differentiability of the
optimal solutions when the system is subject to perturbations; cf. [7] and [8]. The
crucial assumption for differentiability of solutions is that second order sufficient
conditions (SSC) are satisfied for the nominal solution. In section 4, SSC are tested
by showing that an associated matrix Riccati equation has a bounded solution. The
rather complicated Riccati equations are given in more detail. Section 5 discusses
the numerical methods for computing the sensitivity differentials of optimal solu-
tions with respect to parameters. As a parameter of practical importance we choose
a perturbation in the swing angle or velocity. In section 6, we use the sensitivity
differentials to perform real-time control approximations of the perturbed solutions
on the basis of first order Taylor expansions.

2 OPTIMAL CONTROL OF A CONTAINER CRANE

The dynamical model in [12] describes a container crane which is equipped with a
trolly drive motor (acceleration: control variable � � ) and a hoist motor (acceleration:
control variable � � ); see Figure 1. The aim of the control process is to keep the
swing angle as small as possible since a large swing of the container load during
the transfer may become dangerous. The critical part of the motion is the diagonal
motion from point B to point C as shown in Figure 2 where the vertical motion is
connected with the horizontal motion. The model comprises six state variables and
two control variables:

� � ; horizontal motion, �
5 ; horizontal velocity,

� � ; vertical motion, � � ; vertical velocity,
�  ; swing angle, ���3; swing velocity,
� � ; control via trolly drive motor � � � ; control via hoist motor �

The dynamical model, boundary conditions and control resp. state constraints are
considered in the time interval % *+��� � ' with fixed final time � � � * :

˙� � ( �
5 � ˙� � ( � � �

˙�  J( � � � ˙�
5 ( � �

8 . � � � 
 � 
��  ��
˙� � ( � � � ˙� � ($� .

� �
� � �

8 � � � * � � 
��  8	� � � � � �+�
(1)

� ��*N� ( ��*+� � � �T*+�!*+� ��.C�!*+� � � � �	� � �)( � .D*+�D. � �!*+� � � � �!*+�T*+� � � (2)

L � 5 �	�C��L=4 �
�

� �IL � � ���C�!L04 .0� (3)

L � � �	�C��L04 �
� � � ��� � � � * � �0* � 
 � 4 � � ���C�54�* � ��. � 
 � � (4)

The boundary conditions (2) correspond to point B resp. C in Figure 2. Note that
the load arrives at point B with maximal vertical velocity which gives the initial
condition � � � *+� ( ��. at point B. Thus the state constraint L � � �	�C�QLZ4 . becomes
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active at � � ( * . The goal of the control process is to keep the swing angle and
velocity small. As in [12], the final time is chosen as � � ( # sec.
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Figure 1. Control � � by trolly drive motor and control � � by hoist motor
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Figure 2. The diagonal motion B k C of the container crane

We consider the following cost criterion with a penalty parameter 
#��* :

�����Z��� � ( .�
l�
�

m
�

�

 ���C� 8 �
�

� ���C� 8 
+��� �

� �	�C� 8 �
�

� ���C�T�on � ��� (5)
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The optimal control problem is to determine control functions �
#E� � �� *+��� � � �$� ,,:( .0� � , which minimize the cost criterion (5) subject to the constraints (1)–(4).
Sakawa and Shindo [12], formula (18) resp. (48) claim that they determine optimal
controls for the cost criterion (5) with 
J(�* by adding a quadratic penalty term for
the terminal constraints. However, the computed optimal controls in Figure 4 of [12]
are likely obtained by assuming a positive weight 
 � * in (5). The article of Teo
and Jennings [13] presents a solution for the cost criterion (5) with 
 ( * to which
we refer later.

In the following computations, we choose the positive weight 
3( * � *+. . This
penalty parameter produces state and control trajectories whose contributions to the
functional (5) are roughly of the same magnitude. Moreover, the positive weight

 � * will enable us to apply the Legendre-Clebsch condition (AS-4) in Maurer and
Augustin [8] which will be crucial for sensitivity analysis.

3 BOUNDARY VALUE PROBLEM FOR THE NOMINAL SOLUTION

The notations and equations refer to the theory of state constrained control problems
which is summarized in section 5 of [8], cf. also [5]. The state constraint ��. 4
� � �	�C� can be written as the constraint

F � �)�'���Z; ($�W.�� � � 4�* . Then the function
F �

defined in [8], equation (5.2), is given by
F � ���)� �M� ��� ( �� �

F � �)�'���)( � ˙� � ($��� � .
Hence, the state constraint has order � ( . . When determining the structure of
the optimal solution we observe the following property: the boundary condition
� � � *+� ( �W. suggests that there exists a boundary arc � � �	�C�M( ��.0� * 4 �^4 � � �
with entry-time � � ( * and exit-time � � � * . Due to our choice of the weight

 ( * � *+. in the cost functional (5) it turns out that the interval % *+��� � ' is the only
interval where the state and control constraints (3) and (4) become active.

Then the Hamiltonian function, resp., augmented Hamiltonian are given by, cf.
[8], equation (3.1), resp. (5.6):

� � ( .� % � �

 
8 �

�

�
8 * � *+. ��� �

�
8 �

�

� ��' 8 � � �
5 8 � � � � 8 �  �� � 8 � � � �

8 �
5 � � �

8 . � � � 
 � 
��  ��� � �
� �

��� �
8	� � � *�� � 
��  8 � � � � � ��� (6)

� ( � � 8
�

� F � ( � � � �
�

� � � �
� �A� � (7)

Since the initial point lies on the boundary of the state constraint L � � ���C�!LZ4 . , the
existence of non-trivial multipliers requires additional conditions to be satisfied [1,
11]. It can be easily checked that these conditions, e.g., relation (2.2) in [11], hold
for the control problem considered here. Then from (5.7) in [8] we obtain the adjoint
equations

˙� � (�*+� ˙�
5 ( � � � �

˙� � ($� � �
�

�

�
� � �

8 � � � * � � 
��  8	� � � ��� �!� ˙� � ( � � �
8 � ��� � �

� �
�

˙�  ($� �  � . � � � 
 � 
 � 5 8 � � � * � � 
 � �
� �

� ˙� � ( � �  � ��� 8 � � � � �
� �

�

(8)



Sensitivity Analysis and Real-Time Control of a Container Crane 73

No boundary conditions are imposed for the adjoint variables since the final state is
fixed for the endtime � � ( # sec. On the interior arc % � � � # ' , the control variables are
determined from the relations � � � ( *+��,$( .0� � . On the boundary arc % *+��� � ' , the
boundary controls satisfy the relations

F � � �)� �M� ����( ��� � ( * and � � � ( * . This
leads to the control law

� � ( . *0* � � �� �
� �

5 � on % *+� # 'Q� � � ( � * � on % *N��� � '��. *C* � � � on % � � � # ' �
(9)

Because the entry point of the boundary arc is � � ( * we can ignore the jump
condition (5.11) in [8] for the adjoint variable. We recall that the adjoint variables
are continuous in the exit point � � . The continuity of the control � � at the exit-time
� � yields the additional junction condition

� � �	� � �)(�* � (10)

The multiplier �
�

in (7) for the state constraint is determined by the condition * (
� � � (�* � *+. � �

8 � � � �
�

. Since � � (�* on % *N��� � ' we get explicitly

�
� ���C� ( �

� � ���C�T� � � % *+��� � '* � � � % � � � #�' �
� (11)

Hence, the optimal solution satisfies the BVP consisting of the ODEs and boundary
conditions (1), (2), (8)–(10) and the unknown exit-time � � . The multiple shooting
code BNDSCO of Oberle and Grimm [9] yields the following solution with 
 (* � *N. in (5):

� � ��*+� ( �
� � �N. � � ��# # � > .D* �  � � � ��*+� ( .�� ��� *+. � 
 � 
 � > . * �  �

�  ��*+� ( .�� ��� * � 
 
 � � � > .D* � � � �
5 ��*+� ($��.�� 
=*��=* � �+. � � > . * � � �

� � ��*+� ( # � � 
 # � �0* ��� � > .D* �  � � � ��*+� ($� � � . � # # 
 � 
 
 � > . * � � �
� � � #�� ( � � ��*+�T� � � � #�� ( .�� ��.�N. � � � �=* > . * �  �
�  � #�� ( ��.�� . � 
0* 
�. � . � > . * � � � �

5 � #�� ($� � � � # � ��
=*���� # > . * � � �
� � � #�� ( � 
 � ��# # � � * � 
 � > . * �  � � � � #�� ($� � � � # � � � �C*�� # > . * � � �

� � ( �
� 
 � � #=*�� � � 
�� ��� � � ��� � �)( � � � � .�# ��
�.� � > . * � �

�

The corresponding state, control and adjoint variables are displayed in
Figures 3 and 4. Notice that the control and state variables are rather similar to those
given in Figure 4 of Sakawa and Shindo [12].

Next, we test if this solution satisfies the assumptions in section 5 of [8]. The
regularity condition (AS-1) trivially holds in view of � � F � ( � *+� �W.0� . The con-
trollability condition (AS-2) in [8] is a consequence of the fact that the Jacobian
matrix of the shooting method is regular. The strict Legendre-Clebsch condition
(AS-4) trivially holds due to � � � ( * � *N.  � � � * . The strict complementarity
(AS-3) amounts to the requirement that the multiplier �

�

associated with the state
constraint ��. 4 � � ���C� satisfies the following inequality with some � � * :

� ��
� �

� ���C� � � � * for all � � % *+��� � ' �
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Figure 3. State variables / � ��� � 0 > > > 0 /�� ��� � and control variables � � ��� � 0 � � ��� �

In view of (11), the multiplier is given by �
� �	�C�)( � � ���C�T� �O� % *+��� � ' . Then a look at

Figure 4 may immediately convince the reader that the preceding inequality holds.
The non-tangential junction condition (AS-6) requires that the derivative ˙� � ���C�
be discontinuous at the junction point � � . The optimal control � � shown in Figure
3 confirms that this property holds. The test of the coercivity condition (AS-5) is
deferred to the next section.

We point out that the dynamical system (1) constitutes a simplified model which
is derived from a fully nonlinear model [12] by replacing sin ���Z� � � for small
values of � . We have solved the complete nonlinear model of [12] by shooting
methods and have noticed only a negligible discrepancy between optimal solutions
for both models. This justifies our point of view to use the simplified model for the
following second order test and sensitivity analysis.

It is also noteworthy to consider the solution to the optimal control problem
(1)–(5) where the penalty parameter in the cost functional (5) is set to 
[( * .
All control constraints (4) become active and the optimal control is composed by
bang-bang and singular arcs. We were not yet able to compute this solution via
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Figure 4. Adjoint variables
2

� ��� � 0 > >A> 0 2 � ��� �

shooting methods. Instead, we have used the nonlinear programming approach and
code NUDOCCCS described in [3,4]. The optimal solution shown in Figure 5 is ob-
tained on the basis of

� ( � . * grid points which yields the optimal functional value��� � �&�����&�)( �
� . � * � � 
 � > . * �  . This solution is substantially different from the one

in Figure 3 since, rather inexpectedly, the solution contains two boundary arcs with
� � �	�C� � �W. . Also, this solution does not agree with the one presented in Teo and
Jennings [13] who obtained the functional value ����� �&�����&� ( �

� � 
�. > . * �  . The
solution in [13] does not clearly exhibit the bang-bang and singular arcs which is
probably due to the fact that the authors used a a rather coarse discretisation.

4 SECOND ORDER SUFFICIENT CONDITIONS, RICCATI EQUATIONS

The last test needed to verify that the solution (12) provides a local optimum is the
coercivity condition (AS-5) in [8]. We are able to test this condition in a strong form
by showing that the Riccati equation (3.12) in [8], i.e., the equation

˙!^�	�C�)( ��!3���C� � � % � ' � � � % � ' � !3�	�C��� � � � % � '8 � � � � % � ' 8 !3�	�C� � � % � 'Q� � � � � % � ' � � � � � � � % � ' 8 � � % � ' � !3���C�!�T� (13)

has a bounded solution; cf. also [6]. The jump condition for !3�	�C� in [8], equation
(5.15), does not apply since � � ( * . Note also that the boundary conditions (3.22)
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in [8] do not yield any boundary conditions for !^� *+� and !3��� � ( #+� since the initial
and final states are specified. The crane model has dimension

� ( 
 . Hence, for
solving the Riccati equation (13) we consider a symmetric � 
 > 
�� -matrix !3���C� in
the form !3���C�)( � 3 # � ���C�T� ��� # � � � � � 3 # � ���C�)( 3 � #=���C� �
To give the reader an impression of the complexity of the problem, we explicitly
provide some of the 21 equations for the elements of the matrix Riccati equation
(13). For this purpose it is convenient to introduce the notation


 � ; ( . � � � 
 � 
�� 
 � ; ( � � � * � � 
�� � � �)��� �Z; ( � �
8 
 � �  8 � � � � � �

The first 11 Riccati equations are homogeneous in the corresponding variables.
Since no boundary conditions are prescribed for !3���C� , these equations admit the
trivial solutions
3

� � �
3

� � �
3

�  �
3

�
5
�

3
� � �

3
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3
�
5
�

3
 
5
�

365 5
�

365
� �

365
� � * �
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This allows to simplify the remaining 10 Riccati equations:

˙
3

� � ($� � � � �)� �M�
3

� �

�
�

�

8 . *0* � � 3 �
5 � 3

� �

� �

8 � �
�

�

� � � 8 3 �

� � � �
˙
3

�  ( 
 �
3

� �

� �
� � ���Z��� � 3  � 8 
 � � �

�
�

�

8 . *0* � � 3 � �

�
�

�
� � �

�  � � 3
 � 8 3

� �
3
 � �

˙
3

� � ( � ��� 3 � �

� �
� 3

� � � � � �)� �M� 3 � � � � � �����
�

�

�

8 . *0* � � 3 � �

�
�

�
� � �

�  � � 3
� �

8 3
� �
3
� � � �

˙
3

� � ( � � � 3 � �

� �
� 3

�  �� � � �)� �M� 3 � � 8	� � ��� �
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�

�
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�
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�  � � 3
� �
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3
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˙
3
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3
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8 . *0* 3 �

 ���
˙
3
 � ( � ��� 3  � 8 
 �

3
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� 3

�  8 . *C* � 3  � 3 � �
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�

8 3
 �
3
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3
 � ( � � � 3  � 8 
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� 3
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�

8 3
 �
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� 3
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8 .D*0* � 3 � � 3 � �
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� � 3  � � . 8 . *0* � 3 �
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�

8 3 �
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Unfortunately, there does not exist a systematic way to determine appropriate initial
values which yield a bounded solution of these equations. Our strategy was to set
some initial values to zero and to find appropriate initial values for the remaining
variables. Finally, a bounded solution of this set of equations is obtained by choosing
the initial values

3
  � *+� ( � �N� 3

 � � *+� (�* � �N� 3
� � ��*N� ($� � �

3 # � ��*N� (�*+� �S,D� 	 �5�VHZ� � � � �!�\� � � �N�!�\� � � � �!�\� � � 
��!�\� �N� � �!�\� � � � �!�\� � � 
��=P �
which yield the bound L L !^�	�C�QL L  4 � U �V� % *+� #�' . Hence we may conclude that
the solution characterized by (12) is a local minimum of problem (1)–(5). We point
out that the correctness of the Riccati equations can be checked via the routines for
symbolic computation in the toolbox MATLAB.



78 D. Augustin and H. Maurer

5 SENSITIVITY ANALYSIS FOR THE SWING ANGLE AND SWING VELOCITY

The two preceding sections have demonstrated that all assumptions for Theorem 4
in section 5 of [8] are satisfied. Thus we arrive at the following conclusion: if �
is any finite-dim. parameter vector which enters the control system (1)–(5) and is
sufficiently close to a nominal parameter � � , then the parametric optimal control
problem admits a local optimal solution � ���C� ���T� � �	�C� ���!� � �	�C� ��� which is Fréchet-
differentiable with respect to both variables ���C�'��� except at the junction point � � .

First, we take the initial value � ( �  N� *+� of the swing angle as a scalar per-
turbation parameter. Clearly, the nominal parameter corresponding to the nominal
solution (12) is � �O(�* . The sensitivity differentials

� �	�C�); ( � �� � ��� � � � �T� � ���C�Z; ( � �� � �	� � � � �
can be obtained by formally differentiating the BVP (1), (2) and (8)–(11) with re-
spect to � ( �  ��*+� . This leads to the following set of equations that are linear in the
variables � and � :

˙� � ( � 5 � ˙� � ( � � � ˙�  ( � �&� ˙� 5 ( � � �� � 8 . � � � 
 � 
 �  � ˙� � ( � � �� � �
˙� �O( � �

�
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�
��� �

8	� � � *�� � 
 �  8	� � � � � �
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� � � �� � 8 � � � * � � 
 �  8	� � � � � � 8 � � � � � � �

˙� � (�*+� ˙� 5 ( � � � �
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8	� � � *�� � 
 �  8	� � � � � � � � �
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� � �

8 � � � * � � 
 �  8	� � � � � �
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 �  8	� � � � ��� 8 � � � �&� � �
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 � 
 � 5 8	� � � * � � 
 � ��� � � � � � �
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˙� � ($� � �
8 �

�
�

�
� � � � � � � � 8 � � � � ��� � � � � � � �+�

˙� � ($� �   � � � 8 �
�

�

�
��� � � � � � � 8 � � � � ��� � � � � � � � �

In this set of equations, the functions � � � � � �D� ��� ��� � � � � � ��� � represent the nominal
solution (12). The boundary conditions are

�  ��*+� (/.C� � #\��*N� (6*[� ,
(B.0� � � � � � � 
��T� � #\�	� � �)(�* � ,�(/.0� � � �1� 
�� �
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Figure 6. State variables sensitivities T � 0 >A>A> 0 T � and control sensitivities
"$# �" � 0 "$# �" �

The sensitivity differentials
� � # � � ����,$( .0� � � are computed by differentiating the

relations (9):� � �� � (B. *0* � � �� �
� � � � �

�
�

�
� � 5 � on % *+� #�' � � � �� � ( � *+� on % *+��� � '�W. *0* � � � on % � � � #�' �

�

The multiple shooting code BNDSCO of [9] provides the following solution:

� � ��*+� ( ��.�� � � � 
 � *+. *�� > . * � � � � � ��*N� ( 
 � � 
 
�� �0* � # � > . * �  �
�  N��*+� ( � � � � � �=* 
�# #��+� � 5 ��*N� ($�W.�� � . � 
���# � �	� > .D* � � �
� � ��*+� ( � � � � # � �0*�# � # � > . * �  � � � ��*N� ($�W.�� � � * � � # �=*��N�
� � � #�� ( � � ��*+�T� � � � #+� ($� � � ��� � � � � � � � > .D* � 5 �
�  N� #�� ( ��.�� � � � *�� 
 � � 
 > . * � � � � 5 � #+� (B.�� 
 
	� # � � 
 � � > . * � � �
� � � #�� ( � � � � � � � � � � � 
 > . * � 5 � � � � #+� ( � � . � � �+. � �	� # > . * � �

�

Sensitivity differentials for state and control variables are displayed in Figure 6 and
those for the adjoint variables are given in Figure 7.
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Figure 7. Sensitivity differentials Y � 0 >A>A> 0 Y � of adjoint variables

To conclude the sensitivity analysis we calculate the sensitivity of the switching
point � � . Due to the junction condition (10) the relation � � ��� � �����T� ��� (�* holds for
all � near � � (�* . By differentiation we obtain

˙� � ��� � �G�����!� � �&� � � �� � ��� �&� 8 � � ��� � ��� �&�T�)(�*
which yields�

� �� � �G� � � ($� � � ��� � �G� � �!��� ˙� � ��� � �G� � �!� � � �)( � * � ���	�&* � . �	� � � � (14)

Another perturbation parameter of practical interest is the initial value
3 ; ( � ��� *+�

of the swing velocity for which a sensitivity analysis can be performed in a similar
way. We merely give the result for the sensitivity derivative of the switching point
� � ( � � � 3 � :�

� �� 3 � 3 ���)($� � � ��� � � 3 ���!��� ˙� � ��� � � 3 �&�!� 3 �&� ( � 
 � 
 � � . � �=* � � � (15)

6 REAL-TIME CONTROL APPROXIMATIONS

In this section, we consider the two-dim. perturbation �G��� 3 � (-� �  ��*+�T� � � ��*N�!�
of the initial values for the swing angle and its velocity. The nominal parame-
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ter is ��� �&� 3 �&�3( ��*+�T*+� . Having computed the sensitivity differentials � � �	�C�3(
� �
�
� �	�C� � � � 3 � � and � � ���C�:( � �

� �
�	�C� � � � 3 ��� we may proceed to the real-time ap-

proximation of perturbed solutions � ���C�'��� 3 � by its first-order Taylor expansion

� ���C� ��� 3 � � � �+���C� 8 � � ���C� � 8 �
� ���C� 3 � (16)

The same procedure applies to control and adjoint variables and to the exit-time � � .
The real-time capacity of this approximation follows from the fact that the right hand
side requires only on-line multiplications with the particular perturbation �G��� 3 �
while all other terms may be computed off-line. In order to demonstrate the quality
of the approximation provided by the Taylor expansion, we choose the perturbation����� 3 ��( ��* � * � �T* � * � � whose magnitude reaches the size of the maximum value of
the swing angle and velocity; see Figure 3. We find a rather large deviation of the
perturbed solution from the unperturbed one,

max � � � � l L L � ���C�'��� 3 � � � � ���C��L L  4/.�� 
��
whereas the first order Taylor expansion (16 yields the estimate

max � � � �%l L L � �	�C� ��� 3 ��� � � � ���C� 8 � � ���C� � 8 �
� ���C� 3 ��L L  4�* � *+.

which confirms the favorable real-time approximation. This is also reflected in the
results for the exit-time � � ( � � ����� 3 � . The optimal nominal exit-time is

� � � *+�!*N� ( �
� 
 � � #0*�� � � 


whereas the optimal perturbed exit-time is computed as

� � ��* � * � �!* � * � ��( �
�

� # � 
 ��. �	� �
Using the values of sensitivity derivatives (14) and (15) for the junction point, the
Taylor expansion yields the approximate value

� � ��*+�T*+� 8 �
� �� � � *+�!*N� � 8 �

� �� 3 ��*N�!*+� 3 ( �
�

� #�� � � ��� # �
which represents a good approximation of the exact value in view of the rather large
perturbation.
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Abstract The dynamical model in Otter and Türk [10] for the robot Manutec r3 leads to a
highly nonlinear optimal control problem with various control and state constraints. The non-
linear programming (NLP) techniques in [1,2,4] are applied to compute the optimal nominal
solution for a fixed set of parameters in the system. We consider perturbations in the model
which frequently occur in practice: deviations from the precomputed nominal trajectory or
perturbations in the mass load. Since the re-optimization of the system for the perturbed set
of parameters largely exceeds the running time of the robot, we apply the real-time control
techniques developed in [2, 4, 5]. These methods require the computation of the parameter
sensitivity derivatives and implement the first order Taylor expansion of the perturbed opti-
mal solution with respect to the parameters. Real-time computations for the Manutec r3 robot
are presented which demonstrate the quality of the real-time approximations.

1 INTRODUCTION

Industrial robots play an important role in manufacturing processes like wel-
ding or spray painting. International competition as well as increasing quality stan-
dards and economic reasons impose high demands on the precision, speed and re-
liability of industrial robots. Due to nonlinear coupling effects (e.g., coriolis and
centrifugal forces) and vibrations in the joints, the control of robots works less ac-
curately at high speed tasks such as glueing or transport jobs.

Relying on the knowledge and the intuition of experienced personnel, on-site
teaching of robots is still common practice. This situation has stimulated research
in performing a more precise trajectory planning of robots. The two main problem
classes (optimal point-to-point trajectories and the so called prescribed-path prob-
lem) can be formulated and solved within the framework of optimal control theory.
The resulting model constitutes a highly nonlinear optimal control problem subject
to various control and state constraints. Up to now, the great complexity of the model
has prevented the construction of feedback control strategies within a reasonable
time frame. As a consequence, the engineer must confine himself to determining
open-loop control solutions.

During robot motion one may often detect deviations from nominal para-
meters in the system, e.g., deviations in the load mass or in the coordinates of the tra-
jectory. These perturbations lead to tracking errors and hence require time consum-
ing corrections. Nevertheless, when patched in automated production lines, these
robots have to hold the rhythm given by the predecessor and successor. In general, it
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is by far too time-demanding to compute a highly precise optimal solution for per-
turbed system parameters. This fact motivates the need for fast and reliable real-time
control approximations of perturbed optimal solutions.

In [2, 4], we have proposed numerical techniques for the real-time optimization
of perturbed nonlinear programming (NLP) problems. These methods have been ex-
tended in [2,5] to perturbed optimal control problems by using appropriate discreti-
sation techniques. In the present article, these numerical techniques will be applied
to the Manutec r3 robot in Otter and Türk [10] which has become a benchmark
problem in the optimal control of complex nonlinear systems [2, 6, 11].

2 THE INDUSTRIAL ROBOT MANUTEC R3

The original model of Otter and Türk [10] for the robot Manutec r3 comprises a
robot with 6 links. The first 3 degrees of freedom are responsible for the position of
the tool centre, whereas the other 3 degrees of freedom refer to the orientation of
the tool itself. The six arms are made of aluminium and are connected by rotational

Figure 1. Manutec r3 (3 degrees of freedom)

joints. Each arm is driven by an electronically commuted motor and a gear box
which consists of steel gear wheels embedded in the preceding arm. The position
and velocity of each motor is measured by an encoder on the motor axis. The angle
between two arms can not be measured directly, but it can be calculated from the
motor position and the gear ratio of the corresponding gear box. Therefore, the
motion of the links is described as a function of the control input signals of the robot
drives which are the voltages for controlling the armature current of electronically
commuted ac motors. The robot is able to transport loads up to . � kg. In this article,
a reduced model with 3 links is discussed, since the attention is focused more on the
motion of the robot than on the orientation of the tool, cf. Figure 1.
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Let the vector
3 �	�C�O( � 3 � ���C�T� 3 � �	�C�!� 3  ���C�!� 
 describe the relative angles be-

tween the arms and let the vector � ���C��( ��� � ���C�T� � � ���C�T� �  ����C�T� 
 represent the
torque controls. For a detailed description of the mechanical foundations of follow-
ing robot equations, we refer to Vucobratovic [12]. The dynamical model of Otter
and Türk [10] is given by the equations

� � 3 �	�C�!� ¨
3 ���C� ( � � ���C� 8�� � � ˙

3 ���C�T� 3 �	�C�!� 8���� � 3 �	�C�!�T� (1)

where the control vector � ���C� is scaled by the diagonal matrix � ( � , � � �	��. � 
 � *+�� � �
� *+� � � � *N� . The terms

� � � 3 �	�C�!� in (1) are the moments caused by gravitational
forces:

� �
� � 3 � (�*+�� �

� � 3 � ( � � cos � 3 � � sin � 3  +� 8 � � sin � 3 � � cos � 3  +� 8 � � sin � 3 � �T�� �
� � 3 � ( � � sin � 3 �

8 3
 N�!� (2)

where � ($# � �+. is the constant of gravity and the constants �Z# , ,�( .0� � , depend on
the transport load � ,

� � ( � . � � . �0* 
 8 * � #��� � � � � � � ( � � .�� �	� � � 8 * � � *# � � � � (3)

The moments caused by coriolis and centrifugal forces are described by the term� � � ˙
3 �	�C�!� 3 �	�C�!� in (1) which has the following structure:

� �# � ˙
3 � 3 �)(  �

� � � �  �
� � �

� # � � � � � 3 � ˙
3 � � ˙

3 � �7,
(/.0� � � �N�
� # � � � � � 3 � ( � .� � � � # � � � 3 �� 3 � 8 � � # � � � 3 �� 3 � � � � � � � � 3 �� 3 # � �

(4)

The moments of inertia in (1) and (4) are given by the symmetric and positive defi-
nite � � > �N� mass-matrix

� � 3 � :
�

� � � � 3 � ( 
 � sin
� � 3 �

8 3
 N� 8 
 � sin � 3 �

8 3
 +� sin � 3 � � 8 
  sin

� � 3 � �8 
 5 cos
� � 3 �

8 3
 �� 8 
 � cos

� � 3 � � 8 
 � ��
� � � � 3 � ( 
�� cos � 3 �

8 3
 +� 8 
�� cos � 3 � �T��

� �  N� 3 � ( 
�� cos � 3 �
8 3

 +�T��
� � � � 3 � ( 
 � cos � 3  +� 8 
 l ��
� �  N� 3 � ( 
 � � cos � 3  +� 8 
 � � ��  �  N� 3 � ( 
 � � �

(5)

where the constants 
\# , ,�( .0� � � �D�1. � , are functions of the transport load � which
can be recovered from Otter and Türk [10] as


 � ( � � * 
=* ���+. �V8 * � # 
=* �  � � 
 � ($� * � *+.0. * � 
��+�

 � ( . � � .�0* 
0*0*0* 8 * � #��0*0*  � � 
 � ($� � � � # 
	� #=*0*+�

  ( � * � . � # � . � � 8 * � � � *0*  � � 
 l ( � � � � � #���#	� � 8 .�� � . * �  � �

 5 ( * � � #0*0*0*0*0*N� 
 � � ( 
 � * #=*��C*0*C* 8 * � � #=*0*# � �

 � ( * � 
 �&*0*0*0*0*N� 
 � � ( � � # � � � �+. �:8 * � # 
=* �  � �

 � (B. � � � .C. � ��. � � 
 � � ( . � � � � * � �+. �:8 * � # 
=* �  � �

(6)



86 C. Büskens and H. Maurer

Since the mass-matrix
� � 3 � is positive definite, equation (1) is equivalent to

¨
3 ( � � 3 � � � � � � ���C� 8 � � � ˙

3 � 3 � 8�� � � 3 �!� � (7)

The Fortran subroutine R3M2SI in Otter and Türk [10] offers an efficient method for
calculating the right side of (7). The final time ��� is either fixed or free. We consider
the following objective functional which is a weighted combination of energy and
final time with a weight factor * 4�� 4 . :

����� �����=�)( � �
���
�

 �
# � �

� # �	�C� � �
� 8 �Q. � ������� � (8)

Otter and Türk [10] have introduced the following . � control and state constraints:
control constraints defined by the torque voltages,� � � � *E4 �5#=���C�54 � � � *+� ,�(B.C� � � �N� (9)

state constraints of first order imposed for the angular velocities,� � � *0*:4 ˙
3

� �	�C�54 � � *0*+���.�� � *:4 ˙
3

� �	�C�54/.�� � *+�� � � � *:4 ˙
3
 ��	�C�54 �

�

� *+� (10)

and state constraints of second order for the angles,� � � # �E4 3
� �	�C�54 �

� # ���� � � *+.<4 3
� �	�C�54 �

� *+.0�� � � � 
E4 3
 ��	�C�54 �

� � 
 � (11)

The notion of the order of a state constraint may be found in Hartl et al. [8] or in [9],
section 5. Terminal conditions are given by

3 �����\� ( �Q.0� �W.�� # � �1.0� 
 � ˙
3 �����\�)( ��*+�T*+�!*+� 
 � (12)

In summary, the optimal control problem is the task to determine control functions
�5#<; % *N��� � '$?7�$� , ( .0� � � �N� that minimize the functional (8) subject to the con-
straints (1)–(7) and (9)–(12).

In this control problem, we admit perturbations � ( �G� � � � � � 
 � � �

which
either appear in the transport load in the form � ( . � � * � � � or which represent
deviations � � in the initial conditions according to

3 ��*N� ( � *+� �W.�� � 8 * � .  � � �!*N� 
 � ˙
3 � *+� ( � *+�!*+�T*+� 
 � (13)

The factor * � . in
3 ��*+� is only used for graphical reasons in Figures 5–7. We point out

that this special case of perturbations in the initial values also includes the more gen-
eral case that deviations from the nominal trajectory occur during the motion of the
robot. The nominal perturbation or unperturbed parameter is � � ( ��� � � � � � � � 
 (��*+�T*+� 
 to which belongs the nominal optimal control and state function � �+���C� and
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� ���	�C� . As in [5, 9] we denote the optimal perturbed solution for any specific per-
turbation � by � ���C�'��� and � ���C�'��� . By definition, we have � ���C�'��� �J( � �+���C� and
� �	�C� � � �)( � �����C� . Our aim is to compute the parameter sensitivity derivatives� �� � ���C�'� � �!� � �� � �	�C� � � �!� (14)

at the nominal parameter ��� . These sensitivity differentials enable us to approximate
the perturbed solutions by the following first order Taylor expansion

� ���C�'��� � � �+���C� 8 � �� � �	�C� � � � �G� � � � �!� � ���C�'��� � � �����C� 8 � �� � ���C� � � � ��� � � �&� �
(15)

A similar analysis can be performed for the adjoint variables. Let us recall the prin-
ciple of real-time control developed in [2,5,9]. Since both the nominal solution and
the sensitivity differentials can be computed off-line, the right-hand sides in (15)
represent real-time approximations which can be computed on-line in a time which
is much smaller than the running time of the robot.

3 COMPUTATION OF THE NOMINAL SOLUTION

We restrict the discussion to the energy minimal robot with � ( . and a fixed
final time ��� (@* � 
 � in the objective (8). Note that the proposed methods work
as well for all other values of � . The optimal nominal solution is computed by
solving the NLP problem (13) formulated in Büskens, Maurer [5]. We use a linear
interpolation of the controls and a 4th order Runge-Kutta approximation for the
state variables

3
and ˙

3
. An equidistant grid of

� � ( . *+. discrete time points with
step size � ( � � � � � � � .0�T�:( � � ��. *0* is used (see equation (7) of [5]) which
results in

� � ( �C*�� optimization variables,
� 9 ( .�+.� inequality constraints and�^2 ( 
 equality constraints. Initial estimates for the control functions are chosen

as � # (�*N� ,�(B.C� � � �D�1. *+. .
All calculations are performed with the subroutine NUDOCCCS developed in

Büskens [1,2]. We obtain the optimal value ����� ��� � �)( � � � . � 
 ��. 
 for the objective
functional which is correct with a relative error of .�� � %.D* � � . The second order suf-
ficient conditions are satisfied for the nominal problem, since the projected Hessian
matrix (16) in [4] is positive definite with smallest eigenvalue � 
 # K (�* � �C*�#  � � * .
Note that this second order test is the discrete analogon for the coercivity condition
(AC-5) or (AG-5) in [9]. The strict Legendre-Clebsch condition (AC-4) or (AS-4)
in [9] trivially holds due to the choice of � � * in the objective functional (8). In
the time optimal case ( ��( * ) the theoretical treatment of the continuous case is not
entirely developed. Nevertheless, the numerical methods work just as well.

Figure 2 shows that the optimal nominal control functions exhibit two boundary
arcs for the control � � and one boundary arc for the control �  . We point out that
the nominal controls satisfy two assumptions in [9] that are important for sensitivity
analysis. Namely, the optimal control functions are continuous in % *+��� � ' and their
derivatives are discontinuous at an entry or exit point of the boundary arcs. This
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property is equivalent to the non-tangential junction condition (AC-6) in [9]; see
also Lemma 2 in [9].

The optimal trajectories are displayed in Figure 3. It is noteworthy that the above
state constraints (10) and (11) do not become active for the energy minimal solution.
Figure 4 depicts the nominal solutions for the six adjoint variables which are calcu-
lated from the Lagrange multipliers of the NLP problem; compare the relations (3)
and (22) in Büskens, Maurer [5].

4 COMPUTATIONAL SENSITIVITY ANALYSIS AND REAL-TIME CONTROL

For the nominal parameter � � ( ��*N�!*+� 
 , the sensitivity differentials of the control,
state and adjoint variables are obtained from the expressions (24)–(26) in Büskens,
Maurer [5]. Figures 5–7 display the respective sensitivity differentials. The thick
lines denote the sensitivities with respect to the initial value perturbation � � and
the thin lines represent the sensitivity differentials with respect to the transport load
perturbation � � . Note that the sensitivities of the controls are zero on the boundary
arcs and that the overshooting at each junction point of the control constraints results
from the linear interpolation of the control variables.

First and second order sensitivity derivatives of the objective function (8) can be
computed from the equations (23), (25) and (26), (27) in [4] which yield� �� � % ��� ' ( � � � � . ��.�#+. � � �+� � * � 
 � #=* 
+. 
 
�. �!�� � �� � � % � � ' ( � * � . � � �=* � * ��
 * � .0. � � # 
 #+. 
* � .C.� � # 
�#�. 
 * � * ��#=* � . ���N. � �

(16)

Using the relations (27) and (28) in [5] and taking into account the factor * � . in (13),
we see that the values � �� � � % ��� ' and � � �� � �� % � � ' coincide with the values � � � ��*+� within� digits. Recall from (15) that the sensitivity differentials are needed to evaluate a
first order Taylor expansion of the perturbed optimal solution. In order to judge the
quality of the real-time approximation (15), we set up the following Table 1 which
lists the maximal relative errors in the terminal states for different perturbations � .
The notations in Table 1 have the following meaning:

S.Err. denotes the maximal relative error in the terminal states which is obtained
by an integration of the perturbed system using the first order real-time control
approximation;

W.Err. is the same error resulting from an integration of the perturbed system with
the nominal controls.

The computing time for calculating the real-time approximation of the complete
controls is about

� �. * � � seconds on a PIII 450MHZ computer. In a practical im-
plementation, the computing time can be reduced drastically by an additional factor
of 101 (number of grid points), if the time during the motion of the robot is used for
computing the approximation (15). The re-optimization of the perturbed problem by
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Table 1. Maximal relative error in the terminal states

starting from the nominal solution takes about 1–5 seconds depending on the values
of the perturbations. This time considerably exceeds the time of motion � �<(B* � 
 �
sec. For this specific problem. Hence, the numerical results given in Table 1 clearly
indicate that the first order approximations enjoy favourable real-time control prop-
erties: the terminal conditions are satisfied with a sufficient high precision and the
computing time for the approximations is much smaller than the operation time of
the robot. The real-time approximations for � � % *+�D.C� yield comparable results,
even in the case of time optimal solutions ( � (B* ), with a number of singular sub-
arcs. In this situation the results can be improved taking into account the switching
points, cf. Büskens, Pesch and Winderl [7]. A further improvement of the real-time
approximations for all � � % *+�D. ' with respect to optimality and admissibility (con-
straints and terminal conditions) can be achieved by applying the mixed open- and
closed-loop strategy in Büskens [3] which will not be further discussed here.
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Abstract An optimal control method is proposed for shape memory alloy actuators in smart
structures. The method is capable of compensating for the hysteretic behavior present in these
materials and thus qualifies for high frequency applications where conventional methods fail.
Furthermore, a version has been developed, which is fully real-time capable. It is based on
a parametric sensitivity analysis of nonlinear programming problems and is demonstrated to
work very robustly for a wide range of parameters.

1 INTRODUCTION

The advent of multifunctional materials like shape memory alloys (SMAs) has stim-
ulated the design of a completely new generation of structures, capable of automat-
ically adapting to changes in their environment. Examples of these so-called "smart
structures" are adaptive airfoils and helicopter blades, adaptive submarine structures
or microelectromechanical systems (MEMS), see [15] for an overview of the sub-
ject.

In this paper, we will focus on the application of SMA wires as actuators in an
adaptive airplane wing. Upon heating, these wires contract and function as “metal
muscles” which are able to exert a strong bending moment on the structure. By
appropriately controlling the temperature of the wires, say by input of an electric
current and convective heat exchange with the surrounding medium, one is able to
adapt the shape of the wing to the flow conditions at hand.

Control methods like proportional or integral feedback have long been estab-
lished and can be considered state of the art at the present time. However, due to the
nonlinearity and hysteretic phenomena observed in shape memory alloys, these may
by far not be optimal for this type of material. Additionally, the hysteresis induces
a time delay in applications with higher frequencies. Usually, this is not a serious
problem as shape memory alloys intrinsically prohibit higher frequency applica-
tions due to their low cooling speed when exposed to still air at room temperature.
However, if one faces an application in an efficient cooling environment, like flight
at high altitude or underwater applications, the hysteretic behavior develops into a
major obstacle. The same inevitably holds for the important field of MEMS applica-
tion, where the surface area approaches the order of magnitude of the volume. This
allows for actuation frequencies of up to 300 Hz, see [9].
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A way to overcome the problem is the design of advanced control laws which
compensate for the hysteresis. One approach has been given in [8] and [7], another
method has been proposed in [18]. For aquatic applications, the removal of heat is so
quick that an operational frequency of up to 20 Hz can be achieved, see [17], where
the authors also demonstrated that a conventional PI control method breaks down
already at 4 Hz. In order to control the SMA actuator in the frequency range up to
20 Hz they introduced an adaptive control method based on Krasnoselskii-Preisach
(KP) operators. A strong feature of the method is the ability to perform 7an on-line
parameter identification, allowing to adapt to changing hysteresis parameters often
observed in cyclic applications.

All of the above methods have in common that they improve standard control
techniques by the introduction of model based predictions. However, one aspect
that has never been taken into account so far is optimality. It is the scope of the
following sections to embed SMA modeling into the framework of optimal control
theory, allowing for the inclusion of optimality criteria like speed of adjustment or
energy consumption. For the description of the shape memory behavior, we use the
Müller-Achenbach model in the improved version by Seelecke [13]. Apart from the
good reproduction of experimental results, it is attractive due to its mathematical
structure, allowing for a smooth integration into standard optimal control codes. We
first discuss the basic procedure for the calculation of an optimal control for SMA
actuators in smart structures and then extend the method to real-time capability. A
simple smart structure is used for illustration, an elastic beam of which the shape
can be adjusted by a SMA wire. Note, however, that the method is by no means
restricted to such simple structures or such limited number of actuators, as will be
discussed at the end of the section.

2 BASIC EQUATIONS

A shape memory wire, which is mounted tangentially to the beam axis at a distance
��� contracts upon electric heating and exerts a bending moment on the beam. By
an appropriate control of the heating current, within certain limits depending on the
placement and number of actuators, arbitrary beam shapes can thus be realized, see
Figure 1. Other authors have treated similar examples, see [1], [10] and [16].

The mathematical modeling of the beam follows [12] with the usual assumptions
of elementary beam theory. As the focus of our investigations is on the implementa-
tion of the SMA model into the framework of optimal control theory, we confine at-
tention to small strains and cross sections that remain plane and normal to the beam
axis. The beam shape then follows from the well-known Euler-Bernoulli equation,
according to which the bending moment is proportional to the beam curvature

� � ��� � � �)���C�)( �W�����C��% �V� ��� �)��� �V����� � � '&� (1)

with bending rigidity
� �

and curvature � � � � �)���C� as second space derivative of the
transversal displacement � ���Z���C� . The right hand side (RHS) of (1) is the bending
moment. It is given by the lever arm � times the wire force �$���C� , and �V��� � � � � is
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Figure 1. Elastic beam with heated SMA wire actuator

the Heaviside unit step function. This formulation is particularly useful in the case
of several actuators, as it avoids the introduction of several domains of integration,
but in the following, for simplicity, we will restrict ourselves to just one actuator.
The wire force follows from the SMA model equations, which are given below in a
concise form,

˙� � �	�C�)( ˙� � � ��� �	�C�!� � ���C�!�T�
���C�T�!�
˙� � �	�C�)( ˙� � � � � �	�C�!� � ���C�!�T�
���C�T�!�

˙� �	�C�)( ˙� � ��� �	�C�!� � ���C�T�!�
���C�T� 	D���C�T� ��� �	�C�!�T��$���C� (��������$�	�C�!� � ���C�T��� ���C�T�!�
(2)

with � � �	�C�V; ( ��� � ���C�!��� � ���C�!� 
 . The quantities � � ���C� are the phase fractions of
martensite

� � or
�
� � respectively, which characterize the phase transformation in

the crystal lattice structure of a shape memory alloy, see [11] for more details.
� ���C�

is the temperature in the SMA, �����C� and � ���C� denote its force and deformation, and	 �	�C� and
� � ���C� are the Joule heat of an electric current passing through the SMA and

the environmental temperature, respectively. We here encounter the case of a system
of degenerate partial differential equations, consisting of one ordinary differential
equation in space, three ODEs in time and an algebraic relation (DAE) between the
force �$���C� and the deformation � ���C� . The Euler-Bernoulli equation in this case may
easily be integrated to yield

� ���)���C�)( ���$���C�� � � m � ��� �)� � �V����� � � 8 �E� ��� �5� � �V� �#� � �en 8 	
� � 8 	

�
� (3)

The meaning of the constants � , � , � and � can be seen in Figure 1. With this
result another algebraic relation between ���	�C� and �A�	�C� can be derived, see [14] for
details,

� 
 � � � � ���C�)(��$���C� �
� �
� �

) � � � � � � �� � � � � � �� * � (4)

so that both quantities can be completely eliminated from the DAE system (2). In
(4), � 
 � � denotes the length change in the unloaded state with 100% martensite
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� � � which is the state in which the wire is initially mounted to the beam. The
remaining ODE system reads

˙� � ���C�)( ˙� � ����� ���C�T� � �	�C�!�!�
˙� � ���C�)( ˙� � ����� ���C�T� � �	�C�!�!�

˙� ���C�)( ˙� � � � ���C�T� � �	�C�!� 	 �	�C�!� � � ���C�T� � (5)

For given initial conditions, this system may be integrated if Joule heating 	D���C� ,
which appears linearly in (5), and environmental temperature

� � �	�C� are known as
functions of time. Subsequently, ���	�C� and � �	�C� can be determined from (2)

5
and

(4), and the beam shape follows from (3).

Figure 2. Two heating pulses applied to the wire (left) and the temperature (right)

Figure 3. Evolution of the phase fractions during the heating and cooling process (left) and
time-dependent wire deformation leading to different beam shapes (right)
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Figures 2 and 3 are meant to illustrate the resulting behavior. The left hand side of
Figure 2 shows two rectangular heating pulses that are applied to the SMA wire,
and the right diagram gives the resulting temperature. The central quantities are the
three phase fractions which can be seen on the left hand side of Figure 3. The wire,
initially in the pure

� � -phase, transforms into austenite with increasing tempera-
ture, and during cooling the reversed process takes place. These phase transitions
are the explanation for the length change that can be observed on the right hand side
of Figure 3. During the transition to austenite the wire contracts, while during the
reformation of martensite the beam acts as a spring and elongates the wire again.

3 OPTIMAL CONTROL METHOD (A FIRST MODEL)

The preceding section discussed the so-called forward problem of beam shape ad-
justment. The heating current was given, and the model calculates the corresponding
beam shape. If we are to calculate an optimal control, however, we have to solve the
inverse problem.

We look at a certain cost functional, and the control 	D���C� is determined in such
a way as to minimize this functional subject to the ODE system (5) and additional
constraints. As in [14], we consider the functional

� � �)� �M��� � �)( � ���
�
% �A�	�C��� � � ' � �

��� (6)

Herein � �	�C�); ( � � � ���C�T� � �	�C�!� � �  denotes the state variable and � �	�C� ; ( 	D���C�5� �
denotes the control variable. The final time � � is either fixed or free. Note, that due
to the relations in (2) and (4)

�A�	�C�)( � � � ���C�T� � ���C�T� ( � � � � ���C�T� � �	�C�!� 	 �	�C�!� (7)

holds. According to Eq. (3), the shape of the beam from Figure 1 consists of a
parabolic part in the region above the SMA wire and two straight parts to the left
and right of the wire, respectively. The curvature of the parabola is uniquely deter-
mined by the current deformation � �	�C� , so that the prescription of a defined wire
deformation � �

determines a desired beam shape. The minimization of (6) thus
corresponds to an asymptotic beam shape adaptation, which corresponds approxi-
mately to a solution in shortest time.
In a concise form, the optimal control problem is defined by (compare Equation (1)
in [6])

Minimize �����)� �M��� � � (defined in (6))
subject to ˙� �	�C�)( � � � �	�C�!� � ���C�T�!� for all �O� % *+��� � ' �� ��� � *+�!��� ��� � �!� (�*+�	 ��� ���C�!��� �	�C�!� 4�*+� for all �O� % *+��� � ' � (8)

with � ;&�  > �/? �  defined by (5) and
� ;&�  > �  ? ��
 , *^4 �W4 
 defines

initial and terminal conditions. The function
	 ;&�  > � ? � � allows to consider
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additional path or control constraints. All functions in (1)–(8) are assumed to be
sufficiently smooth on appropriate open sets.

The above model has been implemented into the code NUDOCCCS of Büskens
[2, 3]. The code is based on a direct method, which transforms the optimal con-
trol problem into a nonlinear optimization problem (NLP). Then the resulting NLP
problem is solved via a standard sequential quadratic programming (SQP) method.
Instead of a continuous solution � ���C� the control function is approximated by opti-
mization variables � # � � � � # � at discrete points in time � # � % *+������' , ,
(B.0� � � �D� � � ,
cf. Büskens and Maurer [6] of this issue.

We illustrate the method for the case of an initial beam shape corresponding to
a value of nondimensionalized deformation � ��*+��( * � � . The target value is � � (* � � , and the control period is chosen to be � � ( � seconds.

Figure 4. Optimal solution of beam shape adjustment with SMA wires of functional (6)



Real-Time Optimal Control of SMA Actuators 99

The upper four diagrams in Figure 4 show the solutions of the three ODEs
� � �	�C� , � � ���C� and

� �	�C� together with the wire deformation � �	�C� for
� � ( � *+.

discrete points in time. The lower diagram shows the corresponding optimal control	 �	�C� , which is subject to the constraint * 4 	D���C�O4 * � � . It exhibits a typical bang-
bang behavior, before it reaches a stationary value of � * � .C. . Note, that theoretical
investigations of optimal control theory and higher discretizations in terms of the
parameter

� � lead us to the speculation, that there exist infinitely many bang-bang
arcs, before the optimal control reaches the final singular arc. Since the hysteresis
behavior of the SMA is already included in the model and it may thus be efficiently
compensated for, the typical overshooting in � �	�C� , which can be observed by, e.g.,
PI controlers, is avoided.

It is noteworthy, that the computational time for solving the above optimal con-
trol problem was about � � � � seconds on a DEC Alpha 500/333 workstation. Se-
elecke and Büskens [14] were able to reduce this times to the order of magitude of .
second. However, this is still not in the range of real-time applications (

� * �O ) yet.
An algorithm is needed, which provides a considerable time improvement, and it is
the scope of the following section to review such a method.

4 REAL-TIME OPTIMAL CONTROL

The above approach has shown the general suitability of the model (1)–(4) to cal-
culate an optimal control for a SMA actuator in a simple smart structure. However,
the computational time required for such a method is prohibitive for an on-line ap-
plication. In the following, we will use the ideas of [3, 5, 6] in this issue which are
perfectly well-suited to overcome this difficulty, see also [11] for an application to
SMA actuators.

The two basic requirements of a real-time optimal control application are to
provide results in an extremely fast manner and to be capable to cope with un-
foreseeable changes of the process parameters. A typical example is an adaptive
aircraft wing, most simply modeled by the elastic beam treated above. Such a wing,
or at least a part of it, is supposed to adapt its shape to changes in the environmental
flow conditions measured on-line during the flight. The special real-time feature is
that the system measures the data resulting in a new target shape only immediately
prior to the control process itself.

A way to an optimal solution accounting for such circumstances is based on
the treatment of a parametric optimal control process, with the parameters being
represented by measurable disturbances. Of central importance here is the concept
of sensitivity analysis, cf., e.g., [5,6] of this issue, determining the sensitivity of the
solution with respect to changes in the disturbance parameters.

4.1 Optimal Control Problems with Parameter Perturbations

Let us consider the following process: At time �<(/* a measurement is performed,
from which the target shape results, characterized by � �

. The state of the SMA
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wire, viz. its phase fractions � � ��*+�T� its temperature
� � *+� and, in particular, its de-

formation � ��*+� are known. The objective now is to control the beam in such a way
as to reach the target shape with a compromise of high adjustment speed and low
energy consumption. In contrast to the objective function in (6), this special math-
ematical formulation requires the minimization of the following weighted convex
combination of free final time and a regularized energy consumption.

� � �)� �M�����=�Z; ( � ��� 8 � . � ���
����
�

�
� �	�C� � �C� ��� % *N�D. ' � (9)

Note, that the target shape characterized by � �

now does not appear in the functional
itself. However, it enters the problem as a terminal condition

� ��� � �)( � �

� (10)

Hence, the function
� � � ��*N�!� � �	� � �!� in (8) is defined by

� � � ��*+�T� � �����\�T�Z; ( �
� � *+��� � �� ��� � � � � � � � (11)

The constant � ��� �  represents the initial values for � � ��*+� and
� � *+� .

If disturbances can occur during the optimal control problem, problem (8) is
given in a more general form by, cf. Eq. (1) in [6] of this issue

Minimize ��� �)��� ��� � � ���T�
subject to ˙� ���C�)( � � � ���C�T� � ���C�!�'���!� for all �O� % *+��� � 'Q�� � � ��*N�!� � �	� � �!� ��� (6*N�	 � � �	�C�!� � ���C�T� ��� 46*+� for all �O� % *+��� � ' � (12)

Here, �[���I�B��	 � denotes the vector of disturbance parameters which accounts
for the real-time character of the optimization process. Solutions of (12) for � equal
to a reference parameter ��� (�6( � � ) will be called nominal or unperturbed solu-
tions. In the present paper perturbations for the deformation of the wire � ��� � � at
the terminal state and perturbations in the environmental temperature

� � �	�C� will be
investigated.

4.2 Real-Time Optimal Control

Let the nominal solution of the discretized optimal control problem (12) satisfy
the assumptions of Theorem 3 in [5] of this issue. Then the strategy of real-time
optimization can be characterized by the following steps

1. Calculate the nominal solution � �	�C� � � � a priori off-line as described in [5].
2. Perform a sensitivity analysis for the nominal solution with respect to the para-

meter � , cf. [5, 6]. This yields sensitivity differentials � �
�
� ���C�'� � � .
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3. Compute a real-time approximation of the perturbed control � ���C� ��� by means
of a truncated Taylor series

� �	�C� ��� � ˜� �	�C� ���Z; ( � �	�C� � � � 8 � �� � �	�C� � � � �G� � � � � � (13)

The real-time approximation in (13) has the advantage that only one matrix mul-
tiplication and one vector summation are required. This can be performed in an
extremely short time period.

In the following, the real-time optimization of a SMA actuator is investigated
under conditions that will typically be encountered in a real-time process. These
examples will demonstrate the efficiency and robustness of the proposed method.

Example 1: Unknown Final Value

As a first example, the elementary case of an unknown final shape is considered. The
final shape and thus the final length of the SMA wire result from an aerodynamic
measurement at the beginning of the control process. Hence the target is modeled
by parameter deviations of the form � ��� � ��( � � 8 � with nominal value � �W(B* .
Suppose that the wire has an initial dimensionless deformation � ��*+�
(/* � # � and a
dimensionless environmental temperature

� � ( * � . . The nominal solution � ���C�'� � �
and its sensitivity differentials � �

�
� �	�C� � � � are calculated for a target length � � (�* � �

and weight factor � (�* � * � .

Figure 5. Wire deformation (left) and optimal control (right) for unknown
���

The resulting nominal deformation � ���C�'� � � and the nominal optimal control	 �	�C� � � � are shown by the curves marked � in Figure 5. Based on this solution and
its sensitivity differentials, the real-time approximation (13) is used to calculate the
curves marked � for the perturbation � ( � * � � , which corresponds to a final value�A�	� � ��( * � � . For comparison, another set of curves, marked 
&� is shown in Fig-
ure 5. These are the “exact” results of the optimal control problem with final value�A�	� � �W( * � � . Despite the extremely large perturbation of � �C* % in the terminal
condition for � ���C� , the error is only about �

�
% with respect to the final value.
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Note, that in our formulation � � is assumed to be free and hence it represents an
additional optimization variable in the discretized optimal control problem. For this
quantity, a sensitivity analysis can be performed as well. Hence a first order Taylor
approximation for the terminal time ��� yields

���0����� � ˜���0�G���); ( ���0�G� � � 8 � ���� � �G� � � �G� � � � � � (14)

Compared to the value of the “exact” 
 -curve, it is within an error range of only
� � %.

The approximation method thus proves to be very robust with respect to distur-
bances in the target length of the SMA wire. In the following, we proceed to look at
other possible disturbances.

Example 2: Disturbance in Environmental Temperature

A second case of practical relevance is the one of possible fluctuations in the en-
vironmental dimensionless temperature

� � �	�C��( � � ���C�'����; ( � �� 8 � . This is not a
disturbance of an initial or final condition, rather it is a disturbance acting directly
on the level of the model ODEs. The wire is exposed to a lower temperature, and
we consider a 50% disturbance

� �� ������( * � * � , � ( � * � * � of the nominal value� �
� (�* � . , � �O( * . The (fixed) final value of the length change is � ��� � �)( * � � .

Figure 6. Wire deformation (left) and optimal control (right) in the case of perturbations in
the environmental temperature ��� ��� �

In Figures 6, again, the � -curves show the results of the unperturbed case. This
type of perturbation requires a larger amount of heat to be applied, reproduced by
the approximation � as well as by the reference solution 
 . Here, too, the method
exhibits only a very small error despite the large disturbance.

Example 3: Coupled Problem

To demonstrate the capabilities of the proposed real-time method, we finally treat
the general case of a combination of the two disturbances discussed before. The
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perturbations correspond to those of the uncoupled problems. The wire deformation
and the optimal control in Figure 7 show a very robust behavior for this case as well.

Figure 7. Wire deformation (left) and optimal control (right) for the coupled problem

5 COMPUTING TIMES AND PERSPECTIVE

The computational time to obtain the “exact” optimal solution by the direct method
NUDOCCCS was in the order of magnitude of . second for all three cases. The
approximate solutions, however, only require time of the order of magnitude of a
floating point operation. All computations have been performed on a 533 MHz DEC
Alpha workstation with resulting CPU time of � * � � � � . Even an Intel Pentium 200
MHz PC only used about . � � � . Note, that in a practical implementation, the com-
puting times can be reduced drastically by an additional factor of

� *+. (number of
gridpoints), if the time during the control of the SMA actuator is used for computing
the needed approximations.

It is clear that computational times in this range make it feasible to treat more
realistic problems, e.g., with a considerably larger number of wires and/or more
complex structures which have to be modeled by finite elements or comparable
methods. The main task is to create data bases with a sufficient number of nominal
solutions, which, however, does not have to be very large due to the robustness of
the method illustrated above.

Future tasks will cover the incorporation of FE schemes into the real-time op-
timal control code and an extension of the method to include a feedback of the
current state as described in Büskens [4] of this issue. This is necessary in order to
compensate for modeling “imperfections” or unforeseen and non-measurable per-
turbations which would cause a deviation from the actual current state of the system.
This feedback can be implemented by predicting the final state as described in [4]
and subsequently using this to re-calibrate the initial conditions and the current con-
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trol. Note, that the mathematical formulation allows for disturbances in the initial
conditions as well, see (12), so this feature, too, may be taken care of in real-time.
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Real-Time Solutions for Perturbed Optimal Control
Problems by a Mixed Open- and Closed-Loop
Strategy

Christof Büskens

Lehrstuhl für Ingenieurmathematik, Universität Bayreuth, Germany

Abstract Many dynamical processes arising in engineering and natural science can be math-
ematically modelled by systems of differential equations. Often control functions, by which
the process can be influenced, are to be chosen such that a certain objective function is op-
timized under observation of the differential equations and additional constraints. Today one
of the greatest demands on such optimal control problems is to solve them in real-time.
Open-loop strategies have their advantage with respect to optimality whereas the approx-
imated solutions may not be admissible. Closed-loop strategies guarantee admissibility, but
may lead to approximate solutions which are worse in view of optimality. Hence a new mixed
strategy is proposed which benefits from the advantages of both methods, without suffering
from their disadvantages. Finally an illustrative example from flight mechanics is discussed
which shows the efficiency and robustness of the proposed method.

1 INTRODUCTION

Modern real-time optimization or control algorithms have to fulfil various require-
ments. Beyond the properties which can be achieved by usual control algorithms,
such as fastness of the algorithms, low memory requirement, and admissibility of
the solutions, additional requirements have now to be fulfilled for real-time optimal
control methods: (Sub-) Optimality, capability of providing instantaneous informa-
tion on improved controls, capability of a further improvement of controls if still
computing time is left, robustness and stability of the solutions with respect to large
and unpredictable perturbations. The real-time algorithm should be able to handle
high dimensional problems and should allow a flexible treatment of different types
of problems. These requirements can be obtained by methods of high order with
‘cheap’ iteration steps, e.g., gradient free algorithms. From the user’s viewpoint the
resulting software must be simple and the required knowledge of the theoretical
background must be low.

The above requirements can be put into a hierarchical order of importance: real-
time ability, admissibility and, at last, optimality, which we will call AAO hierarchy.
This is why admissibility and feasibility have been more in the focus of interest in
the development of real-time control methods in the past, whereas real-time optimal
control methods are not as well developed. Real-time control methods are usually of
closed-loop type, whilst real-time optimal control methods are mostly of open-loop
type. In view of the afore mentioned requirements closed-loop methods have their
advantages on admissibility and feasibility, open-loop methods on optimality. In
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particular the advantages of one method are the disadvantages of the other and vice
versa. Hence it seems to be obvious to combine the open-loop and the closed-loop
ideas.

For this reason a mixed strategy is suggested based on the open-loop approach
presented in Büskens and Maurer [3, 4], which leads to an iterative self-correcting
and gradient-free closed-loop approach of Newton type.

In Section 2 the general idea of the mixed strategy is presented. Based on the
error analysis of the open-loop approach in Büskens and Maurer [3] for perturbed
NLP problems, correcting feedback steps in direction of the optimal solution are
developed to assure the admissibility of the solution. Section 3 applies these ideas
to perturbed optimal control problems. A demanding problem from flight dynamics
is discussed in Section 4.

2 A MIXED METHOD FOR PERTURBED NLP PROBLEMS

2.1 Error Analysis of NLP Constraints

Consider the perturbed NLP problem

NLP1 � p �
min� ���S��'���T�
subject to " � �S�� ��� ([*+�

" � �S�� ��� 46*+�
(1)

with sufficiently smooth functions " ( � " � � � � �D� " 	�� � 
 ; ( � " � �D" � � 
 , "�#�;� 	�� > �[? � , ,W( .0� � � �D� � 9
and ��;Z��	�� > �[? � . Problem (1) is the same

problem as (1) in Büskens and Maurer [3] of this issue. It is supposed that the as-
sumptions of Theorem 2 in [3] are fulfilled. Then the real-time approximation of the
minimizer +�G��� in Eq. (31) in [3] of this issue yields

N������� ˜ � � � �G���Z; (6N��� � � 8 � � � ��� � ���G� � � � � (2)

with � �� � �G� � � from Eq. (21) in [3]. Formula (2) represents a linear approximation of+�G��� and hence one can expect that, in general,

"�� � ˜ � � � �����T� ��� (�	 � ](�*+� (3)

with 	 � � ��	�� small.
� � is the number of active components " � in (1), cf. Eq.

(7) of [3]. In general the open-loop expression (2) does not represent an admissible
solution of (1), due to the violation 	 � in Eq. (3). For this reason, the approximation
(2) can only be used for perturbed NLP problems, if 	 � is sufficient small in view of
practical requirements. Especially the exponential error growth in initial value prob-
lems for ODE systems caused by parameter deviations explains, why the real-time
approximation (2) for perturbed optimal control problems cannot be used in general.
Hence the following section is concerned with the reduction of those violations in
the constraints caused by the real-time approximations (2).
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2.2 Real-Time Error Reduction in NLP Constraints

Consider the following modification of (1)

NLP2 � p � q �
min� ����&�'���!�
subject to " � �S�� ����� 3 � ( *+�

" � �S�� ����� 3 � 4�*+�
(4)

with perturbation �G��� 3 � 
 ����	
� � 	�� , 3 ( � 3 � � 3 � � 
 . Moreover let
3 � denote the

perturbations for the active constraints. Without restriction let �G� � � 3 � �)( �G� � �!*+�5�� 	
� � 	�� . Hence NLP2 � p � 0 � is equivalent to NLP1 � p � .
In case that an actual deviation of the form �G���!*+� 
 �6��	
� � 	�� from the nominal
parameter ��� � �T*+� 
 is detected, Eq. (2) provides a very fast open-loop approxima-
tion for the perturbed solution. It was shown in (3), that this approximation causes
an error 	 � in the active constraints " � ����� . This error is of the form of the new
perturbation parameter

3
in (4). Hence a better approximation in view of optimality

and especially admissibility can be found by

N����� � ˜ � � � �����); (6N��� �&� 8 � �� � �G� �&����� � � � ��� � �� � � � *+� 	 �

( ˜ � � � ������� � �� � � � *+� " � � ˜ � � � �G���T� ���!� (5)

with ˜ � � � �G��� from (2) and � �� � �G����� respectively � �� � � ��*+� from Eq. (21) respectively
from the simplified expression (28) in Büskens and Maurer [3] of this issue.

Since the nominal solution N����� � as well as the sensitivity differentials � �� � ��� �&�
and � �� � � � *+� can be calculated off-line, Eq. (5) provides also a fast computation of
the real-time approximation, since no gradient calculation is needed.
The additional term � �� � � � *+�Q" � � ˜ � � � �G���!� ��� in Eq. (5) can be understood as a cor-
recting feedback step for the error caused by Eq. (2). Note that the approximation
(5) again causes an error 	 � in the active constraints " � �G��� .

" � � ˜ � � � �����T� ��� (�	 � ](�*+� (6)

which is also of the form (4) with the new perturbation parameter
3

. Hence an
additional improvement of (5) is given by

N�G��� � ˜ �  � �G���Z; ( ˜ � � � ������� � � 3 � ��*+��" � � ˜ � � � �����!�'��� � (7)

Thus we see, that the correction terms in (5) and (7) form an iterative algorithm
which can be described as follows:

1. Choose 	  ��� � and initialize ˜ � � � ����� by (2), set �V; (B. .
2. If �=" � � ˜ � � � �����T� ��� � � Y�	� then STOP.
3. Calculate

˜ � � � � � �G���); ( ˜ � � � ������� � � 3 � ��*+��" � � ˜ � � � �G���T� ���!� (8)

and set �V; ( � 8 . .
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4. Goto 2.

Note that the Sensitivity-Theorem 3 in [3] predicts the existence of a neighbourhood
where the active constraints remain unchanged. This guarantees the existence of a
fixpoint.

2.3 Higher Order Convergence Rate by the Method of Steffensen

An analysis of Eq. (8) yields, that this algorithm is basically a simplified Newton
method for " � � ˜+� ���)(�* with convergence order one. Anyhow one finds a fast con-
vergence if only small perturbations are given. To improve the rate of convergence
one can apply the well known method of Steffensen, cf. Stoer [7], where Formula
(8) is replaced by

˜ � � � � � �G���Z; ( ˜ � � � �G��� � � � � � � � � �G��� � ˜ � � � �����!� �

�  � � � � � �G����� � �  � � � � � ����� 8
˜ � � � ����� (9)

with �  � � � � � �����); ( ˜ � � � ������� � �� � � � *+� " � � ˜ � � � �����!�'���!�
�  � � � � � �����); ( �  � � � � � �G����� � �� � � ��*+��" � � � � � � � � �����T� ��� � (10)

Note that the method of Steffensen is at least of order 2.
Furthermore both algorithms, i.e., the original algorithm of Section 2.2 and the mod-
ification of this section, are also able to handle deviations not taken into account
by the parameter sensitivity analysis, for which the sensitivity differentials are not
available. The reason is that such perturbations influence the state of the solution
and especially violate the constraints indirectly.

3 A MIXED METHOD FOR PERTURBED OPTIMAL CONTROL PROBLEMS

In this section the conceptions developed before are adapted to discretized optimal
control problems as described in Büskens and Maurer [4] of this issue. We focus
attention on additional artificial perturbations in the constraints. Consider the fol-
lowing modification of optimal control problem (1) in [4], where for the sake of
simplicity, only additional perturbations in the terminal constraints are considered

Minimize �����Z��� �'��� ( � � � �����\�!�'��� 8 ����
� � � � ��� �	�C�!��� �	�C�!� ��� � �

subject to ˙� ���C� ( � � � ���C�T� � ���C�T� ���!�
� ��� � � ( � �G���!�� � � �	� � �T� ����� 3 ([*+�	 � � �	�C�!� � ���C�T� ��� 4�*+� � � % � � ��� � 'Q�

(11)
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with
3 �A��
 . By discretisation of (11) we obtain a perturbed NLP problem of form

(9) in [4] or, as represented hereafter, of form (13) in the same article:

Minimize ���S�� ���); ( � � � 	 �C��&�'���!� ���T�
subject to "��S��'���Z; (

�
�
�
�

� � ����	 � ���� ���!�'��� � 3	 ��� � ���� ���!��� � � ���
...	 ����	 � ���� ���!���
	 � �'���

�
�
�
�

� � ��	���� � 9 ( � � 8 � (12)

For this reason NLP problem (12) is of form (4) and we can apply the algorithm from
Section 2.2. Thus, confining algorithm (8) to the artifical perturbation parameter

3

in (12), we arrive the following algorithm

1. Choose 	� �6� � and initialize ˜ � � � �G��� by (2) (respectively by Eqs. (23) and
(24) of [4]), set �:; (B. .

2. If � � � � 	 �0� ˜ � � � �����!�'���T� ��� � � Y�	  then STOP.
3. Calculate

˜ � � � � � �G���); ( ˜ � � � �G����� � � 3 � ��*+� � ��� 	 � � ˜ � � � �����!�'���T� ���!� (13)

and set �V; ( � 8 . .
4. Goto 2.

Obviously, this algorithm can also be improved by Steffensen’s method.

4 EXAMPLE: EMERGENCY LANDING OF A HYPERSONIC FLIGHT SYSTEM

A study about the reliability of U.S. launch vehicles since the beginning of human
space flight states, that more than

�

 of all failures affect the propulsion system.
Therefore we investigate the mission abort of a winged two-stage hypersonic flight
system due to an ignition failure of the main rocket engine shortly after separation,
cf. Mayrhofer and Sachs [5, 6]. The upper stage of the flight system is still able
to manoeuvre although the propulsion system is damaged, compare the Emergency
Landing Site Landing (ELSL) scenario in Figure 1.
A point mass model consisting of six state functions and two control functions

describes the dynamics of the flight system:

˙� ($� � � � � � � 	�� � �
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Figure 1. The emergency landing problem (reprint from [5, 6])

with functions

��� ���)( � � 8 ��� � � ���)( � � � 
 �
 ��� � � � �� � � � � � 	 � �)( 3 � � � ��� � 
 � � 	�� �!� ��� ���)( � � � � � � �

 � � 	 � �)( 
 � � 8 � 	 � � � 3 � � � ���)( �9 ��� ��� � � ��)� � � � � 	 � �)( 3 � � � ��� � 	 �

(15)

and constants


 ( �
� *+� 
 � � ( * � *N. ��� � � ( 
 � ����.� . * � ��J( �C* � � *+� � �O( # � �C* 
 
 � � �3( �

� *+�� ( � � � �=*# . * � � � � ( �

� l � � � � � (16)

Herein the state variables are defined by the velocity � , the flight path angle � , the
azimuth angle

�
, the altitude � , the geographic longitude

�
, the geocentric latitude

. The controls are denoted by the lift coefficient
	 �

and the bank angle � and are
restricted by the box constraints

*E4 	 � 4/.C� *E4 �A4 .�� (17)

The mass is assumed to be constant � (/.0. � *0*0* . Initial values are given by�
�
�
�
�
�
�

�
� � *+�
� � *+�� ��*+�
�$� *+�� � *+� � *+�

�
�
�
�
�
�
�

� (

�
�
�
�
�
�
�

�
� . � * � � � � � #0*0** � . � � *+.�+. � �=*�
�

� 
�� # � � #�� ��#� � #=*0* � *0*0*0*C*0** � � 
 � . � . 
 � # #* � .�#��C*�#=* �	� * �

�
�
�
�
�
�
�

� � (18)
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which corresponds to a starting point over Bayreuth/Germany (not to be taken se-
riously). For security reasons an emergency landing trajectory on a rotating earth
with maximum range has to be found

� � �)� 	 � �����\�)( � � �����\� � � ��� � �� ��� �&� � � 8 �  �����\���  ��� � � �	� � � � �

� (19)

The admissible set is defined by a final altitude of 500 meters:

� �����\� ( � *C* � * � (20)

The perturbations � are deviations in the air density modelled by

� � (B.�� � � # � . �  � (21)

and additional non-detectable parameters of the system, which is here simulated by
deviations in the initial altitude. The terminal time � � is assumed to be free, thus it
has to be considered for the real-time calculations as well.

For
� � ( .D*+. equidistant gridpoints the number of optimization variables �(� � � � 	 �� � � � � ��� 	��C� 	 	 �� ��� � � 
 is

� � ( � *�� ( � Q. *+. 8 . due to two control variables
and the free final time. For ����( .�� * the nominal objective function is calculated
to ��� � �G� ���!� 	 � ��� �&�!��� � ��� �&�T�:( � * � � � �=* � � , while the terminal time is found by
� � ��� �&�)( �	� � � � � � . Figure 2 shows the nominal control functions on the normalized
time interval % *+�D. ' .
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Figure 2. Optimal controls � ��� 0 � ! � and ��� ��� 0 � ! �

The nominal optimal states are shown in Figure 3.
Figure 4 shows the optimal trajectory as a three dimensional plot and its projection
onto ground. The landing site is on the British Island.
Finally, Figure 5 depicts the sensitivity differentials for parameter � and the artifical
parameter

3
for the terminal altitude as described in Eq. (12).

Table 1 shows the first ten iterates for the convergence behaviour of the terminal alti-
tude and the objective function for perturbations between . % and . *0* %, calculated
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Figure 4. Optimal trajectory

with a fourth-order Runge-Kutta approximation for the state and a linear interpola-
tion of the control variables. Con.Err. is the relative error for the constraint (20)

� � � �2 
 
 �����Z; ( ^^^^
�$� ˜ � � � �G��� � � � ��� � *0* � *� *C* � *

^^^^ � (22)
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Figure 5. Sensitivity differentials
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Table 1. Convergence behaviour (simplified Newton)

and Con.Obj. is the relative error for the objective functional (19)
^^^^
��� ˜ � � � �����!� �����SN�G���T�� �SN�����!�

^^^^ � (23)

Herein N����� denotes the “exact” solution of the perturbed problem as computed
by the code NUDOCCCS, cf. Büskens [1, 2]. Iter. denotes the iteration number in
(13). For reasons of comparison the errors for Iter. ( * denote those for the nomi-
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nal solution ˜ � � � �����
(  � and for Iter. ( . those for ˜ � � � ����� which is the open-loop
initialisation (2). The CPU-time on a Pentium III processor with 450MHZ is about� � � �. * � � seconds for ˜ � � � �G��� and about .�� �  . * � 5 seconds for each iteration step
˜ � � � ����� , ��� �

. Note that the CPU-time can be reduced drastically by a factor which
is given by the number of gridpoints (here . *+. ), if the approximate controls are
only computed on a small interval necessary to continue the flight. Depending on
the magnitude of the perturbation � , the CPU-time for calculating the exact solution+�G��� ranges between 
 and . � seconds. The error in the constraint (representing the
admissibility) can be reduced almost to machine precision. For the sake of compa-
rability the relative error in the constraint for the exact solution is given by about� C. * � � . Beyond this, the relative error in the objective is improved, too.
In the left part of Figure 6 the convergence behaviour is depicted for perturbations
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Figure 6. Convergence behaviour of the mixed strategy (simplified Newton)

�B( .�� *+. , � ( .�� . �B( .�� � and � ( �
� * . The iteration number is on the x–axis

while the relative error in the constraint is on the logarithmic y–axis. Similarly, for
the same perturbations in the air density the convergence behaviour for an additional
deviation of

8 . *C*0*0* meters in the initial altitude are shown in the right part of 6.
Even though this large perturbation has not be taken into account by the sensitivity
analysis the method is able to compensate it due to its influence on the terminal al-
titude constraint.
Next, we want to determine the numerical order � of convergence by estimating �
in L � � � � � �2 
 
 �����QL ��
+�G���!L � � � �2 
 
 �����QL � � (24)

for different iteration numbers � � . . Since
��� ��� ���
�
	�	 � � �
� � � �
�
	�	 � ��� ( 
+�G��� is constant, the

order � equals one with a small convergence factor 
+����� , here 
+� .�� *+.0� �
�

� � � � ,

+� .�� .0� � �

� � � , 
+� � � *+��� �

� � .
Table 2 shows the quadratical convergence of the Steffensen method (9) applied to
the mixed strategy.
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Table 2. Convergence behaviour (method of Steffensen)

Again perturbations between . % and . *0* % are treated to show the relative er-
rors in the terminal altitude and the objective function. The notations are similar
to Table 1. The CPU-time is about � � � +. * � � seconds for ˜ � � � ����� , too. Due to the
twofold evaluation of the constraints in (10) the CPU-time for the iteration steps
˜ � � � ����� in (9) rises to

�
� ��D.D* � 5 seconds for each iteration step ��� �

. Note, that the
CPU-times again can be reduced drastically by an additional factor up to . *+. (num-
ber of gridpoints), if the time during the flight is used for computing the needed
approximations. Similar good results, not discussed here, are obtained for perturba-
tions not taken into account for the sensitivity analysis. It could be shown, that the
mixed-strategy of section 3 is able to compensate perturbations between � �0* % and
larger than �C*C* %. Although these perturbations are not realistic, the results obtained
for the difficult emergency landing manoeuvre shows the enormous potential of the
method.

5 CONCLUSION

This paper presents improved iterative methods for real-time optimization of per-
turbed optimal control problems. The first essential feature of the methods is to
compute an error estimations for the violations of the constraints in the underlying
perturbed NLP problem. These error estimations are obtained by analyzing the ad-
missibility of the open-loop approximation of [3, 4] resp. of the different iterates
of the methods. The second essential feature is the interpretation of these errors as
additional perturbations in the discretized optimal control problem for which a para-
metric sensitivity analysis, as described in Büskens and Maurer [4], is performed.
Herewith, and this is the third essential feature, an iterative feedback strategy of
Newton type has been formulated which guarantees the admissibility of the solu-
tion, while the optimality is still preserved to first order. The main advantages of
the new methods are: the high computational speed, the self-correcting property
in view of admissibility, the gradient-free formulation of the methods, the capabil-
ity for compensating large and unforeseen perturbations and the any time property,
i.e., the iterates can be continually be improved as long as the real process allows
additional computing time. Finally, the efficiency and robustness of the proposed
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methods have been demonstrated by solving a demanding problem from flight me-
chanics, the emergency landing of a hypersonic space transportation system.
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Abstract We consider approaches for real-time optimization of dynamical systems governed
by differential-algebraic (DAE) systems. Special attention is turned on the calculation of
consistent initial values such that the DAE system is solvable.

The underlying DAE optimal control problem is solved numerically by a direct single
shooting method. This method reduces the infinite dimensional optimal control problem by
discretization of the control over a suitable chosen grid to a finite dimensional optimization
problem.

A real-time optimization method is achieved by performing a parameter sensitivity anal-
ysis of the discretized optimal control problem, taking the calculation of consistent initial
values into account.

A high dimensional and highly nonlinear example of a car’s jink is discussed to demon-
strate the capabilities of the proposed methods.

1 INTRODUCTION

Subject of our interest is the parameter depending optimal control problem of Mayer
type (OCPDAE � p � ):

Minimize
� % �Z��� 'Z( � ��� �	���=�T�����\�'���T� � � Y ��� fixed or free �

subject to ����� ���C�!� ˙� ���C�T� � ���C�T� ��� ([*+� for a.e. �O� % � � ������' �	 � � ���C�T� � ���C�T� ��� 4�*+� �O� % � � ������'Q�� � � ��� � �T� � �����\�T� ��� ([*+�
(1)

with state variables � � � K , control variables �@� � 
 , fixed parameters � �������	�� , objective � ;0�5K > � > �A?@� , differential-algebraic (DAE) constraints�J;=�5K > �5K > � 
 > �A?@�5K given in implicit form with singular Jacobian � ˙� , path
constraints

	 ;0�5K > � 
 > � ?@� � and boundary conditions
� ;=� K > �5K > �A?� 
 . All functions are assumed to be sufficiently smooth.

DAE optimal control problems pose several problems due to the singular char-
acter of DAE systems. One of the main problems is that, in contrast to ordinary
differential equation (ODE) systems with regular Jacobian � ˙� , not any initial value
is admissible. Hidden constraints have to be fulfilled, i.e., initial values have to be
consistent with the DAE system, see Brenan et al. [1] for a more detailed discussion.
A broad class of problems is described by semi-explicit DAE systems of the form

� � � � � �	�C�!��� � ���C�T� ˙� � �	�C�!� � ���C�T� ��� (�*N� (2)� � � � � ���C�T� � � �	�C�!� � ���C�T� ��� (�* (3)
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with the regularity assumptions� � �� ˙� � ��� � �	�C�!� � � ���C�!� ˙� � ���C�T� � ���C�T� ���!�� � �� � � � � � �	�C�!� � � ���C�!��� �	�C�!�'���
� �

��
�

regular, U � � % � � ��� � ' � (4)

The implicit DAE system �J; ( ��� � �T� � � � � �5K�� > �5K � is separated into a differen-
tial equation (2) and an algebraic equation (3). Similarly, the state � is partitioned a
priori in �:; ( � � � � � � � � �A� K � > � K � with differential variables � � and algebraic
variables � � .

We call initial values � � ��� � � and � � �	� �&� consistent for (2), (3), if and only if

� � � � � ��� �&�T� � � �	� � �!� � ��� ���!� ��� ( * (5)

holds. For a given initial value � � ��� � � obviously not all values for � � ��� � � comply
with (5). However, together with the regularity of the Jacobian �

� �
� � � in (4), the im-

plicit function theorem provides a locally unique resolving function � � of (5) w.r.t.
� � ��� �&� depending on � � �	� �&� , � ��� ��� and � :

� � ��� � � ( � � � � � �	� �&�!��� �	� �&�!�'��� � (6)

Please note, that one differentiation of the algebraic constraint (3) w.r.t. time is
needed to receive a differential equation for the algebraic variable � � . For this rea-
son system (2) and (3) together with (4) is called a semi-explicit DAE system of
index 1.

As a further consequence of the implicit function theorem, the relationships�
� �� � � ��� � � �M� ��� ( � � � � �� � � � � � ��� � � �M� ��� � � � � � �� � � ��� � ��� � � �M� ���!��
� �� � ��� � � �M� ��� ( � � � � �� � � � � � ��� � � �M� ��� � � � � � �� � � � � � � � ��� �'���!��
� �� � ��� � � �M� ��� ( � � � � �� � � � � � ��� � � �M� ��� � � � � � �� � � � � � � � ��� �'���

(7)

hold in � � . The differentials � � �
� � �

, � � �
� �

and � � �
�
� will be used for gradient calculations

and real time computations described in the subsequent sections.
The situation becomes more difficult if we consider semi-explicit DAE systems

of type

˙� � ���C�)( � � ��� � ���C�T� � � ���C�!��� �	�C�!�'���T� (8)*�( � � ��� � �	�C�!� � ���C�T� ��� (9)

with� � �� � � ��� � ���C�T� � ���C�!�'���  � � �� � � � � � �	�C�!��� � ���C�T� � ���C�!�'��� regular, U �O� % � � ��� � ' � (10)
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Differentiation of (9) w.r.t. time yields the nonlinear algebraic equation

*�( � � �� � � ��� � ���C�T� � ���C�T� ��� 1� � ��� � ���C�T� � � �	�C�!� � ���C�T� ��� 8 � � �� � � � � �	�C�!��� �	�C�!� ���  ˙� �	�C�
(11)

which has to be satisfied for all � . In this case initial values � � ��� �&� and � � �	� � � are
called consistent if and only if they satisfy equations (9) and (11). Equation (11) is
called hidden constraint. With the regularity condition equation (11) can be solved
w.r.t. � � �	� � � . Please note, that (5), (9) and (11) depend on � and additionally (11)
depends on the derivative of � . Therefore, in contrast to optimal control problems
with ODE systems, one can not expect in general, that all state variables are contin-
uous, because the control or its derivative may be discontinuous.

Note, that differentiation of (11) w.r.t. time yields a differential equation for � � .
Therefore DAE systems of type (8) and (9) are called of index 2.

It is easy to imagine that the situation gets much more complicated if no special
structure of the DAE system is assumed, i.e., the DAE system is given in general
implicit form ��� � ���C�T� ˙� ���C�T� � ���C�T� ��� (6* (12)

with singular Jacobian �
�
� ˙�

. For a more detailed characterization of these systems
please refer to Campbell and Gear [6], Gear [7] and Leimkuhler et al. [10].

2 NUMERICAL SOLUTION OF (OCPDAE � p � )
In view of the example presented later on and for simplicity reasons, we restrict
the following discussion to semi-explicit index-1 systems (2) and (3). Extensions to
higher index DAE systems are given in Büskens and Gerdts [5, 8].

The optimal control problem (OCPDAE � p � ) is solved numerically by a direct
(single) shooting method, whose basic ideas are to be summarized shortly. Similar
to the discretization (10)-(13) in Büskens and Maurer [4] of this issue, the optimal
control problem (OCPDAE � p � ) is discretized by introducing a suitable grid

� � ( � � Y � � Y    Y � 	 � ( � � � (13)

The control function � is approximated by the continuous and piecewise linear func-
tion

� � � � ���C�)( � # 8 � � � #
�&# � � � �&# ��� # � � � � # � (14)

for � # 4 � 4 � # � � � ,
(B.0� � � �D� � � � . , or any higher order approximation, where � #
denotes an approximation of � � � # � . It is important to notice, that it is recommended
to use at least a continuous approximation of the control for this class of DAE sys-
tems. If a discontinuous approximation is chosen, the recalculation of consistent
values at each grid point becomes necessary, because a continuous state in combi-
nation with a discontinuous control approximation will not suffice Equation (5) in
general. According to DAE systems of index greater than one, control approxima-
tions with even higher smoothness properties have to be chosen.
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For a given initial value � � � � � � � �	� � � of the differential part of the state at
� �<( � � , the corresponding consistent algebraic part � � � � is calculated by applying
Newton’s method to (5) evaluated at � � � � � � � � � � ��� � � � � � � �!�'��� . Note again, that the
nonlinear system is solvable under the assumptions (4).

Let J( � � � � � ��� � � � � � � ��	 � � � ���5K � � 	 ��
 denote the vector of variables, then
the DAE system (2) and (3) is solved on % � � � � 	�� ' by standard DAE integrators, e.g.,
DASSL [11]. This yields an approximation

� � � � ���C�)( � � � � �	� � �� ��� (15)

of the state � ���C� on % � � ��� � ' . The notations � � � � ��� � &� and � � � � �	� � �� ��� are used to
point out the dependency from  and � .

Introduction of � � � � and � � � � into (OCPDAE � p � ) and evaluation of the con-
straints on the grid results in the finite dimensional nonlinear optimization problem
(NLP �G��� ) for 

Minimize � �S��'��� ; ( � � � � � � ��� � � &�'���!��� � �'���
subject to "��S�� ���Z; (

�
�

� 	 � � � � � � � � � �� ���T� � � � � � � � � &�T� ���
...	 � � � � � � � 	 � � �� ���T� � � � � � � 	 � � ��T� ���

�
�

�
46*N�

�V���� ���); ( � ��� � � � � � � � ��'���T� � � � � � � 	�� � �� ���!�'���)( *+�
(16)

which can be solved numerically by, e.g., SQP methods. Because SQP methods
work iteratively in each iteration consistent initial values have to be computed in
the depicted way before the DAE system can be solved. The gradient of the objec-
tive and the Jacobian of the constraints in (NLP �G��� ) are computed either by finite
differences or by use of the sensitivity DAE system� � �� � � 

F � ���C� 8 � � �� � �  F � ���C� 8 � � �� ˙� � 
˙F � ���C� 8 � � �� �  � � � � ��  ��� � ��)(�*+�� � �� � � 

F � ���C� 8 � � �� � �  F � ���C� 8 � � �� �  � � � � ��  ��� � ��)(�*
corresponding to (2) and (3) with sensitivity matrices

F � ���C�E; ( � � � ��� � ��'��� � �  ,F � �	�C�Z; ( � � � �	� � �� ����� �  and consistent initial components

F � � � � �)( � � � � ��  ( % � K�� LD* L    L1*�'Q�F � � � � �)( � � � � ��  ( �
� ��  ��� � � � � � � � � � � � � &�T� ��� (17)

computed out of (7) at �E( � � , compare Gerdts [8] and Hinsberger [9]. The Jaco-
bians of � � and � � w.r.t. � � , � � and � are evaluated at time � .

3 REAL-TIME OPTIMIZATION

Let us assume that solutions of (OCPDAE � p � ) for different values of � are needed
in such short time intervals, that it is not possible to solve (NLP ����� ) within them.
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Under these circumstances, approaches for real-time optimization of (OCPDAE � p � )
become necessary. We follow the ideas of Büskens and Maurer [3, 4] of this issue.

Let � ,
	

,
�

, � � and � � be twice continuously differentiable w.r.t. its arguments.
Furthermore, let � � ��� the nominal parameter and

 �O; (IN��� �&� ( ��� � � � ��� �&�!��� � ��� � �!� � � �1� � 	�� ��� � �T� � (18)

a corresponding nominal solution of (NLP �G���&� ), which satisfies the assumptions of
Theorem 3 in Büskens and Maurer [3] in this issue. Then the sensitivity differentials� �� � ��� �&� evaluated at the optimal solution N�����&� are given by the solution of the
linear equation system (21) in the cited article. In particular first order real-time
approximations of the differential variables � � � � �G��� and the control variables � # ����� ,,�(B.C� � � �D� � � , for the perturbed parameter � are given by

� � � � ������� � � � �� ; ( � � � � ��� � � 8 �
� � � �� � �G� � � ��� � � � �!�

� # ������� � #� ; ( � # ��� �&� 8 �
� #� � ��� � � �G� � � �&� � (19)

Similarly, an approximation of consistent algebraic components is given by

� � � � ������� � � � �� ; ( � � � � ��� �&� 8 �
� � � �� � �G����� ��� � � �&� � (20)

Since

� � � � �G� � �)( � � � � � � � ��� � �T� � � � � � � � � +�G� � �!�T� � � �)( � � � � � � � ��� � �T� � � ��� � �T� � � �
(21)

holds in (6), the sensitivity differential � � � �

�
� � �G� � � is given by�

� � � �� � �G� � �)( �
� �� � � % � � '

�
� � � �� � �G� � � 8 � � �� � % � � ' � � �� � ��� � � 8 � � �� � % � � '

($� � � � �� � � % � � ' � � � � � � �� � � % � � '
�
� � � �� � �G� �&� 8 � � �� � % � � ' � � �� � �G����� 8 � � �� � % ��� ' �

(22)
where in addition the relationships in (7) are incorporated and the notation % � � '
stands for all nominal arguments. The partial derivatives of � � are evaluated at� � � � � ��� � �T� � � ��� � �T� � � � and those of � � at � � � � � �G� � �!� � � � � �G� � �!� � � �G� � �!� � � � .

Unfortunately we cannot expect that the first order approximation � � � �� in (20)
is consistent in general, i.e.,

� � ��� � � �� � � � � �� � � �� �'����]( *+� (23)

which is an essential requirement for the numerical solution.
To overcome this problematic, a simplified Newton iteration

� � � �� � � ( � � � �� � � 1� � ��� � � �� ��� � � �� � � �� � ���T� � �3(�*+�D.C� � � � � �1�!� (24)
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with constant matrix

� ( � � � �� � � ��� � � � ��� � �!��� � � � ��� � �!��� � ��� � �!�'� � � � � �

� (25)

and good initial starting vector � � � �� ; ( � � � �� is used to calculate consistent algebraic
components in a fast and accurate manner.

Note, that an exact Newton method might be too time consuming, since ex-
pensive gradient calculations are needed. Moreover a further improvement of all
real-time approximations in view of optimality and admissibility can be archived by
applying the mixed strategy in Büskens [2] of this issue.

4 EXAMPLE: VIRTUAL TEST-DRIVE OF AN AUTOMOBILE

This car model permits the analysis of the planar motion of an automobile with
centre of gravity

F ( � � ���C�T��� �	�C�!� ��� ���  w.r.t. a suitably chosen reference system
at velocity � ���C�J( � ˙F ���C� � at constant height � . The car-body is connected to the
chassis by spring and damper suspensions such that the investigation of its rolling-
, pitching and yawing behaviour with its corresponding angles �N���C� , � ���C� , � �	�C�
and angle velocities � �	�C�5( � � � ���C�T� � 	 ���C�T� � � �	�C�!� � � �  becomes possible. The
motion of the car-body results in a dynamical vertical tyre load distribution � � �	�C�)(��� � � �	�C�!� � � �D�!� � 5 �	�C�!� � �[� 5 , where � � # ���C� denotes the vertical tyre load of tyre ,
at time � . The longitudinal tyre forces ��� � ( ����� � � � � � �1�!��� � 5 � � � � 5 and the
lateral tyre forces � � 	 ( ��� � 	 � � � � �D�T� � 	 5 � � ��� 5 are calculated by the HSRI-tyre
model described in Wiegner [14] and Uffelmann [13]. The steering wheel angle � �
together with the deformation of the tyre and the acting tyre forces cause steering
angles �����C�
( ��� � ���C�!� � � �D�	� 5 ���C�T� � ��� 5 at the wheels of the vehicle. The angular
velocities of the rotating wheels are given by ��
�( � ��
 � � � � � ���
 5 � � � � 5 . The
drift angle �����C� denotes the deviation between the velocity vector of the centre of
gravity and the longitudinal axis of the car-body. For illustration purposes some of
the mentioned quantities are visualized in Figure 1. The constants

� ��� � � 	 � � � � � and� � denote the moments of inertia of the car body w.r.t. the x-,y- and z-axis and the
wheels, respectively. The torques

� ��� � � 	 � and
� � � , the aerodynamical forces� � � �T� � 	 as well as the static and dynamical tyre loads � ��� � � # �T� � � 	 K � # are functions

of the state  . The forces � # , , ( .0� � � �D� � include friction and tyre forces. The
angles ��� � # ����� �	� � � # and � � � # state the steering behaviour of the car. The constant� � influences the differential at the front axis. A more detailed description of the
model is given in Gerdts [8] and Risse [12]. The resulting equations of motion (26)
are given in terms of a highly nonlinear DAE system of index 1 in semi-explicit
form. The state of the system is  ( � � ���Z����� � � � ��� � �5� � � ��
 �	� � �T� � �	��� � � � �  .
Herein, the eight algebraic variables are given by the vertical tyre loads � � and the
steering angles � .
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� ˙� � ˙�
� ( � � cos � � 8 �5�!� sin � � 8 �5�!�!�� ˙��� ˙� � ˙� � ( � � � � � 	 � � � �T�� � � ˙��� ( � ���<� ����� � �5� � ����� ��
��T� � � ˙��� � ˙� 	 � 8 � � 	 � � � � � � � 	 � � �� 	 � ˙� 	 ( � 	 � � � � ��� �5� � �	�+� �
$�T� � � ˙� 	 � 8 � � � � � � � � � ��� � � �� � � ˙� � ( � � �<� ��� �5� � �	�+� �
��!� � � 8 � � ��� � � 	 �O� ��� � 	 �
˙�A($� � � 8 �


�� � � � �Z� �5� � � sin � 8 � � 	 � �5� � � cos �

8 5
�

# � �
� � � � #%� � � � �5� � �	�\#1� �
 � #D�!� � � #1� sin ���\# � �5�

8 5
�

# � �
� � 	 � #1� � � � �5� � �	�\# ���
 � #1�!� � � #%� cos � �=# � �5� � �

˙� ( �


 � � � 	 � �5� � � sin � ��� � � � �5� � � cos �

8 5
�

# � �
� � � � #\� � � � �5� � ���\#D���
 � #D�T� � � #%� cos � �=#+� �5�

� 5
�

# � �
� � 	 � # � � � � �5� � ��� # � � 
 � # �T� � � # � sin � � # � �5� � �� � � . 8 � �

� � ˙�
 � ( � . 8 � �5 � � � � � � � 8 � � � � � � �5� � ��� � � ��
 � � � � � � � � � � �+�� � �5 � � � � � � 8 � � � � � � �5� � ��� � ���
 � � � ��� � � � � � ���� � � . 8 � �
� � ˙�
 � ( � . 8 � �5 � � � � � � � 8 � � � � � � �5� � ��� � � ��
 � � � � � � � � � � �� � �5 � � � � � � 8 � � � � � � �5� � ��� � ���
 � � � ��� � � � � � ���,
( �N� � ; � � ˙��
 � #�( � #%� � � 8 �=#%� � � � �5� � ���\# � ��
 � #T� ��� #1� � � � �

˙���E( ��� �,
(B.0� � � �1� � ; *�(�� � � # � ��� ��� � � # 8 � � � 	 K � #\� ��� � ��� � �5� � ����� ��
��T� � � ˙��� � ˙� 	 �T�!�,
(B.0� � ; *�( �=# � � � � � # 8 � � � ��� 8 � � � #%� � � � �5� � ���\#D���
 � #1�!� � � #%�8 � � � #1��� � � � � � �5� � ��� � �	� � � ��
 � � � ��
 � � �!� � � � �!� � � � �!�T�,
( �N� � ; *�( �=# � ��� � � # 8 � � � ��� 8 � � � #%� � � � �5� � ���\#D���
 � #1�!� � � #%�!� �
(26)

The actuation system is given by

�
� � � � ( �

� � � �)( � , �� � � �  � � �)( � 5 � � �)( min

� *N� , �� � �
(27)

with parameter , � . The control
�

is modelled as a combined speed-up and brake
assembly. It brings up a torque, which is distributed only on the front wheels in the
case

� ��* (speed-up) and on all four wheels in the case
� Y * (slow down). For

the following calculations,
�

is chosen in such a way that the velocity of the car
remains nearly constant during the manoeuvre, e.g.,

� ( � * % � ' . The reason for
this is that the considered manoeuvre, i.e., the double-lane-change manoeuvre, con-
ventionally is driven at constant speed. Hence, � � is the only control variable and
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Figure 1. Components of an automobile

prescribes the angular velocity of the steering wheel. Due to the restricted steering
capability of the driver ��� is bounded by L ���CL04 � % � � � � � ' .

The double-lane-change manoeuvre is a standardized manoeuvre in the automo-
bile industry, compare Zomotor [15]. The driver has to manage an offset of � � � % � '
and afterwards he has to reach the original track, see Figure 2. Of course, the driver
has to avoid a collision with the marking cones.

&	')(+*-,�.

/0/21

3 *5476 8-9 *
:<;0=+> 6 ?�@A8-&0?7*

BDC
BFE

Figure 2. Measurements of the track and boundaries G<H and G # (dashed)

This task can be reformulated as an optimal control problem, wherein the dy-
namics of the vehicle are given by (26). The required observation of the marking
cones results in two state constraints in (29) given in terms of piecewise defined
polynomials � � � � �'��� (lower boundary) and � � � � � ��� (upper boundary) as globally
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continously differentiable functions of the
�

-position of the car’s centre of gravity,
compare Figure 2. Finally restrictions to the initial and final position of the car form
boundary conditions. Initial conditions are chosen as follows.

� ��� � � ( � �C* % � 'Q� � ��� �%�)( .#% � 'Q�
�N��� � � ( * % � � � 'Q� � ��� � �)( * % � � � 'Q�� ��� � � ( * % � � � 'Q� � � ��� � �)( * % � � � � � 'Q�

� 	 ��� � � ( * % � � � � � 'Q� � � ��� � �)( * % � � � � � 'Q�
����� � � ( * % � � � 'Q� � ��� � �)( � � % � � � 'Q�
� � ��� � � ( * % � � � 'Q� �
 � #\��� � �)( � � � � �� � �S,
(/.C� � � �D� � � �

(28)

The width of the car is � (B.�� � % � ' . Hence, the optimal control problem considered
is

Minimize

����� � � ���&���C�T� � �
�C� � � (�*+� ��� free,

subject to DAE system (26) with initial conditions (28) �� ��� � � 8 ����� � �)(�*+�� � � � ���C�!�'��� 8��
� 4 �<���C� 4�� � � � ���C�!�'����� � � �L � �CLC4 �

�

(29)

The free terminal time � � is used as an additional optimization variable in (NLP ����� ).
The quantity

� �	�C� 8 ���	�C� is called track angle. Thus, the boundary condition
� �	� � � 8

����� � � ([* ensures that the track angle at final time � � is zero, which means that the
car moves parallel to the boundaries of the test-course. Without this condition we
might get solutions where the car at final time ��� ends up in a position that does not
allow to continue the drive without violation of the boundaries for any � � ��� . Please
note, that the objective is to minimize the steering effort which corresponds to a
rather comfortable driver. In Gerdts [8] alternative objective functions are discussed.

The double-lane-change manoeuvre can be understood as a model for a jink
caused by a suddenly occurring obstacle on the road. Hence, the offset � to be
managed depends on the behaviour of the obstacle. It is desirable that the driver is
able to respond to various situations, i.e., various offsets � in Figure 2, in real-time.
The optimal control problem depends on the offset � illustrated in Figure 2 and
thus can be understood as an parameter perturbed optimal control problem. Figure 3
illustrates the nominal solution for ���^( � � � % � ' and the real-time approximation
for the perturbed parameter value ��( � � � % � ' . Please note that the computational
effort to calculate the real-time approximations, ,
(B.0� � � �D� � �
� # ������� � # ��� �&� 8 �

� #� � � �G� �&� �G���O� �&�T� � � ����� � � � ��� �&� 8 �
� �� � � �G� � � ����� � ���T� (30)

consist only in three basic operations and therefore the computational time can be
reduced to a few nanoseconds, if the time during the motion of the car is used to
calculate the needed real-time approximations.

The control approximation together with the nominal control is depicted on the
left side of Figure 4. The sensitivities � �

�
� �	�C� � � � with � �� � � �&#D� � �&� � � � �� � �G��� � , , (
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.0� � � �D� � � are shown on the right hand side of Figure 4. Finally Figure 5 confirms
the excellent conformity between the real-time approximation of the control and
the exact optimal control for the perturbed system. The nominal terminal time is
calculated to � � �G� �&��( � � �����	� # , while the sensitivity of the terminal time yields� � �� � ��� � �)( * � * � � . � � .

5 CONCLUSION

A method for real-time optimization of perturbed optimal control problems with
differential-algebraic equation systems is investigated. The nominal solution of the
optimal control problem is computed numerically by a direct shooting approach.
Besides stability, ill-conditioning and stiffness problems within the numerical in-
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Figure 5. Optimal perturbed control and real-time approximation of the control for parameter� : � > Z * ,.-

tegration of DAE systems, the calculation of consistent initial values during the
iterative solution process is a main problem. For a special class of DAE systems
consistent initial values are computed by use of Newton’s method.

A sensitivity analysis of the nominal solution allows to state first order real-time
approximations for the state and the control. The suggested methods are used to
optimize a jink of an automobile in real-time, if an obstacle suddenly occurs on the
road. In addition a new method is proposed to compute consistent initial values in
real-time.

REFERENCES

1. K. E. Brenan, S. L. Campbell, L. R. Petzold: Numerical Solution of Initial-Value Prob-
lems in Differential-Algebraic Equations. Classics In Applied Mathematics 14, SIAM,
Philadelphia, (1996)

2. C. Büskens, Real-Time Solutions for Perturbed Optimal Control Problems by a Mixed
Open- and Closed-Loop Strategy. This volume.

3. C. Büskens and H. Maurer, Sensitivity Analysis and Real-Time Optimization of Para-
metric Nonlinear Programming Problems. This volume.

4. C. Büskens and H. Maurer, Sensitivity Analysis and Real-Time Control of Optimal Con-
trol Problems Using Nonlinear Programming Methods. This volume

5. C. Büskens, M. Gerdts: Numerical Solution of Optimal Control Problems with DAE
Systems of Higher Index. Proceedings of the workshop “Optimalsteuerungsprobleme in
der Luft- und Raumfahrt” at Greifswald, SFB 255: Transatmosphärische Flugsysteme,
München, (2000)

6. S. L. Campbell, C. W. Gear: The Index of General Nonlinear DAEs. Numerische Math-
ematik 71 (1995)

7. C. W. Gear: Differential-Algebraic Equation Index Transformations. SIAM Journal on
Scientific and Statistical Computing 9 (1988) 39–47

8. M. Gerdts: Numerische Methoden optimaler Steuerprozesse mit differential-algebra-
ischen Gleichungssystemen höheren Indexes und ihre Anwendungen in der Kraft-



128 C. Büskens, M. Gerdts

fahrzeugsimulation und Mechanik. Bayreuther Mathematische Schriften 61, Bayreuth,
(2001).

9. H. Hinsberger: Ein direktes Mehrzielverfahren zur Lösung von Optimalsteuerungsprob-
lemen mit großen, differential-algebraischen Gleichungssystemen und Anwendungen
aus der Verfahrenstechnik. Dissertation, Institut für Mathematik, Technische Universität
Clausthal, (1997)

10. B. Leimkuhler, L. .R. Petzold, C. W. Gear: Approximation Methods for the Consistent
Initialization of Differential-Algebraic Equations. SIAM Journal on Numerical Analysis
28, (1), (1991) 205–226

11. L. R. Petzold: A Description of DASSL: A Differential/Algebraic System Solver. Report
Sand 82-8637, Sandia National Laboratory, Livermore, (1982)

12. H.-J. Risse: Das Fahrverhalten bei normaler Fahrzeugführung. VDI Fortschrittberichte
Reihe 12: Verkehrstechnik/Fahrzeugtechnik 160 VDI-Verlag, (1991)

13. F. Uffelmann: Berechnung des Lenk- und Bremsverhaltens von Kraftfahrzeugen auf
rutschiger Fahrbahn. Dissertation, Fakultät für Maschinenbau und Elektrotechnik, Tech-
nische Universität Braunschweig, (1980)

14. P. Wiegner: Über den Einfluß von Blockierverhinderern auf das Fahrverhalten von Perso-
nenkraftwagen bei Panikbremsungen. Dissertation, Fakultät für Maschinenbau und Elek-
trotechnik, Technische Universität Braunschweig, (1974)

15. A. Zomotor: Fahrwerktechnik: Fahrverhalten. Vogel Buchverlag, Stuttgart, (1991)



Real-Time Solutions of Bang-Bang and Singular
Optimal Control Problems

Christof Büskens, Hans Josef Pesch, and Susanne Winderl
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Abstract In many applications of optimal control some or all of the control variables appear
linearly in the objective function and the dynamical equations. Therefore, the optimal solu-
tions may exhibit both bang-bang and singular subarcs. Unfortunately, the theory for linear
problems of that type is not as well developed as for regular problems, in particular with re-
spect to second order sufficiency conditions. This results in serious problems in developing
real-time capable methods to approximate optimal solutions in the presence of data perturba-
tions. In this paper, two discretization methods are presented by which linear optimal control
problems can be transcribed into nonlinear programming problems. Based on a stability and
sensitivity analysis of the resulting nonlinear programming problems it is possible to com-
pute sensitivity differentials for the discretized problems, by means of which near-optimal
solutions can now be computed in real-time for linear problems, too. The performance of one
of these methods is demonstrated for the optimal control of a batch reactor.

1 INTRODUCTION

Little is known on second order sufficiency conditions for optimal control problems
with control variables entering linearly the objective function and the constraints;
see for example Milyutin and Osmolovski [9]. However, all indirect methods for
real-time optimal control based on a stability and sensitivity analysis of the optimal
control problem, see Maurer, Augustin [8] in this issue and the respective methods
cited therein, require that second order sufficient conditions are fulfilled. On the
other hand, linear optimal control problems are of utmost importance for practical
applications. For example, most of the optimal control problems in robotics are of
this type. The thrust in aerospace optimal control problems usually enters the model
equations linearly. In chemical process control generally most if not all of the control
variables appear linearly.

Moreover, the computation of optimal solutions for linear control problems suf-
fers from the existence of both bang-bang and singular subarcs which are difficultly
to detect in general. Therefore, only direct methods are competitive for the solution
of complicated and large scale problems. Hereby, the linear optimal control problem
is transcribed into a nonlinear programming problem, whose solution may allow a
prediction on the switching structure, i. e. the sequence of bang-bang and singular
arcs. Unfortunately, the discretized problem may be of high dimension. On the other
hand, the discretized problem is no longer linear so that a sensitivity analysis of the
nonlinear programming problem based on second order sufficiency conditions for
the discretized problem can now be performed. This circumvents the lack of an ap-
propriate theoretical background for the optimal control problems themselves and
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leads, in practice, to real-time capable methods for the online computation of opti-
mal solutions also for linear control problems.

In this paper, two new methods of transcribing linear optimal control problems
into nonlinear programming problems are presented. First, the optimal switching
structure must be guessed from a solution of a direct method such as NUDOC-
CCS [1,2]. Based on the obtained switching structure, nonlinear programming prob-
lems can be formulated where the lengths of the subarcs are the most important
discrete optimization variables, cf., e.g., Fraser-Andrews [6, 7].

In case of singular subarcs, one has additionally to take into account the dis-
cretized control variables on the singular subarcs as optimization variables. Obvi-
ously, this transcription method leads to considerably lower dimensional nonlinear
programming problems. Moreover, the resulting two direct methods are more ro-
bust and allow, as the original method NUDOCCCS, the computation of sensitivity
differentials. By means of these sensitivity differentials real-time optimal control of
linear control problems can now be practically performed, despite the theoretical
lack of the knowledge on sufficiency conditions.

In Section 2 parametric optimal control problems with linear controls are dis-
cussed. In Section 3 the two methods for the solution of the transcribed linear op-
timal control problems are described. The optimal real-time control approach for
linear optimal control problems is then presented in Section 4. Section 5 is devoted
to a complicated optimal control problem from chemical process control, whose op-
timal solutions possesses bang-bang and singular subarcs as well a state constraint
for an algebraic state variable.

2 PARAMETRIC OPTIMAL CONTROL PROBLEMS WITH LINEAR CONTROLS

We consider parametric control problems with linear controls subject to control and
state constraints. Data perturbations are modeled by a parameter � � ��; ( ��	
� .
The following parametric control problem of Mayer form will be referred to as
problem OLCP � p �

Minimize �����Z��� �'��� ( � � � ��� � �!�'���
subject to ˙� ���C� ( � � � �	�C�!� ��� 8 ����� ���C�!�'���  � ���C�!�

� ��� � � ( � �G���!�� � � �	���\�!� ��� ([*+�

+� � ���C�T� ��� 8 � ��� ���C�!�'���  � ���C�54�*+� �O� % � � ������'Q�

� 
 # K 4 � ���C�54 � 
 � � � � � % � � ������'
(1)

Herein � ���C�J�[� K denotes the state of a system and � ���C�W�[� 
 the control in a
given time interval % � � ��� � ' . The final time � � is either fixed or free. The functions� ;��5K > ��? � , �A;��5K > ��? �5K , � ;��5K > ��? �5K�� 
 , 
E;��5K > � ? � � ,� ; � K > �B? � � � 
 , � ; � ? � K and

� ; � K > � ? � 
 , *I4 � 4 �
, are

assumed to be sufficiently smooth on appropriate open sets. The admissible class of
control functions is that of piecewise continuous controls. For reasons of simplicity
let the number of control variables be � ( . . Note that the formulation of mixed
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state-control constraints 
+� � �	�C�!� ��� 8 � � � ���C�!�'���  � ���C��46* in (1) includes pure state
constraints 
+� � ���C�T� ��� 4B* , too. Non autonomous control problems can be reduced
to the autonomous problem OLCP � p � in a standard way.

Suppose the optimal solution ¯� ���C� of OLCP � p � and hence the switching struc-
ture with bang-bang and singular arcs are known. Then there exist sets�


 # K ; ( H �O� % � � ��� � ' L ¯� ���C�)( � 
 # K P+��

 � � ; ( H �O� % � � ������' L ¯� ���C�)( � 
 � � P+�� � # K � ; ( H �O� % � � ������' L � 
 # K Y ¯�O���C�)( ;�� � # K � �	�C�ZY � 
 � � P+� (2)

such that the optimal control ¯� �	�C� is given by

¯�O�	�C�)(
�� � � 
 # K � �O� � 
 # K �
� 
 � ��� �O� � 
 � ���
� � # K � ���C�T���O� � � # K � � (3)

Note, that in this paper singular subarcs are understood as arcs, where ¯� ���C���' � 
 # K ��� 
 � � % , which includes both the usual singular subarcs from the minimum
principle and constrained subarcs. Without restriction let � � ( * . Let

� � ��� and let
� # , ,�(B.C� � � �D� � � , denote the switching times, at which the optimal control switches
from ¯� �	�C�)( � 
 # K to ¯� �	�C�)( � 
 � � or vice versa or enters or leaves a singular sub-
arc. Finally let � 	�� ; ( ��� . Let

� � # K � 4 � � be the number of singular arcs in the
set

� � # K � . Define a function �$;ZH .0� � � �1� � � P�� ? H .0� � � �D� � � # K � P , which maps the
switching interval number , of the 	 ’th singular arc to 	 , � � ,D� ( 	 . Then OLCP � p �
can be replaced by

Minimize � � � � � �'��� ( � � � 	 � �Q.0�!�'���
subject to �S,�( .0� � � �D� � � �
˙� #=� � �1(

�� � � � � � # � � �T� ��� 8 �
� � # � � �!� ��� �� 
 # K � �	� # � � # � � �T� , �
� � � � � ���� � � 
 # K �� � � � # � � �T� ��� 8 �
� � # � � �!� ��� �� 
 � � � ��� # � � # � � �!� , �
� � � � � ���� � � 
 � � �� � � � # � � �T� ��� 8 �
� � # � � �!� ���  ��� �G# � � � �T� �	� # � � # � � �!�\, �
� � � � � ���� � � � # K � �� � ��*N� ( � �����T�� # � � ��*N� ( � #=� .0�T�-,�(/.C� � � �1� � � �[.0�� � � 	 � �Q.0�!�'��� ( *N�


+� � #\� � �T� ��� 8 � � � #\� � �!�'���  ��� �G# � � � �546*N� if � � ,D�5�^H .C� � � �D� � � # K � PT�

(4)

with the new normalized time variable � on the interval % *+�D. ' , the new state variable� �	�C� ; ( � � � ���C�T� � � �D� � 	 � ���C�T� 
 � � K 	 � and new control variable� ���C�E( � � � ���C�!� � � �D� � 	 � ���
	 ���C�T� 
 � � 
 	 � ���
	 . The conditions � # � � � *+� ( � #\� .C� ,,
( .0� � � �1� � � � . , in (4) are called matching conditions. Note, that the simple box
constraints � 
 # K 4 � �	�C��4 � 
 � � in (1) can be neglected in (4), since the switch-
ing structure is assumed to be known as well as the sequence of unconstrained and
constrained subarcs due to the inequality constraints in (1).
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3 SWITCHING INTERVAL OPTIMIZATION

Suppose that a sufficiently dense grid

� #�( � � 8 �S,+�[.0� � ( �S, � .0� ���7,�( .0� � � �D� � � ����; ( � � � � �� � � . (5)

with
� � grid points is given. Then a discretized solution ¯6( � ¯� � � � � �D� ¯� 	�� � �� 
 	 � of (1) is obtained by the solution of Eqs. (10)–(13) in Büskens and Maurer [5]

of this issue. The values ¯� # denote approximations for the optimal control functions
at the discrete times, ¯� � � # � � ¯� # . Hence a discrete approximation of the sets in (2)
immediately follows�̃


 # K ; ( H � # �VH � � � � � � � � 	�� P L ¯� # ( � 
 # K PT��̃

 � ��; ( H �&#$�VH � � � � � � � � 	 � P L ¯�5#�( � 
 � �CP ��̃ � # K � ; ( H � # �VH � � � � � � � � 	�� P L � # ]� �̃ 
 # K � � # ]� �̃ 
 � � P � (6)

Based on the investigations in Büskens and Maurer [5] of this issue, two methods
for discretizing the transformed optimal control problem in (4) are presented in the
following. Let

� �� � * be a positive integer and for notational simplicity choose
equidistant mesh points �

�� , 	 (B.0� � � �D� � �� , for the new time interval % *+�1. ' with

�
�� ( � 	 � .0��� � � 	5(/.0� � � �1� � �� ���

� ; ( .� �� � . � (7)

Denote approximations of the values � � � �� � and � � � �� � by �
� ( � � � � � � � �1� � � 	 � � 
 and

� � ( � � � � � � � � � � � 	 � ��� 	 � 
 .

3.1 Switching Interval Optimization by Direct Discretization

Define an optimization vector

O; ( � � � � � � � �1� � �	 � � �
� � � � �D� � 	 �� � � � � � � �D� � 	 � � 
3�A� � K � � � 	�� � 
 	 � ��� 	 	 �� (8)

where � �# approximates the initial values � �# � � #\� *+� , ,$( .0� � � �D� � � , for the diffe-
rential equations and � # , ,�(B.C� � � �D� � � , approximates the interval lengths �1# � � # � �

in (4). Calculating the state variables by a standard integration method for the diffe-
rential equations in (4) gives the relations

� #%� � � ( � #%� � � &�'��� ( � #%� � � � �# � ��� �G# � � � #1� ���!� if � � ,D�5�3H .0� � � � � � � # K � PT�� #%� � � ( � #%� � � &�'��� ( � #%� � � � �# � � #1� ���!� else �

(9)
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Herewith the optimal control problem (4) can be approximated by the perturbed
nonlinear optimization problem

Minimize ����&�'��� ( � � � 	 � �Q. � ��'���T� ���
subject to � � � ( � �����!�� �# � � ( � #=� . � �� ���!� ,�(/.0� � � �D� � � � .0�� � � 	 � � . � &�'���!� ��� ( *+�

� 	��# � �
� # ( ���\�


+� � #\� � �� � �� ���!�'��� 8 � � � #\� � �� � ��'���T� ���  � � � ��# � 4I*+�
for 	5(B.0� � � �1� � �� and ,�(B.C� � � �D� � � ; if � � ,D�5�3H .C� � � � � � � # K � P �

(10)

Herein the constraint
� 	 �# � �

� #
( � � guarantees, that the sum of the lengths � # of the
switching intervals equals the terminal time � � . Note, that formulations in (9) and
(10) include different integration methods for the state variables as well as different
approximation method for the control variables.

3.2 Switching Interval Optimization by Sequential Integration

For a further reduction of the number of optimization variables and constraints one
can take into account the special structure of the differential equations in (4). Define
an optimization vector

O; ( � � � � � � �D� � 	 �� � � � � � � �D� � 	 � � � � 
 �A� 	 � � � � 
 	 � ���
	 	 �� (11)

where again � # approximates the interval lengths �1# � � # � � in (4) for ,
(/.0� � � �%� � � �. . The value for � 	 � can be calculated from � 	 � ( ����� � 	 � � �# � �
� # . Similar to the

previous section the state variables can be calculated by standard integration meth-
ods, if the matching conditions in (4) are evaluated recursively for ,
(B.0� � � �1� � � �E. ,
e.g., � � � � � ( � � � � � �� ��� ( � � � � � � �����T� ��� � � � � � � � ���!�� # � � � � � ( � # � � � � � �� ���)( � # � � � � � � # � . � �� ���!� ��� �G# � � � # � ��� � (12)

In this case an approximation of the perturbed control problem (4) is given by the
perturbed nonlinear optimization problem

Minimize ����&�'��� ( � � � 	 � �Q. � ��'���T� ���
subject to

� � � 	 � � . � &�'���!� ��� ( *+�

+� � #\� � �� � �� ���!�'��� 8 � � � #\� � �� � ��'���T� ���  � � � ��# � 4I*+�
for 	5(B.0� � � �1� � �� and ,�(B.C� � � �D� � � ; if � � ,D�5�3H .C� � � � � � � # K � P �

(13)

The discretization methods transform the multi-stage process (with continuous
matching conditions for the state variables) into a parallel treatment of the stages
in (10) or a sequential treatment in (13). A good initial guess for all optimization
variables in (8) or (11) can be obtained from the optimal solution of the discretized
control problem (1) by the methods described in Büskens and Maurer [5] of this
issue.
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The decrease of the number of optimization variables when transforming an
optimal control problem into a switching interval optimization problem is schemat-
ically shown by means of Figure 1.

umax

umin

� � � � �
�

�
� � � ���

Transformation

umax

umin

� � � � �
�

�
� � � ���

Figure 1. Transformation into a “Switching Interval Optimization Problem” (discrete opti-
mization variables are marked with boxes)

4 REAL-TIME OPTIMIZATION OF SWITCHING POINTS AND SINGULAR

CONTROLS

Formulations (10) and (13) result in a perturbed nonlinear optimization problem

min� � �S�� ���!�
subject to "$#%���� ��� ([*+�=,
(B.0� � � �1� �32 �"$#%���� ��� 4�*+�=,
( �32 8 .0� � � �1� � 9 � (14)

with optimization variables  as defined in Eq. (1) of Büskens and Maurer [4] in this
issue. Please remember, that the optimal solution ¯ includes both the length of the
switching intervals and an approximation of the singular controls. Suppose, that for
the reference parameter � (���� an optimal solution

¯+�G� �&�)( � ¯� � � �G� �&�!� � � �D� ¯� �	�� �G� � �!� ¯� � ��� �&�T� � � �D� ¯� 	 �� �G�����!� ¯� � ��� �&�T� � � �D� ¯� 	 � ��� �&�!� 

of (10) resp.

¯N�G�����)( � ¯� � ��� �&�!� � � � � ¯� 	 �� ��� �&�T� ¯� � ��� � �!� � � �D� ¯� 	 � � � ��� �&�T� 

of (13) is given. Under the assumptions of Theorem 3 in Büskens and Maurer [4]
we can apply Formulae (21) in the same article and obtain values for the sensitivity
differentials of the interval lengths � # , and the singular controls �

�
, for example in
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case of (13),

� � �� � ��� � � ( �  �� � �G� � � � � 
 	 � ���
	 ��	�� � 	 (B.0� � � �1� � �� �� � #� � ��� � � ( �  �� � �G� � �5��� 	
� � �3( � � � # K � �
�� 8 ,D� ,
(B.0� � � �1� � � � .0�

(15)
In the sequel we restrict the discussion to the switching interval optimization by
sequential integration as described in Section 3.2. In case that an actual deviation
from � � is detected, real-time approximations ˜� #\�G��� and ˜�

� �G��� of the switching
interval length � # �G��� , ,�(B.C� � � �D� � � , and the singular controls �

� ����� , 	 (B.0� � � �1� � �� ,
can be obtained by its first order Taylor approximation

˜� #%�G��� ( ¯� #\��� �&� 8 � � #� � �G����� ��� ��� � �!�7,
(B.0� � � �D� � � �[.0�
˜� 	 � �G��� ( � � � 	 � � ��

# � �

˜� #%�G���!�
˜�
� �����)( ¯�

� �G��� � 8 � � �� � ��� �&� ��� � � � � �
(16)

Additionally, real-time approximations ˜� # �G��� of the switching points � # , , (.0� � � �D� � � � . , are obtained by

˜� � �G��� ( ˜� � �����!�
˜� � �G��� ( ˜� � � � �G��� 8

˜� � �G���!� 	5( � � � � �D� � � � .0� (17)

where ˜� � �G��� are taken from (16). If required, a free final time ��� can be handled as
an additional optimization variable in (14). Its sensitivity differential � ���� � �G� � � can
similarly be calculated. In this case, � � in (16) is replaced by its first order Taylor
approximation ˜� � �G����( ¯� � ��� �&� 8 � ���� � ��� � � ��� � � � � . A further improvement of the
real-time approximations in view of optimality and admissibility can be achieved
by applying the mixed open- and closed-loop strategy in Büskens [3] in this issue.

5 EXAMPLE

Now, a model of a batch reactor (cf. [11]) describing a certain chemical reaction

� 8 � ? 	
and its side reaction

� 8 	 ? �
is considered.
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Both reactions are assumed to
be strongly exothermic. Thus, di-
rect mixing of the entire necessary
amounts of the reactants must be
avoided.
Reactant

�
is charged in the re-

actor vessel, which is fitted with a
cooling jacket to remove the gen-
erated heat of the reaction, while
reactant � is added. These reac-
tions result in the product

	
and

Feed of �

Cooling

���������������������������������������������������������������������������
���������������������������������������������������������������������������

���������������������������������������������������������������������������
���������������������������������������������������������������������������

Figure 2: Batch Reactor

the undesired byproduct � .

Let

�V( � � �O� � � � � � � � � � �E� 	 � � 	 � � 	 � � 	 � � � � �QR � 
 �A� � �

(18)

denote the vector of state variables, where
� #%���C� [mol] and

	 #\�	�C� [mol/m  ] stand
for the molar holdups and the molar concentrations of the components, where ,O(
� � ��� 	 ��� , respectively. �V���C� [MJ] denotes the total energy holdup,

� � �	�C� [K] the
reactor temperature and finally R �	�C� [m  ] the volume of liquid in the system. The
two dimensional control vector is given by

��( ��� � � !V� 
 � � �

(19)

where � � ���C� [mol/s] controls the feed rate of component � and !3���C� [kW] controls
the cooling load. The objective is to determine a control � that maximizes the molar
holdup of the component

	
. The performance index

�����)� �M� ��� ( � � � ��� � �T� ���)($� � � ��� � � (20)

has to be minimized subject to

˙� �I($� R  � � �
˙� � (�� � � R �� � �

8 � � �T�
˙� � (6R &� � � � � � �T�
˙� � (6R  � � �

˙�B(�� �  � ��� ! � R &� � �  � � �
8 � �  � � � �T�

(21)

with the reaction rates � � , the corresponding Arrhenius rate constants � � of both
reactions ( 	5(B.0� � ):

A
8

B ? C ; � � ( � �  	 �  	 � with � � ( � �  � � � ��� 

	 �
C

8
B ? D ; � � ( � �  	 �  	 � with � � ( � �  � � � � � 

	 � (22)
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and functions F ( �
# � � � � � � � �

� #  � # � � ( �
# � � � � � � � �

� #  � # �
� � ( .

�  � � F 8�� ���  � 
 2 � 8 F � � 8 �  �  � � �
	 # ( � #R �7,�( � � ��� 	 � ��� R ( �

# � � � � � � � �

� #
�=# �

(23)

In addition a state constraint � ���	�C�54 � � * (24)

has to be fulfilled, while the two linear controls are bounded by

* 46� � ���C�54B. * and *E4 !3�	�C�54/. *C*0* � (25)

Finally, initial values

� � ��*N� ( #=*0*C*+� � # ��*N� (�*+�),�( ��� 	 ����� �V��*N� (B. � � � � * # # � (26)

and a terminal condition � � ��� � �)( � *0*+� (27)

have to be fulfilled. The reaction and component data appearing in (21) and (22) are
given in Table 1. Perturbations � in the control problem (18) – (27) are modeled by
deviations in the activation energy

�
� ( �

� ����� for reaction 1. The nominal value is
chosen as ���O( . .

Abbr. Reactions Meaning� : � � : Z��� *��	���
 H� � - 0.008 0.002 pre-exponential Arrhenius constants� � * � - 3000 � � 2400 activation energies��� � *������
 H - -100 -75 enthalpies

Abbr. Components Meaning
X : � X :�� X : � X : �� V * ��
 H� � - 11250 16000 10400 10000 molar density of pure component X� V * �����
 H� � - 0.1723 0.2 0.16 0.155 � ���

���
coefficient of the linear ( � V ) and
quadratic (  V ) term in the pure
component specific enthalpy
expression

 V *!�����
 H"� � � - 0.000474 0.0005 0.00055 0.000323

Table 1. Reaction and Component Data

The reference temperature for the enthalpy calculations is given by
� 
 2 � ( � #��

[K] and the specific molar enthalpy of the reactor feed stream is given by � � ( � *



138 C. Büskens, H. J. Pesch, and S. Winderl

[kJ/mol]. Several calculations show that for increasing � � the switching structure
gets more and more complex. However, the total profit of

� � ( L ��� �)� �M� ���!L ) is nearly
constant if � � is greater than a certain value ( � � � . 
0*0* ) (cf. Figure 2). This is why
we have chosen ���$(B. 
=*C* for the following considerations.

2000

2400

2800

3200

3600

500100015002000250030003500

� � � / 0 � 0 ��� �

Figure 3. The performance index w.r.t. different � �

The ODE system has been used for a numerical computation of the optimal
solution by the direct method NUDOCCCS [1, 2] with

� � ( � � 
 discrete points
of time. A fourth-order Runge-Kutta-method due to England, cf. [10] and a linear
interpolation of the controls are used. The nominal solutions for the optimal controls
of the original optimal control problem are depicted in Figure 3. The solution in
Figure 3 yields the switching structure given in Table 2.

By applying the transformation into a switching interval optimization problem
as described in Section 3.2, a perturbed nonlinear optimization problem of form (13)
is obtained with

� � ( � ,
� � # K � ( . . An initial guess of the optimization vector 

in (11) can be obtained from the solutions in Figure 3.
Note that the number of grid points

� �� can be chosen much smaller than the
number of grid points

� � for the code NUDOCCCS, because of the considerably
lower dimension of the switching interval optimization problem. Since the terminal
time ��� is fixed the NLP(p) problem in (13) consists of � 8 � �� ( � � � � � � �  and the
discretized singular control) optimization variables.

The transformed problem is solved with
� �� ( 
 � discrete points of time and

yields the nominal solutions shown in Figure 4. Note, that the optimal controls
calculated by the transformed problem (13) coincide with the solutions given in
Figure 3. The switching intervals are calculated to � � ( � # � � 
 � , � � ( � � � * # ,
�  ( �N. # � � 
 which yields �

5 ( . 
0*0* � �  # � �
� # � �=*�# � � . Herewith the switching

points can be calculated to � � ( � # � � 
 � , � � ( � �=* � � � , �  ( ��#0* � 
 .
Note that the singular subarc �	� � ���! �� splits into two arcs of which the first very

short one is not caused by the state constraint, whereas the second one does. Next, a
sensitivity analysis, cf. [4, 5], is performed to calculated the sensitivity differentials
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Figure 4. Optimal control variables � � and
�

* < 0 � � � * � � 0 � � � * � � 0 � 
 � * � 
 0 �A@ < <�-
� � max max singular min
�

min max max max

Table 2. Corresponding switching structure, � � : �A@ < <

of the switching intervals � � �� � ��� � �T�&,
(B.0� � � �1� � , in (15):� � �� � ��� � � (�* � � .� � � � � �� � ��� �&�)( ��.�� ��
 ���N� � �  � � ��� �&�)( .�� � *�� � � (28)

The sensitivity differentials of the controls on the normalized time interval % *N�D. ' are
given in Figure 5. We suppose that the overshooting at the beginning of the interval
in the left part of Figure 5 results from additional singular subarc in the optimal
solution which is not detectable with

� � ( � � 
 by the NUDOCCCS approximation.
However note, that the prediction of the additional subarc may be detected by a
higher discretization. In the right part of Figure 5 the sensitivity differential of the
singular subarc is depicted on the relevant interval % * � * � �!* � � � ' to indicate that the
sensitivity differential on the singular subarc is small but by no means equal to zero.

Finally, we apply Eqs. (16) to obtain real-time approximations of the switching
intervals and the singular control. Table 3 shows the quality of the real-time ap-
proximations for different perturbations ���VH .�� *0*+.0�1.�� *N.0�D.�� *��0P . The values

� �2 
�
 ; (� � � ��� � ˜
� � � � �� � � � � , ,W( .C� � � �D� � , denote the relative errors between the “exact” solution

� # �G��� and the real-time approximation ˜� # �G��� from (16) for the switching intervals,
resp. the maximal relative error in the singular control. Here, � #=����� is obtained by
the switching interval optimization method. For reasons of comparability the values� � 2 
 
 ; ( � � � ��� � � � � � � �� � � ��� denote the relative errors between the “exact” perturbed solu-
tion and the nominal solution for the same variables. In addition the relative errors of
the switching points �D# , ,
(B.0� � � �1� � , as calculated by Eq. (17) are given in Table 3.
The CPU-times for the real-time approximations on a Pentium III 550MHz PC are
about � � � &. * � l seconds for each of the variables in (16). Neglecting data transfer
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Figure 5. Optimal state variables and the behaviour of the state constraint

the obtained CPU-time for each variable in (16) do also apply for large scale prob-

lems. Note that for perturbations � �
� .�� *�� the second switching interval vanishes.
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Figure 6. Sensitivity of the control � � on the singular arc (left) and the relevant part of that
(right)
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Table 3. Quality of the real-time approximations for different perturbations

6 CONCLUSION

In this paper, new transcription methods for linear optimal control problems are
presented which allow the computation of sensitivity differentials despite the miss-
ing second order sufficiency conditions for linear optimal control problems. Hence,
real-time optimal control becomes, in practice, also possible for the important class
of linear control problems. Moreover, the new transcription methods yield also ro-
bust solution methods for linear control problems if the correct switching structures
are known. In the future, the automatic detection of bang-bang and singular subarcs
by use of optimality conditions must be improved. For this purpose, approxima-
tions of the adjoint variables are to be taken into account, which can be obtained by
NUDOCCCS, too.
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Abstract In the last years air traffic density has increased all over the world. This calls
for new tools to support the overworked controllers in the air traffic control centers. In this
article an approach to compute optimal feedback-controls in realtime will be described. As
a prerequisite a previously computed flight path is needed. Because of unforeseeable events
like delays or environmental influences the controlled planes will leave this path in almost
any case. Therefore it is necessary to update the computed trajectory to adapt it to the present
conditions. To get the updates for the controls the known nominal trajectory and the actual
state of the controlled object is used. The new idea is to not only adapt the controls, but
also the reference path in every correction step. This yields an increase in robustness but
on the other hand this raises the computational efforts. To reduce the time needed a parallel
algorithm has been developed.

1 FORMULATION OF THE AIR TRAFFIC CONTROL PROBLEM

Because of the major increase in air traffic, automatic guidance systems to support
the air traffic controllers are very interesting research objects. Tools for this kind
of tasks would be especially helpful at large airports where a lot of aircraft have
to be controlled every day. As an example for the developed algorithm a special
flight phase is investigated where the planes must descend from their cruise altitude
to a target altitude from where the final landing approach is started. The nominal
starting position of each aircraft is defined by the flight plan, the final positions
depend on the landing sequence. The criteria used to find this order are not a part of
the considered problem. For the algorithm it is assumed that the boundary conditions
are known. In the descend phase aircraft coming from different directions have to be
merged and necessary passing maneuvers have to be carried out to obtain the desired
landing sequence. Also further restrictions have to be met: first the aircraft must
stay on fixed air routes given by waypoints. Also the locations where the descend
begins respectivly ends are prescribed. As a second point the aircraft must observe a
given minimum distance condition. This means that around each aircraft a security
envelope exists which no other one is allowed to enter. The term conflict is used
if this condition is violated. The problem shown in this article is derivated from a
problem mentioned in [1].

The following equations describe the dynamical system of the aircraft move-
ment:
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˙� # �	�C�)( � # �	�C� cos � # �	�C� cos
� # ���C�!�

˙� # �	�C�)( � # �	�C� cos � # �	�C� sin
� # ���C�T�

˙ # �	�C�)( � # �	�C� sin � # ���C�!�
˙� #\�	�C�)(�� #%���C�T�
˙� #%�	�C�)( 3 #%�	�C�!�
˙
� #\�	�C�)(�D#%�	�C�!�

(1)

with , as the aircraft-number ( . 46,M4 �
;
�

: total number of aircraft), � as the time
and

Name Type Description
� # state down range� # state cross range # state altitude� # state airspeed
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Figure 1. Waypoints and air routes from Denver ARTCC
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The previously mentioned air corridors are defined through waypoints. Figure 1
shows the situation for the Air Route Traffic Control Center (ARTCC) of Denver.
Depicted are the standard waypoints and the top-of-descent points for some cruise
flight altitudes (looking from SMITY to PONNY respectively LYMIN the sequence
is for the altitudes 8.839 km, 9.449 km, 10.058 km and 10.668 km). The flight
direction on these corridors is from the points RAP, ONL and OBH to SALTY. The
equations to be met for the point PONNY respectively a top-of-descent point are

� # �	� # ����� 	�	 � �)( � ��� 	�	 �

� #%�	� # ����� 	�	 � �)( � ��� 	�	 �

\#%�	� # ����� 	�	 � �)(6 ��� 	�	 �

(2)

�+#%��� # � 
 � � � � ( � 
 � � �
� #=��� # � 
 � � � � ( � 
 � � �
 # ��� # � 
 � � � � (6 
 � � �
� # ��� # � 
 � � � � (�*

(3)

The additional equation for the flight path angle inhibits a change in altitude
before reaching the top-of-descent point (the waypoint SALTY is the bottom-of-
descent point and satisfies the same conditions (3)).

As mentioned above there is another type of restriction to look at. Aircraft have
to stay outside a security envelope of each other. This envelope is chosen as an
ellipsoid around each plane. The mathematical representation is an inequality of the
following form for every pair of aircraft with numbers , and 	 , respectively:

F # � �	�C� �6* (4)

with

F # � �	�C�Z; ( �
� # ���C��� � � ���C��

� � � 8 � � # �	�C��� � � ���C�� 	 � � 8 �  # �	�C���  � ���C�� � � � � . (5)

According to the ARTCC Denver the values for
�
� and

� 	 are 9.26 km and for� � it is 0.61 km.
For optimality purposes a minimal-energy approach is used. Therefore the goal

is to control the planes with as little acceleration or steering as possible. This leads
to a performance index of the form

.� � ���
�

K�
# � �

�
�+# � #%���C� � 8 � # 3 #%�	�C� � 8 
%# �1#\���C� � � d � (6)

which has to be minimized. � # , � # and 
 # are weight coefficient and can be chosen
for each aircraft individually.

2 MATHEMATICAL BASICS

In this section the mathematical background for the air traffic control problem from
section 1 will be introduced. The notation used here is following the notation used
in [2].
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The mathematical problem is to find state functions x �	�C� and control functions
u ���C� to minimize the functional

��� x � u �'���)( � � x ��*+�T� x � � �T� ��� 8 � 

� � � � x �	�C�!� u ���C�T� ��� d � (7)

with respect to the following conditions

ẋ ���C�)( � � x ���C�!� u ���C�T� ��� for a.e. � � % *+� � 'Q� (8)
� � x � *+�!� x � � �!�'���+(�*N� (9)F � x ���C�T� ���54�* for all � � % *+� � ' � (10)
� # � x ��� # �T� ��� (�* � .O4I,�4 	 �T� (11)

with

x ;�% *N� � '&? � K � u ;�% *+� � '&? � 

and given functions

� ;=� K > � K > ��?@�$� � � ;=� K > � 
 > �A?@�$�
� ;=� K > � 
 > ��? � K �

� ;=� K > � K > �A? � 
 � . 4 �<4 ��� �
� #�;=� K > ��? � ��� � � F ;=� K > �A?@� � S

and the parameter-vector � � � � � � . The parameter � describes the actual
inflight-situation.

While
�

is fixed, the interior points � # are subject to the minimization. For sim-
plicity in the following considerations 	 is set to 1 and (11) changes to

� � x �	� I �T� ��� (6* � (11 � )

Another simplification is the assumption that each state constraint
F � has only

one junction point � V
� � .

For � fixed there are several ways to deal with such a problem (see for exam-
ple ( [13])). Here the so called indirect method is considered. Using this method
the constraints are coupled directly to the cost functional (see [3]). An important
aspect is the order � of the state constraints. For the definition of the order of a
state constraint and the functions

F � � x � u � see [2]. The augmented Hamiltonian and
augmented function

� � are

�V� x � u ���Z��� � � ���); ( � �+� x � u �'��� 8 �
�

� � x � u � ��� 8
�
� � F � � x � u �'���!� (13)
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� � � x ��*+�T� x �	� I �!� x � � �T� ���+; ( � � x ��*+�T� x � � �!�'��� 8 �
�

T
� � x � *+�!� x � � �!�'���

8
�
�

I

� � x ��� I �!�'��� 8 �
S�

� � �

� V
� � F � � x �	� V

� � �T� ��� � (14)

Optimal control theory (see for example [4]) gives necessary conditions for an
optimal solution of this problem. An example is the differential equation for the
adjoint variable � along the optimal solution:

˙� ���C�)($� � � � x � u ���Z��� � � � � (15)

These conditions lead to an multipoint boundary value problem for the state
variable x and the adjoint variable � . The desired control variable u can be computed
from x and � . To solve this problem for fixed � in the offline case various methods
are available (e.g., [10], [11], [12]).

3 FEEDBACK CONTROL

For realistic problems the computation of an optimal trajectory in advance (for ex-
ample for � ( * ) is only one part of the control process. In almost any case the
controlled object will leave the precalculated path. So it is absolutly necessary to
update the controls to adapt them to the present situation (� ]( * ). If a measure-
ment of the state shows a deviation from the nominal trajectory an update has to be
executed. The perturbation can be represented by modified initial values in (9):

x ��*N�)( x �
8

dx � � (16)

Now the original problem with the new starting values has to be solved online.
The base of the approach discussed in this article is the assumption that the solutions
of the nominal and the perturbed problem are close together. Therefore the influence
of the perturbation parameter � to the solution of the problem is investigated (see [2]
for details). The meaning of this parameter in the example problem is the deviation
of the actual state of an aircraft to the precomputed nominal state [7]. Then it can be
shown that the nominal solution can be embedded into a family of solutions of the
perturbed problem [14,15]. An expansion of the equations for the perturbed problem
about �I(B* and the following neglection of terms of higher order is leading to an
approximation for the necessary conditions of the actual problem. Some problems
arising in the intervals between the nominal and the actual junction point can be
solved by the use of a so called comparison trajectory [5]. As a result we get linear
equations for the variations

� x ���C� ; ( �
x� � ���C�!*N�  ��� � � �	�C�Z; ( � �� � �	�C�!*+�+T���

� u �	�C�Z; ( �
u� � ���C�!*N� T��� � �

� �	�C�); ( � � � � �� � ���C�T*+� T�
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and the differentials

d � I ; ( � � I� � ��*+� T��� d� I ; ( �
� I� � ��*+� T���

d � V
� � ; ( � � V

� �� � ��*+�+ ��� d� V
� � ; ( �

� V
� �� � ��*+�+ ���

d� T ; ( �
� T� � ��*+�  � �

Supposing that the perturbated problem has a solution with the same switching
structure as the nominal solution the variables defined above are solution of a ho-
mogeneous multipoint boundary value problem (BVP). Since the starting conditions
and the terminal conditions are uncoupled in the reference problem it is possible to
write the BVP as �

˙� x
˙� � � (������C� � � x� � � � (17)

� 0

�
� x � *+�
� � � *+� � ( �

� x �
� � � � � � # � � x �	� # �

� � ��� # � � ( *+� � T

�
� x � � �
� � � � � � (�* � (18)

For simplicity further linear equations for the mentioned differentials were omit-
ted. The switching points �D# in (18) are the collection of the interior and the junction
points.

To solve this BVP a multiple shooting approach is used. Therefore the interval% *+� � ' is divided into subintervals by gridpoints � � , 	 (B.0� � � �1� � :

*J( � � Y � � Y    Y � 
 ( � � (19)

With this approach � � . initial value problems (IVP) of the form

˙� �	�C�)(��3���C� � �	�C�!� � � � � �)( � � (20)

have to be solved. The solutions � �	� � � � � of this set of IVPs are a solution of the BVP
(17) – (18), if and only if the continuity conditions

� � � � � � � � � �)( � � � � � 	 (B.0� � � �1� � (21)

and the boundary conditions

� � � � ( �
� x �
� � � � � (22)

� # � ��� #%� � � �)( *+� � #$� % � � � � 	 8 .0�!� (23)� 
 � 
 ( * (24)



Parallel Feedback Control 149

are satisfied. Assuming that there exists only one switching point �%# , this leads to
the following linear system of equations:
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� (25)

with � � � ; ( � � x � � � � � � *+�
*+� � from equations (22) – (24) and
�

as the identity.
Denoting with "���� � 	 � the unique fundamental solutions of (17) with "�� � � � 	 �O( �

the submatrices " � and
�" are defined by

" � ; (B"J� � � � � � 	 �!� �"I; (/"���� # � 	 � �
A generalization to more than one switching point can be found in [5]. It is

obvious that the matrix
�

depends only on the nominal solution and not on the
measured perturbation. Therefore

�
can be calculated off-line as soon as the nom-

inal solution is known. To get an approximation for the perturbed problem only
matrix multiplications have to be done. Because of the linearization used in this ap-
proach the correction step must be carried out repeatedly. This procedure is already
examined in literature [16–19].

A disadvantage of this method is that each correction step has the same nominal
trajectory as the base and the point (time) of the correction step is fixed before
the run of the dynamical system. If the deviation of the measured actual state of
the observed system is too far from the nominal path, this method cannot be used
anymore. The idea to avoid this problem is to use the obtained information from the
previous correction step to update the nominal solution. Provided that a correction
step has been done, informations about an approximation of the actual solution are
available on the gridpoints � � . With this a new comparison function x

9
, �

9
can be

defined piecewisely on the intervals % � � � � � � � � ( 	 ( .C� � � �D� � � . ) by using the
differential equations (8) and (15) and the initial values

x
9 � � � �)( x K � � � � 8 � x � � � �T�

�
9 � � � �)( � K � � � � 8 � � � � � �
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(the notation x K and �+K is used for the nominal solution). Because of the lineariza-
tion error the comparison function is discontinuous at the gridpoints:

�
x
� � ; ( x

9 � � �� ��� x
9 � � �� �!� (26)� � � � ; ( �

9 � � �� ��� �
9 � � �� � (27)

for 	�( � � � � �1� � . Since the computed updates are only approximations for the
actual solution, it is obvious that the updated trajectory is not an exact solution of
the original optimal control problem. But that does not reduce the possibility to use
it as a new base for the next correction step. Looking at the linearization used in this
method it can be seen that some terms cannot be dropped anymore. As an example
the boundary condition (9) is used in the following. Linearisation of this condition
and neglecting the terms of higher orders gives

� � x 9 ��*N�!� x 9 � � �T� 8 � x � � � % *N� � ' � x � *+� 8 � x � 
 � % *+� � ' � x � � � 8 � � % *+� � ' �3(�* � (28)

Now the first term does not disappear like it would in the case of using an exact
solution. In equation (28) the partial differentials � x � � � , � x � 
 � and � � will be evalu-
ated at the approximated nominal solution �

9 ��� 9
. Doing this for the whole problem

leads to a linear multipoint boundary value problem similar to (17), (18) but with
different right hand sides. Using the same multiple shooting approach as above the
resulting matrix equation is
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� (29)

The letter “c” used as a high index is a hint that the submatrices depend on the
comparison function.

4 PARALLEL ALGORITHM

The method described in the previous section can be easily translated into an algo-
rithm:



Parallel Feedback Control 151

read nominal trajectory
initialize comparison solution as nominal solution
while actual time Y � do do

read perturbation
compute

� 9
solve linear equation system

� 9
�
9 ( 
 9

update actual control
update comparison solution

end while
Because of the dependency of the matrix

� 9
on the comparison trajectory,

which is changed in every correction step,
� 9

cannot be calculated off-line. This
means the computational effort to get solutions for the perturbed problem is rised
by a large amount. This is a major drawback for a realtime algorithm. But now the
choice for a multiple shooting approach is of advantage because it is known that this
method is well suited for parallelisation (see [8] or [9]).

Taking a closer look at the matrix
� 9

shows a possibility for parallelisation. If
the segmentation

" 9
� � � *       *

* " 9
� � � . . .

...
...

. . .
. . .

. . .

. . .
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. . . *
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� � *    * �W# �" *    * � 


of the matrix
� 9

is used, the submatrices in each of the L-shaped parts can be calcu-
lated independently from the others. Only information from the reference trajectory
in the corresponding interval is needed.

Going back to the algorithm it can be seen that it uses a precalculated nominal
trajectory as the first comparison solution. In the loop the perturbation is read and
as long as the comparison solution is to poor for this perturbation update-vectors
will be calculated. In the loop the computation of

� 9
and the new comparison

solution can be done in parallel, while the linear equation system must be solved
serially. To minimize the serial part of the algorithm each process can carry out some
preparations on its submatrix " 9� (e.g., a LR-decomposition). Since the computation
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� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � �

Figure 2. Boundary Problem

of
� 9

is by far the most time consuming part of the algorithm this serial section
is not a big problem (but some additional computational time is lost due to the
necessary synchronisation of the parallel processes in this phase).

An additional problem which arises through parallelisation is shown in Figure 2.
Suppose that for some value of � there is a switching point in the intervall % � � � � � � � '
where an adjoint variable jumps (see top left picture). In the flow of computation
(changing parameter value � ) this point might move into the intervall % � � � � � � � ' .
What we want to get is shown in the top right picture. But straight forward compu-
tation yields the situation shown in the picture beneath. So the result of such moves
are more jumps on the multiple shooting gridpoints, which may lead to more iter-
ations und thus to a longer computation time. The algorithm compensates that by
monitoring the motion of the switching points and modifying the starting values if
necessary to get the wanted result.

For the reference problem mentioned in the first section, Figure 3 shows some
typical flight paths. At the moment up to 10 aircraft are calculated, but considering
clearness of the figure only 3 are printed. The steep descent is a consequence of the
different scale for the variable  . Figure 4 shows the behaviour of the algorithm. The
dotted line is the nominal trajectory. At �<( �C*C* [sec] or � ( 
 � * [sec] respectively
a deviation is measured and the algorithm has to correct the flight path. It can also
be seen that the various state variables remain within reasonable bounds so that no
additional state constraints are needed. However they could be included if necessary.
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Figure 3. 3D-view of Flight Paths

The parallel feedback algorithm described in this paper has been implemented
on a multiple-instruction-multiple-data parallel computer with shared memory. A
fast data-exchange between the computational nodes has a favourable effect because
of the need to assemble the parallel computed parts of the matrix

� 9
to solve the

linear equation system.
The algorithm is implemented in Fortran90. One of the advantages over the older

Fortran77 is the possibility to allocate storage dynamically. So it is not necessary
to recompile the program if only the magnitude of the problem changes (only the
input-files must be modified).

A graphical user interface is near completion.
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Optimal Control Problems
with a First Order PDE System –
Necessary and Sufficient Optimality Conditions

Sabine Pickenhain and Marcus Wagner

Institut für Mathematik, Technische Universität Cottbus, Germany

Abstract This paper gives an overview over the results concerning necessary and sufficient
optimality conditions for optimal control problems with multiple integrals and first order par-
tial differential equations. Second order sufficiency conditions are illustrated by the problem
of minimal

�
-energy in an � -dimensional space. It can be shown by the developed theory that

a certain cone has strong minimizing properties.

1 INTRODUCTION

1.1 Historical Remarks

In the past there where many efforts to extend Pontryagins maximum principle of
optimal control theory of one independent variable to the case of multiple integral
problems. The investigations where done into two different directions

– The large theory of optimal control problems with distributed parameters, in
which one of the variables plays a distinctive leading role.

– The theory of Dieudonné-Rashevsky type problems, where the independent
variables have an equal rank.

The second kind of problems are the topic of this paper.
In 1969 Cesari [3] stated a generalized maximum principle, which is a formal ex-

tension of Pontryagins maximum principle to Dieudonné-Rashevsky type problems.
In 1969 relevant papers followed by Klötzler [12] and Rund [26]. These results use
regularity properties of the solution of the corresponding Hamilton-Jacobi-equation,
which are not fulfilled in general. In 1993 Klötzer and Pickenhain [15] proved an
� -maximum principle with canonical veriables ��� in function spaces. However, the
limiting procedure � ?-* in function spaces is not possible in general. The main
subject of the first part of this paper is to formulate assumptions for which a maxi-
mum principle can be shown with canonical variables in

	 �
.

The second part gives a general concept of duality in optimal control and dif-
ferent realizations by Fenchel/Rockafellar, Klötzler and the authors. Second order
sufficient optimality conditions are obtained by using duality results. These suffi-
ciency conditions are needed to prove stability and sensitivity for perturbed optimal
control problems, see the paper of Maurer/Augustin of this book. On the basis of
these sensibility results, perturbed solutions can be calculated in real time.
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1.2 Problem Formulation

We consider the following optimal control problem ����� with first-order partial dif-
ferential equations:

� � �)� �M� ( �
� � � ���C� � �	�C�!� � ���C�T� � � 8 �

�� � �

�
� �

� ���C��� �	�C�!� � � � �	�C� � ? Min! (1)

subject to ��� �
� � K� ��� �!� �6� � 
� ��� � �G� � � � , satisfying a.e. on � �I� 


state equations

� #�� � � ���C�)( � # � �	�C� � ���C�T�!� ,�( .0� � � �D� � , 	5(B.C� � � �D� � � (2)

control restrictions

� ���C� � U ��� 
 � U compact � (3)

boundary conditions

� ���C�)( � �	�C�!� for all �O� � ��� ,
�

compact,
� ]( Ø � (4)

and state constraints

� �	�C�5� "����C�	� � � � �	�C� � ���C�T�54I*+� for all �O�
� , �5( .0� � � �D��� � (5)

The formulation of problem � P � includes state-constrained problems of Dieudonné-
Rashevsky type if �

� ( * for all � see [3], [15], as well as state-constrained deposit
problems for � �I( * , �

� �	�C� � ���C�T�:( � � ���C� , see [15]. Convexity assumptions are
needed for the derivation of existence results as well as necessary and sufficient
optimality conditions. If these assumptions are not valid we construct the standard
relaxation (or convexification) of � P � by use of Young measures, see [24].

Our basic assumptions for � P � are the following:
(V1) We have � � �

and � Y � Y � . � � � 
 is a compact Lipschitz
domain (in strong sense, see [18]). Then functions � � �

� � K� ��� � are con-

tinuously representable, and functions � � �
� � K
 ��� � have Lipschitz repre-

sentatives on � , [1] (p.185, Theorem 5.5.).
(V2) The functions � � , �

� , � # � , � � and � are continuous w. r. to all of their
arguments; � � ���C�  � 1� , � � �	�C� 1� , � # � ���C� %� and � � ���C� %� are continuously differ-
entiable w. r. to � resp. �	��� � � for all � ��� .

(V3) � � � rca ��� � are signed regular measures on the � -algebra of the Borel
sets on � .

(V4) The set of feasible solution ���Z��� � of � P � is denoted by Z and Z is non
empty.
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We emphasize two special types of boundary conditions:

� �	� � � ( � � for fixed � �<�
� , i. e.
� ( H � �ZP � (6)

� ���C�)( � ���C� for all �O� � � � i. e.
� ( � � . (7)

1.3 Notations

We abbreviate the � -dimensional Lebesgue measure of
�

by L A L , the closure of A
by A and the actual zero element by * .

	 � � K ��� � , � K� ��� � and �
� � K� ��� � ( .W46��4

� ) denote the spaces of
�

-dimensional vector functions on � whose components
are � -times continuously differentiable, resp. belong to � � ��� � or to the Sobolev
space of � � ��� � -functions having weak derivatives up to ��� � order in � � ��� � . The

subspace of
	 � � K ��� � -functions with compact support is denoted by

�	 � � K���� � ; in-
stead of

	 � � � ��� � we write shortly
	 � ��� � . For the classical and weak partial deriva-

tives of � # by � � we use the same notation: � # � � � . The Banach space of Radon mea-
sures (signed regular measures with the total variation

� � ��� � as norm) is denoted
by rca ��� � . Due to the compactness of � , rca ��� � is isomorphical to the dual space� 	 � ��� � � � [6] (p. 265, Theorem 3) so that each linear, continuous functional on	 � ��� � can be represented by an integral w. r. to a Radon measure �6� rca ��� � . � �
�
suggests to declare the following sets:

Definition 1.

Z � (IH'J� � K 
� ��� � ^^  # � ( � # � ���C� � ���C�T� a. e. on � � �I� � 
� ��� �!��� �	�C� ���OP (8)

Z � (IH �S�� � � � � K 
� ��� � > �
� � K� ��� � ^^ \# � ( � #�� � � � � � �

� � K
 ��� �T� � L � � *=P � (9)

Z � is the set of the admissible right-hand sides of � � � .
Definition 2. (Baire classification) We call a continuous function

�
defined on the

compact set � � � 
 from * � � Baire class and write
� � B

� ��� � . The limit func-
tions of everywhere pointwise convergent sequences H � � P ,

� � � B
� ��� � , form

the first Baire class B
� ��� � ; the limit functions of everywhere pointwise convergent

sequences H � � P ,
� � � B

� ��� � , form the second Baire class B
� ��� � and so on.

Obviously, B
� ��� �
� B

� ��� ��� B
� ��� ��� � � � holds. Note that each finite function

contained in any Baire class is measurable [2] (p. 404, Theorem 4); conversely, any
measurable, essentially bounded function on � agrees a.e. with some function of
second Baire class [2] (p. 406, Theorem 5). Each Baire class is closed under (point-
wise) addition und multiplication of finite functions [2] (p. 397, Theorems 6 and 7).
For more details, [2] (pp. 393 ff).
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Defining functionals � � ; 	 � � K ��� �)?@� by

� � ���)�)( Max � � � � � �	�C� � ���C�T�!�<.O4��
4 � �
the state constraints (5) can be expressed as follows:

� � �	�C� � ���C�T�546* U � ��� � � � � ���)� 4I*+� ��(B.0� � � �1� � � (10)

2 THE MAXIMUM CONDITION AS NECESSARY OPTIMALITY CONDITION

If we prove an appropriate version of Pontryagin’s maximum principle for problems���
� , considering the inclusion Z ��� � K 
 ��� � , it seems to be necessary to take the
multipliers corresponding to (2) from the space

� � K 
 ��� � � � . However, to avoid the
difficulties in the practical handling of conditions in presence of �	�  � � multipliers
(which can be represented only by finitely additive set functions, see [29] (p. 12
f.), we propose a different way. We do not model \piecewise continuous controls"
resp. \piecewise continuous right-hand sides" of (2.2) as (equivalence classes of)�  -functions but as functions from first Baire class B

� ��� � . In [23] (p. 5, Proposi-
tion 1.6), it was shown that also \piecewise continuous" functions of several vari-
ables belong to this class. Since the class B

� ��� � coincides with the space
	 � ��� �

and, on the other hand, each �  ��� � -function admits a representation by an element
of the class B

� ��� � [2] (p. 406, Theorem 5). This setting generates an intermediate
situation which generalizes in a natural way the classical assumptions of the one-
dimensional theory. In this frame, we obtain as main result the following theorem.

Theorem 3. (Maximum principle with multipliers from
� 	 � � K 
 ��� � � � for solu-

tions of ����� which can be strongly varied).

Let ��� � ��� � � be a global minimizer of the problem ���
� under assumptions (V1)
– (V4). Assume that the weak derivatives � �# � � � have representatives from first Baire

class B
� ��� � . Further, let us assume:

(V5) For each active index � (i.e. � � � � � �)( * ) there exists a feasible process � � � ��� � �
with � � � � � � � � � � � � �ZY * (i.e. \ ��� � ��� � � can be strongly varied").

(V6) There is a continuous function  � in the interior of Z � (with respect to the� K 
 ��� � -norm topology) which is part of a pair �� � � � � � � Z � .

(V7) Each function �� Z � of first Baire class admits an approximation by an (every-
where) pointwise convergent sequence of continuous functions  � � Z � .

(V8) The function � �+���C� ��� S� is assumed to be convex for all ���C��� � � � K � �

and � # �
is assumed to be linear with respect to the control argument.

(V9) The control set � is assumed to be convex.
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Then there exist multipliers � � �
rca ��� � � K 
 and � � � rca ��� � , . 4 � 4 � ,

satisfying the maximum condition (in integrated form) � M � � ;
� � � � �����C� � � ���C�T� � � �	�C�!��� � �+�	�C� � � �	�C�!� � ���C�T� ' � � 8
�
# � � � � % � # � ���C��� � ���C�T��� � # � ���C��� �	�C�!��' � � # � �	�C� �6* (11)

U � ����� ; ( �
�I��� K 
 ��� �!� � ���C�5� � ^^^ � # � �  ��� �  �T�E� B

� ��� � 	

as well as the weak canonical equation � K � � ;
�
# � � � � � # � � � �	�C� � � # � �	�C�

8 �
�
��� � % � � # � ���C��� � ���C�T��� � # � �	�C� � ���C�T�
	 � � ��� � � � � ���C� � � (12)

8 � �
�
�
� � � �

�
� �	�C����� 	 � � � � � � � � ���C� � � � �	�C�

� � �
�
�
� � � �

� � ���C� ��� 	 � � ���� � � � ���C� � � � ���C� (6*
for all test functions

� � C
� � K���� � with

� L � � * . If the boundary conditions are of

type B then � K � � can be restricted on test functions
� � �	  � K$��� � . Furthermore,

the measures � � satisfy the complementarity condition � C � � ;
� � �6*N� supp � � � H � �
� ^^ � � ���C� � � ���C�T�)(�*5P
( � �

� �
� �	�C� � � �	�C�!� � � � ���C�)(�*N�<. 4 �V4 � � (13)

Proof. The proof of a corresponding theorem for relaxed problems was given in
[24]. Assumptions (V8) and (V9) garantee that identical methods used in the proof
are applicable to the problem ����� of this paper.

Theorem 3 generalizes ���������������������� !�#"���$ ’s theorem [11] (p. 207 f., Theorem 1)
for one-dimensional problems (in the normal case). Note that the general results of�%�������������������� &�#"���$ [11] (p. 73 f., Theorem 3) and '(�#)�*,+�-."�/0����������� [9] (p. 92
and 96, Theorems 3.3. and 3.6.) concerning \smooth-convex" problems in Banach
spaces cannot be applied to ����� since the differential operator in (2) maps onto a
subspace of infinite codimension in � K 
 ��� � .

3 DUALITY AND SUFFICIENCY CONDITIONS

3.1 Construction of Dual Problems

In a very general setting, a problem (D) of maximization of an (extended real-
valued) functional � over an arbitrary set S ]( Ø is said to be a dual problem to
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(P), if the weak duality relation

sup (D) 4 inf (P)

is satisfied.
Different notions of duality can be embedded into the following construction

scheme:

Step 1 The set of admissible pairs � �)� �M�)(6�� Z is represented by the intersection
of two suitable non-empty sets

�
� and

�
� .

Step 2 For an (extended real-valued) functional ˘ ; � � > S �:? � the equivalence
relation

inf� � Z

� �S�� ( inf� ��� � sup� � S
� ˘ �S�� F �

holds.
Step 3 Assuming � �N� F �); ( inf� ��� � ˘ �S�� F � , each problem (D),

maximize �)� F �
subject to

F � S � S �
(D)

is a (weak) dual problem to (P) if�)� F ��4 � �+� F � forall
F � S � (14)

The proof of the weak duality relation results from the well-known inequality

inf� ��� � sup� � S
� ˘ ���� F � � sup� � S

� inf� ��� � ˘ ���� F � �
3.2 Fenchel-Rockafellar Duality

In the follwing sections we investigate problem ����� with boundary conditions (7)
and �

� (�* for �3(/.0� � � �%� � .
In accordance with [7], we transform (P) into a general variational problem (V):

minimize
�
� �D�	�C� � ���C�T� � ��� ���C�!� � �

subject to �3� X
(V)

where �=;��5K > �5K > �5K 
 ? � is given by

�D�	�C������� �); (
�� � inf H �&�	�C����� � � ^^ � � � with
� ( � ���C� � �=P for ���C��� �5� �
� else

and
X̄ ( �

� � �
� � K� ��� � ^^ � �	�C�5� "����C� on ¯� � � � � �)( � � � � on

� � 	
� (15)

Then (P) is called convex if (V) is convex in the sense of [7, p. 113]. In this
case both problems are equivalent [21]. The Fenchel-dual problem is obtained by
the following settings in the above construction scheme:
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1.
�
� ( �  ( ���Z��� �5� �

� � K� ��� � > � � � �� ��� � ^^ � ���C����� a.e. on �

� �	�C�5� "��	�C� a.e. on � �
� � � �)( � � � � on

� � 	 �
�

� ( � <( � �)��� �5� �
� � K� ��� � > � � � �� ��� � ^^ � # ��� ���C�)( � #

� �	�C� � ���C�T� � ���C�!�
a.e. on � �V� � (B.0� � � �1� � � ,
(/.0� � � �1� � � 	

2. S � ($� K 
 �� ��� �5�G� � � 8 3 � � (B.0� , ˘ is the classical Lagrange functional,

˘ �S�� � � ( � ���� 8 �
# � � � � # ��� � � ��S� �)� �M�!� � �#�� �

where
� S�  � is the bilinear canonical pairing over � � ��� � > � �� ��� � , [21].

By use of the Hamiltonian of (P),
� ;�� � > � > �5K 
 ? � ,

� ���C� ���	���Z( sup H��V���C��� � � � �
�WL � � � P
with

�V�	�C����� � �	���Z($� �����C��� � � � 8 �
# � � � �# � # � ���C��� � � �

the dual problem (D � ) � can be formulated as follows [21]:

maximize
� � � � � sup� � � � � � m �V�	�C����� � � ���C�T��� � � ���C� 
 � n � � �

� sup
� � X

m �
�
� � � ���C� 
 � ���C� 8 �

# � � � �# ���C� � # � � ���C� � � �$n 	
subject to � � � � � � � � K � � � 
 �

� ��� � �
3.3 Duality in the sense of Klötzler

The duality in the sense of Klötzler is realized by the following settings in the gen-
eral construction scheme [19]:

1.
�
� and

�
� are chosen as before.

2. S � ( �
� �



� � � � , and ˘ is an extended Lagrange functional,

˘ �S�� F � ( � �S�� 8 �
# � � � � # � � � � #

� � S� �)��� �T� F # � � � S� �)� � �
where

� S�  � is again the bilinear canonical pairing over � � ��� � > � �� ��� � .



166 S. Pickenhain and M. Wagner

By use of Gauss’ theorem, the dual problem (D � ) � reads as follows, [14]

maximize
�
�
�

F � � � � � � �!� � � � � � � � � �
subject to

F � S � �
S � ; ( � F � S �

^^ 
�
� � �

F �� � �	�C����� 8 � ���C� ��� F � �	�C�����T�W4 * a.e. on
� 	 �

where
� � %� is the exterior unit normal vector to

� � .
In this way we can characterize minimizers of (P) in terms of solutions of the

Hamilton-Jacobi inequality or of the Hamilton-Jacobi equation. Since classical solu-
tions of the latter equation may fail to exist, on the one hand technics were developed
to construct generalized solutions of this equation (viscosity solutions [16], gene-
ralized solutions involving the Clarke generalized gradient [4] or lower Dini deriva-
tives [28]). On the other hand, optimization techniques for parametric problems in
finite dimensional spaces are used to minimize the defect in the Hamilton-Jacobi
inequality and to get sufficient conditions for (local) optimality [20, 22, 30–32].

3.4 Duality in Measure Spaces

We study problem (P) under class-qualification without state constraints:

Definition 4. The class-qualified problem � �
� B
� is given by problem � �
� where

each � �)��� �5� Z admits one representative �N#�� � � � B
� ��� � .

The duality for ����� B � in the sense of Pickenhain/Wagner is realized in the case

that � �
� has a minimizing sequence in
	 � � K ��� � > B

� � K 
 ��� � , see [25]. We use the
following setting in the general construction scheme:

1.
�
�O(IH � �)��� �5� �

� � K
 ��� � > � 
� ��� � ^^ �+#�� � � � B

� ��� �T��\# � � B
� ��� �T�

\# � ���C�)( � # � ���C��� �	�C�!�T� U:� ,D� 	 �!�
� �	�C�)( � �	�C��U � � � P �

�
� (IH � �)��� �5� �

� � K
 ��� � > � 
� ��� � ^^ �+#�� � � ���C�)( � # � �	�C� � ���C�!�U
� ,D� 	 �%U �O� � PT�

2.

S � ( �
rca ��� � � K 
 �

� � �)� �M���M� ( � ���)� �M� 8 �
# � � � � �

�+#�� � � ���C��� � # � �	�C� � ���C�!� 	 � � # � �	�C� � (16)

Let the problem ����� given and assume that all assumptions of theorem 3 are
satisfied. Assume furthermore that

, � � � � � � K 
 ��� ��]( Ø �
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Then it can be shown by a direct estimation that the following problem � ��� 

is dual to each for the problems ����� and ����� B

� , see [25]

inf� � � � � � X
�

� � ���Z��� � 8 �
# � � � � �

�+# � � � �	�C��� � # � ���C��� �	�C�!� 	 � � # � �	�C���A? Max !

�6� Y � ( �
rca ��� � � K 
 �

3.5 Sufficient Optimality Conditions

First and second order sufficient optimality for global minimizers can be derived by
means of duality. In the general concept, � � � � � � ��� Z is a global minimizer of (P)
if � ��� � ��� � �)( inf� ��� � sup� � S

� ˘ ���� F � ( max� � S
� inf� ��� � ˘ �S�� F �

and it exists an
F � � S with� �N� F � �)( max� � S

� � F � ( max� � S
� � �+� F � �

Following the concept of Klötzler, these equations are satisfied if there is a finite
decomposition of � into strongly Lipschitz domains � � � � � �D� � � such that

F � �
C

� � K$� � #1�+X 	 � � � with

¯� #:( HD���C��� ��L � � ¯� #D� �:� "J�	�C� P (17)

and

a) the Hamilton-Jacobi inequality
� ���C� ���Z; ( �

�

F � �� � ���C� ��� 8 � �	�C����� F � � ���C��� �+�546* on
� # (18)

b) the Hamilton-Jacobi equation
�
�

F � �� � ���C��� � ���C�T� 8 � �	�C� � � ���C�!�T� F � � �	�C� � � �	�C�!�+� ( * on � (19)

and
c) the maximum condition

� ���C��� � ���C�T�!� F � � ���C� � � ���C�T�+�)( �V���C��� � ���C�T� � � �	�C�!� F � � ���C� � � ���C�T�+� a.e. on �
(20)

are fulfilled. From conditions a) and b) follows that � � ���C� must be a global maxi-
mizer of the parametric optimization problem

maximize
� �	�C�����

subject to �:� "����C� (P) �
with parameter �:� � # . For this last problem (P) � first and second order sufficient
optimality conditions can be derived with the quadratic settingF � � ���C� ���)(�� � �	�C� 8 � � 
 �	�C��� ��� � ���C�+� 8 �

� � � � �
� ���C�+� ! � �	�C��� ��� �

� �	�C�+� (21)
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in the dual problem (D � )  , where

� � � C
� � K � �3#1�NX 	 � � K � � � and ! � � C

� � KNK � � #D�NX 	 � ���
are symmetric.

The ideas, mentioned above, can be used for identifying strong local minimizers
of (P) too. In this case

�
is to be replaced by

��� ( � X H ���C� ��� ��� K � � ^^ ����� � �	�C� �$Y 	0� � � � P � (22)

see [20,22,30–32]. The second order condition for (P) � yields a definiteness condi-
tion for a Riccati-type expression which generalizes the known theory of conjugated
points in the calculus of variations in one independent variable.

We formulate a second order sufficiency result for the problem ����� with the
following additional assumptions:

(A1)
� �	�C� S� is continuously differentiable on

� � ��� � ���C�T� for each �@� ¯� # � ,I(.0� � � �1���M� ,
� � � � � �	�C�!� (IH �E��� K L � ��� �

� �	�C� �O4 � P (23)

(A2) grad
� � ���C�  � is continuous on ¯� � ��� � ���C�T� .

(A3) grad
� � ���C�  � is locally Lipschitz on ¯� � ��� � �	�C�!� for all � � ¯� # �S,�(B.C� � � �D���M� .

(A4) The set-valued mapping

���C� ���J? � � grad
� � �	�C�����T�

is closed and locally bounded on ¯� � .
(A5) � � �	�C� S� are twice continuously differentiable on ¯� � ��� � �	�C�!� , �5( .0� � � �D��� .
(A6) (LICQ) is fulfilled on ¯� , i.e. the vectors

H grad
� � � �	�C� � � �	�C�!��L �V� �

���	�C�=PT�
�
�+���C�<; ( H �V� H .0� � � �1� �:PNL�� � �	�C� � � ���C�!�J( *5P �

are linearly independent for all � � ¯� .

Proposition 5. Assume that the functions
�

in � �
� � , as well as � � � � � �D� ��� in the
state constraints satisfy the conditions (A1)–(A6). Moreover, let � � � ���C�!��� ���C�T� be a
stationary solution of ����� � , i.e., for ,
(B.0� � � �D��� let

grad
� � � �	�C����� 8 ��� � �

� � �	�C� � � ���C� ���+� � � � � � � � ( * (26)

with � � ���C� � *+� � � ���C��� � �	�C� � � ���C�!�J( * on ¯� # � (27)

If each matrix of the set� � �� � ���C��� � ���C�T� 8 �� �	� � � � � � � �	�C� � � �� � � ���C� � � ���C�T� (28)

is negative definite on

� � �	�C�Z; ( H � � � � L � 
 grad
� � � �	�C� � � ���C�!�)( *+� ��� � � ���C� P (29)
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with
� � �	�C�Z; (IH ���VH .0� � � �D���:PTL � � �	�C� � *=P � (30)

then � � ���C� is a strong local maximizer of ����� � .
Proof. See [20].

Using this result for the parametric problem � �
� � , we can formulate now sufficiency
conditions for the problem ����� .
Theorem 6. Let � � � ��� � � be feasible for the problem � �
� and let the functions� � � �A( .0� � � �D� � � and � � � 	5(B.0� � � �1� ��� , as well as the matrix functions ! � � � (.0� � � �D� � � be chosen in such way that for

�
and � � � ��( .0� � � �D��� assumptions

(A1)–(A6) of proposition 4 are satisfied. Moreover if

� � �� � ���C� ( grad
� � � ���C� ��� � �	�C�!� 8 ��� � �

� � ���C� � � ���C� ���+� � � � � � � � (31)

with � � �	�C� �6*+� � � ���C��� � �	�C� � � �	�C�!�)(�* on ¯�3#D� (32)! �� � ���C� % � �� � �	�C��� grad	 �
� �	�C� � � �	�C�!� � �	�C�!��')(�* on ¯� # � (33)

hold and each matrix
� �	�C� ,

� �	�C�5� � � �� � ���C� � � ���C�T� � ���C�T� 8 ! �� � ���C� 8 � � � 	 � � �	�C� � � ���C�!� � ���C�!��! � ���C�8 ! � �	�C� � �

	 � � � �	�C� � � ���C�!�'� ���C�!� (34)8 ! � ���C� � �

	 � 	 � � �	�C� � � �	�C�!�'�$�	�C�!��! � ���C�8 �� �	� � � � � � � �	�C� � � �� � � ���C� � � ���C�T�
is negative definite on � � �	�C� for all �[� ¯� , then ��� � � � � � is a strong local mini-
mizer of the problem ����� .
Proof. See [20].

We apply this second order sufficiency conditions to a well known problem in cal-
culus of variations.
Example ( The problem of minimal � � energy ) It is well known that the one-
dimensional variational problem

�
� � �)�3(

��
� � ���C� � � . 8 L grad � � ���C�QL � � � � ? Min � (35)

leads to rotationally symmetric minimal surfaces bounded by two coaxial circles.
Fixing the length of the curve this problem can also be formulated as follows: What
are the curves, connecting two given points and having the lowest center of gravity?
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In this formulation also the
�

-dimensional analogue of the problem make sense:
Which surfaces with fixed boundary conditions minimize the potential energy

� � � �)�3( �
�
�
� ���C� � �Q. 8 L grad � � ���C�QL � � � ��� (36)

In the case �^(�* this is the problem of minimal surfaces which was widely investi-
gated, e.g., in [10, 17].

We study of the problem for � � . and
� � . . The essential property of this

multidimensional variational problem is the weak ellipticity of the integrand for ���. . Because of this weak ellipticity we can not expect that the solutions are analytic
and therefore an essential question is in which cases the (non-smooth) solution of
the corresponding Euler-equation

�
� ���C�)(

� �� �[. % � �

�
8    8 �

�

K ' � � �

(37)

minimizes the functional (36) under fixed boundary conditions

� � � �)(
� �� �[. � � � � � � (38)

where � ; ( H �^���5KML � �

�
8    8 �

�K 4 �
� P . Precisely we formulate the following

problem (P):

� � ���)�3( �
�
�
� ���C� � �Q. 8 L grad � � �	�C�QL � � � �I? Min! (39)

with respect to ��� �
�

 ��� � with

� ���C��� * on ¯� ��� K � (40)

� � � �)(
� �� � . � � � � � (41)

This problem was treaded by Schoen, Simon, and Yau [27] and Dierkes [5] in the
class of functions of bounded variations with the following results:

A. For � 8 � Y � 8 � � the extremal (37) has no minimizing properties [27].
B. For � 8 � � � 8 � � the extremal (37) is weak locally minimizing, i.e., the

second order variation of the functional (36) is positive, see [5].
C. For �$� � � � � � and � 8 � � � or for �$� .0� � � �

and � 8� � � the
extremal (37) is a global minimizer of (P), see [5].

An open question was, if the extremal (42) has strong local minimizing properties
for � 8 � � � 8 � � . Using Theorem 5 we prove the following propositions:

Proposition 7. For � ( .0� � � 
 the solution (35) of the Euler - equation is a
strong local minmizer for (P) in ¯� .

Proposition 8. For
� � � � �I8 � � � 8 � � the solution (35) is a strong local

minimizer for � �
� in ¯� � � � � *+� for each � � * .
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The conditions of Theorem 6 for a strong local minimizer for ���
� can be verified
by a suitable quadratic part ! �

in (21):! � ���C�Z; (�� � � � �)� � � ��� �

�
8    8 �

�

K � � � � � � � �

� (42)

4 CONCLUSION

It is well known from one-dimensional control theory that especially second order
sufficiency theorems are needed for the proof of stability results. Up to now for the
case of multidimensional control problems of type ����� such results can be shown
only under too restrictive assumptions. It should succeed to verify sufficiency condi-
tions which a closer to the necessary conditions and to make to difference between
necessary and sufficient optimality conditions smaller.
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Abstract Some aspects of numerical analysis are surveyed for the optimal control of the
nonlinear heat equation. In the analysis, special emphasis is on second order sufficient opti-
mality conditions. In particular, the case of pointwise state constraints is adressed. Moreover,
a numerical technique of instantaneous control type is presented.

1 CONTROL PROBLEM AND OPTIMALITY CONDITIONS

The optimal control of heating and cooling processes belongs to the core of opti-
mal control theory of parabolic equations. It covers most of the main difficulties
of this theory but is not yet overlaid by the technicalities, which are typical for the
optimization of other parabolic systems. Therefore, the study of heat control gives
also good insight in the methods for the control of other equations such as Burgers
equation [14, 23], fuel ignition models [16], Navier-Stokes equations [9, 10, 13], or
phase-field models [11, 12].

We report on some applications of control theory to the optimal cooling of steel
profiles, which has already been considered in a sequence of papers [20, 24, 30,
31]. Related issues were discussed in [5, 8]. We present the results of our applied
research in our second paper in this volume. Here, we give a brief survey on parts of
the theory of optimization in semilinear parabolic equations. In real applications to
cooling steel, the equation is quasilinear and the results of the semilinear case cannot
be applied. However, the study of semilinear problems provides good information
on the effects, which should be expected for quasilinear equations as well. To remain
simple in the presentation, we begin our short course with the following optimal
control problem:

(OC) min
� � � � �M� ( � � � 
�

�

�
�

� � ���Z���C��� � � � �)���C�T� � �
�
�
� (1)

8 � � � � �
�

� � ���)� � � � � � ���)�!� � �
� 8

� � � 
�
�

�
�
� � �)���C� � � F

�
�
�
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subject to the heat equation with nonlinear boundary condition� �� � ( � � in !V�
� ���Z�T*+� ( � � ���)� in � �� �� � ( �����)���C� � ��� � in ���

(2)

and subject to the control constraints

� � 4 � ���)���C�54 � � (3)

to be satisfied a.e. on � . Let us consider the state � as the temperature distribution in
the bounded domain �@� � K (

� ( .0� � � � in the applications), while � is the con-
trol, acting on � ( � > ��*N� � � , where

�
denotes the boundary of � and is supposed

to be of class
	 � � �

.
The control may have various meanings. For instance, it can denote the outer

temperature, it may express the intensity of cooling or heating by some surrounding
medium, and it might stand for some energy supply. Let us adopt for a while the first
view. Then we search an optimal heating strategy ¯� ( ¯�O� �)���C� such that, starting
from the initial temperature � � , the associated temperature in ! ( ��*N� � � > �
evolves in an optimal way, expressed by the functional

�
in (1).

Here, � � � � �� !V� denotes a desired trajectory of temperature, which has to
be followed as closely as possible, and � � � � ���� � is a desired final temperature
distribution. The constants �5� � are positive weights, and � � * can be interpreted
as cost of the control � . Moreover, constant bounds � � Y � � are given.

We assume � � � 	 � ¯� � . The function �B( �����)���C� � ��� � is assumed to be of
class

	 �

with respect to � � ��� � � � �

and measurable w.r. to � �)���C� � ! (the other
variables fixed, respectively). In general, � and its first and second order derivatives
must satisfy certain Lipschitz conditions on bounded sets with respect to � � ��� �
and the partial derivative of � with respect to � , denoted by � 	 , is assumed to be
nonpositive. We refer, for instance, to [3], [27]. To shorten the presentation and to
have direct access to the literature we assume for simplicity that

� 	 � �)���C� � � �M�54I* (4)

holds a.e. on ! > � �

, �
���Z���C� � � �M� , � � � �)���C� � ��� � , � � � � �)���C� � ��� � are uniformly bound-
ed on ! > � �

and uniformly Lipschitz with respect to � � � �M� on ! > � �

. Here, � � and
� � � stand for the gradient and the Hessian matrix of the real function � with respect
to � � ��� �V�/� �

. Then the parabolic problem (2) ist well-posed. The assumptions
on second order derivatives are not necessary for this. They are needed to establish
second order optimality conditions. In the sequel, we fix constants � � � 8 . ,3 � � � � 8 . and introduce the state space

� ( H � � � ��*+� � ��L � � � � � � � � � !V�T� � �� � ��� � �����!� � � *+� � 	 � ¯� � P �
For the definition of � ��*+� � � we refer to [25] and the concrete choice in [27]. �
is known to be continuously embedded in

	 � ¯!^� . Moreover, we define the set of
admissible controls � � � ( H �I� � �������L � � 4 � ���)���C�54 � � a.e. on � � P



Optimal Control of the Heat Equation 175

Theorem 1 ( [3, 27]). Let � satisfy the assumptions stated above and let a con-
trol � � � � � be given. Then the parabolic initial boundary value problem (2)
has a unique solution � ( � � �M� in � . There is a positive constant

�
such that

� � � �M� � � � ¯� � 4 � holds uniformly for all �I� � � � .The next question concerns the solvability of the optimal control problem, i.e., the
existence of a globally optimal control ¯� with associated optimal state ¯� ( � � ¯� � .
To give a practicable answer, we need an additional property of � .

Theorem 2. Suppose that

�
� �)���C� � � �M�)( � � � �)���C� � � 8 � � � �)���C� � � � � (5)

i.e., � is affine-linear with respect to � . Then the optimal control problem (OC)
admits at least one (globally) optimal control ¯� .

The well known proof relies on weak compactness of � � � in � � � ��� , because this
permits to select a minimizing subsequence of elements � K ��� � � such that � K �

¯� in � � ����� . By uniform boundedness of H � ��� K � P K � � , we can select a subsequence
of � K � �)���C�5( �
� �)���C� � K � � � � K �T� converging weakly to some function ¯� in � � ����� .
Consequently, we have w.l.o.g. � K ? ¯� in

	 � ¯!V� . The additional assumption (5) is
needed to guarantee that �
�  �  � � K � � K � � ¯�A( �
��S� S� ¯� � ¯� � so that finally ¯� ( � � ¯� �
holds.

In the numerical analysis, the consideration of global solutions is not the only
way to deal with the problem (OC). Iterates, generated by numerical algorithms, will
in general converge to local solutions only. Hence an alternative way is to consider a
triplet � ¯� � ¯�M� ¯��� that satisfies the first order necessary conditions and to ensure local
optimality by second order sufficient conditions.

Theorem 3 ( [3, 27]). Let ¯� be a locally optimal control of (OC) with associated
state ¯� ( � � ¯� � . Then a unique adjoint state ¯� ( ¯� � �)���C� exists in � � *+� � � such that
the adjoint equation

� � �� � ( � � 8 �:� ¯� � � � �T��$���)� � �N( ��� ¯� � �)� � � � � � � �)�!�T�� �� � ( � 	 � �)���C� ¯� � ¯� �1�
(6)

is satisfied together with the variational inequality


�
�

�
�
� � ¯� 8 � � � ¯� � ¯� � ¯��� � � � ¯�M� � F � ���I* U �6��� � � � (7)

This result follows, for instance, from the more general Pontryagin maximum prin-
ciple proved in [27], [3] or directly from [28]. The adjoint state ¯� is shown to be in	 � ¯!V� . Let us discuss the particular case, where � � � ( � ������ (unrestricted control)
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and � satisfies (5). Then (7) implies ¯� ( � � � �

� � ��S� ¯� � ¯� , and � can be eliminated
in (2), (6) to obtain a forward-backward coupled system of two parabolic equations
for � and � . This system might be solved, for instance, by the Newton method. It
may have multiple solutions.

One of the basic difficulties for the numerical solution is the enormous number
of variables the system has after discretization. To give an intuitive estimate for this,
assume that � � � �

is the unit square with each edge discretized by 100 node
points. Adopt the same simple discretization for the time interval ��*+� � � . Then we
have to process

� C. * � variables. For � ���  this number increases considerably.
Nevertheless, solving the optimality system (2), (6), (7) for the unconstrained

case � � � ( � ������ is one of the core procedures to solve the constrained case as
well.

Formally, Theorem 3 can be derived in the following intuitive way. Define the
Lagrange function

�:($�)� � ��� �'��� ( � � � � �M� � �
�

� � � � � � � � �
�
�
� � �

�

� � �� �$� �
� � ��� �T� � � F � ��� (8)

According to well known Lagrange multiplier rules of mathematical programming
in Banach spaces, � ¯� � ¯�M� must satisfy, together with ¯� , the relations

� 	 � ¯� � ¯�M� ¯��� � (�*
for all � � � with � � *+� (�* and

� � � ¯� � ¯� � ¯��� � � � ¯� � �I* U �I� � � � �After some transformations including integration by parts and Greens formulas,
these relations imply (6) and (7).

Assume next that ¯� � � � � , ¯� ( � � ¯� � , and ¯� satisfy the optimality system
(2), (6), (7). What condition can ensure ¯� to be optimal, at least locally? To this
end, second order sufficient optimality conditions (SSC) can be invoked. We need
for their formulation the second order Fréchet-derivative of � w. r. to � � � �M���� >� ������ ,
� � � � ¯� � ¯�M� ¯��� % � ��� ' � ( �

�
�

� � �
�
�
� 8 � �

�
� � ��S� � � � � 8 �

�

� � � �

8 � 	 	 � ¯� � ¯�M� ¯� � � � � F � ���
Theorem 4 ( [26]). (SSC) Suppose that ¯� � � � � and � ¯� � ¯�M� ¯��� satisfy (2),(6),(7).
Assume the existence of � � * such that

� � � � ¯� � ¯�M� ¯��� % � � ��' � � ��� �� � � � � � � � (9)
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holds for all �6� �� ����� , � � � satisfying the linearized equation� �� � ( � � �
� ��*+���Z�5(�*+�� �� � ( � 	 � ¯� � ¯� � � 8 � � � ¯� � ¯�M��� �

(10)

Then there exist constants 	 � *N� � � * such that the quadratic growth condition� � � � �M� � � � ¯� � ¯�M� 8
��� � � ¯�� � � � � � � (11)

holds for all �I� � � � � � ( � ��� � such that � � � ¯� � � �
 � � � Y 	 . Hence ¯� is locally

optimal in the norm of ���� ��� .
Remarks: (i) If � admits the form (5), then � � ����� can be substituted here for� ������ . This is an essential advantage, since � � � ¯� � �  � � � Y 	 requires more
or less that jumps of ¯� , if there are any, must be reproduced by � .

(ii) The second order sufficient conditions can be relaxed by considering active
sets, [26]. Then � (�* can be assumed in (10) on so-called strongly active sets.

The theory of (SSC) for problems of the type (OC) is well understood. This
refers also to the elliptic case, see [4]. The situation is much more complicated,
if state constraints are added. In the case of pointwise state constraints the theory
is widely open. For elliptic problems, satisfactory results were obtained in two-
dimensional domains � , [4], while for parabolic problems the one-dimensional case
is considered best, [26].

Let us illustrate by a simple example, where the main difficulty appears. Regard,
for instance, (OC) with the additional pointwise state constraint

� ��� � ���C��� � � ��� � ���C�54 
 U � � % *+� � ' � (12)

Constraints of this type will occur in our application to cooling steel. They are well
formulated, since the choice of � guarantees � � 	 � ¯!^� , hence the functions � � � # ���C�
are well defined and continuous on % *+� � ' . In the theory of optimality conditions, the
state constraint (12) is considered by another Lagrange multiplier � , which is a
monotone increasing function of bounded variation on [0,T]. We have to introduce
the extended Lagrange function

˜� � � � �M� ����� � ($�)� � ��� �'��� 8 
�
�

� � � � � ���C� � � � � � ���C�T� � � �	�C� �
The associated theory of first order necessary conditions is well developed, see [3],
[27]. The main difficulty in proving sufficient conditions is the appearence of mea-
sures like

�
� extending the right hand side of the adjoint equation (6). This makes

the adjoint ¯� state less regular. Therefore, in the general case we do not have the
important property �/� �����!V� , which is helpful to estimate � � � � ¯� � ¯�M� ¯��� ¯� � % � ��� ' �

with respect to � � ��� � in the appropriate norms.
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2 NUMERICAL METHODS

The numerical solution of optimal control problems for semilinear elliptic and par-
abolic equations has made considerable progress. Various methods were discussed,
and the numerical results provide essential contributions to the fast developing field
of large scale optimization. To give the reader an access to further study, we quote
[1, 2, 6, 7, 11, 12,15, 17–19, 21, 22].

Elliptic problems in two-dimensional domains � and parabolic problems in do-
mains of dimension one can be solved in short time, since the number of variables
after discretization of the problem is still moderate. If the dimension of � is larger
than one, then the solution of parabolic problems is still time consuming. How-
ever, they can be treated succesfully. For the solution of parabolic problems in two-
dimensional domains we refer to [6], [11]. One of the favorite techniques is that
of (S)equential (Q)uadratic (P)rogramming. Let us briefly describe the main idea
for the classical SQP method, which reduces the solution of the nonlinear problem
(OC) to a sequence of quadratic optimal control problems with linear equation.

Suppose that � � K � � K � � K � has already been determined. Then the next iterate� � � �M� ( � � K � � ��� K � � � is found as the solution of the linear-quadratic problem

(QP) min
� � � � � �M� % � � � K � � � � K ' 8 .� � � �� 	 � � � � � K � � K � � K � % � � � K ����� � K ' �

subject to ����� � � and� �� � ( � � �
� � �)�T*+� ( � �+���)�!�� �� � (�� 	 � � K � � K � � � � � K � 8 � � � � K � � K � � � � � K � 8 �
� � K ��� K � �

The new Lagrange multiplier � K � � is obtained from (6), where � � K � � ��� K � � � is
substituted for � ¯� � ¯�M� . Under natural assumptions, among them second order suffi-
cient conditions are most essential, this method locally converges q-quadratically to� ¯� � ¯�M� ¯��� , if considered in the infinite dimensional setting [6], [7], [29]. For instance,
the second order assumptions (2), (6), (7), (9), (10) of Theorem 4 can be used for
this purpose. For semilinear elliptic equations, the convergence analysis was pre-
sented in [32]. Discretizing the problem, various approximation errors influence the
performance of the method. Moreover, modifications of the standard SQP method
can be numerically more effective.

Our computational experience shows that the SQP method converges very fast,
i.e., only a few steps are needed to gain high precision. However, each single step
of the method can be very expensive, in particular for domains of higher dimension.
If the parabolic equation is quasilinear rather than semilinear, then the situation is
even more complicated.

Therefore, in our problem of cooling steel we did not apply the SQP method.
First we applied a method of feasible directions, [20], [24], [30]. Later, a subopti-
mal technique was implemented – a method of instantaneous control type. These
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techniques are considerable cheaper than SQP methods and have been sucessfully
applied to find suboptimal solutions in the control of fluid flows. We only quote
Hinze [13] and refer the reader to the extensive references therein. We also men-
tion [14] for the case of the Burgers equation.

As a preparation of our report on optimal cooling of steel in this volume, here we
explain the main idea of our technique for the following simplified control problem
with state constraints. Let points � # � � be given fixed, , ( .C� � � �N� and assume
that

� ( � �# � � ¯� # , where H � # P �# � � is a partition of
�

into pairwise disjoint relatively
open subsets. Moreover, consider an equidistant partition of % *N� � ' into subintervals
� � ( ��� � � � ��� � ' , ��( . �Q.0� � , *:( � �JY � � Y&  +Y � � � � Y � � ( � . Define � # � (� # > � � . The partition of

�
and % *+� � ' into subsets should not be viewed as a result

of discretization. In our application, it reflects the associated technical construction.
In cooling steel,

� # is the zone influenced by spray nozzle , , and the time interval
� �

is associated with passing the cooling segment � . The control function �I( � � �)���C�
is assumed to be constant on � # � , i.e., � ���Z���C�)( � # � on � # � . Our simplified control
problem “steel” is
(OCS) min � ��� � � � �

subject to� �� � ( � � in !V�
� ���)�!*+� ( � �+���Z� in � �� �� � ( � # � ��� �)� � � % � � � � � ' in � # � �

(13)

� � � � ��� � ��� � ��� � ��� � �54 
&� �^(B. � .C� � �
*E4 � # � 4/.C� ,
(B. �Q.0� � � �3(/. � .C� � �

In this setting, � ( ��� �)� � � is the heat exchange coefficient and � � � is the tem-
perature of the cooling fluid. We assume that � is sufficiently smooth with respect
to � � � . The main idea of instantaneous control is as follows: First minimize� ��� �&��� � � , i.e., find optimal controls ¯� # � on the short time horizon % � � ��� � ' . Next
insert � � �)��� � � as a new initial condition in (13), to optimize next the process on% � � ��� � ' . In this way, we have to solve

�
single optimal short horizon control prob-

lems with � control variables � � � � � � �D� � � � , each. However, the problems are non-
linear, since the boundary condition is nonlinear (notice that � ( �����)� � � depends
on the state � ). Even if the boundary condition would be linear with respect to � ,
i.e., �[( ��� �)� (or �[( ��� �)���C� ), the mapping � �? � is still nonlinear (bilinear),
because the product � � appears in the boundary condition of (13).

We resolve this difficulty by several manipulations. First of all, we introduce the
right hand side of the boundary condition in (13) as a new auxiliary control � , i.e.,
on % *+� � ' we put

� #=���C�Z; ( �5#\���C� �����)� � � �)���C�T� � � � � � � � �)���C�T�!� (14)
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where � #%���C� denotes the step function being equal to ��# � on
� � . From now on, we

search controls � #\�	�C� subject to the linear boundary condition� �� � ( � # ���C� on
� # �

,�( . �Q.0� � . The � #%���C� are approximated by step functions. To this aim, we consider
partitions of

� � ( ��� � � � ��� � ' into � smaller subintervals having equidistant length
�E( ��� � � � � � � � � � and define
� � � ( ��� � � �

8 � � �[.0� � ��� � � �
8 � � � ( �	� � � � � � � � ��� � � � � � �!���^(B. �Q.0� � � �5( . � .0� � �

Finally, these are the intervals, where we really apply the idea of instantaneous con-
trol. The optimization is started on

�
� � ( ��� � ��� � 8 � � to obtain optimal values

¯� # � � � , ( . �Q.0� � . Define � � � ���Z��( � � �)��� � 8 � � as the new initial temperature for
�

� � . Next the ¯� # � � are determined, and we put � � � � �)� ; ( � � �)��� � 8 � � � . Proceed-
ing in this way, linear short-time optimal control problems (OCS � � ) are solved for�V( . � .0� � , �5(B. � .0� � ,
(OCS � � ) min � � � � ��� � � �

subject to� �� � ( � � in � > � � � �
� ���Z��� � � � � � � � � ( � � � � � � � � ���Z� in � �� �� � ( � # on

� # > � � � �
(15)

� ��� � ��� � � � � � ��� � ��� � ��� � � � � � �54 
&�
3 # � � 4 � # 46*+� ,
(B. �Q.0� � �

The optimal controls of (OCS � � � are denoted by ¯� # � � . Moreover, we put

� � � � � � � �)�Z; ( � � �)��� � � � � � �T� if �5Y � ,

and

� � � � � �)�Z; ( � � �)��� � � � � � � �
It remains to define the values

3 # � � . We preselect some characteristic points
�
� # � � #

(say midpoints of
� # in some sense) and regard formula (14) at � ( � � � � � � � � � �� # �

with maximal control value � ( 8 . . This should result in the minimum heat flux
3 # � � ; (B.  ��� �� # � � � � � � � � � � �� # �!� � � � � � � � � � � � � � � �� # �!� � (16)

After having exhausted the whole interval % *+� � ' by the optimization process, we
compose the auxiliary controls ¯� # � � to suboptimal controls ¯� # � , ,V(@. � .C� � , � (. � .0� � , as follows: Motivated by (14), resolving for � # �	�C� , we define

� �� � # ( ¯� � � # � ��� � � ��+#D��� � � � � � � � �!� � � � � � � � ��+#D��� � � � � � � � �!�T�
� �� � # ( ¯� � � # � ��� � � ��+#D��� � � � � � �!� � � � � � � � ��+#%� ˜� � � � � � �!� �
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Finally, the mean values

¯� � � #
( � �� � # 8 � �� � #� �
are taken to compose

¯� � #�(
�

�� � �
� ¯� � � #
�

�� � �
� � ,
(/. � .C� � � (17)

The principle of superposition can be used to efficiently generate the problems
(OCS � � ). On

� � � , the solution � of (15) is represented in the form

� � �)���C�)( � � ���)���C� 8 �

�
# � �

� # � � � #%���Z���C�!� (18)

where � � solves the heat equation subject to
� � � � � � ( * and � � � �)��� � � � � � � � � (� � � � � � � � � �)� , while the response functions � # solve the heat equation on

� � � with
homogeneous initial condition and boundary condition

� � # � � � ( � � � # � .
We notice that � #\� �)���C� does not depend on � and � , because � #%���)���C�)(6\#\���)��� �

� � � � � � � � � holds, where, for ,
(B. �Q.0� � ,�  #� � ( �  # in � > ��*+� � �T�
\#\� �)�T*+� (�* on � ��  #� � ( � � � # � on

� # > � *+� � � �
(19)

After having solved the � parabolic problems � .�#+� at the beginning of the computa-
tions, the functions =# can be taken to define � # on all

� � � . In this way, (OCS � � ) is
given by

min

�

�
# � �

� #  # � � � � � �
subject to

�

�

# � �

� # ��%#\� � � � � ��� \#\��� � � � �!� 4 
 8 � � ��� � ��� � � � � � ��� � �D��� � ��� � � � � � �!�
3 # � � 4 � # 4�*+� ,
(B. � .C� � �

As the  # ��� � ���C� , j=1,2,3, have been determined at the beginning, only the values� � ��� � ��� � � � � � �!� � � ��� � ��� � � � � � � , and
3 # � � must be updated during the optimization

process. This drastically reduces the number of PDE solves.
The application to the concrete example of cooling steel is based on the same

type of ideas. However, we need some essential modifications since the heat equa-
tion will be nonlinear and the constraints are more complex.

The suboptimal method, despite of all its heuristics, delivered surprisingly pre-
cise results, [31].
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Abstract We consider the problem of cooling milled steel profiles at a maximum rate subject
to given bounds on the difference of temperatures in prescribed points of the steel profile.
This leads to a nonlinear parabolic control problem with state constraints in a 2D domain.
The controls can admit values from continuous or discrete sets. A method of instantaneous
control is applied to establish a fast solution technique. Moreover, continuous and discrete
control strategies are compared, and conclusions are given from an applicational point of
view.

1 INTRODUCTION

The selective cooling of steel profiles is an important part of the production process
in steel mills. Intelligent future strategies aim to combine a reduction of temperature
in the rolled profile with an equalization of its interior temperature distribution.
An accelerated optimal cooling will reduce the amount of investment in cooling
sections. Moreover, it is able to stabilize the interior structure of the steel during
phase transitions. Reducing the temperature in the profile as uniformly as possible
leads to a higher quality of the steel.

We believe that the intuition of engineers alone is not able to control this process.
The mathematical tools of optimal control theory will be helpful to find optimal
cooling strategies.

We have reported on this issue in a number of mathematical papers, for instance
in Krengel et.al. [7] or Lezius and Tröltzsch [11], where a method of feasible di-
rections was developed to solve the optimal control problem. The numerical tests
confirmed the stability and reliability of the method. However, the computing time
was high. Therefore, Tröltzsch and Unger [14] dealed with a very fast and precise
suboptimal solution method, where, after discretization, the optimization is reduced
to a sequence of low-dimensional linear programming problems. A similar problem
was discussed by Landl and Engl [9]. In contrast to the setting in [14], where the
intensity of the cooling spray nozzles can be chosen continuously, in [9] the cooling
is controlled by switching on and off the nozzles. This discrete strategy seems to be
more adequate for the technical process.

In this paper we investigate the application of continuous as well as of discrete
control strategies to the model discussed in [14]. It is not realistic to solve the as-
sociated large scale mixed integer programming problem up to the optimal solution
in the discrete case. This refers also to the continuous problem. Therefore, we de-
cided to extend the suboptimal method of instantaneous control type from the case



186 K. Eppler and F. Tröltzsch

of continuously controllable nozzles to discrete 0-1-controls. We will show that the
extension can be done in a quite simple and straightforward way:

The core of the suboptimal method of [14] consists of small scale linear pro-
gramming problems, which have been solved by the simplex method. Here, we
arrive at small scale linear integer programming problems, which are solved by
appropriate methods. Combining this main idea with some special techniques to
make the method work, we finally achieved computing times of the same order as
for the continuous control strategies. This is important to allow interactive work of
the engineer and - at least in principle - an online-control of the cooling process.

Obviously, the restriction to discrete strategies shrinks the set of feasible con-
trols. It is quite natural that integer controls are less flexible than continuous ones.
Therefore, in our numerical tests, we increased the number of spray nozzles to com-
pensate for this. However, the numerical experience shows that increasing the num-
ber of nozzles alone is not the best solution. Using nozzles of smaller size turned
out to be more helpful.

The selective cooling of steel profiles is only one of various applications of
control theory in metallurgy. Other important issues are the continuous casting of
steel, Engl, Langthaler and Mansellio [2], Grever [4], Laitinen and Neittaanmäki
[8], Neittaanmäki [12], the firing of kilns, Leibfritz and Sachs [10], or the Laser
hardening of steel, Hömberg and Sokołowski [6].

2 THE OPTIMAL CONTROL PROBLEM AND ITERATIVE SOLUTION

A cooling line consists of a certain number of cooling segments, where water is
sprayed on the surface of the hot steel profile. Each cooling segment is followed by
a zone of air cooling equalizing the developed temperature differences. The basic
scheme is shown in Figure 1.

In the cooling segments, a certain fixed number of spray nozzles is located
in groups around the profile. There can be a sequence of groups in each cooling
segment. To explain the mathematical model, let us regard one fixed cross section
� � � �

of the steel profile. We follow its run through the whole cooling line. This
causes an internal time scheme for the reference domain � . The cross section �
enters the first nozzle group of the first cooling segment at time � �3( * . Now the
surface is sprayed on by the � nozzles of the first nozzle group. After leaving this
group, � reaches the second one at time � � . (Note that there is a small difference to
the notation in [7], therein � � denotes the time for passing the first cooling segment.)
After � steps, � has passed the first cooling segment. Now an area of air cooling
follows. At time � � the next cooling segment is entered. Finally, the cross section
reaches the end of the last air cooling area at time � � ( � , where the profile has
passed

�
zones of water or air cooling.

To shorten the presentation, we rely on the following simplifications: All cooling
segments contain the same number � of nozzle groups with the same number � of
nozzles. The time for passing any single nozzle group is equal along the whole
cooling line. Moreover, the lengths of all cooling segments and air cooling areas are
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Figure 1. Scheme of a cooling section

assumed to be equal. Therefore, the time to pass an arbitrary segment is constant.
These restrictions are not necessary for the computational technique to work. We
adopt them only here to simplify the notation. The resulting discretization of the
internal time is given by

*J( � � Y � � Y    Y � 
 ( ��� � Y    Y � � ( � � 
 Y    Y � �3( � � 
 ( � � (1)

The heat conduction in axial direction is dominated by the heat exchange in � .
Moreover, the steel profiles are very long, so that we can view them to be endless.
This justifies to neglect the heat conduction in axial direction and to regard a 2D
heat equation in our reference domain � . Related to this and to the real technical
situation, we can assume that the intensity of any single spray nozzle is constant i.e.,
stationary with respect to the (outer) time.

We associate to each nozzle one part of the boundary
� ( � � standing for

its zone of influence. This leads to a partition of
�

into disjoint subdomains
� # ,,V(@. � .0� � . Denote by � � # the cooling intensity of nozzle , in the group � , � (. � .0� � � �Q, ( . �Q.0� � . Notice that this numbering covers some “phantom” nozzles in

the air cooling areas. The numbers � � # will be our control variables. In the case
of continuously controllable nozzles we assume that the constraints * 4 � � # 4 .
are imposed for all � and , . The value * stands for an inactive nozzle, while .
characterizes a nozzle spraying with maximal intensity. This implies � � # �3H *+�D. P as
the set of admissible controls, if the nozzles can be only switched in (1) or off (0).

Adopting these notations, the mathematical model for the evolution of the tem-
perature admits the following form, which is equivalent to that introduced in [7]:
The temperature � in the profile is obtained from the nonlinear heat conduction
problem


+� � � ��� � � � � ( div � � � � � grad � � in !V�
� � � � � K � ( �

# � � � � # � ��� � # � ����S� � � � � � � � � � in ���
� � �)�!*N� ( � �+���Z� in � �

(2)
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where ! ( � > ��*+� � � , � ( � > ��*N� � � , � � #V( � # > �	� � � � ��� � � , and
� � � � #D� is

the characteristic function of � � # . In this setting, � � and
� K � denote the derivatives� � � � � and

� � � � � with respect to the time and the outer normal
�

at
�

, respectively.
Moreover, the following quantities are used:

– � ( � � �)���C� denotes the temperature at �:� % *+� � ' and � � � .
�

stands for the
fixed terminal time. � is a two-dimensional domain, and � � � is the temperature
of the cooling fluid.

– � � #^��� are the control variables mentioned above. Outside the cooling seg-
ments the controls � � # are taken zero to model heat isolation in the areas of air
cooling. This is expressed by the characteristic function

� ��� � # � in the boundary
condition of (2).

– The coefficients 
 , � , and � are functions of � denoting heat capacity, specific
gravity, and heat conductivity, respectively. The function �I( ��� �)� � � models
the heat exchange coefficient. To find a good model for � is a nontrivial task.
In a simplified setting for cooling of cylindrical rods of steel, this issue was
investigated by Zurdel and Brennecke [15]. Moreover, we refer to Rösch, [13].

– Our cooling process starts with the entrance temperature � �O( � �N� �)� .
The coefficients 
&� �+� � do not have appropriate properties of smoothness and
monotonicity to show the unique solvability of the heat conduction problem. More-
over, the modelling of material changes during the subsequent heating and cooling
of the steel is still partially open. The form (2) of the heat equation seems to give
only an approximate picture of the temperature changes. Therefore, we do not dis-
cuss the question of existence and uniqueness of a solution to (2). Moreover, our
computational method will mainly work with linearized versions. For these prob-
lems, the existence of a unique solution corresponding to a given vector of controls
��( � � � #1� is clear.

The restrictions on the control variables � � # are alternatively given by

*E4 � � # 4 � � or � � # �^H *+��� � P � (3)

� ( . �Q.0� � � � ,�( . �Q.0� � , depending on wether we assume a continuous or discrete
control strategy. Here, � � ( * holds for � ( � � 	��/.0� �&�Q.0� � 	 � with 	O( . �Q.0� � � �
(air cooling) and � � (B. otherwise (cooling segment).

The main aim of the cooling process is to reduce the temperature in the domain.
Certainly, this can be expressed in various ways. In our model, the temperature
should be minimized in a selection of points � K � � ,

� ( . � .0� � , which character-
ize the hottest regions. In this way, the objective � is defined by the linear functional

��� � � ( 	�
K � �

� K � ��� K � � � (4)

with some positive weighting constants � K .
In the model developed so far, most likely full intensity of all spray nozzles

is optimal. However, this strategy is certainly wrong, since very large temperature
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differences would develop in � . This would amount to a low quality of steel and
possibly lead to large deformations of the profile. Therefore, we include a finite
number of pointwise state constraints in the optimal control problem to bound the
temperature differences in � . Following [7], these constraints are given by

L � �	" � ���C��� � ��! � ���C�!L04 
� � � �3(/. �Q.0� � �)� ��( . � .0� � �

� (5)

In this setting, " � and ! � denote points from the closure of � . For instance, the
minimization points " � ; (�� � can be chosen together with some comparison points! � . The situation of our test example is shown in Figure 2, where the points � � and! � are numbered as follows: ! � coincides with the origin. Following the bound-
ary of the domain in mathematical positive sense, the next points are ! � ,. . . , ! l ,�� �+� � �+� � . In this way, ! l is located at the top, and � � is the lowest among the � # .
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Figure 2. Points of Minimization and of Comparison

Now the definition of the control problem (P) is complete. For the continuous
case, it reads as

(P) min ��� � � ( 	�
K � �

� K � ��� K � � �
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subject to the state equation


+� � � ��� � � � � ( div � � � � � grad � � in !V�
� � � � � K � ( �

# � � � � # � ��� � #D� ����S� � � � � � � � � � in ���
� � �)�!*N� ( � � ���Z� in � �

and subject to the constraints on control and state

L � �	" � ���C��� � � ! � ���C�!L04 
� � � �^(B. �Q.0� � � � � (B. � .C� � � �*E4 � � #M4/.C� ,�( . � .0� ��� �^(B. �Q.0� � �

A more detailed motivation can be found, for instance, in [7], [11]. We refer also
to these papers for details of the numerical solution of the nonlinear parabolic initial-
boundary value problem (2) by a finite-element-multigrid method. Let us briefly
recall for convenience the main ideas characterizing the optimization technique of
[7], [11].

The optimal control problem is difficult in several respects. The state equation is
nonlinear, pointwise constraints on the state are given along with constraints on the
controls, and the domain � has a curved boundary. Besides the fact that the theory
of optimal control problems for nonlinear distributed parameter systems with state-
constraints is still far from being complete, the numerical solution is complicated.
Readers interested in optimality conditions of first and second order for associated
semilinear optimal control problems with state constraints are referred to our first
paper in this volume.

Solving the heat equation by a sufficiently precise finite element multigrid meth-
od, a huge number of state variables appears in the discretized optimal control prob-
lem. However, compared with more academic problems discussed in literature, the
technical circumstances of the cooling section show an essential advantage: The
number of control variables is very low in comparison with the huge number of
state variables. Therefore, we decided to use a direct method, where the controls
appear as optimization variables, while the state equation is solved only for a cer-
tain number of basis controls. In [7], [11] an iterative method of feasible direction is
developed. This algorithm proceeds as follows (below, the control � stands for the
vector � � � #1� of control variables):

1. Choose an admissible starting control vector � � and compute the associated
state � � , put

� (6* . Determine the active state constraints.
2. Linearize the state equation at � K and ��K , solve it for each standard basis vector

of controls. Then the state associated to an arbitrary admissible control can be
obtained by superposition, see also the explanations in our first paper of this
volume.

3. Express the state in the linearized optimal control problem as a linear image of
the standard basis vectors using the results of step 2. Solve the associated linear
optimization problem with respect to � by the Simplex method. Only active
restrictions are considered in the optimization. The result is a new direction of
descent ˜� .
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4. Put � K � � ( ��K 8 � � ˜� � � K
� and perform a line search with respect to � while
considering all state constraints. Define

� ( ��8 . and go to 2.

This method of feasible direction is of gradient type. Computational tests have
shown a quite robust behaviour. We stopped the iteration when the change of the
controls was sufficiently small. The convergence rate is quite low. This is the char-
acteristic behaviour of gradient methods. Moreover, the computing time to perform
one step of the iteration was very high. Notice that linear partial differential equa-
tions are to be solved for each basis vector in step 2. Moreover, we have to solve
some nonlinear equations arising from the line search.

Therefore, we propose a suboptimal strategy of instantaneous control type for
approximately solving the problem (P). A comparison to the results of the iterative
solution method shows a very fast and surprisingly exact behaviour. Furthermore,
the method can be easily extended to the case of discrete 0-1 controls.

3 SUBOPTIMAL CONTINUOUS AND DISCRETE METHODS

Let us first explain, how to accelerate the optimization procedure in the case of
continuous controls. The main idea is of instantaneous control type and in some
sense similar to the method, developed by Choi [1] and Hinze and Kunisch [5].

The first simplification is to linearize the state equation during certain intervals
of time. Nevertheless, the resulting optimal control problem is still nonlinear. The
point is the bilinear coupling of state and control in the boundary condition.

Therefore, we introduce the heat flux � ; ( � � K � on the boundary as a new
auxiliary control vector. After having determined the optimal heat flux, we derive
an associated original control � by some heuristic formula. Notice that the heat flux
has to be nonpositive during a cooling process.
Remark: This approach makes the optimization independent from the working hy-
pothesis on the form of the boundary condition.

Introducing the heat flux as auxiliary control is combined with the idea to short-
en the time horizon for minimizing the objective functional. This is the core of the
instantaneous control technique. In the original formulation of the control problem,
we have to achieve the minimal temperature at the final time

�
. Now we reduce

the time horizon to certain small time intervals. The controls associated to the short
interval under consideration are chosen to minimize the objective functional at the
end of the time interval. In this way, we compute the (sub)optimal solution with
respect to a short time horizon regardless of its influence on future times. As a
byproduct of linearization, we shall have to solve the state equation only on the
associated short time intervals.

Next we shall explain the idea of instantaneous control in more detail. Select
an index ����H .0� � � �D� � P standing for a nozzle group. Suppose that the optimization
process has already been performed for the nozzle groups .0� � � �D� � �I. , that is up to
the time � � � � . Let � � � � ; ( � � �)��� � � � � denote the temperature distribution obtained
at time � � � � . Freeze the coefficients of the heat equation at � � � � on the whole time
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interval ��� � � � ��� � ' ,

 ( 
+� �)�); ( 
+� � � � � � �)�!�T� �J( ��� �)�); ( ��� � � � � � �)�!�T� �V( � ���)�); ( � � � � � � � �)�T� �
The associated time interval % � � � � ��� � ' is divided in � computational intervals

� � �
of length �[( ��� � � � � � � � � � ,

� � � ( % � � � �
8 ����� .0� � ��� � � �

8 � � ' , �V( . � .0� � .
We require constant heat fluxes on

� � � and denote them by � � � # , , ( . � .0� � . The
situation is shown in Figure 3.

� ˜� ! ˜� �

�� Z �

� � � � � � � ��� � ��� � � � � � � ��� � � � �

Figure 3. Partition of * � � � � 0 � � -

Now we solve a finite sequence of linear optimization problems (P � � ) associated to
the small subintervals

� � � , � (B. �Q.0� � :
Having � �B. fixed, regard now the partition of % � � � � ��� � ' for �J( . �Q.0� � . As-

sume that the optimization has already delivered the solution up to the subinterval
� � � � � � � and regard the next subinterval

� � � . Denote by � �� � � � � � the initial tempera-

ture computed at the time ˜� � ; ( � � � �
8 � � �/.0� � (we put � � � ; ( � � � � ) and solve

the following optimal control problem up to the time ˜� � ; ( � � � �
8 � � :

(P � � ) Minimize

� � � � ˜� � �!�)( 	�
K � �

� K � ��� K � ˜�
� �

subject to the state equation


+� �)� �����Z� � � ( div � � ���Z� grad � � in �

� � �)� � K � (
�

�

# � �

� # � � � # � on
�

� � �)� ˜� �&�)( � �� � � � � � � �)� in � �
(6)

�O� � ˜� � � ˜� � ' , subject to the state constraints

L � � " � � ˜�
� ��� � ��! � � ˜� � �QL04 

� � � (7)

�V( . � .0� � � � � (B. �Q.0� � � , and to the restrictions on the control vector � ( � � #%�
3 � � #$4 � # 46* �
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The choice of the bounds
3 � � # will be explained later. To unify the notation, let us

consider air cooling areas as cooling segments as well. Here, the restriction � � #
(�*
should imply

3 � � #�( * . We assume this. Then the only admissible control vector � (* is optimal in air-cooling areas. This convention also holds for discrete strategies.
We denote the obtained optimal solution by ¯� # �),�(B. � .C� � , and put � � � # ; ( ¯� # �),�(. � .0� � , to keep the index � � underlying the definition of (P � � ).

The solution of the optimal control problems (P � � ) is the core of our suboptimal
strategy. However, some further ideas are needed to make this strategy work effec-
tively. The following points are still open: In the continuous case, we have to com-
pute the original control vector � ( � � � #%� from the knowledge of the heat fluxes� � � # , ��( . � .C� � , which served as auxiliary variables. Further, the initial tempera-
tures � �� � � � � � ���Z� must be computed in an appropriate way. In particular, we have
to control the error caused by the effects of linearization. The bounds

3 � � # must be
chosen.
Remark: The state constraints might be required at further instants of time. We
check them only at the times ˜�

�
. Owing to this, small violations of the state con-

straints may occur inside the cooling areas.
(i) Computation of auxiliary controls � � � # :

Given the optimal heat fluxes � � � # , we define auxiliary controls � � � # as follows:
Select some computational points � # � � # . Take the mean value of

� �� � # ( � � � # � % ��� � � � # � ˜� � �!� � � � � � � ��� # � ˜� � �!� '
and

� �� � # ( � � � # � % ��� � ����#1� ˜� � �T� � � � � � � � �+#1� ˜�
� �T� 'Q�

that is

� � � #
( � �� � # 8 � �� � #� � (8)

(ii) Computation of initial temperatures for
� � � � � � � :

The initial temperature for the next optimization step can be determined on two
ways: Solve the heat equation up to time ˜�

�
using the linear or nonlinear equation

with boundary conditions of third kind inserting the computed controls � � � # . We
preferred the nonlinear version. After having determined the auxiliary controls � � � # ,
we solve the nonlinear heat conduction problem


+� � � ��� � � � � ( div � � � � � grad � � in �

� � � � � K � (
�

�

# � �
� � � # � � � #Q� ���  � � � � � � � � � � on

�

� � �)� ˜� � � ( � �� � � � � � � �)� in �
(9)

on % ˜� � � ˜�
� ' . Then we put � �� � ���Z��; ( � ���)� ˜�

� � . In other words, updating of tempera-
tures is performed nonlinearly, while the optimization is done linearly.
(iii) Choice of the bounds

3 � � # :
The background to define

3 � � # is the relation

� � � # � � � � # ��� �)� � � �)���C�!� � � � � � � � �)���C�!� �
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In view of this, inserting the upper bound . for � we define
3 � � # (B.  ����� # � � �� � � � � � � � # �T� � � � � � � �� � � � � � � � # �T� (10)

as the lower bound for � � � # .
(iv) Definition of original controls (continuous case):

The optimal control problems (P � � ) are solved for � ( . �Q.0� � (outer loop) and� ( . � .C� � (inner loop). For each fixed index � , the problems (P � � ) deliver the solu-
tions � � � # , �M( . �Q.0� � , , ( . � .0� � , on the time intervals

� � � . Notice that, according
to the given technical construction, only one control vector � � ( ��� � # � has to be
defined on % � � � � ��� � ' . This is done by the following heuristic formula, which turned
out to be very useful:

� � # (
�

�� � �
� � � � #
�

�� � �
� � (11)

This rule says that a change in the first small intervals of time can be compensated
on the last intervals.

Now we explain the modifications of the continuous control strategy to the dis-
crete counterpart. First of all, we have to increase the number of spray nozzles. This
is to compensate for the loss of flexibility caused by restricting the controls to H *+�D. P .
We assume that each short time interval % � � � �

8 � � �/.0� � ��� � � �
8 � � ' corresponds

to � spray nozzles located around the profile (= 1 nozzle group). In this way, �  �
spray nozzles are associated with the cooling segment passed during % � � � � ��� � ' , i.e.,
flexibility w. r. t. the value is substituted by flexibility in time. The corresponding
spray intensities are � � � #D� �O( . �Q.0� � �<,<( . �Q.0� � . The heat fluxes � � � # (auxiliary
variables) and the spray intensities � � � # are connected by the boundary condition
(see (8)). As � varies in time and space, we cannot assume that � � � # and � � � # are
constant on

� # > ��� � � �
8 ��� �B.0� � ��� � � �

8 � � � at the same time. However, if � is
small we are justified to consider � to be almost constant. This also motivates the
choice of the bounds

3 � � # (see (10)) as well as the synthesis rule (8), (11) in the
continuous case. Moreover, in the discrete case the choice � � H *+�D. P corresponds
directly to � �^H 3 � � #D�T*=P so that a synthesis rule is not needed.

By (i)–(iv), the whole interval % � � � � ��� � ' is processed. Now we proceed with the
next interval % � � ��� � � � ' . In this way, we arrive after finitely many steps at the final
time

�
. Obviously, this procedure requires the numerical solution of many linear

and nonlinear partial differential equations. On using the principle of superposition,
we are able to considerably reduce the associated numerical effort. These details are
explained in the next section.

4 PROCESSING THE SUBPROBLEMS

In each nozzle group, the number of controls is very low in comparison with the
number of state variables arising from the finite element discretization. In our test
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example, we have �/( # control variables per nozzle group (there are 16 nozzles
in each nozzle group, see Figure 6, hence, by symmetry, the number of control
variables is 9 in each group). In contrast to this, the number of state variables is some
thousands. Therefore, in the optimization the state is eliminated by precomputing
the response to each standard basis vector for the control, obtained from the linear
equation: Regard, for � fixed, the interval % � � � � ��� � ' . For all ,�(B. � .0� � , on % *+� � ' the
response function � � # ( � � # � �)���C� is determined by


+���Z� ��� �)� � � ( div � � � �)� grad � �
� ���)� � K � ( � � � # �� ���Z�T*+� ( * �

These � systems have to be solved only once for the whole interval % � � � � ��� � ' . On
the small subintervals

� � � ( �	� � � �
8 ��� �A.0� � ��� � � �

8 � � � , the temperature � is given
by superposition,

� � �)���C�)( � � ���Z���C� 8 �
�
# � �

� # � � # � �)��� � ��� � .0� � � �
Here, � � ���Z���C� is the fixed part, associated to the initial temperature and homoge-
neous boundary conditions. It is defined by


+���Z� ��� �)� � � ( div � � � �)� grad � �
� ���)� � K � ([*� ���)�!*+� ( � �� � � � � � � �)� �

The second part represents the contribution associated to the controls � # . During the
optimization process, only the fixed part has to be updated from one subinterval to
the next one. Then the optimization problem on

� � � reads for the case of continu-
ously controllable nozzles
(P � � ) Minimize 	�

K � �

�
�
# � �


 # K � #
subject to �

�

# � �

� # � # � � 4 
� � � � � �� �

�

# � �

� # �N# � � 4 
� � 8 � � �

3 # 4 � # 46*N�
,�(B. � .0� � , where


%# K ( 
 � # K ( � � #\��� K � � �
�+# � � (�� � # � � ( � � #\� " � � � ��� � � #\��! � � � �
� � � ( � � � � � ( � � �	" � � ˜�

� ��� � � � ! � � ˜� � � �
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The bounds
3 #�( 3 � � # are defined according to (10). This linear programming

problem is solved by the Simplex method. Its optimal solution ¯� ( � ¯� #D� is denoted
by ¯� � � # , ,:( . �Q.0� � , to preserve the index � � . Notice that the numbers 
0# K � �+# � �
have to be computed only once on % � � � � ��� � ' , while the � � � and

3 # depend on � ,
hence they must be updated on all subintervals.

For discrete strategies, we arrive at linear integer programming problems of the
same structure like above, which have to be solved by appropriate methods.

min
	�

K � �

�
�
# � �


%# K � #D�
subject to�

�
# � �

� # � # � � 4 
� � � � � �

� �
�
# � �

� # �+# � � 4 
� � 8 � � �

� #<� H 3 #D�!*0PT� ,
(B.0� � � �1� � �
Strictly speaking, this is not a binary problem, since

3

 ](/. in general. If particular

discrete optimization methods are based on a binary structure, the problem must be
transformed appropriately. Since

3

 is updated after each time step � , this means

changing the matrix of constraints and the coefficients of the objective in each step.
If the discrete method needs a special preprocessing of these data, this has to be
repeated for each subproblem.

During the computations we observed effects of ill-posedness for small values of
� close to the time step for solving the PDEs. For instance, even in the continuous
case, we observed that some controls were switching from * � � to .�� * and reverse
by changing the discretization of time. To overcome this problem, instead of using
the original linear objective functional given above, we minimized in all cases the
linearly regularized objective

Min
	�

K � �

�
�
# � �


 # K � # 8 	
�
�
# � �

� #
subject to the constraints given above. This trick stabilized the computed optimal
controls.

5 NUMERICAL RESULTS

5.1 The Test Example

One of our standard test examples is the cooling of rail profiles. Following [7, 11],
we consider the domain shown in Figure 5(a) with a moderate discretization. The
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concrete formulas for the coefficients 
&���+���Z� � are adopted from these papers. All
other data were transmitted by the Mannesmann-Demag-Sack GmbH.

We restrict ourselves to the situation of [7]. That is, we consider 3 minimization
points � K on the axis of symmetry and take them as comparison points too, that
is " � ; ( � � . 9 points of comparison are chosen on the boundary. Their location is
shown in Figure 2. The temperature at these points is compared with the temperature
at the minimization points according to the table below.

Point compared with
G �

�
� ,
�

� ,
� 


,
�


G �
�
 ,
� �

,
�
� ,

G 
 �
� ,
� �

,
� 

,
� �

Table 1. Comparison points

In the test example, we regard a cooling line composed of one cooling segment
followed by one air cooling area both with length equivalent to 15 seconds. Hence
our cross section � passes the whole plant in 30 seconds. The cooling segment
contains two blocks. In the continuous case, each block is identified with one nozzle
group, whereas in the discrete case we have essentially more nozzle groups and each
block corresponds to the time interval for freezing the coefficients 
 , � and � . Each
nozzle group consists of 16 spray nozzles, hence by symmetry we have 9 control
variables, see Figure 6. Following the notation of Section 2 we have � ( � � �V(� � ��( # . The geometry is shown in Figure 4. According to the general setting, for
� � we get the value � � � seconds.

� ! � � � � � 
 � 

Figure 4. Test geometry

The partition of the boundary
�

into parts
� # is roughly indicated in Figure 5(b).

For the exact geometry of the rail profile we refer to Figure 2.
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(a) The rail profile



	 �

�



	 �

�	



�

��
�

�
�

�
�

� 
 � 

�


�


� � � �

�
�

�
�

� � � �

�  � 

� �

(b) Partition of
�

Figure 5.

The parabolic state equation was solved by a Crank-Nicholson scheme in time
and a 3-step FEM multigrid algorithm for the elliptic subproblems. The initial value
is chosen as in [7] assuming constant temperatures in 3 areas.

For presenting test results, we proceed as follows: In a first part we compare the
suboptimal strategy with the method of feasible directions in the case of continu-
ous controls. In a second part we compare between continuous and discrete cooling
strategies, in particular we discuss the lack of efficiency using discrete 0-1 nozzles.
Moreover, we present results for improving efficiency of discrete strategies by ap-
plying nozzles of lower size, i.e. of lower maximal cooling intensity.

5.2 Feasible Directions versus Suboptimal Strategy

According to subsection 5.1, we consider the following test problem (E):

min � � � � (  �

K � �

� K � ��� K � � � (12)

subject to

+� � � ��� � � � � ( div � � � � � grad � �

� � � � � K � ( � # � � � � # � ��S� � #Q� ��� � � � � � � � � �� � �)�T*+� ( � �+���)�!� (13)
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to the control constraints

* 4 � � # 4 .0� (14)

�V( .0� � � ,
(B. � .C� # , (cooling segment), � � #^( * , �^( �N� � � ,
(B. �Q.0� # (air cooling
area), and subject to the state constraints

L � � � � ���C��� � ��! � ���C�!L04 
� � � �3(/. �Q.0� ��� � (B. � .C� #�� (15)

where
� ( �C* sec, and we have .� ( �  # controls acting for 7.5 seconds on

different time intervals and on different boundary parts. We have chosen the values
� � ( L � � � ! � L  �0*C*0* K/m, if the point � � is compared with the point ! �

according to Table 1, and

� � ( � otherwise. In the computations we omit the

constraints, where

� � ( � . Furthermore, we take the weights � � ( �  ( � and

� � ( . .
In the test runs of this subsection we worked with a time step of 0.75 seconds to

solve the PDE. Therefore, we splitted each interval % � � � � ��� � ' into 10 parts having
just this length � ( * � � � sec. Obviously, this is the smallest length we can use for
computational intervals in our case. In this way, we got the discretization of time*�( � �OY � � 8 �:Y    Y � � 8 .D* �V( � � Y&   Y � �

8 .D* �:( � � Y   &Y � � where� ( � * sec and �E(�* � � � sec.
The fast suboptimal strategy determines the solution in a very short time. More-

over, it is a direct method. In particular, no admissible initial control � � is needed.
We list the computational results for the values �A( .0� � � . * in Table 2. The CPU
time was about 2 minutes on a workstation HP Apollo 9000. Table 2 contains the
computed controls and the corresponding values of the cost functional together with
the temperature in the minimization points. Our suboptimal method was applied
for different numbers of computational intervals. Our values show the surprising
effect that more (but smaller) computational intervals increase the precision of our
method while decreasing the computational time. The reason for the gain of speed
is that computing the response functions is cheaper on shorter intervals.

The results are compared with those obtained by the method of feasible direc-
tions in [7]. To that aim this slow iterative method was started at controls computed
by our suboptimal method for the largest number of computational intervals. Nev-
ertheless, to get the marginal improved “optimal” values in the last column of the
table, the iterative method required 177 iteration steps. Hence we needed 2.5 days
to get this slightly better result. One iteration by the method of [7] needs a between
five and ten times longer computational time than our whole method. Altogether,
accuracy and running time of the fast method of instantaneous control are very con-
vincing. However, there appear small problems with violating the state constraints.

Therefore, after the first iterations the method of [7] still delivered a solution
with considerably larger value than that of our fast approximate solution. The level
of violation is low (0.3 K at most). In our opinion, this is sufficiently small to accept
the computed control. Nevertheless, one should carefully observe this problem in
more complicated situations. For more details we refer to [14].
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��� 1 5 10 Method of [7]
�

� � 0.351402 0.354894 0.357386 0.361015
�

� � 1.000000 0.798217 1.000000 1.000000
�

�



0.118034 0.588312 0.462750 0.510719
�

�  1.000000 1.000000 1.000000 1.000000
�

�
�

1.000000 1.000000 1.000000 1.000000
�

� � 0.336405 0.368480 0.376729 0.383220
�

�
�

0.562985 0.606946 0.612365 0.644712
�

�


0.572915 0.661840 0.686257 0.720357
�

� � 0.434374 0.458182 0.454216 0.488881
�

� � 0.398711 0.407742 0.413433 0.422056
�

� � 1.000000 0.896221 0.927565 0.935165
�

�



0.114328 0.079897 0.036162 0.077026
�

�  1.000000 0.957728 0.977744 0.982834
�

�
�

1.000000 1.000000 1.000000 1.000000
�

� � 0.378044 0.387829 0.386588 0.384954
�

�
�

0.581319 0.569530 0.565634 0.578580
�

�


0.516497 0.456389 0.449471 0.469555
�

� � 0.437347 0.429484 0.428212 0.436120
T � � 0 G � � 781.909 781.855 781.055 780.630
T � � 0 G � � 755.870 752.048 751.399 750.944
T � � 0 G 
 � 854.393 853.167 853.106 851.579

� � T � 5664.776 5657.115 5653.881 5647.572
CPU 208 sec 106 sec 100 sec 1200 sec / It.

Table 2. Performance of the suboptimal strategy

5.3 Continuous versus Discrete Suboptimal Strategies

In the continuous case, % � � � � ��� � ' contains one nozzle group, where the nozzles can
admit all intensities in % *+�D. ' . The interval % � � � � ��� � ' was splitted into � subintervals
of length � , which served as auxiliary subintervals. Now we compare the results
with the following discrete situation: To each subinterval we associate one nozzle
group, i.e. we have �:(B. * times more nozzles in % � � � � ��� � ' . In other words, 18 con-
tinuously controllable nozzles are replaced by 180 nozzles. However, these nozzles
can only admit the intensities 0 (off) and 1 (on), and they influence the profile for a
shorter time, i.e., only for �E( �	� � � � � � � � �N. * .

The integer programming subproblems were solved by complete enumeration.
The size of the subproblems is so small that this method was faster than standard
branch and bound algorithms. We obtained computational times close to the ones
for the continuous case. This shows that the solution of the integer problem needs
approximately the same time as the simplex method, essentially faster than the time
needed by the method of feasible directions. Optimal values and computing times
are compared in Table 3. We observed that data generation, in particular computa-
tion of response functions, is stronger sensitive with respect to the length of time
step than the solution of the state equation. We had to find a reasonable compromise
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between accuracy and computing time. In Table 3, different choices of time steps
are compared for solving the instantaneous control problem:
In all cases I-III (dis=discrete, con=continuous), the optimization subproblems are
solved on time horizons of length � . However, we do not update all coefficients of
the problem after each time step � . The coefficients 
 # K of the objective and the ma-
trix
� ( � � # � � � of the constraints are updated only after larger intervals of time (in

our test example after .D* � ), while the right hand sides

� � � � � � of the constraints

are updated after each time step � . In case I, � is used as the step length to solve the
parabolic equation for updating the state and the � � � as well as for the generation of
the optimization data 
\# K , �+# � � via response functions. In case II we used a smaller
time step � � � ( � � � for all computations. Case III proceeds as case I with respect
to the update of the state, but the coefficients of the matrix and the objective are
computed with higher precision by the time step � � � .

I dis II dis III dis I con II con III con Method of [7]
� � T � 5841.1 5848.8 5853.2 5641.8 5643.3 5653.7 5647.6
CPU 122. sec 431 sec 177 sec 124 sec 433 sec 180 sec 59 h (177 It.)

Table 3. Optimal values and computing times

Table 4 contains the associated optimal controls. In the continuous cases I-III
con, the values � � # , � ( .0� � �A, ( . � .C� # , express the intensity of nozzle , in
group � . In the discrete cases, the reader would expect

�  �  ��( �  ## .D* values
� � � #$�^H *+�D. P . To avoid the associated large table and to make the results comparable
with the continuous case, the columns I dis - III dis contain the mean values, defined
by formula (11),

� � #�(
� ��� � �

� � � � #
� ��� � �

� �7,
(B. �Q.0� # �

It is quite natural that integer controls are not so flexible as the continuous ones.
Even by using ten times more nozzles as in the continuous case, there is an essen-
tial lack of efficiency causing a temperature difference of almost 30 K in every "hot
spot" � K selected for the objective. Due to the state constraints, some of the nozzles
(� � �&� � � � ) must kept switched off during the whole process, which is the main
reason for the gap. Nevertheless, using the same number of nozzles of lower size
can improve the efficiency of discrete cooling. A careful comparison of the optimal
controls in Table 4 shows the main reason for the lack of efficiency in the discrete
case: In particular, nozzle 6 is never active in all variants, while in the continu-
ous case a moderate and almost uniform cooling takes place. This can be observed
from the solution of the subproblems, because it holds * � � 
 � 4 � ��� � 4[* � ��� � , and* � � ��4 � � � � 4 * � � # for all �E( . � .0�T. * . Obviously, the constraints for nozzle 6
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��� I dis II dis III dis I con II con III con
�

� � 0.14545 0.18182 0.18182 0.35739 0.35719 0.34315
�

� � 0.74545 0.78182 0.78182 1.00000 1.00000 1.00000
�

�



0.45454 0.32727 0.32727 0.46275 0.41935 0.39777
�

�  1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
�

�
�

1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
�

� � 0.00000 0.00000 0.00000 0.37673 0.36948 0.35291
�

�
�

0.47273 0.34545 0.40000 0.61237 0.60966 0.58313
�

�


0.61818 0.43636 0.43636 0.68626 0.67156 0.66524
�

� � 0.27273 0.20000 0.20000 0.45422 0.45254 0.43632
�

� � 0.18182 0.23636 0.25455 0.41343 0.41091 0.39926
�

� � 0.98182 0.80000 0.80000 0.92756 0.91320 0.91700
�

�



0.01818 0.01818 0.01818 0.03616 0.03209 0.02941
�

�  1.00000 0.81818 0.81812 0.97774 0.96000 0.96622
�

�
�

1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
�

� � 0.00000 0.00000 0.00000 0.38659 0.38420 0.36980
�

�
�

0.54545 0.45455 0.54545 0.56569 0.56630 0.55394
�

�


0.38182 0.30909 0.41818 0.44947 0.44810 0.44394
�

� � 0.29091 0.27273 0.27273 0.42821 0.42644 0.42035

Table 4. Optimal controls (all variants)

are too strong for cooling with intensity 1, even if the time of cooling is very short.
Consequently, no cooling is the only admissible control. This seems to be a typi-
cal difficulty for discrete strategies. However, the comparison with the continuous
problem shows the possibility of an almost uniform cooling, if the maximal inten-
sity of the nozzle is reduced to , � (�* � � � . In Table 5 we present two different cases
(data generation and update by refined stepsize � � � ): The first column contains the
results, where the maximal cooling intensity of nozzle 6 was reduced to 0.35, while
the others still had the size 1.0 as before. The values in the second column corre-
spond to the following maximal cooling intensities , � � � � � �Q, l for the nozzle 1(1)9:, � (B* � � � , � (B* � �+��,  (/* � � �$, 5 ( .0��, � ( .0��, � (B* � � � � , � ( , � ( , l (B* � � .
This version is called the refined strategy. Notice that these intensities are fixed
in advance by our experience from the continuous case. The last two columns are
added for a comparison with the standard choice of maximal intensity .�� * for all
nozzles.

The refined strategy essentially improves the standard discrete method, although
the efficiency of the continuous strategy cannot be reached completely. Moreover,
we observed the following: Nozzles with reduced intensities prevent the controls
from chattering - the number of switches between consecutive nozzles is reduced.
Some of the nozzles were active all the time. For some more details, including re-
sulting different temperature distributions of the profile, we refer to [3].
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X � : < > � � refined con dis
�

� � 0.18182 0.30175 0.35733 0.18182
�

� � 0.78182 0.80000 1.00000 0.78182
�

�



0.32727 0.40000 0.42245 0.32727
�

�  1.00000 1.00000 1.00000 1.00000
�

�
�

1.00000 1.00000 1.00000 1.00000
�

� � 0.35000 0.35000 0.36983 0.00000
�

�
�

0.40000 0.50000 0.60945 0.34544
�

�


0.43636 0.50000 0.67217 0.43636
�

� � 0.18182 0.43778 0.45205 0.18182
�

� � 0.21818 0.36526 0.41118 0.21818
�

� � 0.80000 0.80000 0.91482 0.80000
�

�



0.01818 0.10964 0.03246 0.01818
�

�  1.00000 1.00000 0.96173 0.81818
�

�
�

1.00000 1.00000 1.00000 1.00000
�

� � 0.35000 0.35000 0.38444 0.00000
�

�
�

0.36364 0.50000 0.56625 0.45454
�

�


0.49091 0.50000 0.44818 0.49091
�

� � 0.27273 0.35566 0.42653 0.27273
� � T � 5746.41 5689.95 5642.87 5847.74

Table 5. Optimal controls for the refined strategy

6 CONCLUSIONS

The instantaneous control technique is successful for continuous and discrete con-
trol strategies. In our example, it is able to deal with discrete cooling strategies in
almost the same time as for the continuous method. The application of fixed maxi-
mum intensity .�� * turned out to be insufficient: Even essentially more nozzles can-
not deliver the same final temperature as the continous strategy. Using nozzles of
lower size can overcome this problem. The solution of the continuous problem is
helpful to design the size of nozzles.
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Real-Time Optimization and Stabilization of
Distributed Parameter Systems with Piezoelectric
Elements.

Karl-Heinz Hoffmann and Nikolai D. Botkin

Stiftung c a e s a r, Center of Advanced European Studies and Research, Bonn, Germany

Abstract The investigation of this paper is related to the design of active real-time con-
trols which provide the desired performance of flexible constructions subjected to varying
disturbances. Physical controllers are piezoelectric elements that transform applied voltages
into mechanical forces and moments. Control voltages are computed on the base of signals
measured on piezoelectric sensors. The underlying structure is a thin plate or shell. The piezo-
electric elements are either surface mounted or embedded within the structure. Conventional
averaging procedures are used to eliminate the thickness in mathematical models. A homog-
enization procedure is used to reduce structures with large number of piezoelectric elements
to the case of continuously distributed input or output signals.

1 CONCEPTION OF ACTIVE CONTROL

The idea of active real-time control is intensively developed during several last
years. The acute interest to this method of elimination of parasitic disturbances is
caused by the rapid development of the material science, electronics, and computer
technology. This approach can be characterized as an intelligent one by contrast with
routine approaches based on the reenforcement of the construction, which makes it
heavier and more expensive.

Consider a precise structure subjected to varying acoustic or thermal conditions.
Even though carefully designed, it will disturbed as a result of unpredictable ther-
mal gradients or acoustic pressures. One way to prevent this is to build the structure
from massive components and to provide very good isolation from external influ-
ences. An alternative way is to use a set of actuators and sensors connected by a
feedback loop. In this case, we exploit the main virtue of the feedback which is
to attenuate the effect of disturbances within the bandwidth of the control system.
Active structures may be cheaper or lighter than passive structures with compara-
ble performances, or they can sufficiently improve the performance. Here, we want
to refer to the following classical example (see [1]). The telescope at ESO in La
Silla, Chili, uses adaptive optics for the compensation of atmospheric turbulences.
The primary mirror of the telescope is connected at the back to a set of hundred
actuators. The control system uses an image analyzer to evaluate the distributed am-
plitude of the perturbation. The correction is computed to minimize the effect of
the perturbation and is applied to the actuators. The computation of the correcting
forces is based on the influence matrix describing the relation between the actu-
ator forces and the wave front changes. This matrix is determined experimentally
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from the analysis of images. Note that such a relatively simple relation between the
controls and objectives is not always possible. Very often, this relation is described
by a very complicated mathematical model based on nonlinear partial differential
equations. This approach is carefully developed in the monograph [2]. The schema
of the active control design is shown on Figure 1. We study the real-time control
design with the use of piezoelectric elements as actuators and sensors. Piezoelectric
materials exhibit significant deformations in response to an applied electric field as
well as produce polarization in response to mechanical strains.

Model

Iterate untill
performance

good
is

achieved

design

Model
reduction

Controller

Digital

objectives
Performance

Controlabolity
Observabolity

system

Evaluation

continuous

implementation

Closed loop

Identification

Disturbance
analysis System

Actuator
Sensor

dynamics

placement
Sens./Act.

Figure 1. Steps of the control design

The field-strain relations are nearly linear for small electric fields and defor-
mations, which is an advantage when employing piezoelectric elements in control
systems. The linear direct and converse constitutive relationships for piezoelectric
materials (see, e.g., [3] and compare with [4] concerning more general models) are
given by

��# � ( 	 # � � � 	 � � ��� � # � � � �
� #�( � # � � � 8 � # � � � � � � (1)
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Here, � and
�

denote the electric displacement and field, respectively, while � ,
� , and

	
denote the material dielectric tensor, the stress piezoelectric tensor and

the elastic stiffness tensor, respectively. As usually, the repeated subscripts indicate
summation; Latin subscripts run from . to � whereas Greek subscripts run from . to�
. To cover all possible cases of piezoelectric materials, assume that all coefficients

may be nonzero and different. This is really the case for the triclinic crystal systems
(see [3]).

Note that relations (1) are nonlinear with respect to the displacements � # (� #=� � � � � � ���  ����C� � �+#D�&, ( .0� � � �N� because the strain tensor contains quadratic terms,
namely

	 # � ( .� � � � #� � � 8 � � �� �+# 8 � � �� �+#  � � �� � � � �7,D� 	 (/.0� � � � � (2)

Therefore, the energy density of a piezoelectric medium,

� ( .�M� ��# � 	 # � � � # � #D�!� (3)

is not quadratic and may be not convex, which may violate the uniqueness of solu-
tions.

The underlying structure is a plate or shell in our case. The piezoelectric ele-
ments are either surface mounted or embedded within the structure. Therefore, we
have to describe the coupling between two media with different elastic, electric and
piezoelectric properties. Then, we have to apply an averaging to exclude the thick-
ness and obtain a thin composite structure. Moreover, the interaction between the
piezoelectric elements and the substrate is time-dependent with various transient
effects; hence dynamic models are necessary.

We derive our models using the following variational principle: the work of
inertia forces plus the variation of the free energy must be equal to the work of
external forces. The free energy is the sum of the free energies of the piezoelectric
elements and the substrate. One advantage of this approach is that the right interface
conditions are being obtained automatically.

The design of a control law must be done in accordance with that the actua-
tors and sensors yield unbounded input and output operators in the mathematical
problem formulation. An extension of �  theory (see [5]) to this case is developed
in [6]. A way to avoid unbounded input and output operators is related to the ho-
mogenization of model equations. If the number of actuators and sensors is large
enough, we can assume that it goes to infinity, whereas the size of each element
tends to zero. Some special procedure based on two-scale convergence is applied to
the model equations in oder to obtain limiting equations. It is remarkable that the
limiting equations are much better than the original ones: they do not contain un-
bounded operators and discontinuous coefficients because the interface is smeared
when applying the homogenization. Numerical simulations prove that the control
law designed using the limiting equations provides some good performance of the
original controlled system; the number of actuators does not have to be to large:
30-40 elements are sufficient to provide some good consistence.

Summarizing, we can outline the frameworks of our study as follows:
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– Derivation of mathematical models of thin plates and shells with actuators and
sensors in various configurations.

– Mathematical investigation of the model equations concerning their solubility
and correctness including nonlinear cases.

– Estimation of unknown parameters.
– Homogenization.
– Feedback control design using �  theory or the theory of differential games.

2 MATHEMATICAL MODELS OF THIN PLATES AND SHELLS WITH SURFACE

MOUNTED PIEZOELECTRIC ELEMENTS

2.1 Variational Principle

We use a variational principle (see [7]) for the derivation of dynamic equations:

The work of the inertia forces
8 �=�J(�*+� (4)

where �=� is the variation of the total free energy. The total free energy � can be
computed trough the densities of the free energy for the substrate, piezoelectric
material and surrounding substance (say air). Thus,

��( �
���

� � 8 �
���

� � 8 �
���

� � � (5)

Here,
� � ,

� � and
� � are the densities of the free energy; R � , R � and R � are the

corresponding volumes. Note that each of volumes R � , R � and R � can be divided
into several parts to simplify the computation of the free energy or to account the
discontinuity of material parameters that appear due to a multi piece structure of the
system.

2.2 Elimination of the Thickness

To obtain two-dimensional structures, we have to average along the thickness. This
can be archived using the Kirchhoff-Love-Koiter hypothesis that allow us to express
all components of the strain tensor through the displacement of points lying on
some reference surface (say middle surface). An expansion of the electric field with
respect to the deviation from the reference surface is also necessary.

Let ! be a point of the plate,
�

orthogonal projection of ! onto the middle
surface, � � ��� � longitudinal displacements of

�
and � the transversal displace-

ment of
�

. According to the Kirchhoff-Love-Koiter hypothesis (see, e.g., [8]), the
components of the strain tensor at the point ! are given by

	 � � (B.� � � � � � � 8 � � � � 8 � � � � � � ��� �   � � � � � �
	  � ( 	 �  J(�*+� 	  ! is found from �   J(�* � (6)

The assumption 	! � ( 	 �  ( *+� � : � 0LZ , means the absence of transverse shear
strains, which implies the conservation of the normal. The component 	   is found
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from the hypothesis of plain stresses. Therefore, 	   is material and field depen-
dent. The first approximation of the electric field within a thin piezoelectric element
whose longitudinal faces are covered by a metal is given by

�
� ( �

� (6*+� �  (IR � ��� (7)

where R is a voltage applied between the longitudinal faces, and � is the thickness
of the piezoelectric element. Now we are in position to compute the total free energy
and exclude the thickness using (3), (5), (6) and (7). The application of (4) yields
dynamic equations. Note that the Kirchhoff-Love-Koiterhypotheses can be replaced
by more complex assumptions permitting transverse shear strains. This demands
two additional variables describing the change of the normal. Some more accurate
approximation of the electric field can be archived through the hypothesis of linear
dependence of

� # � X : � 0�Z60 � , on �  .

2.3 A Fully Coupled Nonlinear Model

We begin with a very general fully coupled model of a plate with surface mounted
piezoelectric elements (see [9] and [10]). The inverse piezoelectric effect (i.e., the
excitation of the electric field due to strains), electric properties of the surround-
ing substance (say air), and the quadratic terms in the strain tensor are taken into
account.

Consider a plate with symmetrically mounted piezoelectric elements.

i

i

j

j

v

v

v

v

¯� ¯� ¯�

� � �
¯� : � : <

¯� : �WV ¯� : � �

� : � V
� : � �

Figure 2. Fragment of a plate with many piezoelectric elements; ¯� and � are potential func-
tions, �WV and � V are applied voltages

Let � be the region of the plate; � � � the projection of the i-th piezoelectric
pair onto the middle plain of the plate; � � ( � # � � � ; � � ( � ��� � ; � � and � �

longitudinal displacements of points laying on the middle plain; � the transversal
deflection; ¯� # and � # voltages applied to the i-th piezoelectric pair;

�
the thickness of

the substrate; � the thickness of the piezoelectric patches; ¯� #M( � ¯� � � �+# and
� # (



210 K.-H. Hoffmann and N. D. Botkin� � � � �+# the electric fields, where ¯� and � are the potential functions. Assuming that
¯� # and

� # are linear in �  and taking into account conventional boundary conditions
for ¯� and � , we can compute quadratic polynomials ¯

�
� ���  N� , ¯

�
� � �  +� , �

� � �  +� and

�
� � �  � such that the potentials within the i-th piezoelectric pair are given by

¯� � � � ��� � ���  +�)( ¯

�
� � �  +� ¯� # 8 ¯

�
� ���  N� ¯� � � � ��� � �!�

� � � � ��� � ���  +�)( �
� � �  +� � # 8

�
� ���  N� � � � � ��� � �!�

where ¯� � � � ��� � � and
� � � � ��� � � are unknown distributions of the electric field above

and below the plate along the H � � � � � P -plane.
Using relations (1), (2), (3) and Kirchhoff-Love-Koiter hypothesis (6) yields the

energy density within the piezoelectric patches and the substrate:

¯
� � ( .� 
 � � � � � � � � � � � 8 .� � �

 

�
� � � � � � � � � ����� ����� � # � � � � � ¯� #

� .� � # � ¯� # ¯� � 8 �  

�
� � � � � � � � � � � ��� �  � # � � � � � � � ¯� # �

� � ( .� 
 � � � � � � � � � � � 8 .� � �

 

�
� � � � � � � � � ����� ����� � # � � � � � � #

� .� � # � � # � � 8 �  

�
� � � � � � � ����� ��� � �  � # � � � � � � � � # �

� � ( .� 
 � � � � � � � � � � � 8 .� � �

 

�
� � � � � � � � � � � � � 8 �  


�
� � � � � � � � � � � � �

�J( �
� �
� � � � � ��

� � �

¯
� � � �  8 �

� �
� � � � ��
� � � � � �

� � � �  8 �
�

� � � ��
� � � �

� � � �  

8 �
� �

� � � � � ��

� � �

� � ¯�
�# � �  8 �

� �

� � � � ��
� � � � � �

� �
� �# � �  �

Here, � � is the material dielectric constant of the air, while



�
� � � � ( 	 �

� � � � � 	 � ! � � 	 � ! � �	 �    
with

	 � being the elastic stiffness tensor of the substrate. Moreover,



�
� � � � ; ( 	

� � � � � 	  ! � � 	   � �	    ! � � # � � ; ( � # � � � 	   � � � #�  	     �
� # � ; ( � # � 8 � #  ! � �   	     �



Real-Time Optimization and Stabilization 211

where
	

, � and � are the elastic stiffness tensor, piezoelectric stress tensor and ma-
terial dielectric tensor involved in (1). Note that the old notations for � and � are
kept. The in-plain strain tensor is given by

� � � (B.� � � � � � � 8 � � � � 8 ��� �  � � � � � (8)

The application of the variational principle [7] leads to the equations

� � � � 8 �
� � � � � � � � � � � 8 � � � � ����� � �

� � � � � � � � � � � � ¯� � � 8 �
� � �T� 8

�
�
�

� �
�
� � � � �  � � � ¯� 8 � �T��� � � �

� �
�
� � � � � � � � � ¯� � � � �

� � �!� �
3
�
� � � � �  � � � � � � � � � �T����� � �

� �
�
� � � � �  � � � � 8 � �T�)(�* �

��� � � � � �
� � � � � � 8 �

�
� � � � � � � � � ¯� � � 8 �

� � �T� 8
3
�
� � � �  � � � � � � � (�*+� �A( .0� � �

� �
� �
� � � � � ¯� � � � 8 � �   ¯� 8 � �

� � �
� � � � � � � � � 8

� �
� � �

� � � � ��� � � � � � �
� �
� �  � � � � � � � �  ! � (�* �

� �
� �
� � � � � �

� � � 8 � �   � 8 � �
� � �

� � � � � � � � � �
� �
� � �

� � � � ��� � � � � � �
� �
� �  � � � � � � � �  ! � (�* �

where
� � � ( �

� � � � � � � � � ��� 8 � � ���
8 � � � � ��� � (9)

is the in-plain stress tensor; �+� �M� � # � � � � � � and � � � � � are piecewise constant dis-
continuous functions with jumps on the boundary of � � .

The constants �)� �5� � � � ���1� 3 � � are computed from the problem’s data. Moreover,

� ( � � # ���C� � � � � ��� � � � � �!� � ( � � #%�	�C� � � � � � � � ��� � �T�
where

� � � � is the indicator function of � � � . Introduce the notation:

�
��( � � � ��� � ��� �T� �� ( � ¯� � � �!� �� ( � � � � �T�

�B( � � � ��� � �  �-R ( �
� �

� ��� � � � > � �

� ��� �!� � ( �
� � ��� � � �

�

Theorem 1 (Solvability: see [9, 10]).
If
�
� ��*+��� R ,

�
� � ��*+��� � and

�� � � � ��*+� � � " � � , then the system has a solution such
that:

�
�I���  ��*+� � � RJ�T� �

� � � �  ��*+� � � �E�!� �� ���  � *+� � � � � �	�


The uniqueness can also be proved, if some additional smoothness of solutions
is assumed. Such an assumption is not realistic since the smoothness can not be
improved because of discontinuity of the coefficients.
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2.4 Simplified Models

Electrically Decoupled Nonlinear Models

Nonlinear models without the inverse piezoelectric effect involve coupled equations
for the transversal and longitudinal displacements, whereas the equations for the
electric field vanish because the electric field is defined immediately through the
applied voltages (see (7)). It was assumed that piezoelectric and substrate materials
are nearly isotropic, and voltages on the lower piezoelectric patches are equal to
zero. These assumptions lead to the equations:

� � ��� � � �
� � � � � �

� �
�
�
� � � � � � � (� � � � # ���C� � � � � � 8 " �

� �
�
�
� � � � # �	�C� � � � � � �

��� � � � � �
� � � � � � (/" �

� �
�
� � # ���C� � � � � � � �A(B.0� � �

(10)

Here
�

is the Laplace operator;
�

and " are constants; � and � are piecewise
constant discontinuous functions with jumps on the boundary of � � ; � # ���C� is a
voltage applied to the i-th piezoelectric element.

The solvability follows from the previous theorem (see also [11]) but the unique-
ness is not proved because of the discontinuous coefficients that violate the regular-
ity of solutions.

Linear Models

The simplest mathematical model is related to the case, where the nonlinear terms
in (6) and the inverse piezoelectric effect, the second equation of (1), are omitted.
The equation for � is independent from � � � � � and given by

��� � � ��� � � � ��� 8 � � �O� � � � � � � � � � ( � � � � #%���C�  � � � � � � � � � � � � � (11)

Note that discontinuous coefficients and unbounded input operators are inherent
even in this simple model. Taking into account the inverse piezoelectric effect yields
electrically coupled linear models that involve additional equations for � � , � � and
the electric field (see, e.g., [13]). The linear case is good from the mathematical point
of view because the corresponding equations are uniquely solvable and solutions are
differentiable with respect to model parameters (see [12] and [13]).

2.5 Shells with Piezoelectric Actuators

The theory of usual thin shells is summarized very good in [8]. Consider a shell with
two piezoelectric patches mounted symmetrically with respect to the middle surface.
Let ��� � ��� � �
� � be curvilinear coordinates of the middle surface of the shell; � �
the region of the piezoelectric pair; � � ( � � � � the region of the uncovered
substrate; �  the transversal coordinate along the normal; � the radius-vector of
shell points; � the metric tensor of the middle surface; � the curvature tensor of the
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middle surface; � the global metric tensor related to the shell coordinate system;
� � ��� � and �  displacements of points of the middle surface;

�
the thickness of

the substrate; � the thickness of the piezoelectric patches; � � �	�C� and � � �	�C� voltages
applied to the piezoelectric patches. Let the vertical bar before a subscript denotes
the corresponding covariant derivative. The strain tensor of the middle surface is
given by the formula

� � � � �� � ( .� � ��� ��� � 8 � � � � � � � � � �  �
In the case of the Koiter model, where the conservation of the normal is assumed,
the curvature change is given by

� � � � �� �)($�E� �  � � � � � � � � � � �  8 �
�
��� � � � 8 �

�
� � � � � 8 �

� � � � � � � �
The strain tensor is of the form

	 � � � ��:�)(�� � � � �� � 8 �  � � � � �� �
	  � � ��:�)(�*
	   �� ��:�)($� �. � �

�
� � 	 � � � ��:� �

The variation of the energy is given by the formula

�
� % �� � �� � � � � � � ' (�
�

� � � � � � � � � � � � � �� � � � � � �� � 8 � �

. � � � � � �� � � � � � �� � 	 � � � � � � 8
�
� �

� �
� � � �	�C�

� � � � � ��

� � �

�  � � 	 � � � �� � � �  8 � � ���C�
�

� � � ��
� � � � � �

�  � � 	 � � � �� � � �  � � � � � � �

�

(12)

The bilinear form � � is defined on the space
�R � ��� �)( � �

��;�� � ��� � � � � ��� � � �  � � � ��� � � �� L � � ( � �  � � � L � � (�* 	 �

The coefficients
� � � � � are discontinuous functions of �

�

and �
�

. In the case
of shells with actuators made of piezoelectric ceramics belonging to the hexagonal
class (6m m), the coefficients are of the form

� � � � � (
��� ��
� � � � �� �	� � � � � �!� ��� � � � � �5��� � �
� � � � �� �	� � � � � �T� �	� � � � � �5�
� � � � (

�� � � � �\�	� � ��� � �5��� � �
�
� � �\�	� � ��� � �5��� � �

� � � � �� ( � �� � . 8
� � �

�
�
� �
�

� � 8
�
� � �

� � 8 �
� �. � �

� � �
� �
�
� � � �
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� � � � �� (
�� �� � . 8 �

� � �
�
�
� �
�

� � 8
�
� � �

� � 8 � �
� �. � � �

� � �
� �
�
� � � �

�� � ( � 8 � � � � � 8 � �!� �
� � ( � � � � 8 � �!�

�V( �
� � � 8 � �

� �
. 8

� �
8 � �� � 8 � � �

. 8
� � �

� ( �� � 8 � � � � �. 8
� �

8 � �� � 8 � � � � �. 8
� � �

� � � � ��� � ��� � ���  �)( � � # � � � � � � � � �

 K �

� � 
� � # � �1K� � � � � �� � � �
The subscripts � and � point out to substrate and piezoelectric materials, re-

spectively. The symbols � � ��� � � � � � � � and � � �

 K � denote the Poisson ratios, Young

moduli and piezoelectric stress tensor in the Euclidean coordinate system, while�
� � and

�� � denote the effective Poisson ratio and Young module of the substrate-
piezoelectric structure. It is convenient to introduce the following seven parameters

� � ( � �
. 8

� � � � � ( � � � �� . 8
� � � �Q.�� �

� � � �
�  <(

�� �
. 8 �

� � ��� 5 (
�� � �� �� . 8 �

� � � �Q. � � �
� � � �

� � ( � � � � � � � � ( � � �   � � � ( � � �� �  

that define all of the coefficients. Besides, the form � � is linear in
�� ( ��� � � � � � �'� � � .

According to the variational principle, the dynamic equations are given by�
�
� ��� �� � � �� � � � � � � 8

�
� % �� � �� � � � � � � ' (�*+� �� � �R � ��� � � (13)

The initial and boundary conditions look like that
�
� L � � � ( �

� � � �
� � L � � � ( �

� � � � �
� L � � (�*+� � �  � � � L � � (�* �

The following theorem states the existence and the uniqueness of solutions for
models of the Koiter’s type. The proof follows from the properties of the elliptic
part, the first integral, of (12) stated in [8]. The input operator, the second integral,
is similar to that in [11].

Theorem 2. If
�
� � � �R � ��� � , �� � � �B�	� � ��� �T�  , � � ��S�!� � � ��S� � � � � *+� � � , then the

system (13) is uniquely solvable. The solution
�
� possesses the regularity:

�
��� 	 � % *+� � ' � �R � ��� �T�!� �

� � � 	 � % *+� � ' � �	� � ��� �!�  � � �
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3 IDENTIFICATION OF PARAMETERS FOR SHELLS

We propose two procedures appropriate for the treatment of composite structures.
The first one is related to the minimization of a residual of dynamic equations (see
[14]). The second procedure is the conventional least squares method supported by
the “strong” differentiability of solutions with respect to parameters (see [12]).

3.1 Minimization of Residual

A solution
�
� is measured at few points that lie sufficiently dense in a subset � 


of � so that they form a triangulation of � 
 . Then, an approximation
�
�
�

of the
solution and its derivatives is computed from the measured data using Finite Ele-
ments. Here 	 denotes the error due to the approximation and measurement. The
residual on the region � 
 is a functional that is equal to zero on the exact solution
and positive for other functions. We use the following form of the residuum:

�\� �� � � �� � ���� ( �
� �

� � � ��
�� � �� � � � � � � 8

�
�


 % �� � � �� � ��+' � �� � �R � ��� �T�
where � �
 is defined in the same way that � � but with the integration over � 

instead of � . The dependence of � �
 on

�� is indicated, whereas the dependence on� � and � � is omitted. Let � be a set that a priory bounds the exact parameter vector�� . An approximation
�� �

is being found as the minimizer of the functional � , that is

�� � ( arg min�� ��� 
�
�

�=� �� � � �� � � �� � � � ���� � �C� (14)

where the auxiliary function
�� � � �� � �

satisfies the equation

� �� � � �� � � � � � ����� ( �\� �� � � �� � ����T� U �� � �R �� � � � % *+� � ' �
Here,

�R �� is a finite element approximation of the space
�R � ��� � . Because of the

linearity of both �=� �� � � �� � ��
� and
�� � � ���� �

with respect to
�� , the integral in (14) is a

quadratic form, i.e.
�
�

�=� �� � � �� � � �� � � � ���� � �M( �� � ! � �� � � 3 �� �� 8 � � ( ; " �� � � ���� � (15)

The matrix ! � has the following structure:

! � ( 
�
�

" � � ���C� � � �� " � ���C� � �C� (16)

where " � is some matrix and � � ��
is a positive definite matrix.
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Proposition 3 (see [14]). If solutions of (13) possess the following additional regu-
larity:

� 
� � �� � � � � � � � � � � 4 � , then the approximation
�
�
�

can be chosen such that
� 
� � � �� �� � � �

� � � � � � � � � � � 8 � �� � � �
�� � ���� � � � � � � � ?@* as 	 ?@* .

Proposition 4. (see [14]) Let � � be the set of the parameters that are compatible
with the exact solution. There is a function

� � 	0� such that
� � 	0� ?@* as 	M?@* , and

sup�� ��� � ^^ " �� � � �������" �� � � �� � � ^^ 4 � � 	0� � �


We assume in addition that � 
 depends on 	 and may shrink with 	 . Suppose
that the function " �� � � ��$� defined by (15) has the following properties:

G1. There is a unique minimizing element
�� � � � of the function " �� � �  � .

G2. There is � � * and a positive function
� ��� 
 � 	0� such that, for any

�� � � ,

" �� � � ��$���[" �� � � �� � � � � ��� 
 � 	0� � �� � �� �
�
�
�

Theorem 5 (see [14]). If
� � 	0� � � ��� 
 � 	0��? * as 	A? * , then the set of all pa-

rameters compatible with the exact solution consists of a unique element
�� � , and�� � ? �� � as 	M?@* .

Remark 6. Properties G1 and G2 express the positive definiteness of the matrix ! �
(this matrix depends on the domain � 
 ). As a rule, the function

�
decreases with

� 
 and is almost insensitive w.r.t. 	 . Therefore, if � 
 decreases not too quick
with 	 , the conditions of the Theorem are expected to be satisfied. Note that the
matrix under the integral in (16) is positive semi-definite for each � . The resulting
matrix ! � has a good chance to be positive definite and well conditioned, if the zero
spaces of " � � �	�C� � � �� " � �	�C� vary with � . This corresponds to the accumulation of the
information during the observation.

3.2 Last Squares Method

The formal differentiation of (13) w.r.t. the parameters yields the so-called varia-
tional equations �

�
� ��� �� � � � �� 8

�
� % �� � � �� � ��+' 8 � � % ��M� �� � �. � ' (�* � (17)

Here, the following notation is used:

�
� � ( � �� � � � � � � . � (

�
� *+� � � �D�1.0� � � �1�!*+� �

Theorem 7 (see [12]). Let
�
� � ( * ,

�
� � � ( * , � � ��S� � �  � *+� � � , � � � *+� ( * ,� �

� ��*N�:( * , � ( .0� � . Then the solution
�
� of (13) is continuously differentiable

w.r.t.
�� . The partial derivatives can be computed from the variational equations

(17). �
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The parameters fitting can be done using a gradient descent method, where the
gradient is computed using (17). Moreover, higher derivatives exist and can be com-
puted using a sequence of variational equations similar to (17). This makes possible
the application of SQP methods.

3.3 Simulation

To illustrate theoretical results, consider a cylindric shell with a piezoelectric pair as
in Figure 3.

R

θ
/

G

Figure 3. Cylindric shell; � : / W � and � is the polar angle

The coordinates of the middle surface are defined through the variable � ( � � "
and the polar angle

�
.

The equations read:

��� � � � 8 � � � � � 8 � � ��� 8 � �  � � 8 � 
�� � � 8 
�� ��� � � ( � �	�C� � � � � � � � �
��� � ��� 8 � � � � � 8 � � ��� 8

� �  +� � 8 � 
�� � � 8 
�� ��� � � ( � ���C� � � � � � � � 8 � ���C�Q"�� � � � � � �
���  ��� 8 � � � � 8

� � ��� 8
� �  8 � � � � �  � ( � ���C�!" � � � � � � �	�C�Q" � � ���C� � �

Here, the notation is used:

� ���C�)( � � ���C� 8 � � ���C�T� � ���C�)( � � ���C��� � � ���C� �
The coefficients �+� � � � � 
&��� are of the form:

��� � � � � ( � � � � � 8 � . � � � � � � � � � � � � � �)(�� � � � � 8 �Q. � � � � � � � �
�
� � � � �)( � � � � � 8 � .�� � � � � � � � 
+� � � � � ( 
 � � � � 8 �Q. � � � � � 
 � �
� � � � � � ( � � � � � 8 � . � � � � � � � �

Assume that � � and � � are known parameters because they can be easily mea-
sured. Thus, the parameters � � � � � � 
 � ��� � � � � � � � � 
 � � � � � � � " are to estimate.
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Results

Here, the process of estimation based on the differentiability of solution w.r.t. pa-
rameters is shown. The transversal deflection is measured at 20 spatial points for
100 times with the error equal to 5%. The least squares problem is solved using a
gradient descent method. The gradient is computed from the corresponding varia-
tional equations. In Figure 4, the horizontal axes represent the number of steps of
the gradient descent method.
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Figure 4. Estimations of several parameters. Error is equal to 5%

4 HOMOGENIZATION

Consider a von Kármán plate with surface mounted numerous piezoelectric actua-
tors that form a self similar periodic structure (see Figure 5).

�

�

� � �

�
�

Figure 5. Self similar structure. Refinement of each cell if ��� : � W Z
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The inverse piezoelectric effect and the interaction with the surrounding sub-
stance are omitted but the geometrical nonlinearities are accounted. The dynamic
equations can be written (compare with 10) as follows.

PROBLEM P
�
.

�
��� � � � �� � � div

�
�
��� � � � � �� � � 8 � �

� ��� � � � � � � � �
� �
�
�
�
�
� � �

�
� � � (� � � R ���C���)� � ��� � � � 8 " �

� �
�
�
�
�
� � R��	�C� �Z� � ��� � � � �

�
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� � � �

�
� � (/" �

� �
�
� RA���C� �Z� � � � � � � � � (B.0� � �

Here, �
�
� � ( � � � � 	

� � � � � � �� ��� 8 �
�

	 �	� 8 � ��
� � �� � � is the in-plane stress ten-

sor, � � � � 	 , � , � , � ,
�

are 1 > . -periodic piecewise-constant discontinuous functions,R����0���Z� is a distributed applied voltage. The inertia of mechanical moments is taken
into account through the term div

�
�
� � � � � � �� � � . The boundary and initial condi-

tions are imposed,

�AL � � (�*+� � �� �� ^^^^
�
� (�*+� �AL � � � ( � �&� � � L � � � ( � � � �

� � L � � (�*+� � � L � � � ( � � � � � � � L � � � ( � � � � �
(18)

A homogenization procedure based on two-scale convergence (see [15] and
[16]) yields the following limiting equations with constant coefficients.

PROBLEM P.
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� � � R ���C���)�!� �A(/.C� � �
The stress tensor contains only constant coefficients:
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Boundary and initial values are the same, see (18). The coefficients are given by
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The auxiliary functions
�

� � 	 � � � , �
� � 	 � � � , � �Z�	�
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�

� � � � are defined by elliptic systems which are to be solved on the
unit square % *+�1. ' > % *+�D. ' .��� �� �� 	 �
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The boundary conditions must be % *N�D. ' > % *+�D. ' -periodic, which yields the solvability
and the uniqueness up to a constant.

The following theorem (see [17]) states the relation between problems P
�

and P.

Theorem 8. If � � ( *+� � � � ( *+��� � � ( *+� � � � � ( * , R@��� � ��*N� � � � � ��� �!�T�R���*N� S� ( * , then problem P has a unique strong solution � � � � � � that possesses
the following regularity:

� � 	 � % *+� � ' � � �

� ��� �T�NX 	 � ��% *+� � ' � � �

� ��� �T� X
�

�

 ��*+� � � � �

� ��� �T�NX��  ��*+� � � �  ��� �T� �
� � � 	 ��% *+� � ' � � �

� ��� �!�NX 	 � ��% *+� � ' � � � ��� �T� X
�

�

 � *+� � � � � ��� �T�+X �  ��*+� � � � � ��� �T� �
The set " � of all limits of Galerkin approximations of P

�
shrinks to � ��� � � � as

	 ? * , that is all sequences � � � ��� �� �5� " � converge to � � � � � � in

	 � � % *+� � ' � � �

� ��� �!� > 	 � � % *+� � ' � � �

� ��� �!�
as 	M?@* . �
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Figure 6. Snapshot of solutions to P � and P and their difference. The number of uniformly
distributed piezoelectric actuators is equal to � @
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In conclusion of this subsection, we note that the general fully coupled system
can also be homogenized. Nevertheless, the result obtained in [10] is weaker then the
claim of the previous theorem: the relation between the original and limiting equa-
tions is very weak so that the � � -convergence holds for �

�
� , and the � �

-convergence
holds for �

�
. Another feature consist in arising new nonlinear terms in the limiting

equations. This leads to the idea to control the creations of such terms to improve
the structure of the limiting equations with respect to their controllability and ob-
servability.

5 USING HOMOGENIZATION FOR CONTROL DESIGN

For brevity, consider the control design for equation (11). Assume that the number
of piezoelectric actuators is controlled by the refinement parameter 	 (see Figure 6).
Then, the equation reads

� �
�� � 8 � �

� � �
� �A( � � � KN� � � ��

# � �

� #\�	�C�  � � � � � � (19)

We begin with a distributed voltage R � � � ��*N� � � � � ��� �!� that defines voltages
applied to the piezoelectric actuators as follows:

� #\�	�C�)( .
meas ��� � � � �

� � �
R����C��� � � �)� ,
(B.0� � � �D� � � � 	0� � (20)

The voltages � # �	�C�!� ,
(B.0� � � �D� � � � 	0�!� define the function

R � ���C� �)�Z(
��� �� R��	�C� �Z�!� � ��� � �

meas ��� � � � � � �
� � �R����0���Z� � �)� � ��� � � �

R � is constant on each piezoelectric actuator and approximates the distributed con-
trol R . Now, we can rewrite equation (19) as follows

� � � � � � �� � 8 � � � � � � � � � � �)( � � � R � � � � � � � � (21)

where ��� � � , � � � � , and
� � � � are appropriate . > . periodic functions. The homoge-

nization procedure yields a limiting equation of the form

� � � � � 8 � � � � � ( � � � � R � (22)

One can prove that �
� ? ��� in

	 � % *+� � ' � � � � � � ¯� �T�!� � Y . , where
� � � � � ¯� � �	 � ¯� � is the Hölder space. Using the notation, � ���C���Z�J( � � � � R ���C���)� , we rewrite

(22) as follows � � � � � 8 � � � � � ( � ���C���)� � (23)
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Note that (23) does not contain unbounded operators on the right-hand-side. Let� ���C���Z� be the optimal control for (23), then the optimal control for (22) is the solu-
tion of the Laplace equation

� R[( � � � � � � � � ���C���)�!�-R^L � � ( * � (24)

Theorem 9. Let � �	�C� �)� be the optimal control in (23), and � # ���C�T�5, ( .0� � � �1� � � �
are defined through (24) and (20). Then

lim���
�
� �
� � � � � � � � � 
 � � � � �

� � ¯� � � (6*+�
where �

�
and � are solutions of (19) and (23), respectively. �


The proof follows from the fact that R � ? R in �V��*+� � � � � ��� �T� and from the results
of [17] about the convergence rate of �

�
to a limiting solution.

6 STABILIZATION OF SHELLS WITH PIEZOELECTRIC ACTUATORS

A method for stabilizations of shells is described in [18]. An auxiliary open-loop
control problem is stated and the dependence of the adjoint variable on the initial
state vector of the shell equations is computed.

For a shell with two symmetrically mounted piezoelectric patches, the variation
(12) of the total energy is of the form

�
� % �� � �� � � � �	�C�!� � � ���C� ' (�� �� % �� � �� ' 8 �� ���C�  �� % �� 'Q�

with
�� ( � � � � � � � and

��:( � � � � � � � , where � � and � � are clearly to obtain from (12).
This representation holds in the case of several pairs of actuators, if the appropriate
dimension of the vectors

�� and
�� is meant. The auxiliary functional is defined as

follows:

� 
 ( �� �
�

L �� � � �!L � � � �
� � �

8 � � �
�

L �� � � � �!L � � � �
� � �

8 
� 
�
�

L �� �	�C�QL � �
���

The coupled system of the shell and adjoint equations reads:�
�
� � � �� ��� �� � � � � � � 8

�
�
� % ��M� �� ' ($� 
 � � �� � % �� '  �� � % �� ' � U �� � �R � ��� �!�

�
�
� ��� �� � � �� � � � � � � 8

�
�
� % �� � �� 'Z(�*+� U �� � �R � ��� �!�

�
�O��*+� ( �

� � � �
� � ��*N� ( �

� � � �
�� � � �N( �

�
� � � � �!� �� � � � �N( � � �� � � � �
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The optimal control
�� �
 of the auxiliary problem is defined through the adjoint vari-

able as follows
�� �
 ��� � �� � � �� � � � ( 
 � � �� � % �� ' �

An approximation of the optimal stabilizing control is given by the formula

�� � � � � �� � � �� � � �)( �� �
 ��* � �� � � �� � � � � (25)

Proof (Sketch of the proof). The following representation holds

�� 
 ��� � �� � � �� � � � ( 
 � � ��� ���C� � � � ��O��� � �� � � �� � � ��
� � �	� � �� � � �� � � � �

where the input operator
�

is defined by the relation:
� �� ( �� � % �� ' for all

�� ��R � ��� � , while
� ���C� � � is the solution of the corresponding operator Ricatti equation

(see, e.g., [6]). According to (25), we obtain

�� � � � � �� � � �� � � � ( 
 � � ��� � *+� � � � �� ��� � � � �

It is known that the optimal stabilizing control is defined by

���� � � � �� � � �� � � �)( 
 � � ��� � �� ��
� � � � �

where
�

is a solution of the corresponding stationary Ricatti equation. Moreover,
� ��*+� � �M? �

as
� ? � . Thus,

�� � � � � �� � � �� � � � approximates
�� � � � � �� � � �� � � � and,

therefore, stabilizes the system, whenever
�

is sufficiently large.

7 ACTIVE SOUND REDUCTION

The control design that we want to discuss in this section differs from that discussed
in Section 6 because the control actions must be computed in real-time from some
incomplete information about the state of the object. This information is the history
of the signal measured on sensors up to the current time. This section is closely
related to the investigation [2] and [19].

7.1 Physical Model

The physical model is a container with a sound source within them. The problem
consists in the reduction of the sound that is radiated by the structure. The control
circuit includes piezoelectric actuators and sensors delivering information about the
current state (see Figure 7).
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Figure 7. Physical Model

7.2 Coupled Acoustic Structure

This system describes the interface between acoustic waves and a cylindric shell

� � � ( 
 � � �
on � �

� � �� L � � (�*+� � 
 L � ( �  � �
��� � � � 8 � � � � � 8 � � ��� 8 � �  N� � 8 � 
�� � � 8 
�� ��� � � ( � � #%���C� � � � � � � �

��� � � � 8 � � � � � 8
� � ��� 8

� �  �� � 8 � 
�� � � 8 
�� ��� � � ($� � #\���C� � � � � � � � � � � � �5� � �
���  ��� 8 � � � � 8

� � ��� 8
� �  8 � � � �  (/" � # �	�C� � � � � � � � � � ���C� " � � � � � �

Boundary conditions read: � � ( � � ( �  �( �  � ( * on
�
� ; � � ��� � � �  are

periodic in
�

. Here,
�

is the acoustic potential; �
#1� ,
(/.0� � � �N� are the tangential and
transversal displacements;

�
is the polar angle; � ( � � " is the specific length. The

coefficients �)� �5� 
&� � are of the form: � � � � � ��( � � # 2 � � � 8
� � � � � � . � � � � , where

� � is the indicator function of the region related to the piezoelectric actuators.

7.3 Reduced Basis Method and Proper Orthogonal Decomposition

First, the coupled acoustic system is approximated very carefully to obtain a suffi-
cient number of "snapshots" of the solution or its time derivatives at various times:

� � � � � � �)(
��
� � ��� � � � � � �
� � ��� � � � � � �
�  ���� � � � � � �

��
or � � � � � � �)(

��
� � � ��� � � � � � �
� � � ��� � � � � � �
�  � ��� � � � � � �

��
� 	 (B.0� � � �1� � �
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where � � ���C� � � � �!� � ( .0� � � ��� is a solution of the coupled elastic-acoustic system.
Then, the covariation matrix,

	 � � ( .� �
� � � � � � � �

is computed along with the eigenvalues and eigenvectors,

� � � � � � � � ��� 	�� �6* � �
� � � � � � � �1� � 	 � � �

�  � � ( � *+� � ]( �.� � � � � � �!� �^(�� �
New basis functions

� � � 	5(B.0� � � �D� � 
 � are chosen in such a way:

� � ( 	 ��
# � �

�
�# � #1� 	 ( .0� � � �D� � 
 YOY � � � � � � � . *C*+� � 
 � ��� 
�� �

Thus, the reduced basis yields a low dimensional Galerkin approximation,

˙�)�	�C�)( � � �	�C� 8 ��R inp �	�C� 8 � �	�C�!�-R out ���C�)( 	 � ���C�!� ����" � 	 	 � (26)

of the coupled acoustic system. Here,
� 
 is the dimension of the reduced basis;R inp and R out are the vectors of applied and measured voltages on the piezoelectric

actuators and sensors, respectively; � ���C� is an unpredictable disturbance due to the
acoustic excitation.

It is known from �  theory that the feedback control is given by the relation

R inp ���C�)( � � � 9 ���C�T�
where � 9 ���C� is the solution of the so called compensator equation,

˙� 9 �	�C�)( � 9 � 9 �	�C��� �=R out ���C�T�
� 9 ( � ��� 	 � � � 8 � � � �! �J�� ($" � �

� � �J� �J( m � � � � � �
� � n � � �

� 	 � �" � �

�

Here, the matrices � and
�
� satisfy two Riccati equations,

� � 8 � � � � �
m
� " � �

� � � � � � �! n � 8 ! (6*N�
�
� � � 8 � �� � �� m

�
�"�� �

� � � � � � ! n �� 8 �! (6*N�
related to (26) and to a quadratic functional of the form� ( � 

�

� � ! �Z��� � 8 � " R inp �QR inp � � � � L � �	�C�QL � 	 � ��� (27)

Thus, the control circuit is implemented as follows:
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7.4 Results of the Simulation

The dotted curve denotes a free multi-frequency oscillation. The solid curve repre-
sents damped oscillations. The duration is equal to * � *0*+. � . The number of actuators
and sensors is equal to � 
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7.5 Another Auxiliary Functional

The utilization of other auxiliary functionals for the feed-back control design in (26)
is possible and, maybe, preferable. For example, the functional� ( � 

�

��� � ! �)� � � 8 � "OR inp �QR inp � � � � L � �	�C�QL � � �
� (28)

provides a slower grows with respect to the state vector than (27). This guarantees
the existence of the value function of the control problem independently from the
disturbance � in (26) even though the observation contains arbitrary large distur-
bances. The computation of the value function is based on some stochastic proce-
dures (see [20] and [21]). Nevertheless the final formulae are pure deterministic an
can be implemented numerically. Roughly speaking, the optimal control at the state
� �	�C� and subject to the measured signal H R out � � �!�T*A4 � 4 � P is computed through
the solution of the problem

� � ? min� � � � � H ��� ��� � � � �
� �	�C�!� � � P �

where
�

is a positive semidefinite matrix that is easily computed using the problem
data and the signal H'R out � � �!�!* 4 �^4 � P .
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Instantaneous Control of Vibrating String Networks
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Abstract We introduce an algorithm for instantaneous control of vibrating string networks,
where, after semidiscretization of the time variable, the resulting elliptic optimization systems
are solved for each single time step. The elliptic network problems themselves are solved by
domain decomposition. An interpretation of the algorithm as a local optimality system is
given, as well as an interpretation as a local discrete feedback law. Numerical results are
presented for simulation and control of several string networks.

1 INTRODUCTION

We consider dynamic network structures in the spirit of [10] and look for algorithms
to steer these networks from some initial state to the zero state. For this purpose we
will briefly discuss our model problem and introduce some notation.

A network structure is described either by a planar or a threedimensional graph" ( ��R�� � � , where R denotes the set of nodes,
�

the set of edges and
�
� ; ( # R ,� 2 ; ( #

�
. In the case of a planar graph we have to distinguish the cases in which the

evolution is onedimensional “out of plane” or twodimensional “in plane”. Therefore
we have to deal with a function � ���)���C� , which is either scalar, two– or threedimen-
sional. In the latter two cases local coordinate systems � � # � � � � ��� �# � ��� K � ,

� ��H � � �CP are
needed. For instance, � on edge , has in the

�
d-case the form

� #=� �)���C�)( � #%���Z���C� � # 8 �:#\���)���C� � �# �
where � # denotes the local unit vector in direction of the edge. So �
# describes the
longitudinal part of the displacement, while �3# gives the lateral one.

Multiple nodes in the graph are denoted by � � ��R � �[R , while simple nodes
are distinguished by their boundary conditions, which can be clamped (Dirichlet)� � � R � � R , free (Neumann) � �O� R 	 � R or controlled � � � R � � R , where�

is a node’s index with .A4 � 4 �
� . We have R ( R � � R 	 � R � ��R � . Let� � be the index set of all edges adjacent at node � � and

� � � � ��( � � the number
of these adjacent edges. Then for the inner nodes in the graph R � the equationR � ( H � �3R3L � � � � � . P holds.
Let furthermore

� # denote the local stiffness matrix of the system, �Q# the length of
the edge , and � # � the orientation of the outer normal vector on the boundary (the
nodes of the edge), i.e. � # � ; ($�W. if the edge starts at node � � and � #��5; ( . if it ends
there in the local coordinate system. We define � # ��; (/* if edge , is not adjacent at
node � � .
With this notations, our model problem takes the following form:
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¨� # ( � # � � �# � ��*+� � # � > ��*+� � �+( ; ! # � ,�( .M; �M2
(1.1)

� � � � � �)(�*+� � � ��R � � � � � � � � ��� *+� � � (1.2)
� #\� � � �)( � � � � � �!� UE,D� 	
� � � � � ����R � � � � ��*+� � � (1.3)
�
#�� ��� � # � � # � �# � � � � (6* � �
��R � �^R 	 � � � ��*+� � � (1.4)

� #�� � # � �# � � � �)( � � � � � R � � ,�� � � � �O� ��*+� � � (1.5)
� #\� �)�!*+� ( ˜� �# � � ��*+� � #%�T� ,�(B. ; � 2

(1.6)

˙� #\� �)�!*+� ( ˜�
�# � � ��*+� � #%�T� ,�(B. ; � 2

(1.7)

� ��������������
���������������

�

(1)

where dots and primes refer to time and spatial derivatives, respectively.
The first equation describes the evolution of the system, the third and forth one

the continuity and balance of forces conditions at inner nodes of the network, the
remaining equations constitute the initial and boundary conditions. This system has
been shown to be wellposed in the space setting

˙� � ˜�
� � �B; ( K ��

# � �

� � � *+� � #\� � �
� � ˜� � �3R[; (

�
� � K ��

# � �

� � ��*+� � #1� � L � satisfies � .�� � �T�%�Q.�� ��� �
see [9].

2 INSTANTANEOUS CONTROL

2.1 Suboptimal Control

The task of finding optimal- or LQR-controls for system (1) is hard from the numeri-
cal point of view. One has to deal with a global adjoint system running backwards in
time, strongly coupled with the primal equation, which leads to many unknowns, at
least if the network geometry becomes complicated and/or the discretization scheme
becomes very fine.

In online applications one has to compute appropriate real time controls in the
following sense: once a vibration (caused by some external force) is quantified at
a certain measuring point of the network, one has to compute the control just in
the time, the wave needs to propagate to the closest adjacent actuator in the net-
work. Only a real time capable algorithm can ensure the system to be able to apply
a reasonable control, when the wave reaches at the actuators. Consequently, the
computational time needed, is given through the wave propagation velocity in the
network’s components.

We are interested in calculating stabilizing control laws immediately at each
single time step, taking into account the geometry of the network (unlike absorbing
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control laws do, for instance). The basic idea of instantaneous control was, to our
knowledge, first mentioned in [3] and successfully applied in [7] for Navier-Stokes
equations. The principle is the following. In the first step the time variable is dis-
cretized by an appropriate discretization scheme. Afterwards the resulting elliptic
problems have to be solved at each single time step by some algorithm. The cal-
culated controls are then used to steer the system from a certain time step to the
next.

Note, that after semidiscretization in time we still have to deal with network
problems, but on the elliptic level. This will be done by domain decomposition.

We have successfully applied instantaneous control to the wave equation (also
in the 2d case), see [2] for implementation details and numerical results for strings
and membranes. In the meanwhile, we also combined domain decomposition and
instantaneous control for some twodimensional examples.

2.2 Semidiscretization of the System

We consider the network problem (1) on a certain edge. Sometimes we will drop the
index , , when this causes no confusion.

We have chosen Newmark’s scheme for time-discretization, see [12] for details.
In this method two parameters � and � are introduced, which can be used to make
the scheme either explicit, implicit or mixed. The usual choice of these parameters is

��( �5
and � ( �

� , in which case the method can be shown to conserve the discrete
energy, see [12]. Therefore we shall not have any algorithmical damping effects, as
they arise, e.g., in the implicit Euler scheme, which can be applied to the network
equations rewritten as a first order system.

Let � K denote the approximation of the solution of system (1) at time step
�

, say
�M( �  ��� , where ��� denotes the step size of the time discretization. Then Newmark’s
scheme has the form

� K � �# ( � K# 8 ��� D K# 8 ���
� �

� � # � � K � �# � � � 8 � .� � �5� � # � � K# � � � � (1)

 K � �# (I K# 8 ���
� � � # � � K � �# � � � 8 � . � �M� � # � � K# � � � � � (2)

In addition at each time step, the following boundary and nodal conditions apply:

� K � �# � � � � (�* for � � � R �
� # � � #1� � K � �# � � � � 	 � (�* for � 	 � R 	

� # � � # � � K � �# � � � � � �)( � K � �

for � � ��R �

� #=� � � � ( � � � � � � U:,D� 	�� � � � � �
��R � �
�
#�� ��� � # � � # � �# � � � � (�* � � ��R � �3R 	 �

(3)

Here, the artificial variable 0K gives an approximation of the time derivative of � K .
From equations (1) and (2) we can now derive the desired elliptic systems.
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� K � �# � ���
�

� � # � � K � �# � � � ( � K# 8 ���   K# 8 ���
� � .� � �5� � # � � K# � � � ( ; � K# K � �# � ��� � � # � � K � �# � � � (6 K# 8 ��� � . � �M� � # � � K# � � � ( ; � K# (4)

in addition to the boundary conditions (3). Note that the second equation in (4) is
just an update for  , so that we have to deal with only one elliptic equation on the
network in each time step.

In order to derive an optimality system for the elliptic problem, we have to define
a cost functional. For the sake of simplicity let

�
be defined as� � � K � � �); ( .� �

��� � � �
�
#�� �

�

� � K � �# � � 8 .�  K ��
# � �

� � �
�
� � � K � �# � � 8 � �N�S K � �# � � �

� � (5)

In some sense, at each time step, we are looking for a control � , which brings the
system to the zero state as far as possible at reasonable control costs. We will focus
on the choice of the regularization parameters � and � � later.

Now, equations (1) and (4) allow to express CK � �

in terms of � K � �

, � K and� K only. Note that there are no derivatives included anymore, which is of some
importance from the numerical point of view:

 K � � ( �
��� � � � K � � � � K � 8 � K (6)

Analogous computations for � K and � K result in

� K ( ���  K 8 � � .� � �5� � � � 8 . � � K � � .� � �5� � � �

� K �
�

� K (� K 8 ��� � � �Q. � �M� � � � � � K � � K � � � � (7)

From (6) we get� � � K � � �)( .� �

� � � � �
�
#�� �

�

��� K � �# � � 8 � �  K ��
# � �

� � �
�

� � K � �# � � �
�

8 ��  K ��
# � �

� � �
�

� � K � �# � � K# 8 ��� �
�

� K#
� ��� �� � � �� ��

� � �
�)�

where
� ; ( � �  ���� � �

Finally the cost functional takes the following standard form� � � K � � �)( .� �

� � � � �
�
#�� �

�

��� K � �# � � 8 � �  K ��
# � �

� � �
�

� � K � �# � � �
� 8

��  K ��
# � �

� � �
�

� � K � �# � � K# � � �
� � (8)
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We are now ready to derive the elliptic optimality system. Therefore we need
to calculate the variational derivative of

�
. Let

� ( � � #%� # � ��� K � solve the elliptic
equations with homogeneous right hand sides and � # � � # � �# � � 9 �3( � # U � � �R � . Since the problem reduces to the solution of an elliptic system in each single
time step, we drop the time iteration index for convenience. Then the variational
derivative of

� � ��K � � � in direction � is� � ��� � � �M� ( �

� � � � �
�
#�� �

�

� � # � � � # � 8 � K ��
# � �

� � �
�

� # � # � � 8 �
K ��
# � �

� � �
�

� � # � �  �# � � # � � �
(9)

The adjoint equation is given by

� # ( ���
�

� � # � � �# 8 � � # 8 ��� � # � �  # �!� (10)

where � # fulfils the same boundary conditions as the primal system (1), with ex-
ception of controlled nodes, where � # � � # � �# � � � �V( * U � � � R � is enforced.
Then

*J( K ��
# � �

� � �
�

� � # � ���
�

� � # � � �# � � # � �
( K ��

# � �

� � �
�

� # � # � �#� K ��
# � �

� � �
�
���

�

� � # � � �# � # � �
( K ��

# � �

� � �
�

� #'� # � �#� K ��
# � �

� � �
�
���

�

� � # � #'� � �# � ��� K ��
# � �

���
�

� � # � �# �)#DL � ��
8 K ��

# � �

���
�

� � # � # � �# L � ��
(
1

K ��
# � �

� � �
�

� � #'� # � ���
�

� � # � � �# � � �#� K ��
# � �

���
�

� � # � �# � #1L � ��
(
2

K ��
# � �

� � �
�

� � # � # � ���
�

� � # � � �# � � �#� �

� � � � �
�
#�� �

�

���
�

� � # � � � �# � � � � � # � � � �
( K ��

# � �

� � �
�

� # � � � # 8 ���T� � # � � # � � � �#� �

� � � � �
�
#�� �

�

���
�

� � # � # � � � � �
Together with (9) we finally derive� � ��� � � �M�5( �

� � � � �
�
#�� �

�

� � # � � � # � 8 �

� � � � �
�
#�� �

�

���
�

� � # � # � � � � �(�*
( � �5#
($� ��� �

��� #%� � � � U � � ��R � �
1 � V � � � � : <�� � ����� � 0 �	�V � � � : <�� � �
���
�� � 0���� ������� � V���� ��� �

�  � ���V � � � � :<�� � � ���! 
2 � �

�  #" V � � V � �V � V � � � : <�� � ��� � 
� � ��  
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which leads to the following corollary.

Corollary 1 (Optimality system). The optimality system with respect to the cost
functional (8) at the discrete time level

�  ��� has the form

� K# ( ���
�

� � #%� � K# � � � 8 � K �
�# � K# ( ���

�

� � #\��� K# � � � 8 � � K# 8 ��� � K# � � K � �# �
� K � � � � �)(�* � K � � � � �)(�*
� K# � � � �)( � K� � � � � � K# � � � �)(�� K� � � � � (11)
�
#�� ��� � # � � # � � K# � � (6* �

#�� ��� � #�� � # �G� K# � � (�*
� #�� � #%� � K# � � � � � �)($� ��� �

��� #%� � � � � # � � #%��� K# � � � � � �)(�* �
We emphasize, that this optimality system is globally defined on the whole net-
work and has to be solved at each single time step. In the numerical examples this
was done by a domain decomposition method (ddm) and finite differences. We will
focus on the details of the ddm in the next section. Finally, we can formulate the
instantaneous control algorithm.

Algorithm 2 (Instantaneous control of the string network).

1: � �# ; ( ¯� �# �# ; ( ¯ �#
�
�# ; ( � �# 8 ���  �# 8 ���

� � �

� � �5� � # � � �# � � �� �# ; (6 �# 8 ��� � . � �M� � #%� � �# � � �
2: solve the global optimality system (11) for

� (B.
3: compute  �# ( �

� � � � � �# � �
�# � 8 � �#

4: for
� (B.M; � � � . do

5: � K# ( ��� \K# 8 � � �

� � �5� � � � 8 . � � K# � � �

� � �5� � � �

� K �
�#

6: � K# (�\K# 8 ��� � � �Q. � �M� � � � � � K# � � K � �# �
7: solve the global optimality system (11) for time step

� 8 .
8: compute  K � �# ( �

� � � � � K � �# � � K# � 8 � K#
9: end for

In the next section we will focus on the problem, how to solve the global optimality
system (11) numerically. Before we do this, we will give an interpretation of the
instantaneous control algorithm as a discrete closed loop system.

2.3 Interpretation as Discrete Feedback System

We recall Newmark’s scheme on a certain edge

� K � � � ���
�

��� � � K � � � � � ( � K 8 ���   K 8 ���
� � .� � �5� � � � K � � �

 K � � � ��� � � � � K � � � � � (6 K 8 ��� � . � �M� � � � K � � � (12)
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with the boundary- and initial conditions (3) and the discrete unknowns � K � �

and\K � �

. Let the matrices
�

and � be defined through the spatial discretization of an
edge, where

�
is the coefficient matrix of a finite differences/elements scheme and

� acts basically as a projection of the control onto the boundaries. Then

� K � � 8 ���
�

� � � K � � ( ���
�

� � � K � � 8 � K 8 ���  K � ���
� � .� � �5� � � K

8 ���
� � .� � �5� � � K

 K � � 8 ��� � � � K � � ( ��� � � � K � � 8  K � ��� �Q. � �M� � � K8 ��� �Q. � �M� � � K �
Furthermore define �E; ( � 	 � � , which is an approximation of the continuous system’s
phase space variable � 		 � � . Then� � 8 ���

�

� � *
��� � � � �� � � �

� � K � �

 K � � � ( � � � ���
� � �

� � �5� � ��� �� ��� � . � � � � � �� � � �
� � K=K � 8

�
���

�

� �
��� � � �� � � � � K � � 8 � ��� � � �

� � �5� �
��� � . � �M� � �� � � � � K �

i.e.
� � � K � � ( � ��� K 8��

� � K � � 8 �
��� K � (13)

From the adjoint system, we derive the control law.

� � 8 ���
�

� � � � K � � ( � � K � � 8 � �% K � �

� K � � ( � ��� �

��� � 8 ���
�

� � ��� � � � � K � � 8 � �  K � � �T�
and therefore�

���
�

� �
��� � � � � K � � (

� ���  � � � � 8 ���
�

� � ��� �
�
��� � � � ��� � � � �
� � � � � � � �� ��� �� � � �

� � K � �

\K � � ��
���

� � �

� � �5� �
��� � . � �M� � � � K (

� ���  � � � � 8 ���
�

� � � � �
�
��� � �

� � �5� � � ��� � �

� � �5� � � ��Q. � �M� � � � . � �M� � � � �� ��� �� � � �
� � K=K � �

i.e.
�

� � K � � ( � ��� � K � �
�
��� K ( �

��� K �
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and finally

� K � � (�� � ��� ������� � � �	� � � � �
��
� (14)

Equation (14) is a discrete closed loop system. A spectral analysis of the feedback
operator above is part of our current investigations.

We also made similar calculations, where we used the implicit Euler scheme
(applied to the network equations rewritten as a first order system) instead of New-
mark’s scheme. In this case we can show that the discrete iteration matrix has spec-
tral radius smaller than one, such that the system is guaranteed to be damped to
the zero state. Unfortunately, due to algorithmical damping effects, the numerical
results do not properly represent our philosophy.
Since Newmark’s scheme preserves the discrete energy, we do not have these algo-
rithmical damping effects. Therefore we clearly see, that the energy is steered out
of the system only at the boundaries, where the controls apply. Evidently, this does
not hold true for the implicit Euler scenario.

3 A DOMAIN DECOMPOSITION METHOD FOR THE ELLIPTIC OPTIMALITY

SYSTEM

Obviously, the edges of the network are coupled through the conditions of continu-
ity and balance of forces. To make computations as simple (and fast) as possible, it
seems to be reasonable to split the network into its physical components, the edges.
Domain decomposition is applied as an iterative method, which makes it possible to
handle specific domains (here: edges) independently from the others at each itera-
tion level. Taking into account the possibilities of parallel computing, we have a tool
to decrease the necessary computing time. For further reading we refer to [9], [10].

3.1 The Local Optimality System

In the sequel we specify the domain decomposition method for the elliptic network
equations. We also give an interpretation of the resulting local equations as a local
optimality system of a control problem with artificial controls at the inner nodes of
the network.

Proposition 3 (Local optimality systems).
We solve the global optimality system at a certain time step in parallel on each
single edge by the following iterative domain decomposition method ( �

�� iteration
index, time step index dropped):

� 
 � �� � ����� ��� � � � 
 � �� � � � �
� 

� � 
 � �� � ����� ��� � � � 
 � �� � � � � � � 
 � ��

�
��� � 
 � �� � � �

�
� �

� 
 � �� ��� � � ��� � 
 � �� ��� � � ��� (15)
� ��� � � � � 
 � �� � � ��� � � � � ��� � � � 
 � �� � � � � � ��� � � � � 
 � �� � � � � � � �!�
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To enforce the continuity- and balance of forces conditions at the inner nodes, we
use the following transmission conditions on these boundaries:

� ��� ����� ��� � � � 
 � �� � � � � � ���
� � � 
 � �� ��� � � �

�� �
�
��� ��� � � � 
� ��� � � � � � � 
� � � � �

�
���� �

�� � ��� � � � ����� ��� � �
	��� � � ��� � � � � � � ����� ��� � �	��� � � � � � ����� (16)

� � � ����� ��� � � � ��� �� � � � � � � � � � 	���� �� � � � � � �
���� �

�� � ��� � � 	��� � � � � � � � 	��� � � � ���
�
���� �

�� � � � � � � ����� ��� � � � �� � � � � � � � � ��� ����� ��� � � � �� � � ��� � �����
(17)

where � � is an arbitrary positive parameter.

The ddm-iteration above follows the ideas of Benamou [1] and was extended by
Leugering [10] to fit to context of networks. Note, that the right hand sides of the
transmission conditions depend on the iteration history only. On the iteration level� ���

of the ddm, first the right hand sides of (16) and (17) are evaluated and then
used as boundary conditions for the local optimality system (15). We emphasize,
that the equations for each single edge are independent from the other edges, such
that the network is decomposed into its physical components.

We will now give an interpretation of system (15), (16), (17) as an optimality
system of a local control problem on a single edge.
To this end we consider the most complicated case of an edge with an inner node at
� � � � and a controlled node at � � ��� and the following optimal control problem
on edge � with the control  � and the artificial control  � :

!#" ��$ �% �'& � �� �% � � � � �
� � � � � �% � � � �)(�+* "� �
	 ��� �� � � �-,

�/.�0* "� �
	���� �� � � �
�
� � � �-, � �� � � � 	���� �� � � � ���21 ���� � � �

(18)

s.t.

	���� �� � ����� ��� � �	 � ! ��� � � � � �43 ��
� � � � � �
	���� �� � � � � � � �  � ( 5 " �6$ )
� � � ��� � ��� � �	 ��� �� � � ��� � � �  � �87 �� �
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where
7 � � and

1 ��� are defined as

1 � � � �
���� �

�� � ��� � � 	 �� ��� � � � � � 	 �� � � � ���
�
���� �

�� � � � � � � ����� ��� � � � �� � � ��� � � � � ��� ����� ��� � � � �� � � � � � � �
7 � � �

�� �
�� � ��� � � � �� ��� � � � � � � �� ��� � �

�
� �� �

�� � ��� � � � ��� � ��� � �
	 �� � � � � � � � � ��� ��� � ��� � �
	 �� � � � � � � � �

We compute again the variational derivative of
!

with respect to  � �% � �  � �
in

direction � � � � � � � � �
.

! �" ��$ �  � � � � �  � � � �
�

� ��  � � � � ( � * "� 	���� �� � �-,
� . � * "� �	���� �� � ��

�
� � � �-, � � � � 	 � � � ���21 �� � � � � � � ���� � (19)

where
�

solves the differential equation above with homogeneous right hand side
and fulfils � � � � � � �� � � � � � � as well as � � � ��� � ��� � � �� � � � � � � . Thus

� � * "� � � � � ����� ��� � � � �� � � � �-,
� * "� � � � � � * "� ��� � ��� � � ���� �� �-, � ��� � ��� � � ���� � � " �
� * "� � � � � ����� ��� � � � �� � � � �-, � ����� ��� � � �� � � � " � � ����� ��� � � � � �� �

"
�

�� � � "���� *
"
� � � � � ��� � ��� � � � �� � � � � � � � � � � � � � � � ��� � � � � � � � � � � � ��� ��� � ��� � � � � �� �

"
� �

We recall the definition of the adjoint equation (10) and obtain

* "� � ( �	 ��� �� � ˜
� �� ��� . �
	 ��� �� � ��

�
� �
	 � � �-, �

� � � � � � ��� ����� � � � � � � � � � ����� ��� � � � � �� �
"
� �

Together with (19) we conclude

�  � � � � �
� ��  � � � � � � � 	 � � � ��� 1 � � � � � � � �

� � � � � �
� � � ��� � � � � � � � � � � ��� � ��� � � ��� � �� � � � � � � � � � ��� � ��� � � � � � �� � � � � � � � � �
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Therefore the boundary conditions are

 � � � ��� � � � ��� �� � � � � � � � � ��� �� � � �
� ��� ��� � ��� � � � ��� �� � � � � � � � � 	 ��� �� � � � � 1 ����
� � � � � � � ��� �� � � � � � �!� �

which are exactly the transmission conditions (16) and (17) in Proposition 3.

3.2 An Alternative Iteration Scheme

A disadvantage of the ddm in the above form is the necessity of calculating the
derivatives at the inner nodes in order to compute the right hand sides of the trans-
mission conditions. In [4] Q. Deng proposed a simple scheme for the evaluation of
the right hand sides of the equations without any explicit calculation of derivatives.
We adapted this scheme to the network and control context in the manner described
by the following proposition.

Proposition 4.
The transmission conditions in Proposition 3 are replaced by

� ��� ����� ��� � �
	���� �� � � ��� � ���
� � � ��� �� � � � � ��� ��� �� �

and

� ��� ��� � ��� � � � ��� �� � � ��� � � � � � 	 ��� �� � � � � � � ��� �� � �
where � � � and � ��� are defined as

� ��� �� � & � �
� � �

�� �
�� � ��� � �� � � � � � � �� ��� � � 	 � � �� �

�� � ��� � �� � � � ���� 	 �
����� �� � & � � � � � �

�� �
�� � ��� 	��� � � � � � 	��� � � � �
	 � � �� �

�� � ��� ���� � � ���� � 	 �

To initialize the iteration, we chose � �� � and � �� � arbitrary (e.g. � ���� � � ���� ��� ).
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At any time level ��� � , there holds
� ��� ����� ��� � �
	���� �� � � � � � ���

� � � ��� �� � � � � ��� ��� �� �
� �

� � �
�� �

�� � ��� � �� ��� � � � � �� � � � � 	 � � �� �
�� � � � � �� � � � ���� 	

� �
� � �

�� �
�� � ��� � �� ��� � � � � �� � � � � 	 �

���� �
�� � ��� � � � � ����� ��� � �
	��� � � � � � � �

� � � �� � � � � 	 � � � � � ����� ��� � �
	��� � � ��� � � �
� � � �� � � � � 	 �

� � � �
�� �

�� � � � � �� � � � � � � �� ��� � � 	 � � �� �
�� � ��� � � � ��� � ��� � �
	 �� � � ��� � �

� � � � ����� ��� � �
	��� � � � � � � 	 �
i.e. in the limit the same transmission conditions are fulfilled as in the classical
scheme. The computation for � ���� are analogous.

4 NUMERICAL EXAMPLES

4.1 Choice of Penalty Parameters

It is not always easy to find good parameter sets for the instantaneous control algo-
rithms above. We are looking for appropriate choices of the three parameters ( , . �
and � � , which can be interpreted as weights in a Tykchonov regularization formula-
tion. Obviously, the penalization terms have to guarantee a balance between a reg-
ularization effect and accuracy. One can find several methods for adjusting optimal
regularization parameters in the literature, see [5] and [6] for details. Another prob-
lem is the interrelation of the penalty parameters ( , . � and � � with the discretization
schemes in time and space, say the step sizes ��� and � , . From this point of view it
seems reasonable to use a global optimization routine for finding good parameter
sets, which allows to optimize both the penalty- and discretization parameters in be-
tween given ranges. We used a MATLAB implementation of a genetic algorithm to
compute appropriate parameter sets for our problem. The basic properties of genetic
algorithms as well as a description of the optimization routine can be found in [8].
Also see [2] for numerical results of instantaneous control applied to membranes.

We emphasize, that the parameter problem has to be solved off-line only once by
any global optimization algorithm or by one of the methods in [5] and [6]. All future
applications of the instantaneous control will work with this special parameter set
on-line.

4.2 Instantaneous Control of a String

We used a finite difference scheme for the spatial discretization of the string of
length � � � � � with ��� grid points with controls on both boundaries. The genetic
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algorithm toolbox gave us the following parameter set: ��� � � � � ��� , ( � ��� ��� ,. � � � � � . The control was computed up to the final time � � � � � . At � � � the
initial condition gives a discrete maximum norm of � 	 � � � � � � . After application
of the instantaneous control algorithm we found � 	��
	�� �!� � ������� in the same norm
at � � � � � . Figure 1 shows the evolution of the string in the

�
-axis plotted versus

time and space. The MATLAB code took � � � � � seconds on a Pentium II / 166 MHz,
running Linux.
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Figure 1. Instantaneous control of a string

In order to check the quality of the instantaneous control, we compared the re-
sults to the approximation of the optimal control. For this, we used the same setting,
as in the example above but with the string clamped at

, �!� . The approximation of
the optimal control was computed by optimizing the continuous cost functional! $ �


� �% �'& � �� * �� �  � � � � � � � � �� * �� � 	 ��� � � ��� � ��� � � � � � �� * �� � 	 � ��� � � ��� � ��� � � � � �
such that 1 is fulfilled, with a high penalty parameter � . For this computation we
have chosen � ��� � � � � � , which is the smallest possible time interval, in which
controllability of the wave equation holds in this setting (for � � � � � just the zero
function was plotted). The instantaneous control was computed up to � ��� � � .
Figure 2 shows the evolution of the optimally controlled system, plotted against the
evolution of the instantaneously controlled one (solid line) at several time steps.

4.3 Network Simulation

We consider uncontrolled systems at first, i.e. ( � . �!� , with homogeneous Dirich-
let boundary conditions at single nodes, in order to check the domain decomposition
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Figure 2. Instantaneous versus optimal control

algorithm. In these examples, we have chosen � , � ��� ���
and ��� � � , � � . The itera-

tion history plots contain in the top window the number of necessary ddm-iteration
steps, to get the differences of the evolution on the adjacent edges of a node, as
well as the deviations in the transmission conditions � � 
 � ���� � � 
��� � , below a certain
threshold, here � � � � � 5

. In the middle and bottom windows, we see the evolution-
and transmission condition error, plotted against the time steps, respectively. For the

simulations, we have chosen � � � � � � �
� ��	� for the ddm-parameter.

The first example shows the simulation of a serial string network. Figure 3 shows
its iteration history, Figure 4 the evolution of the system.
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Figure 3. Iteration history of a serial string network
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Figure 4. Simulation of a serial string network

As an example for a network, which contains a node with edge degree
� � � �

,
we present the simulation of a string trihedron. Figures 5 and 6 show again the
iteration history and the evolution of the system.

Finally, Figure 7 shows the simulation of a network with � � edges and �
�

nodes.
We applied free (Neumann) boundary conditions at the single nodes.
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Figure 5. Iteration history of a trihedron string network
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Figure 6. Simulation of a trihedron string network
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Figure 7. Simulation of a network
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4.4 Instantaneous Control of Networks

We present numerical results for the last two examples, with instantaneous controls
applied at single nodes. For the trihedron example, we have chosen ( � � �������
and . � � � � � � for the control penalty parameters and � � � ( � � �

� ��	� for the ddm-
parameter, i.e. the difference of the displacements on the different edges is penalized
by
� �
� �
� � � ���� � � � � � � � � . Figure 8 shows the evolution history, 9 the evolution of

the trihedron. We achieved the zero state with a precision smaller than � � � � � � ���
in

the discrete maximum norm at � � � � � .
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Figure 8. Iteration history of a trihedron string network

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

0.6

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.0

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

0.6

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

0.6

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.76

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

0.6

−0.1

−0.05

0

0.05

0.1

0.15

0.2

1.02

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

0.6

−0.1

−0.05

0

0.05

0.1

0.15

0.2

1.74

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

0.6

−0.1

−0.05

0

0.05

0.1

0.15

0.2

4.0

Figure 9. Instantaneous control of a trihedron string network

Finally, Figure 10 shows again the evolution of the � � -edges network from the
precedent example, but with instantaneous control applied on the single nodes. Note,
that we have an uncontrollable situation, due to the fact, that the network contains
circles. For � � � � � � we found for the discrete maximum norm of the evolution
over the whole network � 	 � � � �!� � ��� � � .
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Figure 10. Instantaneous control of a network
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5 REMARKS

Evidently, the instantaneous control framework can be extended to the two dimen-
sional case. Instantaneous control was successfully applied to vibrating membranes
[2]. We also combined a different instantaneous control strategies (“one gradient
step stabilisation”, see [7] for details) and domain decomposition to the so-called
“L-shape problem” and obtained encouraging numerical results, see Figure 11. In
this case, the L-shaped domain was subdivided into three quadratic sections. Con-
trols were applied at the long edges of the “L” while the membrane was clamped at
the short ones.

0

0.5

1

1.5

2

0

0.5

1

1.5

2

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

t=0.000   ||y(t)||∞=0.09124

� : <?> <
0

0.5

1

1.5

2

0

0.5

1

1.5

2

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

t=0.200   ||y(t)||∞=0.01739

� : <?> Z
0

0.5

1

1.5

2

0

0.5

1

1.5

2

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

t=0.350   ||y(t)||∞=0.01981

� : < > � �

0

0.5

1

1.5

2

0

0.5

1

1.5

2

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

t=1.150   ||y(t)||∞=0.01013

� :�� > � �
0

0.5

1

1.5

2

0

0.5

1

1.5

2

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

t=1.650   ||y(t)||∞=0.00491

� :�� > @ �
0

0.5

1

1.5

2

0

0.5

1

1.5

2

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

t=12.000   ||y(t)||∞=0.00013

� : � Z > <

Figure 11. Instantaneous control of the “L-shape problem”

We note in closing that we have not yet considered the implementation of other
domain decomposition techniques.

Notably, the methods by J. L. Lions and O. Pironneau [11] appear to be promis-
ing with respect to instantaneous controls.
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Abstract In this paper we present a model for the controlled flow of a fluid through a net-
work of channels using a coupled system of St Venant equations. We generalize in a variety
of ways recent results of Coron, d’Ándrea-Novel and Bastin concerning the stabilizability
around equilibrium of the flow through a single channel to serially connected channels and
finally to networks of channels. The work presented here is entirely based on the theory of
quasilinear hyperbolic systems. We also consider open-loop optimal control problems and
provide numerical schemes both for the simulation and the control of such systems.

1 INTRODUCTION

The problem which we are going to consider in this paper is related to the real-time
optimal control of sewer- or irrigation systems. Such systems are described by pla-
nar graphs representative of the channel system along with one-dimensional flow
equations, namely the 1-d shallow water- or the ‘de St.Venant’ equations. These
equations constitute a non linear hyperbolic system first introduced in [14]. They
have, in particular, become a standard tool for hydraulic engineers used in the mod-
elling of the dynamics of channels and rivers. The books [5] and [6] provide useful
engineering references to this topic.

In a typical real-time application, of course, one has to consider various model
reductions in order to comply with the requirements of the computing time avail-
able. As a matter of fact, in the application to a particular sewer-system which we
have in mind, the real-time requirements strongly depend on the velocity of the flow
in the network. We consider a nominal flow in that network which is essentially at
an equilibrium level. Now, once heavy rain falls cause a significant discharge at the
boundary of our network of channels, we can estimate the velocity of flow within
the reaches (links, channels) and, therefore, we can estimate the arrival time of the
‘flood’ at a given node in that network. Now, as the network stretches from a moun-
tainous region into a flat region, those channels which are close to the boundary will
be much steeper than those far from the boundary. The water in the steep channels is
transported essentialy without ‘backwater effects’ and can be modelled as transport
links without resorting to partial differential equations. Those channels which are
less steep but still have a significant bed slope can be approximated by some non-
linear diffusion advection equations or stiff ordinary differential equations. We will
report on these approximations and their numerical treatment in a different note.
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Finally, the channels which are located in the flat region, i.e., those with moderate
or small bed slope, will be modelled by the St. Venant equations.

Assume now that the flow of water through such a network of channels is con-
trolled at certain points (junctions, serial joints etc.) by the action of sluice gates,
weirs and pumps into reservoirs. The control actions are related to measurements
that are taken at certain locations both at the boundary and within the network. The
final goal of this project then is to compute optimal controls that keep the water-
level at given ‘down-stream’ locations in some given bounds. In the system under
consideration there is purification plant at the root of the (tree-like) network where
constraints on the height of the water are to be respected. While the modelling and
control of such systems has been considered in the framework of ordinary diffe-
rential equations in the engineering literature, the treatment of partial differential
equations in this context is still in its infancy. However, backwater effects and other
effects that occur when controlling the flow through the openings of, say, sluice
gates necessitate the consideration of continuous models. For that reason, in this
paper, we proceed to take into account such effects by considering the St. Venant
model. We emphazise that this report is preliminary in the sense that we do not
consider real-time implementations of numerical algorithms. Rather, at this point
we take into account software which we think will turn out to be real-time capable.
The final implementation will be reported on later. As has become clear from this
description of the problem, we will be faced with a hierarchy of models and con-
trols according to the real-time requirements. As the continuum models appear in
the region with small bed slope and wide channels with simple geometry, we will
concentrate on exemplaric situations as serially linked channels and multiply linked
channels. Only the simplest situations have been discussed in the mathematical lit-
erature so far, namely a single channel bounded by two drowned sluice gates, or by
a series of such channels. In particular, in a recent paper Coron et.al. [3] have con-
sidered the flow along a channel between two large bodies of water controlled by
sluice gates at the ends of the channel. The settings of these gates determine the fluid
velocity at the two ends and the main result shows that suitable feedback boundary
conditions can be used to exponentially stabilize a given operational state of the
channel. This result depends on a subtle theorem of Greenberg and Ta Tsien [7]
which guarantees the exponential decay of solutions to certain hyperbolic systems
in two variables subject to boundary conditions which impose damping. These re-
sults have been extended by Leugering and Schmidt [11] to more general boundary
conditions and to controlled star-like networks. Also the geometry of the reaches
can be taken more general. We will restate the results below. As was the case for the
previously cited papers the methods are entirely non linear but do remain within the
realm of classical, shock free, solutions.

2 THE MODEL

We consider first a single channel parametrized lengthwise by
,���� � ����� . Let �	� � , �

denote the altitude above sea level of the bed of the channel at
,

. The variable
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	 � 	 � , � � � � � � � , � �
denotes the elevation above the channel bed where

� � , �
denotes the depth of the channel. Let � � , � 	 �

denote the width of the channel cross
section at

,
and elevation 	 . Let

� � , � � �
denote the area of the crosssection at

,
occupied by water at time � . We assume that the water level is constant across the
channel at height � � , � � � � � � � � � , � �

. Clearly
� � � � , � � �

and � � � � , � � �
. In

particular, leaving aside the � - dependence for the moment,

� � , � � � � * �� � � , � 	 � � 	 and
� � * � � � � � �

� � � , � 	 � � 	 � (1)

It follows that

�
� � � , � � � ��� � , � � �

and
� � � � , � � � �

�
� � , � � � � (2)

where � � , � � ���
� � , � � �

(or � � , � � ��� � � , � � � , � � �
) is the width of the water

surface at
,

. See Figure 2.

�
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It turns out to be convenient to choose
� � , � � �

, rather than � � , � � �
as our geo-

metric state variable describing the distribution of water along the channel at a given
time since it conveniently leads to a system of conservation laws. The derivation of
the St Venant equations depends on the assumption that the flow of water along the
channel can be represented by a scalar velocity function � � , � � �

in the direction of
the channel from � to

�
. This can be thought of either as a constant, or as an av-

erage, velocity over the crosssection of the channel. For a more detailed physical
discussion of the underlying assumptions of the St Venant model see [5] page 8.

Assuming a constant density ( .�� �
, say) the mass flow rate of the liquid along

the channel is given by � � , � � ��� � � , � � � � � , � � �
. Conservation of mass is then

expressed by the conservation equation
�
�
� � � � � � � � ��� � (3)

The St. Venant system is completed by the balance of moments

�
� �

� � � m �
� � � � � � � , � � ��� � � ��� , � n �!� � (4)

Remark 1. One can add an empirically motivated resistance, or friction, term to
the left hand side of the last equation. Various alternatives occur in the engineering
literature (see, for example, [5] pages 19-22). Generically these are of the form� � , � � � � �

satisfying
� � , � � � � � ��� and � � � , � � � � ��� � � (5)

Now we consider networks of channels. We use notation similar to that intro-
duced in [10] for networks of strings and beams. We index the channels, and the
quantities associated with the channels, by � ��� �
	 � � � ��� � ��� . We label the lo-
cations of the end points of the channels, which we shall refer to as nodes, by � 	 � � ��� � � � � . We distinguish between multiple nodes, indexed by

 ���
� , at

which various channels come together and the simple nodes, indexed by
 ��� �

which are endpoints of a single channel. For
	���

we introduce
� � ��	 � ��� & the � -th channel meets the


-th node

� �
For � ��� � we set

, � � � � or
� � corresponding to the end which meets the other

channels at the

-th node. We the also set � ��� � � �

if
, ��� � � � or � ��� � � � � if

, � � �
� .

At simple nodes we shall later impose boundary conditions through which con-
trols can be imposed on the network. At multiple nodes we shall impose first the
following condition expressing conservation of fluid in the flow through the node
indexed by

 ���
� :

�
� ����� � � � � � � , ��� � � � � �

� ����� � � � � � � , ��� � � � � � � , ��� � � � �!� � for
	���

� � (6)

We can derive a second dynamic node condition from Hamilton’s principle. To this
end we introduce � � � �

� �	�� � � � � � , � � � ��� � � � � � , �
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(a quantity which, divided by g, is called the specific energy). Then applying Hamil-
ton’s principle we obtain � � � , � � � � � �

� " � , " � � � � �
for all incident edges. The analysis can be modified to deal with the various cases in
which

, � � and
, " � are not both zero. So we end up with the following dynamic node

condition for each
	���

�m �
� � �� � � � � � � � � � ��� � � � � n � , ��� � � �

coincide for � ��� � (7)

In addition we have to consider boundary conditions to be imposed at the simple
nodes and initial conditions prescribing

� � , � � �
and � � , � � �

. The discussion of the
boundary conditions will be given later taking into account issues concerning hy-
perbolic systems. It should be noted that the continuity of the water level at auch
a junction is also a reasonable condition, if one is willing to sacrifice conservation
of energy for an entropy inequality. This simpler condition, which is considered by
some engineers, will also be used in some of the numerical simulations. To be more
precise, let

� � � � � ��� �

�
� �	� � � * � � � � � �

�
� � ��� , � � 	 ��� � , � 	 � � 	

� �

�
� � � � � � � ��� , � � * � � � � � �

� 	 � � , � 	 � � 	 � (8)

where
�

and � satisfy (3) and (4). Then one easily verifies

�
�
� � � � � �

� � ��� � (9)

This of course also holds in indexed form for each channel and if one introduces the
total energy

� � � � � � � A � � � � � �
V � � � � ����� �

� ��� *
���

�
� � � � � � � � � � , � � � �-,

one obtains, using the multiple node conditions,

�
�

� � � � � �� ��� � � � , ��� � � � � � , � � � � � �
so that energy is conserved if, for example, there is no flow through the simple nodes
of the channel network.

Remark 2. Friction can be introduced with a friction term
� � � , � � � � � � �

in the left
hand side of the local St. Venant equations.

�
�
� � � � � �

� � � � � , � � � � � �!� �
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as well as

�
�

� � � � � �� ��� � � � , � � � � � � � , � � � � � � �� ��� *
���

�
� � � � � � � , � � � � � � � �-, �

The friction terms lead to energy decay because of the assumption (5).

3 EQUILIBRIUM FLOWS AND THEIR PERTURBATIONS

We seek solutions A and V of the network system described in the previous section
which depend only on

,
and not on � . Explicitly they are required to satisfy������ �����

� � � � � � � � �!� on
� � ��� � � for � � � �� � �

�

� � �� � � � � � , � � � � � � � � � � , � � �!� on
� � ��� � � for � � � �� � ����� � ��� � � � , � � � � � � , ��� � �!� for

 ���
�
�

�

� �
� � , ��� � � � � � � � , ��� � � � � , ��� ����� � � � � � , �

coincide for
 � �

�
� � � � � �

(10)

It is easy to deduce that one must have

� � � , � � � � , � � � � with
�
� ��� � � � � � � � ��� � (11)

� � � , � �
�� � � � , � � � � � � � , � � � � , � ��� � � � � � , � �

� �
(12)

where � � and
� � are constants.

We say that the fluid in the channels is still if � ��� . In that case the components
of

� � , �
are determined from

� � � , � � � � , ��� �
�
�

� � � � � � � � , � �#�
which will have a solution respecting the depth restriction on each channel if and
only if

��� �
�

� � � � � � � � , � � � � � � , �
for all � ��� �

The equilibria which are not still are more difficult to determine. For the purposes
of this paper we now make two restrictive assumptions, namely

– the channels are prismatic which means that the crossections of the channels do
not depend on x (so

� � , � � , � � and � � do not depend directly on
,

);
– the system of channels is level, the beds of the channels all lying at the same

constant elevation � � .
In this case equilibria

� � � will not depend on x. One can think of channels designed
with certain operating conditions in mind. For example one can specify a standard
water height of � for the whole channel with ��� � � for each � � � . For each
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channel one can fix the flow direction, encoding this by � � � �
or � �

depending
on whether � � is to be positive or negative. This is to be done in such a way that at
each multiple nodes flows occur both into and out of the node. We then try to design
the crosssections of each channel in such a way that

� � � � � � � �
satisfy

�
� ����� � � � � � � � ��� � (13)

If this is possible we can set � � � � � � where � is any given positive velocity
and easily check that the conditions for an equilibrium are satisfied. To clarify the
meaning of the above condition we note that when � � � � � � �

the flow in the � -
th channel is into the


-th node while when � � � � � � � � that flow is away from

the node. For channels of rectangular crosssection with � � the breadth of the � -th
channel one can require �

� ��� � � � � � � � � ��� � (14)

independently of the value � . It is almost obvious that the above process always
works in the following particular network configurations:

– star configurations in which n channels all meet at one multiple node;
– tree configurations in which the direction of flow is always towards the trunk,

or always away from the trunk.

Remark 3. One can easily experiment with a variety of particular networks and di-
rection assignments to find many other configurations in which the above process
works. These may include closed paths.

A general goal now is to stabilize the flow around such an equilibrium flow by
means of suitable feedback boundary conditions at the simple nodes, which lie at
the extremities of the channel network i.e., at the points where water flows into or
out of the system of channels. At present we can do this only for star configurations.
In fact we first consider a single channel for which our results are also in large part
new.

4 STABILIZATION AND NULL CONTROLLABILITY FOR A SINGLE CHANNEL

We consider one level, prismatic channel and study perturbations of constant equi-
librium conditions.

First we make use of the standard method of Riemann invariants for hyperbolic
systems to be found, for example, in Taylor [13], Chapter 16. We begin with a single
channel. Evaluating the

,
derivatives in (3) and(4) we can rewrite these equations as

a system
�
�
� �
�
� � � � �

� � � � � � �
� � �

� �
�
� �

� �
� � � (15)
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The eigenvalues of the matrix are7
� � � � � � � ����� � � �

where � � � � � �
� � � � � � �

(16)

with
7 � � � and

7 � � � in the subcritical case that

� � � � � � � � � � � (17)

The corresponding left eigenvectors are

l � � � � �
�� ��� �

� � � � � � � � � � � � �
Riemann invariants are then obtained by solving��� � � � � � � � � � � � � � � � � � � � � � � l � � � � �
We can take� � � � � � � �

�� � ��� * ��
	 ��� � � �� with 	 ��� � �
� �� � ��� � �

The system (15) is now equivalent to
�
�
� � � � � � ���87

� � � � � � � � � � � � � � � �!� �
For solutions A and V the Riemann invariants � � are constant along characteristic
curves � , � � � � � � �

with
�
�
,
� � � � � 7

� � � � , � � � � � � � � � � , � � � � � � ��� �
Now we consider perturbations

� � � ���
and � � � � � of an equilibrium

state. We assume that the equilibrium flow is subcritical, so that this will continue
to be the case for small perturbations. The system becomes

�
�
� �

�
� � � � � � � ���

� � � � � ��� � � � �
� � �

� �
�
� �

� �
� � � (18)

In terms of the perturbation variables
�

and � the eigenvalues of the matrix are

7
� � � � � � � � � ��� �� � �

where �� � � ��� � � ���
� � � ��� � � (19)

corresponding to Riemann invariants� � � �'� � � �
�� � ��� *��� � ��� � � � � with � ��� � �

� �

� � � � � � � � � � � � (20)

The characteristic curves � , � � � � � � �
are now determined by solving

�
�
,
� � � � � 7

� � � � , � � � � � � � � � � , � � � � � � � � � (21)
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We next turn to the feedback stabilization of a single channel, which should
drive perturbations

�
and � to zero exponentially in time. The system has to be

complemented by initial conditions� � , � � � � � � � , � � � � , � � � � � � � , � � (22)

In terms of the Riemann invariants it is well known that one can impose boundary
conditions of the form� � � � � � � � � � � � � � � � � � � �

and � � � � � � � ��� � � � � � � � � ��� �
In particular one could impose the absorbing boundary conditions� � � � � � � �!� � and � � � � � � � �!� � (23)

equivalent to the following feedback boundary conditions in terms of
�

and � ,

� � � � � � � � 5 � � � � � � ��� � � � � � � � � 5 � � � � � � � �
with 5 � � � � * �� � ��� � � �� (24)

One could also replace 5 � � �
by Taylor approximations 5 � � � � � � � � � �

or 5 � � � � �
� � � � � � � � � � � � � � � , say, or alternatively by other functions of

�
.

Theorem 4. Consider the perturbed St Venant system with boundary conditions

� � � � � � � 3 � � � � � � � � � � � � � � � � � 3 � � � � � � � � � �
where

3 � � 3 � are continuously differentiable in a neighbourhod of the origin and
satisfy 3 � �!� � � 3 � � � � �� � � � � � 3 � ��� � � 3 � � � � �� � � � � �

We assume that initial conditions are given satisfying the compatibility conditions

� � � � � � 3 � � � � � � ��� � � � � ��� � 3 � � � � � ����� �
�

� � � � � � � � ��� � � � � � ��� � � � � � � � � � � � � � � �

� � 3 � � � � � � � � m � � � � � � � ��� � � � � � � � � � ��� � � � ��� � � � � � � n �
(25)

�

� � � ��� � � � ��� � � � � ����� � � � � � � ��� � � � � � ���

� � 3 � � � � � ��� � m � � � � � � ��� � � � � � ����� � � � � � � � ��� � � � � ��� n �
Suppose that

� � � � � � � � � � � � � � ������

� 3 � � � ��� � � � �
� 3 � � � � � � � � �

� 3 � � � � � � � � �
� 3 � � � ��� � � � � ����

� � � (26)



260 M. Gugat, K. Schittkowski, and E. J. P. G. Schmidt

Then,if � � � � � � � � � � is sufficiently small, there exists a unique continuously differ-
entiable solution � � � , � � � � � � , � � ���

to the problem which is defined for all positive �
and satisfies an estimate

� � � � � � � � � � � � � � ��� � � ����� � � � � � � � � � � � � �
where � and � are suitable positive constants.

For a proof see [11].

Remark 5. In the notation of the paper [3] the boundary conditions (16) of that paper
can be written

 � � �
� � � �87 � � 	�� � 		 � �	 � � 	 � � 3 � �	 � � 	 � �

 � � �
� � � � 7 � � 	 � � 		 � �
	 � � 	 � ��3 � �	 � � 	 � �

The variables 	�� , 	 � and 	 correspond to
� � � � � �

,
� � � � � �

and
�

, with 	� � 	
corresponding to

� � � � � �
, etc. In our notation  � �  � � � � �

and  � �  � � � � �
.

The quantities calculated in the proof of their Theorem 1 correspond directly to our
calculation of

� � � � � �
and

� �
�

� � �
. Our result is more general in that it allows for a

broad class of boundary conditions and does not require rectangular crosssections.

It is also possible to treat feedback-boundary controllability problems using Rie-
mann invariants. See [11] and [8].

5 STABILIZATION AND NULL CONTROLLABILITY FOR A STAR

CONFIGURATION OF CHANNELS

Now we consider a star configuration of channels and perturbations
� � � � �

and � � � � � of equilibrium states
� � � constructed at the end of the previous

section. We assume that the equilibrium flow is subcritical on each channel, so that
this will continue to be the case for small perturbations. The flow in each channel
is governed by the St.Venant equations with all the quantities indexed by � and, � � � ��� � � . It is convenient to suppose that for each � the parameter value

, � �
corresponds to the end of the channel at the single multiple node. It is then useful
to parametrize all the channels with a parameter

,
over a common interval

� � � ��� ,
where

�
could, for example, be the average channel length. For the � -th channel this

would entail a parameter change
,��� � � ��� , and the system corresponding to that

channel becomes

�
�
� � �

� �
� � � �

�

� � � � � � � � � � �
� � � � � � � ��� � � � � � � �

� � �
� � �

� �
� �

� �
� � � (27)

The corresponding eigenvalues of the matrix are now7 �
� � � � � � � � �

� �
� � � � � � � � � � � � � � � �
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The Riemann invariants � �
� are unaffected by the parameter change.

This gives us a hyperbolic system of 2n equations on
� � ��� ��� � � � � � . Such sys-

tems are discussed in the appendix, which uses a different indexing of the Riemann
invariants, setting � � �

� � � � � for � � � � � ��� � � �� � � 
� �
for � � � � � � � ��� � � � �

In our case the equations are pairwise decoupled and it is convenient to stay with
the indexing � �

� . Initial conditions are given by� � , � � � � � � � , � � � � , � � � � � � � , � � (28)

At
, � �

we can introduce decoupled boundary conditions acting independently on
each channel:

� � � � � � � � 3 � � � � � � � � � � �
or � � � � � � � � ��� �� � � � � � � � � ��� � (29)

The coupling between the variables occurs through the multiple node conditions
which translate into a boundary condition at

, �!� . Let
� � � � � � � � � � �� � � � � � � � � � ��� � � � � � � � � �

(30)

� � � � � � � � � � � � � � � � � � � � � � � � �
Then we have the following set of

�
multiple node conditions in

� �
variables hold-

ing at � � � � � � � � � � � � � � � �
�


 � � 

� � 


� ��� � for � � � � � ��� � � � � �� 
��� � � � � � � � � � � ��� � (31)

We have the following

Theorem 6. Consider the systems (27) with boundary conditions (30) and (29)
holding at

, � � and
, � �

respectively and initial conditions (28) with data
satisfying the appropriate compatibility conditions as in (25). Suppose that

� � � ��� � � � � � �	� max� � � � 

� � �

�
� � � � �

� � 
 � �� ��� � �� � � � 
 � � � max� � � � 

����

� 3 �� � � � � � � � � �
� 3 �� � � � � � � � � � ����

� � �
(32)

Then, for � � � � � � � � � � sufficiently small, there exists a unique continuously differ-
entiable solution to the problem which is defined for all positive � and satisfies

� � � � � � � � � � � � � � ��� � � ����� � � � � � � � � � � � � �
where � and � are suitable positive constants.

Proof. (See [11])

It is also possible to adapt the proof of this Theorem to prove a result on null
controllability for the star system.
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6 NUMERICAL SIMULATIONS

We now consider a flow process in open rectangular channels, to simplify the anal-
ysis. Hence,

� � , � � � � � � � � , � � �
, where again � is the constant width and � � , � � �

the height or water level, respectively. Let � denote the Manning number and � the
fraction of cross section versus wetted boundary, i.e.,

� � , � � � �
� � , � � �

� � � � � , � � � �
We apply the so-called Manning formula for computing the friction slope

�
� 
 � $ � , � � � � � � � � � , � � � � � � , � � �

� � , � � ��� � � � (33)

Initial values describe the discharge and water level distribution at � �!� , � � , � � � �
� � � , �

and � � , � � � � � � � , �
. Boundary values are chosen to model a specific situa-

tion, where a time dependent inflow at one side is given, say
, � � , with an input

function � � � �
, and an outflow controlled by an underflow gate opening subject to a

control function  � � �
, leading to

� � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �  � � � � � � � � � � � � ��� � � � (34)

see Graf [6], where � � is the right water level outside the reach and � � � a
constant, see Figure 3. These conditions are considered in [3] and fit into the frame-
work of Riemann invariants outlined above. In many practical situations, channels
are connected and form networks with different topologies. To give two simple ex-
amples, consider three channels connected at one end, with one inflow and two
outflows, see Figure 4(a), or the two serial channels of Figure 4(b).

In the second case, two serial channels are given with the same width for sim-
plicity, and are connected at

, � � �
. Water height can be controlled by two under-

flow gates, one between the two channels, one at the right boundary
, � �

� . Both

H(x,t)

h(t)

Hf

u(t)

x=L

Figure 3. Underflow Gate
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x=0

x=L

x=L

x=L

1

2

3

s(t)

(a)

H(x,t)

u (t)2

Hf

u (t)1

H(x,t)

h (t)1

h (t)2

x=L1
x=L2

(b)

Figure 4. Three-star channel node (a) and two serial channels (b)

are controllable by time-dependent, smooth functions  � � � �
and  � � � �

. Now the
dynamic system is defined in two different integration areas from

, � � to
, � � �

,
then again from

, � � �
to
, � �

� , leading boundary and transition conditions of
the form

� � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � �  � � � � � � � � � � � � � � � � � � � � � � � ��� �
� � � �

� � � � �  � � � � � � � � � � �
� � � ��� � � � (35)

Here the minus and plus signs denote the corresponding limits from the left and
right side at transition point

, � ���
. The flow is assumed to go from upstream to

downstream.
In order to present a numerical example, we consider two serial channels as

outlined above, with constant widths � � � , gravitational constant � � � � � � ,
Boussinesq coefficient � � �

, Manning number � � � � � , constant bed slope�
� " � � 
 � � � ��� � , initial discharge � � , � � � � � � � � , initial water level � � , � � � � � � � ,

outer water level � � � � � � , and boundary coefficient � � �
. The length of both

channels is 500, i.e.,
��� � � ��� and

�
� � � ��� � . The inflow � � � �

is given by linear
interpolation of some data, see Table 1(a).

We are interested in the question, whether the flow in the channel can be con-
trolled at the two underflow gates, so that the water levels are � goal � , � � �

for, � � � ��� � � and � goal � , � � � � � for
, � � � � ��� �

�
. Controlled are the openings

of the two underflow gates by simple polynomial control functions of the type
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� ��� ���
��� � � � � �
� �	� � � �	� �
�
� �	� � � � � �
� �
�	� � �	� ���

(a)

initial final
� � � � � � � � � � � ��� ���
� � �

�	� � ���� �
� � � ��� � � � � �



� �


 �	� � ��� �  ��� �
�
� � � � � �
� � � � � � � � � � � ��� �
�
� � �

�	� � �� ��� � ��� ��� � � �



� �


 �	� � ����� � � � � � �� � � � � �
(b)

Table 1. Inflow (a) and initial and final parameter values (b)

 � � � � � � � � ��� �
� � � � �

� � � and  � � � � � �
�
� � �

� � � � �
� � � � . The final time

horizon is � � � ��� .
The system of hyperbolic equations is discretized by 19 lines in the first and 15

lines in the second integration area. The ENO method is applied, where the fixed
stepsize of the Runge-Kutta method is 1. A least squares problem is formulated to
reach the given goal values at � � � ��� , measured at spatial values

, � � � ,
, � � ��� ,, � � � � , ��� � , , � � � ��� . The code DFNLP [12] computes a solution within 25 steps

with termination accuracy
� � � � � � ���

, see Table 1(b).
Corresponding discharge and water level surface plots are shown in Figures 5

to 8 for the initial, then the controlled situation.

�

�����


������� 
���� ����� � ��� �����



�
�
�

,

�

� � ,�� �
�

Figure 5. Initial Water Level Distribution
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�

�����


������� 
���� ����� � ��� �����



�

�

,

�

� � ,�� �
�

Figure 6. Final Water Level Distribution

6.1 Methods of Characteristics

The discussions in Section 4 and 5 are based upon the Riemann invariants and char-
acteristic curves. In particular, the absorbing boundary conditions are given in terms
of the Riemann invariants. In fact, in terms of the characteristic variables the ab-
sorbing boundary conditions are linear, whereas with other sets of variables they are
nonlinear. Therefore, it is natural to make also numerical experiments with a method
of characteristics. In the engineering literature, such methods are well represented,
see, e.g., [1]. They are also discussed in [4]. An advantage of these methods is
that they accurately model the domains of determinacy and the ranges of influence
which are decisive for control problems. We have performed simulations with such
a method that will be reported on in the paper [9].
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�����


������ 
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�

���
�
���
���

,

�

� � ,�� ���

Figure 7. Initial Discharge Distribution

�

�����


������� 
���� ����� � ��� �����

�
���
���

,

�

� � ,�� ���

Figure 8. Final Discharge Distribution
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Example 7. We consider a junction point where three channels of length
� � � � �

meet. The channels are rectangular hence for the wave celerity � we have � � ����� .
The junction point is the end

�
of channel 1 and channel 2 which go from zero to

�

and the end zero of channel 3 that goes form zero to
�

.
The channels have constant slope � � � � � � � . For the friction slope we use the

Chezy formula
�
� 
 � $ � � � � � � � � � � �

with � � � � � .
The width of channel 1 and channel 2 is

� � and the width of channel 3 equals� � .
At � �!� we have the constant initial values � �!� � � � �

� and � � � � �
� .

At the end zero of channel 1 we have the boundary condition� � � � � � � � � ��� � � � � � �
� � � � ��� � � � � � � � ��� � � ��� � � � � � �

� if � � � � � � �
� � � � �

� else.

At the end zero of channel 2 we have the constant boundary condition � � � � � �
� � � ��� � � � � � � � � � � �

� .
In channel 3 at the end

�
, we have the constant boundary condition � � � � � �

� � � � � � � � � � � � ��� � � �
� .

In the junction point we use as junction conditions the continuity equation

� � � � � � � � � � � � � � � � � � � � �
where � � is the velocity in channel � , � � is the corresponding water height and � �
is the width of channel � . So we have � � � � � � � � and � � � � � � is the discharge
corresponding to channel � in the junction point. Moreover, we require that the water
surface is continuous in the junction point:

� � � � � � � � �
At � �!� we started with � � equidistant points for each channel.

The following pictures show the computed Froude numbers � � � (corresponding
to Mach’s number in gas dynamics) for each of the three channels.



268 M. Gugat, K. Schittkowski, and E. J. P. G. Schmidt

0
2

4
6

8
10

0

10

20

30

40

50
0.24

0.245

0.25

0.255

0.26

0.265

0.27

space

V/c for channel 1

time

0
2

4
6

8
10

0

10

20

30

40

50
0.248

0.249

0.25

0.251

0.252

0.253

0.254

0.255

space

V/c for channel 3

time

Figure 9.
���

� for channel 1 and channel 3



Control of Flow in Networked Channels 269

0
2

4
6

8
10

0

10

20

30

40

50
−0.25

−0.249

−0.248

−0.247

−0.246

−0.245

−0.244

−0.243

−0.242

spacetime

Figure 10.
� � �

� for channel 2

REFERENCES

1. M. B. Abbott, Computational Hydraulics, Pitman, London, 1979.
2. M. Cirinà, Nonlinear Hyperbolic problems with solutions on preassigned sets, Mich.

Math J., 17 (1970), pp.193-209.
3. J. M. Coron, B. d’Ándréa-Novel and G. Bastin, A Lyapunov approach to control irri-

gation channels modeled by Saint-Venant equations, to appear in Proceedings of ECC
Karlsruhe, 1999.

4. R. Courant and D. Hilbert Methods of Mathematical Physics, Volume II, Interscience
Publishers, 1962.

5. J. A. Cunge, F. M. Holly, A. Verwey, Practical aspects of computational river hydraulics,
Pitman, Boston 1980.

6. W. H. Graf Fluvial Hydraulics, J. Wiley and Sons, Chichester, 1998.
7. J. M. Greenberg and Li Ta Tsien, The effect of boundary damping for the quasilinear

wave equation, J.D.E., 52 (1984), pp.66–75.
8. M. Gugat and G. Leugering, Global boundary controllability of the de St. Venant equa-

tions, submitted 2000.
9. M. Gugat A method of characteristics for the control of networks governed by the de St.

Venant equations, preprint, 2001.



270 M. Gugat, K. Schittkowski, and E. J. P. G. Schmidt

10. J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modeling, Analysis and Control of
Dynamic Elastic Multi-Link Structures, Birkhauser, Boston/Basel/Berlin, 1994.

11. G. Leugering and E. J. P. G. Schmidt, On the modelling and stabilization of flows in
networks of open channels, submitted to SIAM J Control and Optimzation, July 2000.

12. K. Schittkowski, Solving nonlinear least squares problems by a general purpose SQP-
method, in: Trends in Mathematical Optimization, K.-H. Hoffmann, J.-B. Hiriart-Urruty,
C. Lemarechal, J. Zowe eds., International Series of Numerical Mathematics, Vol. 84,
Birkhaeuser, 1988.

13. M. E. Taylor, Partial Differential Equations Vol III, Applied Math.Series 117, Springer,
New York, 1996.

14. B. de Saint-Venant, Théorie du mouvement non-permanent des eaux avec application
aux crues des rivières et à l’íntroduction des marées dans leur lit, Comptes Rendus
Academie des Sciences 73 (1871), pp.148-154, 237-240.



Optimal Control of Distributed Systems with Break
Points

Michael Liepelt and Klaus Schittkowski

Fachbereich Mathematik, Universität Bayreuth, Germany

Abstract We consider optimal control of distributed parameter systems, that are frequently
used in chemical engineering to model for example tubular reactors. Break points are intro-
duced to take also cleaning operations into account, where a reactor is shut down for a while
and then restarted again. The goal is to minimize a cost function over a fixed time horizon,
where the number of cleaning operations, the length of reactor operation between successive
cleanings, and the reactor feed rates for each time interval are to be computed. We assume
that product prices and consumer demands are time-dependent. It must be guaranteed that the
decrease of the free cross-sectional area of the tube caused by coke deposition never exceeds
a certain limit. Moreover, there are time and position dependent constraints for the state and
control variables such as a maximum bound for the temperature. The general mathematical
model and the applied discretization schemes are outlined in detail. We present two different
approaches, one based on the method of lines, the other on full discretization where dis-
cretized state variables are treated as additional optimization variables. Numerical results are
presented for a case study, where optimal input feeds and maintenance times of an acetylene
reactor are computed.

1 INTRODUCTION

The computation of optimal feed controls for chemical reactors, especially for tubu-
lar reactors, is a well-known technique, see Edgar and Himmelblau [11], Nishida
et al. [17], and Buzzi-Ferraris et al. [5, 6]. Our intention is to extend the underlying
mathematical model structure with the aim to determine also the number of reactor
cleanings and the operation length between successive maintenance times under the
assumption that time-dependent cost and consumer demand functions are known
over the whole time horizon.

The mathematical model is given as a distributed parameter system with break
points, that is in form of a set of first order partial differential equations in one space
dimension. At each break point, initial values with respect to the time variable are
reset. The right-hand side of the distributed system depends in addition on a discrete,
i.e., time and space independent optimization parameter. The system is controlled
at the left boundary of the spatial interval. There are bounds for control and state
variables, dynamic constraints for a state variable at the right boundary of the spatial
interval, and additional constraints for the parameter vector. The cost functional to
be minimized is given in form of an integral over the time variable.

In case of a tubular reactor the chemical reactions and the temperature depend
dynamically on the space variable, whereas the dynamic decrease of the cross-
sectional area caused by coke deposition is time-dependent. In both cases we know
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initial values either in the form of time-dependent feed control functions or a con-
stant tube diameter. The break points are needed to schedule the reactor mainte-
nance, i.e., we want to determine a subdivision into operation intervals, where the
reactor is cleaned at the end of each interval. Then we want to compute dynamic
feed rates for each interval such that the overall profit of the reactor is maximized.
It must be guaranteed that the free cross-sectional area never falls below a given
lower bound, and that the temperature never exceeds a maximum value. As soon
as the cross-sectional area reaches this minimum level, the reaction is stopped, the
reactor has to be cleaned, and the process is restarted. Moreover, there are bounds
for the input controls, mass flows, and operation lengths. The cleaning times rep-
resent additional optimization variables, since the price and demand functions may
change over time. Time-dependent alterations of these functions are the only rea-
sons for differences between the operation intervals, since we always start with the
same initial distribution of the cross-sectional area after reactor cleanings.

Two possibilities are outlined to discretize the dynamical system. In the first case
the system equations are discretized w.r.t. the time variable only, and the resulting
system of ordinary differential equations in the space variable is solved using stan-
dard algorithms, see for example of Hairer et al. [13] for non-stiff and of Hairer
and Wanner [14] for stiff equations. Stiffness can be introduced by a mixture of
fast and slow chemical reactions. This approach is called the method of lines, see
Schiesser [19]. The dynamic constraints are discretized using uniform grids over
the space and time interval. Since the input control functions can be described by
a finite number of variables, we obtain a finite dimensional nonlinear programming
problem. The resulting optimization problem is solved by the sequential quadratic
programming (SQP) code NLPQL of Schittkowski [20, 21]. A special advantage of
SQP methods is that they can efficiently handle a relatively large number of inequal-
ity restrictions. Gradients are approximated by finite differences, where the special
sparsity structure of the Jacobian of the problem is exploited.

The second approach consists of a full discretization of the state variables with
respect to both space and time. Partial derivatives are substituted by suitable fi-
nite difference approximations. The discretized state variables are treated as opti-
mization parameters, where the dynamic equations are transformed into a large and
sparse system of nonlinear equations. The resulting large scale nonlinear optimiza-
tion problem is efficiently solved by a partially reduced SQP algorithm of Dennis
et al. [8]. State constraints are added to the objective function using a modified bar-
rier functions (MBF) of Ben-Tal and Zibulevsky [1]. Particular advantages of this
approach are the exact evaluation of gradients obtained by automatic differentia-
tion, see Dobmann et al. [9], and the possibility to overcome instabilities in case of
non-feasible programs.

However the assumption that time-dependent price and consumer demand func-
tions are a priori known is somewhat unrealistic. In a real-life environment these
functions will permanently change, and even the technical conditions or the chem-
ical process can vary. Thus, one has to guarantee that maintenance times and feed
rates can be adapted under real-time conditions, i.e., they must be re-evaluated as
fast as possible whenever model data are altered. Hence the implemented numerical
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algorithms allow restarts, where the known solution and additional iteration data of
the numerical algorithm are exploited to get a new solution within very few addi-
tional iterations.

In Section 2 we give an outline of the considered mathematical model in form
of a general distributed system, and the optimal control problem is formulated. The
discretization of the distributed parameter system by the numerical method of lines
is described in Section 3, whereas the full discretization approach and the applica-
tion of the RSQP algorithm are found in Section 4. In Section 5 we introduce the
dynamic equations of an acetylene reactor that serves as a case study. Some numer-
ical results are presented in Section 6.

2 THE OPTIMAL CONTROL PROBLEM

We consider distributed systems of the form

 � � 3 �% � � � �
� � ��� �  � � � (1)

with initial values  � � � � � �  � � � �
, � � � � , � � � � � , �

. The state variables  and � are
vector-valued functions,  ��� 
�� , � ��� 
�� , and the equations are to be satisfied
for all � � � � � � � � and

, � � � � ��� with given time horizon � � and spatial length
�

.
Obviously the system is completely symmetric, that is we obtain exactly the same
structure when interchanging time variable � and spatial variable

,
.

Equations (1) are quite general and can be applied to a large number of real
applications. In our case we are mainly interested in deriving a general scheme that
can be used then to model for example tubular chemical reactors. Having this goal
in mind, we obtain an optimal control problem by the following steps:

a) First we add an additional parameter vector � ��� 
�� to the right-hand side of
(1) that does not depend on time or spatial variable,

 � � 3 � � �  � � � �
� � ��� � � �  � � � � (2)

Since the solution then depends also on � , we use the notation  � � � � � , �
and

� � � � � � , �
, respectively, and write the initial conditions in the form

 � � � � � � � �  � � � � �
� � � � � � , � � ��� � , � � (3)

b) Break points � � &
	 � � 	 � � � � � � 	 
 c � � � � &�	 
 c � � are introduced where
the integration is restarted always at the same initial values, i.e., the dynamical
system (2) must be satisfied for all � ��� 	 � ��	 � � � �

and
, ��� � � ��� with

 � � � � � � � �  � � � � �
� � � ��	 � � , � � ��� � , � (4)
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for � �!� � ��� � � � c. We will see later that these break points are considered also as
optimization parameters. However, when applying a linear scaling of the time
variable, we obtain the same formulation over constant time intervals, where
the break points become now part of the parameter vector � . Thus, we assume
without loss of generality that they are constant values.

c) Since we want to control the system at the left boundary of the spatial interval,
i.e., at

, � � , we consider  � � � �
as control variable. If only a few of the avail-

able control variables are needed in a practical situation, we suppose that the
remaining ones are simply known functions of � . It is required that all control
functions are bounded by constants

 � �  ��� � � �  � (5)

for all � ��� � � � � � .
d) State variables are bounded by

 �  � � � � � , � �  �
� � � � � � � � , � � � (6)

for all � ��� � � � � � and
, � � � ��� � .

e) There are additional restrictions for the state variables  at the right boundary
of the spatial area � � � � � � �% � � � � � ����� � � � � �

(7)

for all � � � � � � � � , where the lower und upper bounds are given time-dependent
functions and where � �% �

is a nonlinear, smooth function of  .
f) Parameters indicated by the vector � are also restricted in the form

� � � � � � (8)

with a given smooth function � � � �
.

g) The objective function to be minimized is given in form of an integral over time
depending on the parameters � , the time variable � , the control function  � � � �

,
and the output function, i.e., the state variable  evaluated at the right boundary

* ����
� � � � � �  � � � � �  � � � � � ����� � � (9)

with a given cost function � � � � � �  � �  �
.

The dynamical system and the optimal control problem can be formulated in
more general terms. But for the underlying application in mind, the above optimal
control problem is sufficiently general. It should be noted that there do not exist
any exactly formulated and theoretically verified optimality conditions, at least to
the knowledge of the authors. A similar problem based on a one-dimensional par-
tial differential equation, is considered in Pickenhain and Wagner [18]. However a
distributed control is assumed in this case.
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The role of the additional parameter vector � is important. Since the dynamical
system is always restarted without exploiting any data from a previous integration
interval, the problem would be completely separable in the other case.

In case of a tubular reactor model the state variable  consists for example of
molar concentrations of some chemical components and the temperature, where
the control functions are input feeds. A time-dependent equation could describe
the dynamic decrease of the cross-sectional area of the reactor. Break points are
cleaning times where the reaction is stopped and define also the operation intervals.
Objective function could consist of the total profit of the reactor over the whole
operation interval

� � � � � � to be maximized. In a natural way there are bounds for
the state variables, in particular for temperature and cross sectional area. From the
reactor yields time-dependent constraints for the customer demands can be derived.
Minimum runtime of the reactor and monotonicity requirements for the cleaning
times lead to the additional parameter constraints.

Thus, the model is quite general and reflects the underlying real-life applica-
tion. As soon as the cross-sectional area reaches this minimum level, the reaction is
stopped, the reactor has to be cleaned, and the process is restarted.

3 SEMI-DISCRETIZATION BY THE NUMERICAL METHOD OF LINES

3.1 Discretization of State Equations

Our first attempt to solve the optimal control problem for the distributed system
uses the numerical method of lines, see, e.g., Schiesser [19]. For simplicity, let us
consider only the basic equations (1),

 � � 3 �% � � � �
� � ��� �  � � � �

The idea is to discretize the system with respect to one variable,
,

or � , to replace
the corresponding derivatives by a difference formula and to formulate a system of
ordinary differential equations subject to the other variable.

The application problems we have in mind, possess different dynamical be-
haviour. Along the

,
-variable chemical reactions are described. Since slow and

fast reactions can appear and must be taken into account simultaneously, the re-
sulting differential equation can be stiff. On the other hand the dynamical behaviour
of � is expected to be quite harmless. We know that the cross-sectional area is a
monotonously decreasing function with respect to the time variable for a fixed spa-
tial position in the reactor. In other words, the dynamical structure of the system in
the time variable � is completely different from the behaviour in the space variable,

.
Thus, we perform an equidistant discretization subject to the time variable with

grid points � � � ( � � , � � � � �
 � , ( � � � � ��� � � � , and replace the time derivative of
� by a simple difference formula, e.g., the explicit Euler formula. When using the
notation  � � , � �  � � � � , �

and � � � , � � � � � � � , �
for each grid point � � , we are able
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to compute � � � , �
successively from available data by

� � � , � � � � � � � , � � � � � �  � � � � , � � � � � � � , � �
(10)

for each
, � � � ����� . The process is started at ( � �

with known initial value � � � , �
.

Since start-up conditions are not taken into account, we set  � � , � � � . We obtain
then a system of

�
�
�

� ordinary differential equations��-,  � � , � � 3 �% � � , � � � � � , � � �
(11)

with initial conditions  � � � � �  � � , �
, ( � � � ��� � � � � . Note again that each  � � , �

is a vector-valued variable of dimension
�

� .
The proposed procedure does not depend on the particular choice of the differ-

ence formula for � � � , � � � �
. Any other explicit method is applicable as well. More-

over, we may insert also an implicit formula, for example the implicit Euler formula,
leading to a set of additional algebraic equations

� � � , � � � � � � � , � � � � � �  � � , � � � � � , ��� ��� � (12)

In this case we get a system of
�
� � � �

� �
�

�
ordinary differential algebraic equa-

tions that must be solved by an implicit integration scheme. If the same semi-
discretization of the distributed system is applied to all

�
c

� �
integration intervals� � 	 � � � � � � 	


 c � � � , and if we apply the same number of grid points in
each interval, we obtain either � � c

� ��� �
�
�

� or � � c
� ��� �

� � � �

� �
�

�
equations,

respectively.

3.2 The Discretized Optimization Problem

Control functions  � � � �
are approximated by a finite number of parameters, for

example in form of a piecewise linear function. In order to simplify the notation
and to avoid additional interpolation, we suppose that the grid points that are used
for these approximations, are identical to those that are used for the discretization
of � � , � � �

. Together with the additional parameter vector � � � 
 � , the discretized
problem possesses

� � � � � c
����� �

� optimization variables.
In order to discretize the constraints, we also need a discretization of the space

interval, for example in equidistant form
, � �  � ,

,
� , � �


 �
,
 � � � � ��� � � �

Together with the time discretization which must be applied for each integration
interval separately, we get the following finite dimensional approximations for the
dynamic control and state constraints:

 � �  � � � � � �  � � �  � � � � , � � �  �
� � � � � � � , � � � � �� � � � � � � �  � � � � , 
 �

��� � � � � � � �
� � � � � � � (13)
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where ( � � � � ��� � � � ,  � � � ��� � � � � , and where the additional parameter vector � is
introduced again. To summarize, we get a set of

� � � c
� ��� �

� � � �

� � � � � �

� �
�

���� � � � � 
 bounds and nonlinear inequality constraints, where
� � is the dimension

of � �% �
and

� 
 the dimension of � � � �
.

Finally the integral of the objective function (9) is approximated by numerical
integration subject to grid points � � over all

�
c

� �
runtime intervals.

3.3 Numerical Implementation

Our goal is to achieve a highly modular and flexible numerical implementation.
Control functions  � � � �

are approximated by piecewise constant functions, piece-
wise linear functions, or piecewise cubic splines. After a suitable discretization as
outlined above, we have to solve large and eventually stiff systems of ordinary dif-
ferential equations by some of the routines published in Hairer et al. [13] (DOPRI5,
DOP853, ODEX) and in Hairer and Wanner [14] (RADAU5, SEULEX, SDIRK4).
The integral of the objective function is evaluated by Simpson’s rule.

As a result the optimal control problem is transformed into a finite dimensional
parameter optimization problem, that is solved by the sequential quadratic program-
ming (SQP) algorithm NLPQL of Schittkowski [21]. A particular advantage of these
methods is that they can handle a large number of inequality constraints without se-
vere increase of the number of iterations or computing time.

Gradients of objective function and constraints are evaluated by the forward
scaled difference formula. However the special structure of the Jacobian of the con-
straints is exploited based on the observation that the state variables in different
time intervals are linked only by the parameter � . Moreover the time and space dis-
cretization procedures lead to lower triangular sub-matrices for the sensitivities of
the control parameters.

There is no necessity to exploit this special structure within the SQP algo-
rithm NLPQL. The sparsity pattern belongs to inequality constraints, that are passed
to an algorithm for solving certain quadratic programming problems obtained by
a quadratic approximation of the Lagrangian function and a linearization of the
constraints. However the full Jacobian of all constraints is evaluated only at the
starting point. Afterwards only gradients belonging to a few active constraints are
re-evaluated. Moreover the quadratic programming problem is solved by the dual
method of Goldfarb and Idnani [12], where only active inequality constraints are
added to a so-called working set, i.e., very few in our case.
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4 FULL DISCRETIZATION

4.1 Discretization of State Equations

Now we perform a full discretization of the distributed system (4). Again we con-
sider first the most simple case

 � � 3 �% � � � �
� � ��� �  � � � �

Proceeding now from a time grid � � � ( � � , � � � ���
 � , ( � � � � ��� � � � , and a spatial

grid
, � �  � ,

,
� , � �


 �
,
 � � � � ��� � � � , we denote by  � � �  � � � � , � � and

� � � � � � � � � , � � certain approximations of the state variables for each pair of grid
points � � and

, � . The partial derivatives can be replaced by any reasonably accurate
difference formula, see for example Thomas [22]. Since the dynamical behaviour
of the system is supposed to be different in both directions, we apply the simple
implicit Euler formula in � direction, and get

� � � � � � � � � � � � � � �  � � � � � � � �!� � (14)

see also (12).
On the other hand, we can, e.g., use a symmetric fourth order approximation for

the spatial derivatives, i.e.� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � , 3 �% � � � � � � � �!� � (15)

The formula must be adapted at the boundaries, see, e.g., Schiesser [19] for details.
The advantage of this formulation is that we can ensure a sufficient accuracy of the
approximation by a rather coarse discretization, which prevents the number of state
and control variables from becoming prohibitively large.

4.2 The Discretized Optimization Problem

By the full discretization procedure as outlined above, we obtain a system of � � c
���� �

�
� � � � �

� �
�

�
nonlinear equations in � � c

����� �
�
� � � � �

� �
�

�
unknowns  � �

and � � � , respectively, i.e., the fully discretized state variables. Now we take the in-
dividual integration intervals as defined by break points, into account. The remain-
ing control variables, objective function and constraints are discretized in the same
manner shown in Section 3. Thus, we finally get a large, sparse finite dimensional
optimization problem in � � c

� � � �
�
� � � � �

� �
�

� � � � c
� � � �

�
� � � variables

and
� � � c

� ��� �
� � � �

� � � � � �

� �
�

� � � � � � � 
 bounds and nonlinear inequality
constraints, cf. (13).

The discretized state variables are now considered as additional optimization
variables, and the discretized state equations (14) and (15) as additional nonlinear
equality constraints. Thus, we get a very large optimization problem with a spe-
cific sparsity pattern in the Jacobians, and also a very large number of nonlinear
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inequality constraints. However the inequality constraints are not sharp, at least for
the applications we have in mind. It can be assumed that minor violation of a state
restriction will not lead to dramatic negative effects on the overall process. This
holds especially since some of the parameters of the model can only be estimated
and the whole model is flawed with certain inaccuracies.

Beyond that, an unfortunate choice of the model parameters, for example a too
low number of break points, may result in an empty feasible set of the optimization
problem. In this case, the algorithm should not stop with an error message, but cal-
culate an optimal control that minimizes the violation of these inequality constraints
in addition.

Therefore we incorporate inequality constraints in a modified barrier function
(MBF), which leads to a sequence of optimization problems with discretized state
equations as equality constraints and simple bounds for the discretized control vari-
ables and the additional parameters. In order to motivate the MBF method, we con-
sider the discretized optimal control problem in form of the nonlinear program

min
� �
	 � � �
� � �
	 � � � �!� �  � � � ��� � � � � �	 � � 
 � � � � � 
 � & � � �
	 � � ��� � � � � � � ��� � � ��� �	 " � 	 � 	 �

� (16)

where
�
, � � , and

� � are real valued differentiable functions defined for 	 ��� 
 �
and

� � � 
 � . 	 contains the discretized control variables and the parameter vector
� , and

�
the discretized state variables. � � describes now the discretized state equa-

tions, and
� � the bounds and nonlinear inequality constraints for state and control

variables. To simplify the subsequent notation, bounds for state variables are not
handled separately.

The proposed MBF method transforms the constrained minimization problem
(16) into a sequence of equality constrained minimization problems by defining the
auxiliary objective function

�
� ��� �
	 � � � 1 � 7 � � � � � � � �
	 � � � � 1 
 ��

��� � 7 �	� � � � �	 � � � � 1'� � � � (17)

The function � is a variation of the mixed quadratic-logarithmic penalty function of
Ben-Tal and Zibulevsky [1],

� � � � �
	 � � � � 1'� � � �
�

log � � � � � � �
	 � � � � 1 � �
if

� � �	 � � � � � � 1 � � ��

�
� � � �� �
	 � � ��� � � � � �
	 � � ��� � � � if

� � �	 � � � � � � 1 � � �
(18)

where the coefficients
� � , � � , and � � are chosen so that the function is twice contin-

uously differentiable, and
7 � are estimates of the Lagrange multipliers.

The penalty parameter
1

is monotonously decreasing, the parameter � deter-
mines how close to the singularity of the logarithm the barrier function is extrapo-
lated, and � � are suitable scaling factors. For a detailed description of these parame-
ters and a more rigorous treatment of the MBF algorithm, we refer to Breitfeld and
Shanno [3], or Liepelt [15].
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The resulting subproblems we have to solve, are of the form

min
�
�
��� �
	 � � �	 � � 
 � � � � � 
 � & � �	 � � � �!� �	 " � 	 � 	 �

� (19)

where
�

are the discretized state variables, 	 are the discretized control variables,
and � �
	 � � �

are the discretized state equations. Note that the number of state equa-
tions is the same as the number of state variables, i.e., the Jacobian matrix � � �	 � � �
is quadratic.

The solution of the nonlinear optimization problem is computed by solving a
sequence of reduced quadratic programming problems, where each problem is re-
duced to the tangent space of the state equations. Trust-regions are used to guarantee
that convergence is attained from any starting point and to regularize the subprob-
lems arising in the SQP framework. The bound constraints are handled by an affine
scaling interior-point strategy with accurate dual approximation. For more details
on this algorithm, we refer to Dennis et al. [8].

4.3 Numerical Implementation

The fundamental advantage of a method based on a complete discretization of the
distributed system is that the derivatives of the objective function and constraints
with respect to all variables can be computed without using approximations by di-
vided differences. This holds especially in our case where the underlying equations
are highly nonlinear. All problem functions are modeled using the automatic differ-
entiation program PCOMP, see Dobmann et al. [9] or Liepelt and Schittkowski [16]
for a reference, from which a Fortran code for function and gradient evaluations is
generated.

For the successive solution of the nonlinear subproblems (19) of (16), we use
the code TRICE that was implemented by Heinkenschloss, see Dennis et al. [8].
The user has to provide subroutines for solving the linearized state equations

� � �	 � � �
� � � ��� �
	 � � �

� �
� � �
	 � � � �!� �

Furthermore we need to program matrix-vector products of the form

� � � � �
	 � � � � � � � �	 � � � � � � � � � �
	 � � � � � � � �	 � � � � � � � �

with suitable vectors � and
�
. In both cases we have to solve a linear system of

equations with Jacobian � � �
	 � � �
.

Due to the finite difference schemes that are used for the approximation of the
partial derivatives of the distributed system, the matrix � � �
	 � � �

is very sparse. Since
this matrix is not symmetric, we cannot apply the usual sparse Cholesky factoriza-
tion and use an algorithm instead that has been proposed by Davis and Duff [7].
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5 CASE STUDY: ACETYLENE REACTOR

We consider an existing reactor producing acetylene (C2H2), reacting the methane
(CH4) in natural gas with oxygen. This reaction requires less oxygen compared
to complete combustion. The products are quickly quenched to keep the acetylene
from being converted entirely to coke, see Wansbrough [23].

During the reaction process, a small part of the carbon is deposited in the reactor
as coke. The quantity and its distribution in the reactor depend on the reaction equa-
tions. Since it is impossible to measure the cross-sectional area directly, we need a
mathematical model that describes the functional dependence of the cross-sectional
area on other system parameters. If the deposition of coke reaches a certain limit,
the reactor must be stopped and the tube is cleaned.

There are six reactions to be taken into account. Reactions 1 through 5 are the
main ones that produce acetylene, but also undesirable byproducts such as coke. Re-
action 6 is included only to balance the hydrogen stoichiometry, see Birk et al. [2].
The chemical reactions can be described by a system of 8 ordinary differential equa-
tions, where � � denotes the molar concentration of the � -th component. Together
with initial values

� � � � � � � � � � � � � � �
� � � � � � � � � �

� � � � �
� � � � � � � ��� � � � � � � ��� � � � (20)

and a reaction parameter � , we have

�

� � � � � , � � � � � � � � � , � � � � � � � , � � � � � � � , � � � �
�

� � � � � , � � � � � � � � � , � � � �
�

� � � � , � � � �
�

� � � � , � � ��� � � � , � � � �
�

� � � � � , � � � � �
�

� � � � , � � � � � � � , � � � � � � � , � � � �
�

� � � � � , � � � � � � � , � � � � � � , � � � �
�

� � � � � , � � � � � � � � � � , � � � � � � � , � � � � � � � , � � �
� � � � , � � � � � � � � �

� � � � , � � ��� � � � , � � � �
�

� � � � � , � � � � � � � � , � � � � � � � , � � ��� � � � , � � � �
�

� � � � � , � � � � � � � � , � � ��� � � � , � � ��� � � � , � � � �
�

� � � ��� , � � � � � � � � �
� � � � , � � � � � � , � � � �

(21)

These eight material balance equations depend on the rates of the various reac-
tions and on the velocity of the mixture in the reactor, because this speed determines
the time that the components spent in the reactor. The reaction rates are expressed
by
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� � � , � � � � ( � exp
� �

���
�

� �
� � � � � � �

�
�

r

	 	 � � �� � , � � � �
� � � , � � � � ( � exp

� �
� �
�

� �
� � � � � � �

�
�

r

	 	 � � � , � � � � � �� � , � � � �
� � � , � � � � ( � exp

� �
� �� � �

� � � � � � �
�
�

r

	 	 � � � , � � � � ��� �
� � , � � � �

� � � , � � � � ( � exp
� �

� �
�

� �
� � � � � � �

�
�

r

	 	 � � �� � , � � � �
� � � , � � � � ( � exp

� �
� �
�

� �
� � � � � � �

�
�

r

	 	 � � � , � � � � ��� �
� � , � � � �

(22)

with five reaction constants ( � , . . . , ( � , five activation energies
� �

, . . . .
� � , and three

reaction orders
� �

,
�

� , and
� � . � denotes the average number of H atoms in CHn.

For the smaller and less important reactions, the stoichiometric order can be used as
an estimate for the reaction order. For the other reactions these parameters have to
be derived from the real reactor that is going to be examined. The average temper-
ature � r is used to scale the exponential functions and � denotes the gas constant.
Normalized reaction values used for the numerical tests, are given in the Appendix.

The velocity of the mixture in the reactor depends on the cross-sectional area� � , � � �
, the total mass flow ˙� � � �

in the reactor, and the density . � , � � �
, and is given

by

� � , � � � � ˙� � � �. � , � � � � � , � � � � (23)

Because the amount of carbon that is deposited in the reactor as coke, is very
small, we may assume that the total mass flow

˙� � � � � ˙� � � � � � ���
˙� � � � � � �

(24)

is constant during the reaction. The density of the mixture is given by

. � , � � � �
�� � � � � � � , � � ��� � � (25)

where
� � denotes the molar weight of the


-th component.

Since the acetylene reactor in controlled by the feeds of natural gas and oxygen,
these are the only components with non-vanishing initial values. The initial molar
concentrations are given by

� � � � � � � ˙� � � � � � � . � � � � �
˙� � � ��� �

�
� �

� � � � � ˙� � � � � � � . � � � � �
˙� � � ���

�
�

(26)

Just like the molar concentrations of the individual components, also the tem-
perature in the reactor can be described by an ordinary differential equation,

�
� , � � , � � � �

�. � , � � � � � , � � � �
p � , � � �

��
��� � � � � , � � � � � � (27)
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with the initial condition � � � � � � � � � . The incremental change of the temperature
is determined by the rate of heat release for all reactions, which depends on the total
heat capacity

�
p � , � � � �

� �� � � � p
� � � � � � , � � �

� �� � � � � � � � , � � � � (28)

The individual heat capacities � p
� are considered to be constant, and the parameters� � � denote the known heats of reaction.

If we neglect the deposition of coke, the underlying partial differential equa-
tion is stationary, i.e., does not depend on the time. But a decrease of the cross-
sectional area

� � , � � �
increases the velocity � � , � � �

of the mixture in the reactor,
which influences the incremental change of the concentrations � � , � � �

and the tem-
perature � � , � � �

, see (21), (23), and (27). The coke deposition is modeled by the
time-dependent differential equation

�
� � � � , � � � � � � � � � , � � �

(29)

with the initial condition
� � , � � � � � � and a reaction parameter � � �

.
Now we want to maximize the profit of the reactor over an operation interval� � � � � � , i.e., we are looking for optimal input mass feeds

 � � � � & � ˙� � � � � � � �  � � � � �
(30)

and additional break points
	 � for � � �

, . . . ,
�

c, at which the reaction is stopped
and the reactor is cleaned,

� � � 	 � � � � � � 	 
 c � � � � (31)

Note that the number of cleaning times corresponds to the number of break points
�

c

discussed before. In order to avoid a nonlinear mixed integer optimization problem,
we assume that the number

�
c of reactor cleanings is given, but their positions

within the whole operation interval can vary. The total profit of the acetylene reactor
over the whole time horizon is given by the integral over given time-dependent
prices multiplied by corresponding mass flows over all runtime intervals, where
cleaning and control costs are subtracted, see again Birk et al. [2] for details.

We do not assume that the reactor has been cleaned at the initial time ��� of
the process, i.e., we allow for an arbitrary initial distribution

��� � , �
of the cross-

sectional area,

� � , � � � � � � � � , � � ,�� � � ����� �
� � , � 	 � � � � � � ,�� � � ����� � � � � � � ��� � � c � (32)

This is especially important in real-time applications, when the model or some data
change and we have to compute a new optimal control, using the known solution as
an initial value.
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Besides of the state equations that are implied by the distributed system de-
scribed above, the considered optimal control problem has also a series of addi-
tional inequality constraints. Some of them are process related, such as a maximum
temperature, which may never be exceeded,

� � , � � � � � max � � � � , � � � � ���#� � � � � � � � � � (33)

and a lower bound for the free cross-sectional area,

� � , � � � � � min � � � � ,���� � ����� � � � � � � � � � � � (34)

Note that
� � , � � �

is monotonously decreasing with � for every fixed
,

and that the
reaction is stopped and the reactor is cleaned, whenever this limit has been reached.

Although the primary goal is to maximize the total profit of the reactor over
the entire operation interval, it is also necessary to define lower and upper bounds
for the output of the individual component mass flows for technical reasons. The
reactor is controlled by the initial feeds of methane and oxygen, for which we also
have additional lower and upper bounds. There is a minimum runtime

� � min of the
reactor leading to the additional restrictions

	 � � 	 � � � � � � min � � � � � � ��� � � c
�

(35)

and the cleaning times must remain in the interior of the operation interval. Variables	 � correspond to the additional parameter vector � introduced in Section 2.

6 NUMERICAL RESULTS

In this section we present some numerical results that are obtained for the acetylene
reactor described in the previous section. Computational experiments are performed
on a PC equipped with an Intel Pentium III processor running with 750 MHz under
Microsoft Windows 2000. The discretized system of ordinary differential equations
was integrated using the explicit Runge-Kutta method of Dormand and Prince [10],
i.e., the code DOPRI5 of Hairer et al. [13]. It turns out that a quite crude discretization
yields acceptable results and that the ordinary differential equations are not stiff in
the present case study.

To give a first impression of the the reactions in this model, we start with a
simulation using constant input feeds of oxygen and methane, i.e.,

˙� � � � � � � � ˙� � � � � � � � � ��� � � � � � � � � � � (36)

where we assume that the following process data are given:
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name value description� � 0.1 cross-sectional area of the tube� min 0.08 minimum cross-sectional area�
1 length of the reactor

� � 873.15 initial reaction temperature
� max 1,300 maximum permissible temperature� � 200 duration of the process� � min 60 minimum runtime of the reactor5 c 5,000 costs of a reactor cleaning� 20 number of space discretizations

The corresponding surface plot of the cross-sectional area is shown in Figure 1.
We observe a drastic violation of the minimum admissible cross sectional area of
the tube

� min.

�
��� �




����
���
���������

�
��� ���
��� ���
��� ���
��� ��	
����


,
�

� � ,�� �
�

Figure 1. Cross-sectional area for constant feed

Now we want to compute optimal control functions of the acetylene reactor, i.e.,
input feeds that yield feasible values of the state and control variables and maximize
the overall profit of the process. Throughout this section we use piecewise linear
approximations for the feeds of O2 and CH4. For starting the optimization algorithm
we choose constant values of the control functions, ˙� � � � � � � � � ��� and ˙� � � � � � � �
� ��� . The expected time-dependent price and demand data are given in the form of
piecewise linear approximations, see Birk et al. [2] for details. Moreover we assume
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that the following bounds for the feed controls are given:� � � � ˙� � � � � � � � � � � � � � � � � � � �#�� � � � ˙� � � � � � � � � � � � � � � � � � � � �
Our goal is to show the influence of a different number of operation periods.

Thus, we compute the optimal control for zero to five maintenance breaks, i.e., for�
c

�!� to
�

c
� � . To be able to compare some performance data, we vary the num-

ber of time grid points to get discretized optimization problems of approximately
the same size, i.e., we require that � � c

� ��� �
t
� � � .

First we consider the semi-discretization approach based on the numerical meth-
od of lines. Depending on the number of break points, the resulting discretized non-
linear programming problem has between 72 and 77 variables and between 2,034
and 2,093 nonlinear inequality constraints. The size of the system of ordinary dif-
ferential equations to be solved for each function call, is 324. A typical surface plot
of the cross-sectional area for two operation intervals satisfying all constraints, is
shown in Figure 2. The optimal solution for the CH4 feed attains its upper bound in
all test runs, i.e., ˙� � � � � � � � � ��� for � � � � � � � � .

�
��� �
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��� ���
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, �

� � ,�� �
�

Figure 2. Cross-sectional area for optimal feed

The termination accuracy for the nonlinear programming code NLPQL is set
to
� � � �

, and the relative error of the ODE solver DOPRI5 is set to
� � � �

. Since the
starting trajectories are poor and the objective function is very flat in a neighbor-
hood of an optimal solution, NLPQL requires a large number of iterations to reach
a solution. The number of iterations, the obtained objective function values, and



Optimal Control of Distributed Systems 287

some other convergence results are listed in Table 1. Using some terms defined in
Schittkowski [20, 21], we get the following abbreviations:

�
c – number of cleaning times3

– objective function value
it – number of iterations
cv – constraint violation
ac – number of active constraints
oc – optimality criterion
time – calculation time in minutes

�
c

�
it cv ac oc time

0 44,419 106
���  � � � � � ���

3
��� 
 � � � �

�
13.4

1 47,004 110
��� ����� � � � ���

4
��� � � � � � �

�
15.2

2 47,958 104
���  � � � � � � �

6
��� � � � � � �

�
10.5

3 45,383 140
��� � ��� � � � � 8

���  � � � � �
�

11.9
4 40,747 316

��� � � � � � � � 12
���  � � � � �

�
31.7

5 35,941 286
��� �  � � � � � 14

��� � � � � � �
�

21.1

Table 1. Performance results for semi-discretization approach

The overall profit increases with the number of reactor cleanings if the corre-
sponding costs are neglected. For maintenance costs of 5,000 units, we maximize
the profit for two breaks. The corresponding control function for the O2 feed of two
maintenance intervals is shown in Figure 3(a). It is interesting to note that the SQP
algorithm NLPQL reaches a quite accurate solution despite of the numerical errors
in the gradient approximation. Since the assumed bounds for consumer demands
and the prices do not vary too much over the time horizon, the cleaning times are
not altered drastically. The input data are defined only at 5 grid points, where linear
interpolation is used to access intermediate values.

The second approach based on a full discretization is executed for the same
discretization accuracy and the same starting values for the control variables and
cleaning times. The number of optimization variables of the discretized nonlin-
ear program ranges from 7,272 to 7,277, and the number of nonlinear inequality
constraints is of the same size as before, i.e., about 2,000. Note that the equality
constrained subproblem to be solved by TRICE, has 7,200 nonlinear equality con-
straints. TRICE is executed with error tolerance

� � ���
and at most 20 iterations. We

prefer an approximate solution of the subproblem to get a faster update of penalty
and multiplier values. The termination tolerance of the outer MBF method is set
to
� � � �

. Corresponding control function for two maintenance breaks leading to the
best objective function value, is plotted in Figure 3(b). The corresponding perfor-
mance results are shown in Table 2, where we use the following abbreviations:
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(a) O2 feed (method of lines)
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(b) O2 feed (full discretization)

Figure 3. O2 feed

�
c – number of cleaning times3

– objective function value
it_out – number of outer iterations
it – total number of TRICE iterations
cv – norm of constraint violation
ac – number of active constraints
cs – complementary slackness
time – calculation time in minutes

�
c

�
it_out it cv ac cs time

0 45,951 44 575
��� � � � � � �� 1

��� � ��� � � � �  � � �
1 47,389 20 416

��� �
� � � � �
�

2
��� � � � � � � � �
��� �

2 47,488 20 401
���  � � � � �� 3

��� �
� � � � � � � � � 
3 44,466 21 317

���  � � � � � � 4
��� � � � � � � � � ��� �

4 39,864 10 210
��� �

0
��� � ��� � � � � � �	� 

5 35,112 16 210
��� �

0
��� � � � � � �

� � �	� �

Table 2. Performance results for full discretization approach

Taking into account the different discretization methods and numerical realiza-
tion, the results are comparable to the results obtained for the first approach, see
Table 1. In both cases the calculation times are by far too big to apply the proposed
strategies on-line. Obviously the initial guesses for the optimization variables are too
far away from the optimal solution to get a better performance. In a real-life envi-
ronment, however, we may assume that there exists an optimal solution of a running
process, and that we need to recompute another one after some minor changes of
the model data, e.g., of prices or consumer demands.
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For simplicity, we consider only the semi-discretization approach. Starting from
a given optimal control of the tubular reactor with three intervals, we perform some
small changes of data to demonstrate the possibility of computing a new optimal
feed control under real-time conditions. For this purpose we use the solution of the
original problem, the approximations of the Lagrange multipliers and the BFGS
matrix for a restart. The results of these tests are listed in Table 3, where we use the
same abbreviations as before.

It turns out that alterations of active or nearly active bounds for cross sectional
area and temperature lead to some significant alterations in the cost function. In
particular the increase of the admissible tube diameter by

� � % leads to a profit loss
of about

� � %. An increase of the CH4 prices leads also to a decrease of the objective
function, in contrast to an increase of the C2H2 prices. Nevertheless the much lower
number of iterations and calculation times indicate that the implemented algorithm
is capable to run under real-time conditions.

changes it
�

time

set � max � � � ��� (
� � %) 14 48,089 1.41

set
� min �

��� � � � � ( � � %) 18 47,671 1.82
set
� min �

��� � � � ( � � � %) 50 41,274 5,05
increase price of CH4 by

�	� � �
27 46,369 2,73

increase price of C2H2 by
�	� � �

17 56,993 1.72

Table 3. Real-time simulations

7 CONCLUSIONS

We extended an optimal control model for tubular reactors with the aim to take into
account also the number and position of cleaning times. Two different approaches
are presented to discretize the distributed system and to formulate the optimal con-
trol problem. In the first case the partial differential equations are discretized using
the method of lines, where the resulting system of ordinary differential equations is
integrated by a standard ODE solver. Since control functions are represented by a fi-
nite number of variables and since dynamic constraints are discretized at given time
and space grid points, we get a finite dimensional nonlinear programming problem,
for which a standard SQP method is applied. In the second case we apply finite
difference formulae to get a full discretization of the state variables and equations,
where the optimization problem is extended by additional variables and equality
constraints. The large subproblem is solved by a reduced SQP method, where addi-
tional state constraints are taken into account by a modified barrier function.

Proceeding from a case study in form of an acetylene reactor, is is shown that
operating intervals and optimal feed controls can be simultaneously computed. Both
approaches outlined above, have their advantages and disadvantages. The first semi-
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discretization method is more robust and more efficient in terms of calculation time,
whereas the full discretization procedure is quite sensible w.r.t. choice of input pa-
rameters and yields less accurate solutions. The main advantage of the second ap-
proach is that inconsistent constraints can be detected.

The underlying model is quite complex. The implementation and numerical so-
lution of both approaches is so different that we cannot claim which one is prefer-
able in general. The obvious advantage of full discretization, to get exact derivatives
within machine precision, is somehow cancelled by the much larger and harder non-
linear programming subproblems to be solved in each step. Moreover the solution
methods for the discretized optimization problems differ drastically and prevent a
direct numerical comparison.

The first approach we presented, applies the method of lines to get a system
of ordinary differential equations. For solving this semi-discretized problem under
real-time conditions, alternative approaches are available, see for example Büskens
and Maurer [4]. It should be possible to exploit also the post-optimal sensitivity
analysis as proposed there, by successive linearization at perturbed solutions.
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Abstract Dynamic optimization problems are typically quite challenging for large-scale ap-
plications. Even more challenging are on-line applications with demanding real-time con-
straints. This contribution provides a concise introduction into problem formulation and stan-
dard numerical techniques commonly found in the context of moving horizon optimization
using nonlinear differential algebraic process models.

1 INTRODUCTION

Safe and economical process operation is of crucial importance for the success of
chemical companies. Model based optimization is a promising technique to increase
the operational profit in process operation. Moving horizon optimization includes
model predictive control (MPC) and receding horizon estimations (RHE) and re-
quires on-line dynamic optimization (see, e.g., Helbig et al. [61]). MPC regulates
processes whereas RHE is used to estimate unaccessible process states and param-
eters (see Allgöwer et al. [3] for an excellent survey on both problems). In these
applications a multi-variable optimization problem restricted to a large scale mathe-
matical process model has to be solved on-line. The large scale nature as well as the
real-time requirement of the problem is a clear challenge where the cutting edge of
currently commercially available technology needs to be pushed further forward. It
is the intention of this article to provide a concise introduction into the exciting field
of dynamic optimization applied on moving horizons and to summarize the avail-
able numerical techniques. However, due to the limitations in space we only focus
on techniques which from our point of view are considered as standard technologies
currently applied. Recent results developed within the Schwerpunktprogramm are
covered elsewhere in this book by additional contributions of each research group
(Binder et al., [21]; Diehl et al., [47]; Kronseder et al., [85]).
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This introductory article is organized as follows. In Section 2 we introduce the
generic problem formulation of control and estimation problems which are closely
related. However, we will also illuminate the differences between both. Special at-
tention is given to the mathematical process model in Section 2.1 whereas in Sec-
tions 2.2 and 2.3 the optimization problems on fixed and moving horizons are de-
fined respectively. Furthermore, we emphasize the particular real-time character in-
trinsic to moving horizon optimization.

Closed loop stability of the applied algorithm is of crucial importance. A short
introduction into the terminology and basic concepts is given in Section 3. Here, we
motivate how stability problems arise when a finite dimensional horizon instead of
an infinite dimensional one is chosen.

Section 4 summarizes the basic techniques to solve the dynamic optimization
problem on a fixed horizon. We start with a short introduction into optimal feed-
back controls which are described by the Hamilton-Jacobi-Carathéodory-Bellman
partial differential equation, and briefly introduce techniques based on the so called
Maximum Principle in Section 4.2.

In Section 5 we focus on the so called direct methods for the numerical solu-
tion of optimal control problems. Here, the infinite dynamic optimization problem
is transformed into a nonlinear program (NLP) by parameterizing the controls. Spe-
cial room is given to direct single shooting (Section 5.1), direct multiple shooting
(Section 5.2) and direct collocation (Section 5.3), techniques which are commonly
used so solve large scale problems. The numerical solution of the NLP by sequen-
tial quadratic programming (SQP) is outlined in Section 5.4, and the three presented
direct techniques are compared in Section 5.5.

Extensions of fixed horizon optimization to moving horizon optimization are
discussed in Section 6. We start with the well-known recursive solution approaches
for regulation (Section 6.1) and estimation (Section 6.2) available for unconstrained
linear quadratic optimization problems. The simplicity and power of these recursive
techniques motivate extensions to nonlinear models. Therefore Section 6.3 discusses
optimal feedback control obtained by linearization along a specific reference solu-
tion. In moving horizon optimization the numerical cost can be lowered substan-
tially using appropriate initialization techniques. The various options of commonly
applied approaches are outlined Section 6.4.

The article is concluded in Section 7 by a short summary.

2 PROBLEM FORMULATION

2.1 Model

Mathematical process models are an abstraction of real process systems and aim
to capture the essential features of concern. In general, the process models are ei-
ther based on fundamental principles or empirical observations or in the hybrid case
on a mixture of both. The basis for virtually all fundamental process models are
the general conservation principles of mass, momentum and energy. As long as the
underlying assumptions remain valid, fundamental models can be expected to ex-
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trapolate to new operating regions where no data sets are available. However, it is a
rather difficult and time consuming task to construct and validate good fundamental
process models (see, e.g., Aris, [4]; Bauer et al., [13]; Marquardt [95]). An empirical
model built from available process data might be more convenient in some instances
since a detailed process understanding is not required for the model development,
although a suitable model structure has to be selected as well. Artificial neural net-
works are the most popular framework for empirical model development (Su and
McAvoy, [130]), but other techniques based on Hammerstein and Wiener models
(Norquay et al., [107]; Pearson and Pottmann, [111]; Wellers and Rake, [144]),
Volterra models (Maner et al., [94]), and polynomial ARMAX models (Sriniwas
and Arkun, [127]) might be considered alternatively. In this contribution a detailed
discussion of the particular advantages and disadvantages of fundamental or empir-
ical modeling are off focus since from an optimization point of view we only need a
sufficiently good process model. The underlying principles of the building process
are of minor importance, although they very well might affect the applicability of
the model and the particular choice of the numerical solution method. We assume
that a fundamental process model is available, but we keep in mind that other model
types might be used as well. There is a wide variety of phenomena in chemical pro-
cess systems such that we have various types of process models which vary over a
large range starting from simple algebraic equation systems, to ordinary (ODE) or
differential-algebraic (DAE) equations systems, and to more complicated (partial-
) integro-differential equations. Despite this richness our discussion is limited to
mathematical process models which can be represented as DAE systems given by

0 � f � ẋ � � � �
x � � � �

z � � � �
u � � � �

w � � � �
p
� � � ��� � ��� � (1)

0 � g � x � � � �
z � � � �

u � � � �
w � � � �

p
� � � ��� � ��� � (2)

Here, x � � � � � 
 � and z � � � � � 
 � denote the differential and the algebraic system
state vectors, respectively. u � � � � � 
�� are operational variables which can be di-
rectly manipulated by process operators. Modeling uncertainties and disturbances
are concatenated without further specification into a vector function w � � � � � 
�� .
p
� � 
 � denotes a vector of time-invariant system parameters. The function f (with

�
f

�
ẋ invertible) describes the differential portion while the function g represents the

algebraic portion of the process model. In general the Jacobian
�

g
�

z might be singular
such that the DAE could be of a higher index, where roughly spoken, the index de-
notes the minimum number the system has to be differentiated with respect to time
to be able to transform the DAE system into an ODE system. Details on the the-
ory of DAE’s can be found for example in Brenan et al. [32] or Unger et al. [133].
Because of the richness of phenomena occuring in higher index problems we limit
ourselves to problems of index one. The time interval of interest is denoted in the
sequel by

� & � � � � � � � � where � � , � � are starting and final times respectively. The
process model (1) and (2) might be used for simulation. Given particular values
of u

� � � � 1 � w � � � � � � ��� , p
�

and appropriate initial conditions the process model

1 The superscript � denotes specific but arbitrary values.
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(1) and (2) can be solved using a suitable integration routine. For notational con-
venience we assume in the remainder that initial conditions are provided for the
differential states, i.e., x � � � � � x � . A more general discussion on the specification
of initial conditions can be found in e.g., Kröner et al. [83], Brenan et al. [32] or
Unger et al. [133] for index one and higher index problems.

Some functions of the system states are measurable, therefore we augment the
model (1) and (2) by the sensor model

y � � � � h � x � � � �
z � � � �

u � � � �
p
� � � � � 
 � � � � � � � (3)

that determines the output variables y as a function of the other system variables.

2.2 Off-line Optimization on a Fixed Horizon

Before we start to outline moving horizon dynamic optimization we consider first
an off-line problem on a fixed horizon such as the optimization of batch processes.
These problems require the minimization of an objective function by adjusting the
free operational variables u, also referred to as controls, in an appropriate manner
within the finite interval

� 
 � � � 
 � � � 
 � � which denotes an operational phase of the
process, such as the time required for a grade change of a continuous process or
the reaction phase in a batch process. The final time may be fixed or subject to
optimization.

The controls u cannot be adjusted arbitrarily since they might be restricted by
constraints which are typically associated with physical limits such as„ e.g., restric-
tions on valve position or rate of change.

Further (mixed) constraints on controls and states comprise, e.g., limits on ca-
pacity of production units and quality specifications on the product, as well as safety
constraints. For notational simplicity, both types of restrictions are concatenated in
a general constraint vector function c � x � z � u � p � � �

. The constraints c have to be en-
forced during process operation at any time � � � .

Optimal operation of the process with respect to the specified cost functional
could be achieved if a perfect process model (1), (2) and (3) of the process would
be available and if the initial state x � at � � , the parameters p, and the disturbances
w were known exactly. Then the controls and therefore the operational trajectory
could be determined entirely off-line through the solution of the following dynamic
optimization problem (provided that it is solvable)

min
x
	 �

� � � z 	 � � � �
u
	 �

� � � � 	 �

� 
 � x 
 � � 
 � � �
z 
 � � 
 � � �

p 
 ��� * � 	 �
� 	 �
� 
 � x 
 � z 
 � u 
 � p 
 � 	�� � 	

(4)
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s.t. 0 � f � ẋ 
 � � � �
x 
 � � � �

z 
 � � � �
u 
 � � � �

w 
 � � � �
p 
 � � � � � � � 
 �

x 
 � � 
 � � � x 
 � �
0 � g � x 
 � � � �

z 
 � � � �
u 
 � � � �

w 
 � � � �
p 
 � � � � � � � 
 �

0 � c 
 � x 
 � � � �
z 
 � � � �

u 
 � � � �
p 
 � � � � � � � 
 �

0 � r 
 � x 
 � � 
 � � �
z 
 � � 
 � � �

p 
 � �
In the case of tracking problems the Lagrange term

� 
 may be given by an appro-
priate norm of the difference between the output trajectory y and a given reference
trajectory � � � 
 � � �

, such as a weighted Euclidean norm with the particular weighting
S: � 
 � x 
 � z 
 � u 
 � p 
 � � � & � � h � x 
 � � � �

z 
 � � � �
u 
 � � � �

p 
 � � � � � � � 
 � � � � �S �
� 
 is then the penalty for the final states. In a more general case

� 
 and
� 
 may

denote an economical cost function. The vector function r 
 is used to account for
endpoint constraints. The superscript � in all quantities indicates that (4) is typi-
cally an optimal control problem which aims to determine the regulating optimal
trajectory for the control u. Furthermore, problem (4) is commonly referred to as an
open loop optimal control problem, since no feedback from the process enters the
problem formulation.

A similar dynamic optimization problem can be formulated if one aims to de-
termine unknown or hardly accessible process quantities such as initial conditions,
process parameters, process disturbances, or model uncertainty from process mea-
surements on

��� � � � �� � � �� � . We can formulate the following dynamic optimization
problem for the off-line estimation of the unknown quantities using data that have
been collected during an operational phase

���
.

min
x
�

��� x � � � � � z � � � � �
w
� �

� � � p �
� � � x � � � �� � �

z
� � � �� � �

p
� ��� * � ��

� ��
� � � x � �

z
� �

w
� �

p
� � 	�� � 	

(5)

s.t. � � f � ẋ � � � � �
x
� � � � �

z
� � � � �

u
� � � � �

w
� � � � �

p
� � � � � � � � � �

x
� � � �� � � x

�� �
� � g � x � � � � �

z
� � � � �

u
� � � � �

w
� � � � �

p
� � � � � � � � � �

��� c
� � x � � � �

z
� � � � �

u
� � � � �

p
� � � � � � � � � �

Now, the superscript � is used to indicate the estimation. Here, the Lagrange term
is typically given as a weighted Euclidean norm of the difference between the mea-
surements � � �

� � � �
and the model response y

� � � x � � z � � w � �
p
� � � � & � � h � x � � � � �

z
� � � � �

u
� � � � �

p
� � � � � � � � � � � � � �S �

A typical weighting matrix S is the inverse of the covariance matrix of the measure-
ment error. Nevertheless, more general weights like, e.g., time dependent operators
are possible, too (Binder et al. [20]). The measurement function � � � � � � �

has to be
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Figure 1. Moving horizon approach

generated appropriately from the measurements taken from the process at discrete
sampling times. The measurements might be as well included pointwise by substi-
tuting the integral by a finite sum. The initial conditions x

�� , the parameters p � , and
the disturbances w

�
are free variables to be determined by the optimizer.

A reference value x̄ � which could be close to the true initial conditions can be
incorporated into the initial penalty

� �
, e.g., by

� � � x � � � �� � �
z
� � � �� � �

p
� �'& � � x � � � �� � � x̄

�� � �S �
where the particular weight S reflects the confidence in such a reference value. The
controls u

�
are typically accessible and therefore assumed to be known.

So far we considered the regulating and estimation problems independently of
each other, each formulated on a fixed horizon. It is obvious that both problems can
be also coupled. For example, consider an operational phase of a production process
where first process data is collected in some interval to estimate unknown quantities.
Then, based on these estimates an optimal operational trajectory is determined on
the remaining time interval. Let’s assume the time interval

� ��� � � � � is split in two
parts, i.e.,

� � � � � �� � � �� � , � 
 � � � 
 � � � 
 � � where � �� � � � , � �� � � 
 � , � 
 � � � � ; see Figure 1.
The optimal solution of (5) provides estimates on

� �
of parameters p, disturbances

w � � �
, and measured or unmeasured states x � � � �

z � � �
which are consistent with the

process model. The estimates can then be used in the regulator problem (4) on
� 
 .

In (4) the uncertainty and disturbance vector wr is assumed to be fixed and known.
Typically its values are suitable predictions based upon the estimates we computed
on
���

, e.g., wr � �
w � we �

where
�
� denotes a prediction operator. The predictions

are computed by extrapolation or by use of simple disturbance models as discussed,
e.g., in Ricker [121]. Furthermore, the problems (4) and (5) are coupled by the
initial condition xr � tr

0
� � xe � te

f
�

and the parameters p 
 � � � � p � �
which have been

determined from (5) for further use in (4) using the prediction operator
� � . Note that

in this example the solution to (4) and (5) cannot be computed off-line anymore.
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Figure 2. On-line optimization

The concept of estimation and regulation has been outlined for a simple setting.
It is clear that the methodology also applies in more general situations, to better deal
with the uncertainty in the model and the disturbances acting on the real process.
Next, the horizons are repetitively shifted with time by a sampling time interval

� �
such that a moving horizon optimization problem is obtained.

2.3 On-line Optimization on Moving Horizons

In moving horizon optimization problems (4) and (5) are solved repeatedly. Un-
known process quantities are estimated from the collected process measurements
using (5). Based on this estimates an optimal trajectory u 
�� � � � � ��� 
 is determined
by solving (4)2, but u 
 � � � � � � � 
 , is applied to the process only during an inter-
val

� � , i.e., u 
 � � � �
, � 
 � � � �/� 
 � � � � . Then, new measurement information is

collected, the estimation and regulation horizons
��� � � 
 are shifted by

� � , and (4),
(5) are resolved. We now have several horizons which typically overlap such that
we introduce a horizon index ( which is also used as subscript in notation, i.e., the
horizons are denoted by

� �� & � � � ���� � � � �� � � � and
� 
 � & � � � 
 ��� � � � 
 � � � � . Furthermore, we

include
���� � � 
 � as a second argument in all quantities appearing in (4) and (5) to dis-

tinguish the solutions computed on different horizons. Therefore u 
 � � � � � 
 � � � � � � 
 � ,
denotes the optimal solution u 
 � in problem (4) obtained on horizon

� 
 � . Similar
notation applies for all other quantities in problems (4) and (5). Note, that in this
problem setting we estimate all quantities simultaneously. In practice the unknowns
might live on different time-scales such that there is no need to estimate slowly
varying quantities in each time step (Helbig et al., [61]).

2 The superscript � denotes the optimal values.
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So far, the framework introduced is quite idealistic since it assumes that prob-
lems (4) and (5) can be solved instantly. For practical applications the estimation
and prediction horizons have to be separated by some time to perform the neces-
sary numerical computations and data input/output operations. Therefore, the esti-
mation and prediction horizons are separated typically by one sampling time, i.e.,� 
 ��� � � � �� � � � � � . An illustration of the moving horizon approach is given in Figure
2, where however w

�
z
�
p are not displayed to avoid an overload of the graph. With

these definitions the basic moving horizon algorithm is given by:

1. While � �� � � � � � � 
 ��� � :
– Apply u 
 � � � � 
 � � � �

to the process.
– Access the measurement values � � �

� � � �
, � � ���� .

– Solve the estimation problem (5), use the so far injected controls as u
� � � �

for � � � �� , i.e., compute x
� � � � � �� �

, z
� � � � ���� �

, w
� � � � ���� �

, p
��
�
�
.

– Compute x 
 � � 
 ��� � �
using the model f

�
g in (5) as prediction model with ini-

tial condition x
� � � �� � � �

, control u 
 � � � � 
 � � � �
and suitable prediction models

�
�
� � � to extrapolate w � � � � � �� �

and p
��

� on
� � �� � � � � 
 � � � � . Extend the extrap-

olation to
� 
 � such that w 
 , p 
 � � is obtained.

– Solve the control problem (4) with the extrapolated quantities and deter-
mine u 
 � � � � 
 � �

to be injected into the process in the upcoming step � �� � � � � �� � � 
 ��� � � � .2. ( & � ( � �
.

3. Goto 1.

The underlying assumption of the algorithm is that the prediction models are of
sufficient quality such that the initial guess x 
 � � 
 ��� � �

and the extrapolations w
� � � �

,� �� � � � � � � 
 ��� � , w 
 � � �
, � � � 
 � , are close to the true values.

Obviously, the time
� � should be as small as possible where at least

� � has to
be sufficiently smaller than the dominating process time constants. These time con-
stants depend on a number of factors such as for example on the particular chemical
species involved or on the particular unit operations used. While distillation col-
umn time constants with regard to product concentration are in the range of hours
the product concentration of chemical reactors can change in seconds. The com-
putational complexity of an algorithm to solve (4) and (5) depends in addition on
a number of other factors such as the used model (type, structure, dimension), nu-
merical solution approaches (optimization method, discretization), choice of cost
functional and the horizon length. While the time constant is given by the process,
the computational complexity is affected by engineer and mathematician through
modeling and algorithmic design decisions. The designed algorithm has to prompt
in any event the optimal values (or at least suitable approximations) of (4) and (5)
within the available time span

� � since otherwise proper function of the on-line op-
timization scheme cannot be guaranteed. This is an important real-time requirement
which should be addressed by the design of the algorithms.

The functionality of the process is further affected by the closed loop stability
properties (e.g., Bitmead, Gevers and Wertz, [22]) of the moving horizon approach
which will be addressed in the next section.
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3 REMARKS ON CLOSED LOOP STABILITY

First, we discuss closed loop stability for the regulator problem (4) assuming fully
accessible differential states, i.e., y 
 � x 
 , and given p 
 , w 
 � � �

. Let’s assume that
we want to find an optimal control u 
 � � � � � 
 � � � ��� which moves the process
state x 
 from some given initial conditions x 
 � � 
 ��� � �

to a target state which for sim-
plicity is chosen to be the origin, i.e., � � � 
 � � � � � � � � . Suppose, that the considered
system is controllable (see, e.g, Ogunnaike and Ray, [109], for an introduction to
the concept of controllability) and that no unknown disturbances, unknown param-
eters and model uncertainties are present. Furthermore, we assume to know the true
initial conditions x � ��
 ��� � �

.
It follows from Bellman’s Principle of Optimality (e.g., Anderson and Moore,

[2]), that in each horizon ( the predicted state and control trajectories x 
 � � � � 
 � �� � �
z 
 � � � � 
 � �� �

, u 
 � � � � 
 � �� �
of problem (4), where

� 
 � � & � � � 
 ��� � � � � , are equal to the
optimal process trajectories x 
 � � � � 
 � �� � �

z 
 � � � � 
 � �� � �
u 
 � � � � 
 � �� �

of the process sys-
tem determined on

� ��
 � � � � . This holds only if the first problem ( � � is feasible
and if the initial conditions x 
 � � 
 ��� � �

are known for all ( (Keerthi and Gilbert, [73]).
Therefore, for infinite horizons there is no difference between the subsequent con-
trol sequences determined at certain time steps and the control trajectory obtained
by solving a single problem. This implies closed loop stability, as any feasible opti-
mized trajectory goes to the origin (Keerthi and Gilbert, [73]).

When instead a (small) finite horizon
� 
 � � � � � � � � , is chosen the actual closed

loop control and state trajectories will differ in general from the predicted open
loop trajectories even if no model uncertainty and unknown disturbances are present
which is nicely illustrated by Bitmead, Gevers, and Wertz [22]. The solutions com-
puted on

� 
 � �� and
� 
 � may differ significantly the shorter

� 
 � is chosen. Since from
a theoretical perspective the minimum requirement of a model based controller is
that it yields a stable closed-loop system if a perfect model of the plant is available
and if the state is completly accessible by measurements (Henson, [64]), intense re-
search has been undertaken in the last decade to develop schemes with guaranteed
nominal stability properties. The major developments are summarized in excellent
surveys given by Mayne [96], Morari and Lee [103], Allgöwer et al. [3], and Mayne
et al. [97]. However, the developed approaches are yet computationally expensive,
difficult to design and therefore limited to processes with low state dimensions. So
far, moving horizon schemes with guaranteed stability have been only applied in
academia. Besides the inherent drawbacks of the approaches with guaranteed sta-
bility this might as well be due to the fact that it is typically not difficult for practical
problems to find long enough horizons by trial and error such that closed loop sta-
bility is obtained. However, it should be admitted that it is difficult to come up with
a generally applicable horizon design procedure, which, given a specific problem,
determines stabilizing prediction and control horizons based on the process model
and the cost functional chosen (Allgöwer et. al, [3]).

Similar stability considerations apply to the estimation problem. Here, stability
of the estimator is defined as the convergence of the estimated states to the true states
for � � � for arbitrarily specified initial conditions, if the measurements contain no
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errors, the model is correct and the disturbances and parameters are known. Stability
is trivially obtained by dropping the Mayer term in the objective (

� � � � ), because
the minimization of the cost immediately moves the initial state to the correct value.
However, such a strategy would lead to poor estimation quality if measurement
noise and model uncertainty would be present as in any real situation. In these cases
one should include an appropriate guess of the initial condition, say x̄

���� � , to im-
prove estimation quality. This can be accomplished by introducing the Mayer term
� � � x � � � ���� � � � x̄

���� � �
where

� �
typically reflects some kind of least-squares formu-

lation of the error. Alternatively, one could account for all available measurement
information for the current estimation by keeping � �� � � � � ��� � � � ( . The resulting
problems are not computationally tractable since the problem dimension grows as
the estimation horizon grows. Instead in the ( -th horizon past data in

� � ���� � � � �� � � � are
indirectly accounted for by x̄

���� � which is used to reflect the past estimate and thus
indirectly the information content of the past measurement data. Thus the weights in
� �

reflect the confidence in the past estimates.
� �

has to be chosen rather carefully
to ensure proper weighting of the old data. Estimator divergence may result if the
initial penalty

� �
biases the old data by too strongly weighting the past estimates,

while performance may suffer if the initial penalty neglects the old data by not suffi-
ciently weighting them. Stability and performance implications for several choices
of

� �
for a number of problems are discussed in a rigorous manner by a number

of contributions, e.g., see Michalska and Mayne [101], Muske and Rawlings [104],
Robertson et al. [122], and Rao and Rawlings [120].

So far stability has been illuminated separately for the regulator and estimation
problem. For linear time invariant models with quadratic cost functionals and no in-
equality restrictions present the separation principle holds and closed loop stability
of the combined problem follows if the estimation and regulation problem are sta-
ble independently. Furthermore, it can be proven for general systems (Meadows and
Rawlings, [98]) that if an exponentially converging estimator is combined with a sta-
ble control algorithm where all states are measurable, then this observer-controller
system is stable. This holds even for nonlinear regulators where the separation prin-
ciple obviously does not hold.

4 OVERVIEW OF SOLUTION METHODS FOR OPTIMAL CONTROL PROBLEMS

ON FIXED HORIZON

Next, we discuss the numerical techniques which are commonly applied to solve
dynamic optimization problems. First we review available methods to solve opti-
mal control problems on a fixed horizon before we examine particular extensions
towards a moving horizon.

Many methods for the on-line solution of optimal control problems on moving
horizons are based on algorithms designed for the off-line computation of solu-
tions to optimal control problems on a fixed interval

� & � � ��� � � � � in time (including
problems where � � is as well a degree of freedom in the optimization problem).
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Therefore, in this section we give an overview of the most common off-line optimal
control methods which will form the core of any receding horizon strategy.

In the previous sections the necessity to distinguish the estimation and regula-
tor problems required an extended notation which we drop here for convenience,
since both types of optimal control problems can be solved using similar numeri-
cal techniques. Additionally, we restrict our attention to ODE models as the DAE
case introduced above poses additional theoretical and practical difficulties which
are beyond the scope of this general discussion. However, for further information
on dynamic optimization with DAE systems we refer to Pytlak [119] as well as to
the articles by Büskens et al. [38], Diehl et al. [47], and Kröner et al. [84] within
this book as a starting point.

We consider a deterministic optimal control problem in Bolza form on a fixed
horizon

� & � � � � � � � � with

min
u
�

� � � x � � �
! �

u � � � � x � � � � & � � � x � � � � ��� * ���
� �

� � x � � � �
u � � � � � �

d � (6)

subject to

ẋ � � � � f � x � � � �
u � � � � � � � � � � (7)

x � � � � � x � � (8)

0 � c � x � � � �
u � � � � � � � � � � (9)

0 � r � x � � � � � �
(10)

where x
& � � � 
 � ,

� � � �
, and u

& � � � 
�� ,
�

�

� �
, denote the state and

control variables. The model ODE is denoted by f
& � 
 �

� � 
�� � ��� � 
 � ,
c
& � 
 �

� � 
�� � � � � 
 � ,
� $ � �

, is a general nonlinear inequality constraint
function, and r

& � 
 �
� � 
 	 ,

� 
 � � describes the end point constraints. The
objective incorporates a Mayer term

� & � 
 �
� �

and a Lagrange term with� & � 
 �
� � 
 � � � � �

.
For simplicity, the final time � � � � � as well as the initial conditions x � and

the model parameters are assumed to be known and fixed, but an extension of the
solution methods presented towards a free end time and unknown initial initial con-
ditions and model parameters can be obtained straightforwardly. For convenience,
the model parameters have been suppressed in Eqns. (6)-(10).

The functions
�

,
�

, f, c, and r are assumed to be twice continuously differen-
tiable with respect to their arguments.

There are three basic approaches to solving optimal control problems of the form
(6)-(10):

(I) Hamilton-Jacobi-Carathéodory-Bellman (HJCB) partial differential
equations (PDEs) and Dynamic Programming,

(II) Calculus of Variations, Euler-Lagrange differential equations (EL-DEQ), and
the Maximum Principle (indirect methods), and

(III) direct methods based on a finite dimensional parameterization of the controls.
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We will briefly comment on the first two approaches in Subsections 4.1 and 4.2.
The direct methods will be presented in detail in Section 5, as they have proven to
be most successful for the treatment of real life large scale optimal control problems.

4.1 Hamilton-Jacobi-Carathéodory-Bellman Partial Differential Equation,
Dynamic Programming

In HJCB the optimal feedback control u � � x � � �
is obtained by solving a PDE for

a so-called value function (e.g., Pesch and Bulirsch, [113]). In practice, however,
the PDE can be solved numerically for very small state dimensions only. A further
severe drawback is that inequality constraints on the state variables as well as dy-
namical systems with switching points usually lead to discontinuous partial deriva-
tives and cannot easily be included. Discretization methods to compute numerical
approximations of the value function by solving a first order PDE with dynamic
programming are described by Bardi and Dolcetta [10], Falcone and Ferretti [49],
and Lions [92] (viscosity solutions of the HJCB equation). It is worth mentioning
here that for the subclass of linear-quadratic regulator problems, the HJCB-PDE
can be solved analytically or numerically by solving either an algebraic or dynamic
matrix Riccati equation. This approach is described in more detail in Section 6.2.

A similar solution methodology is obtained by dynamic programming (Bell-
man [14]), which provides the global optimal control. Unfortunately, its application
is severely restricted in the case of continuous states systems – at most three state di-
mensions seem feasible so far because of the curse of dimensionality. Recently, the
application of neural network approximations has been investigated to handle the
curse of dimensionality and the curse of modeling if dynamic programming is ap-
plied to higher dimensional, nonlinear and also stochastic problems (neuro-dynamic
programming, Bertsekas and Tsitsiklis [15]). Another new development is the adap-
tive critic method which relies on neural network approximations, reinforcement
learning strategies and dynamic programming (e.g., Naumer [105]; Werbos [143]).
However, these approaches are still restricted to problems with small state dimen-
sion.

4.2 Calculus of Variations, Euler-Lagrange Differential Equations,
Maximum Principle (Indirect Methods)

A common approach to compute the optimal control is based on the Maximum
Principle, that we will sketch for the case of optimal control problems with the
control constrained to the (nonempty) set

� � � �'& � 	 u � � 
 � �
0 � c � u � � � �

First, a Hamiltonian is defined as

� � x � u � 7 7 7 � � � & � � � � x � u � � � ��777 � � � � � f � x � u � � � �
(11)

where the vector
7 7 7 � � �'& � � � 
 � denotes the so-called adjoint variables. Necessary

conditions for optimality of solution trajectories x � � � �
and u � � � �

, � � � , can then
be given by the following boundary value problem in the states x � � � �

and in the
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Multiple
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Figure 3. Overview of numerical methods based on the indirect approach

adjoints
7 7 7
� � � � 3, which form the EL-DEQ for the situation considered

x � � � � � � x �
0 � r � x � � � � ���7 7 7

� � � � � � �
x
� � x � � � � � � � �

xr � x � � � � ��� � � �
and for almost all � � � � � � � � �

ẋ � � � � � ���� � � � x � � � � �
u � � � � ��7 7 7

� � � � � � �
˙7 7 7 � � � � � � � x

� � x � � � � �
u � � � � � 7 7 7

� � � � � � � �

(12)

The vector � � � � � 
 	 denotes Lagrange multipliers for the end point constraints.
The optimal controls are obtained by a pointwise maximization of the Hamiltonian,
which may lead to discontinuities:

u � � � � � arg max
u
��� � � �

� � x � � � � �
u
��7 7 7
� � � � � � �

(13)

Early developments of the Maximum Principle have been carried out by Pon-
tryagin et al. [116], Isaacs [68], and Hestenes [65]. The approach has been extended
to handle general constraints (9) on the control and state variables (for an overview
see, e.g., Hartl, Sethi, and Vickson [60]). Then the EL-DEQ form an intricate multi-
point boundary value problem (MPBVP) with a priori unknown interior switching
points denoting the times when one of the constraints becomes active or inactive.
Activation or deactivation of a state constraint generally leads to jumps in the adjoint
variables.

Several families of numerical methods are based on the EL-DEQ and the Maxi-
mum Principle, some of which are listed in Figure 3.

Gradient methods are intended to iteratively improve an approximation of the
optimal control by minimizing the Hamiltonian subject to a boundary value prob-
lem (Cauchy [41]; Kelley [74]; Tolle [132]; Bryson and Ho [33]; Miele [102];

3 � � � ��� � x � u ��� ���� ��� � �
	����� ���� � � � � � � � � � ���� ���� � � � � ����� for � � � ��� ��� � � � � � ��� � � � ��� �
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Chernousko and Luybushin [43]). In each iteration step, the model (7) is numer-
ically integrated forward in time while the adjoint differential equations are inte-
grated backwards in time.

Multiple shooting is one of the most powerful numerical methods for solving
the resulting MPBVP derived from the necessary conditions of optimality of a con-
strained nonlinear optimal control problem, generating highly accurate and verified
(with respect to necessary conditions of optimality) solutions. Numerical multiple
shooting methods have been developed by Fox [51], Keller [75], Bulirsch [35], Deu-
flhard [44], Bock [23, 24], Oberle [108], Bock [28], Kiehl [76], Hiltmann [66], and
Callies [39]. For an introduction into multiple shooting we refer to Ascher et al. [7]
or Stoer and Bulirsch [129].

Collocation methods have also been investigated to solve the boundary value
problem of the EL-DEQ (e.g., Dickmanns and Well, [45]; Bär, [9]; Ascher et al.
[6]) but they have been applied more successfully in the context of direct methods
(Section 5).

The practical drawbacks of indirect methods are:

– Proper formulations of the necessary conditions (EL-DEQ etc.) in a numerically
suitable way must be derived. The application of automatic differentiation (e.g.,
Griewank, [58]) may help to partly reduce the efforts to formulate the MBPVP
(e.g., Mehlhorn and Sachs, [99]). In spite of this, significant knowledge and
experience in optimal control is still required by the user of an indirect method.

– In order to handle active constraints properly, their switching structure must be
guessed.

– Suitable initial guesses of the state and adjoint trajectories must be provided to
start the iterative methods.

– Changes in the problem formulation (e.g., by a modification of the model equa-
tions), or low differentiability properties of the model functions (e.g., by low
order interpolation of tabular data), are difficult to include in the solution pro-
cedure.

5 INTRODUCTION INTO DIRECT SOLUTION ALGORITHMS

The basic idea of direct methods for the solution of optimal control problems intro-
duced above is to transcribe the original infinite dimensional problem (6)-(9) into a
finite dimensional Nonlinear Programming problem (NLP) (Kraft, [79]; Bock and
Plitt, [27]; Biegler [19]; Betts [16]; von Stryk and Bulirsch [140]), which has been
pushed by the progress in nonlinear optimization (Han, [59]; Powell, [117]; Barclay,
Gill, and Rosen [11]; Betts [16]). Two basically different solution strategies for the
reformulated problem exist (see Pytlak, [119], for a survey):

(i) Sequential simulation and optimization:
In every iteration step of the optimization method, the model equations (7) are
solved “exactly” by a numerical integration method for the current guess of
control parameters. This method is also referred to as control vector parame-
terization.



Model Based Optimization of Chemical Processes on Moving Horizons 309

Shooting
Direct Single

Shooting
Direct Multiple

Collocation
Direct

Methods
Galerkin Type

Nonlinear Programming Problems
Formulation of

Direct Methods

Figure 4. Overview of numerical methods based on the direct approach

(ii) Simultaneous simulation and optimization:
The discretized differential equations (7) enter the transcribed optimization
problem as nonlinear constraints that can be violated during the optimization
procedure. At the solution, however, they have to be satisfied.

Figure 4 outlines four particular methods which differ in the way the transcription
is achieved. Collocation methods arise from general Galerkin type approaches by
an appropriate choice of the approximation spaces and quadrature rules (see, e.g.,
Fletcher, [50]). Therefore, we will not comment any further on Galerkin type meth-
ods since the statements made for direct collocation apply as well for the more gen-
eral Galerkin type methods. In this section we will only elaborate on direct single
shooting, direct multiple shooting, and direct collocation.

Direct single shooting represents a pure sequential approach, whereas colloca-
tion is a pure simultaneous approach; direct multiple shooting may be considered a
hybrid method, as the model equations are solved “exactly” only on intervals during
the solution iterations.

5.1 Direct Single Shooting

In the direct single shooting method (e.g., Kraft [79], [80]), the infinitely many
degrees of freedom u � � �

for � � � are reduced by a control parameterization ũ � � � q �
that depends on a finite dimensional vector q

� � 
 �
. The parameterization of the

control can be based on general functions with local or global support or a mixture of
both. An example based on a parameterization using functions with global support,
e.g., a polynomial with � coefficients q � � ��� � � q � � � , is given by

ũ � � � q � � ����� � q � � ��� & � � � ��
��� �

q � � � � � � � �
A second example (see Figure 5) employing a localized parameterization is obtained
using a piecewise constant control representation on a partition of the interval

�
into
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� subintervals
� � , � �!� � � � ����� � � � �

, such that

ũ � � � q � � ��� � � q � � � �'& � q � � � � � � �

q �
q �

q �

q �
q �

� � �
�

�
�

� � � � ���
�
� �

˜� � � � q �

�

Figure 5. Piecewise constant representation of a control (
�

��� ). The control intervals are
given as �	� � * � � � � �	
 � - for � �

� � � � � �  with intermediate time points
�

� � � � � � � �

Besides these two explicit parameterizations of the controls one can also de-
fine controls implicitly via additional parameterized ODEs (or – if DAE models
are admissible – by additional algebraic equations containing the so called shape
parameters), e.g.,

˙̃u � �� q � � f̃ � x � � � �
ũ � �� q � � � � q � � � � �

ũ � � ��� q � � ũ � � q � �
The additional equations can be added to the model equations Eq. (7). In this case,
the parameterized controls ũ are reinterpreted as (parameter dependent) states.

Given an initial value x � and a parameter vector q, the following Initial Value
Problem (IVP) can be solved:

ẋ � � � � f � x � � � �
ũ � � � q � � � � � � � � �

x � � � � � x � �
The solution of this problem is a trajectory x � � �

which is a function of q only. To
keep this dependency in mind we will denote this solution by x̃ � �� q �

in the follow-
ing. By substituting this trajectory into the objective functional defined in (6) we
can define the cost function

!̃ & � 
�� � �
as!̃ � q � & ��� � x̃ � � � � q ����� * ���
� �

� � x̃ � �� q � �
ũ � � � q � � � �

d �
In order to incorporate the path inequality constraints c into the NLP, different

methods have been developed (cf. Vassiliadis, Sargent, and Pantelides [135]). Two
popular methods are
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1. Introduction of a penalty term in the objective function:

� ! �
u � � � � x � � � � & � ! �

u � � � � x � � � � � 
 �� � � � � � � * � �� �

�
max

� � � � � � � � � 	�� � d �
where � � � � � ,

 � � � � ��� � ��� are large positive constants. A difficulty with
the max operator is that it hides all information about a constraint as long as it
is inactive, and that its smoothness is limited.

2. Using a time grid � � � � � � � � � � � � � � � the infinite dimensional path in-
equality constraints (9) are reformulated into �

� �
vector inequality constraints

0 � c̃ � � q � & � c � x̃ � � � � q � �
ũ � � � � q � � � � � � � �!� � � ��� � � �

By construction, this method enforces the path inequality constraints at the
points on the time grid only. A sufficiently good approximation of the origi-
nal constraint can be obtained by a sufficiently fine grid. Also a combination
with the first method is possible.

In the sequel we adopt the second approach.
The endpoint constraint is similarly reformulated as

0 � r̃ � q �'& � r � x̃ � � � � q � � �
In summary, the finite dimensional NLP in the direct single shooting parameter-

ization is given as
min

q
�	� � � !̃ � q �

subject to

0 � c̃ � � q � � � �!� � ��� � � �
�

0 � r̃ � q � � (15)

The numerical effort to solve the NLP (15) is determined to a large extent by the
complexity of the parameterization of the control vector. Clearly, a piecewise con-
stant parameterization with a uniform mesh length might not be the best for general
problems such that adaptive parameterization schemes should be employed to re-
solve the trajectory at the right place. However, it is by no means trivial to generate
such problem adapted meshes a-priori, i.e., before the actual optimal solution is
known (see Waldraff et al. [142], Betts and Huffmann [18], Binder et al. [20]).

The solution of the NLP (15) requires sensitivity information of the states with
respect to the control parameters q. The computation of these sensitivities should be
done according to the principle of Internal Numerical Differentiation (IND) (Bock,
[25]) and not by trying to generate derivates by finite differences of independently
computed approximations of the solution of disturbed initial value problems 4. Many

4 This is also valid in the context of multiple shooting which we will introduce in the next
section.
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ODE and DAE solvers exist that can efficiently compute sensitivities according to
the principle of IND; see, e.g., Caracotsios and Stewart [40], Leis and Kramer [91],
Heim [62], Buchauer, Hiltmann, and Kiehl [34], Bock, Schlöder, and Schulz [30],
Maly and Petzold [93], Kiehl [77], Engl et al. [48], Bauer [12].

In many practical applications the problem functions have only low, local dif-
ferentiability properties, i.e., discontinuities in the first or second order derivatives
occur.

In these cases obtaining a useful gradient approximation is rather involved, since
a numerical sensitivity analysis for initial value problems with switching points must
be carried out, e.g., Rozenvasser [123], Bock [28], von Schwerin, Winckler, and
Schulz [136], Galán, Feehery, and Barton [52].

5.2 Direct Multiple Shooting

In the direct multiple shooting method (Plitt, [115]; Bock and Plitt, [27]), the tran-
scription of the optimal control problem (6)-(9) into an NLP starts similar to the di-
rect (single) shooting method with a local control representation. First, the time hori-
zon
� � � � � � � � � is divided into � subintervals

� � & � � � � � � � � ��� , � � � � � � � ��� � � � �
,

with � � � � � � � � � �)� � � � � . Then, the control trajectory is parameterized by a
piecewise representation

ũ � � � � q � �
for � ��� � � � � � � � �

with � local control parameter vectors q � � q �6� � ��� q � � � , q � � � 
�� . The trivial
example for such a parameterization is again the piecewise constant representation
shown in Figure 5.

In a crucial second step, �
� �

additional vectors s � � s � � ��� � � s � of the same
dimension

� � as the system state are introduced, to which we will refer to as the
multiple shooting node values. All but the last serve as initial values for � inde-
pendent IVPs on the intervals

� � :

ẋ � � � � � f � x � � � � �
ũ � � � � q � � � � � � � � � � � � � � � � �

x � � � � � � s � �

The solutions of these problems are � independent trajectories x � � � �
on

� � � � � � � ��� ,
which are a function of s � and q � only. To keep this dependency in mind, we will
denote these solutions by x̃ � � �� s � � q � �

in the following. For an illustration, see Fig-
ure 6.

By substituting the independent trajectories x̃ � � �� s � � q � �
into the Lagrange term�

in Eq. (6) we can calculate the objective contributions
!̃ � & � 
 �

� � 
 � � �
for� �!� � ��� � � � � �

as

!̃ � � s � � q � � & � * � ��� �
�
�

� � x̃ � � �� s � � q � � �
ũ � � � � q � � � � �

d � �
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s �
s �

s �

s �
s �
s
�

� � �
�

�
�

� � � � ���
�
� �

, � ���

�

�
�

�
�

�
�

Figure 6. Five trajectories in the multiple shooting parameterization (
�

� � )

The decoupled IVPs are connected by matching conditions which require that
each node value should equal the final value of the preceding trajectory:

s � � � � x̃ � � � � � � � s � � q � � � � �!� � ����� � � � � � (16)

The first multiple shooting node variable s � is required to be equal to the initial
value x � of the optimization problem:

s � � x � � (17)

Together, the constraints (16) and (17) remove the additional degrees of freedom
which were introduced with the parameters s � , � � � � � ��� � � . It is by no means
necessary that the constraints (16) and (17) are satisfied during the optimization
iterations – on the contrary, it is a crucial feature of the direct multiple shooting
method that it can deal with infeasible initial guesses of the variables s � and q � .

Using for notational convenience the same time grid as for the multiple shoot-
ing parameterization (finer or coarser grids are equally possible), the infinite dimen-
sional path inequality constraints (9) are transcribed into �

� �
vector inequality

constraints

��� c̃ � � s � � q � � & � c � s � � ũ � � � � � q � � � � � � � � ��� � � ��� � � �
Summarizing, the finite dimensional NLP in the direct multiple shooting param-

eterization is given as

min
s � � � � � � s � � q � � � � � � q �

� � � � s �
� � � � ��

� � �
!̃ � � s � � q � �

subject to

s � � � � x̃ � � � � � � � s � � q � � � � ��� � � ��� � � � � �
s � � x � �
��� c̃ � � s � � q � � �
� � r � s �

� �
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An important feature of the direct multiple shooting method is the sparse structure
of this large scale NLP. Its Lagrangian function

�
is partially separable, i.e., its Hes-

sian matrix
� �s � q � is block diagonal with non-zero blocks

� �s � � q � � that correspond
to local variables s � � q � only (Bock and Plitt, [27]).

Extensions of the Direct Multiple Shooting Method to treat DAE systems effi-
ciently are described by Bock, Eich, Schlöder [29], Schulz, Bock, Steinbach [126],
and Heim and von Stryk [63] for the case of parameter estimation and for very
general multistage optimal control problems by Leineweber [89].

5.3 Direct Collocation

We now consider a general direct collocation discretization of the optimal control
problem Eqs. (6)-(10). For ease of notation, we assume that the functional Eq. (6)
is in Mayer form

! �
u
�
x
� � � � x � � � ���

. This is no restriction of generality, as the
transformation of the Bolza functional (6) to Mayer form is easily done: As a first
step, an additional state x 
 � � � and an additional differential equation

ẋ 
 � � � � � � � � � x � � � �
u � � � � � � �

x 
 � � � � � � � & ���
are introduced. In the second step, the objective � � x � � � � �

is redefined as � � x � � � � � �
x 
 � � � � � � �

(in order to keep notation at a minimum, no new symbol for the redefined
objective is introduced).

Both state and control variables are approximated by piecewise defined func-
tions x̃ � �� � � and ũ � �� � � on the time grid� � � � � � � � � � � � � � � � � �
Within each collocation interval

� � � � � � � � � , � � � � � , these functions are chosen
as parameter dependent polynomials of order ( � � � � respectively:

x̃ � �� s �
��
� �
� � �

� � � � & � x̃ � � �� s � � & � � x� � �� s � � � � � � 
 �� �
ũ � �� q �

��
� �
� � �

� � � � & � ũ � � �� q � � & � � u� � �� q � � � � � � 
 �" �
Here, �� �

� �
denotes the space of � -dimensional vectors of polynomials up to degree

1
.

The coefficients of the polynomials (shape parameters) are collected in the vectors

s
& � � s �� � ��� � � s �� � � � � � �

� � � � � � 
 � � s � � � � � � � � � 
 � � � �!� � � ��� � �
�

q
& � � q �� � ��� � � q �� � � � � � �

� " � � � � 
 � � q � � � � " � � � � 
 � � � �!� � � ��� � � �
Matching conditions of the form

� � � � �� � � � � � � � � � � � � �� � � � � � � � �!� � � ��� � � � �
have to be imposed at the boundaries of the subintervals to enforce continuity of the
approximating functions in

� � � � � � � . Additionally, higher order differentiability may
be imposed by���� � � � � � � �� � � � � � �

���� � � � � � � � ���� � � � � � �
� � � � � ��� � � !� �!� � ����� � � � �
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where
!

denotes the desired order of differentiability.
In order to formulate a nonlinear optimization problem, the model equations and

the continuous constraints are explicitly discretized:

1. The model equations (7) are only to be satisfied at the collocation points � � � ,1 � � � ����� � � , within each subinterval
� � � � � � � � � , � �!� � ��� � � � � �

, and within� � � � � � � � � : � � � � � � � � � � � � � � � � � � �6� � ��� � ��� � � � � �
� � � � � � � � � � � � � � � � � � �6�

2. The inequality constraints c � � � are sampled on a second grid within
� ��� � � � � :� � � � $ � � � � � � � $ � � � �

Altogether, this leads to the formulation of the discretized optimal control prob-
lem derived from (6)-(10) (in Mayer form) by collocation:

min
s � q ˜� � s � ��� � x̃ � � � � s ���

(19)

subject to the nonlinear (point) constraints

f � x̃ � � � " � s � �
ũ � � � " � q � � � � � ˙̃x � � � " � s � � 0

� � � ��� � ��� � � �� ��� � � ��� � � (20)

c
�
x̃ � � $� � s � �

ũ � � $� � q � � � $� 	 �
0
� � � � � ��� � � � (21)

x̃ � � � � s � � x � � 0
�

(22)

r � x̃ � � � � s ��� � 0 � (23)

If the solution is restricted to (higher order) continuously differentiable state and
control variables, the matching conditions have to be fulfilled additionally:���� � � � x� � � �� � � � s � � �

���� � � � x� � � � � �� � � � s � � � � �!� � � � �!� � ��� � � ! s� �!� � � ��� � � � � (24a)���� � � � u� � � �� � � � q � � �
���� � � � u� � � � � �� � � � q � � � � �!� � � � �!� � ��� � � ! c� �!� � � ��� � � � � (24b)

where
!
s is the order of differentiability in the state variables and

!
c is the order of

differentiability in the control variables.
The constrained nonlinear optimization problem Eqs. (19), (20)-(22), (24a)-

(24b) can be efficiently solved using SQP algorithms that will be discussed in Sec-
tion 5.4. SQP methods are based on the availability of gradient information. This
gradient information can be obtained very easily, e.g.,��

s � � f � ˙̃x
� ��� � � � � � � s � q

�
�
f�
x

�
�
x̃ �
�
s � � � � " � s � � �

� ˙̃x �
�
s � � � � " � s � � �
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Due to the full discretization of both control and state space, the NLPs generated
by direct collocation tend to become very large for practically interesting problems.
Thus, special care has to be taken in the implementation of a collocation algorithm
to account for the special structure and the high sparsity of the Jacobian of the
constraints Eqs. (20)-(22), (24a)-(24b); see, e.g., Betts [16], von Stryk [139].

5.4 Numerical Solution of the NLP by Sequential Quadratic Programming

Sequential quadratic programming (SQP)(Han, [59]; Powell, [117]) is a very ef-
ficient iterative method for the solution of NLP arising from the discretization of
optimal control problems by direct transcription methods as described above. Now,
let � � � be the set of parameters introduced by the discretization of an infinite dimen-
sional optimal control problem. In each SQP iteration a current guess of the optimal
set of optimization variables � � � � is improved by the solution of a quadratic subprob-
lem derived from a quadratic approximation of the Lagrangian of the NLP subject to
the linearized constraints (for a description see, e.g., Barclay, Gill, and Rosen [11];
Gill, Murray, and Saunders [54]).

In the sequel, we consider an NLP of the form

min� � ��� � � � � �
(25)

subject to a � � � � � �!� � b � � � � � � � �
and their solution by SQP methods equipped with a relaxation strategy based on line
search.

For the class of SQP methods considered, the vector of optimization variables� � � � � � 
 � itself and the vector of multipliers v � & � � 1 1 1�� � � � � � � � 
�� � 
�� are changed
from (the major SQP) iteration number ( to iteration number ( � �

by� � � � � � �
v � � � � �

� � � � �
v � � � � � � d �

u � � v � � � ( �!� � � � � � �����

where the search direction � d � � u � �
is obtained as the solution of a linearly con-

strained quadratic problem (QP) resulting from a quadratic approximation of the
Lagrangian

�

� � � � � � 1 1 1'� � � � �'& � � � � � � � � 
���
� � � 1 � � � � � � � � � 
��� � � � � � � � � � � � � � 1 1 1 � � 
�� � � � � � � 
�� &

min
d
�	� � � �� d

�
C � d

� � � � � � � � � �
d (26)

subject to
� � � � � � � � � �

d
��� � � � � � � � ��� � � � � � � ��� � � � �� � � � � � � � � �

d
� � � � � � � � � � � �  � � � ��� � � � � �

Usually, C � is a positive definite approximation of the Hessian H � of the Lagrangian� � � � � � � 1 1 1 � � � � � � �
. The search direction d � is the solution of the QP (26) and u � is the
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corresponding multiplier. The quadratic (sub-)problem Eqs. (26) itself is solved by
an iterative method (usually, an active set strategy or an interior point method is
employed).

The step size � � � �
is obtained by a (approximate) one-dimensional mini-

mization of a merit function (line search)

� 

� � � � �

v
� � � � d

u � v
� �

with respect to � . A suitable merit function is, e.g., the Lagrangian augmented by
penalty terms (augmented Lagrangian, e.g., Gill, Murray, Saunders, and Wright
[55])

� 
 � � � � � 1 1 1'� � � � � � � � � � � � � 
���
��� �

� 1 � � � � � � � � �
�� � � � �� � � � � ���

� � � � �
�
� � � � � � � � � �

�� � 
��6� � � �� � � � � ��� �
�� �� ���

� ��� 
 � � � �

The index sets
!

and � are chosen according to
! � 	  � � �  � �

�
� � � �
	 ���

� � � � 
���� � � , � � 	 � � ����� � � � ��� ! , where � � � � � � � � � � ��� � � � � �
� .

A widely used and robust general-purpose line search based SQP method is
NPSOL (Gill, Murray, Saunders, and Wright [56]), which is suitable for small to
medium sized problems. The new, sparse SQP method SNOPT is a successor of
NPSOL and one of the most advanced, efficient and robust, general-purpose SQP
methods currently available for large-scale problems (Gill, Murray, and Saunders
[54]; Gould and Toint [57]).

A discussion of other SQP methods, e.g., of the trust-region method, can be
found in Gould and Toint [57] or in Nocedal and Wright [106].

5.5 Comparison of Direct Methods

We will try to develop the advantages and disadvantages of the previously described
three methods – direct single shooting, direct multiple shooting, and direct colloca-
tion – when the resulting NLPs are solved by appropriately designed SQP methods.
A brief summary of this discussion is given in Table 1. Additional background in-
formation and a broad list of references regarding direct methods can be found, e.g.,
in von Stryk [139].

Direct (Single) Shooting

– In each major SQP iteration an initial value problem is numerically solved with
high solution accuracy (even though the controls may be far from from their
optimal solution values).

– Possible use of existing dynamic simulation facilities (Engl, Kröner, Kronseder,
and von Stryk [48]) can increase the confidence of users not deeply familiar with
optimization techniques.
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– Use of efficient state-of-the-art ODE and DAE solvers allows to profit from
recent developments in the field.

– Small size of NLP facilitates the use of off-the-shelf NLP/QP solvers.
– Only initial guesses for the control parameters (and if free, for the initial values)

are needed.
– For highly unstable systems (i.e., initial value problems with a strong depen-

dence on the initial values) the optimization algorithm inherits the ill-condi-
tioning of the initial value problem, even if the optimization problem itself is
well-conditioned (this well-conditioning may, e.g., be due to end point con-
straints or an objective function penalizing trajectory deviations as, e.g., in
tracking/estimation problems).

– The dynamic model is fulfilled during all SQP iterations (up to integrator ac-
curacy), so that in time critical cases a premature stop with a physical system
trajectory is possible. However, state and end point constraints (9), (10) may
still be violated – roughly spoken, they have only second priority in the single
shooting formulation.

– If the initial value is fixed (as in the optimal control problem (4), but not in the
estimation problem (5)), the number of derivatives corresponds to the number
of control parameters – this may limit the numerical effort very efficiently for
large scale systems with few control parameters.

– The single shooting algorithm can, for instance, be found in the software pack-
ages gOPT (Process Systems Enterprise, [118]), DYNOPT (Abel et al., [1]),
OPTISIM (Engl et al., [48], Kröner et al., [84]). These packages have been
successfully applied to solve large scale industrial problems.

Direct Multiple Shooting

– Similar to single shooting, the underlying initial value problems are numerically
solved with prespecified accuracy in each SQP iteration.

– Use of existing dynamic simulation facilities, and of efficient state-of-the-art
DAE solvers is possible, as for single shooting.

– The relatively large number of variables requires specially tailored NLP/QP al-
gorithms. On the other hand, the structure can be exploited to yield even faster
convergence than for direct single shooting (“high rank updates”, Bock and
Plitt, [27]), which is especially useful in the case of long horizons with many
control parameters. For the QP solution, recursive schemes allow to reduce the
linear algebra effort to essentially the same as for single shooting (“condens-
ing”, Bock and Plitt, [27]). Alternatively, an efficient QP solution based on dy-
namic programming (Steinbach, [128]) is possible which is linear in the number
of control intervals.

– Initial guesses for the whole state trajectory are needed. This is an advantage,
if a-priori knowledge about the state trajectory is available, as, e.g., in track-
ing problems, where it can damp the influence of poor initial guesses for the
controls (which are usually much less known).

– The optimization of highly unstable or even chaotic systems can be possible
(cf. Baake et al. [8]; Kallrath et al. [70]). A detailed numerical stability analysis
for the case of parameter estimation is given by Bock [28].
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– The method is well suited for parallel computation, since the IVP solutions and
derivative computations are decoupled on different multiple shooting intervals
(Gallitzendörfer and Bock, [53]).

– The continuity (Eq. (16)) of the system trajectory is only fulfilled after success-
ful termination of the SQP solution procedure (up to the solution tolerance).
At premature stops, both, continuity conditions (16) and state and end point
constraints (9), (10) may be equally violated.

– An implementation of the multiple shooting method is found, e.g, within the
highly advanced optimal control package MUSCOD-II (Leineweber, [89]), or
in Petzold et al. [114].

Direct Collocation

– The ODE simulation (7) and the control optimization problems (6)-(10) are
solved simultaneously, which leads to potentially faster computations compared
to shooting techniques.

– Existing dynamic simulation facilities and DAE solvers cannot be reused di-
rectly.

– The very large number of variables requires tailored NLP/QP algorithms. On
the other hand, similar as for the direct multiple shooting method, a careful
exploitation of the structure can lead to excellent convergence behaviour and
very efficient QP solutions. Furthermore, sparsity can be exploited at all levels.

– As for multiple shooting, initial guesses for the whole state trajectory are need-
ed, which may be an advantage, if a-priori knowledge about the state trajectory
is available.

– The optimization of highly unstable systems is also possible.
– The discretized DAE model equations (7) are only fulfilled after succesful ter-

mination of the SQP solution procedure (up to the solution tolerance). At pre-
mature stops, all constraints (20)-(24b) are equally violated.

– A reliable estimation of the adjoint variables is available on the entire state
variable discretisation grid. Moreover, the estimates are also valid along arcs
with active state constraints. The estimation of the adjoint variables from the
Lagrange multipliers at the solution of the NLP corresponding to the infinite di-
mensional optimal control problem has been described, e.g., in von Stryk [137]
for the case without state constraints and in von Stryk [138] for problems in-
cluding state constraints.
In this way, collocation can be used within a hybrid approach (von Stryk and
Bulirsch, [140]) to provide information required for a highly accurate indirect
multiple shooting method (see Section 4.2), i.e., good start estimates for all
optimal trajectories including the adjoint states (e.g., Bulirsch et al., [31]), as
well as for the switching structure (e.g., von Stryk and Schlemmer [141]).

– Highly advanced collocation algorithms have been implemented by Betts and
Huffmann [18] (SOCS), by Cervantes and Biegler [42], by Schulz [124, 125]
(OCPRSQP), and by von Stryk [139] (DIRCOL).
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Direct Single Direct Multiple Direct
Shooting Shooting Collocation

general solution approach
sequential hybrid simultaneous

use of (state of the art)
DAE solvers yes yes no
number of variables /
size of NLP small intermediate large
initial guess for system
states initial state all node values all node values
applicable to highly
unstable sytems no yes yes
DAE model fullfilled
in each iteration step yes partially no

Table 1. Comparison of direct methods

The development of these pieces of software has been facilitated by the advent
of new optimization methods which allow the solution of very large scale NLP.
5

6 OPTIMIZATION TECHNIQUES ON MOVING HORIZONS

When a sequence of moving horizon optimization problems is solved on-line, sev-
eral questions regarding the employed numerical algorithm arise:

– Can the solution of each optimization problem be computed in a time
� � that

is known a-priori?
– If not so, what are suitable approximations of the feedback control that can be

used instead?
– What can in advance be computed off-line, what has necessarily to be done

on-line?
– How can the similarity of subsequent optimization problems be exploited to

reduce computation times?

As the approaches to address these questions vary broadly and are not easily clas-
sified, we will here only mention some classical approaches which we consider a

5 OCPRSQP uses a partially reduced SQP method.
DIRCOL employs SNOPT (Gill et al., [54]). SNOPT approximates the Hessian of the
NLP Lagrangian by limited-memory quasi-Newton updates and uses a reduced Hessian
algorithm for solving the QP subproblems. The null-space matrix of the working set in
each iteration is obtained from a sparse LU factorization.
In the code SOCS of Betts and Frank [17] a Schur-complement QP method is implemented
instead of a reduced-Hessian QP method.
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useful basis for understanding current developments. We explicitly encourage the
reader to consult the research articles of Binder et al., Kronseder et al. and Diehl et
al. in this book for some recent approaches.

Before briefly introducing some classical approaches, let us first go a step back-
wards and formulate what is the aim of numerical moving horizon optimization
algorithms. Further, we will distinguish between those problem specific data that
are known a priori, and those that are only available on-line. For simplicity, we
will here only treat the optimal control problem (4). In Subsection 6.1, however, we
will briefly address the estimation problem (5) for linear systems and introduce the
Kalman filter algorithm.

Optimal Moving Horizon Feedback Control

Let us recall that the task of on-line optimization on moving horizons is to compute
an open-loop control u � � � � 
 � �

for all � � � 
 � . Only the first part on the time interval� � � � 
 � � � � � 
 ��� � � � � � is applied to the process. In the limit of negligible computation
times the sampling time

� � could be set to zero, so that the only essentially needed
output of the algorithm is the first value of the open-loop control, i.e., the vector
u 
 � � � � � � � 
 � � � � 
 � .

On the other hand, what data are necessary to specify the ( -th optimal control
problem (4)? First, a DAE model, constraint functions and an objective functional
have to be given a priori – however, some of the model parameters p 
 and simi-
larly the disturbance prediction w 
 � � � � � ��� 
 � may not be known before the process
runs. In practice, we have to provide in advance a disturbance model that provides
explicitly the predicted disturbance trajectory w 
 � � �

, depending on some additional
parameters. We will assume that this parameterized disturbance model is contained
in the model equations, and that the vector p 
 of a priori unknown parameters is
suitably enlarged. Secondly, the objective function, or more precisely, the reference
trajectory � � � 
 � � � � � ��� 
 � , may be changed during process operation – e.g., due to
a change in the desired operating point. Again, we have to assume that a parame-
terization of all possible reference trajectories � � � 
 � � �

exists, and that the additional
parameters are again added to the general parameter vector p 
 .

Thus, the only quantities that are on-line inputs to our optimization algorithm
are

– the parameter vector p 
 � ,
– the initial value x 
 ��� � , and
– the starting time ��
 ��� � .

In summary, the purpose of idealized on-line optimization on moving horizons is to
compute the optimal moving horizon feedback control function, that we define as
follows:

u
& ����� 
 � � � 
 �

� � � � 
��
� p 
 � � x 
 ��� � � � 
 � � � � ��

u � p 
 � � x 
 ��� � � � 
 � � � � & � u 
 � � 
 � � � � � 
 � � � (27)
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where we have introduced the bounded domain
� � � 
�� � � 
 �

� �
to account

for the fact that all inputs are expected to vary in a finite range only. Note that
the control vector u � p 
 � � x 
 ��� � � � 
 ��� � �

is computed as the first value of an open-loop
optimal control, but that the idea of optimal moving horizon feedback control is to
apply exactly this value to the real system. If p 
 � � x 
 ��� � were directly accessible (and
not the result of on-line estimation), the optimal moving horizon feedback control
function alone would define the closed-loop system behaviour.

In principle, this function could be precalculated off-line on a sufficiently fine
grid on its domain

�
, thus eliminating the need for any on-line calculations. In

practice, even for moderate state and parameter dimensions
� � and

� � , the neces-
sary off-line calculation time and the storage requirements would be excessive, thus
creating the need for on-line optimization.

For notational convenience, we go back to the problem formulation (6)-(10)
introduced at the beginning of Section 4, and therefore omit the parameters p 
 � in
the rest of this section. In the presented framework they can be treated in the same
way as the initial values x 
 ��� � .

Time Dependence of Moving Horizon Problems

We can divide the possible moving horizon problem formulations into three major
classes:

Finite Moving Horizon Problems. In this class of problem, the initial and the final
time of the horizon move simultaneously, i.e., the horizon length � � � 
 � � � � � 
 ��� � is
constant for all ( . If the model equations and objective function are time independ-
ent, the output of the optimization algorithm looses its direct dependence on � 
 ��� � .
This can be exploited in the numerical solution of subsequent problems.

Shrinking Horizon Problems. This class comprises problems with a finite horizon
length ��
 � � � � � 
 � � � which is typically decreasing with growing ( . Two cases are
distinguished:

a) Fixed end time problems, where ��
 � � � � � 
 � � � � � � � 
 � . This may, e.g., occur in
batch processes with a prespecified delivery time. Even when the system model
and objective are time independent, the optimal control problems differ in the
horizon length � � � � � � ��� � , so that the resulting feedback control u � � 
 ��� � � � 
 � �
usually has a time dependence.

b) Open end time problems, which leave the final time � 
 � � � as a degree of freedom
of the optimization (or restrict them by a state dependent constraint). This may
occur, e.g., in batch processes that should stop when the product or conversion
specifications are attained. This formulation leads again to a time independent
feedback control, if the system model and objective is time invariant.

Infinite Horizon Problems. Though so far not numerically tractable for general sys-
tems, it is worth mentioning here that they again lead to time independent control
laws if the problem formulation is time invariant. This can so far only be exploited
in the linear quadratic regulator problem investigated in Subsection 6.2.
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Unconstrained optimal control problems for linear systems with quadratic cost can
be solved very elegantly by dynamic programming techniques that will be reviewed
in the first two subsections for both, the estimation and the regulator problem. It will
be seen that subsequent problems can essentially be solved with negligible com-
putational cost. Many textbooks consider this topic in far greater detail (see, e.g.,
Anderson and Moore, [2]). Let us first treat the estimation problem.

6.1 Linear Quadratic Estimation Problem

The typical problem formulation of such systems is given by

min
x

� �
� � � y � �

� � � w � �
� �

�

� � x � � � ���� � � � x̄
�� � � � �

E
� � x � � � ���� � � � x̄

���� � �
(28)

� �

� * �
�

� � �

� �
� � �

� � � � � � 	�� � y
� � 	���� �

Q
� � � � � � � 	�� � y

� � 	������
w
� � 	�� �

R
�
w
� � 	�� � 	

s.t. ẋ
� � � � � Ax

� � � � �
Bu

� � � � �
w
� � � � � � � � � �� �

y
� � � � � Cx

� � � � � � � � � �� �
The matrices A

�
B
�
C reflect the time-invariant model matrices and E

� �
Q

� �
R
�

are
time-invariant positive semi-definite weighting matrices. x̄

���� � refers to a reference
value of the initial state. The control u

� � � �
is assumed to be known. Since we have

a linear quadratic problem the optimal solution x
� � � � ���� �

of (28) can also be written
as (Kailath, [72])

x
� � � � � � � � � � � ���

P
� � � �%77 7 � � � � � � � � �� � (29)

where P
� � � �

and
7 7 7 � � � � � � � � � � � �

denote differentiable time dependent matrix and vec-
tor functions, respectively.

Explicit equations for P
� � � �

,
7 7 7 � � � �

, and � � � � � � �
can be derived exploring the nec-

essary optimality conditions commonly referred to as Euler-Lagrange Equations,
which have been discussed in Section 4.2 (cf. Eqs. (12) and (13), and more specifi-
cally Kailath, [72]):

Ṗ
� � � � � AP

� � � ���
P
� � � �

A
� �

R
� � � � P

� � � �
C
�

Q
�
CP

� � � � � � � � �� � (30)
˙7 7 7 � � � � � � C � Q

�
CP

� � � � � A
� �%77 7 � � � � � C

�
Q

� � � � � � � � � � C � � � � � � � � � � � � �� � (31)
˙� � � � � � � � A � � � � � � ���

Bu
� � � ���

P
� � � �

C
�

Q � � � � � � � � � C � � � � � � ��� � � ��� �� � (32)

The initial conditions arise from transversality conditions and are given by

P
� � � ��� � � � E

� � � �
(33)7 7 7 � � � ��� � � � 0

�
(34)� � � � � � ��� � � � x̄

���� � � (35)



324 Binder et al.

Equation (30) is commonly referred to as the matrix Riccati equation, (31) is the
governing equation for the dual variable

7 7 7 � � � �
and (32) denotes a filter equation

which will be further discussed at the end of this section. Note that initial conditions
(33) and (35) are specified at � ���� � while (34) is a final condition at � �� � � . � � � � � � �

and
P
� � � �

can be solved by forward integration using the derived initial conditions. If
the trajectories for P

� � � � � � are available,
7 7 7 � � � �

can be computed by an integration
backwards in time starting at � �� � � . Thus forward and backward integration are nec-
essary to determine x

� � � � � � � � � � ���� . However, the integration of (31) becomes
unnecessary if only the end value x � � � � � � � �� �

is of interest. It refers to a filtered state
estimate using all preceeding data collected in the interval

���� . On the other hand, the
estimates x

� � � � � �� �
, � ���� � � � ��� �� � � in the interior of

� �� , which require a backward
integration of (31), are referred to as smoothed states.

The Kalman Filter

The solution of (28) has been outlined using a deterministic problem formulation.
The equations can also be derived using a stochastic approach. Then, w

� � � �
and

v
� � � � & � � � � � � � � � y

� � � �
are assumed to follow an uncorrelated zero-mean Gaussian

statistic with covariances � 	 w � � � �
w
� � � 	�� � � R

� � � � � � � 	 �
and � 	 v � � � �

v
� � � 	 � � �

Q
� � � � � � � 	 �

where
�

denotes the Dirac distribution and � is the expected value.
Furthermore, let � 	 � x � � � ���� � � � � x̄

���� � and � 	 � x � � � ���� � � � x̄
���� � � � x � � � ���� � � � x̄ ��� � � � � �

E
� � �

. Then, (28) defines a maximum likelihood problem. Bias free estimates of
minimal variance are obtained and P

�
can be interpreted to be the covariance ma-

trix of the state estimation error. However, one should be aware that the statistical
assumptions might not be justified in practical applications. The problem (28) based
on a statistical formulation was originally formulated and solved by Kalman (1960).

If subsequent estimation problems differ only by an increasing end time, i.e., if� �� � � � � �� � � � � , but � ���� � � � ���� � � � � � � ��� � �
, and if only the filtered state estimates

x
� � � � � � � � �� �

are of interest, a solution can be obtained efficiently as follows: Starting
with the end values P

� � � �� � � � � �
and � � � � � � �� � � � � �

of the previous problem, Eqs. (30)
and (32) have to be integrated on the appended part

� � �� � � � � � � �� � � � of the interval only.
The end value � � � � � � �� � � �

provides already the new filtered state estimate because of
Eq. (34) and (29) evaluated at � �� � � . In fact, the integration of (30) and (32) can be
performed simultaneously with the data acquisition, providing a continuous stream
of filtered state estimates. Equation (32) is commonly referred to as the Kalman
filter equation for continuous problems where K

� � � � & � P
� � � �

C
� �

Q
�

denotes the
filter gain.

For � � � , the matrix P
� � � �

approaches a constant steady state P̄
�

that can be
calculated a priori as the solution of the algebraic Riccati equation that is obtained
by setting Ṗ

� � � � � 0 in Eq. (30). In this case, the (relatively expensive) integration
of the matrix Riccati equation (30) can be omitted, and only a constant gain matrix
K̄

� � P̄
�
C
� �

Q
�

has to be kept for use in the Kalman filter equation (32).
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The Extended Kalman Filter (EKF)

The Kalman filter algorithm for linear systems can be extended to non-linear sys-
tems to obtain a heuristic algorithm that is known as the Extended Kalman Filter.
Though successful in practical applications, this algorithm does neither provide a
solution to a general non-linear optimization problem of a similar form as (28), nor
does it have a statistical interpretation. However, for a discrete-time system and a
horizon length of one time step, the extended Kalman-filter can be related to moving
horizon estimation (Robertson et al., 1996).

The extension of the Kalman filter equations is as follows: Assuming a nonlinear
ODE system with outputs

ẋ � � � � f � x � � � �
u � � � � �

y � � � � h � x � � � �
u � � ��� �

the matrix Riccati and Kalman filter equations (30) and (32) can be generalized to
obtain nonlinear analogues: Eq. (30) can directly be used with the substitutions

A � � � & � �
f�
x

� � � � � � � �
u � � ��� �

C � � � & � �
h�
x

� � � � � � � �
u � � ��� �

and Eq. (32) is modified to

˙� � � � � � � � f � � � � � � � � �
u � � � ���

P
� � � �

C � � � �
Q � � � � � � � � � h � � � � � � � � �

u � � ����� �
The initial conditions (33) and (35) are the same.

Note that the EKF, when applied to linear systems, coincides with the Kalman
filter.

6.2 Linear Quadratic Regulator Problem

Similar analysis as for the linear quadratic estimation problem holds for the Linear
Quadratic Regulator (LQR) problem which is given by

min
x �

�
� � � u �

�
� �

�� x 
 � � 
 � � � � �
E 
 x 
 � � 
 � � � �

(36)

� �� * � �
� � �

� � � � �

�
x 
 � 	�� �

Q 
 x 
 � 	���� �
u 
 � 	 � �

S 
 x 
 � 	����
u 
 � 	�� �

R 
 u 
 � 	 � 	 � 	
s.t. ẋ 
 � � � � Ax 
 � � � �

Bu 
 � � � � � � � � 
 � �
x 
 � � ��� � � � x 
 � � � �
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The optimal control u 
 � � � � 
 � � � � � � 
 � , has to be determined by the optimizer. For
the sake of simplicity, w has been left out in (36) but extensions to include known
forcing functions are only a matter of notation. The optimal solution to (36) for any
initial state is a linear function of the state u � � � � � K 
 � � �

x � � �
where the time-

variant gain K 
 � � �
is given by

K 
 � � � � R 
 � � �
B
�

P 
 � � � �
S
	 � (37)

Similar to the solution of the estimation problem, P 
 � � �
denotes a differentiable time

dependent matrix which has to satisfy a matrix Riccati equation given by

Ṗ 
 � � � � � P 
 � � �
A � A

�
P 
 � � � � Q 
 (38)� �

P 
 � � �
B

�
S
� 	

R 
 � � �
B
�

P 
 � � � �
S
	 � � ��� 
 � �

P 
 � � 
 � � � � � E 
 � (39)

Equation (38) can be solved by integration backwards in time starting at � 
 � � � .
Three interesting cases of moving horizons allow very efficient on-line schemes

to calculate the optimal moving horizon feedback control u � x 
 ��� � � � ��� � �
for problem( . All of them make use of the fact that the solution of the matrix Riccati equa-

tion (38) is independent of the initial value x 
 ��� � and can thus be solved before x 
 ��� �
is specified.

Shrinking Horizon

For a sequence of problems with fixed end time � 
 � � � � � 
 � � � � � , but � 
 � � � � � 
 � � � � � ,
e.g., for batch problems with a fixed end time, we can use the fact that the backwards
integration of the matrix Riccati equation (39) starts at the identical “initial” condi-
tion (39) and thus gives identical trajectories P 
 � � �

, but on shrinking time intervals.
It is possible to perform the computation of P 
 � � �

on the interval
� � 
 ��� � � � 
 � � � � off-line,

and to store just the gain matrix trajectory K 
 � � �
, � � � � 
 � � � � � 
 � � � � . This allows to ob-

tain the optimal feedback control law u � x 
 ��� � � � 
 ��� � � & � � K 
 � � 
 ��� � �
x 
 ��� � , that can be

evaluated in negligible time.
Note that this method is equally applicable to linear time-variant systems. It

also provides the basis for the linearized neighboring feedback control method for
non-linear systems presented in Subsection 6.3.

Moving Horizon

A second interesting simplification arises in the case that the initial and the final
time of the horizon move simultaneously, i.e., that � � � 
 � � � � � 
 ��� � is constant for
all ( . An inspection of Eqs. (38) and (39) shows that the solution P 
 � � �

of problem( does not depend on the index ( . In particular, P 
 � � 
 ��� � �
is identical for different

problems ( , and therefore also the gain matrix K 
 � � 
 � � � � � K̄ 
 . The optimal mov-
ing horizon feedback control is therefore simply given by a matrix multiplication
u � x 
 ��� � � � � K̄ 
 x 
 ��� � . In contrast to the shrinking horizon case, this feedback law
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is time independent and requires storage of one matrix K̄ 
 only. Unfortunately, this
method cannot be generalized to time variant linear systems, because Eq. (38) would
loose its time invariance.

Infinite Horizon

A third and very prominent case arises when � 
 � � � � � for all ( . Here, the matrix
P � � �

is simply constant for all times in all problems; it is the solution of an algebraic
Riccati equation that can be obtained by requiring Ṗ 
 � � � � � in Eq. (38). As in the
moving horizon case, the gain matrix is constant, K 
 � � ��� � � � K̄ 
 for all ( , and can
be computed off-line. The resulting linear controller is commonly referred to as the
Linear Quadratic Regulator (LQR).

For both problems, the linear state estimation (28) and the linear quadratic regu-
lator (36), efficient and robust numerical techniques have been developed which
are also applicable to large scale processes (see, e.g. Mehrmann [100]; Jacobson et
al. [69]). However, the problem formulations are restricted to linear process models
and general inequality restrictions cannot be considered.

6.3 Linearized Neighboring Feedback Control along Reference Solutions

The simplicity and the power of the recursive techniques that are applicable to linear
systems with quadratic cost motivates the question how they can help to provide an
approximation to the optimal moving horizon control for non-linear systems. One
such technique will be briefly described in this subsection. The method is applicable
to a much wider class of problems than considered. Numerical techniques to solve
them have been developed, e.g., by Pesch [112], Krämer-Eis et al., [81, 82], and
Kugelmann and Pesch [86, 87]. Linearized neighboring techniques have also been
used in similar approaches, e.g., by Terwiesch and Agarwal [131] and de Oliveira
and Biegler [110].

Let us assume that we have found an optimal solution to the problem (6)-(10)
for some x � and � � by the indirect approach. The result are trajectories x � � � �

, u � � � �
and

7 7 7
� � � �

, which have to satisfy the necessary conditions for optimality stated in
Eqs. (12) and (13). We rephrase these equations here for a slightly simplified prob-
lem:

0 � x � � � � � � x �
0 � 7 7 7

� � � � � � �
x
� � x � � � � � �

and for almost all � � � � � � � � �
0 � f � x � � � � �

u � � � � � � � � ẋ � � � �

0 � �
x

� � x � � � � �
u � � � � � 7 7 7

� � � � � � � � ˙7 7 7 � � � �
0 � �

u
� � x � � � � �

u � � � � � 7 7 7
� � � � � � � �

(40)
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The final state constraint (10) and all path constraints (9) are omitted and we assume
that the Hamiltonian

�
from Eq. (11) depends twice continuously differentiable on

x and u and is concave in u, so that the last equation is equivalent to the maximiza-
tion of

� � x � � � � �
u
��7 7 7
� � � � � � �

with respect to u.
Let us now investigate how the solution trajectories change if the initial value

changes to a slightly disturbed value x �� � x � � � . Under mild regularity assump-
tions, the solution trajectories depend continuously differentiable on x � ; let us in-
troduce the shorthands

x
�

� � � � �
x � � � � x � ��

x � � x �� � x � � �
u
�

� � � � �
u � � � � x � ��

x � � x �� � x � � �7 7 7 � � � � � � � � � � � � � x � ��
x � � x �� � x � � �

We can apply the implicit function theorem to compute these derivatives. A lin-
earization of system (40) along the reference trajectories x � � � �

, u � � � �
and

7 7 7
� � � �

yields6:

0 � x
�

� � � � � � x �� � x � � �
0 � 7 7 7 � � � � � �

� � ��
x � � � � �

x
�

� � � � �
and for all � � � � � � � � �#�
0 �

�
f�
x

� � �
x
�

� � ��� �
f�
u

� � �
u
�

� � � � ẋ
�

� � � �
0 �

� � �

�
x � � � �

x
�

� � ��� � � �

�
x
�
u

� � �
u
�

� � � � �
f�
x

� � � � 7 7 7 � � � � � ˙7 � � � � �
0 �

� � �

�
u
�
x

� � �
x
�

� � � � � � �

�
u � � � �

u
�

� � � � �
f�
u

� � � � 7 7 7 � � � � �

It turns out that this system of linear equations is nothing else than the indirect
approach applied to a time variant linear quadratic regulator problem of the same
form as (36). This problem can be formulated as follows:

min
x
� �

� � � u � � � �

�� x
�

� � � � � � � ��
x � x

�
� � � �

� �� * � �
� �

�
x
� � � � �

�
x � x

� � �
u
� � � � �

�
u
�
x

x
� �

u
� � � � �

�
u � u

� � � � (42)

6 For the Jacobian of a vector valued function f � x � we write � f� x which denotes the matrix
with entries

� � f� x � � � � � � � ���� � . The second derivative matrix of a scalar function � � x � u � is

denoted, e.g., by � � � x � u with � � � � x � u � � � � � � � ��� � ��� � . For brevity, we do not repeat all function

arguments, but only the time
�
, and implicitly assume that the derivatives are evaluated at

the corresponding point of the trajectories x 	 � �
� , u 	 � �
� and � � �
	 � �
� .
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s.t. ẋ
�

� � � �
�
f�
x

x
�

� � � � �
f�
u

u
�

� � � � � � ��� � � � � � �#�
x
�

� � � � � � x �� � x � � �

The matrix Riccati equation (38) can be solved on the horizon
� ��� � � � � for the

linearized problem (42) along the reference trajectory with initial value x � (cf.
Eq. (40)). Then the feedback matrix K � � � �

can be precalculated to provide a first
order approximation ũ to the optimal feedback for a system state x �� at time � � :

ũ � x �� � � � � & � u � � � � � � K � � � � � x �� � x � � � (43)

Shrinking Horizon

For shrinking horizon problems, the matrix function K � � �
can be precomputed along

the reference solution for � � � � � � � � � and can serve to provide an immediate feed-
back analogous to the shrinking horizon method described in Section 6.2. For given
x ��� � and � � � � � � � � � � � � we compute a first order approximation ũ of the optimal
moving horizon feedback control that is given by

ũ � x ��� � � � ��� � � & � u � � � � � � � � K � � ��� � � � x ��� � � x � � � ��� � � � �
The motivation for this approximation is the expectation that the real system

trajectory stays sufficiently close to the reference trajectory. In particular, we as-
sumed that no model uncertainties and disturbances have been present. However, if
severe model uncertainty and disturbances are present the approach will encounter
difficulties.

6.4 Initialization Techniques for Direct Methods

A straightforward approach to moving horizon optimization is to apply one of the
direct methods described in Section 5 to solve the moving horizon optimization
problems. Though they are originally designed for off-line use, their on-line ap-
plication can lead to good results, depending on the real-time requirements of the
problem, as the advantages of direct methods (flexibility, robustness, handling of
constraints) can be fully exploited (see, e.g., Leineweber, [90]). It should be kept in
mind, however, that no general run-time guarantees can be given for these methods
as the number of SQP iterations is not limited (an interesting approach that requires
only one iteration per sampling time can be found in the research article by Diehl et
al. [47] in this book).

The computing times for the subsequent NLP solutions depend considerably on
the initial guess � � � � for the optimization variables and the initial setup of the SQP
algorithm (in particular the Hessian). We will present some apparent approaches to
find a good initial guess � � � � � for the optimization variables in the NLP (25) that arises
after the discretization of the ( -th optimal control problem (6)-(10). We will briefly
discuss them for moving and shrinking horizon problems.
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Moving Horizon Problems

For time independent moving horizon problems, three possibilities seem to suggest
themselves for the initialization � � � � � of the NLP (25):

– Set-point initialization: If the optimization problem is formulated with the ob-
jective to steer the system into a desired steady state (the setpoint state x ��� and
controls u ��� ), the (constant) setpoint trajectory is the solution of an optimiza-
tion problem (6)-(10) with initial value x � � x ��� . The NLP solution � � � ���

�
of this

optimization problem in the chosen transcription may be used to serve as an
initial guess for the NLP solution iterations (5.4): � � � � � & � � � � ���

�
. As long as the

real system state x ��� � stays close to x ��� this may be a good initial guess. The
setpoint initialization provides every optimization problem with the same initial
guess.

– Simple warm start: This strategy is based on the conjecture that the solution� � � � � �
�

of the previous optimization problem ( � �
would provide a good initial

guess for the current problem ( : � � � � � & � � � � � � �
�

. This may be justified if the new
initial state x ��� � has not changed much compared to x � � � � � , as can be expected
if the sampling time

� � is short relative to the time constant of the system.
– Shift strategy: The third strategy is motivated by the following observation:

for a fictitious undisturbed system controlled by a moving horizon algorithm
with infinite horizon, the (open-loop) solution of the first optimization problem
on

� � ��� � � � � would already provide the whole closed-loop control trajectory –
thanks to the dynamic programming property, the part of the precalculated con-
trol strategy that remains at problem ( on the horizon

� � ��� � � � � is still optimal
(this is similar for shrinking horizon problems). In the finite moving horizon
framework the dynamic programming property does no longer hold strictly, but
the idea to shift the problem in time may still be advantageous if the horizon is
chosen to be sufficiently long. We will illustrate this strategy in the context of
the direct single shooting method described in Section 5.1; we choose a piece-
wise constant control representation with � intervals

� � each of length
� � .

Using the � ( � ���
st solution � � � � � �

�
� � q � � �

�
� � � ��� � � q � � �

�
� � � � �

, the initial guess � � � � �
of the ( th problem would be determined by a “shift” in the controls

q
� ��� � & � q

� � �
�
� � � � for � �!� � � � ����� � � � � �

The new initial value for the last control variable cannot be obtained by the shift
and must be extrapolated; a convenient initialization is, e.g.: q

� ��� � � � & � q
� � �
�
� � � � .

This method is applicable to general time-variant nonlinear systems.

The setpoint initialization provides every optimization problem with the same ini-
tialization and thus leads to optimization outcomes that are independent of the opti-
mization history. In practice, however, both the warm start and shift strategy perform
clearly faster (cf. Diehl et al., [46], for a test in the context of the direct multiple
shooting method). From the programmer’s point of view, the warm start technique
can often easier be incorporated into existing off-line optimization software and may
therefore be preferable.
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Shrinking Horizon Problems

An initialization method very similar to the shift strategy can be applied for shrink-
ing horizon problems with fixed end time � � � � � � � � � . Here, only the part of the old
solution � � � � � �

�
that corresponds to the new horizon

� � � � � � � � � � � � � � ��� � � � � � � � � � is
used to initialize the (reduced) optimization variable vector � � � � � of the new problem.
For the direct single shooting method this would, e.g., mean that the reduced new
piecewise control vector � � � � � � � � � � � � � q � ��� � � ��� � � q � ��� � �

�
, where �

� � �
� � � � �

, is
initialized by

q
� ��� � & � q

� � �
�
� � � � for � �!� � � � ��� � �

� � � �

As the shift strategy this method is applicable to general time-variant nonlinear sys-
tems.

7 SUMMARY

An introduction has been given to dynamic optimization on moving horizons. We
first focused on the generic problem formulation for both, control and estimation
problems where we illuminated the special on-line character of the problem. Sec-
ondly, we reviewed standard numerical techniques to solve the problem on a fixed
horizon. Special emphasis has been given to direct optimization methods which are
typically used in practise. Furthermore we discussed basic extensions of the fixed
horizon approaches to the moving horizon case. An extended discussion of more
advanced concepts to solve these demanding dynamic optimization problems, pro-
posed by the authoring research groups, can be found in this book elsewhere.

In particular, a methodology using a multiscale approach is suggested by Binder
et al. [21] where a hierarchy of successively refined finite dimensional problems are
constructed and solved as long as time permits. Therefore an approximate solution
is provided at any time where the approximation quality of the solution scales with
the used computation time.

Diehl et al. (2001) develop a real-time iteration scheme for the direct multiple
shooting method that is aimed for large-scale real-time optimization problems aris-
ing in nonlinear MPC. They perform closed-loop experiments with a high purity
distillation column that is described by a DAE model involving 164 state equations;
sampling times of a few seconds are feasible with this approach.

In Kronseder et al. [85] a concept for model predictive control of very large-
scale dynamical systems that arise in the control of air separation plants and consist
in thousands of DAEs is developed. The concept considers the different time scales
prescribed by the nature of the process. Emphasis is put on mid term and short term
computations, which are here represented by online computation of parameterized
optimal set point trajectories on a moving horizon and by update of set point trajec-
tories via linearization of neighboring parameterized extremals respectively. Addi-
tionally, fundamental issues of the notion of real-time optimality are discussed.



332 Binder et al.

REFERENCES

1. O. Abel, A. Helbig, W. Marquardt: DYNOPT User Manual, Release 2.4, Lehrstuhl für
Prozesstechnik, RWTH Aachen (1999)

2. B. D. O. Anderson, J. B. Moore: Optimal Control: Linear Quadratic Methods. Prentice-
Hall (1989)

3. F. Allgöwer, T. A. Badgwell, J. S. Qin, J. B. Rawlings, S. J. Wright: Nonlinear Predictive
Control and Moving Horizon Estimation - An introductory overview. In: P.M. Frank
(ed.): Advances in Control. Highlights of ECC’99, Springer (1999) 391-449

4. R. Aris: Mathematical Modeling Techniques. Dover Publications (1994)
5. J. A. Arwell, B. B. King: Proper orthogonal decomposition for reduced basis feedback

controllers for parabolic equations. Report 99-01-01, Interdisciplinary Center for Ap-
plied Mathematics, Virginia Tech (1999)

6. U. Ascher, J. Christiansen, R. D. Russell: A collocation solver for mixed order systems
of boundary value problems. Math. Comp. 33, (1979) 659–679

7. U. Ascher, R. Mattheij, R. D. Russell: Numerical Solution of Boundary Value Problems
for Differential Equations. SIAM (1988)

8. E. Baake, M. Baake, H. G. Bock, K. Briggs: Fitting Ordinary Differential Equations to
Chaotic Data. Phys. Rev. A, 45 (1992)

9. V. Bär: Ein Kollokationsverfahren zur numerischen Lösung allgemeiner Mehrpunk-
trandwertaufgaben mit Schalt- und Sprungbedingungen mit Anwendungen in der Op-
timalen Steuerung und der Parameteridentifizierung. Diplomarbeit, Bonn (1983)

10. M. Bardi, I. C. Dolcetta: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-
Bellman Equations. Birkhäuser (1996)

11. A. Barclay, P. E. Gill, J. B. Rosen: SQP methods and their application to numerical
optimal control. In: W. H. Schmidt, K. Heier, L. Bittner, R. Bulirsch (eds.): Variational
Calculus. Optimal Control and Application (1998)

12. I. Bauer: Numerische Verfahren zur Lösung von Anfangswertaufgaben und zur Gener-
ierung von ersten und zweiten Ableitungen mit Anwendungen bei Optimierungsauf-
gaben in Chemie und Verfahrenstechnik. PhD thesis, University of Heidelberg (2000).

13. I. Bauer, H. G. Bock, S. Körkel, J. P. and Schlöder: Numerical Methods for Optimum
Experimental Design in DAE Systems. J. Comp. Appl. Math. Vol. 120 (2000) 1-25

14. R. E. Bellman: Dynamic Programming. Princeton University Press (1957)
15. D. P. Bertsekas, J. N. Tsitsiklis: Neuro-Dynamic Programming. Athena Scientific (1996)
16. J. T. Betts: Survey of numerical methods for trajectory optimization. AIAA J. Guidance,

Control, and Dynamics 21, 2 (1998) 193-207.
17. J. T. Betts, P. D. Frank: A sparse nonlinear optimization algorithm. J. Optimization The-

ory and Applications 82, 3 (1994) 519-541.
18. J. T. Betts, W. P. Huffmann: Mesh refinement in direct transcription methods for optimal

control. Optim. Control Appl. Meth. 19, (1998) 1-21
19. L. T. Biegler: Solution of dynamic optimization problems by successive quadratic pro-

gramming and orthogonal collocation. Comput. chem. Engng. 8, 3/4 (1984) 243-248.
20. T. Binder, L. Blank, W. Dahmen, W. Marquardt: Towards Multiscale Dynamic and Data

Reconciliation. In: R. Berber, C. Kravaris (eds.): Nonlinear Model Based Process Control
Kluwer Academic Publishers, (1998), 623-665

21. T. Binder, L. Blank, Dahmen W., Marquardt W.: Multiscale Concepts for Moving Hori-
zon Optimization. In: M. Groetschel, S.O. Krumke, J. Rambau (eds.): Online Optimiza-
tion of Large Scale Systems: State of the Art, Springer (2001)

22. R. R. Bitmead, M. Gevers, V. Wertz: Adaptive optimal Control - The Thinking Man’s
GPC. Prentice Hall (1990)



Model Based Optimization of Chemical Processes on Moving Horizons 333

23. H. G. Bock: Numerische Berechnung zustandsbeschränkter optimaler Steuerungen.
Carl-Cranz-Gesellschaft, Tech. Rep 1.06/78 Heidelberg (1978)

24. H. G. Bock: Numerical Solution of Nonlinear Multipoint Boundary Value Problems with
Applications to Optimal Control. ZAMM 58, T407 (1978)

25. H. G. Bock: Numerical treatment of inverse problems in chemical reaction kinetics. In:
K. H. Ebert, P. Deuflhard, and W. Jäger, (eds.): Modelling of Chemical Reaction Systems.
volume 18 of Springer Series in Chemical Physics, Springer (1981)

26. H. G. Bock: Recent advances in parameter identification techniques for O.D.E. In:
P. Deuflhard und E. Hairer (eds.): Numerical Treatment of Inverse Problems in Diffe-
rential and Integral Equations. Birkhäuser (1983)

27. H. G. Bock, K. J. Plitt: A multiple shooting algorithm for direct solution of optimal
control problems. In Proc. 9th IFAC World Congress Budapest, July 2-6, Pergamon Press
(1984), 242-247

28. H. G. Bock: Randwertproblemmethoden zur Parameteridentifizierung in Systemen nicht-
linearer Differentialgleichungen. Bonner Mathematische Schriften 183, University of
Bonn (1987)

29. H. G. Bock, E. Eich, J. P. Schlöder: Numerical solution of constrained least squares
boundary value problems in differential-algebraic equations. In: K. Strehmel (ed.): Nu-
merical Treatment of Differential Equations. Teubner (1988)

30. H. G. Bock, J. P. Schlöder, V. Schulz: Numerik großer Differentiell-Algebraischer Gle-
ichungen — Simulation und Optimierung. In: H. Schuler (ed.): Prozeßsimulation. VCH
Verlagsgesellschaft mbH (1995) 35-80

31. R. Bulirsch, E. Nerz, H. J. Pesch, O. von Stryk: Combining direct and indirect methods in
optimal control: range maximization of a hang glider. In: R. Bulirsch, A. Miele, J. Stoer,
K.-H. Well (eds.): Optimal Control - Calculus of Variations, Optimal Control Theory
and Numerical Methods, International Series of Numerical Mathematics 111, Birkhäuser
(1993) 273-288.

32. K. E. Brenan, S. L. Campbell, L. R. Petzold: Numerical Solution of Initial-Value Prob-
lems in Differential-Algebraic Equations. SIAM (1996)

33. A. E. Bryson, Y. C. Ho: Applied Optimal Control. Ginn and Company, (1969), Rev.
printing, Hemisphere (1975)

34. O. Buchauer, P. Hiltmann, M. Kiehl: Sensitivity analysis of initial-value problems with
application to shooting techniques. Numerische Mathematik 67 (1994) 151-159

35. R. Bulirsch: Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randw-
ertproblemen und Aufgaben der optimalen Steuerung. Report of the Carl-Cranz-
Gesellschaft e.V., DLR, Oberpfaffenhofen (1971)

36. R. Bulirsch, D. Kraft (eds.): Computational Optimal Control. International Series in Nu-
merical Mathematics 115 Birkhäuser-Verlag (1994)

37. J. A. Burns, B. B. King: A reduced basis approach to the design of low order feedback
controllers for nonlinear continuous systems. To appear in: Journal of Vibration and Con-
trol

38. C. Büskens, M. Gerdts: Real-time optimization of DAE-systems. In: M. Groetschel, S.O.
Krumke, J. Rambau (eds.): Online Optimization of Large Scale Systems: State of the Art.
Springer (2001)

39. R. Callies: Habilitationsschrift. Technische Universität München, submitted
40. M. Caracotsios, W. E. Stewart: Sensitivity analysis of initial value problems with mixed

ODEs and algebraic equations. Computers & Chemical Engineering 9, 4 (1985) 359-365
41. A. L. Cauchy: Méthode générale pour la résolution systémes d’équations simultanées.

Compt. rend. acad. sci. 25 (1847) 536-538



334 Binder et al.

42. A. Cervantes, L. T. Biegler: Large-scale DAE optimization using a simultaneous NLP
formulation. AIChE Journal 44, 5 (1998) 1038-1050.

43. F. L. Chernousko, A. A. Luybushin: Method of successive approximations for optimal
control problems (survey paper). Opt. Contr. Appl. and Meth. 3, (1982) 101-114

44. P. Deuflhard: A modified Newton method for the solution of ill-conditioned systems of
nonlinear equations with application to multiple shooting. Numer. Math. 22 (1974) 289-
315

45. E. D. Dickmanns, K. H. Well: Approximate solution of optimal control problems using
third order Hermite polynomial functions. Lec. Notes in Comp. Sc., Vol. 27, Springer
(1975) 158-166

46. M. Diehl, H. G. Bock, D. B. Leineweber, J. P. Schlöder: Efficient direct multiple shooting
in nonlinear model predictive control. In: F. Keil, W. Mackens, H. Voß, and J. Werther
(eds.): Scientific Computing in Chemical Engineering II, volume 2, Springer (1999),
218-227

47. M. Diehl, I. Disli-Uslu, S. Schwarzkopf, F. Allgöwer, H. G. Bock, T. Bürner, R. Find-
eisen, E. D. Gilles, A. Kienle, J. P. Schlöder, E. Stein: Real-Time Optimization of Large
Scale Process Models: Nonlinear Model Predictive Control of a High Purity Distilla-
tion Column. In: M. Groetschel, S.O. Krumke, J. Rambau (eds.): Online Optimization of
Large Scale Systems: State of the Art. Springer (2001)

48. G. Engl, A. Kröner, T. Kronseder, O. von Stryk: Numerical simulation and optimal con-
trol of air separation plants. In: H.-J. Bungartz, F. Durst, Chr. Zenger (eds.): High Perfor-
mance Scientific and Engineering Computing. Lecture Notes in Computational Science
and Engineering 8, Springer (1999) 221-231

49. M. Falcone, R. Ferretti: Discrete time high-order schemes for viscosity solutions of
Hamilton-Jacobi-Bellman equations. Numerische-Mathematik 67, 3 (1994) 315-344

50. C. A. Fletcher: Computational Galerkin Methods. Springer (1984)
51. L. Fox: Some numerical experiments with eigenvalue problems in ordinary differential

equations. In: Langer R.E. (ed): Boundary Value Problems in Differential Equations.
(1960)

52. S. Galán, W. F. Feehery, P. I. Barton: Parametric sensitivity functions for hybrid dis-
crete/continuous systems. Applied Numerical Mathematics 31, 1 (1999) 17-47

53. J. V. Gallitzendörfer, H. G. Bock: Parallel algorithms for optimization boundary value
problems in DAE. In: H. Langendörfer (ed.): Praxisorientierte Parallelverarbeitung.
Hanser (1994)

54. P. E. Gill, W. Murray, M. A. Saunders: SNOPT: An SQP algorithm for large-scale con-
strained optimization. Report NA 97-2, Department of Mathematics, University of Cali-
fornia, San Diego (1997)

55. P. E. Gill, W. Murray, M. A. Saunders, M. H. Wright: Some theoretical properties of an
augmented Lagrangian merit function. In: P. M. Pardalos (ed.): Advances in Optimiza-
tion and Parallel Computing. Elsevier Science Publishers (1992) 101-128

56. P. E. Gill, W. Murray, M. A. Saunders, M. H. Wright: User’s Guide for NPSOL (Version
5.0): a Fortran package for nonlinear programming. Numerical Analysis Report 98-2,
Department of Mathematics, University of California, San Diego (1998)

57. N. I. M. Gould, P. L. Toint: SQP Methods for Large-Scale Nonlinear Programming.
Proceedings of the 19th IFIP TC7 Conference on System Modelling and Optimization,
Cambidge, England, July 12th to 16th 1999, also available as: Rutherford Appleton Lab-
oratory Technical Report RAL-TR-1999-055

58. A. Griewank: Evaluating Derivatives: Principles and Techniques of Algorithmic Differ-
entiation. Frontiers in Applied Mathematics 19 SIAM (2000)



Model Based Optimization of Chemical Processes on Moving Horizons 335

59. S. P. Han: Superlinearly convergent variable-metric algorithms for general nonlinear pro-
gramming problems. Math. Progr. 11 (1976) 263-282

60. R. F. Hartl, S. P. Sethi, R. G. Vickson: A survey of the Maximum Principles for optimal
control problems with state constraints. SIAM Review 37, 2 (1995) 181-218

61. A. Helbig, O. Abel, W. Marquardt: Structural concepts for optimization based control
of transient processes, In: F. Allgöwer, A. Zheng (eds.): Nonlinear Predictive Control.
Birkhäuser (2000) 295-312

62. A. Heim: Parameteridentifizierung in differential-algebraischen Gleichungssystemen.
Diploma thesis, Department of Mathematics, Technische Universität München (1992)

63. A. Heim, O. von Stryk: Documentation of PAREST — A multiple shooting code for
optimization problems in differential-algebraic equations. Report TUM-M9616, Mathe-
matisches Institut, Technische Universität München (1996)

64. M. A. Henson: Nonlinear model predictive control: Current status and future directions.
Comp. Chem. Eng. 23 (1998) 187-202

65. M. R. Hestenes: Calculus of Variations and Optimal Control Theory. Wiley (1966)
66. P. Hiltmann: Numerische Lösung von Mehrpunkt-Randwertproblemen und Aufgaben

der optimalen Steuerung mit Steuerfunktionen über endlichdimensionalen Räumen. Dis-
sertation, Fakultät für Mathematik und Informatik, Technische Universität München
(1990)

67. H. Hinsberger: Ein direktes Mehrzielverfahren zur Lösung von Optimalsteuerungsprob-
lemen mit großen, differential-algebraischen Gleichungssystemen und Anwendungen
aus der Verfahrenstechnik. Dissertation, Mathematisch-Naturwissenschaftliche Fakultät,
Technische Universität Clausthal (1997)

68. R. Isaacs: Differential Games: A Mathematical Theory with Applications to Warfare and
Pursuit, Control and Optimization. J. Wiley & Sons (1965)

69. D. H. Jacobson, D. H. Martin, M. Pachter, T. Geveci: Extensions of Linear-Quadratic
Control Theory. Lecture Notes in Control and Inform. Sciences 27, Springer (1980)

70. J. Kallrath, H. G. Bock, J. P. Schlöder: Least Squares Parameter Estimation in Chaotic
Differential Equations. Celestial Mechanics and Dynamical Astronomy, 56 (1993)

71. R. E. Kalman: A new approach to linear filtering and prediction problems. Trans. ASME,
J. Basic Engineering (1960) 35-45

72. T. Kailath: Linear systems. Prentice Hall (1980)
73. S. S. Keerthi, E. G. Gilbert: Optimal infinite-horizon feedback laws for a general class of

constraint discrete-time systems: Stability and moving horizon approximations. J. Opt.
Theory and Appl. 57(2) (1988) 265-293

74. H. J. Kelley: Gradient theory of optimal flight paths. Journal of the American Rocket
Society 30 (1960) 947-953

75. H. J. B. Keller: Numerical Methods for Two-Point Boundary Value problems. Waltham:
Blaisdell (1968)

76. M. Kiehl: Vektorisierung der Mehrzielmethode zur Lösung von Mehrpunkt-Randwert-
problemen und Aufgaben der optimalen Steuerung. PhD Thesis, Mathematisches Insti-
tut, Technische Universität München (1989)

77. M. Kiehl: Sensitivity analysis of ODEs and DAEs — theory and implementation guide.
Optimization Methods and Software 10, 6 (1999) 803-821

78. B. B. King, E. W. Sachs: Semidefinite programming techniques for reduced order sys-
tems with guaranteed stability margins. Submitted to: Computational Optimization and
Applications

79. D. Kraft: On converting optimal control problems into nonlinear programming prob-
lems. In: K. Schittkowski (ed.): Computational Mathematical Programming. NATO ASI
Series, Vol. F15, Springer (1985) 261-280.



336 Binder et al.

80. D. Kraft: Algorithm 733: TOMP – Fortran modules for optimal control calculations.
ACM Transactions on Mathematical Software 20, 3 (1994) 262-281.

81. P. Krämer-Eis: Ein Mehrzielverfahren zur numerischen Berechnung optimaler Feedback-
Steuerungen bei beschränkten nichtlinearen Steuerungsproblemen. Bonner Mathematis-
che Schriften 166, University of Bonn (1985)

82. P. Krämer-Eis, H. G. Bock: Numerical Treatment of State and Control Constraints in the
Computation of Feedback Laws for Nonlinear Control Problems. In: P. Deuflhard et al.
(eds.): Large Scale Scientific Computing. Birkhäuser (1987), 287-306

83. A. Kröner, W. Marquardt, E. D. Gilles: Computing consistent initial conditions for dif-
ferential algebraic process models. Comp. Chem. Eng., 16 (1992) 131-138

84. A. Kröner, T. Kronseder, G. Engl, O. von Stryk: Dynamic optimization for air separation
plants. Proceesdings of the European Symposium on Computer Aided Process Engineer-
ing (ESCAPE-11), Kolding, Denmark, May 27-30, 2001 (2001)

85. T. Kronseder, O. von Stryk, R. Bulirsch: Towards Nonlinear Model Based Predictive Op-
timal Control of Large-Scale Process Models with Application to Air Separation Plants.
In: M. Groetschel, S.O. Krumke, J. Rambau, (eds.): Online Optimization of Large Scale
Systems: State of the Art. Springer (2001)

86. B. Kugelmann, H. J. Pesch: New general guidance method in constrained optimal con-
trol, Part 1: Numerical method. J. Optimization Theory and Applications 67, 3 (1990)
421-435.

87. B. Kugelmann, H. J. Pesch: New general guidance method in constrained optimal con-
trol, Part 2: Application to space shuttle guidance. J. Optimization Theory and Applica-
tions 67, 3 (1990) 437-446.

88. K. Kunisch, S. Volkwein: Control of Burger’s equation by a reduced order approach
using proper orthogonal decomposition. Karl-Franzens-Universität Graz, Spezialfor-
schungsbereich F003, Bericht Nr. 138 (Sep. 1998)

89. D. B. Leineweber: Efficient reduced SQP methods for the optimization of chemical pro-
cesses described by large sparse DAE models. volume 613 of Fortschr.-Ber. VDI Reihe
3, Verfahrenstechnik. VDI Verlag (1999)

90. D. B. Leineweber, H. G. Bock, J. P. Schlöder: Fast direct methods for real-time opti-
mization of chemical processes. Proc. 15th IMACS World Congress on Scientific Com-
putation, Modelling and Applied Mathematics Berlin, Wissenschaft- und Technik-Verlag
(1997)

91. J. R. Leis, M. A. Kramer: Sensitivity analysis of systems of differential and algebraic
equations. Comput. Chem. Eng. 9 (1985) 93-96

92. P. L. Lions: Generalized Solutions of Hamilton-Jacobi Equations. Pittman (1982)
93. T. Maly, L. R. Petzold: Numerical methods and software for sensitivity analysis of

differential-algebraic equations. Applied Numerical Mathematics 20 (1996) 57-79
94. B. R. Maner, F. J. Doyle, B. A. Ogunnaike, R. K. Pearson: Nonlinear model predictive

control of a simulated multivariable polymerization reactor using second-order Volterra
models. Automatica 32, (1996) 1285-1301

95. W. Marquardt: Nonlinear model reduction for optimization based control of transient
chemical processes. Proceedings of Chemical Process Control-6, Tuscon USA (2001)

96. D. Q. Mayne: Optimization in model based control. In: J. B. Rawlings (ed.): The 4-th
IFAC symposium on dynamics and control of chemical reactors, distillation columns,
and batch processes. DYCORD 95 (1995) 229-242

97. D. Q. Mayne, J. B. Rawlings, C. V. Rao, P. O. M. Scokaert: Constrained model predictive
control: Stability and optimality. Automatica 36 (2000) 789-814

98. E. S. Meadows, J. B. Rawlings: Topics in model predictive control. In: R. Berber (ed.):
Methods of Model-Based Control. NATO-ASI Series, Kluwer Press (1995) 331-347



Model Based Optimization of Chemical Processes on Moving Horizons 337

99. R. Mehlhorn, G. Sachs: A new tool for efficient optimization by automatic differentiation
and program transparency. Optimization Methods and Software 4 (1994) 225-242

100. V. L. Mehrmann: The Autonomous Linear Quadratic Control Problem. Lecture Notes
in Control and Information Sciences 163 Springer (1991)

101. H. Michalska, D. Mayne: Moving horizon observers-based control. IEEE Transactions
on Automatic Control 40(6) (1995) 995-1006

102. A. Miele: Gradient algorithms for the optimization of dynamic systems. In: C.T. Leon-
des (ed.): Control and Dynamic Systems 16 (1980) 1-52

103. M. Morari, J. H. Lee: Model predictive control: past, present and future. Computers and
Chemical Engineering 23 (1999) 667-682

104. K. R. Muske, J. B. Rawlings: Nonlinear receding horizon state estimation. In: R. Berber
(ed.): Methods of Model-Based Control. NATO-ASI Series. Kluwer Press (1995) 489-
504

105. B. Naumer: Über approximative Methoden der Dynamischen Programmierung in der
Optimalen Steuerung. Utz (1999)

106. J. Nocedal, S. J. Wright: Numerical optimization. Springer (1999)
107. S. J. Norquay, A. Palazoglu, J. A. Romagnoli: Application of Wiener model predictive

control (WMPC) to an industrial C2-splitter. J. Process Control 9 (1999) 461-473
108. H. J. Oberle: Numerische Berechnung optimaler Steuerungen von Heizung und Küh-

lung für ein realistisches Sonnenhausmodell. Habilitationsschrift, Technische Universität
München, Germany (1982)

109. B. A. Ogunnaike, W. H. Ray: Process Dynamics, Modelling and Control. Oxford Uni-
versity Press (1994)

110. N. M. C. de Oliveira, L. T. Biegler An extension of Newton-type algorithms for non-
linear process control. Automatica 31 (2) (1995) 281-286

111. R. K. Pearson, M. Pottmann: Gray-box identification of block-oriented nonlinear mod-
els. J. Process Control 10 (2000) 301-314

112. H. J. Pesch: Numerische Berechnung optimaler Flugbahnkorrekturen in Echtzeitrech-
nung. Ph.D. thesis, TU München (1978)

113. H. J. Pesch, R. Bulirsch: The Maximum Principle, Bellman’s equation, and Caratheo-
dory’s work. J. Optimization Theory and Applications 80, 2 (1994) 199-225

114. L. Petzold, J. B. Rosen, P. E. Gill, L. O. Jay, K. Park: Numerical optimal control of
parabolic PDEs using DASOPT. In: Biegler, Coleman, Conn, Santosa (eds.): Large Scale
Optimization with Applications, Part II. Springer (1997), 271-299

115. K. J. Plitt: Ein superlinear konvergentes Mehrzielverfahren zur direkten Berechnung
beschränkter optimaler Steuerungen, Diplomarbeit, Bonn (1981)

116. L. S. Pontryagin, V. G. Boltyanski, R. V. Gamkrelidze, E. F. Miscenko: The Mathemat-
ical Theory of Optimal Processes. Wiley (1962)

117. M. J. D. Powell: A fast algorithm for nonlinearly constrained optimization calculations.
in G.A. Watson (Hrsg.), Numerical Analysis, Dundee 1977, Lecture Notes in Mathemat-
ics 630, Springer (1978).

118. Process Systems Enterprise Ltd: gPROMS Advanced User Guide (Release 1.8), London
(2000)

119. R. Pytlak: Numerical Methods for Optimal Control Problems with State Constraints.
Springer (1999)

120. C. V. Rao, J. B. Rawlings: Nonlinear Horizon State Estimation, In: F. Allgöwer,
A. Zheng (eds.): Nonlinear Predictive Control. Birkhäuser (2000) 45-70

121. N. L. Ricker: Model predictive control: State of the art. In: Y. Arkun and W. H. Ray
(eds.): Chemical Process Control - CPC IV, CACHE. Elsevier (1991) 271-296



338 Binder et al.

122. D. Robertson, K. H. Lee, J. B. Rawlings: A moving horizon-based approach for least-
squares estimation. AIChE Journal 42(8) (1996) 2209-2223

123. E. N. Rozenvasser: General sensitivity equations of discontinuous systems. Automat.
Remote Control (1967) 400-404

124. V. Schulz: Reduced SQP methods for large-scale optimal control problems in DAE
with application to path planning problems for satellite mounted robots. Dissertation,
Naturwiss.-Math. Gesamtfakultät, Universität Heidelberg (1996).

125. V. H. Schulz: Solving discretized optimization problems by partially reduced SQP
methods. Comput. Visual. Sci. 1 (1998) 83-96

126. V. H. Schulz, H. G. Bock, and M. C. Steinbach: Exploiting invariants in the numerical
solution of multipoint boundary value problems for DAEs. SIAM J. Sci. Comput. 19
(1998) 440-467

127. G. R. Sriniwas, Y. Arkun: A global solution to the nonlinear model predictive control
algorithms using polynomial ARX models. Comp. Chem. Engng 21, (1997) 431-439

128. M. C. Steinbach: Fast recursive SQP methods for large-scale optimal control problems.
PhD thesis. University of Heidelberg (1995)

129. J. Stoer, R. Bulirsch: Introduction to Numerical Analysis. 2nd ed., Springer (1993)
130. H. T. Su, T. J. McAvoy: Artificial neural networks for nonlinear process identification

and control. In: M. A. Henson, D. E. Seborg (eds.): Nonlinear Process Control. Prentice-
Hall (1997) 371-428

131. P. Terwiesch, M. Agarwal: On-line corrections of pre-optimized input profiles for batch
reactors. Comp. Chem. Eng. 18 (1994) S433-S437

132. H. Tolle: Optimization Methods. Springer (1975)
133. J. Unger, A. Kröner, W. Marquardt: Structural analysis of DAE-systems - Theory and

applications. Comput. Chem. Eng. 19, 8 (1995) 867-882
134. V. S. Vassiliadis, R. W. H. Sargent, C. C. Pantelides: Solution of a class of multistage

dynamic optimization problems. 1. problems without path constraints. Ind. Eng. Chem.
Res. 33 (1994) 2111-2122

135. V. S. Vassiliadis, R. W. H. Sargent, C. C. Pantelides: Solution of a class of multistage
dynamic optimization problems. 2. problems with path constraints. Ind. Eng. Chem. Res.
33 (1994) 2123-2133

136. R. von Schwerin, M. J. Winckler, V. H. Schulz: Parameter estimation in discontinuous
descriptor models. In: Bestle and Schiehlen (eds.): IUTAM Symposium on Optimization
of Mechanical Systems. Kluwer Academic Publishers (1996) 269-276

137. O. von Stryk: Numerical solution of optimal control problems by direct collocation.
In: R. Bulirsch, A. Miele, J. Stoer, K. H. Well (eds.): Optimal Control — Calculus of
Variations, Optimal Control Theory and Numerical Methods. International Series of Nu-
merical Mathematics 111 Birkhäuser (1993) 129-143

138. O. von Stryk: Numerische Lösung optimaler Steuerungsprobleme: Diskretisierung, Pa-
rameteroptimierung und Berechnung der adjungierten Variablen. Fortschritt-Berichte
VDI, Reihe 8, Nr. 441, VDI-Verlag (1995).

139. O. von Stryk: Numerical Hybrid Optimal Control and Related Topics. Habilitation,
Department of Mathematics, Technische Universität München (2000), submitted

140. O. von Stryk, R. Bulirsch: Direct and indirect methods for trajectory optimization. An-
nals of Operations Research 37 (1992) 357-373

141. O. von Stryk, M. Schlemmer: Optimal control of the industrial robot Manutec r3. In:
R. Bulirsch, D. Kraft (eds.): Computational Optimal Control. International Series of Nu-
merical Mathematics 115, Basel (1994) 367-382

142. W. Waldraff, R. King, E. D. Gilles: Optimal feeding strategies by adaptive mesh selec-
tion for fed-batch bioprocesses. Bioprocess Engineering 17 (1997) 221-227



Model Based Optimization of Chemical Processes on Moving Horizons 339

143. P. J. Werbos: Approximate dynamic programming for real-time control and neural mod-
eling. In: D. A. White and D. A. Sofge (eds.): Handbook of Intelligent Control. Van
Nostrand Reinhold (1992) 493-559

144. M. Wellers, H. Rake: Nonlinear model predictive control based on stable Wiener and
Hammerstein models. In: F. Allgöwer, A. Zheng (eds.): Nonlinear Predictive Control.
Birkhäuser (2000) 357-368





Multiscale Concepts for Moving Horizon
Optimization

Thomas Binder
�
, Luise Blank � , Wolfgang Dahmen � , and Wolfgang Marquardt

�

�

Lehrstuhl für Prozesstechnik, Rheinisch-Westfälische Technische Hochschule Aachen,
Germany

�

Institut für Geometrie und Praktische Mathematik, Rheinisch-Westfälische Technische
Hochschule Aachen, Germany

Abstract In chemical engineering complex dynamic optimization problems formulated on
moving horizons have to be solved on-line. In this work, we present a multiscale approach
based on wavelets where a hierarchy of successively, adaptively refined problems are con-
structed. They are solved in the framework of nested iteration as long as the real-time restric-
tions are fulfilled. To avoid repeated calculations previously gained information is extensively
exploited on all levels of the solver when progressing to the next finer discretization and/or
to the moved horizon. Moreover, each discrete problem has to be solved only with an accu-
racy comparable to the current approximation error. Hence, we suggest the use of an iterative
solver also for the arising systems of linear equations. To facilitate fast data transfer the nec-
essary signal processing of measurements and setpoint trajectories is organized in the same
framework as the treatment of the optimization problems. Moreover, since the original es-
timation problem is potentially ill-posed we apply the multiscale approach to determine a
suitable regularization without a priori knowledge of the noise level.

1 INTRODUCTION

The numerical solution of dynamic optimization problems is quite challenging for
large-scale problems. The challenge becomes even more severe when real-time ap-
plications formulated on moving horizons such as model predictive control (MPC)
or receding horizon estimation (RHE) are envisaged, since the response time where
a solution has to be prompted is fixed. For a more detailed introduction into moving
horizon optimization we refer to [2] in this book and references therein. Both, the
regulator problem and the estimation problem have to be solved repetitively within
a fixed time span

� � which is dictated by the dynamics of the process. An accept-
able algorithm has to prompt the optimal values within

� � since proper process
operation cannot be guaranteed otherwise.

The majority of known implementations of dynamic optimization algorithms
for large-scale systems are based on the direct approach [2] since it does not re-
quire any analytic expression for the necessary optimality conditions which can be
quite cumbersome to determine especially in the presence of inequality constraints.
For this class of methods the dynamic optimization problem is transformed into
a finite-dimensional nonlinear programming problem (NLP) by either discretizing
the states and control profiles (simultaneous approach) [18] or by parameterizing
the control variables only (sequential approach) [38]. It is common practice to ap-
proximate the time-variant quantities on a discretization mesh of fixed resolution.
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This applies to sequential as well as to simultaneous approaches, although in the
sequential approach a stepsize adaption is used in the integrator to control the error
in the state equations. The particular discretization mesh is typically chosen based
on a rather conservative estimate of the computing time needed to solve the op-
timization problem. In recent years sophisticated algorithms have been developed
which are capable to solve dynamic optimization problems reliably and fast, see,
e.g., [12, 14, 38], but they employ a fixed mesh and are therefore of given complex-
ity. However, due to the nonlinear nature of the problem it is impossible to estimate
exactly the necessary computation time. Hence, either a certain fraction of the avail-
able time span remains unused or the algorithm may even fail to prompt the solution
in due time. Furthermore, an accurate estimate of the available computation time is
hindered by competing software processes which run simultaneously on multitask-
ing process control systems. As a consequence the available computation time is a
priorly unknown and

� � only gives an upper limit. This suggests a new view on
real time requirements in on-line computations: Provide an approximate solution at
any time in

� � with increasing approximation quality.
The conceptual framework we want to present now hinges on this real time re-

quirement. Instead of keeping the degrees of freedom fixed we propose the solution
of a suitable hierarchy of optimization problems of increasing resolution using the
simultaneous approach. We start with a very coarse approximation of states and
control profiles in the optimization problem. Thus already after a hopefully very
short period of time at least the coarsest approximate solution can serve as a min-
imal response. During the remaining time this initial solution is then successively
refined by an adaptive strategy so that the full available time span

� � is exploited
in an optimal way. Moreover, for any discretization level the corresponding discrete
problem has to be solved only with an accuracy that is comparable to the corre-
sponding discretization error. Such a concept can only offer significant advantages
over simply using a hierarchy of conventional discretizations if the work needed to
compute an approximate solution on a coarser level need not be repeated when pro-
gressing to the next finer approximation. Hence, in the very spirit of classical nested
iteration [13], we exploit the current approximation as initial guess and reduce the
current error only by a fixed factor when progressing to the next discretization level.
An extension of the refinement concept to the sequential solution approach is given
in [11].

Figure 1 sketches our approach tailored to the receding horizon estimation prob-
lem. The discrete measurements are processed by denoising, compression and data
fitting schemes to produce functions. This step provides also an initial mesh, respec-
tively a first set of basis functions 
 � , for discretizing the optimization problem. A
NLP solver determines a solution of the optimization problem on the coarse initial
mesh. Then, if time permits, this solution is updated in an adaptive way. The coarse
mesh solution of the optimization problem as well as the potentially denoised in-
puts function as indicators for the new, refined mesh, respectively for the new basis
index set 
 � � � where � denotes the refinement counter. The optimization problem
is resolved on this refined mesh with additional input information and by exploit-
ing any available information from previous stages. As long as time permits this
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Figure 1. Receding Horizon Estimation

refinement procedure is repeated, until the time horizon is moved eventually after
an elapsed time of

� � . The subsequent calculations exploit again the information of
the previous time horizon.

A unified framework for signal (input) processing and optimization is to facili-
tate a fast data exchange between these two conceptual blocks. We propose to realize
the above concept with the aid of wavelet methods for the following reasons. Firstly,
wavelets constitute a very efficient and established tool for denoising and compres-
sion in signal processing [15, 16, 24]. Secondly, a multiscale representation of the
problem variables in the numerical solution avoids a change of bases in the updating
procedure. Moreover, wavelet properties can be exploited for example for precondi-
tioning and for adaptive refinement of the solution. For the reader who is unfamiliar
with wavelets we include in Section 3 a short introduction to some of their basic
properties and indicate their significance in the present context. For a more detailed
treatment of wavelets we refer to [16, 17, 19, 21].

Before we proceed with the details of the refinement concept we introduce
briefly a general problem formulation of receding horizon optimization problems.
More details with an emphasis on state estimation can be found in [7, 8]. The dy-
namic behavior of the plant is often modeled by a system of differential-algebraic
equations which, together with bounds on selected variables, form the constraints of
the optimization. However, this work is only based on models where the state equa-
tions are described by ordinary differential equations. For a first step towards an ex-
tension to differential-algebraic equations we refer to [29]. The control functions are
denoted by � and the parameters by � . For state estimation both, � and � are given.
The goal is to estimate the output functions � , which correspond to the signals, and
the state functions � on the receding fixed time interval

� � � � � � � � � . Here � � denotes
the current time. The underlying measurements are typically discrete and noisy. So
they have to be transformed into denoised functions � . Additive model correction
terms are introduced into the model equations as functions � and � which have to
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be estimated as well. The introduction of model correction terms actually may en-
hance ill-posedness as discussed in Section 2. For given �

� � � �
� 
 � , �

� � 
�� and
�
� � � �

� 
�� and unknown functions �
� � �

� 	 
 �

, �
� � � �

� 
 � , �
� � � �

� 
�� and
�
� � � �

� 
�� with
�
� � � � ,

��� � � � , and time-invariant indicator matrices
� ���

the resulting optimization problem has the form

min� � � � � � � * � �

� �
�	� 
 � � � �

� ��� � � � �
�� � 	

(1)

subject to the constraints

˙� ��� � �
�

�
�

�
� � �

� � � �
(2)

� ��� � �
�

�
�

�
� � �

� � � �
(3)� � � � � � � � � � ��� � � � � �
(4)� � � � � � � � � � ��� � � � � �
(5)� � � � � � � � � � � �

The size of the problem is dominated by the number of state functions
� � .

In the sequel, we focus on the estimation problem only, but want to emphasize
the similarity to general dynamic optimization problems such as the model predic-
tive control problem. There, typically the parameters � and the initial conditions

� � � � � � � �
are known and the controls � are to be determined, while model correc-

tion terms are not present. The signals � represent in this case the given reference
trajectories to be tracked by control. A very similar optimization problem to (1)–(5)
is to be solved to determine the controls � .

2 PROBLEM REGULARIZATION

The goal of the problem formulation (1)–(5) is to provide good estimates for � , � , � ,
� from noisy measurements. If no � and no inequalities are present a minimal pre-
requisite for a unique solution is a sufficient number

�
� of measured model outputs.

Moreover, observability of the model has to be guaranteed, i.e., given �
�

�
�

�
�

�
�

�
there has to exist a unique solution � of the model equations (2)–(3). For a general
discussion of necessary and sufficient conditions concerning the invertibility of the
process model we refer the reader to [28, 36]. Even if a unique optimum exists,
the inverse problem (1)–(5) to determine from given measurements � the quantities

�
�

�
�

�
�

� might not be well-posed in the sense of Hadamard [25,30] with respect to
continuity in

�
� . In fact, a small perturbation of � with respect to the

�
� -norm with

high frequency oscillations would force � to oscillate as well. In view of (2), (3) this
may cause � to have large derivatives which gives rise to arbitrarily large variation
of � in

�
� [7]. Consequently, the solution operator � & � � �

� 
 � � � � �
� � 
 �

�
� � �

� 
 � � 
���� 
 � induced by (1)–(5) may not be continuous.
Regularization can be used to guarantee continuity as well as uniqueness. For

example, regularization of Tikhonov type includes � and � as quadratic terms in
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the cost functional [37]. Then, the extended problem formulation

min� � � � � � � * � �

� �
�	� 
 � � � �

� � � � � � �
���

�
� � � �

�
�
� � � �

 � 	
(6)

with constraints (2)–(5) is well-posed. Here, the regularization parameters
� � � � �

are time-invariant penalty matrices. Nevertheless, more general
weights like, e.g., time dependent operators are possible, too. Here, the weights are
interpreted in a deterministic sense and do not depend on statistical assumptions.
Obviously, an increase of the weights improves stability of the estimates but causes
also a growing approximation error in case of non-vanishing � , � due to bias. Reg-
ularization can also be achieved by projection of (1)–(5) into finite dimensional
subspaces, e.g., using a Petrov-Galerkin scheme [34]. No regularization parameter
need to be present explicitly. However, there is hidden regularization introduced by
the associated discretization. The data error increases when refining the discretiza-
tion (weak regularization) while a too coarse problem discretization (strong regu-
larization) leads to large regularization errors [25, 30]. Of course, regularization by
projection might be combined with direct regularization methods based on penalty
terms such as in (6).

Immediately the question arises how to choose the regularization parameters in
order to achieve a good compromise between data and regularization error. Optimal
parameter selection strategies are available if the noise level of the measurements
and the smoothness of the exact solution is known [32]. However, since this infor-
mation is not available for most practical problems we examined in [7] a strategy,
namely the L-curve criterion [27], that does not require this type of knowledge. The
approximately best compromise is determined by relating the residual norms under
a systematic variation of parameters to a (semi)-norm of the approximation itself.
The procedure seems to be well suited for a low number of corrections � . However,
the problem of quantitatively assessing the best compromise becomes increasingly
difficult for a growing number of unknown functions � .

In [7] we explore the performance of regularization by projection of (1)–(5) for
a simple linear model. The presented refinement concept developed in the context
of real-time estimation is here successfully applied to automatically construct se-
quences of discretization meshes based on upgrades of the approximation spaces.
Using the L-curve criterion the refinement process is stopped when a good com-
promise between data and regularization errors in the estimates is accomplished.
Uniform as well as non-uniform problem adapted upgrades of the approximation
spaces are employed using techniques outlined in more detail in Section 4. In that
particular example it turned out, that non-uniform approximations lead to estimates
whose quality cannot be achieved by employing only a uniform mesh. The analysis
of ill-posedness presented in [7] can be also extended to problems with nonlinear
models.
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3 WAVELETS

Apart from boundary adaptation wavelet functions
� � � � are obtained by dilation and

translation of a suitable mother wavelet
�

, i.e.,
� � � � � � ��� � � � � � � � ( �

, where the
normalizing factor

� ��� � keeps the
�

� -norm of the
� � � � independent of

 � ( . Thus
when

�
is chosen to have bounded support, as it will always be the case in our

applications, one has
� � � � �  � � � � � ��� � � �

,
 �
� . The key feature is that for

suitable
�

the collection � � 	 � � � � � forms a Riesz basis of
�

� , i.e., every
3 � �

�
has a unique expansion 3 � � ��� � � � � � � � � � � � � � �
and the norm equivalence

� � � � � � � � � � 3 � � � � � � � � � � � � (7)

holds for some positive constants � � � � � independent of
3
. In the special case when

the
� � � � form an orthonormal basis, equality holds between coefficient and func-

tion norm. In general, (7) implies the existence of a dual basis ˜� in
�

� which is
biorthogonal to � , i.e.

��� � � ˜�
	�	 �� (8)

where we use the shorthand notation
��� � � ˜��	�	 � � � � � � � � � � � " 	 � � � � � � � � � � " � and

� � � � 	
is the standard

�
� inner product. Thus the wavelet coefficients

� � � � are given by� 36� ˜� � � � 	 .
Clearly, (7) means that small perturbations of the expansion coefficients

� �
cause only small changes of

3
in the

�
� -norm and vice versa. In particular, retaining

only the first � largest coefficients in modulus provides – up to a uniform constant
– the best approximation to

3
that can be composed from any selection of � ba-

sis functions. This is the basis for nonlinear compression techniques (best � -term
approximation). Accordingly the objective of adaptive approximation is to succes-
sively track the most significant coefficients of the function to be determined.

Furthermore, depending on the smoothness of the employed wavelets also norm
equivalences with respect to other function spaces such as Sobolev and Besov spaces
hold with appropriate scale dependent weights on the wavelet coefficients. They are
essential for signal analysis (see Section 5) and for the preconditioning of discretized
differential and integral operators (see Section 6.4).

The starting point for the construction of wavelet bases is usually a so-called
multiresolution sequence of nested spaces

� �
�

� � � � �
� � � � � � � � ����� whose

union is dense in
�

� . Here
 � stands for some coarsest discretization level. The

spaces
� � are spanned by scaling functions,

� � � span 	 � � � � & ( � � � � , which
are obtained by a suitable, compactly supported function � . Due to the compact
support of � we can view

� � �
as the uniform mesh size of

� � . Given a suitable
dual sequence ˜

� � , a successive decomposition of
� � leads to the multiscale splitting� � � � �

��� � � �� � �
��� � where � � � span 	 � � � � & ( � � �� ��� ˜

� � . Analogous splittings
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for the spaces ˜
� � yield complement spaces ˜� � � � � . The bases � and ˜� for the

spaces � � respectively ˜� � satisfy (8).
All properties above can be realized when choosing � as the cardinal B-spline of

order � . Moreover, one can construct for any ˜� ��� �
˜� � � � � �

˜� even, a com-
pactly supported dual scaling function ˜� such that the dual multiresolution spaces
˜
� � contain all polynomials up to order ˜� . As a consequence of biorthogonality, one
has the moment conditions

� � � � 
 � � 	 �!� � � �!� � ��� � � ˜� � � � (9)

Likewise one has
� � � � 
 � ˜� 	 � � for � � � � � ��� � � � �

. Therefore, smooth functions
have wavelet expansions with rapidly decaying wavelet coefficients so that level-
wise truncation of wavelet expansions provide good approximations. However, as
soon as sharp transitions or even singularities occur different nonuniform selections
of basis functions are expected to provide more economical approximations. In fact,
combining the above statements with the locality of wavelets, large wavelet coeffi-
cients reflect a large local change of the function.

4 DISCRETIZATION: WAVELETS AS TRIAL AND TEST FUNCTIONS

For the discretization of the problem on a finite time horizon
� � � � � � � � � we scale

the horizon to
� � � � � and formulate the equality constraints (2), (3) in a weak sense.

We obtain the equality constraints:

�
˙� ��� � �

�
�
�

�
� � �

�
��� � 	 ��� for all

� � � � 
 �

� (10)�
� � � � �

�
�
�

�
� � �

�
���

� 	 ��� for all
�

�
� � 
 �� � (11)

Discretization is then given by the representation of each function with respect to
an appropriately chosen wavelet basis � , i.e., we represent � as � � � �� �

���
, �

as � � � �� � � � etc.. We obtain an equivalent, infinite dimensional but discretized

optimization problem for the wavelet coefficients 	 � � � � �� � � �� � � �� � � �� � �
:

min
��	 ���� � 	 � ��� �� 	 � (12)

s.t. � � ��	 � � ��� (13)� � ��	 � � ��� � (14)

In our particular case we use piecewise linear, continuous wavelets, (i.e the scaling
function is a B-spline of order � � �

fulfilling the moment conditions with ˜� � �
),

as trial functions for � , � and � and for the test functions
�

� , while we employ
piecewise constant wavelets ( � � ˜� � �

) for � and the test functions
� �

. This
corresponds to the minimal regularity for a conforming discretization.

While the above formulation yields still the exact solution, for the numerical
treatment we have to choose finite dimensional approximations. Hence, for each
function involved we have to choose a finite set of basis functions, described by
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their index set 
 � etc.. As mentioned before, we will start with some initial possibly
small index sets 
 �� etc. and adaptively enlarge these index sets to 
 � � �� � 
 ������ �
in each refinement step. Due to the piecewise linear basis functions the inequality
constraints are guaranteed to be satisfied exactly, by enforcing their validity at the
corresponding mesh points.

5 SIGNAL PROCESSING

The tasks to be performed in the signal processing part are transformation of the dis-
crete measurement samples into a continuous representation, possibly continuation
of missing signal parts, denoising and outlier removal, as well as data compres-
sion. Recent developments show that wavelets are very well suited for dealing with
these tasks [15, 22–24]. Hence, we restrict ourselves to mentioning only the basic
properties of wavelets employed for signal analysis, namely, the norm equivalences
with respect to Besov spaces and the vanishing polynomial moments mentioned
in Section 3. They give rise to nonlinear approximation techniques based on effi-
cient threshold and/or shrinkage algorithms. However, the choice of the involved
parameters depends typically on statistical model assumptions, such as white Gaus-
sian noise with a given noise level. To our knowledge, theoretical results under less
stringent assumptions do not exist. The current state of our algorithm is based on
data fitting on dyadic meshes 	 � � � ( � and a shrinkage algorithm based on the results
of [15]. The data are considered as scaling function coefficients of a correspond-
ingly high level of resolution. To this data format one can then apply the wavelet
transform. In case of nonuniform sampling rates a more sophisticated fitting proce-
dure is needed. Considering a single function

� � and omitting the index � , we obtain
the wavelet representation

��� � � � � �� . Corresponding to the trial functions for the
outputs � , we choose piecewise linear, continuous wavelets for this purpose. Then,
to obtain the denoised signal functions

� � � � � � we apply the shrinkage algorithm
(omitting the index

�
)
� � � � & � � �� � � � � � � � � � �� � � �

� for
� � �� � � � � � and

� � � � & � �
otherwise, where � depends only on the noise level. If little or nothing is known
about the noise, � has to be tuned in a rather heuristic manner, usually depending on
the magnitude of the wavelet coefficient, the location ( and the scale


. For a more

detailed description we refer the reader to [10].

The representation of the measurements in terms of wavelets is fully compati-
ble with our multiscale discretization of the constrained optimization problem. In
particular, since the best � -term wavelet approximation is essentially determined
by the first � largest (in modulus) wavelet coefficients, the initial index set 
 � for
discretizing the optimization problem is easily identified. Only these coefficients
will be used in the first step. In further refinement steps of the optimization problem
additional wavelet coefficients of � will be processed. For the refinement of the em-
ployed basis index set, which is based on the measurements as well as on the current
approximation of the estimates, we refer to Section 6.1.
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6 THE OPTIMIZATION PROBLEM ON A FIXED HORIZON

To realize the overall concept of multiscale moving horizon optimization under the
particular real time requirement, we encounter many new problems on each level
of the solution process even for an optimization problem on a fixed horizon. The
sketch in Figure 2 indicates the main conceptual blocks of our approach on a fixed
horizon, respectively its current state of development.

Dynamic optimization problem
adaptive refinement employing

– sensitivity of the cost functional with respect to � and �
– local error estimator for the differential equations
NLP
treatment of the nonlinearities

– general purpose algorithm based on a SQP-method
– efficient evaluation of

� � ��� ����
� � �	��
� ��� for given � �

QP
treatment of the inequality constraints

– interior-point methods for the first approximations
– active-set methods with initialization of the active sets for the

refinement steps
Linear system of equations
iterative solver (simplified Uzawa)

– employing previous solution as initial value
– using adapted Jacobi preconditioner motivated by wavelet

theory

Figure 2. Outline of the conceptual blocks on a fixed horizon

In the subsequent subsections we shall briefly describe the main ingredients
listed in Figure 2. The outermost level corresponds to the discretization of the whole
optimization problem and the adaptive refinement. The goal is to spend minimal
computational effort for realizing a fixed decay rate of the current error in each
refinement step. The next subsection will briefly present our algorithm and some
numerical results. Then, the treatment of nonlinearities will be presented. The opti-
mization problem arising on each level of the resolution hierarchy is currently solved
by a general purpose algorithm based on a SQP-method. Some algorithmic details
are given in 6.2. Ultimately, the general purpose SQP-solver is to be replaced by a
fully problem adapted scheme. A core ingredient is the treatment of the correspond-
ing linearized problems. Here, the outer loop is concerned with the treatment of the
inequality constraints. We address the question whether interior-point methods or
active-set methods can exploit the information of the previous refinement step in a
more efficient way. Results are given in Section 6.3. Finally, the solution process for
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the arising linear systems is outlined in 6.4. The computational cost for a fixed error
reduction should remain proportional to the current size of the problem. This im-
mediately suggests the idea to use an iterative solver rather than a direct solver. The
current state of development is briefly described. Also preconditioning and stopping
criteria are discussed in the context of nested iteration.

6.1 Adaptive Refinement

An adaptive discretization strategy is essential for an efficient treatment of the op-
timal control problem. In our refinement approach we start with a coarse approx-
imation with relatively few trial functions collected in 
 � . Then, based on the in-
formation of the previously computed approximation

�
�

�� at refinement step � an
improved index set 
 � ��� is generated and (12)–(14) is resolved. Algorithmic de-
tails on the adaptive refinement strategy are given in [5, 9]. Therefore, we present
here only the underlying ideas.

The refinement of the known quantities � and � is only discussed for a single
function

� � , omitting the index � for convenience, since everything applies to any
component in the same way. We are interested in compressed approximations of the
measurements

� �� satisfying

� � � � �� �
� � � � �� � � �

� � (15)

with given tolerance � �� . As mentioned in Section 3 the � largest wavelet coefficients
of

�
give up to a fixed constant factor the best � -term approximation. Hence, given

the wavelet coefficients
� � of the full but finite expansion

� � � �� � � , we simply
have to neglect the elements of

� � whose moduli are below a certain threshold �
which uniquely depends on � �� . The remaining entries are the significant coefficients
and their indices form the index set 
 �� . Typically the number of significant wavelet
coefficients is by far smaller than the number of discrete measurement samples.
During the refinement sequence the approximation quality is increased according to
� �� ��� � � �� .

The refinement of states � and outputs � is based on an error analysis of �
��

only, since errors in � � are directly linked to errors in � � . Residual based error
analysis is computationally inexpensive and gives usually a qualitatively good grasp
on the error behavior. However, sharp error estimates which are needed to efficiently
treat index problems arising from active state inequality constraints are difficult to
obtain [29]. Therefore, the refinement is based on local error estimation where � �

�� is
compared to locally refined solutions keeping � �

�� at their current optimal values.
In particular, we use a local trapezoidal rule and evaluate the error at the midpoints
of the current mesh determined by 
 �

� . Where the error bounds are violated, we
increase the set of wavelet basis functions by adding to the current set those basis
functions with neighboring indices in the time frequency plane.

In contrast to the local error estimator used for the states � and output functions
� , the problem formulation allows us to employ the sensitivity of the Lagrange
functional for the refinement of unknown inputs � and � . Hence, for an improved
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approximation of � � we evaluate the gradients of the Lagrange functional with re-
spect to potentially new trial functions for � � determined by the index set

� �

� � .
Local neighbors of the indices in 
 �

� � are excellent candidates for
� �

� � where we
require

� �

� ��� 
 �

� � ��� . Once the gradients are computed, the trial functions associ-
ated with the larger absolute gradients are interpreted as those basis functions which
have large impact on the solution and therefore should be used for refinement. The
smaller ones are neglected. The same approach is applied to � .

The approximations for �
�

�
�

�
�

� might change during the cycles of refinement
such that previously needed trial functions may become obsolete. The elimination of
unnecessary trial functions is based on a compression technique as outlined before.
Basis functions corresponding to significant wavelet coefficients are kept while the
small ones are discarded.

Finally the different index sets for the various functions have to be combined to
take their close interactions into account.

In summary, the overall adaptive refinement algorithm proceeds as follows de-
noting by

� �

the set of newly added indices:

Algorithm 1 (Adaptive Refinement Algorithm).

1: Solve problem (12)–(14) with the index set 
 �

.
2: Refine �

�
� by thresholding

� � �� � � �

� .
3: Apply a local error estimator for � , � � � � �

� � � � �

�
�
.

4: Use the sensitivity of Lagrange functional for � , � � � � �� � � � �

� � .
5: Compress current approximation by thresholding � � ˜
 �

� � etc.
6: Take interactions into account � � � �

7: Form 
 � ��� � ˜
 � � � �

.
8: Set � & � � � �

, go to 1.

Figure 3 shows for a typical example the comparison between different choices
of the index sets 
 �

, i.e., a uniform refinement which adds all basis functions of the
next scale and an adaptive refinement which is based on the considerations above.
The

�
� error is plotted versus the number of trial functions. We see, for example, that

for an error 0.105 we need roughly 550 basis functions with an adaptive approach
while approximately 1000 degrees of freedom arise for a uniform mesh (mesh size� � � � ). Obviously adaptivity outperforms uniform discretization with regard to the
cost for computing an approximation for a given target accuracy.

6.2 Solving the NLP

In principle, problem (12)–(14) can be solved with any available NLP method like
sequential quadratic programming (SQP) or generalized Gauss-Newton methods.
The latter ones are particularly attractive when the cost functional is close to zero
[35]. However, to achieve highest possible efficiency the structure of the problem
formulation, i.e., the sparsity pattern of the model equations system, as well as the
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Figure 3. Scalewise versus adaptive refinement

structure of the discretization should be exploited to their full extent. Nevertheless,
for nonlinear problems we currently employ only a general purpose SQP-method
designed for solving large sparse NLP problems based on an active set strategy.
For the specific case of linear dynamic models a tailored strategy exploiting the
discretization structure is presented in more detail in Subsection 6.4.

A general purpose SQP-method such as SNOPT [26] typically requires routines
to evaluate the cost functional in (12) and the residuals of the restrictions (13), (14)
at a current iterate 	 � � �

as well as their first order derivatives with respect to 	 � � �
. In

order to provide these data, inner products of wavelet functions have to be computed.
Inner products of linear terms in the equations (13), (14) do not depend on current
iterates and therefore can be computed prior to the optimization run with known
numerical techniques for a sufficiently large index set 
 . Then, in each refinement
step � those rows and columns of the precomputed and stored inner product matrix
whose indices are contained in 
 �

have to be retrieved only from these files.

The computation of nonlinear terms in the optimization problem is more difficult
and costly since we have to evaluate inner products of the form

� 3��
�

� � �� � � � � � � 	 where
�

� � �� is given in a wavelet expansion and
3

is a nonlinear function. Straightforward
quadrature would spoil the complexity gain by adaptive refinements such that more
sophisticated efficient evaluation schemes are needed. Recently, Dahmen et al. [20]
developed a methodology to efficiently evaluate such inner products which avoids
the complexity of the finest uniform mesh and requires only a computational effort
proportional to the dimension of the adapted wavelet basis.

A simple but efficient warmstart of the SQP-method is obtained by reusing the
solution in refinement step � � �

as initial guess for the solver in step � . Due to the
hierarchical structure of the wavelet basis a change of basis is not necessary. The
initial values for the unknowns 	 � � �

as well as for the Lagrange multipliers are effi-
ciently provided by

� � � �� � � � �
�

� � �� � � for
�  � ( � � 
 � � � � 
 �

and
� � � �� � � � � otherwise.

Additional warm start strategies like updating the Hessian matrices or their approx-
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imations may also reduce the numerical cost but have not been investigated yet for
the nonlinear problem.

6.3 Solving the QP

For the treatment of the quadratic programming problems, which arise either as
subproblems of the nonlinear programming problem or directly for dynamic opti-
mization problems with linear process model and quadratic cost functional, several
decisions concerning the solution strategy have to be made. Typically, a large num-
ber of algebraic inequalities is present due to the discretization of the inequality
restrictions (14). These inequality restrictions have to be handled efficiently and a
method is required which takes full advantage of the refinement concept.

Two common approaches based on active sets (AS) and on an interior point (IP)
method have been compared. On one hand, IP methods are often applied to sys-
tems with a very large number of inequalities. They usually need a fixed number of
iterations independently of the dimension of the system [40]. Hence they suggest
themselves in the present context. On the other hand, AS methods need to solve
smaller linear systems in each iteration step. Nevertheless, the number of iterations
typically increases with the number of inequality constraints. This typically happens
if one solves the optimization problem in a single run. In our refinement algorithm,
though, this will be the case only in the first loop. For the next refinement we can
employ the information from the previous step. In case of the IP method we can
use the solution as initial guess for the refined optimization problem. However, the
central idea of the IP is to drive all quantities simultaneously to the bounds at ap-
proximately the same rate [40]. Hence, even if a good initial guess is taken, some of
the variables might be too close to the boundary and a centering step becomes nec-
essary. The next iterate presumably moves away from the optimum. Therefore, the
warmstart potential of IP methods seems to be limited in our context. In contrast, in
case of AS methods we can initialize the active set on refinement level � ���

with the
set for which the current solution 	 �

is active on the refined mesh. Since the current
solution should be a good approximation of the refined solution, we do not expect
significant changes of the active set and, therefore, we do not expect a large increase
of iteration numbers.

These considerations are confirmed by numerical experiments reported in [6,
39]. Therefore, our strategy is to use an interior-point method for the first approxi-
mate solution of the optimization problem and for all following refinements we use
the active-set method with initialization based on the previous solution.

6.4 Solving the Linear System

Since even for nonlinear problems the same issues would arise after linearization
we confine the discussion here for the sake of clarity to a linear model problem.
Moreover, the application of the active-set method leads to saddle point problems
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of the form:

� � ��� �
� � ��& � ��� ��� � �

� � 0
� ��� �

� � � �
��� �

g �
� �

(16)

which are structurally the same as if only equality constraints are present in the op-
timization problem. Hence, in order to focus on the treatment of such linear systems
we consider in a first step the following optimization problem

min� � � � � � � * �� 
 � � � �
� � � �

� � �
� �

�
� � � �

�
�
� � � �

 � 	
(17)

subject to ˙� �
	 � � �
� ��� � (18)

� �� � � �
� � 0 � (19)

However, the ideas can be extended to the nonlinear case with inequality con-
straints. Figure 4(a) shows the typical structure of the Karush-Kuhn-Tucker matrix� � for an example of fourth order. It exhibits the block structure, where each block
corresponds to entries of the regularization and model matrices. The blocks are ei-
ther diagonal or have finger structure arising from wavelet scalar products.
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Figure 4. KKT-matrix and Schur complement
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The discretization error is bounded from below by the approximation error of
the functions in the adaptively chosen wavelet space. Hence, it is sufficient to solve
the above system of equations only up to an error of this order. The goal is now
to use an efficient solver up to an accuracy which corresponds to the discretization
error on each refinement level. For efficiency reasons, it is important to exploit the
previous approximation. Furthermore, successive error reduction is in the spirit of
the overall concept. Hence, while most optimization solvers use direct methods in
this context we focus on iterative solvers. Of course, then the discretization ma-
trices do not have to be assembled but only their application to a vector has to be
guaranteed. Due to the indefiniteness of the system one could think of using gmres,
or, exploiting the symmetry, of using symmlq or minres [1, 31]. Nevertheless, to ex-
ploit the problem structure as much as possible, we reduce the system and obtain a
matrix ˜� � , where we can apply the Uzawa algorithm (see [13]). This algorithm is
particularly designed for saddle point problems with positive definite

� � . Concep-
tionally it applies the pcg-method to the Schur complement and, to avoid inversion
of
� � , also to

� � . In our case the inner application of the pcg-method is not nec-
essary, since

� � �� can actually be set up very efficiently. This means, that we apply
essentially the pcg-method to the Schur complement � � of the reduced system.
For a detailed discussion of this adapted Uzawa algorithm we refer to [8]. In Fig-
ure 4(b) we can see the structure of the linear system after a reduction of

� � to the
Schur complement � � . The problem size is reduced from a size corresponding to
all functions � , � , � , � and the Lagrange parameter functions

�
� ,
�

� to the size of
the discretization of � . Furthermore, � � is still very sparse and has finger structure.
Nevertheless, it will never be set up explicitly to avoid matrix multiplications.

As for the application of iterative methods there arise, of course, two essential
questions: preconditioning and stopping criteria. These two questions will be dis-
cussed next in the context of nested iteration, which is applied to the sequence of
equations

˜� ���
�

˜� � �
˜
� ��� � �

�
˜
� � �

˜g � �
� � � � � � � � � � � � � ��� � (20)

with increasing dimension corresponding to the refined optimization problems.
The corresponding operator on the infinite dimensional function spaces

˜� & � � �
� 
 � � 
 � � � � � � 
 � � � � �

�
� 
 � � 
 � � � � � � � 
 � � � (21)

is bounded and has a bounded inverse with respect to these appropriate norm. In or-
der to obtain well conditioned discretizations in the Euclidean metric � � one exploits
the fact that suitably weighted � � -norms of the wavelet coefficients are equivalent
to Sobolev norms, i.e., 	 � � �

� � � � � � form a Riesz basis of � � , here for �
� 	 � � � � .

This corresponds to a symmetric diagonal scaling of the wavelet representation ˜� �
of ˜� with infinite index set 
 . This scaling can also be viewed as preconditioning
of ˜� � . For our particular case, this leads to a symmetric preconditioning of the
Schur complement � � with a diagonal matrix � �

� �� � with scale dependent entries� � �
. The boundedness of the preconditioned ˜� � and its inverse remain valid for fi-

nite index sets 
 �

independently of � provided that the Galerkin scheme associated
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with these trial spaces is stable, i.e., the trial spaces satisfy the LBB-condition [13].
Consequently, we can deduce that the condition numbers fulfill

� �
& � cond �

� � �
� ���� � � � � �

� ���� � � � (22)

independently of � . The convergence rate of the adapted Uzawa algorithm can be
estimated in terms of � � and, therefore, is also bounded independently of the refine-
ment step.

Instead of the diagonal entries
� � � � in � we use an approximate Jacobi pre-

conditioner, i.e., an approximation of the diagonal of the Schur complement � � �
which can be set up very efficiently. The entries reflect the necessary scale depen-
dent scaling. In addition this preconditioner corresponds to normalizing the wavelet
basis in the energy norm and usually gives better results. Numerical experiments
confirm the superiority to only scaling by powers of two [8].

The stopping criteria for the iterative solver hinges on three properties: (i) the
maximal approximation order of the discretization spaces in the energy norm giving
a reduction rate � , (ii) the norm equivalences relating the energy norm to the wavelet
coefficients, and (iii) the convergence order of the underlying pcg-method, which
can be estimated in terms of the condition numbers � � . These properties can be used
to determine an upper bound for the number of iterations

max� �
� ��� � � � ¯� � � � � � � ��� � � ��� � � � � � ��� � � ���
	 	

(23)

and a bound for the maximal relative residual error� 
 � " � � � � ¯� � � �
(24)

needed to produce on each level approximate solutions with discretization error ac-
curacy (see [8]). The constant ¯� is given by the norm equivalences. For our particular
discretization we expect at best a first order convergence in the energy norm. Hence,
in terms of the number of degrees of freedom we take � � # 
 � � � � # 
 �

, which is��� �
for uniform mesh refinement. Moreover, to determine � 
 � " and max � � an upper

bound for � has to be estimated. As a pragmatic choice we used � 
 � " � � � � �
and

max � � � � � in our experiments, which was sufficient in most cases.
In spite of the accomplished asymptotic boundedness, large condition numbers

may still arise due to system inherent features as for example, a poor observability
measure, stiff differential equations or inadequate regularization. The effect of the
choice of the regularization parameter is studied in [8] by means of numerical ex-
periments. A rather weak regularization of the model error functions � motivated
by stabilizing the original ill-posed problem of state estimation turns out to be fa-
vorable for the condition numbers of the systems considered here. Nevertheless,
conclusive statements about the quantitative effect of regularization and of system
inherent features on the iterative schemes can not be made, yet.

While the condition numbers provide an upper bound for the iteration numbers,
the actual eigenvalue distributions give rise to considerably smaller iteration num-
bers. Superconvergence, known for the cg-method, can be observed for the adapted
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Figure 5. CPU times in each horizon. Uniform and adaptive discretization

Uzawa algorithm, too. Nevertheless, more sophisticated methods have to be devel-
oped to affect the smallest eigenvalues in a more drastic way. Currently, a Schur
complement method based on the adaptive refinement algorithm is under investiga-
tion.

First numerical results for the algorithm above can be found in [8]. It turns out
that depending on the system inherent features, the nested iteration process is more
efficient than solving the fully discretized system directly. Perhaps more important
than the expected higher efficiency of nested iteration is the fact it provides succes-
sively improved approximations at a much earlier stage. We can see also that it is not
necessary to determine on each scale the exact solution. The discretization error on
each refinement level is nearly reached, although the residuals are still quite large,
in full agreement with the size of the condition numbers.

7 MOVING HORIZON OPTIMIZATION

So far we have outlined the refinement approach for the optimization on a fixed
horizon. In a moving horizon framework quantitative information about the solu-
tion, its structure and the corresponding mesh is available from the last horizon� � � � � � �

� � � � �
�
. This information is to be exploited on the next horizon. The ap-

proximate solution on the ( � �
-th horizon is extrapolated in step ( to the non-

overlapping window interval
� � � � �

� � � � and employed as initial guess ( � � � ) for
the optimization problem. For simplicity we employ linear extrapolation. Then, the
approximation on the ( -th horizon is expressed in its wavelet expansion. In order to
ensure that the refinement procedure has time to prompt an approximate solution,
signal based compression (see Section 5) of all quantities with a suitable compres-
sion rate provides an initial index set 
 ��� � for the optimization problem on the ( -th
horizon.

We applied the refinement approach presented to a well known literature exam-
ple (see, e.g., [33]). The process consists of an ideal continuous stirred tank reactor



358 T. Binder, L. Blank, W. Dahmen, and W. Marquardt

where a reversible exothermic reaction
���

� is carried out. The objective in
the example is to move the system from an equilibrium point of low conversion
and high temperature to a target equilibrium point of low temperature and signifi-
cantly higher conversion. This optimal control problem is approached using an MPC
framework and employing a quadratic cost functional. The horizon length is chosen
to be � � � � � � � � and the horizon is shifted every � � � � � � � � . Details on the
model equations and parameters used can be found in [6]. The optimization problem
is solved employing the active set based NLP solver SNOPT [26] on a Sun Ultra 2
(167 MHz) workstation. The numerical effort on each horizon needed to compute
solutions of comparable accuracy for one uniform mesh discretization (scale 7) and
for the adaptive refinement approach is shown in Figure 5. For the latter we used
a mesh relaxation factor of � � � � � . Note, that both figures are scaled differently.
The numerical work with and without warm start favor the adaptive refinement ap-
proach. The gain is particularly large in the very first horizon where no solution is
available for initialization. Moreover, the intermediate solutions given by the refine-
ment approach provide backup estimates for the real time restrictions. They might
also be directly applied to the real process at an earlier time.

8 CONCLUSIONS

We have introduced a multiscale concept for moving horizon optimization based on
wavelets in order to meet real-time requirements. Of course, the development and
validation of the presented concept is a rather complex task. The information ob-
tained on the current level of discretization has to be exploited on the next hierarchy
level. It is used to identify a suitable refinement, to possibly adjust the regulariza-
tion, and to speed up the solution of the refined discretization of the estimation or
control problem. So far we investigated, although on different levels of depth, the
following components of the problem: regularization, input processing, optimiza-
tion on a fixed horizon as well as moving the horizon. The relevant ingredients are
now essentially available and the results indicate the potential of this approach.

However, we had to face in the development of these components a diversity of
problems, some of which do only occur due to this particular real-time requirement
and the multiscale ansatz whereas others are problem inherent to process moni-
toring. Not all of these obstructions could be overcome in a satisfactory way yet.
Further investigations should include for example the combinations of direct and
indirect regularization techniques presented, as well as level dependent Tikhonov-
type regularization and additional regularization of the states. Also the influence of
the length of the horizon on the estimation quality for given noisy data has to be
investigated more thoroughly. The signal processing part has to be extended to non
uniform sampling and colored noise. For the treatment of the optimization on a fixed
horizon, for example, the used general purpose SQP-method should be replaced by
a fully problem adapted method. A necessary improvement of the preconditioner for
the arising linear systems is currently under investigations. It exploits the multiscale
setting and is based on a Schur complement technique.
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The developed ingredients still have to be combined to one single software im-
plementation. Moreover, while the numerical examples have been mostly of model
character, the optimization software with all its necessary extensions should be fi-
nally examined for more realistic industrial problems of large scale under real-time
conditions. Of course, the listed future directions are not exhaustive.
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Abstract The purpose of this paper is an experimental proof-of-concept of the application of
NMPC for large scale systems using specialized dynamic optimization strategies. For this aim
we investigate the application of modern, computationally efficient NMPC schemes and real-
time optimization techniques to a nontrivial process control example, namely the control of
a high purity binary distillation column. All necessary steps are discussed, from formulation
of a DAE model with 164 states up to the final application to the experimental apparatus.
Especially an efficient real-time optimization scheme based on the direct multiple shooting
method is introduced. It is characterized by an initial value embedding strategy, that allows to
immediately respond to disturbances, and real-time iterations, that dovetail the optimization
iterations with the real process development. Using this scheme, sampling times of 10 seconds
are feasible on a standard PC. This shows that an efficient NMPC scheme based on large scale
DAE models is feasible for the real-time control of a pilot scale distillation column.

INTRODUCTION

Over the last two decades linear model predictive control has emerged as a powerful
and widely used control technique, especially in the process industry. Recently there
is growing interest in model predictive control for nonlinear systems in academia
and in the industrial process control community, and the properties of a variety of
NMPC schemes have been investigated theoretically (see e.g., [1, 16] for a review).
In addition, there has been significant progress in the area of dynamic process opti-
mization that made on-line optimization for NMPC feasible [5,8,22] (compare also
to the overview article on optimization on moving horizon in this book [4]), and
simulation studies have shown the real-time feasibility even for large scale process
models [6, 13], as considered in this paper.

The main purpose of the paper is an experimental proof-of-concept of the ap-
plication of NMPC for large scale systems using specialized dynamic optimization
strategies. In particular, we consider the experimental application of NMPC to a
high purity binary distillation column. We want to show that NMPC can be applied
to large scale chemical processes, if well suited optimization strategies are used,
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and that it leads to a reasonable control performance without much tuning. This
is experimentally validated, after addressing the challenges of the practical realiza-
tion as parameter estimation, on-line state estimation and reliable data transfer with
an existing process control system. Considering the optimization based control of
distillation columns, we also refer to the research article [18] which deals with the
problem of probabilistic constraints.

The paper is structured as follows: In Section 1 we describe the considered dis-
tillation column as well as the used DAE model. Section 2 contains the utilized
formulation of the NMPC optimization problem, and in Section 3 we present the
employed real-time optimization algorithm. In Section 4 we describe the experi-
mental setup for the closed-loop experiments, and comment on state estimation.
Section 5 contains experimental closed-loop results and the observed computation
times, and gives a short comparison with a conventional PI controller.

1 DISTILLATION COLUMN AND EQUATIONS

The experimental implementation of NMPC was carried out on a pilot plant distilla-
tion column for the separation of a binary mixture of Methanol and n-Propanol. The
desired product compositions are minimum 0.99 mol/mol (low boiling component)
for the top product and maximum 0.01 mol/mol for the bottom product.

The column has a diameter of 0.10 m and a height of 7 m and consists of � � � �
bubble cap trays. The overhead vapour is totally condensed in a water cooled con-
denser which is open to atmosphere. The reboiler is heated electrically. Several vari-
ables are measured and monitored on-line during each experiment, such as tempera-
tures of feed and reflux streams, at the reboiler and condenser and on each tray of the
column, volumetric flow rates of feed, reflux, distillate and bottom product streams
and the column pressure. Fluid dynamic stable operation of the column is checked
by the pressure drop along the column for all operating conditions presented in this
study. The nominal operating conditions of the plant are listed in Table 1.

The flowsheet of the distillation system is shown in Figure 1. The preheated
feed stream

�
vol enters the column at the feed tray as saturated liquid. It can be

switched automatically between two feed tanks in order to introduce well defined
disturbances in feed concentrations.

Process inputs available for control purposes are the heat input to the reboiler,
� , and the reflux flow rate

�
vol. Although the main control purpose is to maintain

the product purity specifications for a distillation column, product composition mea-
surements are often expensive, unreliable and with delays. Therefore in this study
temperatures � � � and � � � on trays 14 and 28 are selected as two controlled variables
(cf. Sec. 2).

A distributed control system (DCS) is used for data acquisition and the basic
control loops of the flow rates, the heat input, the liquid levels in the reboiler and
the condenser. To implement more advanced control schemes the DCS is connected
to a PC from and to which direct access from UNIX workstations is possible. The
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NMPC scheme and the state estimator are implemented on UNIX workstations, i.e.,
the DCS is only used for data acquisition and the basic control loops.

Feed rate, � vol [l/h] 14.0
Feed composition, ,�� 0.32
Feed temperature, ��� [ ��� ] 70.0
Top composition, , � � 0.99
Bottom composition, , � 0.0006
Temperature tray 28 � �	� [ � � ] 70.0
Temperature tray 14 � � � [ �
� ] 88.0
Reflux flow, � vol [l/h] 4.3
Heat input, � [kW] 2.5
Top pressure [bar] 0.97
Reboiler holdup [l] 8.5
Condenser holdup [l] 0.17

Table 1. Nominal operating conditions

1.1 Differential Algebraic Model

Depending on the model simplifications different kinds of models can be obtained
for the dynamics of the distillation column. For the predictions in the NMPC con-
troller we use a (simple) equilibrium stage model, which is considered to capture
the main features of the column dynamics. The presented nonlinear DAE model is
based on the following assumptions:

– total condenser
– negligible vapor holdup
– constant molar liquid holdup
– perfect mixing
– the mixture is at equilibrium temperature
– Murphree efficiency is applied for each tray

The model consists principally of overall and component material balances and
energy balance for each tray � where � � � � � � ��� � � � and � is the total number of
trays (compare also Figure 2). For notational convenience the index � � � is used
for the reboiler and � � �

���
for the condenser. The following balance equations

are each written for the trays, the reboiler and the condenser, in this order. Since the
molar liquid holdup,

�
� , is constant, overall material balances become:

� � �
� ��� � �

�
� � � � � � � �

� �
� (1)

� � �
�

� � � � � � (2)
� � � � � �

� ��� � �
(3)



366 M. Diehl et al.

1

14

21

28

40

��������� �	�
�
���

���� ��� ����������������� � �

!

"$#&%&'

( #&%&'*)�+	,

-.#&%&'

/ #&%&'

Figure 1. Flowsheet of the distillation column
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Energy balances:

�
� ˙� �

� 0 �
�
� � 5 ��
� �
�

� � �
� � � 2 � �

� � � �
:
˙
,

� � � 3 �
� �

�
� � � ˙� �

0 �
� ��� �

�
� ��� 2 � � � �

� 3 � ��5
�
��� �65

�
2 � � ��� � 3 � � � �

� � � (7)

� 8 ˙� �
8 0 � 8 � � 5 ��

���
�

� � �
8 � � 2 � �

8 � � �
:
˙
, 8 � �73 � 8 � �

� � 8 ˙� 8

0 �
�
� �

�
2 � 8 � �

8 2 � 8 ��� 8 3 � 2 � loss (8)

In the equations above, the molar concentrations of the liquid and vapour phases
are represented by

,
� � � and 	 � � � ; ( is the index for components and � $ is the total

number of components. For the process of interest in this study � 0 ��� and � $ 0 � .
The molar vapour and liquid fluxes are denoted by � � and

�
� , the molar feed and

distillate flows by
�

� and
�

.
�

� becomes 0 if the tray � has no feed stream. A single
feed stream is introduced to the column on tray 21. The energy balance for the
reboiler includes terms for the heat input, � , and the possible heat loss, � loss. There
are only � $$2 �

independent component balances since by definition
� � , � � � 0 �

(9)� � 	 � � � 0 �
(10)

Assuming an ideal mixture, the vapour phase composition in equilibrium with
the liquid phase, 	 �� , is described by Rault’s law:

	 �� � � 0 5 �� � � �
: ,

� � �5 �
(11)

Here 5 �� � � �
:

is the equilibrium vapour pressure of the pure components and deter-
mined by the Antoine equation in terms of the temperature, � � , and constant param-
eters

�
, � , and � : 5 �� � � �

: 0 exp

� � � 2 � �
� � 3 � � � (12)

It should be noted that ˙� in the energy balances (7) and (8) is obtained by implicit
differentiation of the combination of (10) - (12).

To account for the deviation from thermodynamic equilibrium due to finite mass
transfer resistance the definition of Murphree efficiency, � � , is applied for each tray:� � 0 	 � � � 2 	 ��5

� � �	 �� � � 2 	 ��5
� � � � 0 � �	�
�	� �

� (13)

To determine the (constant) pressures we assume that the condenser pressure is
fixed to the outside pressure, i.e., 5 � ��� 0 5 top, whereas the pressures 5 � on the
trays and the reboiler are calculated under the assumption of a constant pressure
drop, � 5 � , from tray to tray, i.e.,5 � 0 5 � ��� 3 � 5 � � 0 �

�
� 2 � �	�
�
� � � � � � � � (14)
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Additionally to the molar flow rates, which cannot be measured, also the vol-
umetric flow rates of the feed and reflux streams,

�
vol and

�
vol, are required. They

can be measured and controlled by the DCS. For example
�

vol is determined from�
vol 0 �

� ��� � � , where � � is the molar volume of the reflux stream.
The enthalpies of the liquid and vapour phases, � �

� and � � � , partial molar vol-
umes, � � , and heat capacities, �

�
� � � , are defined as functions of temperature and

composition; the effect of pressure on � � and � � are neglected in the model. For
details of the correlations the reader is refered to [14].

Summarizing the DAE

We can subsume all system states in two vectors x and z which denote the differen-
tial and the algebraic state vectors, respectively.

The (molar) Methanol concentrations in reboiler, on the 40 trays, and in the
condenser

,
� for � 0 � � � �
�
�	� � � 3 �

are the 42 components of the differential
state vector x. The liquid and vapor (molar) fluxes

�
� and � � ( � 0 � � � �	�
�
� �

� ) out
of the 40 trays as well as the 42 temperatures � � ( � 0 � � � � � �
�	�
��� � 3 �

) of re-
boiler, trays and condenser form the 122 components of the algebraic state vector
z 0 � �

�
�	�
�	� ���

�
� � � �	�
�
� � � � � � 8 �
�	�
� � � � ��� : � 1. Note that those algebraic vari-

ables that can easily be eliminated (as, e.g., � �
� , 	 � , 5 �� � � �

:
, etc.) do not count as

algebraic variables in this formulation.
The two components of the control vector u 0 � �

vol
� � : � are the volumetric

reflux flow,
�

vol, out of the condenser, and the heat input, � , determining the molar
vapour flux out of the reboiler. All system parameters can be subsumed in a vector
p. The resulting model has 42 differential equations f, and 122 algebraic equations
g.

We can write the DAE system, which has index one, in the following summa-
rized form:

ẋ
� � : 0 f

�
x
� � : � z � � : � u � � : � p : (15)

0 0 g
�
x
� � : � z � � : � u � � : � p : � (16)

1.2 Estimation of the Model Parameters

In the actual application, the performance of NMPC depends on the quality of the
model. Considering this fact, steady state and and open-loop dynamic experiments
have been performed. To obtain measurements of the dynamic behaviour of the
column step changes in the feed rate

�
vol and composition

, � , the reflux rate
�

vol,
and heat input � were performed.

Measurements of all temperatures � 8 �	�
�
� � � � ��� were taken for least squares
fitting of the simulated to the observed behaviour. The assumptions for this fit are
that the tray efficiencies are constant on each of the two column sections, i.e. � � 0

1 The equilibrium temperature of the condenser mixture helps to define the temperature of
the reflux, when not specified. Otherwise, this last algebraic variable could be eliminated
without changing the dynamics.
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� � � 0 � ��� and � ��� ��� 0 � � � 0 � � , that the pressure losses are equal on all trays:
� 5 8 0 � � � 0 � 5 � , and that the molar tray and condenser holdups coincide:

�
� 0� � � 0 �

� . Therefore, the parameters to be adjusted to the dynamic experimental
data were: � loss, � � , � ��� ��� , � 5 8 , and

�
� . The parameter estimation was performed

with the off-line version of the multiple shooting method that is described below in
the context of real-time optimization. For details we refer to [14].

2 NONLINEAR MODEL PREDICTIVE CONTROLLER SETUP

As usual in distillation control, the product purities
,��

and
,��

at reboiler and con-
denser are not controlled directly – instead, an inferential control scheme which
controls the deviation of the temperatures on tray 14 and 28 from a given setpoint
is used. Earlier investigations have shown that the temperatures (respectively con-
centrations) on these trays are much more sensitive to changes in the inputs of the
system than the product concentrations [2]. It can be expected, that if these concen-
trations are kept constant, the product purities are safely maintained for a large range
of process conditions. Since the tray temperatures correspond directly to the concen-
trations via the Antoine equation and the temperatures on tray 14 and 28 are mea-
sured directly, we refine the controll objective to keep these temperatures as close to
their setpoint values as possible. In the following we will use T̃

�
z
: & 0 � � � �

� ��� �
: �

for the controlled temperatures and T̃ref
& 0 � � ref

�
� � � ref� �

	 �
for the desired setpoints.

A desired steady state x � , z � , and the corresponding control u � as well as the
steady state temperatures can be determined as the solution of the steady state equa-
tion

f
�
x �
�
z �
�
u �

�
p
: 0 0

�
g
�
x �
�
z �
�
u �

�
p
: 0 0

�
(17)

T̃
�
z �
: 2 T̃ref 0 0

�	�
In the following we will refer to this set of equations as r

�
x �

�
z �
�
u �

�
p
: 0 0. Notice

that last equation restricts the steady state to satisfy the inferential control aim of
keeping the temperatures at the fixed reference values. The necessary degrees of
freedom are the two components of the steady state controls u � .

The open-loop objective is formulated as the integral of a least squares term
� l � x � z � u � u �

�
p
: � �� with

l
�
x
�
z
�
u
�
u �

�
p
: & 0 �

T̃
�
z
: 2 T̃ref

R
�
u 2 u �

: � �
(18)

The second component is introduced for regularization, with a small diagonal
weighting matrix R 0 diag

� � � � � 	 C h l
5
�
� � � � � 	 C kW

5
� : .

To ensure nominal stability of the closed loop-system, we follow here a some-
what practical approach based on results given in [11, 15]. We append an addi-
tional prediction interval

� � 8 3 � $ � � 8 3 � � � to the control horizon
� � 8 � � 8 3 � $ � , with
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the controls fixed to the setpoint values u � determined by (17). If the control hori-
zon is sufficiently large, the closed-loop system will be stable. A horizon length of
� � 2 � $ 0 � � � � seconds proved to be sufficient in all performed experiments.

The Optimal Control Problem

The resulting optimal control problem is formulated as follows:

min
u
�

� � � x � � � � p
� � � � � �� � � l � x � � : � z � � : � u � � : � u �

�
p
: � �� � � (19)

subject to the model DAE

ẋ
� � : 0 f

�
x
� � : � z � � : � u � � : � p :

0 0 g
�
x
� � : � z � � : � u � � : � p : for � � � � 8 � � 8 3 � � �

with
u
� � : 0 u � for � ��� � 8 3 � $ � � 8 3 � � � �

Furthermore the initial values for the differential states and values for the system
parameters are given by:

x
� � 8 : 0 x

8 �
p 0 p

8 0 constant
�

All state and control inequality constraints are combined to:

c̃
�
x
� � : � z � � : � u � � : � p : � 0 � � � � 8 � � 8 3 � � � �

In particular, we require that the bottoms product and distillate streams
� 8

and � � ���
cannot become negative, which implicitly leads to “natural” upper limits on the
inputs � and

�
vol. Additionally, explicit lower and upper bounds for � and

�
vol are

given.
The steady state control us is determined by the steady state equation

0 0 r
�
xs
�
zs
�
us
�
p
: �

3 REAL-TIME SOLUTION OF THE NMPC OPTIMIZATION PROBLEMS

In this section we will describe the newly developed real-time iteration scheme
that we employed for the on-line computations in this study. For a more detailed
description of the algorithm we refer to [14]; cf. also [6, 13, 17]

The scheme is based on the direct multiple shooting method [10, 20], which is
introduced in the overview article [4] in this book (Section 5, “Introduction into
Direct Solution Algorithms”), to which we explictly refer here. We stay close to
the notation used in this article, with one important difference: in contrast to direct
multiple shooting for ODEs, we need to account for the algebraic states in the DAE
model equations.
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Direct Multiple Shooting for DAE. In addition to the differential node values s
��

(which are denoted s � in [4]), we also introduce algebraic node values s
�� . For

simplicity we use a piecewise constant control representation with control param-
eters q

8 �	�
�
� �
q � 5 � on the � multiple shooting intervals. The prediction horizon� � 8 3 � $ � � 8 3 � � � is chosen to be the last interval, so that � � 5 � 0 � 8 3 � $ and� � 0 � 8 3 � � , with constant steady state control q � 5 �

& 0 u � .
On each subinterval

� � � � � � ��� � we compute the independent trajectories x � � � : and
z � � � : as the solution of a relaxed initial value problem:

ẋ � � � : 0 f
�
x � � � : � z � � � : � q � � p : (24)

0 0 g
�
x � � � : � z � � � : � q � � p : 2 � 5�� �

�
�

�
�

��� � �
�

�
g
�
s
�� � s �� � q � � p : (25)

x � � � � : 0 s
�� � z � � � � : 0 s

�� (26)

The decaying subtrahend in (25) with � � � is deliberately introduced to allow an
efficient DAE solution for initial values s

�� that may violate temporarily the con-
sistency conditions (16) (cf. Bock et al. [7], Schulz et al. [21]). Note that the � -th
multiple shooting trajectories x � � � : � z � � � : on

� � � � � � ��� � are functions of s
�� � s �� � q � ,

and p, so that we will write: x � � �� s �� � s �� � q � � p : , and z � � �� s �� � s �� � q � � p : .
To remove the freedom introduced by the DAE relaxation, additional equalities

g
�
s
�� � s �� � q � � p : 0 0 have to be added to the NLP formulation given in [4], and

taking account of the additional variables x �

�
z �
�
u �

�
p as well of the steady state

constraint (17), we formulate the following structured Nonlinear Program (NLP)
in the unknowns � � � & 0 �

s
� 8 �
�	�
� � s � � � s � 8 �
�	�
� � s � � 5 � � q 8 �
�
�	� � q � 5 � � x �

�
z �
�
u �

�
p
:
:

min� � � � 5 ��
� � 8 * �

��� �

�
� � l � x � � �� s �� � s �� � q � � p : � z � � �� s �� � s �� � q � � p : � q � � u �

�
p
: � �� � � (27)

subject to

s
� 8 0 x0

�
p 0 p0

�
(28)

s
�� ��� 0 x � � � � ��� � s �� � s �� � q � � p : � � 0 � �
�	�
� � � 2 � �

(29)

0 0 g
�
s
�� � s �� � q � � p : � � 0 � �
�	�
� � � 2 � �

(30)

0 � c̃
�
s
�� � s �� � q � � p : � � 0 � �
�	�
� � � 2 � �

(31)

0 0 r
�
xs
�
zs
�
us
�
p
: �

(32)

3.1 Real-Time Iterations and Initial Value Embedding

In the real-time context, the above NLP (27)-(32) has to be solved several times;
a crucial observation is that the optimization problems differ only in the values x0

and p0, which enter the problem through the linear constraints (28). Instead of con-
sidering a sequence of unrelated optimization problems 5 � x0

�
p0
:
, each of which is

solved independently by an iterative SQP type method, we shift the focus towards
the solution iterations themselves: the real-time iteration scheme can be considered
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as a sequence of Newton type iterates towards the solution of the above problem,
with the particularity that the values for x0 and p0 are changed during the iterations.

The variant of the algorithm that we used in this study is based on the con-
strained Gauss-Newton method. For the current iterate � � � � and the current val-
ues

�
x
8 : � ��� and

�
p
8 : � ��� , all problem functions are linearized to yield the fol-

lowing, specially structured Quadratic Program (QP) in the variables � � � � 0
� � s

� 8 �
�	�
� � � s
�

�
� � s

� 8 �	�
�
� � � s
�
� 5 �

� � q
8 �
�	�
� � � q � 5 �

� � x �
� � z �

� � u �

� � p
:
:

min� � � �
� 5 ��
��� 8 * �

� � �

�
� � l � � � : 3 L � � � : � � s

�� � � � s
�� � � � q � � � � u �

� � � p
� : � � �� � � (33)

subject to

� s
� 8 0 �

x
8�: � ��� 2 s

� 8 � � p 0 �
p
8 : � ��� 2 p

�
(34)

� s
�� ��� 0 x � 3 X � � � s

�� � � � s
�� � � � q � � � � p

� : � � � 0 � �	�
�
� � � 2 � �
(35)

0 0 g � 3 G
�� � s

�� 3 G � � � s
�� � � � q � � � � p

� : � � � 0 � �	�
�
� � � 2 � �
(36)

0 � c̃ � 3 C̃ � � � s
�� � � � s

�� � � � q � � � � p
� : � � � 0 � �	�
�
� � � 2 � �

(37)

0 0 r 3 R
� � x �

� � � z �
� � � u �

� : � 3 R
�
� p

�
(38)

The solution � � � � � of this quadratic program is first used to determine the control
�
q
8 : � ��� & 0 �

q
8�: �43 � � q

8 : � which is immediately given to the plant, and secondly
to compute the next real-time iterate:� � � � ��� & 0 � � � �73 � � � � � � (39)

The iterations never terminate. Instead, the values
�
x
8 : � ��� and

�
p
8 : � ��� are

changed from one iteration to the next, according to the current state and parameter
estimates.

Remark 1. Note that the objective function in (33) can, neglecting a constant, equiv-
alently be written as

� � 5 �� � 8 	 � � s
�� � � � s

�� � � � q � � � � u �

� � � p
� :

h �
3 �� � � s

�� � � � s
�� � � � q � � � � u �

� � � p
� :

H � � � s
�� � � � s

�� � � � q � � � � u �

� � � p
� : � � �

with Hessian blocks and gradient vectors

H � & 0 � * � � � �
�
� L � � � : � L � � � : � � and h � & 0 � * � ��� �

�
� L � � � : � l � � � : � � �

This formulation explicitly shows that the linear least squares problem (33)-(38)
is nothing else than a finite dimensional quadratic programming problem. In fact,
the Gauss-Newton matrices H � can be regarded a cheap approximation of the exact
Hessian blocks Hexact� , as they arise in the exact Hessian SQP method.
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Remark 2. Instead of using � � � � 3 � � � � � directly as the new iterate (we call this the
warm start strategy) it is alternatively possible to account for the movement of the
horizon in time, if the multiple shooting intervals are equally spaced with interval
lengths that correspond to a sampling time. To achieve this, a shift in the problem
variables is performed before the new iterate is defined, i.e., Eq. (39) is replaced by� � � � ��� & 0 � � � � � � 3 � � � � � : , where

�
is a shift operator which removes the variables of

the first interval, shifts all variables by one interval, and appends new guesses on the
last interval. For details, see [14].

Remark 3. For the related class of shrinking horizon problems (as defined in [4]),
we can prove contractivity of the real-time algorithm under mild conditions, if plant
and model coincide after an initial disturbance [14]. The contractivity result can
conceptually be generalized to the shift strategy on long horizons, but in practice
warm start and shift strategy show very similar performance [12].

Remark 4. The formulation of the constraints (28) in the NLP (27)-(32) can be con-
sidered an initial value embedding of each optimization problem into the manifold
of perturbed problems. It allows a very efficient transition from one optimization
problem to the next: let us for a moment assume that � � � � is equal to the exact solution� � �
�� of the optimization problem 5 � � x 8 : � � � p 8 : � : , and that the above QP (33)-(38) is

formulated with the exact Hessian blocks Hexact� . Then it can be shown under mild
conditions that the next real-time iterate � � � � ��� 0 � � � �� 3 � � � � � is a first order prediction
for the solution � � � �� ��� of the optimization problem 5 � � x 8
: � ��� � � p 8 : � ��� : , i.e.

� � � � � ��� 2 � � � �� ��� � 0 �
���
�
�
�

�
x
8 : � ��� 2 �

x
8 : �

�
p
8 : � ��� 2 �

p
8 : �

�
�
�
�

�  �
even at points where the active set changes [14]. In practice, the initial value embed-
ding strategy ensures that the real-time iterates � � � � stay close to the exact solutions� � �
�� , even if a Gauss-Newton Hessian is employed instead of the exact one.

Real-Time QP Generation and Solution

The generation and solution of the structured quadratic program (33)-(38) are dove-
tailed in the real-time iteration scheme. The initial value embedding turns out to be
crucial for the real-time performance, as it allows to prepare large parts of the QP so-
lution without knowledge of

�
x
8 : � ��� � � p 8 : � ��� . The following steps are performed

during each real-time iteration:

1. Reduction: Generate the equality constraints (36) by linearizing the consistency
conditions (30), and resolve (36) to eliminate � s

�� from the problem (G
�� is

invertible due to the index one assumption). Similarly, generate (38) and resolve
it to eliminate � x �

� � z �
� � u � from the problem (assuming that the square matrix

R is invertible).
2. DAE solution and derivative generation: Solve the relaxed initial value prob-

lems (24)-(26) and compute simultaneously the directional derivatives of the
trajectories x � � � : z � � � : in the reduced directions, using the principle of inter-
nal numerical differentiation (IND) as described by Bock [9]. This yields the
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reduced version of (35).2 Linearize also the constraints (31) and generate a re-
duced version of (37).

3. Gradient and Hessian generation: Compute a reduced version of the gradient in-
tegrals h � and of the Gauss-Newton Hessian blocks H � . The sparse DAE solver
DAESOL [3] has been adapted to compute numerical approximations of re-
duced versions of h � and H � simultaneously with the sensitivity calculations
from step 2, with negligible additional costs [14].

4. Condensing: Using the (reduced) linearized continuity conditions (35), elim-
inate the variables � s

�

�
�
�	�
� � � s

�

� . Project the objective gradient and Hessian,
as well as the linearized path constraints (37) onto the space of the remaining
variables � s

� 8 , � q
8 �
�	�
� � � q � 5 �

� � p.
5. Step generation: take the current values

�
x
8�: � ��� , � p 8 : � ��� from the state esti-

mator, and eliminate � s
� 8 & 0 �

x
8 : � 2 s

� 8 and � p
& 0 �

p
8 : � 2 p, and generate a

fully condensed QP in the variables
� � q

8 �
�
�	� � � q � 5 �
:
. Solve this QP with an

efficient dense QP solver using an active set strategy. Give the value q
8 3 � q

8
immediately as a control to the plant.

6. Expansion: Expand the solution to yield values for all variables � � � � � and per-
form the iteration � � � � ��� 0 � � � � 3 � � � � � . Go to 1.

Note that the computations of step 5 are in typical applications orders of magni-
tude shorter than the overall computations of one cycle. This means that the response
delay of one sampling time, that is present in all previous NMPC optimization
schemes, is practically avoided. It is interesting to observe that step 5 corresponds to
the solution of a QP in linear MPC, which is based on a system linearization along
the currently best predicted trajectory. Note, however, that this trajectory is updated
after each iteration, and that the real-time iteration scheme maintains all advantages
of a fully nonlinear treatment of the optimization problems.

The major computational costs for each real-time iteration, those of step 2, scale
roughly linear with the number � of predicted control intervals.

A comparison of the closed-loop behaviour of the real-time iteration strategy
with a full iteration scheme, where each optimization problem is iterated to conver-
gence, can be seen in Figure 7. In the shown example scenario even the full iteration
scheme (that was started using the initial value embedding) was nearly always able
to meet the limit of

� � seconds sampling time; the comparison shows no significant
differences in the closed loop behaviour. Note, however, that bounds on the number
of iterations for the full iteration scheme are difficult to establish.

4 EXPERIMENTAL SETUP

In Section 5 we will demonstrate the real-time feasibility of the presented NMPC
scheme. Furthermore, we give a short comparison of the achieved results with a
conventional PI-controller. The purpose of the performance comparison is to show

2 Note that the full matrix X � is never computed in this partial reduction approach that was
developed by Leineweber [19].
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that NMPC does lead to reasonable performance without much tuning required. In
the following, we shortly outline the two used controller setups.

4.1 NMPC Controller Setup

For the real-time application we implemented the presented NMPC scheme using
the real-time optimization strategy given. For the NMPC setup we assume that the
column is given in LV configuration, i.e., we use

�
vol and the heat input � into

the boiler (which corresponds to the vapor flow out of the boiler) as manipulated
variable. State estimates are obtained using a variant of an extended Kalman filter.
Figure 3 shows the overall controller/plant/estimator setup. As described in Sec-

��

��

�����
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Figure 3. Closed loop NMPC setup

tion 2, we use a inferential control scheme, i.e., the product concentrations are not
directly controlled, but instead the temperatures � � � and � � � which are directly mea-
sured at the column. The deviation of these temperatures from the desired reference
temperatures � ref

�
� and � ref� � are weighted in the stage cost function, cf. Eq. (18).

State Estimation

To obtain an estimate of the 42 differential system states and of the model parameter, � we have implemented a variant of an Extended Kalman Filter (EKF). To improve
the performance of the estimator, the temperature � � � is fed into the state estimator
additionally to the controlled temperatures � � � and � � � . Together with the imple-
mented controls ( � and

�
vol), the measured feed flow rate

�
vol is also given to the

estimator. The usage of the measured heat input and reflux flow (in contrast to the
optimization output) is necessary to overcome input disturbances, since both values
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can only be controlled indirectly giving the setpoints to the low-level control loops
in the DCS.

The EKF is based on subsequent linearizations of the system model at each
current estimate; each measurement is compared with the prediction of the nonlinear
model, and the estimated state is corrected according to the deviation. The weight
of past measurement information is kept in a weighting matrix, which is updated
according to the current system linearization.

In contrast to an ordinary EKF the implemented estimator can incorporate addi-
tional knowledge about states and parameters in form of bounds. This is especially
useful as the tray concentrations have to be in the interval

� � � � � to make a reasonable
DAE solution possible. For details, we refer to [14].

In Section 5 we will consider two scenarios for the “estimates” of the feed con-
centration disturbance. In the first scenario it is assumed that the time and value of
the disturbance is known exactly and directly fed into the EKF. In the second sce-
nario we consider the disturbance in the feed concentration

, � as unknown, i.e., the
value of

, � is also estimated by the EKF.

Tuning of NMPC Controller and EKF

The NMPC controller and the EKF were tuned independently based on simulations
and measured data, respectively. The EKF receives new measurements and provides
new state estimates every 10 seconds, and the NMPC optimizer solves one opti-
mization problem in this period. The control inputs on the control horizon were
parameterized as piecewise constant, with 10 control intervals each of 120 seconds
length, followed by a prediction interval of � � 2 � $ 0 � � � � seconds with the inputs
fixed to the steady state values u � (cf. Sec. 3). Note that it does not cause any dif-
ficulty that the interval length of 120 seconds in the control horizon is not equal to
the sampling time of 10 seconds.

Implementation of the NMPC Setup

The NMPC controller was implemented on a Unix workstation running under
Linux. The open-loop optimization problem was solved on-line using our specially
tailored version of MUSCOD2 as outlined in Section 3. The EKF was implemented
using MATLAB and the integration routine DAESOL [3] to obtain the necessary
derivatives. The file transfer between the DCS and the workstation was done using
a PC connected to the DCS from which the measured and manipulated variables
could be read and written to via ftp, which was done every 10 seconds.

4.2 Configuration of the PI Control Loops

The conventional control scheme used consists of two decoupled single-
input/single-output PI loops which where already implemented on the column. In
contrast to the NMPC setup a L/D,V configuration is used. The controlled variables
are, as in the NMPC case the temperatures on trays 14 and 28. The manipulated
variables are the heat input � to the boiler (corresponding to the liquid flow V out



NMPC of a Distillation Column 377

�

�������
�
	��

����

�

� ���

���

�����������������
� ��!#"	$�

%'&
(*),+.-
� ��!#"�/�

Figure 4. Closed loop PI setup

of the boiler) and the reflux ratio
�

vol
� �

vol. However, for comparisons we plot in
section 5 the reflux flow rate for the decoupled PI as well as the NMPC controller.

PI Controller Tuning

To achieve good control performance, the PI controllers are tuned as follows: In
a first step, a Ziegeler-Nichols tuning based on the process reaction curve method
is performed for each loop. This method was chosen since it is easy to apply and
does only require single step tests. In a second step, the resulting PI controllers were
detuned to compensate for the interactions between the control loops.

Implementation of the PI Setup

The PI controllers were already implemented using the basic control function in the
used DCS. The data collection was done using a PC connected to the DCS and the
Unix workstations, compare Figure 1.

5 EXPERIMENTAL RESULTS

In this section we present results on the computational demand and performance of
the PI control setup and the NMPC controller using the dynamic optimization strat-
egy outlined in Section 3. The main result here is an experimental proof-of-concept
that NMPC can be used in real-time even for large scale models. The performance
results given are only supposed to show that NMPC, without much further tuning,
does lead to satisfying control performance.

5.1 Considered Disturbance Scenarios

The NMPC scheme and the decoupled PI controllers were tested on various scenar-
ios. As scenarios we used a series of step changes in the feed flow rate (

�
vol); a step

change in the feed composition (
, � ); and a short reflux breakdown (

�
vol 0 � � � ). In

the following figures the reflux flow rate,
�

vol, is plotted for both NMPC and PI con-
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trollers although the corresponding manipulated variable is reflux ratio, (
�

vol
� �

vol),
for the PI controller setup.

Feed Flow Change

Figure 5 shows the controlled outputs ( � � � and � � � ) and input responses (
�

vol and
� ) when the feed flow rate,

�
vol, is changed stepwise first 2 10 % at t= 0.57 h, then

3 20 % at t=1.16 h, finally 2 10 % at t=1.52 h. The plots on the left hand side show
the results of NMPC and those on the right hand side belong to the PI controller. As
can be seen, while there is no obvious difference between the two schemes in the
first phase, the performance of NMPC is better than that of PI in the second and third
phases. In the final phase, NMPC can handle with the corresponding load change in
about 20 min. whereas the PI controller requires 40 min. In the case of PI controllers,
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Figure 5. Comparison of closed loop NMPC and conventional PI controller performances for
step disturbances in � vol

the slightly higher deviation of the controlled variables from their set points can be
explained by the fact that no feedforward disturbance information is used, whereas
NMPC uses the disturbance information. This advantage of NMPC results in finding
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the optimum values for
�

vol and � at once while the manipulated variables move
very slowly for PI controllers following the change in feedback measurements.

Feed Concentration Change
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Figure 6. Step change in , � : Comparison of closed loop NMPC – for unknown and known
, � – with the conventional PI controller performances

For the next test, a step change in the feed composition is considered ;
, � is

decreased from 0.320 to 0.272 at t=1.0 h. In Figure 6, the first column on the left
hand side illustrates the results of NMPC which incorporates EKF estimating

, � .
As can be seen, the controlled outputs ( � � � and � � � ) oscillate with small deviations
from the set points but NMPC performance is still acceptable.

From the last two columns of Figure 6 it is evident that the performance of
NMPC with known disturbance in

, � outperforms the PI controller in maintaining
the controlled variable � � � .

Comparison of Real-Time Iterations with a Full-Iteration Scheme. Figure 7 com-
pares the computational and control performance of the real-time iteration scheme,
that we used in all presented experiments, with a full iteration scheme, for the same
scenario as in Figure 6 (

, � known). The full iteration scheme was initialized by
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Figure 7. Performance and CPU time comparison of real-time iterations (cf.Figure 6, , �
known) with full iterations to convergence, on a standard PC

an initial value embedding, but then iterated until a prespecified convergence crite-
rion was satisfied (KKT tolerance of

� � 5 � ). If the optimization time exceeded the
sampling time of 10 seconds, the old control was used for another sampling period.

It can be seen that the control performance is nearly identical in our example, but
that the CPU times differ significantly. Note that the real-time iteration scheme had
unused CPU capacity as the sampling time was fixed to 10 seconds in both schemes.

The CPU time variations in the real-time iterations are due to integrator adaptiv-
ity. The largest computation times occur for both schemes at the moment when the
step change in

, � happens, which makes large changes in the predicted trajectory
necessary.

Due to the unused capacity of the real-time iteration scheme, more detailed pro-
cess models are computationally feasible for the same sampling time. First experi-
mental tests with a larger and stiffer DAE model (82 differential and 122 algebraic
states) have shown that the corresponding NMPC controller is still real-time imple-
mentable [14].

Short Reflux Breakdown

In the previous two cases the disturbing effects of load changes (in the feed flow
and composition) on controlled variables are reasonably small. In order to have
large disturbance effects on � � � and ��� � we applied a reflux flow breakdown on the
system starting at 0.22 h. for a short period of time (approximately 4 minutes). After
the reflux flow is switched on again, NMPC and PI controller are able to bring the
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� � � and � � � back to their set points within 1 hour. However, both controllers lead to
slight oscillations in the closed loop.

0.5 1 1.5
68.5

69.5

70.5

71.5

72.5
NMPC

T
28

 [°
C

]

0.5 1 1.5
68.5

69.5

70.5

71.5

72.5
PI

T
28

 [°
C

]

0.5 1 1.5
86

88

90

T
14

 [°
C

]

0.5 1 1.5
86

88

90

T
14

 [°
C

]

0.5 1 1.5
0

2

4

6

8

R
ef

lu
x 

[L
/h

]

0.5 1 1.5
0

2

4

6

8

R
ef

lu
x 

[L
/h

]

0.5 1 1.5
2

2.25

2.5

2.75

3

Time [h]

H
ea

t i
np

ut
 [K

W
]

0.5 1 1.5
2

2.25

2.5

2.75

3

Time [h]

H
ea

t i
np

ut
 [K

W
]

Figure 8. Comparison of closed loop NMPC and conventional PI controller performances for
a short time reflux ( � vol) breakdown

It is interesting to note that the PI controller of ��� � shows an aggressive response
during the initial transition period. We have experienced that if the reflux breakdown
is applied for a longer period of time, the PI controller of � � � becomes completely
unstable.

5.2 Discussion of Computational Demand and Closed-Loop Performance

The presented experiments show that NMPC can handle the control problem sat-
isfactorily while being real-time implementable. The results are comparable to the
performance of (existing) PI controllers for a moderate range of disturbances.

Due to the efficiency of our real-time optimization scheme a more complex
model would still be feasible for on-line implementation.

One of the challenges to be solved is to improve the state estimation and distur-
bance detection, as load changes which are unlikely to be measured in an industrial
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application, like
, � , need to be estimated for a realistic NMPC scheme. As can be

seen in Figure 6, the closed loop performance when
, � is estimated by the EKF

could still be improved.
It is the aim of future work to show the benefits of real-time NMPC applications

for more complex processes or for a wide range of operating conditions like start-up
periods of chemical processes.

6 CONCLUSIONS

We have presented an experimental proof-of-concept of the application of NMPC
to the control of a high purity binary distillation column.

An efficient real-time optimization scheme based on the direct multiple shooting
method is described. Among its features are an initial value embedding strategy, that
allows to immediately respond to disturbances, and real-time iterations, that dove-
tail the optimization iterations with the real process development. This approach
makes sampling times of 10 seconds for a system model of 164th order possible on
a standard PC.

Our study shows that real-time implementation of NMPC using large scale DAE
models is feasible for the control of a pilot scale distillation column, if efficient
numerical optimization techniques are used.
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Abstract We propose a concept for model predictive control of large-scale dynamical sys-
tems. This concept has been designed for the optimal control of chemical engineering pro-
cesses, in particular for cryogenic air separation plants which are modelled by large systems
of coupled differential and algebraic equations of (differential) index two with state depen-
dent discontinuities. Our concept considers different time scales for various tasks which are
prescribed by the real-time nature of the process of interest. In this paper (items refer to Fig-
ure 4) the components (a)–(d) and (f) of the general concept are considered in detail. Until
now there has been a lack of a clear concept for real-time optimality. Therefore, we conclude
by discussing some fundamental issues of the notion of real-time optimality.

1 INTRODUCTION

We start with a description of the investigated application, namely the control of the
load change of air separation plants. Modelling approaches to the dynamic process
models and their resulting properties are discussed next.

1.1 An Industrial Optimal Control Challenge

Gases like nitrogen (N � ), oxygen (O � ), and
argon (Ar) are used in industry as raw ma-
terials or as auxiliary substances. E.g., ni-
trogen is the basis of fertilisers, oxygen is
required for the refinement of steel, and ar-
gon is needed for welding. At the same time,
these three gases are the main components
of air (see Table 1). Thus it appears natural
to obtain such industrial gases by the sepa-
ration of air which is available at any place

Nitrogen N � 78.084
�
vol%

�

Oxygen O � 20.946
�
vol%

�

Argon Ar 0.932
�
vol%

�

Carbon dioxide CO � � 335
�
vppm

�

Neon Ne 18.18
�
vppm

�

Helium He 5.239
�
vppm

�

Krypton Kr 1.14
�
vppm

�

Xenon Xe 0.086
�
vppm

�

Table 1: Average composition of air (w/o
variable constituents; Rohde [50])

on earth in sufficient amounts.

In 1902 Dr. Carl von Linde, the founder of the Linde AG, built the world’s
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name min max description�
mol

�
mol� �mol

�
mol�

O � LOX
��� ����� � � � O � fraction in liquid O � product

O � GOX
��� ����� � � � O � fraction in gaseous O � product

O � DLIN
��� � � � ��� � ��� � O � fraction in liquid N � product

O � GAN
��� � � � ��� � ��� � O � fraction in gaseous N � product

Ar Prod
��� �
� � � � � Ar fraction in Ar product

O � feed ArC
��� ��� � � � O � fraction in feed of argon column

Table 2. Example data for constraints to be satisfied during load changes of an existing air
separation plant of the type shown in Figure 2 (Engl et al. [19])

first commercially viable cryo-
genic air separation plant. The
idea was to liquefy ambient air
and use rectification (which can
be regarded as a highly effi-
cient form of distillation) in or-
der to obtain the various pure
fractions contained in the feed.
In industrial applications the en-
ergy consumption required for
cooling to the prescribed deep
temperatures governs the op-
erational costs of such plants.
Therefore, the different pro-
cessing parts in such air sepa-
ration plants are strongly inter-
connected in order to keep as
much of the energy within the
process as possible.

Nowadays, air separation
plants are often integral parts of

Figure 1: An air separation plant (picture by Linde
AG)

other industrial production facilities. Their typical capacities range from 25
�
t
�
d
�

(tons per day) to 15000
�
t
�
d
�

of processed air. E.g., the plant depicted in Figure 1
has a capacity of

� � � � � � � t � d
�

gaseous O � in
� � � � �% � purity and

� �
� � � � t � d

�

gaseous N � with a maximum impurity of
� � � ppm

�
O � .

A critical phase in the control of these plants occurs when a load change, i.e.,
a transition from one operational point to another one, must be performed. It is of
utmost importance that various constraints on gas concentrations at certain points in
the plant are not violated in order to guarantee safe operation of the plant and purity
of the products also during the load change (the data for an existing air separation
plant are given in Table 2). Other objectives such as maximisation of product gain or
minimisation of energy consumption are of minor importance. During a load change
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Figure 2. A simplified flowsheet of a low-pressure cryogenic air separation plant according
to Baldus et al. [1], Eich-Söllner et al. [17], Zapp [57]
main units: 1: filter, 2: compressor, 3: cooling, 4: flash, 5: molecular sieves, 6: main heat
exchanger, 7: compressor/expander, 8: cooling, 9: high pressure column, 10: low pressure
column, 11: argon column, 12: heat exchanger; products: GAN: gaseous N � , DLIN: high
pressure liquid N � , GOX: gaseous O � , LOX: liquid O � , crude Ar; controls: a: GOX drain,
b: crude Ar drain, c: Ar condenser turnover, d: reflux HPC, e: reflux LPC; constraints: (an
example set of constraints is specified in Table 2) A: O � LOX, B: O � GOX, C: O � DLIN, E:
Ar Prod, F: O � feed ArC

the controls of the process essentially consist of continuously working valves (see
Figure 2).

The numerical treatment of this difficult problem using the powerful tools of
numerical optimal control (for an overview see, e.g., Binder et al. [3]) provides
the basic motivation for the work presented in this paper; though, the techniques
presented here also apply to other optimal control problems.

1.2 Modelling of Chemical Engineering Processes

Dynamical process models of chemical engineering plants are generally described
by systems of coupled differential and algebraic equations (DAEs) in linear implicit
form�

A �
� � � x � y � u � sign q

:
A �

� � � x � y � u � sign q
:

� � � � ẋẏ � 0
�
f
� � � x � y � u � sign q

:
g
� � � x � y � u � sign q

: � (1)

where the differential variables are denoted by x
& � � ���

x , the algebraic vari-
ables are denoted by y

& � � ���
y , and the control variables are denoted as u

& � �
���

u . Furthermore, we have a regular matrix A �
& �

� � � x � � y � � u � � q
� ���

x 	 � x ,
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a general matrix A �
& �

� � � x � � y � � u � � q
� ���

x 	 � y , the differential equations
f
& �
� � � x � � y � � u � � q

� ���
x and the algebraic equations g

& �
� � � x � � y � � u � � q

�
� �

y . Typically, the model exhibits discontinuities. Advanced techniques for the ef-
ficient and reliable treatment of discontinuities are based on the availability of an
additional vector of switching functions q 0 q

� � � x � y � u : & � � � � x � � y � � u
� ���

q

which describe each discontinuity as a zero pass in one of its components (e. g.,
Eich [16]).

Due to the enormous system dimensions found in industrial applications (see,
e.g., the example given in Section 5.1), the models have to be generated by means
of computer-aided modelling tools. This large size is caused by both the complexity
of the plants and the high accuracy requirements (Table 2).

A mathematical model of a chemical engineering plant is based on the flowsheet
of the process (as an example see Figure 2). A flowsheet is a graph-oriented descrip-
tion which consists in the parts of a plant (the units) in its nodes while the edges
between the nodes represent physical flows or flows of information (the streams).
This description allows automated compilation of the entire mathematical model of
the plant using standard models of the single units. In turn, the standard models are
provided in unit libraries.

1.3 Special Properties of the Models Considered

OPTISIM – an in-house developed modelling, simulation, and optimisation tool
of the Linde AG (Burr [8]) – uses models of the form

ẋ 0 f
� � � x � y � u � sign q

:
(2a)

� 0 g
� � � x � y � u � sign q

:
(2b)

which are a special case of Eq. (1). In the applications of interest, the models show
several properties that become important factors in the design and practical applica-
bility of off-line and on-line optimal control algorithms.

Size of the Models Considered

As already noted, dynamic models of the processes of interest are of very large scale
( � x 3 � y

��� � � � � � : �
�
� � �#� � � � � : ).
Currently, the numerical simulation of such models is still only possible by ex-

ploiting the sparsity of the Jacobian matrices (about 0.01 to 0.1 percent nonzero
entries) (e. g., Eich et al. [17]). Although the Jacobians neither possess any special
structure nor in general exhibit definiteness, their sparsity allows the application
of special solvers designed for very large and sparse linear systems of equations
(Duff [15] discusses various methods).

Differential Index 2

The differential index of Eqs. (2a)–(2b) is even more important from both a theoret-
ical as well as a numerical point of view. Simply speaking, the differential index of
a DAE is the number of differentiations required in order to transform the DAE into
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an ordinary differential equation (ODE) (Brenan et al. [6]). In practice, the index of
the DAE can be regarded as a measure for the numerical (and theoretical) difficulties
connected with the treatment of the plain DAE.

The large-scale models of real-world air separation plants (an example is dis-
cussed in Section 5.1) treated so far exhibit an index of two. This index has been
verified in a structural sense (cf. Unger et al. [54]) by an analysis facility which
was recently added to the plant simulator OPTISIM (Kronseder [32]). Based on
a closer inspection of the DAEs, the higher index can be attributed in part to nec-
essary simplifications in the model equations. From a more general point of view
the connection of several index-1 unit models can produce an index of the overall
system exceeding one (Lefkopoulos and Stadtherr [36], [37]). Therefore, higher in-
dex problems are an active field of research, e.g., Gritsis et al. [46], Feehery [22],
Engl et al. [19].

General index reduction to index-1 in order to circumvent the problems con-
nected with the higher index is outweighed by its high numerical costs when applied
to the dynamic simulation of the large DAE models considered.

Discontinuities

Finally, the DAE models Eqs. (2a)–(2b) of chemical engineering processes exhibit
discontinuous changes in the model equations. The discontinuities are commonly
classified into purely time dependent discontinuities (where the time of the discon-
tinuity is fixed, e.g., in ramp forcing functions) and state dependent discontinuities
which in general occur at a-priori unknown times. State dependent discontinuities
arise, e.g., due to the physical nature of the process (such as a batch process), by the
necessity for different models in different domains in state space (e.g., the model of
an open valve differs from that of a closed valve), or by necessary model simplifi-
cations (say, continuously interpolated physical property measurements).

In order to provide an adequate treatment for these discontinuities, switching
functions q

� � � x � y � u : are employed. These functions indicate a discontinuity in the
model by a zero in at least one of q � � � � x � y � u : , � 0 � �
�	�
� �

� q. This additional
modelling effort allows for an efficient and exact location of discontinuities by root
finding algorithms (e.g., Eich [16]).

After the detection of a discontinuity the model equations are switched and the
numerical integration procedure is restarted at the switching point. In contrast to
the ODE case, in the DAE case the restart is far more complicated. Especially in
the context of higher index DAEs the determination of consistent initial values for
a theoretically satisfying and numerically flawless (re-)start of an integration is a
difficult problem and still subject to current research (e.g., Kröner et al. [29], Kro-
nseder [32]).

Yet until recently, in OPTISIM the effort required for consistent initialisation
could be circumvented utilizing a special property of the BDF method (see Section
4.1 and Sincovec et al. [52], Brenan et al. [6]). In most cases encountered it allows
to continue integration without any analysis of the DAE Eqs. (2a)–(2b). However,
the situation changes as the integration method must be extended to parametric sen-
sitivity calculations in the case of state dependent discontinuities (see Section 4).
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Figure 3. load change, and quasi-stationary operation at constant load (air input)

Consistent initialisation is required in order to perform the correct transfer of the
sensitivities across discontinuities (e.g., Galán, Feehery, and Barton [23]).

Due to its importance and level of difficulty we will treat the problem of sen-
sitivity transfer at discontinuities and the consistent initialisation problem in detail
within Section 4.

2 A CONCEPT FOR MODEL PREDICTIVE OPTIMAL CONTROL

2.1 Problem Setting

In common, cryogenic air separation plants are operated quasi-stationarily at a con-
stant load over many periods of time, i.e., the amount of processed air is kept con-
stant. From time to time, a transition of the process to a different load has to be
performed (see Figure 3); such a transition is termed a load change. For the prob-
lems treated here, a load change requires about 1–3 hours. In our framework (see
Figure 4) the operator has to specify the type of the load change, the optimality
criterion to be minimised as well as the constraints to be satisfied during the load
change. As discussed in Section 1.1 the strict fulfilment of the constraints is of high-
est priority during the load change.

We now consider the optimal control of an air separation plant in permanent op-
eration, e.g., during a year (

� � 8 � � f
� 0 � � � � � � � days). The load history (see Figure 3)

admits application of the Bernoulli/Bellman principle of optimality so that we may
split the long term optimal control problem into optimal control problems on smaller
horizons without loss of optimality. Each of these horizons covers quasi-stationary
operation at load

�
— instationary load change — and quasi-stationary operation

at load � .
The quasi-stationary points of operation can be computed efficiently, given the

specifications of the customer. Therefore we assume that the values of the state vari-
ables x �load � � � , and y �load � � � and of the control variables u �load � � � at both beginning
and end of the load change are known.

In contrast to the quasi-stationary case, the determination of load change strate-
gies was until recently almost entirely based on human expertise and experimental
data. The data needed to be obtained from expensive tests from the ready-to-use air
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Figure 4. Overall concept of a model predictive control algorithm for real-time optimal con-
trol of large-scale dynamical systems

separation plant. Nijsing [40] proposed a direct transcription method suitable for
index-1 DAE models in the context of air separation plants. A problem, however,
was the approximation of the gradients required for the sequential quadratic pro-
gramming (SQP) solver using finite differences of perturbed trajectories via external
numerical differentiation which is numerically costly, of limited accuracy, and to be
handled with great care (Kiehl [27]). In Engl et al. [19] a method for the numerical
off-line determination of load change strategies for air separation plants modelled
by large scale index-2 DAEs has been developed. This method is based on the direct
transcription of the optimal control problem into a direct single shooting approach
where reliable gradient information is obtained via the computation of the sensitiv-
ities from the efficient solution of the sensitivity DAE corresponding to the model
DAE (see Section 4 and Binder et al. [3] for details). However, only time-dependent
discontinuities in the models have been considered there.

Applying the Bernoulli/Bellman principle of optimality we now split the long
term optimal control problem into a sequence of load change problems, each of
which can be solved separately. If we consider the

 th load change on a prediction
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horizon 5 � = � � 8 � � � � f � � � covering the entire load change, the corresponding optimal
control problem incorporating the DAE model Eqs. (2a)–(2b) can be formulated as

min
u

! �
u
� 0 � � � f � � � x � � f � � : � y � � f � � : :

subject to ẋ
� � : 0 f

� � � x � � : � y � � : � u � � : � sign q
: � � 8 � � � � � � f � � �

� 0 g
� � � x � � : � y � � : � u � � : � sign q

: �
q 0 � � � x � y � u : � (3)

x
� � 8 � � : � y � � 8 � � : given

�
r
� � f � � � x � � f � � : � y � � f � � :�: 0 � �

h
� � � x � � : � y � � : � u � � : � q : � � �

where in addition to the notation of Section 1.2,

� & � � � � x � � y
� � �

r
& � � � � x � � y

� � �
r
�

and

h
& � � � � x � � y � � u � � q

� � �
h
�

In our applications, each horizon 5 � typically covers approximately one up to sev-
eral hours of real-time. The objective is constructed as a weighted sum of partial
objectives ! �

u
� 0�� �

!
�
�
u
� 3 � � � 3 � ��� ! ��� � u �#� � � � � �

corresponding to, e.g., product gain and energy consumption. In case of a parameter
estimation problem

!
describes a nonlinear least squares objective � � consisting of

a sum of squares of differences between values obtained from measurement and
simulation as, e.g., (f) in Figure 4 and Section 5.2.

2.2 Offline-Optimisation

The deterministic optimal control problem (3) is solved by control parameterisation
(direct single shooting) and nonlinear optimisation (SQP). Currently, we investigate
two types of parameterisation for the control variables:

a) full (open loop) parameterisation of the controls by piecewise polynomial shape
functions

�
u
� � � p : 0 � � I���

� p � u � � � : , p 0 �
p
�
�
�
�
�	� �

p
��

I

: � � ���
u

� �
I , p � � ���

u ,� 0 � �
�	�
� �
� I, and

b) a parameterisation according to control functions
�
u
�
x
�
p
:
, p

� ���
p that are used

in conventional (closed loop) automated control.

By substitution of the controls
�
u with their parameterised counterparts and enforce-

ment of the path inequality constraints h on a mesh
	 8 � h� � � � � � 	�� � h� ��� � 8 � � �#� f � � �

(Vassiliadis et al. [55, 56]) the infinite dimensional optimal control problem (3) is
converted into the finite dimensional optimisation problem

min
p

� ! �
p
� 0

� � � � f � � � �x � � f � � : � �y � � f � � : :
subject to ˙�x � �� p : 0 �

f
� � � �x � �� p : � �y � �� p : � p � sign

�
q
: � � 8 � � � � � � f � � �� 0 �

g
� � � �x � �� p : � �y � �� p : � p � sign

�
q
: � �

q 0 � � � �x � �y � p : � (4)
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�
x
� � 8 � � � p : � �y � � 8 � � � p : given

� �
r
� � f � � � �x � � f � � � p : � �y � � f � � : � p : 0 � ��

h
� 	�� � h� � �

x
� 	�� � h� � p : � �y � 	�� � h� � p : � p � �q : � � � � 0 � �
�
�	� � � �

Here, we use
� � as a qualifier in order to denote the functions and variables which are

derived by the parameterisation of the respective terms in (3).
Most other numerical optimal control methods (see, e.g., Binder et al. [3]) are

(currently) not suitable for the special class of problems treated in this paper. Obsta-
cles are given by, e.g., the inavailability of data required, or the size and complexity
of the processes to be considered.

2.3 A Real-Time Capable Method for Optimisation and Disturbance Rejection

In Section 2.2, the numerical off-line solution of a deterministic optimisation prob-
lem gives approximations for parameterised optimal controls

�
u � as well as for cor-

responding optimal state variable trajectories x � and y � .
Real-time control of the load change problem requires the compensation of dis-

turbances. Due to inevitable disturbances a load change implementing off-line (open
loop) computed controls without compensation by state feedback is likely to fail as
the constraints may be violated or the value of the objective may become inaccept-
able. Disturbances arise, e.g., from

– the deviation between the real-life process and its mathematical/numerical mod-
el (limited precision of modelling),

– uncertainties in the model, or
– errors in the measurement (or estimation) of actual state variables, or
– time lags between measurement, numerical computation, and the implementa-

tion of a control decision1.

Small disturbances can be compensated by (conventional) setpoint trajectory
tracking control, i.e., by enforcing the open loop computed parameterised optimal
trajectory. Using this technique, the larger the disturbances and thus the deviations
from the (parameterised) optimal reference trajectory are, the more the trajectory
obtained in real-time will differ from the optimal trajectory. Apart from the loss
in optimality the constraints will be increasingly violated as the disturbances are
growing. In the context of the application envisaged this is a serious drawback of
the method.

On the other hand, a perpetual complete recomputation of the optimal reference
trajectory according to Section 2.2 is prohibitive due to the required computation
times. As long as the disturbances are not “too large”, a possible remedy is given by
the method of linearisation of neighbouring parameterised extremals, applied here
to the parameterised optimal control problem introduced in Section 2.2. The idea
is to modify on-line the optimal trajectory which is used as a reference trajectory

1 Bellman [2] has stated the Principle of Macroscopic Uncertainty according to which per-
fect control of a large system is not possible due to the time required for the essential steps
of control.
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according to the deviations in order to approximate an optimal feedback control.
The parameterised extremals are then updated iteratively in “short” time steps.

As we will see in the following Section 3, this technique requires the compu-
tation of sensitivity functions. Until now, fully satisfactory methods for the compu-
tation of the sensitivity functions have only been developed for ODE and index-1
DAE models exhibiting state dependent discontinuities (Galán, Feehery, and Bar-
ton [23]). Currently, we extend our algorithm in order to compute the sensitivities
of large-scale index-2 DAEs Eqs. (2a)–(2b) with state dependent discontinuities (see
Section 4).

3 NEIGHBOURING EXTREMALS

The method of linearisation of neighbouring parameterised extremals has been de-
veloped in the 70s and 80s originally for indirect methods and for the coupled
boundary value system of equations of motion and adjoint differential equations
arising from the optimal control of ODE systems (e.g., Pesch [48, 49], Kugelmann,
Pesch [33], Krämer-Eis [28]). The linearisation of neighbouring extremals for pa-
rameterised optimal control problems derived from large-scale discontinuous index-
2 DAE process models Eqs. (2a)–(2b) in Section 1.3 has not previously been treated.

3.1 Solution Differentiability

In Maurer and Pesch [43, 44] solution differentiability of (infinite dimensional) op-
timal control problems

min
ũ � � f

!̃ �
ũ
� � f
� 0 ˜� � x̃ � � f � � � �

: � � � � : 3 * � f

� �

˜
 �
x̃
� �� � � � : � ũ � �� � � � : � � � � :

˙̃x
� �� � � � : 0 f̃

�
x̃
� �� � � � : � ũ � �� � � � : � � � � : � � ��� � 8 � � f

�

� � h̃
�
x̃
� �� � � � : � ũ � �� � � � : � � � � : (5)

� 0 x̃
� � � � � � : 2 r̃ini � � � � : 0 � � � 0 r̃end � x̃

� � f � � � �
: � � � � :

with respect to the disturbance parameters � � �
� �������

is examined.
The basic task is to find the control ũ

� �� � � � :�� � �
ũ minimising the objective

functional
!̃

subject to the path inequality constraints h̃
& ���

x̃ � � ũ � � � � � � � � h̃ and
the final point constraints r̃end & ���

x̃ � � � � � � � � r̃end given a nominal disturbance
vector � � �

& 0 � � � 8 . The system dynamics x̃
� �� � � � : � ���

x̃ is determined by the ODE
initial value problem f̃

& ���
x̃ � � ũ � � � � � � ���

x̃ , r̃ini & ��� � � � � ���
x̃ .

The nominal solution
�
x̃
8 � � : � ũ 8 � � :�: & 0 �

x̃
� �� � � � 8 : � ũ � �� � � � 8 : : is defined as the

solution of the optimal control problem (5) for the reference parameter � � �
& 0 � � � 8 .

Associated with the nominal solution are the adjoint variables
7 7 7 8 � � : & 0 7 7 7 � �� � � � 8 : �� �

x̃ and the Lagrange multipliers
1 1 1 8 � � : & 0 1 1 1 � �� � � � 8�: � � � h̃ .

Based on the BVP derived from the description of the optimal solution of prob-
lem (5) by variational calculus, second order sufficient conditions (SSC), and a Ric-
cati ODE related to the SSC solution differentiability with respect to the disturbance
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parameters around the nominal solution is shown. Büskens and Maurer [12] sum-
marise the results in a theorem on solution differentiability. This theorem provides
the theoretical justification for the application of neighbouring extremal approaches
in order to calculate near optimal approximations to disturbed (� � �

�0 � � � 8 ) optimal
control problems Eq. (5).

The idea of neighbouring extremals is that – given differentiability of the solu-
tion with respect to the disturbance parameters – corrections to the nominal solution
can be found according to truncated Taylor’s series expansions. E.g., for a first-order
correction of the state variable trajectory one has

x̃
� �� � � � : �

0 x̃
� �� � � � 8�: 3 �

x̃
� �� � � � 8 :� � � � � � � � 2 � � � 8 : �

The quantities
�
x̃
� �� � � � 8�:� � � �

� � ũ
� �� � � � 8 :� � � �

� � 7 7 7 � �� � � � 8�:� � � �
� � 1 1 1 � �� � � � 8 :� � � �

�
and

� � f
� � � � 8�:
� � � �

are the sensitivity differentials of the various unknowns with respect to the distur-
bance parameter � � � at the nominal solution. The question is on how to obtain the
sensitivity differentials.

3.2 Sensitivity of Parameterised ODE Optimal Control Problems

In Büskens and Maurer [11, 12] perturbed optimal control problems of the type
Eq. (5) with an eventually free final time � f

� � � are considered.
Starting point is the NLP obtained by the parameterisation of the controls in the

infinite dimensional optimal control problem Eq. (5)

min
p

!̄ �
p
� � � � : & 0 ¯� � x̄ �

�
p
� � � � : � � � � � � � : 3 � 5 ��

� � 8 � � � ��� 2 � � : ¯
 �
x̄ �

�
p
� � � � : � � � � � � � : �

subject to � 0 ¯� � � p � � � � : � � � � � � �� � ¯� � � p � � � � : � � 3 � � � � � ¯
� �

(6)

p
� ���

p contains the optimisation parameters, i.e., the shape parameters for the pa-
rameterised control functions ũ

� �� � � � :�� ū
� � � p � � � � : (see Section 2.2), and x̄ �

�
p
� � � � :

are values of the state variables on the mesh � 8 � � � � � � � � � � 0 � f. ¯� � � p � � � � :
are a collection of both point equality and inequality constraints; the explicit de-
pendency from state and control variables is dropped as both are identified by their
respective parameterised and discretised counterparts.

Of primary interest are the parametric sensitivities
�
p
� � � � : � � � � � . They are obtained

following the sensitivity analysis for NLPs given in Fiacco [21]:
Associated with the NLP (6) is a Lagrangian function

¯� � p
�

¯
1 1 1 � � � � : & 0 !̄ �

p
� � � � : 3 ¯

1 1 1 � � ¯� �
p
� � � � : �

where ¯
1 1 1 � � � ¯� are the Lagrangian multipliers. Now let

�
p
8 �

¯
1 1 1 8 :

be the solution of
problem (6) at the nominal value � � � 0 � � � 8 . Further let ¯� a be the vector of all active
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constraints ¯� � � p � � � � : 0 � , � 0 � �	�
�
� � �
¯
�

, and let ¯
1 1 1 a be the vector of associated

multipliers. Then, under the strict complementary condition (the multipliers for ac-
tive inequality constraints are positive), the nominal solution can be embedded into
a
�
� family of solutions

�
p
� � � � : � ¯

1 1 1 � � � � : : , with the
� st order sensitivities given by� �

p
���� �

�
¯

� � �
a

���� ��� � � �
�

0 2
� �

�
�

p
� ¯��� �

�
p

¯� a � �
�

�
p

¯� a � �
5
�

p � � ¯
� � �

� �� � �
�

� �
�

�
p

�	�� � ¯�
�

���� � ¯� a � p � � ¯
� � �

� �� � �
�

�

If Eq. (6) is solved with SQP methods, we can assume that the constraint Jaco-
bian

� ¯� �
p
� � � � : � � p and the gradient of the objective function

� !̄ �
p
� � � � : � � p is provided

by the user, as well as
� ¯� �

p
8 � � � � 8 : � � � � � . Still, we require the Hessians of the La-

grangian
� � ¯� � p

8 �
¯
1 1 1 8 � � � � 8�: � � p � and

� � ¯� � p
8 �

¯
1 1 1 8 � � � � 8�: � � p

� � � � . Unfortunately, the ap-
proximate Hessian

� � ¯� � � p � generated by the SQP method cannot be used due to
its lack of accuracy. Therefore, Büskens and Maurer [11] propose to compute the
Hessian explicitly after the NLP has been solved either by approximation via finite
differences (Büskens [10]) or by solution of an ODE (Büskens [9]).

First order updates to the nominal solution are then given by, e.g.,

ū
� � � p � � � � : �

0 ū
� � � p 8 � � � � 8�: 3 � �

ū�
p

�
�
p� � � � 3

�
ū� � � � � p � �� � �

�

� � � � 2 � � � 8�: �

4 SENSITIVITIES OF VERY LARGE SCALE INDEX-2 DAES WITH

DISCONTINUITIES

As we have seen in Section 2.2 and Section 3.2, parametric sensitivity functions
are a fundamental ingredient of both the off-line and the on-line optimal control
methods subject to our interest:

– In the direct optimisation method they are used in order to provide gradient
information for the underlying SQP solver.

– In the algorithm for updating optimal parameterised trajectories according to the
theory of neighbouring extremals they contain derivative information required
in order to set up a truncated Taylor’s series expansion of the trajectories.

Currently, there are three basic methods for the numerical computation of para-
metric sensitivity functions which are applied in the context of DAE models: Finite
difference approximations (e.g., Buchauer et al. [7], Schwerin et al. [53]), backward
integration of the adjoint equations (e.g., Gritsis et al. [46], Morrison and Sargent
[45]), and integration of the sensitivity equations (e.g., Heim and von Stryk [26],
Maly and Petzold [41]). Each of these methods has its special advantages and dis-
advantages. Unless dictated by the availability of software, in non-standard appli-
cations the choice of the method to be used is strongly problem dependent. Due
to reliability and efficiency considerations, an implementation should use an IND
(internal numerical differentiation) approach instead of an END (external numerical
differentiation) scheme whenever possible (Bock et al. [4], Kiehl [27]).
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4.1 Integration of the Sensitivity System by a Staggered Direct Method

In the context of the simulation and optimisation package OPTISIM, the (pa-
rameterised) optimal control problem (4), and the chemical engineering application
(cf. Section 1.1: load change of a cryogenic air separation plant), we are faced with
the following setting:

a) The model is a large scale index-2 DAE with discontinuities.
b) The inequality constraints are enforced on a grid.
c) The dimension of the space of optimisation parameters is typically small.
d) The source code of the (BDF-)integrator can be accessed (Burr [8]).

Based upon this data, our method of choice (Engl et al. [19], Kronseder [31])
is the integration of the sensitivity DAE of the model by differentiation of the inte-
grator in a staggered direct method implementation (Caracotsios and Stewart [13],
Leis and Kramer [35], Li and Petzold [38]).

Consider the parameterised optimal control problem (4) and focus on the model
DAE initial value problem

˙�x � �� p : 0 �
f
� � � �x � �� p : � �y � �� p : � p � sign

�
q
: � � 8 � � � � � � f � � �

� 0 �
g
� � � �x � �� p : � �y � �� p : � p � sign

�
q
: � �

q 0 � � � �x � �y � p : ��
x
� � 8 � � � p : � �y � � 8 � � � p : given

� (7)

Given a fixed set of parameters p, the model equations in OPTISIM are in-
tegrated using a method based on backward difference formulas (BDF) (Burr [8]).
BDF methods are implicit linear multi-step methods with variable order and variable
step-size suited for solving index-1 DAEs numerically. With a modified error con-
trol criterion they can also be used for the direct integration of semi-explicit index-2
DAEs (Brenan et al. [6]).

In the � th integration step of a BDF method the interpolating polynomial of
the ( 2 �

previously computed points
� �
x � 5�� ��� � �y � 5�� ��� : , �
�	� , � �x � � �y � : and of the

next point
� �
x � ��� � �y � ��� : is formally constructed. The new point

� �
x � ��� � �y � ��� : is

determined by the condition that the interpolating polynomial has to fulfil the DAE
at � � ��� . By extrapolation of the interpolating polynomial of

� �
x � 5�� � �y � 5�� : , �
�	� ,

� �
x � � �y � : for � � ��� , estimates (predictors)

�
xpred� ��� , �ypred� ��� , and ˙�xpred� ��� are obtained. The

BDF method with fixed leading coefficient results in the system of nonlinear equa-
tions

� 0
�
f
� � � ��� � �x � ��� � �y � ��� � p � sign

�
q
: 2 ˙�xpred� ��� 3 � �

� � ��� � �x � ��� 2 �
xpred� ��� :� 0 �

g
� � � ��� � �x � ��� � �y � ��� � p � sign

�
q
: � �

q 0 � � � ��� � �x � ��� � �y � ��� � p : � (8)

where the leading coefficient � � � �
depends on the order ( of the method and

� � ��� 0 � � ��� 2 � � is the step-size. Eq. (8) is solved by a modified Newton algorithm

�
x
� 8��� ��� & 0 �

xpred� ��� � �
y
� 8��� ��� & 0 �

ypred� ��� �
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����
� � Id 3 �

f�x
�
f�y�

g�x
�
g�y � �
�
�
x
� � �
�
�
y
� � � � 0 2

� �
f 2 ˙�xpred� ��� 3 �

����
� � � �x � � �� ��� 2 �

xpred� ��� :�
g � (9)

�
x
� ����� �� ��� & 0 �

x
� � �� ��� 3 � � �x � � � � �

y
� ����� �� ��� & 0 �

y
� � �� ��� 3 � � �y � � � � � � � � �

(
�
f�x
& 0 � �

f
� � �

x
� �
f�y
& 0 � �

f
� � �

y
�
�
�	�

). In each step of the Newton iteration, the linear
system Eq. (9) is solved by a hierarchical algorithm efficiently applying modern
direct sparse matrix techniques to the large, sparse and unstructured system matrix
(Eich-Söllner et al. [17])

� 0
���

����
� � Id 3 �

f�x
�
f�y�

g�x
�
g�y � �

Now consider the total differentiation of the corrector system Eq. (8) with re-
spect to the parameters p. This yields the linear system of equations

� 0 �
� . . . � ���� � � � ��� � 3

� �
fp
2 �

˙. . . pred 3 �
����
� � . . . pred� ��� :�

gp � (10)

where . . . 0 . . . � �� p : & 0 � � �x
� � � p ��
p
� � � �	�x 	 � p and

� � � 0 � � � � �� p : & 0 � � �y
� � � p ��
p
� � � �
�y 	 � p

denote the sensitivity matrices. On the other hand, application of the BDF scheme
to the sensitivity equations related to the original DAE Eq. (7) results in the same
linear system Eq. (10).

Thus, the sensitivity matrices can be computed after each integration step for the
state variable trajectories by (direct) solution of Eq. (10) (staggered direct method).
This step is computationally cheap, since (an approximation of) the matrix

�
is

already available in decomposed form in the modified Newton iteration Eq. (9).
Moreover, by the equivalence noted above this method corresponds to the (separate)
integration of the sensitivity equations with the same step-sizes and order sequence
as used for the original DAE which is important in the context of IND.

4.2 Sensitivity Transfer at Discontinuities

The method for the computation of sensitivity functions for very large DAE models
of index 2 described in Section 4.1 has been successfully applied to the solution
of real-life optimal control problems from chemical engineering with purely time
dependent discontinuities (see Section 5.1). In our special problem setting, the com-
putation of sensitivity functions in the general case of time- and state-dependent
discontinuities shows to be very demanding.

In the context of ODEs, the formulae for the sensitivity transfer at discontinuities
have been clearly elaborated by Rozenvasser [51]. Feehery [22] and Gálan et al. [23]
report the corresponding results for index � �

DAEs. Adapted and simplified, the
model considered consists in a sequence of DAEs�

F � � � � �x � �� p : � �y � �� p : � ˙�x � �� p : � p : 0 � � � � 5 � � � � � � � � 0 � � � �
�	�
�
(11)
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with rank
� � � �F �

� �y

� �F �
� ˙�x
� � 0 � �x 3 � �y (along the solution) (12)

where
�
x
�����	�

x is the vector of differential variables,
�
y
�����
�

y is the vector of al-
gebraic variables, p

�
� p is the vector of parameters, � � �

is the independent
variable and

�
F � � � � � �

� � �	�x � �	�y � �	�x � � p
� ���	�

x � �
�y 	 , � 0 � � � �
�	�
�
, are the different

models. The rank criterion Eq. (12) restricts the range of problems covered to ODEs
and most index-1 DAEs. In order to tackle with higher index problems Feehery [22]
applies index reduction according to the method of dummy derivatives introduced
by Mattsson and Söderlind [42]. The necessary differentiations are carried out sym-
bolically by automatic differentiation which is a feature of the underlying simulation
package ABACUSS that does not apply to OPTISIM.

Furthermore we have the (a-priori adequately defined) sets of initial conditions
and jump conditions � ( 8 � � 8 � �x 8 � �y 8 � ˙�x 8 � p : 0 �� ( � � � � � �x �� � �y �� � ˙�x �� � �x 5� � �y 5� � ˙�x 5� � p : 0 � � � 0 � � � �
�
�	�
where

� ( 8 � � � � � � � � �x � �	�y � �	�x � � p
� ���	�

x
:
,
� ( � � � � � � � � � � �	�x � �	�y � �	�x � � � p

� ���	�
x
:
, � 0� � � �	�
�	�

, and with z
� 	 �x � �y � ˙�x � , z

8 0 z
8 � � 8 � p : & 0 z

� �� p : � � � � � , z
5� 0 z

5� � � � � p : & 0
lim � � � � z

� �� p : , z �� 0 z �� � � � � p : & 0 lim � � � � z
� �� p : , � 0 � � � �	�
�	�

. The times of the
discontinuity events are given as the zeros of the scalar valued switching functions�
q � � � � � �

� � �	�x � �
�y � �	�x � � p
� � 	

:
�
q � � � � � �x � � � � p : � �y � � � � p : � ˙�x � � � � p : � p : 0 � �

The roots of the switching functions must not coincide. Later on the higher order
time derivatives ¨�x and ˙�y will be required. Given Eq. (12) these derivatives can be
obtained at a consistent point

� � � �x � �y � ˙�x � p � from the definition of index-1 DAEs ac-
cording to�� � �F � � � � �x � �y � ˙�x � p : 0 � Eq � (12)� � � �F �

� �y

� �F �
� ˙�x
� � ˙�y

¨�x � 0 2 � � �F �
� � 3 � �F �

� �x
˙�x � � (13)

In addition to the notation introduced up to now we use for z
� 	 . . . � � � � � ˙. . . � z

5� 0
z
5� ��� � � p : & 0 lim � � � � z

��� � p : , z �� 0 z �� ��� � � p : & 0 lim � � � � z
��� � p : , as well as

�
F �� & 0

lim � � � �
�
F � ��� and

�
q
5� & 0 lim � � � �

�
q � . By definition, at each discontinuity

� � , � 0� ���
		�
�	�
, the system of equations�

F ��� � ��� � 	 �x �� 	 �
y
�� 	 ˙�x �� 	

p
: 0 � (14a)�  � ��� � 	 �x �� 	 �

y
�� 	 ˙�x �� 	 �

x
5� 	 �

y
5� 	 ˙�x 5� 	

p
: 0 � (14b)�

q � ��� � 	 �x 5� 	 �
y
5� 	 ˙�x 5� 	

p
: 0 � (14c)

holds. Therefore, sensitivity of the switching time
� � 0 � � � p : with respect to the

parameters p can be obtained from total differentiation of the switching condition
Eq. (14c)
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Accordingly, total differentiation of Eqs. (14a)–(14b) with respect to the parameters
under consideration of the parametric dependency of the switching time gives the
sensitivities of the dynamic consistent initialisation problem� � �F
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In the OPTISIM environment symbolic or automatic differentiation cannot be
applied in order to derive an index-1 system from the index-2 DAE given. This,
in connection with the lack of a-priori given adequate initial conditions, has initi-
ated the development of our algorithms for consistent initialisation and sensitivity
transfer at discontinuities for index-2 DAEs.

In Kronseder [32] attempts of various authors to tackle with the problem of sen-
sitivity transfer in discontinuous DAEs are discussed. One of these methods is to
build finite differences of the jump function, i.e, of the jump conditions Eq. (14b)
in explicit form (Ertel and Arnold [20]), which has been implemented and success-
fully applied to the solution of a parameter identification problem from chemical
engineering in Kröner et al. [30]; see also in Section 5.2 below. A central point in
our implementation is the evaluation of the unknown jump function by back-tracing
according to Sincovec et al. [52]. In our case, back-tracing utilises a special property
of BDF integrators: starting from “not too inconsistent” initial values they can arrive
at a consistent solution manifold after a number of integration steps. The idea is to
reverse the direction of integration as soon as the (consistent) solution manifold is
reached; arrived back at the start of the integration the integrator should then give
the set numerically consistent initial values corresponding to the current solution
manifold.

By numerical experiments we have found that numerical differentiation of the
jump function in connection with back-tracing can give satisfactory results suitable
for the solution of “small scale” optimal control problems (cf. Section 5.2). But
when applied to problems from chemical engineering with higher levels of diffi-
culty this approach has shown a lack of reliability; especially we encountered severe
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problems during (disturbed) back-tracing, frequently resulting in aborts during the
backward integration phase.

Therefore, we have examined a second approach starting from the results of
Feehery [22] discussed above in closer detail. Our approach uses structural analy-
sis of the DAE model (Algorithm of Pantelides, Pantelides [47], Unger et al. [54])
and numerical approximation of the total time derivatives required for local index
reduction (Leimkuhler et al. [34]). A suitable set of dynamic degrees of freedom is
determined automatically by application of a structural algorithm, detail knowledge
from chemical engineering, and a heuristic method. For the solution of the nonlinear
system of reduced consistency equations several different algorithms can be applied
in combination (SQP (Gill et al. [24]), Newton, Levenberg-Marquardt and Dog-Leg
(Chen and Stadtherr [14]). In order to address the problem of obtaining suitable ini-
tial estimates (which may be a serious problem with chemical engineering models)
back-tracing (Sincovec et al. [52]) may be employed again. Further numerical re-
sults for this second approach to sensitivity transfer across discontinuities are given
in Kronseder [32].

5 NUMERICAL RESULTS

Numerical results are presented that demonstrate the efficiency of the solution pro-
cedures developed for our general concept for model-based predictive optimal con-
trol (Figure 4). The interplay between the components within the general framework
and the balancing of the different time scales as well as a comparison of numerical
results provided by the method of neighbouring parameterised extremals with the
ones obtained using a direct update of optimal controls whenever the state vector is
disturbed is a subject of ongoing investigations.

5.1 Off-Line Solution of an Industrial Optimal Control Problem

We consider a load change process of an existing air separation plant (Kröner et
al. [30]) of the type introduced in Section 1.1. The actual task is to decrease the load
of the plant from � � � % air input to � � %. In real life, the load change itself (i.e., the
reduction of the feed air) takes about one hour. The time horizon considered in the
mathematical optimal control problem (3) is from

� 8 0 ��� s � to �
f 0 � � � ��� s � in order

to be able to take into account the long range dynamics of the process especially in
the treatment of constraints.

The air separation plant is modelled by an index-2 DAE system of the form
Eqs. (2a)–(2b) consisting of about � x 0�� � � differential and � y 0 � � � � algebraic
equations. The plant model is the basis of one of the largest, nonlinear DAE opti-
mal control problems that has ever been solved numerically. However, the approach
described in this paper aims at even larger plant models.

The purity restrictions result in lower and upper path constraints for six of the
state variables, i.e., � h 0 � � ; the constraints and their bounds are specified in Table
2. The � u 0�� control variables describe the valve settings (items (a) - (e) in Fig-
ure 2). The control variables are parameterised implicitly based on functions used
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in conventional load control; altogether, � p 0�� parameters are used. The path in-
equality constraints are discretised in time on an equidistant mesh with � � nodes
yielding � �

�
� �h 0 � � � nonlinear point inequality constraints for the NLP. The ob-

jective is to maximise an integral term describing product gain. Such an objective of
Lagrange form is easily brought to Mayer form (3) by adding an additional differen-
tial equation. However, the primary interest is in finding a feasible control leading
to the satisfaction of all constraints for such a highly complex plant.

Figure 5 shows the trajectories of the relevant purities of the process, simulated
with the starting values for the optimisation parameters p. This set leads to a break-
down of the air separation process as several variables severely violate their bounds.
After successful solution of the parameterised optimal control problem (4) with the
state-of-the art SQP algorithm SNOPT (Gill et al. [24]) all purities are feasible
within their lower and upper bounds during the entire time horizon, as displayed in
Figure 6.

We have already solved the same optimal control problem using the NAG For-
tran Library implementation (NAG [39]) of NPSOL, the predecessor of SNOPT.
In the direct comparison of the two methods, SNOPT could improve the final ob-
jective by approximately � � %. Additionally, the user interaction necessary in our
NPSOL-based implementation in order to obtain a set of optimisation parameters
giving a first feasible state trajectory for this difficult problem (Kronseder [31],
Engl et al. [19]) was almost eliminated due to the sophisticated methods used by
SNOPT for generating a feasible solution starting from an infeasible point.

5.2 Parameter Identification and Sensitivity Functions

As a numerical illustration for the correct transfer of sensitivities across state-de-
pendent discontinuities using our first algorithm based on back-tracing and finite
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differencing, we now consider a parameter identification problem solved by the di-
rect shooting method described in Section 2.2 (Kröner et al. [30]).

The underlying problem arising from industrial application is the filling of in-
dustrial gases (such as N � , O � , or Ar) into high pressure gas bottles for retail. Ini-
tially, the bottles are depressurised to vacuum in order to avoid contamination of the
pure product with residue in the bottle. The process in view is the subsequent filling
of the bottles with the gas from a high pressure gas tank up to a final pressure of� � ��� bar� .

An important point in the investigation of potentials for the acceleration of the
filling process is the heat balance of the bottle system, which requires knowledge
on the coefficients for the gas-bottle heat transfer in order to determine the heat
flows in the system. As no model for prediction of heat transfer coefficients in a
fast pressurised gas volume is available from the literature, heat transfer coefficients
must be determined from measurements. The newly implemented algorithms are
applied to a model tuning problem, where in a first approximation constant heat
transfer coefficients are identified.

In the experiment, a single depressurised gas bottle is filled from a bottle bat-
tery. The valve between bottle battery and bottle to be filled is opened at time zero
and closed after 120 seconds when pressure equilibrium has been achieved. Mea-
sured observables are the temperature at the filling pipe and the temperature at the
outside of the single gas bottle. Based on measurements from an experiment with
a non-insulated bottle, � p 0�� heat transfer coefficients within the bottle are to
be determined by our dynamic parameter identification algorithm. The optimised
results (solid lines) and the 8 sampling points ( � , � ) entering the optimisation are
shown in Figure 7. YS_V01 denotes the valve position. The simulation model for
the entire process, i.e., bottle battery, the single gas bottle, piping, and valves, has
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Figure 9. Sensitivity functions of the state variables depicted in Figure 7

� �x 3 � �y 0 ����� equations and a differential index of 1. Optimisation parameters
are three heat transfer coefficients. The parameter identification algorithm finally
reduces the value of the weighted � � objective function (weighted sum of squares of
deviations between simulation and measurement) by ��� %.

A comparison of measurements at 9 points in time originating from an experi-
ment with an insulated bottle with simulation results using the heat transfer coeffi-
cients determined above show the applicability of the fitted parameters even to a not
too closely related case (Figure 8).

6 DISCUSSION OF REAL-TIME OPTIMALITY

To our knowledge, until now there has been a lack of a clear concept of real-time
optimality. Some reasoning has been done in the working paper of Engell et al.
[18]. Based on this paper, we propose the following terms concerning real-time
optimisation of large scale dynamical systems as a first step towards a more rigorous
definition of various aspects of real-time optimality:

Let there be a real-causal process2 � with time-dependent observable variables
x and y, manipulable inputs u (continuous control functions, parameters, or discrete
decision variables) and an objective function depending on the state variable and
on the control variable trajectories within a finite or infinite interval in time. The
objective may include requirements depending on time. Causality means that inputs
can influence present and future values of the observable variables only, i.e., the
same inputs up to a point in time

�
and the same initial conditions generate the same

output trajectories up to
�
.

2 i.e., a process with a time dependent evolution determined by physical laws
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Figure 10. control loop structure of real-time optimisation algorithms

The structure of information is such that the inputs at a certain time can only
be determined on the basis of the observable variables and of the requirements until
that time. These observable variables and requirements may only be available with
a delay due to measurement, transmission, or computation times. Furthermore, they
may be biased due to errors in measurement and transmission. The value of the
objective function as a function of the inputs may possess uncertainty, e.g., due to
unknown or not exactly predictable disturbances on the system of interest, imprecise
knowledge of the system, or since requirements for the process performance may
change unpredictably with time. A characteristic property of real-time optimisation
problems is the presence of incomplete information and uncertainty (e.g., current
air density or wind force at the re-entry of a spacecraft (Breitner [5])).

The task of real-time optimisation is to determine the control variables aiming
to optimise the objective variables while observing constraints if they are present.
The determination of the controls depends on the data, observable variables, and
requirements up to the respective point in time. In general, a model of the process
and of the unknown disturbances and requirements is used. The notion of “real-time
optimality” implies

1. a real process,
2. a facility in order to (one time, several times, repeatedly) interact (online) with

the process during its evolution in order to modify or control it.
3. a facility for the determination of the interactions with the process, i.e., for the

determination of the control variables, and
4. a time limit for the determination of the interactions, which is due to the inten-

tion of the obtained controls to influence the real process evolving in time (if
possible so as to obtain an optimum performance of the process for the overall
process time).

In a more general sense one could think of a control loop (Figure 10).
A critical point in the discussion of real-time optimal control is the assessment of

the performance of a process evolution. The “classical” notion of optimality means
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an optimum in the objective function during the duration of the process (in the off-
line sense) provided that complete information is available. But, as motivated above,
incomplete information is a characteristic property of real-time optimisation prob-
lems.

There are several possible criteria for the assessment of a real-time optimisation
algorithm:

1. If possible, a posteriori (offline) optimisation after termination of the process,
i.e., under the assumption that all information is known finally. (However this is
not the case with many processes, and thus often neither practicable nor reason-
able.) The a-posteriori computed off-line optimal solution gives a bound on the
best possible performance of the real-time optimal control algorithm, which is
equivalent to the solution of the optimal control problem with complete model
and arbitrary amount of computation time.
We call this notion of real-time optimality “a-posteriori optimality”.

2. Consider a deterministic mathematical model incorporating all (or at least the
most important) unknowns, and use this meta- or super-model for the analysis
of robustness-, stability-, or optimality properties.
Due to the possible applications of this notion of optimality, we call it robust
optimality.

3. It appears to be reasonable to demand from a real-time optimal control algo-
rithm that it achieves only the best possible performance that can be expected
in view of the “circumstances” present. “Circumstances” or criteria are, e.g.,

– the available information,
– the (real-)time interval available for the generation of a reaction,
– and the size of the system (i. e., the process or its model, respectively).

While the first criterion is of more fundamental nature, the second and the third
criterion are strongly related to the hard- and software available. However, these
criteria are difficult to state and define in a general sense. We call this notion of
optimality “real-time optimality”.
This notion of optimality appears to suit best with Bellman’s idea of “on-line
[optimal] control”, cf. Bellman [2, Section 14.5]: “Closely associated . . . is that
[problem] of ‘on-line’ control. Here the constraint is a novel one mathemati-
cally – one not previously encountered in scientific research. We are required to
render a decision, perhaps supply a numerical answer, within a specified period
of time. It is no longer a question of devising a computationally feasible algo-
rithm; instead we must obtain the best approximation within a specified time.”

If we are interested in a physical process or plant, the availability of an exact
a-posteriori optimal solution depends on the model of the process. Mathematical
statements can only be made on mathematical models. In common, an assessment
of the optimality of the real process cannot be made exactly. At the best one may
judge its performance based on empirical knowledge, e.g., that a method gave an
improvement of at least � % on a set of examples in relation to another known
method (Engell et al. [18]).
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7 SUMMARY

A framework for model-based on-line optimal control of air separation plants de-
scribed by very large scale DAE models of index 2 incorporating state dependent
switchings has been suggested. The method consists of various tasks to be per-
formed on different time scales. Among them are the mid-term computation of pa-
rameterised optimal controls, the short-term updates of optimal open loop reference
trajectories through linearisation, and the long-term re-calibration of dynamic model
parameters. As the key problem towards a numerical solution of these tasks the ef-
ficient computation of sensitivity functions for large scale DAE models of index 2
in the presence of state dependent switchings has been identified and discussed in
detail. After the presentation of several numerical results, the paper is concluded
with some general thoughts about various notions of real-time optimality.
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Abstract In this article an introduction to the wide field of retarded or delay differential
equations with state-dependent delays is given. Hereby, the most important features of this
type of differential equations which are profoundly different from ordinary differential equa-
tions are discussed. The presence of discontinuities in higher derivatives of the solution of
delay differential equations require suitable integration methods. Thus, an efficient numeri-
cal code for the integration of delay differential equations is presented. This code is based
on a fourth order RK one step algorithm. Furthermore, the presence of discontinuities may
lead to severe problems when parameters are to be estimated using higher order optimiza-
tion techniques. These problems are pointed out and a systematic way for the analysis of the
smoothness of a least squares objective function is presented.

1 INTRODUCTION

The main goal in this section is to give the reader an overview and some insight into
the field of retarded or delay differential equations (DDE). The main differences
between DDEs and ordinary differential equations (ODE) and the resulting prob-
lems concerning numerical simulation and parameter estimation will be pointed
out. Therefore, the remainder of this article is splitted into three parts: The first,
dealing with an introduction to DDEs and discussing special properties of DDEs,
the second, presenting requirements for the numerical simulation of DDEs, and the
third, where difficulties within parameter estimation for DDEs are discussed. In the
Sections 2 and 4 the most important parts of [5, 8], [12, 13] and [1, 2] are cited.

2 DELAY DIFFERENTIAL EQUATIONS

Delay differential equations are equations of the form

˙� ��� : 0 ����� 	 � ��� : 	 � � � � ��� 	 � ��� : :�: 	
�
�	� 	 � � ��� ��� 	 � ��� :�: :�: 	 ��� � � 8 	 � � � 	 (1)

where ˙� ��� : denotes the time derivative of � . The functions � � ��� 	 � ��� :�: � � 		� 0
� 	
�	�
� 	�
 are called the retarding arguments, retarding functions or lag functions [5].
In the literature the delayed terms � � � � ��� 	 � ��� :�: : 	�� 0 � 		�
�
� 	
 , in (1) are often
given in the form � � ��� 	 � ��� :�: 0 � 2 � � ��� 	 � ��� : : 		� 0 � 	
�	�
� 	�
 , where the functions� � �

�
: 	�� 0 � 	
�
�	� 	�
 , are called the delays. The simpliest case for a delay is a constant

delay, when
� � 0�� � holds. In this case the delay is called constant. In the case, that

the delay depends on the time
�

it is called time dependent and if it further depends
on the state � ��� : it is called state dependent [5]. With these definitions (1) is called a
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delay differential equation with multiple state dependent delays. For the rest of this
section the case


 0 � is considered for simplicity, thus, equations of the form

˙� ��� : 0 ����� 	 � ��� : 	 � � � ��� 	 � ��� :�: :�: 	 ��� � � 8 	 � � � (2)

are investigated. The results presented in the following can easily be extended to
multiple delays and the restriction to


 0 � is no loss of generality.
Delay differential equations frequently show properties which cannot be ob-

served in ordinary differential equations. For illustration consider the equation

˙� ��� : 0 ����� 	 � ��� : 	 � ��� 2 � : : 	 ��� � � 8 	 � � � � (3)

Due to the term � ��� 2 � : it is obvious that (3) is a delay differential equation. Fur-
thermore, it is evident that an initial function over � � 8 2 � 	�� 8 � has to be given in
order to define the solution to (3) uniquely.

Thus, in order to define an initial value problem, a function

� ��� :���� ��� : 	 ��� � � � 	�� 8 � (4)

where �
� 0 min	 � ��� 	 � ��� : : � 	 � � � � 8 	 � � � , has to be given. Hereby, the set � � � 	�� 8 � is

called the initial set,
� ��� :

is called the initial function and
� ��� 8�:

is called the initial
value [5, 14]. The term solution is defined in the following.

Definition 1 (Feldstein and Neves [5]). A function � ��� : is said to be a solution of
(2) and (4) if the following conditions.

(i) � ��� : is a continuous extension of
�

on � � 8 	 � � � ,
(ii) � ��� 	 � ��� :�: � �

for
��� � � 8 	 � � � , and

(iii) � ��� : satisfies (2) on � � 8 	 � � � , where the right hand derivative is used at
� 0 � 8

are fulfilled.

The existence and uniqueness of solutions have been studied by Driver [3, 4].
In these publications the author gives sufficient conditions for the existence and
uniqueness of a solution which are resumed in the following theorem.

Theorem 2 (Driver [3]). Let the following conditions hold.

(i)
�
, � and

�
are continuous with respect to their respective arguments and

�
is

bounded.
(ii)

�
satisfies a Lipschitz condition with respect to the last two arguments, � sat-

isfies a Lipschitz condition with respect to the last argument and
�

satisfies a
Lipschitz condition with respect to

�
.

Then, there exists an unique solution for the problem (2) and (4).

The function
�

is said to satisfy a Lipschitz condition in a region
�

, if the in-
equality

� ����� 	 � � 	�� � : 2 ����� 	 �
�
	��
�
: � �
	

�
� � � 2 �

�
� 3 	 �

� �
� 2 � �

�



Differential Equations with State-Dependent Delays 415

with Lipschitz constants 	 � and 	 � for all
��� 	 �

�
	��
�
:
,
��� 	 � � 	�� � : in

�
holds [3].

For delay differential equations with only constant delay
˙� ��� : 0 ����� 	 � ��� : 	 � ��� 2 	 : :

it is easier to answer the question of existence of a
solution. Given an initial function

� ��� :
on the initial set � � 8 2 	 	�� 8 � it is clear

that the delayed term � ��� 2 	 : is a known function of
�

for � � 8 	�� 8 3 	 � . Thus, the
delay differential equation becomes an ordinary differential equation. Consequently,
the question of existence on this interval can be treated using well known existence
theories for ordinary differential equations. By calculating the solution on � � 8 	�� 8 3 	 �
the delayed term is known for � � 8 3 	 	�� 8 3 � 	 � and the solution can be computed on
this time interval. By repetition of this procedure the solution may be calculated up
to any arbitrary time. This method is known in literature as the method of steps [6].

It is well known in the literature that the extension of initial conditions for a sin-
gle point (which has to be given for ODEs) to an initial set (which has to be given
for DDEs) is very significant for the continuity of the solution. In order to analyze
the solution’s continuity at the point

� 0 � 8
the left hand derivatives

��� ��� ��� 58 : ,
defined by the initial function, and the right hand derivatives � � ��� ��� �8 : , defined by
the differential equation, have to be considered for


 0 � 	 � 	���	
�
�	� . Regarding these
derivatives it is evident that a jump discontinuity may emerge at the initial point

� 8
in some derivative of the solution if

� � ��� ��� 58 : �0 � � ��� ��� �8 : for some


. Due to de-

layed terms in the right-hand side of a DDE, this jump discontinuity may propagate
to subsequent times within the solution. This effect consequently leads to piece-
wise continuous differentiable solutions. To illustrate the above effect the following
example is considered.

Example 3 (Willé and Baker [12]).

˙� ��� : 0 � ��� 2 � : 	 ��� � (5)
� ��� : 0 � 	 ��� � 2 � 	 � : � (6)

By differentiating (6) it is clear that ˙� ��� : 0 � holds on � 2 � 	 � : but using (5) leads
to ˙� ��� : 0 � on � � 	 � : . Thus, ˙� ��� : has a jump discontinuity at

� 8 0 � . The effect of
this discontinuity propagates to the points

� 0 � 	��
	 � 	
�	�
� due to the delayed term� ��� 2 � : in (5). Differentiating (5)


times leads to � �
� �
� �
��� : 0 � � � � ��� 2 � : , which

can be written as � �
� �
� �
��� : 0 ˙� ��� 2

 :
. Thus, � �

� �
� � has a jump discontinuity at� 0


. In this case � is said to have a

�  3 � : th-order discontinuity at
� 0


.

Derivative discontinuities of this type are a common feature in delay differential
problems. These discontinuities may be of importance in numerical algorithms. If
points which have insufficient continuity are disregarded in a numerical algorithm,
this may lead to the invalidity of the integration schemes used within the method.
Thus, in a numerical code it is necessary to know the positions and the orders of
the derivative discontinuities. It can be shown [4, 14], that all derivative discontinu-
ities originate from the initial set or point. Thus, it is sufficient to understand how
discontinuities propagate through the solution. In the following, the main results
from [5, 8] concerning the propagation of jump discontinuities within the solution
of a delay differential equation are presented.



416 E. P. Hofer, B. Tibken, and F. Lehn

In order to analyze the mentioned propagation of derivative discontinuities the
following definitions are given and will be used repeatedly. The following definition
introduces the terms compatibility and incompatibility for the initial function

� ��� :
.

Throughout the following text the standard notation ��� � � � is used to denote the set
of all functions whose first � derivatives exist and are continuous on the closed set
�
.

Definition 4 (Feldstein and Neves [5]). The initial function
� ��� :

of (4) is called�
-incompatible, provided

� � � is the least integer such that� ��� � ��� 58 : �0 � ��� � ��� �8 : . If no such finite
�

exists, then
�

is called compatible.

In the following a definition of a multiple zero is given, which can be regarded as a
left-handed multiplicity.

Definition 5 (Feldstein and Neves [5]). Let � be a real number in the range of� ��� 	 � ��� :�: for
� � � � 8 	 � � � . Denote � ��� : � � ��� 	 � ��� : : 2 � . 	 will be called a (left-

handed) zero of multiplicity 
 of � ��� : provided:

(i) � � 	 : 0 � ,
(ii) � ��� � � 	 5 : exists from the left,

(iii) 
 � � is the least integer such that � ��� � � 	 5 : �0 � .

Definition 6 establishes the term of a �� extension of a function.

Definition 6 (Feldstein and Neves [5]). Let
� 8 � � � � �

� and � ��� : � ��� � � 8 	 � � � .
The function � � ��� : defined on � � 8 	�� � � will be said to be a �� extension of � ��� : from
� � 8 	 � � � to � � 8 	�� � � provided

(i) � � ��� : 0 � ��� : for all
��� � � 8 	�� � � ,

(ii) � � ��� : � � � � � 8 	�� � � .
The following Definition 7 gives a precise definition of the term changing sign.

Definition 7 (Feldstein and Neves [5]). A function � ��� : is said to change sign at a
point

� 0 	 provided there exists an open interval � containing 	 on which for all� � � either

� ��� :
�� � � � for

� ��	 	

0 � for
� 0 	 	

� � for
� � 	 or � ��� :

�� � � � for
� ��	 	

0 � for
� 0 	 	

� � for
� � 	

It should be mentioned that Definition 7 excludes functions like sin � �
�� at
� 0 � [5].

In the following definition 8 smoothness properties of the problem (2) and (4) are
specified.

Definition 8 (Feldstein and Neves [5]). Problem (2) and (4) has continuity class� � � , if and only if the following hold over the appropriate domains:

(i) All of the mixed partial derivatives
� ��� ��� � are continuous for all

� 3�� 3  � � ,
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(ii) All of the mixed partial derivatives � ��� � are continuous for all
� 3 � � � ,

(iii)
� � ��� � � � 	�� 8 �

In Definition 8 the quantities
� ��� ��� � and � � � � are abbreviations for the partial deriva-

tives

� � � ��� � � 0
� � � � � � ��� � 	�� 	�� :
� � � � � � � � � 	

(7)

� ��� � � 0 � � � � � � � 	�� :� � � � � � (8)

where
� 	 � 	  0 � 	 � 	��
		�
�
� . In the following definition some notation conventions on

the location and the order of discontinuities and their relation are given.

Definition 9 (Feldstein and Neves [5]). Derivatives are denoted by lower case let-
ters. � and 	 denote points of discontinuities in derivatives of � , while

�
and

�
are

the lowest derivatives of � that jump at these points, respectively. Specifically, let	 � � 8
denote a point of a jump discontinuity of some derivative of � . Then

1. 	 and
�

are related as follows:
�

is the positive integer such that

� � � �
5
� � 	 : and ���� � � � 	 : �

2. � and 	 are related as follows: 	 � � and

� 0 � � 	 	 � � 	 : : � (9)

3. � and
�

are related as follows:
�

is the positive integer such that

� � � �
5
� � � : and ���� � � � � : �

4. Let
�

and � be integers such that ��� � � � . For � � � � 8 	 � � � and 	 � � , denote

� �� � � 2 	 	 � 3 	 � 0 � � � � 2 	 	 � � � � � � � 	 � 3 	 � � � � � � 2 	 	 � 3 	 � � (10)

For simplicity, when � and 	 are understood, denote this by � �� .
5. Since � �� � � �� 5 � , we consider the set differences


 �� � � �� 5 � 2 � ��
�

(11)

If � ��� : � 
 �� � � 2 	 	 � 3 	 � , then both of the limits � � � � � � 2 :
and � � � � � � 3 :

exist and are finite but � � � � � � 5 : �0 � � � � � � � : �
(12)

6. For � � � � �>:�� �
8
� � � denote

� � �
�� 0 max � � ��� : � for

� � �
.

Due to the incompatibility of the initial function
�

jumps in � �� � for 	 � � 3 � can
be propagated. If � � � � jumps at � , one would expect that � � � � � � jumps at 	 � � ,
but not � � � � , where 	 satisfies (9). In other words, one would expect that

� 0 � 3 � .
However, the connection between

�
and

�
is a function of 
 , the multiplicity of

the solution to (9) which was proved in [8]. The following theorem establishes this
connection precisely.
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Theorem 10 (Feldstein and Neves [5]). Let the problem given by (2) and (4) have
continuity class � � � . For � � � � 8 	�� � � , let the integer

� � � � 	 � � be such that� � � �� 5 � � � 2 	 	 � 3 	 � for some 	 � � . Assume that there exists a least number	 � � � 	�� � : such that 	 is a zero of integer multiplicity 
 � � of � ��� 	 � ��� : : 2 � .
Then � � � � � � 	 2�� 	 	 3 � � for some � � � (thus

� � 	 3 � ) where

(i) 	 0 � if 
 is even,
(ii) 	 0 min

� � 	 
 � : if 
 is odd.

The solution of (2) and (4) has � 3 � continuous derivatives except at the various
derivative jump points if the problem has continuity class � . Furthermore, if, for
example, � is piecewise monotone these jump points are isolated. However, it may
appear that the jump points have a finite cluster point. This appears, if the following
equation holds true for a clustering sequence of propagated jump points � � ��� .

� � 0 � � � � � � 	 � � � � � � :�: and lim��� � � � 0 � �
(13)

Using the continuity of � and � this results in

� 0 � � � 	 � � � : :

if the limits are taken in (13). This relationship leads to the following proposition.

Proposition 11 (Feldstein and Neves [5]). Let the problem given by (2) and (4)
have continuity class � � � . Then either the jump points are isolated or they cluster
at a fixed point of � .

If it is assumed that � is a fixed point of � then either � is the limit of an infinite
sequence of jump points of � �� � for various 	 , or it is not. If � is not such a limit,
then the right-hand side of (2) belongs to ��� which is implied by Definition 8.
Furthermore, this means that � � �� � � in a neighborhood of � which follows by
differential equations theory. If � is the limit of such a sequence of jump points,
then � � ��� � � in a neighborhood of � is true again because � � ��� � � between
jump points and the fact F4 (generalized smoothing) given below implies that the
smoothness of � ��� : increases by at least one at each successive jump point. Thus,
the following proposition is formulated.

Proposition 12 (Feldstein and Neves [5]). Let the problem (2) and (4) have conti-
nuity class � � � . If � is a fixed point of � , then � � ��� � � in a neighborhood of
� .

In order to develop a � th order numerical method, it is of extreme importance to
locate points where � �� � , for 	 � � , actually jumps. By the Propositions 11 and 12
such jump points are isolated, and neighborhoods of fixed points of � may be ig-
nored without loss of generality. This setting is stated in the following hypothesis 13
which expresses that one isolated jump point is propagated from another.
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Hypothesis 13 (Feldstein and Neves [5]). Let the problem given by (2) and (4)
have continuity class � � � . Let

�
be an integer satisfying

� � � � 	 � � . Let

� ��� : � 
 � � �� � 	 2 � 	 	 3 � � � 
 � � ��
� � 2 	 	 � 3 	 � 	 (14)

for some integer
� � � � 	 � � , where � 0 � � 	 	 � � 	 :�: and

� 8 � � 2 	 � � 3 	 �

	 2 � � 	 3 � � �
� .

Additionally, the following theorems hold true.

Theorem 14 (Feldstein and Neves [5]). Let 
 be the multiplicity of the zero 	 of� ��� 	 � ��� :�: 2 � . Then Hypothesis 13 implies that 
 is odd and 
 � � � 3 � .
Theorem 15 (Feldstein and Neves [5]). Let � � and �

� � be any two ��� � � exten-
sions of � , the first from � 	 2 � 	 	 � forward to � 	 2 � 	 	 3 � � , and the second from
� 	 	 	 3 � � back to � 	 2 � 	 	 3 � � . Similarly, let ��� and ����� be any two ��� � � exten-
sions of � , the first from � � 2 	 	 � � to � � 2 	 	 � 3 	 � , and the second from � � 	 � 3 	 �
back to � � 2 	 	 � 3 	 � . Let Hypothesis 13 hold. Then, for all � � min

� 	 	 � : ,
� � � � 2 � � � � 5�� � � �� 0 � � � � : 	 � � � 2 � � � � � � � � �� 0 � � � � : 	� � ��� 2 � � � 	 5�� � 	 �� 0 � � � � : 	 � � � 2 � � � 	 � 	 � � �� 0 � � � � : �

Subsequently, these and other results from [5, 8] are summarized by the use of a
directed graph given in Figure 1, which shows a typical jump discontinuity situation.
Each node, denoted by a dot in the graph represents a zero 	 of odd multiplicity of� ��� 	 � ��� :�: 2 � for some appropriate � . By Theorem 14 zeros of even multiplicity
of � ��� 	 � ��� : : 2 � do not lead to jump points and for this reason they are excluded
from the graph. The propagation of a jump discontinuity from � to 	 is denoted by
an arrow where 	 is the tip of the arrow, and � 0 � � 	 	 � � 	 : : is at the tail of the
arrow. It is clear that each 	 has only one immediate ancestor � , but however, each� could be the immediate ancestor to many different nodes 	 where the number of
such nodes may be infinite. A linearly ordered, connected collection of nodes and
arrows beginning at level 0 is called a chain of jump points. Theorem 10 implies that
each node is a possible jump point for some derivative of � . For the scenario given in
Figure 1, level 1 consits of four nodes which represent all zeros of odd multiplicity
of � ��� 	 � ��� :�: 2 � 8

for
� � � � 8 	�� � � . In terms of the graph the facts F1 and F2 given

below represent the Theorems 10 and 14, respectively. The remaining facts belong
to theorems which have been proved in [8]. For the following nine facts (F1) - (F9)
cited from [5] it is assumed that Hypothesis 13 holds and that

�
is
�
-incompatible

with
� � � .

F1. Let 	 be a node at level


and � be its unique ancestor in level
 2 � . Then � � � �

is continuous at
� 0 	 for 	 � min

� � 	 
 � : , where the odd integer 
 is the
multiplicity of the zero 	 of � ��� 	 � ��� : : 2 � . Each chain terminates when 	 0 � .

F2. If 	 is a jump point for the
�
th derivative of � , then 	 is a root of � ��� 	 � ��� :�: 2� 0 � , and 	 has odd multiplicity 
 � � � 2 � : � � . Equivalently, if � is the

immediate ancestor of 	 and if 
 is the multiplicity of the zero 	 , then � �

 � � �� � � 2 	 	 � 3 	 � for some 	 � � � 2 � : � 
 .
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Level 1

Level 3

Level 2

Y

Z

Figure 1. � is a multiple root of � ��� ��� ��� � ���	�
�
�

(with odd multiplicity), from [5]

F3. The graph contains all possible jump points of the first � derivatives of the so-
lution � . Each node represents the location of a simple jump in some derivative
of � , and 
 ��� 	 � ��� :�: changes sign at each node of the graph.

F4. Let � � be the highest derivative of � that is continuous at all nodes in level
. Then � � �

�
�

� � 3 � . (This means that descending a chain increases the
degree of smoothness of � by at least 1. This is called generalized smoothing.)

F5. If 
 ��� 	 � ��� :�: is a strictly increasing function, the graph degenerates to a linearly
ordered chain.

F6. If � is finite, then so is the chain and it has no more than � levels. If � is infinite
and 
 is strictly increasing, the linearly ordered chain is infinite, and the nodes
along any chain can cluster at a fixed point at a fixed point of 
 ��� 	 � ��� :�: .

F7. If for all
� � � � 8 	�� � � either 
 ��� 	 � ��� :�: � � 8

or 
 ��� 	 � ��� : : � � 8
, then the graph

degenerates to the singleton node
� 8

.
F8. If 
 is piecewise monotone, then the graph cannot be infinitely broad without

being infinitely long, and if, in addition, � is finite (i.e., the graph is not infinitely
long), then the graph has a finite number of nodes.

F9. For every node on the graph, there exists a unique finite chain of ancestors
connecting it to

� 8
. Further, the graph has no cycles (closed chains); that is, the

graph is a tree.

2.1 Propagation of Discontinuities in Systems of DDEs

The aim in this subsection is to give some insight into the propagation of disconti-
nuities within systems of delay differential equations, denoted by

˙�
��� : 0 � ��� 	 �

��� : 	
�
� 
 �

��� 	
�
��� : :�: 	
�
�	� 	

�
� 
 � ��� 	 �

��� : :�:�: 	 ��� � � 8 	�� � � (15)

where � is a known function and

�
��� : 0�� ��� :

(16)

for �
� � � � � 8

is given. Here �
��� : � ���

and � and � are known functions with
appropriate dimension. The delays �
 � � are again required to satisfy

� � � 
 � ��� 	 �
��� : : � � � � 	 � � � � 8 	�� � � �
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Subsequently, results of [12, 13] are presented concerning the propagation and the
tracking of discontinuities in systems of delay differential equation of the form (15)
and (16). The latter citations should be referred for further information. Apart from
scalar delay differential equations ( � 0 � ), where discontinuities may propagate
between various time instances, for systems of delay differential equations discon-
tinuities additionally may propagate between various components of the respective
state vector � . Although the vector representation (15) is a very compact description
of the system, it neglects large parts of the system’s relevant structure. This structure,
however, is of high importance for the analysis of the propagation and the tracking
of discontinuities within the solution to the system. In analogy to systems of ordi-
nary differential equations, any vector representation of delay differential equations
can be expressed as a system of coupled scalar equations.

If, for instance, the
�
th component of

�
depends on

 � components of the current
solution �

��� :
and �

 � components at retarded times � 
 ������ � then the
�
th component

can be written as
� � �
� � 0 � � � � 	 � � � � 		�
�
� 	 � � � � �

	 � � � � � 
 �� � ����� 	 �
:�: 	
�	�
� 	 � � ���

� �
� 
 �� ���� � ��� 	 �

: : � �

In the above equation the sequences � � � and 
 � � index the required solution com-
ponents. It should be mentioned that for each

�
the number of arguments � 3

 � 3 � �
in general is not the same. Thus, the whole system (15) can be written as
� �
�� � 0 �

� �
� 	 � � � � 	
�	�
� 	 � � �

�
� 	 � � � � � 
 �� � ����� 	

�
: : 	
�	�
� 	 � � �

�
�
� � 
 �� �

�
�
� ��� 	 �

:�: � 	
� � �
� � 0 �

� � � 	 � �
	 � 	
�	�
� 	 � ��	 � 	
	 � ��	

� � 
 ���	 � ��� 	 �
: : 	
�	�
� 	 � � 	�

� 	
� 
 �� 	��� 	 ��� 	 �

:�: � 	
...

� � �
� � 0 � � � � 	 � � � � 	
�
�	� 	 � � � � �

	 � � � ��� 
 �� � � ��� 	 �
: : 		�
�
� 	 � � � �

� �
� 
 �� � �� � ��� 	 �

:�: �
subject to appropriate initial conditions. In order to analyze the way in which dis-
continuities are propagated through systems of delay differential equations, two new
terms have to be introduced. These terms are those of strong and weak coupling
whose definitions [12] are given below. In [12] it is shown, that the

�
th component

of the solution � � can only have a discontinuous derivative if

(i) it inherits a discontinuity from some other component of �
��� :

or
(ii) some of its delays 
 ������ ��� 	 �

��� : :
lie on a past discontinuity

provided that
� � and �
 � � are sufficiently smooth.

These two modes of propagation (i) and (ii) given above correspond to the def-
initions of strong and weak coupling which have already been mentioned. The fol-
lowing two definitions are precise statements for these terms.

Definition 16 (Willé and Baker [12]). A component � � ��� : is strongly coupled to a
component � � ��� : if � � ��� : appears and is referenced in either the argument list of

� �
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or in a lag function 
 referenced by
� � . This means that a discontinuity in � � ��� : is

directly inherited to � � ��� : . Then one says that
�

is strongly coupled to � , which is
denoted by ��� � .
Definition 17 (Willé and Baker [12]). A component

�
is weakly coupled to � if

� �
depends on the component � � at some previous time. This is denoted by � � �

.

Graphical representations of the strong ( ��� � ) and weak ( � � �
) coupling relation are

given in Figure 2.

j

i

j

i

(a) (b)

Figure 2. Graphical representation of strong and weak coupling.

The following example clearly illustrates the coupling properties.

Example 18 (Willé and Baker [12]). Consider the system

˙� �
��� : 0 �

�
��� 	 ��� ��� : 	 �

�
��� 2 � :�: 	

˙� � ��� : 0 �
�
� �
�
��� :�: 	

˙��� ��� : 0 � � ��� 	 � � � 
 ��� 	 � � ��� : :�: : 	
˙� � ��� : 0 � � � ��� ��� :�: �

(17)

given with appropriate initial conditions. Then, � � � , � � � ,
� � � , � � � , � � � , and

� � � holds.

A graphical representation of these coupling dependencies can be given in a so
called dependency network, where the strong coupling is indicated by solid and the
weak coupling by dashed lines. The collection of all dashed lines herein is then
called weak dependency network and the collection of all solid lines analogously
strong dependency network. In this way the dependency network consists of two
parts, the weak and the strong dependency network. Thus, the dependency network
for the example above is given in Figure 3.

1
2

3 4

Figure 3. Dependency Network for Example 18, from [12].
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The main result from [12] is given in the following theorem.

Theorem 19 (Willé and Baker [12]). In terms of the dependency network, the or-
der of a propagated discontinuity increases by at least one for each node of the
network it crosses. Extending this principal across many nodes the minimum degree
of smoothing between any two points is equal to the minimum distance between
them taken along the directed graph.

In order to illustrate this statement assume, for example, that a discontinuity of order
occurs in � � of (17). In terms of the dependency network given in Figure 3, this

discontinuity may propagate to a discontinuity of order at least
 3 � in � � and to

a discontinuity of order at least
 3 �

in � � and so on. Theorem 10 clarifies that
there is no way, of course, of getting information from the dependency network
wether these minimum bounds are in fact achieved. This will in general depend on
the precise nature of � � � � and � 
 � � (also see fact F4, generalized smoothing, in the
preceeding section for the case of scalar equations).

The main difference between the coupling structure in systems of ordinary dif-
ferential equations and systems of delay differential equations consists in the effect
of weak coupling. While strong coupling is common to systems of ordinary and de-
lay differential systems the weak coupling sets delay equations apart from ordinary
equations since it cannot appear in ordinary systems. In order to gain some insight to
the structure of delay differential systems it has to be annotated that the strong cou-
pling governs the propagation of discontinuities within a given time instant, whereas
weak coupling is responsible for the propagation directly from one time instant to
another. For illustration consider the following example.

Example 20 (Willé and Baker [12]).

˙� � 0
�
�
� � � 	 � � ��� 2 � :�: 	

˙� � 0 �
�
� � � : 	

˙��� 0 � � � �
�
: (18)

where � � � � are analytic, with its associated dependency network shown in Figure 4.

1

2

3

Figure 4. Dependency Network for Example 18, from [12]
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t

1

2

3

1

2

3

1

2

3

Figure 5. The role of strong and weak coupling, from [12]

Since the weak coupling propagates discontinuities between various time in-
stants the dependency network shown in Fig. 4 can be expanded along the time axis.
The corresponding figure is given in Fig. 5. It shows the strong dependence network
lying in a plane perpendicular to the

�
-axis which represents that the strong coupling

is responsible for the propagation of discontinuities within a specific time instance.
Furthermore, one observes the weak coupling network expanded along the time axis
representing the propagation of discontinuities between different times. From this
figure it is also clear that the order of an inherited discontinuity does not only de-
pend on the overall order of the solution at the previous time, but on the order of a
specific component. From Figure 5, for example, it is clear that the minimum order
of smoothing between successive discontinuities is of order two and not of order
one which would have been expected.

3 NUMERICAL SIMULATION

The main goal in this section is to point out the basic requirements in order to de-
velop a code for the numerical integration of delay differential equations. For sim-
plicity of exposition scalar delay differential equations with respective initial func-
tions in the form given by (2) and (4) are considered. The delay differential equation
may be solved by combinig an interpolation method for evaluating delayed solution
values with an integration method for ordinary differential equations. However, due
to the presence of derivative discontinuities within the solution of a delay differen-
tial equation this approach may not be adequate since the presence of discontinuities
may invalidate the integration and interpolation schemes. Thus, in a numerical code
it is necessary to know the positions of derivative discontinuities [5, 11, 14]. In [5]
the authors show that the insertion of positions of discontinuities into the time grid
for the numerical integration ensures the order of the applied integration method.
In Figure 6, taken from [5], a flow diagram for the numerical integration of delay
differential equations is printed. In this figure one observes an index � , counting the
current position on the time grid � � 8 	�� �

	
�	�
� 	 ��� � where
��� 0 �

� holds and an index�
, counting the positions of already detected discontinuities 	 � � � where 	 � � � 0 � 8

holds. Within the time grid a fixed step size � such that � � 0 � � �
�
2 � � holds



Differential Equations with State-Dependent Delays 425

Start
x (t)= (t) , t t

Z =t , j=0 , i=1
h h 0

h, 1 0

f £

Is
j<N

Calculate via one-step algorithmx (t )h j+1

Is

{

for any

a a £

£ £

(t ,x (t ))-Z }{ (t ,x (t ))-Z } 0

1 s i
j h j s j+1 h j+1 h, s

By some iterative technique (bisection,
Newton's method) find the appropriate

zero [ ] of - where is

the integer implying the "yes" branch
above. Set = . Calculate .

Z t ,t (t,x (t)) Z s

Z Z x (Z )

h j j+1 h h, s

h, i+1 h h h

Î a

Recalculate using in one-step methodx (t ) x (Z )h j+1 h h

i=i+1

j=j+1

Stopno

no

yes

yes

Figure 6. Flow diagram for the numerical integration of DDEs, from [5].

is assumed. Subsequently, the steps within the flow diagram are explained, where
quantities indexed with � , e.g., � � ��� : or 	 � � � , denote approximations to the exact
quantities which are not indexed. The main loop stops if � � � holds, that is, the
integration has finished over the integration interval � � 8 	 � � � since

� � 0 � � 0 �
�

holds. For � � � , that is, the integration has not finished yet, we further consider
an integration step from

� � to
� � �

� where
� � and

� � �
� are given and � � ��� � : has al-

ready been calculated in the previous integration step. The first action then is to
calculate � � ��� � � � : via an one step method, which is used for the integration, e.g., a
Runge-Kutta method. Thereafter, it is verified if a discontinuity occured within the
considered time step by checking if

� 
 ��� � 	 � � ��� � : : 2 	 � � � :
�
� 
 ��� � � �

	 � � ��� � �
�
:�: 2 	 � � � : � � (19)

holds for any index �
� � � 	� � . In the literature the above equation is called track-

ing equation [5, 14] since it checks if � � ��� : � 0 
 ��� 	 � � ��� : : 2 	 � � � changes sign
on

� � � � � 	�� � �
� � which characterizes the occurence of a discontinuity in this inter-

val and therefore allows to track their propagation. If this condition is not satisfied
the already calculated solution � � ��� � � � : is valid and the integration proceeds. If not,
that is a discontinuity is detected within � � � 	�� � � � � for some position of a past discon-
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tinuity 	 � � � with �
� � � 	� � , then the position of the propagated discontinuity 	 � � � � �

in � � � 	�� � � � � is calculated using some iterative method by solving � � � 	 � � � : 0 �
and accordingly the index

�
is incremented by one. Once calculated the position	 � � � � � it is included into the time grid, that is

� � � 	 � � � � � � � � �
� and accordingly

� 0 � 3 � , and the solution at 	 � � � � � is calculated in a step from
� � to 	 � � � � � .

Finally, the required solution at
� � �

� is calculated in a step from 	 � � � � � to
� � �

�
and the main loop is proceeded. In this way one is enabled to integrate any delay
differential equation with state dependent delay. The extension to multiple delays is
obvious by evaluating the tracking equation for all possible delay functions � 
 �

�
: � .

Subsequently, it is assumed that 	 � � � � � is a root of 
 ��� 	 � � ��� :�: 2 	 � � � 0 � where� � ��� : was a � th-order approximation to � ��� : and where 	 � � � is an approximation
to the position of the discontinuity 	 � . The position 	 � itself is the ancestor of	 � � � . Because 	 � and 	 � � � are the locations of discontinuities it is assumed that
they are zeros of odd multiplicities

�
and

�
, respectively, of equations of the form


 ��� 	 � ��� :�: 2 � 0 � . Under these assumptions the following theorem proved in [9]
holds.

Theorem 21 (Neves and Thompson [9]). If

� 	 �
2 	 � � � � 0 � � � � : 	 � 	 � � � 2 	 � � � � � � 0 � � � � : 	 (20)

then

� � ��� : 2 � � ��� : � 0 � � ��� : 	 where � 0 min
� � 	
 � 	

�
� :

and � � ��� : is the � th-order numerical solution to the problem (2) and (4).

The above theorem states that if the products,

 �

and �
�

, are equal to � or exceeding� , the � th-order convergence will be preserved in crossing approximate locations of
discontinuities when using a suitably modified � th-order integration method. Thus,
the theorem sets a standard for “how accurate” the approximate locations of a dis-
continuity must be calculated in order to maintain the � th-order convergence of the
underlying integration method.

Furthermore, if a numerical interpolation method for the calculation of past so-
lution values � � � 
 ��� 	 � � ��� : :�: is considered the overall order �� of an integration
method implemented according to Figure 6 is given by

�� 0 min� � 	�� � (21)

whereby � is the order of the applied one step integration method and
�

is the order
of the applied interpolation method [10].

A modified 4th-order Runge-Kutta method (� 0 � ) for the use with delay diffe-
rential equations has been presented in [7] where the solution at

� � �
� is calculated

by

� � ��� � �
�
: 0 � � ��� � : 3 �

�
� 
�
3 � 

� 3 �  � 3 �� :
(22)
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where
� 0 � � �

�
2 � � holds and the quantities


� ,


� ,

 � , and
 �

are given by

� 0

� ��� � 	 � � ��� � : 	 � � � 
 ��� � 	 � � ��� � :�:�: : 	 (23)

� 0 � � � � 3 �

�
	 � � ��� � : 3 �

�

�
	 � � � 
 ��� � 3

�
�
	 � � ��� � : 3 �

�

�
: :�� 	

(24)

 � 0 � � � � 3 �
�
	 � � ��� � :�: 3 �

�

�
	 � � � 
 ��� � 3

�
�
	 � � ��� � :�: 3 �

�

�
: : � 	

(25)
 �

0 � ��� � 3 � 	 � � ��� � : 3 �  � 	 � � � 
 ��� � 3 � 	 � � ��� � : 3 �  � :�: : � (26)

A possible 4th-order interpolation method (
� 0 � ) for the calculation of past solu-

tion values � � � ˜� : with ˜� � � � � 	 � � �
� � is the two point hermite interpolation method

where � � � ˜� : 0 � � � � 3 �

�
�
˙� � � � 3 �

�
���
�
2 �

�
���
�
3 � � : :�: (27)

using the notations � � � � 0 � � ��� � : , � � � � � � 0 � � ��� � �
�
:
, ˙� � � � 0��� 
 � � ��� � : , ˙� � � � � � 0�� 
 � � ��� � � � : and

� � 0 � � �
�
2 � � 	 �

� 0 ˜� 2 � � 	 �
� 0 ˜� 2 � � �

�
	

�
� 0

�

�
� �

	 �
� 0

�
�
� �

	

�
� 0

� � � � �
�
2 � � � �
� �

2 ˙� � � � 	��
� 0

� � � � �
�
2 � � � �
� �

2 ˙� � � � � �
holds. Combining these two methods to an integration procedure according to Fig-
ure 6 consequently leads to an integration method of order �� 0 � according to (21)
which can easily be extended to systems of delay differential equations. An im-
plementation of this method is described in [7]. For detailed information about the
development of alternative integration methods for delay differential equations refer
to [5, 9–11].

4 PARAMETER ESTIMATION

In this section an introduction to problems that may arise when estimating param-
eters in delay differential equations is given. The results presented here are based
on [1, 2]. The typical parameter estimation problem may be summarized as, ”Given
values of a solution, what was the problem?” [2]. A parameter estimation problem
normally is solved by minimizing a suitable (least-squares) objective function. The
problem that may arise when estimating parameters in delay differential equations
is, that the objective function is not sufficiently smooth. This observation then has
practical consequences in the optimization process, since it may restrict the usability
of higher order optimization techniques.

Subsequently, a scalar delay differential equation depending on the parameter
vector � 0 � � �

		�
�
� 	 � � :�� given by

˙� ��� 	 �
: 0 ����� 	 � ��� 	 �

: 	 � � 
 ��� 	 � ��� 	 �
: 	

�
: 	

�
: 	

�
: � � � 8 	

� ��� 	 �
: 0 � ��� 	

�
: � � � 8 (28)
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and a parameter estimation problem

� �
��� : 0 min

�
� � � �

: � (29)

with

� �
�
: � 0

��
���
�

� � ��� � : 2 � ��� � 	 �
:�: �

(30)

is considered. In (30), � ��� � : are given measurements taken at times
� � and � ��� � 	 �

:
is the solution of (28) evaluated at the measurement times

� � .
The following definition gives a notation of left- and right hand derivatives of a

function which will be used later.

Definition 22 (Baker and Paul [1]). The notation ˙�
��� :

usually denotes the deriva-
tive �	� � 
 �� 
 , and the implication is that the left- and right-hand derivatives� � � ��� :

� �
�
5
�

˙� 5 ��� : 0 lim� � 8
�
� ��� : 2 � ��� 2 � :

� �� � � ��� :
� �

�
�
�

˙� � ��� : 0 lim� � 8
�
� ��� 3 � : 2 � ��� :

� �
both exist and are equal. In addition,

�
� � �
 ��� : � 0�� � � � � 5 � �
 ��� :

� �  

for

� 0 � 	 �
	
�	�
� and �
� 8 �
 0 � ��� : is written.

According to the above definition, the derivative �
� ��� ��� : has a jump at

� 0 �
if the

left- and right hand derivatives both exist at
� 0 �

and � � � � � ���� ��� : 2 � � ���5 ��� : � ��� .
In the preceeding section it was indicated how discontinuities in the solution of a
delay differential equation may arise and propagate through the solution. Such dis-
continuities, when arising from the initial point

� 8
may propagate into

� �
�
:

via the
solution values � � ��� � 	 �

: � in (30). The main aspect of the remainder of the section
is to give the reader some insight how this can occur.

In the following it is supposed that the solution of (28) has discontinuities with
respect to

�
occuring at the points

� �
�
: � 0 � 	 �

�
�
: 	 	 � � �

: 	
�	�
� � (31)

Furthermore, the following theorem from [1] holds true.
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Theorem 23 (Baker and Paul [1]). By elementary differentiation of (30) we have
the results � � � �

�
:

� ���
� 
 0 2 �

��
� �
�

� � ��� � : 2 � ��� � 	 �
: : � � � ��� � 	 �

:
� ���

� 
 	

� � � � � �
:

� ��� � � �
� 
 
 0 �

��
���
�
� � � � ��� � 	 �

:
� ���

� 
 � � ��� � 	 �
:

� � �
� 


2 � � ��� � : 2 � ��� � 	 �
:�: � � � � ��� � 	 �

:
� ��� � � �

� 
 
  �

Regarding the equations in the above theorem it is clear that a jump in a first partial
derivative of

� �
�
:

can occur if

� � � ��� 	 �
: � 0

� � ��� 	 �
:

� � �
has a jump at

� 0 � � for at least one
�
. However, the jump does not propagate into� � � � �� � � if � ��� � : 0 � ��� � 	 �

:
[1]. Sufficient insight on jumps in the second partial

derivatives of
� �

�
:

is obtained for the case 
 0 � . A jump in

� � � � � ��� 	 �
: � 0

� � � ��� 	 �
:

� � � �
at

� 0 � � can propagate in
� 	 � � � �� � 	 � . In analogy to the first partial derivative the

jump will not propagate if � ��� � : 0 � ��� � 	 �
:
. By Theorem 23, jumps in the partial

derivatives of
� �

�
:

can arise from corresponding jumps in the partial derivatives
of � ��� 	 �

:
. In order to analyze the relationship between jumps in the derivatives of� ��� 	 �

:
with respect to

�
and those in

� �
�
:

with respect to some � � the behaviour
of � � ��� 	 �

:
and its derivatives with respect to the variables � � is investigated. In the

following it is supposed that all derivatives are all right-hand derivatives and that

lim
 � �
�
� � �

� � � ��� 	 �
:��0 � � � � 	 � � �

: 	
�
:

for some


, then � � � ��� 	 �

:
has a jump at the point 	 � � �

: � � �
�
:
. However, if� � 	 � � �

: 	
�
:

varies smoothly with respect to ��� when the other components of � are
fixed, then � � � � 	 � � �

: 	
�
:

does not have jumps. Differentiation of � � 	 � � �
: 	

�
:

with
respect to some parameter � � leads to

� � � 	 � � �
: 	

�
:

� ��� 0
� � ��� 	 �

:
� �

�
�
�
� 
 � �

�
� � �

� � 	 � � �
:

� � � 3
� � ��� 	 �

:
� ���

�
�
�
� 
 � �

�
� � �

0 ˙� � 	 � � �
: 	

�
: � 	 � � �

:
� ��� 3 � � � � 	 � � �

: 	
�
:

(32)
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where ˙� ��� 	 �
: � 0 ��� � 
 � � �� 
 and � � � ��� 	 �

: � 0 � � � 
 � � �� � � hold. Analogously, the second
partial derivatives read as

� � � � 	 � � �
: 	

�
:

� � � � � � 0 �
¨� � 	 � � �

: 	
�
: 3 � � � � 	 � � �

: 	
�
: : � 	 � � �

:
� � �

3 ˙� � 	 � � �
: 	

�
: � � 	 � � �

:
� ��� � � �

3 ˙� � � � 	 � � �
: 	

�
: � 	 � � �

:
� � � 3 � � � � �

� 	 � � �
: 	

�
:

(33)

where ¨� ��� 	 �
: � 0 � 	 � � 
 � � �� 
 	 and � � � � � ��� 	

�
: � 0 � 	 � � 
 � � �� � � � � � hold.

From (32) it is seen that a jump must occur in � � � ��� 	 �
:

at
� 0 	 � � �

:
if ˙� ��� 	 �

:
has a jump at

� 0 	 � � �
:

and
� �

�
� � �� � � does not vanish. Equivalently, from (33)

it follows that, if ¨� ��� 	 �
:

has a jump at
� 0 	 � � �

:
and

� �
�
� � �� � � does not vanish,

then � � � � � ��� 	
�
:

must also have a jump at
� 0 	 � � �

:
. Thus,

� � ��� � � � �� � � has a jump
provided that

� � 0 	 � � �
:

for some



and 	 � � �
:

varies as ��� varies.
The above results are illustrated by the following example taken from [1].

Example 24 (Baker and Paul [1]). Consider the parameter estimation problem

˙� ��� 	 �
: 0 � � � � � 	 �

: 	 � � � 	 (34)
� ��� 	 �

: 0 �
	 � � � 	 � � � 	 �
: 0 � (35)

where � 0 � � 	 � :�� . This is a delay differential equation only if � � � since 
 �
�
: 0

� � must remain smaller or equal
�

for all
� � � .

The data



� � �
�
: 	 � �

�
�
: 	 � ���

�
: 	 � ���

�
: 	 � ���

�
: 	 � � �

�
: 

are obtained from (34) using
� � 0 � � � � 	 � � � : � . Simple analysis shows that jumps occur in ˙� ��� 	 �

:
at

� 0 �� 0 �
	 �

�
�
:

and in ¨� ��� 	 �
:

at
� 0 �� 	 0 � 	 � � �

:
. In the above example the locations of

discontinuities are depemdent on the parameter � but not with
�

. It follows, that a
jump may occur in

� � � � �� � when � 0 �� � for any
�
, that is, if � � 
 �� 	 �� 	 �� 	 � � 	 � � 	 � �  .

Setting
� 0

��
ensures that there is no smoothing of the discontinuity in

� � � 
 � � �� � as

it propagates to
� � � � ��
� at � 0 �� , and such jumps are clearly visible in Figure 7 (a).

Jumps in
� 	 � � � ��
�
	 that occur at � 0

	
�� � can also been deduced from sharp bends in

Figure 7 (b).

5 CONCLUSION

In this report it is shown that delay differential equations significantly differ from
ordinary differential equations. The most substantial difference consists in the oc-
curence of derivative discontinuities within the solution of a delay differential equa-
tion. In general, these discontinuities originate from the non-smooth transition at
the initial point

� 8
of the integration interval. The presence of these discontinuities
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Figure 7. Gradient of the objective function, from [1]

does not only require adequate integration schemes for the numerical integration
of delay differential equations but may also lead to problems when parameters in
a delay differential equation are subject to be estimated. Therefore, a fundamental
theory which delivers deep insight in the occurence and the propagation of discon-
tinuities within the solution of a delay differential equation was given. Additionally,
an analysis of the propagation of such discontinuities within systems of delay dif-
ferential equations has been presented. The basic requirements for the development
a � th order solver for the numerical integration of delay differential equations have
been pointed out. Finally, the difficulties which may occur when parameters within
delay differential equation or its respective initial function are subject to be esti-
mated have been discussed. These difficulties may severly restrict the applicability
of higher order optimization techniques since the considered objective function may
not be sufficiently smooth.
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Abstract The development of a biomathematical model of the human granulopoiesis builds
the core of this article. Hereby, the term granulopoiesis specifies the dynamical process of
the generation of granulocytes, a subclass of white blood cells. The modeling of this pro-
cess is based on delay differential equations with state-dependent delays in order to describe
non-constant cell maturation times. This model is used to estimate the severeness of radiation
damage and, furthermore, to predict the recovery of an irradiated person satisfying real-time
requirements. This task is solved by the estimation of the initial conditions of the time de-
lay model since they directly represent the degree of damage to the granulopoietic system
harmed by acute radiation exposure. Since it is known that the integration and the parameter
estimation for delay differential equations may pose severe difficulties, these problems are
analyzed in detail for the model of granulopoiesis and suitable integration and optimization
techniques are deduced. Several prediction results for real patient data are presented and show
the power of our system in order to estimate an irradiation damage and to predict the recovery
of granulopoiesis.

1 INTRODUCTION

At the University of Ulm engineers in cooperation with medical doctors have mod-
eled cell renewal systems especially the human granulopoiesis [8], whereby the term
granulopoiesis describes the cell renewal system of the granulocytes, a subclass of
white blood cells. The goal of this modeling was the development of a decision
support system which assists the medical doctor in the treatment of the acute radi-
ation syndrome. The cell renewal system of the granulocytes hereby represents an
excellent indicator, to be used in such a system, for the severeness of a damage,
since the life time of granulocytes in the blood is very short and therefore reactions
on a radiation exposure occur in this cell system. Various nuclear accidents, e.g.,
in Chernobyl/Russia (1986), show the demand for such a system. In this project
we followed up a novel kind of modeling the human granulopoiesis, whereby a
biomathematical model of the human granulopoiesis, based on time-delay differen-
tial equations with state-dependent delays has been developed. The foundation of
this new model is an existing model of Fliedner and Steinbach [7]. The model is
used to perform an estimation of its initial conditions based on the minimization of
a quadratic distance measure. The distance measure hereby consists of the differ-
ence between real patient granulocyte measures out of the blood and the equivalent
model output, parameterized by the choice of its initial conditions. Hereby, the ini-
tial cell contents are subject to be estimated, which corresponds to the degree of
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damage caused by radiation exposure for an individual patient. The estimation of
the degree of damage then aids the medicating doctor to find appropriate treatment
of the patient. Subsequently, we present the medical background by an introduction
to the human granulopoiesis followed by the derivation of a new time delay model
of human granulopoiesis. Furthermore, we discuss the estimation of the initial con-
ditions for the derived model and show typical estimation results.

2 MEDICAL BACKGROUND

In this section we give an overview of the generation of granulocytes and its dynam-
ics. A typical sample of human blood consists of approximately 50% blood plasma
and 50% blood cells. One can separate three main groups of blood cells: The red
blood cells (erythrocytes) which represent the largest group with approximately �

� �
million cells per cubic millimeter, the platelets (thrombocytes) with approximately� � � � � � � cells per cubic millimeter and the white blood cells (leucocytes) with ap-
proximately �

� � � � cells per cubic millimeter. The granulocytes are a subclass of
white blood cells. All of these cell types have different functions within the hu-
man body. The erythrocytes are mainly responsible for the transport of oxygen and
carbon dioxide through the body while the main function of the platelets is to initi-
ate the blood-clotting mechanism which prevents blood loss. The white blood cells
themselves consist of three main subgroups: the granulocytes, the monocytes, and
the lymphocytes. These white blood cells are responsible for the protection of the
body against disease and infection. All of the mentioned blood cells have their spe-
cific life span and therefore have to be reproduced. This reproduction is subject to
a specific dynamical behaviour in each case. To understand the cell renewal sys-
tem of the granulocytes, the granulopoiesis, it is helpful to study Figure 1 which
is taken from [4]. It shows the human haemopoiesis, the cell renewal system of
all the blood cells. The granulopoiesis for neutrophil granulocytes is underlayed
gray. At the lower end of the branches one observes the fully matured blood cells,
namely platelets, erythrocytes, granulocytes, and lymphocytes. The granulopoiesis
starts with the pluripotent stem cell. Until a fully matured granulocyte emerges sev-
eral different intermediate stages have to be considered: myeloic stem cell, CFU-
GEMM, CFU-GM, CFU-G, myeloblast, neutrophil myelocyte, and neutrophil gran-
ulocyte. During these stages the maturation and the proliferation occur. For further
information about the human granulopoiesis we refer to [4]. The human body is
able to satisfy the demand for granulocytes and is also able to react on perturbations
of this cell renewal system. In our case we are interested in the regeneration of the
granulopoiesis after perturbations caused by radiation.

3 MODELING

In this section we present the derivation of a novel time delay model of human
granulopoiesis. Since this new model is based on an existing model of Fliedner and
Steinbach, we present this model as introduction to the modeling of cell systems.
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Figure 1. Human haemopoiesis; translated from [4].

3.1 Model of Fliedner and Steinbach

In this section we will present the model of Fliedner and Steinbach [7] which allows
us to simulate the human granulopoiesis. The biomathematical model of the human
granulopoiesis is given by the scheme which is shown in Figure 2.

Reg IIReg I

r

l
s

S

CBM

P RM

CBL

b

j

l
Ra

c
a

P

granulocyte
output

matured
granulocytes

F

information flow cell flow

Figure 2. Fliedner-Steinbach model of granulopoiesis.
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This model consists of seven different cell compartments and additionally two
hormon compartments which control the granulopoiesis. The dashed lines indicate
an information flow while the solid lines indicate a cell flow. At the beginning a stem
cell pool ( � ) that delivers stem cells is located. Furthermore the model consists of
two compartments for the progenitor cells ( � ��� � � � 	 ), one compartment for the
precursor cells ( � ), reserve cells ( � ), maturing cells ( � ) and a function compart-
ment ( � ). The relation between compartments and biological cell types is shown in
Figure 3 where it is indicated which cell types are modeled by which compartment.
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Figure 3. Relation between compartments and cell types.

The basic idea for the derivation of a dynamical biomathematical model from
this compartment structure is to introduce state variables for each compartment.
As state variables the number of cells of each compartment are chosen. Using cell
balance equations the differential equation

�

� � � ��� : 0 � ��� : 2 � ��� : 3 
 ��� : � ��� : (1)

is computed [1] where the state variable � ��� : , the input � ��� : , and the output
� ��� :

have been used. The production of cells in a compartment is regarded as propor-
tional to the cell content of the compartment, namely as 
 ��� : � ��� : . Using this type
of modeling, Fliedner and Steinbach arrive at a biomathematical model of the hu-
man granulopoiesis consisting of 37 ordinary differential equations (ODE).

The model equations are given by
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� �
� ��0 ��� ��� � 2 � : � 	 (2)

� � � � �
� � 0 � � � � ��� � � � � 2 � : � � � � 	 (3)

� � ��� �� � 0 � � � � � 2 � : � 3 � � � � � � � 2 � � � � : � � � � 2 � ��� 2 
 � : � � � �2 � � ��� �
3 � � � 	 �

	
(4)

� � ��� �
� � 0 ��� � ��� � 5

�
2 � ��� 2 
 � : � ��� �

2 � � ��� � 3 � � � 	 � 	 � 0 ��	
�
�	� 	 � � 	 (5)
� � � 	 �
� � 0 � � ��� � 2 � � � 	 � 	 � 0 � 	
�	�
� 	 � � 	 (6)
� �

�� � 0 � � � ��� �
8 2 � ��� 2 
 � : � �

	
(7)

� � �
� � 0 ��� � � 5

�
2 � ��� 2 
 �	: � � 	 � 0 �
	
�	�
� 	 � � 	 (8)

� �
� � 0 � � �

�
8 2 � � � 	

(9)
� �
� � 0 � � � 2 ��� � 	 (10)
� �
� �;0 � � � 2 ��� � 	 (11)

� �	� � 

� � 0 � � �

� 5��� � � 2 � ������� ��� � 
 	 (12)
� ��� � 
�

� � 0 � � � � 5�� 	

�
� 2 ����������� �	� � 
�
 	 (13)

where the regulation functions

��� 0�� � �
5
�
 � 3 � ��� 5 � 	 �

� 3 � � 	 (14)


 � 0��
� 2 � � � 5 ���

������� 	
(15)


 � 0�� � 2 � � � 5 �! 
������� 	

(16)� � 0�� � 2 ��" � 5 ��#
��������� 	

(17)��� 0�� �
8 2 � � � �

5
��$ ���������

(18)

and the abbreviations

� ��� 0 �
8�

���
�
� ��� � 	 � 0 �

8�
���
�

� � 	 	&% 0 � � � 3 � 3 � 3 � 3 � 	

	 0 � � � 3 � � � � � 3 � � � � 3 � 3 � 3 � :
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have been used. All other parameters occuring in these equations are constant and
are derived from biological experiments except for � and � which are piecewise lin-
ear functions of � ��� and � , respectively. For the model parameters refer to [7,17].
The compartments � ��� , � � 	 , and � are each modeled using ten subcompart-
ments in order to reproduce the maturation times occuring in these compartments.
The transfer times and the cell proliferation rates are given in Tab. 1, which is taken
from [17].

compartment transfer time cellular fission static cell content

S ��� %
(pluripotential generation time ����� active in ���	��
 � ���� cells
stem cells) fission process
CBM
(progenitor cells ����
�������� % 
 (����
 – ��
 ) ����� � � ���  cells
in the bone marrow)
CBL ��������� %
(progenitor cells (then returning –

� ��
�� � ����� cells
in the blood) to the bone marrow)
P
(precursorcells) ������������� % � ������� � ��� � � cells
M
(maturation)

� ��� – ������� � ��� � � cells
R
(reserve)

� ��� – ������� � ��� � � cells
F
(function) ������
�� – � � ��� � � cells
Reg I
(regulator I) half-time ����� – ���
Reg II
(regulator II) half-time ����� – ���

Table 1. Compartments used in the Fliedner-Steinbach model

3.2 Partial Differential Equation Approach

Regarding the Fliedner-Steinbach model one observes that subcompartment struc-
tures within the � ��� , � � 	 and � compartments have been used in order to model
cell maturation times, which led to the introduction of 30 dynamic equations. Conse-
quently, the dimension of the whole model is extremely high because the integration
of this system leads to realtime problems when the estimation of initial values has
to be carried out on a small laptop computer in case of an accident.

A different way of modeling maturation times is to introduce time delays in
the differential equations which both have the advantage of reducing the number
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of model equations and also to include knowledge about cell maturation times in a
very direct way without detour via subcompartments. Since cell proliferation by cell
division occurs sychronously together with the cell maturation a suitable approach
to describe this is the utilization of a partial differential transport equation including
a source term.

The main idea to derive such an equation is to consider a mechanical conveyor
belt where the mass located on the belt is able to proliferate. Regarding the mass
on the belt as the number of cells in a compartment, the mass proliferation as a cell
proliferation by mitoses, and the conveyor belt as the compartment itself the analogy
between the mechanical belt and the biological cell compartment is obvious.

In the following section the problem of modeling such a conveyor belt and solv-
ing the resulting partial differential equation is treated [12, 14]. Later the resulting
equations are used to derive a new time delay description of the above mentioned
compartments which finally results in a novel time delay model of granulopoiesis
conserving the basic structure of the Fliedner-Steinbach model.

3.3 Model introduction

Within this section we regard a conveyor belt, on which at the beginning we have
an input and at the end an output of mass. During the transport over the belt a mass
amplification is allowed. If we introduce a finite velocity of the belt the transport
will take a finite time which represents the transport time.

The connection between these terms and the biological background consists in
regarding the belt as a compartment, the mass as cells and the transport time as
maturation time. Since the cell maturation times of the human granulopoiesis are

u(t)

y(t)

m(t)

v(t)

z=0 z=1
z

z-v(t)   tD z

Figure 4. Conveyor belt.

subject to the regulation of the human body one has to consider a non-constant
velocity � ��� :

of the mechanical conveyor belt. It will be no restriction to set the
length of the belt to the normalized value � because the generation of any arbitrary
time delay is possible by an appropriate choice of the velocity � ��� :

. Analogously we
introduce a non-constant amplification function �

��� :
in order to be compatible with

the ability of the human body to regulate cell division in our model approach. In
the next step we will describe the dynamics of the conveyor belt shown in Figure 4.
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We consider a mass 
 ��� :
on this belt, a mass input � ��� : , and a mass output

� ��� :
.

For the dynamical description of this belt we regard a non-constant mass density
function � � � 	 � : on the belt where the independent variable

�
measures the position

along the belt. For the mass density function � � � 	�� : the following partial differential
equation

�
� � � � � 	 � : 3 � ��� : �� � � � � 	 � : 0 �

��� : � � � 	 � : (19)

is valid [12]. The input � ��� : and the cell output
� ��� :

are connected with the mass
density function � � � 	�� : by

� ��� : 0 � � � 	�� : � ��� :
(20)

and

� ��� : 0 � � � 	 � : � ��� : �
(21)

Equation (19) together with (20) defines a boundary value problem which will be
solved in the next section.

3.4 Solution of the Boundary Value Problem

The boundary value problem given by (19) and (20) will be solved using the method
of characteristics [18, 19]. We parameterize the characteristics of (19) by

� 0 � ��� : 	 � 0 � � � : 	
and � � � ��� : 	�� � � : : 0 � � � :

(22)

with the real parameter
�
. Using this parameterization we have to solve the system

of ordinary differential equations given by

� � � � :
� � 0 � 	 (23)

� � � � :
� � 0 � ��� � � : : 	

(24)
��� � � :
� � 0 �

��� � � : :�� � � :
(25)

in order to compute the characteristics of (19). The integration of (23) from
� 8

to
�

leads to

� ��� : 0 � 2 � 8 3 � ��� 8 : �
(26)

Using (26) we integrate (24) and (25) which results in

� � � : 0 � � � 8 : 3 ���
���

� ��� 2 � 8 3 � ��� 8 :�: � �
(27)
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and

� � � : 0 � ��� 8 : �
exp � � �� � �

��� 2 � 8 3 � ��� 8 :�: � ��� �
(28)

Subsequently, we calculate the characteristics that satisfy the boundary condi-
tion (20), namely,

� � � 	�� : 0 � ��� :
� ��� : 	 � ��� : � ��� � �

This means that for any given parameter value
� � with

� � � � : 0 � and
� � � � : 0 � � �

the boundary condition

� � � � : 0 � � � 	�� � : 0 � ��� � :
� ��� � : (29)

must hold. The characteristics that satisfy the boundary value problem therefore are
given by

� ��� : 0 � 2 � � 3 � � 	 (30)
� ��� : 0 ���

��� � ��� 2 � � 3 � � : � � 	 (31)

� ��� : 0 � ��� � :
� ��� � :

�
exp � ������ �

��� 2 � � 3 � � : � ��� � (32)

In the next step we calculate the general solution � � � 	�� : of the boundary value
problem. A parameter value � � is chosen, such that a characteristic meets an arbitrar-
ily given point

� � 	 � :
. Thus, we require

� � � � : 0 � � 2 � � 3 � �	�0 � 	
(33)

� � � � : 0 � � �
� � � ��� 2 � � 3 � � : � � �0 � �

(34)

From (33) follows
� � 0 � � 2 � � 3 �

and (34) reads as

� 0
� ��
��� � ��� 2 � � 3 � : � � �

Now, we substitute 
 0 � 2 � � 3 �
which leads to

� 0
� 
� �� � 
 � � � 
 : � 
 (35)

where the abbreviation
� � � 	�� : 0 � � 2 � � 3 �

has been used. Then, the general solution
� � � 	�� : of the boundary value problem is given by
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� � � 	�� : 0 � � � � : 0 � � � � � 	�� : :
� � � � � 	�� :�:

�
exp � � 
� � � � 
 � �

� 
 : � 
�� 	
(36)

where
� � � 	 � :

has to be calculated from (35) for any given value of
�

and
�
.

Another function of interest is the output
� ��� :

given by (21). In order to calculate
the output function we need � � � 	�� : . Therefore, we consider

� 0 � in (35) and
rename

� � � 	�� : by � ��� : . Thus,

� 0
� 
� � 
 � � � 
 : � 
 (37)

holds. Differentiating both sides of (37) with respect to time
�

results in the delay
differential equation

� � ��� :
� � 0

� ��� :
� � � ��� :�: (38)

for the delay function � ��� : . For convenience we define


 ��� : � 0
� 
� � 
 � �

� 
 : � 
 (39)

which is the exponent of (36) for
� 0 � and not equal to 
 ��� : used in (1). By

differentiating both sides of (39) the delay differential equation
� 
 ��� :
� � 0 �

��� : 2 � ��� :
� � � ��� : : �

� � ��� : : (40)

follows which describes the mass growth. Then, together with (38) and (40), the
output of the conveyor belt reads as

� ��� : 0 � � � 	�� : � ��� : 0
� ��� : � � � ��� : :

� � � ��� :�: exp � 
 ��� : � � (41)

3.5 Derivation of a Time-Delay Model

In this section we will use the results of the preceeding section in order to derive a
new time delay model of human granulopoiesis where we will describe the � ���
and � compartments by one time delay equation, respectively. In our new model we
neglect the � � 	 compartment introduced within the Fliedner-Steinbach model since
simulations show only small impact of this compartment to the overall dynamical
behavior of granulopoiesis. The same holds true for the regulation compartments
��� � 
 and �	� � 
�
 which are neglected while the regulation in our new model is im-
plemented by direct feedback of cell numbers.

In the following we derive time delay equations for the mentioned � ��� and
� compartments and, by conserving the basic structure of the Fliedner-Steinbach
model, we will arrive at a new model of human granulopoiesis.
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To derive dynamical equations for the compartments � ��� and � an expression
for the dynamical behavior of the number of cells in these compartments is needed.
The mass density of the cells on the belt is given by (36). Thus, the mass on the belt
is given by


 ��� : 0
� �
��

� � 8 � � � 	 � : � � 0 ��
8
� � � � � 	�� : :

� � � � � 	�� : :
�
exp � � 
� � � � 
 � �

� 
 : � 
�� � � (42)

where
� � � 	 � :

has to be calculated from (35). Substituting � 0 � � � 	 � :
we get � �� � 02 � � � : from (35) and the expression for the mass 
 ��� :

reads as


 ��� : 0
� � 
�

� � � � 
 � �
� � :

�
exp � � 


�
�
� 
 : � 
 � � � (43)

where � ��� : satisfies (37). Differentiating equation (43) with respect to time
�

leads
to

� 
 ��� :
� � 0 � ��� : 3 �

��� :
�

 ��� : 2 � ��� :

� � � ��� :�: exp � 
 ��� : � � � � ��� :�: (44)

where � ��� : and 
 ��� : are subject to (38) and (40), respectively.
In (44) we recognize the input function � ��� : , an amplification term �

��� :
�

 ��� :

,
and the output function

� ��� :
given by (41). The required dynamic equations which

describe the � ��� compartment therefore are given by

� � ��� ��� :
� � 0 � ��� : 3 �

� � � ��� : � ��� ��� : 2
� � � � ��� : � � � � � � ��� : :

� � � � � � � � � ��� :�: exp � 
 � � � ��� : � 	 (45)

� 
 � � � ��� :
� � 0 �

� � � ��� : 2 � � � � ��� :
� � � � � � � � � ��� : : �

� � � � � � � � ��� :�: 	
(46)

� � � � � ��� :
� � 0

� � � � ��� :
� � � � � � � � � ��� :�: � (47)

Analogously, a set of delay differential equations to describe the dynamics of the
� compartment is computed. Since in the � compartment a constant cell prolifer-
ation occurs there is no need to introduce a dynamical equation for 
 � ��� : . Thus,
exp � 
 � ��� : � is chosen as constant

�
�
0 ��� which corresponds to four cell divisions

and is achieved by setting �
� ��� : 0 � ln

��� :
�

� � ��� : . Then, the complete set of model
equations is given by
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� �
� � 0 ��� ��� � 2 � : � 	 � � 0 � ��� � � 2 � : � 	 (48)

� � � � �
� � 0 � � � � ��� � � � � 2 � : � � � � 	 � � � � 0 � � � � � � � 2 � � � � : � � � � 	 (49)

� � ��� �� � 0 � � 3 � � � � 3 �
� � � � ��� �

2
� � � � �� 3 � �

�
�� � ��� � � � �

�
� � �� � � exp �
 � � � � 	 (50)

� � ��� �
� � 0

� � � � �� 3 � �
�
�� � ��� � � � �

�
� � �� � � exp �
 � � � � 2 � � � � � � � �

	
(51)

� �
�� � 0 � � � � � ��� � 3 �

� �
�
2 � � � � � ��� � � �

�
� �

�
� � ��

�
�
�
	

(52)

� � �
� � 0 � � � � � ��� � � �

�
� �

�
� � ��

�
�
�
2 ��� � � 	 (53)

� �
� � 0 ��� � � 2 � � � 	 � �

� � 0 � � � 2 � � � 	
� �
� � 0 � � � 2 ��� � 	 (54)

� � � � �
� � 0

� � � �
�
� � �� � �

	 � � �
� � 0

� � ��� :
�
� � ��

	 � 
 � � �
� � 0 �

� � � 2 � � � �
�
� � �� � � �

� � �� � � �
(55)

The division of each of the compartments � � � and � into two subcompartments
� ��� � , � ��� � , and �

� ,
� � , respectively, is necessary in order to model the bio-

logically observed dynamics of these compartments by a certain smoothing of the
input-output behavior. Further, it should be mentioned that the superscripts

�
�
:�� � �

and
�
�
: � � � indicate that the corresponding functions have to be evaluated at the re-

tarded arguments � � � � ��� :
and � � ��� : , respectively, while all other time-dependent

functions are evaluated at the current time instant
�
. The regulation functions

���
,� ,

� � ,
� �

, � � � � , � � , �
� � � and �

�
are computed in analogy to the Fliedner-

Steinbach model and are listed in [12].

3.6 Analysis of the Time Delay Equations

As already mentioned the novelty of our time delay model in comparison to the
Fliedner-Steinbach model is the description of the compartments � ��� and � using
time delay differential equations instead of a set of ordinary equations as introduced
by Fliedner and Steinbach. The new model is based on the solution of the general
partial differential transport equation, which is used to derive a set of time delay
differential equations for the compartments � ��� and � . The new model has been
implemented and simulated but showed numerical instability, which caused us to
investigate the new model equations with regard to their stability.

Subsequently, we regard time delay differential equations of type (45) - (47)
for � ��� : 0 � 8 0 constant � � and �

��� : 0 �
8 0 constant � � . Under these
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assumptions equations (47) and (46) do have a closed form solution which can be
calculated using their integral representations

� 0

�

� � 
 � � � 
 : � 
 �0

�

� � 
 � � 8 � 
 and 
 ��� : 0

�

� � 
 � �
� 
 : � 
 �0


�
� � 
 � �

8 � 
 	 (56)

respectively. It follows directly that � ��� : 0 � 2 � � � 8 0 � 2 � , where � � 0 � � � 8 ,
must hold. With this result 
 ��� : 0 �

8 � follows and we arrive at a relatively simple
differential equation given by

� 
 ��� :
� � 0 � ��� : 3 �

8 
 ��� : 2 exp� �
8 � � � ��� 2 � : 	 (57)

where � ��� : is an inflow into the compartment and 
 ��� :
is the state which is the

content of the compartment. After Laplace-Transformation (57) results in

� ��� : � 0 � ��� :
� � � : 0 �

2 exp� 2 ��� 2 �
8 : � �� 2 �

8 	
(58)

where �
� � :

and � � � :
are the Laplace transforms functions of 
 ��� :

and � ��� : , re-
spectively, using the Laplace variable

�
. From (58) it is obvious that there exists

a pole-zero cancellation in the right half of the complex plane at
� 0 �

8
which

explains the observed numerical instabilities during simulation [14].

3.7 Model Reduction

Despite the problems described in the preceeding section, it is possible to perform an
approximation avoiding these problems for the modeling. This approximation con-
sists in splitting the compartment under consideration into two new compartments
connected sequentially, namely, the first which models a pure maturation using a
time delay differential equation which can be obtained by setting �

��� : � � in (19),
and the second which models the amplification using an ordinary differential equa-
tion. Each of the respective compartments then can be described using equations of
the form
�

� � � �
��� : 0 � ��� : 2 � ��� :

� � � ��� :�: �
� � ��� :�: 	

�

� � � � ��� : 0
� ��� :

� � � ��� :�: �
� � ��� :�:

�

 2 � � � ��� :

together with a state dependent amplifying regulation function 
 and
�

� � � ��� : 0
� ��� :

� � � ��� :�:

describing the maturation time of the respective compartment. Further details about
this approach can be obtained from [13]. Since the time delay effect occurs in both
of the above equations through the term

� � 
 �� � � � 
 � � � � � ��� : : it is feasible to neglect the
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first, pure transport equation. This leads to a compartment description for the � ���
and � compartment using a set of equations of the form

�

� � � ��� : 0
� ��� :

� � � ��� : : �
� � ��� :�:

�

 2 � � ��� : 	 �

� � � ��� : 0
� ��� :

� � � ��� :�:

for each compartment [14]. Hereby, we introduce a new amplification function 

and a new parameter

�
which are used to represent the dynamics of the respective

compartment in analogy to the Fliedner-Steinbach model.
Following this approach we derive a set of time delay differential equations

describing the human granulopoiesis given by

� �
� � 0 � � ��� � 2 � : � 	 � � � 0 � � � � � 2 � : � 	 (59)

� � � � �
� � 0 � � � � ��� � � � � 2 � : � � � � 	 � � � � � 0 � � � � � � � 2 � � � � : � � � � 	 (60)

� � ���
� � 0

� � � �
�
� � �� � �

� � � � �� 3 � �
�
�� � � � 
 � � � 2 � � � � � ��� 	

(61)

� �
� � 0 � � � � � �

�
� � �� � ��� � � � 
 � 2 ��� � 	

(62)

� �
� � 0 ��� � 2 � � � 	 � �

� � 0 � � � 2 � � � 	 (63)
� �
� � 0 ��� � 2 � � � 	 (64)

� � � � �
� � 0

� � � �
�
� � �� � �

	 � � �
� � 0

� �
�
� � �� (65)

where we use the regulation functions

��� 0�� � �
5
�
 � 3 � ��� 5 � 	 ��� 3 � � 	 (66)

� � � � 0��
� 2 � � � 5 � � � 	 (67)

� � 0�� � 2 � � � 5 �  � 	 (68)� � 0�� � 3 � " � 5 � #
� 	

(69)��� 0�� �
8 3 � � � �

5
� $ � 	

(70)


 � � � 0 ��������� 	
	 � � � 0 � � � 3 � �
� � 5 ��� � 	 (71)

� 0
�� �
� � � � for � � �

�
� � �� � � � for � � � � � �
�
� � "

� �
� 3 � � � �

5
��� � � 5 ��� � 8 # �

3 � � � �
5
��� � � 5 ��� � 8 # � else.

(72)

in accordance with the Fliedner-Steinbach model. The parameters in the above equa-
tions are computed by conserving the steady-state values and the respective ranges
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of the regulation functions of the Fliedner-Steinbach model and are given in [15].
Regarding the structure of the model equations, we can fomally write the system as

�

� � � ��� : 0 ��� � ��� : 	 � � 
 �
� � ��� :�: : 	 � � 
 � � � ��� :�:�: : (73)

using the state vector

� ��� : 0 � � ��� : 	 � � � � ��� : 	 � ��� ��� : 	 � ��� : 	 � ��� : 	 � ��� : 	 � ��� : 	 � � � � ��� : 	 � � ��� :�: � �
For the numerical integration of systems of time delay differential equations we
refer to [11].

4 ESTIMATION OF INITIAL CONDITIONS

As mentioned in the introduction the initial conditions of the new time delay model
are subject to be estimated by minimization of a quadratic distance measure. The
distance measure depends on the real blood granulocyte cell counts of an irradiated
person and the content of the compartment � of the time delay model, since it repre-
sents the amount of granulocytes in the blood. Therefore, we define the optimization
problem

� � � � : 0 min � � � � � : � with

� � � : � 0
��
� �
�
� � � ��� � : 2 � ��� � 	 � : � � (74)

where � � ��� � : are real blood granulocyte measurements from an irradiated person at
times

� � and � ��� � 	 � : represents the models blood granulocyte compartment (64)
evaluated at the time

� � . The parameters enter the model via the initial conditions� ��� 	 � : for
� � � . In our case, we assume constant initial functions for the cell

compartments such that

� ��� 	 � : 0 � � �
	
�	�
� 	 � � 	 � 	 � 2 � � � � 	 � 2 � �
: � � � � (75)

is chosen. Within (75) � represents the constant initial function for the � compart-
ment which is not estimated but either chosen as the steady state value of the �
compartment if no measurement is available at

� 0 � or as the value of the mea-
surement if available at

� 0 � . The initial functions for � � � � and � � are chosen as
functions of time

�
since they represent maturating delay times.

Using this initial function for the integration of the model equations makes the
whole solution a function not only of time, but also on the parameters � � 	�� 0
� 	
�	�
� 	 � . Since it is known [2,3], that the estimation of parameters in time delay dif-
ferential equations may pose difficulties concerning the smoothness of the objective
function this problem has to be investigated. Because the time delays in the model
equations are a function of the state, which itself is a function of the parameters,
the position of derivative discontinuities will be a function of the parameters. To get
information about the smoothness of the objective function, the smoothness of the
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state � ��� 	 � : has to be considered because only this state enters the objective func-
tion. If the state � ��� 	 � : is sufficiently smooth with respect to the time, then accord-
ing to [2, 3] also the objective function will be accordingly smooth. In order to an-
alyze the smoothness of the state � we use the so called network dependency graph
theory presented in [20–22]. Subsequently, we will derive the network dependency
graph for our model of granulopoiesis, which then should allow insight in the prop-
agation of discontinuities in this system. We investigate the model equations and
remind, that the regulation functions within this model are functions of the states.
For better understanding we rename the states as � �

��� : 0 � ��� : , � � ��� : 0 � � � � ��� : ,� � ��� : 0 � ��� ��� :
, �

� ��� : 0 � ��� : , � � ��� : 0 � ��� :
, � � ��� : 0 � ��� : , � � ��� : 0 � ��� : ,� �

��� : 0 � � � � ��� :
, and � " ��� : 0 � � ��� : . The regulation function

� �
, for instance, is

a function of the state � and of 	&% 0 � ��� 3 � 3 � 3 � 3 � . Using the above
nomenclature

���
is a function

� � 0 ��� � �
�
	 � � 	 �

� 	 � � 	 � � 	 � � : . For the remaining
regulation functions one obtains equivalently

� 0 � � � � : 	 � � � � 0 � � � � � �
�
	 � � 	 � � 	 � � 	 � � 	 � � : 	


 � � � 0 � � � � � �
�
	 � � 	 � � 	 � � 	 � � 	 � � : 	 � � 0 � � � �

�
	 � � 	 � � 	 � � 	 � � 	 � � : 	

� � 0 � � � � � : 	 ��� 0 ��� � � � : �

The differential equations for � 0 �
� and � � � � 0 � � read as

�

� � � � 0
�
�
� �
�
	 ��� 	 � � 	 � � 	 � � 	 � � : 	

�

� � � � 0 �
�
� � � :

Functions evaluated at retarded times � � � � 0 � � , for instance the function
� � � � � � � � � :

, are occuring in (61). With the above nomenclature this dependence
represents a dependence on �

�
� � �

:
, � � � � �

:
, �

� � � �
:
, � � � � �

:
, � � � � �

:
, and � � � � �

:
.

The formal representation for (61) is given by
� � �
� � 0 � � � �

�
	 � � 	
�	�
� 	 � � 	 �

�
� � �

: 	 � � � � �
: 	 � � � � �

: 		�
�	� 	 � � � � �
: :

For the remaining states one calculates

�

� � �
�
0 � � � �

�
	 � � 		�
�	� 	 � � 	 �

�
� � " : 	 ��� � � " : 	
�	�
� 	 � � � � " :�: 	

�

� � � � 0 � � � � � 	 � � 	 � � : 	
�

� � � � 0 � � � � � 	 � � 	 � � : 	
�

� � � � 0 � � � � � 	 � � : 	
�

� � � � 0 �
�
� �
�
	 � � 		�
�	� 	 � � 	 �

�
� � �

: 	 � � � � �
: 	
�	�
� 	 � � � � �

:�: 	
�

� � � " 0 � " � � �
	 � � 		�
�	� 	 � � 	 �

�
� � " : 	 � � � � " : 	
�	�
� 	 � � � � " :�: �

Thus, in terms of strong and weak coupling, the dependencies for the model of
granulopoiesis are ��� � , � � � , ��� � , � � � , ��� � , ��� � , � � � , ��� � , � � � , ��� � , � � � , ��� � ,
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��� � , � � � , � � � , � � � , � � � , � � � , � � � , � � � , � � � , � � � , � � � , ��� � , � � � , ��� � ,
��� � , � � � , � � � , � � � , � � � , � � � , � � � , � � � , ��� � , � � � , ��� � , � � � , � � � , ��� � ,
��� � , ��� � , � ��� , � ��� , ����� , � ��� , � ��� , ����� , � � � , � � � , � � � , � � � , � � � , � � � ,
� � � , � � � , � � � , � � � , ��� � , ��� � , � � � , � � � , � � � , � � � , � � � , and � � � . This
coupling is depicted in Figure 5 where only the most relevant joints with regard to
our discussion are shown.

S [1]

Sinj [2]

CBM [3]

P [4]

M [5]R [6]

F [7]

3,...,7

1,4,...,8

1,3,5,...,7,9

3,...,7

1,4,...,7

gP [9]

1,3,...,7

1,3,...,7

gCBM [8]

1,3,...,7

1,3,...,7

Figure 5. Dependency network for the model of granulopoiesis.

Due to the regulation functions there exist more joints of strong (solid arrow)
and weak (dashed arrow) coupling between the different states, which are denoted
by solid and dashed arrows followed by the respective state numbers. The state
names � 	
�
�	� 	 � � are printed together with their assigned component number in
square brackets.

By the choice of the initial function (75) a discontinuity of order one occurs
at

� 0 � in all components of the solution of the model equations since in gen-
eral ˙� � � 	 � : �0 ˙� � � 	 � : . Thus, all components themselves are continuous but their
first derivatives have jumps at

� 0 � . But this is not a severe feature with regard to
the estimation problem since the locations of these discontinuities do not vary with� but are fixed. Therefore, they do not lead to discontinuities within the objective
function (74). The first and lowest order discontinuities, whose locations depend
on the parameter vector � , do occur in � ��� and in � because only in these com-
partments delayed terms enter directly. The locations of these discontinuities are
fixed by � � � � ���

�
� � � � : 0 � and � � ��� � �

��: 0 � where
�
�
� � � � and

�
�
� � are the

locations of the discontinuities in the � � � and � compartment, respectively. The
order of these discontinuities is at least two because they appear due to a retarded
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argument passing over the location of the first order discontinuity at
� 0 � , which

has the order one. All subsequent discontinuities have higher orders. Consequently,
the minimum order discontinuities depending on � are occuring in � ��� and � and
have an order of two. Now using the dependency network given in Figure 5, it can
be seen that a discontinuity occuring in � has at least order 5 (as the discontinuity
in � of order 2 propagates to � ). This consequently represents the minimum order
of discontinuities which may appear in � . Summarizing this paragraph we showed
that discontinuities in � are at least of order 5, which means that jumps may occur
at least in the 5th time derivative of � .

Using the approaches from [2, 3] one can easily reproduce that the objective
function (74) must be at least 4 times continuously differentiable with respect to � .
Thus, it is possible to calculate gradients and hessians of the objective function with-
out encountering difficulties concerning the smoothness of the objective function.
This means, that standard optimization methods can be used for the minimization
of (74).

We have implemented the model and an appropriate solver for delay differential
equations based on [6] under C++. In order to solve the optimization problem, we
use the Nelder-Mead method to calculate a rough estimate � � 8 � and subsequently
we switch to a higher order method, where � � 8 � is used as the initial parameter
vector. We aditionally estimate � � � � and � � from (75) within the Nelder-Mead
method [16] which afterwards, within the higher order method, are assumed to be
known and therefore are not longer estimated. This means, we have 
 0 � param-
eters within the Nelder-Mead method and 
 0 � within the higher order method.
This strategy is necessary since the objective function is very insensitive with re-
spect to � � � � and � � after a few optimization steps. It should be mentioned, that
the parameter space is restricted to positive values of the parameters since nega-
tive values would correspond to negative cell numbers which are not feasible in the
biological sense. Thus we have to deal with optimization techniques for box con-
strained optimization problems. Well known classical methods are the constrained
Newton method, the Levitin-Poljak method or the Wilson method [9], which have
also been implemented. The results in the following section have been computed
using the Wilson method. The numerical calculation of the gradient and the hessian
of the objective function themselves are carried out using the automatic differentia-
tion method [10] in forward mode. The QP subproblems are solved using a standard
method [5].

5 RESULTS

To demonstrate the excellent qualification of our decision support system in view of
the prediction of the human granulopoiesis, we give some typical prediction results
for real granulocyte datasets of Chernobyl victims.

It has to be mentioned that only the patient data denoted by linked circles have been
used to perform the prediction. The remaining data denoted by linked triangles have
not been used for the prediction but are printed in order to compare the prediction
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Figure 6. Prediction results for real patient data.

result with the real patient data. In Tab. 2, the number of steps for the Wilson method,
the norms of the gradients of the optimal solution, and the computation time are
presented for the respective data sets.

Data Set Nelder-Mead steps Wilson steps ���������
	��� Time

pat106x 89 6 6.29597e-009 151.147 sec
pat32x 194 4 1.72508e-009 97.2 sec
pat35x 241 4 3.05051e-005 106.783 sec
pat72x 76 3 4.87781e-005 110.919 sec

Table 2. Optimization Results

The computations have been carried out on a standard PC with Pentium-II 400
MHz CPU and 128 MB RAM. Regarding the computation times it gets clear that
our system is able to satisfy real-time requirements since it is able to compute pre-
dictions within a time period of a few minutes. This complies with the demands
from the medical part.
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6 CONCLUSION

The development of a decision support system (DSS) for the diagnosis of the acute
radiation syndrome is a strong demand from the medical part in order to be pre-
pared for radiation accidents like the Chernobyl accident in 1986. In this report we
have presented such a system that incorporates as the core element a time-delay
model of the human granulopoiesis since the granulocytes are the best indicator for
the severeness of radiation injuries. The model derivation has been discussed in de-
tail and a novel time-delay model of the human granulopoiesis has been presented.
Furthermore, the optimization problem has been defined, which allows the estima-
tion of the severeness of a damage to the granulopoietic system caused by radiation
exposure of a human being. Hereby, the optimization task specifically consists in
an estimation of constant initial functions for the models compartments. Since it is
known, that the estimation of parameters in delay differential equations, of which
our novel model consists, often poses severe problems concerning the smoothness
of the applied objective function, a detailed analysis of properties of the model of
granulopoiesis has been carried out. As the result it turned out that the least squares
objective function we considered for the formulation of the estimation problem is
sufficiently smooth for the application of standard optimization methods. Within
the implementation of our DSS, called MODRAT, we have used the Wilson SQP
method to calculate the optimal solutions coupled with Automatic Differentiation
techniques in order to calculate the gradients and hessians of the objective function
needed. Hereby, MODRAT is a C++ implementation with graphical user interface
of the mentioned techniques designed for 32 bit Microsoft Windows operating sys-
tems. Typical prediction results show the excellent qualification of our system in or-
der to predict the recovery of radiation exposed persons, whereby the computation
times lie in the range of a few minutes. Regarding these times our system fulfilles
the realtime requirements as they are formulated by the medical part.
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Abstract Mathematical optimization techniques are on their way to becoming a standard
tool in chemical process engineering. While such approaches are usually based on deter-
ministic models, uncertainties such as external disturbances play a significant role in many
real-life applications. The present article gives an introduction to practical issues of process
operation and to basic mathematical concepts required for the explicit treatment of uncertain-
ties by stochastic optimization.

1 OPERATING CHEMICAL PROCESSES

Chemical industry plays an essential role in the daily life of our society. The purpose
of a chemical process is to transfer some (cheap) materials into other (desired) ma-
terials. Those materials include any sorts of solids, liquids and gas and can be single
components or multicomponent mixtures. Common examples of chemical processes
are reaction, separation and crystallization processes usually composed of operation
units like reactors, distillation columns, heat exchangers and so on. Based on mar-
ket demands, those processes are designed, set up and put into operation. From the
design, the process is expected to be run at a predefined operating point, i.e., with a
certain flow rate, temperature, pressure and composition [22].

Distillation is one of the most common separation processes which consumes
the largest part of energy in chemical industry. Figure 1 shows an industrial distil-
lation process to separate a mixture of methanol and water to high purity products
(methanol composition in the distillate and the bottom should be � � � � � � � mol%
and � � � � � � mol%, respectively). The feed flow � to the column is from outflows
of different upstream plants. These streams are first accumulated in a tank (a middle
buffer) and then fed to the column. The column is operated at atmospheric pressure.
From the design, the diameter of the column, the number of trays, the reboiler duty
� and the reflux flow 	 will be defined for the given product specifications.

For an existing chemical process, it is important to develop flexible operating
policies to improve its profitability and reducing its effect of pollution. The ever-
changing market conditions demand a high flexibility for chemical processes un-
der different product specifications and different feedstocks. On the other hand,
the increasingly stringent limitations to process emissions (e.g., � � � � � � mol% in
the above example) require suitable new operating conditions satisfying these con-
straints. Moreover, the properties of processes themselves change during process
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Figure 1. An industrial distillation column with a feed tank

operation, e.g., tray efficiencies and fouling of the equipment, which leads to reduc-
tion of product quality if the operating point remains unchanged. Therefore, keeping
a constant operating point given by the process design is nowadays an out-dated con-
cept. That is to say, optimal and robust operating policies should be searched for and
implemented online, corresponding to the real-time process situations.

In the past, heuristic rules were used for improving process operation in chemi-
cal industry. However, since most chemical processes behave nonlinear, time-depen-
dent and possess a large number of variables, it was impossible to find the optimal
solutions or even feasible solutions by heuristic rules. Therefore, systematic meth-
ods including modeling, simulation and optimization have been developed in the
last two decades for process operation. These methods are model-based determinis-
tic approaches and have been more and more used in chemical industry [10].

1.1 Process Modeling

Conservation laws are used for modeling chemical processes. A balance space is
first chosen, for which model equations will be established by balancing mass, mo-
mentum and energy input into and output from the space [3]. Thus variables of a
space can be classified into independent and dependent variables. Independent vari-
ables are input variables including manipulated variables and disturbance variables.
For instance, the reflux flow and the reboiler duty are usually manipulated vari-
ables for a distillation column, while the feed flow and composition are disturbance
variables. Dependent variables are output variables (usually called state variables)
which depend on the input variables. The compositions and temperatures on the
trays inside the column are dependent variables. Besides conservation laws, cor-
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relation equations based on physical and chemical principles are used to describe
relations between state variables. These principles include vapor-liquid equilibrium
if two phases exist in the space, reaction kinetics if a reaction takes place and fluid
dynamics for describing the hydraulics influenced by the structure of the equipment.

Let us consider modeling a general tray of a distillation column, as shown in
Figure 2, where

�
and � are the indexes of components (

� 0 � 	�� % ) and trays (from
the condenser to the reboiler), respectively. The dependent variables on each tray
are the vapor and liquid compositions

� � � � 	 � � � � , vapor and liquid flow rate � � 	 	 � ,
liquid molar holdup � � , temperature � � and pressure � � . The independent variables
are the feed flow rate and composition � � 	 � � � � � , heat flow � � and the flows and
compositions from the upper as well as lower tray. The model equations include
component and energy balances, vapor-liquid equilibrium equations, a liquid holdup
equation as well as a pressure drop equation (hydraulics) for each tray of the column:

– Component balance:

� � � � � � � � :
� � 0 	 � 5

�
� � � � 5

�
3 � � � �

� � � � �
�
2 	 � � � � � 2 � � � � � � 3 � � � � � � � (1)

– Phase equilibrium:

� � � � 0�� � % ��� � � � ��� � 	 � � 	 � � : � ��� � 3 � � 2 � � : � ��� � � � (2)

– Summation equation:
� ��
���
�

� � � � 0 � 	
� ��
� �
�

� ��� � 0 � (3)

– Energy balance:

� � � ������ :
� � 0 	 � 5

�
� �� 5

�
3 � � � � � �� � � 2 	 �	� �� 2 � �
� �� 3 � �	� �� � � 3 � � (4)

– Holdup correlation:
� � 0�� � � � ��� � 	 � � 	 	 � : (5)

– Pressure drop equation:

� � 0 � � 5
�
3� � � � � � 5

�
	�� ��� � 	 	 � 5

�
	 � � 	 � � : (6)

In addition to the equations (1)–(6), there are auxiliary relations to describe the va-
por and liquid enthalpy � �� 	 ���� , phase equilibrium constant % � � � , holdup correlation
� � and pressure drop correlation  � which are functions of the dependent variables.
Parameters in these correlations can be found in chemical engineering handbooks
like [9, 19]. Murphree tray efficiency � � is introduced to describe the nonequilib-
rium behavior. This is a parameter that can be verified by comparing the simulation
results with the operating data.
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Figure 2. A general tray of the distillation column

Equations of all trays in the column lead to a complicated nonlinear DAE sys-
tem. Moreover, some dependent variables are required to be kept at a predefined
value (e.g., the bottom liquid level of the column). This will be realized by feed-
back control loops usually with PID (proportional-integral-derivative) controllers.
Thus controller equations have to be added to the model equation system, if closed
loop behaviors will be studied. Process simulation means, with given independ-
ent variables, to solve the DAE so as to gain the profiles of the dependent vari-
ables. In the framework of optimization, an objective function will be defined (e.g.,
minimizing the energy consumption during the operation). The above DAE system
will be the equality constraints. The inequality constraints consist of the distillate
and bottom product specifications as well as the physical limitations of vapor and
liquid flow rates. Thus a dynamic nonlinear optimization problem is formulated.
Approaches to solve dynamic optimization problems use a discretization method
(either multiple-shooting or orthogonal collocation) to transform the dynamic sys-
tem to a NLP problem. They can be classified into simultaneous approaches, where
all discretized variables are included in a huge NLP problem, and sequential ap-
proaches, where a simulation step is used to compute the dependent variables and
thus only the independents will be solved by NLP. Solution approaches to such
problems can be found in [15, 23]. As a result, optimal operating policies for the
manipulated variables can be achieved. It should be noted that some processes may
have zero degree of freedom. In the above example, when the product specifications
become equalities, it implies that the independent variables at the steady state must
be fixed for fulfilling these specifications.

1.2 Uncertainties in Process Operation

Although deterministic approaches have been successfully applied to many complex
chemical processes, their results are only applicable if the real operating conditions
are included in the problem formulation. To deal with the unknown operating re-
ality a priori, optimization under uncertainty has to be considered [13]. From the
viewpoint of process operation there are two general types of uncertainties.
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Internal Uncertainties

These uncertainties represent the unavailability of the knowledge of a process. The
process model is only an approximation and thus can not describe the real behav-
ior of the process exactly. Internal uncertainties include the model structure and the
parameter uncertainty. For the description of a chemical or a thermodynamic phe-
nomenon several representations always exist. The selection of a representation for
the model leads to a structure uncertainty. Model parameters (such as parameters of
reaction kinetics and vapor-liquid equilibrium) are usually estimated from a limited
number of experimental data and hence the model may not be able to predict the
actual process [28].

External Uncertainties

These uncertainties, mainly affected by market conditions, are from outside but have
impacts on the process. These can be the flow rate and composition of the feedstock,
product specifications as well as the supply of utilities. The outlet stream from an
upstream unit and the recycle stream from a downstream unit are usually uncertain
streams of the considered operating unit. For some processes which are sensitive
to the surrounding conditions, the atmospheric temperature and pressure will be
considered as external uncertain variables.

While some uncertain variables are treated as constants during the process op-
eration, there are some time-dependent uncertain variables which are dependent on
the process operating conditions. For instance, the tray efficiency of a distillation
column often changes with its vapor and liquid load. Another example is the uncer-
tainty of the feed streams coming from the upstream plants. In these cases a dynamic
stochastic optimization problem will be formulated. For such problems, rather than
individual stochastic parameters, continuous stochastic processes should be consid-
ered. Approximately, most of them can be considered as normal distributed stochas-
tic processes. There may exist correlation between these variables. Operation data
from historic records can be used to estimate these stochastic properties.

In deterministic optimization approaches the expected values of uncertain vari-
ables are usually employed. In the reality the uncertain variables will deviate from
their expected values. Based on the realized uncertain variables a reoptimization can
be carried out to correct the results from the last iteration. For dynamic optimiza-
tion, a moving horizon with

�
time intervals will be introduced. Figure 3 shows

the implementation of the three consecutive paces of the moving horizon. At the
current horizon


only the values of the available policies for the first time interval� � which were developed in the past horizon

 2 � , will be realized to the process.
During this time interval a reoptimization is carried out to develop the operating
policies for the future horizon

 3 � . The method in which the expected values of
the uncertainties are used in the problem formulation is the so-called wait-and-see
strategy. The shortcoming of this strategy is that it can not guarantee holding in-
equality constraints.
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Figure 3. Reoptimization over a moving horizon

1.3 Distillation Column Operation under Uncertain Feed Streams

Now we consider again the industrial distillation process. The flows from the up-
stream plants often change considerably due to the varying upstream operation. We
may have high flow rates of the feed during the main working hours and decreased
flow rates during the night hours or at the weekend. Figure 4 shows the measured
profiles of the total feed flow, composition and temperature for 24 hours. Here we
only focus on the impact of the variation of the flow rate. One consequence resulted
from the fluctuating feed streams is that the tank level � may exceed the upper bound
� max (then a part of the liquid must be pumped out to an extra tank) or fall below
the lower bound � min (then a redundant feed stream must be added to the feed flow).
Since the appearance of these cases will lead to considerable extra costs, a careful
planning for the operation should be made to prevent these situations.

Another consequence of a large feed change is that it causes significant vari-
ations of the operating point of the distillation column. To guarantee the product
quality ( � � 	 � � ), a conservative operating point is usually used for a higher purity
than the required specification. This leads, however, to more energy consumption
than required. The growth of energy requirement for a column operation is very
sensitive to the product purity, especially for a high purity distillation.

Conventionally a feedback control loop is used in process industry to keep the
level of the feed tank, using the outflow as the manipulated variable. The drawback
of this control loop is that it can not guarantee the output constraints and it will
propagate the inflow disturbance to the downstream distillation column.

To describe the continuous uncertain inflow this stochastic process will be dis-
cretized as multiple stochastic variables in fixed time intervals. We assume they have
a multivariate normal distribution with an available expected profile and a covari-
ance matrix in the considered time horizon. The reason for this assumption is that
the total feed of the tank is the sum of several independent streams from the up-
stream plants. According to the central limit theorem [16], if a random variable is
generated as the sum of effects of many independent random parameters, the distri-
bution of the variable approaches a normal distribution, regardless of the distribution
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Figure 4. Measured feed profiles of an industrial methanol-water distillation process

of each individual parameter. These parameters can be readily obtained by analyz-
ing daily measured operating data. It is obvious that a wait-and-see strategy is not
appropriate to be used in this process. Setting the feed flow with its expected profile
in a deterministic optimization can not guarantee holding the tank level in the de-
sired region. The product specification will also be easily violated by the drastically
changing real feed flow. Therefore, a here-and-now strategy, which includes the un-
certainties in the optimization problem, should be used. This will be discussed in
the next sections.

2 MODELING UNCERTAINTY

As discussed in the previous section, a common technique of correcting random
disturbances in chemical processes is moving horizon control (or model predictive
control): states are measured (or estimated) in relatively small intervals, and optimal
open-loop strategies are computed over a given planning horizon—“optimal” under
the simplifying assumption that no further disturbances occur. In effect, the frequent
repetition of this process implicitly generates a (possibly nonlinear) feedback con-
troller that reacts to the measured disturbances.

The stochastic approaches described here are naturally applicable within such
a moving horizon framework but differ in a fundamental aspect: rather than just
reacting they look ahead by taking stochastic information on future events explicitly
into account. This is possible if it is known which random events may occur and how
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likely they are. In other words, a stochastic model of the disturbances is required,
taking the form of a random process � 0 � � 
 : 
���� 8 � � � defined on some underlying
probability space

� 	 	�� 	 � : . Here � is the length of the planning horizon and � is the
current time. In the present context, only �

�
-valued discrete-time processes for

� 0� 	 � 		�
�	� 	 � are considered, and it is assumed that � 
 is observed just before time
�

so that � 8 is known at
� 0 � . Thus, the processes can be seen as random variables� 0 � �

�
		�
�	� 	 � � : in �

� �
. Moreover, we consider either discrete distributions ��� or

distributions with a continuous density function on �
� �

. (More details will be given
below.) For a comprehensive treatment of the measure-theoretic and probability-
theoretic foundations see, e.g., Bauer [1, 2].

Apparently the explicit modeling of uncertainty adds information to the opti-
mization model and allows for more robust process control. The price one has to
pay is the necessity of solving a stochastic optimization problem whose complexity
may exceed the complexity of the underlying deterministic problem by orders of
magnitude.

The precise nature of uncertainties (such as the time dependence and the signif-
icance in objective and constraints) leads to different classes of stochastic optimiza-
tion models; we will describe two of them. The first approach yields a multistage
recourse strategy consisting of optimal reactions to every observable sequence of
random events. It minimizes expected costs while satisfying all constraints. This is
appropriate if feasible solutions exist for every possible disturbance, or if costs for
the violation of soft constraints can be quantified (as penalty terms). The second
approach yields a single control strategy that does not react to random events but is
guaranteed to satisfy the constraints with a prescribed probability. This is appropri-
ate if constraint violations are unavoidable in certain extreme cases, or if they cause
significant costs that cannot be modeled exactly. For detailed discussions of stochas-
tic modeling aspects and problem classes we refer to the textbooks [5] and [14].

3 SCENARIO-BASED STOCHASTIC OPTIMIZATION

In scenario-based optimization, uncertainty is modeled as a finite set of possible
realizations of the future with associated positive probabilities. Each realization is
called a scenario and represents a certain event or, in our case, history of events. In
precise probabilistic terms this corresponds to a discrete distribution given by a finite
probability space

� 	 		� 	 � : , � 	 � 0 �
. One may simply think of � as the “number”

of a scenario, which is often emphasized by using index notation. Thus, each ele-
mentary event �

� 	
labels a possible realization ��
 0 � ��


�
		�
�
� 	 ��
 � : , and the

distribution is given by
�

probabilities
� � 
 : 
 � � , that is, �� � ��
 : 0 � � � : 0 � 
 .

(The 
 -field is then simply the power set of the sample space,
� 0 � �

.)

3.1 Scenario Trees

As indicated, we have to deal with event histories rather than single events. This
means that there is a finite number of realizations of � � , each of which may lead to
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����� � ����� ��������
	�
� �
��� �����	�
� ����� ���

1

0

2

4 53  � �  � ��� � � ��� � � �	� � � 
	� �
 �
��� � � ���	�	� � � 
	� �
 ����� � � ���	����
	� �

Figure 5. A small scenario tree with level sets and corresponding � -fields

a different group of realizations of � � , and so on. The repeated branching of partial
event histories � 
 � 0 � � 8 	
�	�
� 	 � 
 : , called stage

�
scenarios, defines a scenario tree

(or event tree) whose root represents � 8 , the known observation at
� 0 � , and whose

leaves represent the complete set of scenarios. Thus any node represents a group
of scenarios that share a partial history � 
 . We denote by � the set of nodes (or
vertices) of the tree, by 	 
�� � the level set of nodes at time

�
, and by 	

� 	 �
the set of leaves; further by � � 	 8 the root, by � � 	 
 the “current” node, by� � � � � : � 	 
 5

� its unique predecessor (if
� � � ), and by � � � : � 	 
 �

� its set of
successors. The scenario probabilities are � � � � , � � 	 . All other nodes also have
a probability � � satisfying � � 0�� � � � � � � � � . Hence, � � � ��� � � 0 � holds for all

�
,

and � 8 0 � .
Seen as a partitioning of the scenarios into groups, each level set 	 
 consists of

atoms generating a sub- 
 -field
� 
 0 
 � 	 
 : � �

(where
� 8 0 � � 	 	 � and

� � 0 �
),

and � 
 is measurable with respect to
� 
 . The tree structure is thus reflected by the

fact that these 
 -fields form a filtration
� 8 �

� � �
� � � to which the process

� � 
 :��
 � 8 is adapted. For instance, in Figure 5 the nodes represent scenario sets as
follows: ��� � � 	 � 	 � � , � � � � 	 � � , � � � � � , � � � � � , � � � � � , and � � � � � .
Since these abstract probability-theoretic notions are unnecessarily general for our
purposes, we will use the more natural concept of scenario trees in the following.
The notation � 
 0 � � � : � � � � or � 0 � � � : � � � refers to the distinct realizations of � on
level

�
or on the entire tree, respectively. (Here we include the deterministic initial

event � 8 in � .)

3.2 Multistage Stochastic Programs

The main topic of this section are multistage decision processes, that is, sequences
of alternating decisions and observations over the given planning horizon. The ini-
tial decision must be made without knowledge of the actual realizations of future
events; hence it is based solely on � 8 and the probability distribution of � . As the
future unfolds, the decision maker observes realizations � � of random events � 
 ,
thus collecting additional information which he or she takes into account from then
on. The resulting sequence of decisions is therefore called nonanticipative. For in-
stance, in controlling the feed tank of the distillation column in Section 1, we have
to decide in each time step how much liquid to extract during the next period based
on observations of the inflow during all previous periods and taking into account
the probability distribution of future inflows. (For the initial decision, past obser-
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vations do not appear explicitly in the problem but are implicitly modeled in the
distribution.)

The specific class of problems considered here are (convex quadratic) multistage
recourse problems on scenario trees, with decision vectors

� � � � � , � � � . Given
are convex quadratic objective functions

� � � � � : � 0 �� � �� � � � � 3 � �� � � 	
and polyhedral feasible sets depending on the previous decision

� � � � � � � � ,
� 8 � 0 � � 8 � � � � 8 � 8 0 � 8 � 	 (7)

� � � � � : � 0 � � � � � � � � � � 0 � � 2 � � � � � 	 � � � � � 0 ��� � � � � (8)

These are the realizations of random costs
� 
 � � 
 : and random sets � 
 � � 
 5 � : , that

is, we take as random events the problem matrices and vectors

� � 0 � � � 	 � � 	 � � 	 � � 	 � � :
or, more generally, the functions and sets � � 0 � � � 	 � � : . (Conceptually we are thus
allowing entirely random problem data. In practice, however, only a subset of matrix
and vector elements will usually depend on an even smaller number of random
influences.) Decisions

� � are to be made so as to minimize the immediate costs
plus the expected costs of (optimal) future decisions; this is expressed in the general
multistage recourse problem

min� � � 	 � �98
� � 8 :

3�� � � � min�  � 	  ��� � �
�
�
� �
�
: 3

� � �
3�� ���
	  � min� � � 	 � ��� �
	  �

� � � � � : � �
�	� � � (9)

Here � � � denotes the conditional expectation with respect to 	 
 ,
� ���

� � 
 � � : 0 � �
� � � � � �

� �
� � � � � � � � � �

The recourse structure of this class of stochastic programs is induced by the
stage-coupling equations in (8); it is best seen in the deterministic equivalent form.
Defining � � � � � � � : � 0 � and then recursively

� 
 � � 
 5 � : � 0 � � � 	  � min� � � 	 � ��� � 	  �
� 
 � � 
 : 3 � 
 � � � � 
 : � 	 � 0�� � 2 � : � 	

or, in terms of the realizations,

� 
 � � � : � 0 �
� � � � � �

� �
� �
�

min� � � 	 � ��� � �
� � � � � : 3 � 
 � � � � � : � 	 � 0 � � 2 � : � 	 � � 	 
 5

�
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the deterministic equivalent problem reads

min� � � 	 � �98
� � 8 : 3 � �

� � 8 : �

This has the form of a deterministic optimization problem (hence the name), but
� � is nonlinear and in general non-smooth, so it is not necessarily an appropriate
formulation for numerical computations. In the case of interest one can actually
unwrap the nesting of minimizations to obtain a single objective; the deterministic
equivalent then takes the form of a large but structured convex quadratic program in
the decision variables

� 0 � � � : � � � ,

min�
�
� � �

� � � �� � �� � � � � 3 � �� � � � 	 (10)

s.t. � 8 � 8 0 � 8 	
(11)

� � � � 0 � � 2 � � � � � � � � � 	 (12)
� � � � � � � � � (13)

This is called the extensive form. In stochastic notation with
� 0 � � 8 	
�
�	� 	�� � : the

same problem reads

min�
��
 � 8 � � �� � �
 � 
 � 
 3 � �
 � 
 � (14)

s.t. � 8 � 8 0 � 8 	
(15)

� 
 � 
 0 � 
 2 � 
 � 
 5 � � � � � � 		�
�	� 	 � � 	 (16)
� 
 � � � � � � � 	
�	�
� 	 � � � (17)

Problem (14–17) and its deterministic equivalent (10–13) represent a standard
problem class in stochastic programming. Especially the linear case with fixed re-
course (i.e., objective � 
 � � � �
 � 
 � and deterministic � 
 ) is very well-understood
and widely used in practice. An important property of the deterministic equivalent
is that, except for the recourse sub-structure, it has the form of a standard mathe-
matical program (LP, QP, CP, or NLP). Thus, even though the scenario tree may
cause exponential growth of the problem size, standard solution approaches are ap-
plicable when combined with suitable techniques that exploit the sparsity induced
by the stochastic nature. The most prominent such techniques are decomposition
approaches which split the large stochastic program into smaller problems associ-
ated with clusters of nodes (or scenarios). For a discussion of these techniques we
refer the reader to the excellent survey articles [4, 21]; our own approach combines
interior point methods with specially developed sparse-matrix techniques.

3.3 Dynamic Structure

The stage-coupling equations (16) or (12) define (implicitly) an underlying dynamic
process, usually combined with further equality constraints. More precisely, the
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rows of conditions (16) can be categorized into dynamic equations and certain types
of constraints which possess natural interpretations and satisfy associated regularity
conditions. In [25, 26] we have developed complete such categorizations for sev-
eral formulations of stochastic programs, accompanied by solution algorithms that
employ natural pivot orders resulting from the refined sparse structure.

In processes governed by differential (or difference) equations there is typically
also a natural partitioning of the decision variables

� 0 � � 	 � : into (independent)
control variables � and (dependent) state variables � , the former representing the
actual degrees of freedom available to the decision maker. The dynamic equations
are then often given in explicit form,

� � 0 � � � � 3�� � � � 3 � � 	 (18)

which is equivalent to (12) if we define � � � 0 � 
 � : and � � � 0 2 � � � � � : . In
this notation (and with the convention � � � 8 � 	 � � � 8 � � �

8
), the multistage stochastic

program of interest takes the form

min� � � � �
�
� � �

� �
� �� � � �

� �
� � � � � � ��� � % �

� � � �
� �
� 3

� � �
� � � � � � �� � � � 	

(19)

s.t. � � 0 � � � � 3�� � � � 3 � � � � � � 	
(20)

� � � � min 	 � max � 	 (21)

� � � � min 	 � max � 	 (22)�
� � �

� � � � � � � 3 
 � � � 3 � � : 0 � � (23)

Apart from the form of dynamic equations, the major difference to the standard
formulation consists in the additional equality constraint (23). This condition rep-
resents a sum of expectations; we call it a global constraint since it may couple all
nodes of the tree. In the standard formulation (10–13), such a condition cannot be
modeled directly; it would require surplus variables and additional constraints.

The natural interpretation of the dynamics (18) is that the decision � � at time� 2 � controls all subsequent states � � , � � � � � : , at time
�
. This is the typical situation

in discretized continuous-time processes: actually � � determines a control action for
the entire interval

��� 2 � 	�� : which becomes effective in � � one period later. In other
application contexts (particularly in the financial area), decisions become effective
immediately, leading to dynamic equations

� � 0 � � � � 3�� � � � 3 � � � (24)

Here each state � � has “its own” control � � rather than sharing � � with the siblings
�
� � :

.
The problem classes and solution algorithms associated with the possible formu-

lations of dynamics are closely related; we refer to them collectively as tree-sparse.
(For details see [24–26].) Applications are not only in discrete-time deterministic
and stochastic optimal control but also in other dynamic optimization problems with
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an underlying tree topology; extensions to network topologies with “few” cycles are
straightforward. A very general related problem class is investigated in [20] using
a similar formulation of dynamics but 
 -fields and probability spaces rather than
scenario trees.

3.4 Convex Programs

Since we are concerned with convex quadratic stochastic programs, we recall here
some basic definitions and facts of convex optimization. A convex optimization
problem has the general form

min� � 	
��� � :

(25)

where � is a convex set and
� � ��� � is a convex function, that is,

� � 2 � : � 8 3 � �
�
� � and

��� � � 2 � : � 8 3 � �
�
: � � � 2 � : ��� � 8 : 3 � ��� �

�
:

for all
� 8 	��

�
� � and

� � � � 	 � � . A convex program (CP) is the special case

min�
��� � :

s.t. � � � : 0 � 	 � � � : � � 	 (26)

where � � � � � � � is an affine mapping, � � � : ��� � 3 � , and
� � � � � �

�
is a

(component-wise) concave mapping. If
� 	 � 	 � are twice continuously differentiable,

this means that the Hessians of
�

and 2 � � are positive semidefinite,

 � ��� � : � �

and

 � � � � � : � � . The convex quadratic case (with � � � ) reads

min�
�� � � � � 3 � � � s.t.

� � 3 � 0 � 	 � � 3�� � � � (27)

The feasible set � is a polyhedron if and only if it is given by finitely many linear
equalities and inequalities, as in (27). It is easily seen that all level sets

��� � 0 � � �
� � ��� � : � � � of (25) are convex. Moreover, every local solution is automatically a
global solution, and the set � of all solutions is convex. In the general case � may be
empty even if feasible solutions exist. This happens either if

�
is unbounded below,

inf� � 	 0 2 � , or if
�

is bounded below but the level sets
� �

are unbounded for
�
	 inf � � 	 � 2 � . Both situations are impossible in the convex quadratic case (27):
existence of a solution �� � � is then always guaranteed (unless the problem is
infeasible). Uniqueness of a solution �� holds under standard conditions. For the
convex QP (27), a sufficient condition is positive definiteness of � on the null space� � � :

or, more generally, on its intersection with the null spaces of the rows of �
associated with strictly active inequalities at �� . All this applies in particular to the
stochastic problems (10–13) and (19–23). For an exhaustive treatment of the theory
and numerical aspects of convex and (nonconvex) nonlinear programming we refer
the reader to standard textbooks, such as [7, 8, 17].
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4 STOCHASTIC OPTIMIZATION UNDER PROBABILISTIC CONSTRAINTS

An important instance of optimization problems with uncertain data occurs if the
constraints depend on a stochastic parameter, such as the inequality system

� � � 	 � : � � 	 (28)

where
� � � ��� � � � � � , � is an

�
-dimensional random variable defined on some

probability space
� 	 	�� 	 � : and the inequality sign has to be understood component-

wise. Written as such, the constraint set is not a well-defined part of an optimization
problem since, usually, the decision on the variables � has to be taken before �
can be observed. It is clear that, in order to arrive at an implementable form of the
constraints, one has to remove in an appropriate way the dependence of

�
on specific

outcomes of � . The most prominent approaches to do so are

– the expected value approach
– the compensation approach
– the worst case approach
– the approach by probabilistic constraints

Using expected values, the system (28) is replaced by � � � � 	 � : � � , which now
can be understood as an inequality system depending on � only, as the expectation
operator acts as an integrator over � . An even simpler form is obtained when the
random variable itself is replaced by its expectation:

� � � 	 � � : � � (both forms co-
incide in case that

�
depends linearly on � ). The last form corresponds to the naive

idea of substituting random parameters by average values. It seems obvious (and
will be demonstrated later) that such reduction to first moment information ignores
substantial information about � . Indeed, the expectation approach guarantees the
inequality system to be satisfied on the average only, but a decision � leading to a
failure of a system for about half of the realizations of � is usually considered as
unacceptable. On the other extreme, the worst case approach enforces a decision to
be feasible under all possible outcomes of � :

� � � 	 � : � ��� � . This puts emphasis
on absolute safety which is frequently either not realizable in the strict sense or is
bought by extreme increase of costs. Although diametrically opposed in their mod-
eling effects, both the expected value and worst case approach share some ignorance
of the stochastic nature of � .

The basic idea of compensation relies on the possibility to adjust constraint vi-
olations in the system (28) after observation of � by later compensating actions.
Accordingly, the set of variables splits into first stage decisions � (to be fixed before
realization of � ) and second stage decisions

�
(to be fixed after realization of � ).

As an example, one may think of power scheduling where an optimal load pattern
of power generating units has to be designed prior to observing the unknown de-
mand, and, where possible later gaps between supply and demand can be corrected
by additional resources (e.g., hydro-thermal units, contracts etc.). The adjustment of
constraint violation is modeled by an inequality system � � � 	 � 	�� : � � , connecting
all three types of variables and it causes additional costs � � � 	 � : for the second stage
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decisions. Of course, given � and � ,
�

should be chosen as to minimize second stage
costs among all feasible decisions. Summarizing, compensation models replace the
original problem

min� ��� � : � � � � 	 � : � � �
of minimizing the costs of first stage decision under stochastic inequalities by a
problem where the sum of first stage costs and expected optimal second stage costs
is minimized:

min � ��� � : 3 � � � : � 	 � � � : 0 � � � � 	 � : 	 � � � 	 � : 0 min� � � � 	 � : � � � � 	 � 	�� : � � � �

The compensation approach, however, requires that compensating actions exist at all
and can be reasonably modeled. In many situations this is not the case. For instance,
operating an abundance of inflow in a continuous distillation process may cause
adjusting actions which are inconvenient to carry out or the costs of which are hard
to specify. In such circumstances, emphasis is shifted towards the reliability of a
system by requiring a decision to be feasible at high probability. More precisely,
(28) is replaced by the probabilistic constraint

� � � � � 	 � : � � : � � �
Here, � is the probability measure of the given probability space and � � � � 	 � �
is some probability level. Of course, the higher � the more reliable is the mod-
eled system. On the other hand, the set of feasible � is more and more shrunk with��� � which makes increase the optimal value of the objective function at the same
time. The extreme case � 0 � is similar to the worst case approach mentioned be-
fore. Fortunately, in a typical application, considerable increase in reliability can be
obtained—for instance when contrasted to the expected value approach—at a small
expense of the objective function and it is only for requirements close to certainty
that the optimal value of the objective function worsens critically. This makes the
use of probabilistic constraints a good compromise between the afore-mentioned
methods. For a detailed introduction into various models of stochastic optimization
the reader is referred to the monographs [5], [14] and [18].

4.1 Types of Probabilistic Constraints

Both for theoretical and practical reasons it is a good idea to identify different types
of probabilistic constraints. First let us recall, that (28) is a system of inequalities
given in components by

�
�
� � 	 � : � � , . . . ,

� � � � 	 � : � � . Now, when passing to
probabilistic constraints as described before, one has the choice of integrating or
separating these components with respect to the probability measure � :

� � �
�
� � 	 � : � � 	
�	�
� 	 � � � � 	 � : � � � � � or

� � �
�
� � 	 � : � � � � � 	 �
�	� 	 � � � � � � 	 � : � � � � � �

These alternatives are referred to as joint and individual probabilistic constraints,
respectively. It is easily seen that feasibility in the first case entails feasibility in the
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second case while the reverse statement is false. In the context of control problems,
the components of � may relate to a discretization of the time interval. Then, joint
probabilistic constraints express the condition that at minimum probability � certain
trajectories satisfy the given constraints over the whole interval whereas individual
ones mean that this statement holds true for each fixed time of the discretized inter-
val. From the formal point of view, passing from joint to individual constraints may
appear as a complication as a single inequality (with respect to the decision variables� ) is turned into a system of 
 inequalities. However, introducing one-dimensional
random variables (depending on � ) � � � � : � 0 � � � � 	 � : , it can be seen that the joint
constraints involve all components � � simultaneously, whereas in each of the indi-
vidual constraints just one specific component � � figures as a scalar random variable.
Taking into account that the numerical treatment of probability functions involv-
ing high-dimensional random vectors is much more delicate than in dimension one,
where typically a reduction to quantiles of one-dimensional distributions can be car-
ried out, the increase in the number of inequalities is more than compensated by a
much simpler implementation. Of course, the choice between both formulations is
basically governed by the modeling point of view.

Another important structure of probabilistic constraints occurs if in the con-
straint function

�
decision and random variables are separated in the sense that� � � 	 � : 0 ˜� � � : 2 �� � � : . Using the distribution function � � � � : � 0 � � � � � :

for the
transformed random variable � 0 �� � � : , the resulting (joint) probabilistic constraint
may be equivalently written as

� � � � � 	 � : � � : � ����� � � ˜� � � : � �� � � : : � ����� � � � ˜� � � : : � � �
In this way, the originally implicit constraint function on � has been transformed into
a composed function � ��� ˜� . Taking into account that ˜� is analytically given from
the very beginning and that there exist satisfactory approaches of evaluating dis-
tribution functions (in particular multivariate normal distribution), one has arrived
at an explicit, implementable constraint. Thus it makes sense to speak of explicit
probabilistic constraints here.

In the general implicit case, the evaluation of probabilities � � � � � 	 � : � � : as
well as of their gradients with respect to � may become very difficult and efficient
only in lower dimension. Nevertheless, there is some good chance for special cases
like

� � �
�
	 � : concave. Another option for solution is passing from joint to individual

constraints.

4.2 Storage Level Constraints

An important instance of probabilistic constraints arises with the control of stochas-
tic storage levels. Here it is assumed that some reservoir storing water or energy
or anything similar is subject to lower and upper capacity levels � min and � max. The
reservoir is continuously fed and emptied. The feed � is assumed to be stochastic
whereas extraction � is carried out in a controlled way. We consider this process
over a fixed time horizon � �	� 	���
 � and discretize � and � according to subintervals of
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time as
� �
�
		�
�	� 	 � � : and

� �
�
		�
�	� 	 � � : , where � � and � � denote the amount of sub-

stance directed to or extracted from the reservoir, respectively, during the
�
-th time

subinterval. Accordingly, the current capacity level after the
�
-th interval amounts

to �
8
3 �

�
3
� � �

3 � � 2 �
�
2
� � �

2 � � , where �
8

refers to the initial capacity at
� �

.
Thus, the stochastic storage level constraints may be written as

� min 2 �
8 � �

�
3
� � �

3 � � 2 �
�
2
� � �

2 � � � � max 2 �
8

� � 0 � 	
�
�	� 	 � :
or more compactly as the system � � � 	 �72 	 � � � � , where 	 is a lower left trian-
gular matrix filled with ‘ � ’. Obviously, decision and random variables are separated
here and, according to the preceding section, the resulting probabilistic constraints
become explicit and can basically be reduced to level sets of

�
-dimensional distribu-

tion functions in case of joint constraints. The problem becomes particularly simple
if the constraints are considered individually both with respect to the upper and
lower level and to time index

�
. For instance, the

�
-th upper level constraint writes

as

� � � � � � �� 3 �
�
3
� � �

3 � � : � � ��� � � �
�
� �� 3 �

�
3
� � �

3 � � : � �
��� �

�
3
� � �

3 � � � � � � � : 5 � � � : 2 � �� 	

where � � 0 �
�
3
� � �

3 � � , � � � refers to the 1-dimensional distribution function
of � � and

� � � � : 5 � � � : denotes the (usually tabulated) � -quantile of this distribution.
Consequently, the probabilistic constraints can be transformed to a system of simple
linear inequalities in the decision variable � then. Storage level constraints will be
considered later in the context of controlling a continuous distillation process where
the role of the reservoir is played by the so-called feed tank which acts as a buffer
between stochastic inflows and the operating distillation unit.

4.3 Numerical Treatment

The solution of optimization problems involving probabilistic constraints requires
at least the ability of evaluating the function � � � : 0 � � � � � 	 � : � � : . Thinking of
discretized control problems which are typically large dimensional, efficient meth-
ods like SQP have to be employed. Then, of course, the gradient of � has to be
provided as well if not even second partial derivatives.

Assuming � to have a density
� � , the function � is formally defined as the

parameter-dependent multivariate integral

� � � : 0
�

� � � � � ��� 8
� � � � : � � 	 (29)

where integration takes place over an
�
-dimensional domain. Thinking of discretized

control problems again, the dimension
�

of the random variable may correspond to
the discretization of a time interval, hence values of

� 0 � � are more than moderate.
In such dimension, however, an ‘exact’ evaluation of the above integral by numer-
ical integration is far from realistic. Rather, two principal ‘inexact’ strategies have
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proven powerful in the past, namely bounding and simulation. Some rough ideas can
be illustrated for the example of distribution functions, i.e., the special case where
the domain of integration becomes a cell

� � � : 3 � �5 . As mentioned in the previous
sections, the evaluation of distribution functions is crucial for the important special
case of explicit probabilistic constraints.

The generic representatives of the bounding and simulation procedures are the
Bonferroni bounds and the crude Monte-Carlo estimator. The Bonferroni bounds
refer to the determination of the probability � ��� �

� �
�
� � : of the union of

�
abstract

probability events
� � , and they are based on the inequalities

� ��
� �
�

� 2 � : �I5 � � � � � �
��

� �
�

� � : � � � �
��

� �
�

� 2 � : �I5 � � � 	

where 
 0 � 		�
�
� 	�� � � ��� on the left hand side and 
 0 � 	
�	�
� 	�� � � 2 � : � ��� on the
right hand side, and

� � 0 �
���
� 
	 � � � 	 ��� � �

� � � �  �
� � �
� � ��� :

denotes the summarized probability of all possible intersections of order


. In case
of
� 0 �

, for instance, the very properties of a measure yield

� � �
�
� �

�
: 0 � � �

�
: 3 � � � � : 2 � � �

�
� � � : � � � �

�
: 3 � � � � : 0 � �

	

so we have recovered the first Bonferroni upper bound in a trivial case. For the
evaluation of a distribution function one has

� � � : 0 � � �
�
� �

�
	
�	�
� 	 � � � � � : 0 � � �

�
�
� � �
� � � : 0 � 2 � �

��
� �
�

� � : 	

hence the Bonferroni bounds can be applied to the last expression. Specifying these
bounds for 
 up to 2, one gets

� 2 � � � � � � : � � 2 � � 3 � �
�

Increasing 
 , these bounds become sharper and sharper until the maximum pos-
sible value of 
 exactly realizes the desired probability. On the other hand, the
determination of � � becomes increasingly complex. For instance, in the context
of � being a multivariate normal distribution, the determination of probabilities
� � � �  �

� � �
� � � � : leads to


-dimensional integration of that distribution. This

can be efficiently done for

0 � 	�� but gets quickly harder with higher dimension.

At the same time, the number of such probability terms to be summed up in the
determination of � � equals � �� � and thus makes the numerical effort soon explode.
That is why in the determination of distribution functions, one has to be content with
the very few first terms � � . Often, the gap between the resulting Bonferroni bounds
is too large for practical purposes then.
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Fortunately, sharper bounds can be derived on the basis of appropriate linear
programs (see [18]). For

 � � there even exist explicit expressions for these im-
proved bounds, for instance � 2 � �

3 � � � � � � � � : provides a much better lower
bound on the basis of � � with

 � �
than the Bonferroni counterpart � 2 � � � �

� � :
(where � � does not figure at all in the first lower bound). Still the gap may remain
unsatisfactory. Another strategy of deriving bounds relies on graph-theoretical ar-
guments. The prominent Hunter bound (see [12]), for instance, is based on finding a
maximum weight spanning tree in a graph the vertices of which are represented by
the single events

� � and the edges of which correspond to pairwise intersections of
events

� � � � � . The weight of an edge is given by the probability � � � � � � � : which
is easily calculated for all edges. The Hunter bound can be shown to be at least as
good as, but frequently much better than the (improved) lower Bonferroni bound
� 2 � � 3

� � � � mentioned above, although calculated with basically the same effort.
The idea behind the Hunter bound has been continuously generalized towards more
complex graph structures (hypertrees defined by hyperedges) in the last few years
resulting in amazingly efficient lower and upper bounds. Excellent results for the
multivariate normal distribution are reported in [6] with dimension up to

� 0 � � .

The simplest scheme of Monte-Carlo simulation for evaluating (29) consists in
generating a sample of

�
realizations

�
�
		�
�	� 	�� �

of � and to take then the ratio � � as an estimate for the desired probability, where

0 # � � � � � � 	 � � : � � � . For

larger dimension
�
, the variance of this estimate becomes quite large which makes

it unsatisfactory soon. Similar to the starting point of Bonferroni bounds, more effi-
cient simulation schemes have been developed as well. At this point, we may refer
to Szántai’s simulation scheme (see [27], related approaches are described in [18])
which is based on the knowledge of the first two terms � �

	 � � of probabilities of sin-
gle events and pairwise intersections. Using the same sample as already generated
for the crude Monte-Carlo estimator, these terms allow immediately to calculate
two additional Monte-Carlo estimators, the reason behind being a simple cancella-
tion rule of binomial expressions. Now, the main idea is to convexly combine these
three Monte-Carlo estimators (including the crude one) and to exploit correlations
between them in order to minimize the variance of the combined estimator. In this
way, simulation results become considerably more precise. Finally, an extension to
incorporating Hunter’s and the other mentioned graph-theoretical bounds into this
scheme has been successfully carried out.

The procedures described so far are related to the evaluation of functional values
of � in (29) with special emphasis on distribution functions. As for gradients or
higher order derivatives, these can be reduced analytically to the determination of
functional values again at least in case of a multivariate normal distribution (for
details see [18]). Hence, the same basic strategies apply although with repeated
effort now ( � components for the gradient and �

�
� 3 � : � � components for the

Hessian if wanted).
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4.4 Probability Maximization

As already mentioned above, increasing the probability level � in a probabilistic
constraint shrinks the feasible set. Typically, the feasible set becomes empty start-
ing from a critical value ¯� which may be less than � . In particular, a user of some
implemented solution method dealing with probabilistic constraints might uninten-
tionally have chosen a value of � above that critical value. Then, for instance, SQP
codes working with infeasible iterates and enforcing feasibility in convergence only,
will consume a lot of computing time in vain due to operating on an empty constraint
set. This effect is particularly undesirable in an environment of on-line optimization.
Therefore, one has good reason prior to the optimization problem itself to determine
¯� by probability maximization over the constraints:

max� � � � � � � � 	 � : � � : � � � �

As long as probabilistic constraints are considered alone in this auxiliary problem,
it can be solved rather quickly as compared to the original optimization problem.
However, one has to take into account that the obtained maximum value of � is
just an upper bound for ¯� since the other constraints of the optimization problem
(usually related to the dynamics of the underlying control problem) are not involved
here. At least, this bound gives an indication for a probability level which cannot be
exceeded at all. In order to calculate the exact bound, one would have to include all
constraints which, of course, is almost as time consuming as the original problem.

4.5 Structural Properties

For an efficient treatment of probabilistic constraints, it is crucial to have some in-
sight into their analytical, geometrical and topological structure. While correspond-
ing statements are well-known and immediate for usual (analytical) constraints of
the type � � � : � � (e.g., when � is linear, convex or differentiable), there are no
obvious relations between the quality of data and the structure of probabilistic con-
straints. Most results in this direction are concerned with convexity issues which
have direct consequences for numerics and theoretical analysis. A corresponding
important statement in simplified form is the following one (cf. [18]):

Theorem 1. In (28), let the components
� � of

�
be convex and assume that � has a

density the logarithm of which is concave. Then, the function � � � : 0 � � � � � 	 � : �
� : is concave and, hence, the corresponding probabilistic constraint may be con-
vexly described, i.e., �

� � � � 	 � : � � : � ����� 2 � � � : � � .

Many but not all of the prominent multivariate distribution share the property of hav-
ing a log-concave density as required in the last theorem (e.g., multivariate normal
distribution or uniform distribution on bounded convex sets, cf. [18]).
An alternative structural characterization relates to the weaker property of connect-
edness (cf. [11]):
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Theorem 2. The constraint set � � � � � ˜� � � : ���� � � :�: � � � of an explicit proba-
bilistic constraint is connected whenever the components ˜� � are concave and the
constraint qualification

Im
� ˜� : � ���

�
� � 		�
�
� 	 � : 3 � � � :��0 � � � � � �

In the affine linear case ˜� � � : 0 � � 3 � , this constraint qualification reduces to the
positive linear independence of the rows of

�
.

Note that this last result does not require any assumptions on the distribution of the
random variable. Applying the previous theorems to the specific situation of joint
storage level constraints to be considered later on in the context of a distillation
process, one may infer that the feasible set is convex for many and connected for all
distributions of the random variable � .
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A Multistage Stochastic Programming Approach in
Real-Time Process Control

Izaskun Garrido and Marc C. Steinbach

Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), Germany

Abstract Standard model predictive control for real-time operation of industrial production
processes may be inefficient in the presence of substantial uncertainties. To avoid overly
conservative disturbance corrections while ensuring safe operation, random influences should
be taken into account explicitly. We propose a multistage stochastic programming approach
within the model predictive control framework and apply it to a distillation process with a
feed tank buffering external sources. A preliminary comparison to a probabilistic constraints
approach is given and first computational results for the distillation process are presented.

1 INTRODUCTION

The work reported here is part of a joint research effort aiming at real-time con-
trol of chemical processes under uncertainty. Two different stochastic optimization
approaches are studied, with the intention to explore and compare their respective
general properties and their usefulness in certain practical situations. A specific dis-
tillation process serves as a prototypical application example which is investigated
under various aspects.

Distillation processes are used to separate liquid or vapor mixtures of several
substances into products with different compositions of a desired purity, by the ap-
plication and removal of heat. Distillation is the most widely used separation process
in chemical industry; it consumes large amounts of energy.

The specific process under investigation is the separation of a binary mixture of
methanol and water in a continuously running system of two energetically coupled
distillation columns. The process is fed from a buffer tank that collects several exter-
nal sources. In practice, uncertainty occurs when the inflow into the tank may vary at
random due to disturbances in the upstream processes. A robust extraction strategy
is then required to prevent the tank from running dry or spilling over while keeping
the process in favorable operating conditions. Specifically, we assume that the total
energy consumption is to be minimized over a given planning horizon; cf. [11, §1].

A pilot system of the process just described is installed at the Institute of Process
Dynamics of the Technical University of Berlin. Optimization results have been
obtained in the partner project for a simplified one-stage column model called a flash
unit [13]. In that work, the composition of the inflow mixture and its temperature are
assumed to be deterministic whereas the inflow rate may vary at random. The rate
is modeled as an autocorrelated Gaussian process representing the superposition of
many independent inflows, as indicated in Figure 1. A rectangular inflow profile
modeling a single event with known rate and duration but random starting time is
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Figure 1. Distillation column with feed tank. � � : random inflow rate; � : feed rate; � : reflux
flow rate; � : reboiler duty; ��� : distillate; ��� : bottom

also considered in [13]. Each of these stochastic models represents disturbances that
occur in usual process operation, as opposed to exceptional events like failures.

The stochastic optimization approach presented here is based on a scenario tree
model; cf. [11, §§2, 3]. Possible deviations from the expected inflow profile over
the entire planning horizon are thus represented as a discrete-time stochastic process
with finitely many realizations. An optimal solution in this framework minimizes the
mathematical expectation of the cost (energy consumption) over all scenarios. The
optimal control strategy is itself a nonanticipative stochastic process: it determines
a different extraction profile for each scenario, thus specifiying a priori how to react
to future measurements of actual inflows. This approach requires that (within a lin-
earized model) the constraints can be satisfied for any possible sequence of random
disturbances (the tank filling level can be kept feasible for any sequence of inflows).
More generally, the approach is applicable if hard constraints can always be satis-
fied and costs for potential violations of soft constraints can be quantified. In the
latter case, soft constraints will be satisfied only if this is possible and economic.

The probabilistic constraints approach pursued in the partner project also mod-
els the inflow history as a discrete-time process but allows continuous probability
distributions given by a density function; cf. [11, §§2, 4]. The optimal control strat-
egy in this case is deterministic: it does not react to actual disturbances. Instead, it
minimizes the cost under the restriction that constraints will be satisfied with high
probability (for instance, in at least 95% of all cases). This approach is appropriate
if it is not possible to satisfy all constraints with certainty (in certain extreme cases
one cannot prevent the tank from running dry or spilling over), or if such events
cause substantial costs for which no precise model is available.
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Both stochastic optimization approaches are naturally applicable within a mov-
ing horizon framework. In the present context, real-time process control means re-
sponse times in the order of 10 to 15 minutes. This is appropriate for the distillation
process with a planning horizon of about a day and reoptimizations every 2 or 3
hours.

As indicated in [11, §1], uncertainty may influence the planning and operation of
chemical production processes in various ways. For instance, [22, 23] study the de-
sign of chemical plants under uncertainty, with the aim of guaranteeing the existence
of feasible control strategies after observing the random event(s). Process operation
under uncertainty is investigated, e.g., in [15, 24] and, for the case of random feed
streams, in [7] and in the partner project [12,13]. A stochastic integer programming
approach to online scheduling of batch processes is given in [8]. The rigorous treat-
ment of exceptional events by scenario-based DAE models is described in [1]. A
coarse classification of relevant types of uncertainty and a general discussion of the
topic can be found in [16]. The specific area of distillation processes is particularly
well-studied under various aspects. See, e.g., [19] for a recent general survey, [5]
for optimal control in the presence of random feed, or [2] for a large-scale industrial
application. For the background in stochastic optimization required in this paper we
refer to [11, §§2, 3] and standard textbooks [3, 14].

The current investigation treats the same general situation as [13], using a track-
ing approach presented in §2. The discretization of the Gaussian inflow process in a
scenario tree framework is described in §3, and a new, straightforward technique of
evaluating integrals of the multivariate normal density is proposed in §4. Finally we
present first computational results in §5 and give some conclusions in §6.

2 OPTIMIZATION MODEL

A schematic diagram of a distillation column with a buffer tank is shown in Figure 1.
Uncertainty occurs in the tank inflow � � ; control variables are the reboiler duty � ,
the feed extraction � directed from the tank to the column, and the reflux flow 	 . For
more detailed descriptions ot the system we refer to [11, §1] and [9, 12].

Our first investigations, as reported here, are aimed at answering the follow-
ing question: given a desired extraction profile

� � , under which inflow conditions
is it possible to satisfy the level constraints in the tank, and how difficult is it?
Difficulty is measured as the expectation of the accumulated quadratic deviation
between actual extraction and target profile. That is, we solve on-line a stochastic
tracking problem where the target profile typically results from an off-line process
optimization. Uncertainty is thus effectively decoupled from the process dynamics.
Of course, such a simplified approach will be practically useful only in situations
where the distillation column is always capable of processing the extracted amount
of liquid without violating the purity constraints, and the total energy consumption� � � �

is not too sensitive to the deviations.
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2.1 Continuous Time

Since only the basic model structure is of interest here, we formulate a deterministic
tracking problem for simplicity (without uncertainty in the inflow rate � � ). Given a
target feed rate

� � and denoting by � the liquid volume in the tank, the model reads

min�
� �
8 �� � � ��� : 2 � � ��� : � � � � (1)

s.t. ˙� ��� : 0 � � ��� : 2 � ��� : 	 (2)
� � � : 0 �� 8 	 (3)
� � � : 0 �� � 	 (4)
� ��� : � � � min 	 � max � 	 (5)

� ��� : � � � min 	 � max � � (6)

Here ��
8

is the known initial volume, and �� � is a prespecified final level.
Note that some terminal condition on the liquid volume is always required in

the original problem since minimizing the total energy consumption of the reboiler
would otherwise result in processing as little liquid as possible, and hence yield a
full tank at the end of the planning horizon. Here we simply fix � � � : ; the nature of
the condition (called a cycling constraint) will be discussed in more detail in the
following section.

2.2 Discrete Time

Considering � periods (not necessarily of equal physical length) in discrete time� 0 � 	 � 	
�
�	� 	 � , we denote by � 
 the liquid volume in the tank at time
�
, by

� 

the feed volume extracted during

��� 	�� 3 � : , by
�� 
 the associated target extraction

volume, and by � 
 the random inflow volume during
��� 2 � 	�� : . In our approach,

the latter is assumed to vary only within some known finite interval � � min
 	 � max
 � . We
also assume that the volume

� 
 is extracted at a constant rate, which is consistent
with standard practice in process operation. The tank filling volume now evolves
according to

� 
 0 � 
 5
�
2 � 
 5

�
3 � 
 	 � 0 � 		�
�
� 	 � �

Note that the time index on
� 
 and

�� 
 refers to the following period whereas on � 

it refers to the previous period. This reflects the fact that decisions on extraction
volumes must be made at the beginning of each period whereas inflow volumes are
only measured at the end. An obvious consequence is that the control

� 
 will always
lag behind one period in compensating for undesired inflows. It can never steer
the state � 
 to a precise value but only into some range determined by the inflow
variation: � 
 � � � 
 5

�
2 � 
 5

�
: 3 � � min
 	 � max
 � .

In particular, the cycling constraint � � 0 �� � cannot be satisfied with certainty
but only in an average sense. It is thus replaced by

� � � � : 0 �� � (7)
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in [13]. This is the best one can do in a probabilistic constraints framework, but
the condition is actually quite weak in our approach: final values of � � may vary
over the entire feasible range rather than being clustered around �� � (as intended).
In fact we can do better: it is possible to satisfy a similar condition independently
for every realization of the preceding state � � 5

� , which amounts to prescribing the
conditional expectation

� � � � � � � 5 � : 0 �� � � (8)

(This condition can also be interpreted as a limiting case of (7) when the feasible
range � � min� 	 � max� � is continuously reduced in an appropiate manner.) We will present
optimization results for both alternatives.

The discrete-time stochastic tracking problem minimizes the expected tracking
error. In variables � 0 � � 8 	
�	�
� 	 � � : and

� 0 � � 8 		�
�	� 	 � � 5
�
:

it reads

min��� � � �
� 5
��
 � 8 �� � � � � 
 2 �� 
 : � � (9)

s.t. � 
 0 � 
 5
�
2 � 
 5

�
3 � 
 	 � 0 � 	
�
�	� 	 � 	 (10)

� � � � : 0 �� � or � � � � � � � 5 � : 0 �� � 	 (11)
� 
 � � � min 	 � max � 	 � 0 � 	
�
�	� 	 � 	 (12)� 
 � � � min 	 � max � 	 � 0 � 	
�	�
� 	 � 2 � � (13)

Uncertainty occurs only in the right-hand side of the dynamic equations (10). The
special case

� 0 � is formally handled by setting � 5
�
� 0 � 5

�
� 0 � and � 8 � 0 �� 8 ,

which is equivalent to using the physical quantities � 5
�
	 � 5

� , and � 8 from the actual,
continously running process.

Given a scenario tree with vertex set � , we denote by 	 
 � � the level set of
nodes at time

�
and by 	

� 	 � the set of leaves; further by � � 	 8 the root, by � � 	 

the “current” node, by

� � � � � : � 	 
 5
� its unique predecessor (if

� � � ), and by
�
� � : � 	 
 �

� its set of successors. The node probabilities are � � � � , � � � . For
further details see [11, §2], or [17, §2.4] where alternative scenario models (with
explicit nonanticipativity constraints) are discussed.

In the numerical formulation, the state variable is � 
 � 0 � 
 and the control is
defined as the tracking error, � 
 � 0 � 
 2 �� 
 (with limits � min
 � 0 � min 2 �� 
 and� max
 � 0 � max 2 �� 
 ). Correspondingly, we define

� 
 � 0 � 
 2 �� 
 5 � . Objective terms
then simplify to � � � �
 : , and the remaining equations and constraints retain their
original form with proper variable replacements—except that the control bounds
are now time-dependent. On the scenario tree, stochastic quantities � 
 	 � 
 	 � 
 are
represented by their realizations � � 	 � � 	 � � , � � 	 
 . Letting � � � 0 � � � � � and recall-
ing

� � � � � : , the first optimization problem (with cycling constraint � � � � : 0 �� � )
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then reads

min� � � � �
�
� � ��� �

�
� � � � �� (14)

s.t. � � 0 � � 2 � � 3 � � � � � � 	
(15)

� � � � � min 	 � max � � � � � � 	 (16)

� � � � � min
 	 � max
 � � � � ��� 	 	 (17)�
� � �

� � � � 0 �� � � (18)

The second problem can be written in the same form where the cycling con-
straint � � � � � � � 5 � : 0 �� � replacing (18) translates to�

� � � � � �
� �
� � � � 0 �� � � � � 	 � 5

�
�

However, this (set of) condition(s) is not explicitly specified in the problem for-
mulation. Instead, we use it to pre-eliminate the final period entirely as follows.
Substituting the dynamic equation (10) into (8) yields

�� � 0 � � � � 5
�
2 � � 5

�
3 � � � � � 5 � : 0 � � 5

�
2 � � 5

�
3�� � � � � � � 5 � : �

Hence, the final-period feed extraction is uniquely determined as
� � 5

� 0
� � 5

�
2 �� � 3 � � � 5

� (19)

where
� � � 5

�
� 0 � � � � � � � 5 � : is the conditional expectation of the final-period inflow.

The uniqueness of
� � 5

� shows that (8) is actually the strongest possible cycling
constraint in our framework.

It remains to clarify the roles of conditions (12) at
� 0�� and (13) at

� 0�� 2 � .
The bounds on � � translate to a restriction of the problem data,

� � 2 � � � 5
�
� � � min 2 �� � 	 � max 2 �� � � �

This yields an a priori feasibility check: no feasible solution can exist if the final
inflow � � (conditioned on � � 5

� ) varies too much. On the other hand, since

� � 2 � � � 5
�
� � � min� 2�� max� 	 � max� 2�� min� � 	

the restriction is always satisfied if the latter range is contained in the former.
The bounds on

� � 5
� simply imply a further restriction of � � 5

� ,
� � 5

�
� � �� � 2 � � � 5

�
: 3 � � min 	 � max � �

In the numerical formulation, the final state variable is now defined as the final-
period tracking error, � � 5 � � 0 � � � 5

�
2 �� � 3 � � � 5

�
: 2 �� � 5

� by (19). Accordingly,
we have

� 
 5
�
� 0 � 
 5

�
2 �� � 3 � � � 5

�
2 �� � 5

� and limits

� min� 5
�
� 0 max

� � min 	 � min 2 �� � 3 � � � 5
�
: 2 �� � 5

�
	

� max� 5
�
� 0 min

� � max 	 � max 2 �� � 3 � � � 5
�
: 2 �� � 5

�
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Figure 2. Expected inflow profiles (bold) and realizations. Left: continuous time. Right: dis-
crete time

yielding a possibly empty interval (which is also checked a priori). At times
� 0� 	
�	�
� 	 � 2 �

we use the same variables as before. That is, � 
 � 0 � 
 , � 
 � 0 � 
 2 �� 
 ,
(with limits � min
 	 � max
 ), and

� 
 � 0 � 
 2 �� 
 5 � . The state bounds for � � � � � 2 �
are � min
 � 0 � min and � max
 � 0 � max.

Due to the eliminations, the leaves of the original scenario tree are now obsolete
(typically a drastical reduction in size!), and the optimization problem is defined on
the subtree with vertex set � � � 0 ��� 	 and leaf set 	

� � 0 	 � 5
� . It reads

min� � � � �
�

� � ��� � � �
�� � � � �� 3 �

� � � �
�� � � � �� (20)

s.t. � � 0 � � 2 � � 3 � � � � � � � 	 (21)
� � � � � min
 	 � max
 � � � � � �� 	 (22)

� � � � � min
 	 � max
 � � � � � � � 	 ��� (23)

This is still very similar to problem (14–18), but instead of a terminal condition we
now have objective terms in the final period, and the state bounds in � 2 � are now
defined by the (possibly empty) intersection of two intervals.

3 DISCRETIZING THE GAUSSIAN PROCESS

The autocorrelated Gaussian process model for the inflow rate � � leads immedi-
ately to an autocorrelated discrete-time Gaussian process of inflow volumes � 
 , see
Figure 2. The latter is given by a general multivariate normal distribution

� � ¯� 	 �9:
whose dimension is the number of time periods, � . The density function � of the
normal distribution is positive on the entire space, that is, its support is � � . Thus,
although with small probability, it allows arbitrarily large inflows and even negative
ones (which are physically impossible unless the tank leaks). On the other hand, a
scenario tree representation necessarily corresponds to a discrete probability dis-
tribution, with compact support. Since we intend to compare the two stochastic
optimization approaches, this raises several nontrivial questions: How should the
support be chosen, how should the scenario tree be constructed, and how should
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the node probabilities be assigned to obtain a “good discretization” of the continu-
ous normal distribution? Such questions would be less relevant in practice: scenario
trees would be constructed directly from measurements, and a Gaussian process
would be seen as just one possible approximation of the real data, with the property
of being particularly well tractable in the probabilistic constraints approach.

Compact Support

Due to the absence of real data we make the following assumptions that seem rea-
sonable for a basic investigation: the actual inflow rate may only vary within a (pos-
sibly variable) symmetric bandwith around the expected rate, and “negative inflows”
are impossible,

� � ��� : � � � min� ��� : 	 � max� ��� : � � � ¯� � ��� : 2 � � � ��� : 	 ¯� � ��� : 3 � � � ��� : ��� � � � (24)

Integration over the subintervals then yields a similar relation for the inflow vol-
umes, � 
 � � � min
 	 � max
 � � � ¯� 
 2 � � 
 	 ¯� 
 3 � � 
 ��� � � � (25)

This means that the discrete distribution will be supported by a � -dimensional com-
pact box centered at the mean and lying entirely in the positive orthant,

� � 0 � ¯� 2 � � 	 ¯� 3 � � � �
��
 �
�

� ¯� 
 2 � � 
 	 ¯� 
 3 � � 
 ��� � �� �
(26)

We now define a new density function (whose support is precisely this box) by
restricting the given normal density to

�
and renormalizing the weight,

��� � � : � 0 �
� � � :�� �

� � : � � � : 	 � � � : 0
�
� �

� � : � � � (27)

Probabilities are thus replaced by conditional probabilities with respect to
�

. Obvi-
ously the construction leaves expected inflows invariant by symmetry. The correla-
tions of inflows, however, will deviate from their original values, giving increasingly
inaccurate approximations with decreasing weight �

� � :
. Moreover, assumption (24)

on the inflow rate guarantees that all constraints are satisfied in continuous time if
this is true in the discrete-time model.

Scenario Tree

Currently we construct the scenario tree from a uniform recursive partitioning of
�

.
Each scenario corresponds to an elementary box of full dimension. The stage-

�

scenarios correspond to unions of elementary boxes having the same geometry
in the first

�
dimensions (i.e., identical projections into the associated subspace).

This means that the same nodes are traversed up to level
�

in the scenario tree or,
equivalently, that inflow volumes are identical during the first

�
periods, see Fig-

ure 3. The number
 
 of partitions in dimension

�
is the number � � � � : � of successors

of each node � on level
� 2 � . The resulting total number of boxes (scenarios) is� 0	� �
 �

�
 
 .
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Figure 3. Construction of a scenario tree by recursive partitioning of the compact support � .
Node probabilities correspond to the weights of (unions of) sub-boxes

Scenario Probabilites

As scenario probability we define the weight of the associated elementary box (with
respect to the renormalized density � � ). This weight is assumed to be concentrated
in the geometric center of the box, whose coordinates represent the sequence of as-
sociated inflow volumes. Although the center of gravity would yield a more accurate
approximation, we prefer the geometric center since this allows to choose an exact
range of inflow variations a priori: realizations of the discrete distribution will be
evenly spaced at a distance of

� � � 
 �  
 between limits

� min 3 � � 
 
 	 � max 2 � � 
 
 �
(28)

(With the center of gravity, minimal and maximal realizations would depend on the
density.)

For a standard univariate normal distribution, Figure 4 shows the probability
density function, the renormalized density for the interval

� 0 � 2 �
	�� � (having
weight 0.9545), an approximation by a piecewise constant density for


� 0 � sce-

narios, and the weights of the five subintervals concentrated in their respective mid-
points.

4 CALCULATING SCENARIO PROBABILITIES

Consider without loss of generality a centralized normal distribution
� � � 	 ��: (with

mean ¯� 0 � ) in � � . The density function reads

� � � : 0 �� ��� � : � det
� �9: exp

�
2 �� � � � 5 � � � �

(29)
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Figure 4. Discretization of a univariate normal distribution on
� � ����� �

In our optimization model with equidistant time discretization we make the same
assumptions as our colleagues [12, 13]: random inflow volumes � 
 have the same
variance 
 � in all periods, and their correlations � � 
 decrease linearly with the dis-
tance � � 2 � � such that the elements of the covariance matrix are

� � 
 0 
 � � � 
 	 � � 
 0 � 2 �� � � 2 � � 	 � 	�� 0 � 	
�	�
� 	 � � (30)

We have to calculate the scenario probabilities which are defined as multivari-
ate integrals of the density function over rectangular domains. Multi-dimensional
numerical integration is generally hard since the required effort in direct general-
izations of univariate integration methods grows exponentially with the dimension.
Thus, Monte Carlo techniques are often applied.

In the special case of normal distributions, some alternative approaches are re-
ported in the literature. Schervish [18] employs an adaptive quadrature routine using
an error estimate based on the Newton-Cotes approximation with non-local modifi-
cations. Deák [4] combines a transformation to spherical coordinates with Monte-
Carlo techniques. The method of Genz [10] transforms the integration domain to the
unit cube and applies either Monte-Carlo, adaptive subregions, or lattice rules to the
transformed integral.

Here we propose a straightforward, easily implementable approach based on
direct integration of the second order Taylor series expansion in combination with
adaptive refinement. This appears to be a new method; it seems appropriate in our
situation since we have to evaluate integrals over comparatively small domains: the
elementary boxes representing scenarios.

Taylor Approximation

In scalar product notation
� � 	 � 	 � 0 � � � 5 � � , the first three derivatives of the density

function (29) are


 � � � : � � � 0 2 � � � : � � 	 � 	 	
 � � � � : � � 	 � � 0 3 � � � :�� � � 	 � 	 � 2 � � 	 � 	�� 	


 �
� � � : � � 	 � 	 � � 0 2 � � � :�� � � 	 � 	 � 2 � � � 	 � 	 � � 	 � 	�� �
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Hence, with some � � � � 	 � � , the third-order Taylor series expansion reads

� � � 3 � : 0 � � � : 2 � � � : � � 	 � 	 3 �� � � � : � � � 	 � 	 � 2 � � 	 � 	��
2 �

� �
� � : � � � 	 � 	 � 2 � � � 	 � 	 � � 	 � 	 � 3 ��

�

 � � � � 3 � � : � � 	 � 	 � 	 � � �

We need to integrate � over rectangular boxes � 3 � 0 � � 3 � � � � � � where

� 0 � 2 �
	

� � � 0
��
 �
�

� 2 � 
 	 � 
 � 	 Vol
� � : 0

��
 �
�

�
� 
 � (31)

For the expansion above, this integration is easily evaluated in closed form. In terms
of the Hessian

� � � : � 0 � � � : � � 5 � � � � � 5 � 2 � 5 � :
one obtains

�
� � �

� � � : � � 0�� � � : Vol
� � : � � 3 ��

�

��
 �
�

� 
 
 � � : �
�
 3 � � �

�
�
� : � � (32)

Observe that, due to symmetry, all odd-order terms vanish in the integration. Thus
we get an asymptotic error of order four by adding just one correction (of second
order) to the trivial approximation � � � 3 � :�� � � � : Vol

� � :
.

Asymptotic Error Control

To ensure sufficient accuracy, a simple adaptive strategy is employed. After evalu-
ating (32),

�
is partitioned into a “left” half

�
� and a “right” half

� � , and the same
weight approximation is applied to

�
� and

� � , yielding values �
	
� �

	
� � . The bi-

section procedure is recursively repeated with each box until the relative difference
falls below a given tolerance,

� � � 3 � � 2 � �
� � 3 � �

��� �

Two heuristic strategies have been tested for determining the side
�

in which to cut
the box:

– the largest side, � � 0 max 
 � 
 ;
– the side giving the largest second order term, � � � � � : �

� � 0 max 
 � 
 
 � � : �
�
 .

The second strategy was found to perform better and was used in numerical calcu-
lations, with the tolerance set to � 0 � � 5 � .

Matrix Determinant and Inverse

It turns out that both the determinant and the inverse of the specific correlation
matrix (30) have closed-form representations,

det
� �9: 0 � 3 �

�

� � 
 �
�
� �
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and (for � � � )

� 5 � 0 �
� 
 �

������ �
2 �2 � � 2 �
. . .

. . .
. . .2 � � 2 �2 � �

������� 3 �
� 
 � � � 3 � :

������ �
� �	�
� � �� � �

...
. . .

...� � �
� � �	�
� � �

������� �

Using these formulae in (32) yields significant savings in the numerical computa-
tion, especially for higher dimensions. The computational effort is still immense
(several hours for a complete discretization), but it should be kept in mind that the
weight calculation is an off-line task which is required just once for a given inflow
distribution.

5 COMPUTATIONAL RESULTS

In this section we report on computational experiments with the stochastic tracking
problems stated in §2.2, where either the expectation or the conditional expectation
of the final liquid volume are prescribed, � � � � : 0 �� � or � � � � � � � 5 � : 0 �� � . All
problems are solved by a primal-dual interior point method combined with a tree-
sparse KKT solver [20, 21].

5.1 Prescribed Expectation of � �
Problem Data

To allow a comparison of optimization approaches, our computations are based on
the following problem data for which optimization runs have also been performed
in the partner project. They are slight modifications of the computations described
in [13].

The planning horizon has a length of 16 hours and is equidistantly partitioned
into eight discretization intervals of two hours each, � � 0 �

h. Only the flow rate
into the buffer tank is assumed to vary at random, whereas its temperature and the re-
spective concentrations of methanol and water remain constant. A parabolic profile
of the expected inflow rate is assumed, starting and ending with 11.0 ml/h and reach-
ing a maximum of 127.6 ml/h after eight hours, at

� 0 � . The associated variance of
the inflow volume in each two-hour period is 
 � 0 � � � � ml � , yielding by (30) the
covariance matrix

� � 
 0 � � � � 
 	 � � 
 0 � 2 �� � � 2 � � 	 � 	 � 0 � 		�
�	� 	 � �
The liquid volume in the tank is to be kept between 440 ml and 1320 ml, with an
initial filling level of 1210 ml. This value is also specified as the final level so that
the distillation process can be repeated periodically if there are no disturbances. In
the presence of disturbances, preventing violations of the upper limit � max is a major
concern since the initial level and desired final level are quite close to that limit.
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Table 1. Target extraction volumes for each two-hour period
Target type 1 2 3 4 5 6 7 8
Expected inflow 75.44 162.9 221.2 250.3 250.3 221.2 162.9 75.44
Deterministic 139.8 186.3 186.3 186.3 186.3 186.3 186.3 162.0
Probabilistic 126.2 193.0 196.9 198.0 198.0 198.0 198.0 111.7

60
80

100
120
140
160
180
200
220
240
260

0 1 2 3 4 5 6 7 8

expected inflow
deterministic
probabilistic

Figure 5. Target extraction profiles over eight two-hour periods

Problem Types

We consider three problem types corresponding to the following target extraction
profiles:

1. the expected inflow;
2. the optimal extraction strategy of a deterministic optimization based on the ex-

pected inflow (“deterministic solution”);
3. the optimal extraction strategy under probabilistic constraints as obtained in the

partner project (“probabilistic solution”).

Tracking the expected inflow is a very simplistic approach; we include this case
only for comparison purposes. The deterministic and probabilistic cases are dis-
cussed in [13], where both are solved for a DAE model of a flash unit, using a finer
discretization of 32 time periods. The extraction limit is

� max 0 � � � � � � (average
inflow plus 5%) in the deterministic case, and

� max 0 � � � in the probabilistic case.
For the problem data given above (with 8 periods), the expected inflow and opti-
mal profiles are displayed in Table 1 and Figure 5. Here the probabilistic solution
satisfies the lower (less critical) level constraint with certainty, and the upper level
constraint with a probability of 0.95.

Inflow and Extraction Bounds

For a given inflow limit � max, we choose as support
�

(on which the normal distri-
bution is discretized) the largest cube centered at the mean ¯� and lying entirely in
� � 	 � max � � ,

� � 0 ¯� 3 � 2 � 	 � � � 	 � � 0 min
 min
� ¯� 
 	 � max 2 ¯� 
 : � (33)
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Figure 6. Weight of support versus inflow limit

Recalling that � max 0 � max� � � , this obviously models a fixed bandwidth of the in-
flow rate � � . To study the feasibility question stated in §2, we vary the inflow limit� max in a suitable range of values slightly larger than the largest expected inflow
max 
 ¯� 
 0 � � � � � ml, namely � max � � � � � 	�� � � 	
�	�
� 	�� � � � . The discrete bandwidth is
then determined by the largest expected inflow as � 0 � max 2 max 
 ¯� 
 , covering the
range � � � � 	 ��� � � � and yielding cubes

�
of different sizes with weights roughly be-

tween 0.3 and 1; see the solid line in Figure 6. (For our standard deviation 
 � �
� � ,

this allows to compare “good” and “poor” discretizations of the normal distribution.)
Obviously, feasibility is harder to achieve when � max is increased (giving larger

inflow variations) or when
� max is decreased (giving a smaller control range). For

each � max value we therefore set
� max 0 � max first and then decrease

� max until
the problem becomes infeasible. For all combinations of � max and

� max we solve
problem (14–18). Data for variances 
 � 0 � � and 
 � 0 � � appearing in the plots
are associated with problems in § 5.2 and will be discussed below.

Expected Inflow

First we consider optimal solutions for the expected inflow as target profile. Fig-
ure 7 plots the optimal objective value, i.e., the (expected) “tracking error”, ver-
sus extraction limit

� max for selected inflow limits � max covering the entire range
� � � � 	�� � � � . One observes that the tracking error increases with decreasing extrac-
tion limit; closer inspection of the data reveals that its value is actually zero in all
problems with

� max � � � � . The first observation confirms precisely the expected
behavior: since the target profile has a peak inflow of 250.3 in the middle, large
extractions are required in earlier and later periods when

� max is reduced below that
peak value. The second observation says that (accumulated) inflow deviations can
never violate a limit if precisely the expected inflow is extracted. This is easily ver-
ified; it indicates that inflow variations are moderate even in the case � max 0 � � �
which covers about 99.9% of the distribution.

It is also observed that the tracking error is almost independent of the inflow
limit � max for large values of

� max whereas there are significant differences for small
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Figure 7. Tracking error versus extraction limit for expected inflow
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Figure 8. Tracking error versus extraction limit for deterministic solution

values. This is also easily explained: A large extraction limit is not a severe restric-
tion in any case, whereas a small limit will be binding in most periods until the
problem becomes eventually infeasible.

Deterministic Solution

Next we consider the deterministic solution as target profile. Figure 8 plots the track-
ing error versus extraction limit

� max for the same � max values as before. Here it is
observed that in all cases the tracking error remains constant (on a low level) over
a wide range of

� max values but increases rapidly when infeasibility is approached.
Smaller inflow limits yield smaller tracking errors for all extraction limits. This
might come as a surprise but can be explained when the target profile is inspected:
the deterministically optimal extraction is constantly at its upper limit 186.34, except
for the first and last interval. Again, only small

� max values are a severe restriction,
and a violation of the upper level constraint by accumulated inflow deviations can
be avoided with comparatively small corrections. This is consistent with the results
in [13]: although many trajectories violate the upper level constraint for the given
profile, the limit is only slightly exceeded.
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Figure 9. Tracking error versus extraction limit for probabilistic solution
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Figure 10. Tracking error versus extraction limit for all target profiles, with inflow limit� max � ��� 


Probabilistic Solution

The probabilistic solution as target profile yields almost identical results, as shown
in Figure 9. However, the constant level for large

� max values is consistently smaller
than in the deterministic case: at most 1.86, but often exactly zero. This confirms
the robustness of the probabilistic solution (certain feasibility is achieved with neg-
ligible extra effort) and is again a consequence of the precise shape of the target
profile. On the other hand, for small

� max values the tracking error is larger than in
the deterministic case, which can be seen in the direct comparison of all three target
profiles displayed in Figure 10 (where � max 0 �

� � ). The latter fact indicates that
reducing the probability of constraint violations may go along with an increase of
their size.

Feasibility

Figure 11 shows how the smallest feasible extraction limit
� max depends on the

inflow limit � max. (There is obviously no dependence on the target profile.) At� max 0 � � � , a feasible solution can still be obtained with
� max 0 � � � , and at
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Figure 11. Smallest feasible extraction limit versus inflow limit
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Figure 12. Tracking error versus extraction limit for all target profiles, with inflow limit� max � � � 
 and conditional expectation in cycling constraint

� max 0 �
� � with

� max 0 � � � . This demonstrates the flexibility of the stochastic
programming approach: with reasonable extraction limits, constraint violations can
be avoided with certainty by suitable predetermined reactions to inflow measure-
ments.

5.2 Prescribed Conditional Expectation of � �
Feasibility was comparatively easy to achieve in the previous problem due to the
moderate inflow variance and weak cycling constraint. Therefore we also investi-
gate problem (20–23), using the variance values 
 � � � � � 	 � � 	 � � � and respective� max ranges 255–265, 260–270, and 265–275. Associated weights of the support

�
and smallest feasible extraction limits are included in Figures 6 and 11. A compari-
son of all three target profiles for 
 � 0 � � and � max 0 �

� � is given in Figure 10. As
expected, increasing the variance (and accordingly the inflow limit, to cover suffi-
cient weight of the distribution) requires larger extraction limits to achieve feasibil-
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ity. Moreover, the optimal tracking error is never zero in all these cases. This shows
that, even if no level constraints are violated by the nominal extraction, corrective
action is required to meet the stronger cycling constraint. In some of the higher vari-
ance problems, part of the tracking error is also due to corrections preventing vio-
lation of the upper level constraint. However, the stronger cycling constraint has no
significant impact on feasibility. This is because the prescribed final level is close
to the critical upper level constraint: if no violations occur as long as inflows are
large, the control will be able to extract a sufficient amount of liquid during the last
period so that the final level is met on average. (If accumulated inflow deviations
are negative, the control just extracts less liquid than expected.) In contrast, test
runs show that certain feasibility is harder to achieve if the final level is close to the
middle of the feasible range. To sum up, results for the stronger cycling constraint
are similar to the previous case, and they scale in some sense for the larger variance
values. Differences for the three target profiles are slightly accentuated; cf. Figures
10 and 12.

6 CONCLUSIONS

Multistage stochastic programming has been proposed as a new approach in real-
time control of chemical processes. This can be seen as a generalization of standard
model predictive control in the sense that reactions to measured disturbances are
combined with the prevention of unfavorable future events by means of a stochastic
model. The basic concept of the approach has been demonstrated for the problem
of controlling the buffer tank of a distillation column with random inflows, and a
preliminary comparison with a probabilistic constraints approach has been given.
Future research should extend this work in different directions. For instance, a more
realistic, integrated treatment of stochasticity and process dynamics in the applica-
tion example is intended. Further, scenario reduction techniques as in [6] appear
promising in obtaining better discrete distributions and at the same time allowing
finer time discretizations. Finally, warm start techniques and other algorithmic im-
provements may increase the efficiency of the approach so that faster processes can
be controlled in real time.
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Abstract A continuous distillation process with random inflow rate is considered. The aim
is to find a control (feed rate, heat supply, reflux rate) which is optimal with respect to energy
consumption and which is robust at the same time with respect to the stochastic level con-
straints in the feed tank. The solution approach is based on the formulation of probabilistic
constraints. An overall model including the dynamics of the distillation process and proba-
bilistic constraints under different assumptions on the randomness of inflow is developed and
numerical results are presented.

1 INTRODUCTION

As noted in [9], Section 1.2, continuous distillation processes are frequently char-
acterized by uncertainties of their inflow. These may relate to the flow rate, to the
composition of the mixture to be separated or to its temperature. Typically, the un-
certainties are not completely irregular but follow a certain pattern caused by the op-
eration of upstream units. Then it makes sense to model uncertainty as a stochastic
parameter, the distribution of which can be estimated from history but the realiza-
tion of which in the coming period of optimization is unknown. In the following, we
are going to consider the rate of inflow as the only random parameter. As a conse-
quence of possible unpredictable peaks, the inflow cannot be processed immediately
but has to be stored in a feed tank before being directed at a controlled rate to the
distillation unit (see [9], Figure 1). For technological reasons, one has to impose
upper and lower level constraints for the feed tank preventing it from running full or
empty. Both cases would require unpleasant compensating actions which are desir-
able to avoid (see [9], Section 1.3). Therefore, a problem will be formulated which
reflects the objective to find a feed control being robust with respect to level con-
straints yet optimal in the sense of minimum energy consumption subject to product
specifications.

From the stochastic nature of the inflow rate it is clear that the level constraints
are stochastic too, and there is a choice to apply any of the methods briefly sketched
in [9]. As costs of compensating actions for possible level violations are difficult to
model on the one hand and a worst case approach is much too conservative or even
impossible on the other hand, it is proposed to rely on probabilistic constraints. The
gain over simply using typical profiles (or expected values) for the inflow rate will
be illustrated later on. The aim of the subsequent analysis is to present a model of
optimal control for continuous distillation with probabilistic feed tank constraints
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and to present numerical results for different assumptions on the randomness of
inflow rate. As an example serves the separation of a methanol/water mixture.

2 THE DISTILLATION PROCESS

2.1 Process description

The process considered relates to a distillation column, as shown in Figure 1, for
separating a binary mixture of water and methanol. The column has a diameter
of 100 mm and 20 bubble-cap trays with a central downcomer. Isolation coat is
mounted to reduce the heat loss from the column wall. The boilup is provided by an
electrical thermal device, while the condensation is carried out by a total condenser
with cooling water. The plant is equipped with temperature, pressure, level and flow
rate measurements and electrical valves for the flow control. All input/output signals
are treated by a process control system. Several control loops have been configured
and implemented on the plant. The control system is connected to the local area
network to manage experimental data. The composition of the feed stream, distillate
and bottom product will be measured off-line by gas chromatography.

Figure 1. A pilot plant for distillation

From a feed tank, the feed stream with a given composition is fed to the column.
The column is operated with atmospheric pressure. Operation of the plant means to
run the column for keeping the desired distillate and bottom product purity under
an uncertain feed flow profile. This leads to a control problem. Conventionally, to
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carry out this task two control loops have been used to manipulate the reflux rate
and the reboiler duty. However, due to the changing feed stream, the operating point
will also be changed frequently. Since distillation is a nonlinear dynamic process,
the conventional control loops can not follow the desired changing operating point.
Thus a conservative setpoint value, which is higher than the purity specifications,
has to be used. But a conservative operation leads to more energy consumption than
necessary, since the energy requirement for a column operation increases sensitively
to the product purity, especially for a high purity distillation. Therefore, we propose
to use a stochastic optimization approach to solve the column operation problem.
This has the advantage over conventional feedback control that it employs the non-
linear rigorous model and includes uncertainties.

2.2 The Model of Dynamics

The dynamics of the distillation process are summarized in Table 1. Here we use a
rigorous model details of which can be found in [1,11,15]. In the table

� 0 � 		�
�
� 	 

and � 0 � 		�
�	� 	 � are the indices of components and trays (counting from the con-
denser over the internal trays to the reboiler), respectively. The control variables
are the feed flow rate � , the reboiler duty � and the reflux rate from the condenser
	 � . The dependent variables on each tray are the vapor and liquid mole fractions� �� 	 �

�� , vapor and liquid flow rate �
� 	 	 � , molar liquid holdup �

�
, temperature �

�
and pressure � � . The Murphree tray efficiency �

�
is included in order to describe the

nonequilibrium behavior. The inclusion of the tray hydraulics is necessary to arrive
at an index-one DAE system [3]. Additionally, it reflects the reality much better than
other commonly used models, where molar or volumetric tray holdups and pressure
drops are fixed. Really, the expressions containing � are not included in the diffe-
rential equations for all internal trays but only for the feed tray. The wet pressure
drop

� � is not applied to the tray
�

at the column head.
The DAE system also includes column specific parameters, applicable only to

the individual construction and design of the pilot plant. The values of those param-
eters are listed in Table 2.

2.3 Model Validation

Before carrying out the optimization a model validation has to be made to ensure the
accuracy of the computational results. In the model, the parameters of the vapour
liquid equilibrium are taken from [6] while the parameters of the pure components
are taken from [14]. The parameters for the tray holdup and the pressure drop cal-
culated by the gas and liquid fluid dynamics are based on the tray geometric sizes.
Several parameters (coefficients) in the model are strongly dependent on the column
structure and the operating point and thus should be matched to the experimental
results. We consider the tray efficiency in the rectifying section � � and stripping
section � � of the column which are the most important parameters for the model
validation. The weir constant � � , a parameter in the Francis weir equation needed
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Reboiler
total mass balance:���� � ��� � � � � � � ��� � �	�
component balance:���� � ����
 �� � � � � � � 
 � � �� ��� � � �� �	� 
 ��
energy balance:���� � � ���� � � � � � � � � ��� � � � � ��� ����� � � �	� ��� � ��� �
enthalpy calculation:��� � � ��� ���� � 
 �� � �� � � � � ��� � � ��� ���� � � �� � �� � � � �
sum balances:� ���� � 
 �� � � � ���� � � �� � �
vapor liquid equilibrium:� �� ��� � � � � ��� � � 
 �� � 
 �� � 
 ���� � �����
pressure drop equation:
� � � � � � � � �!� � � � � � � � � �� � � �� � � �#" � � � � � � � � � � � 
 � � �� � 
 � � �� �

Internal Trays
total mass balance:���� � � 
 � � � � � 
 � � � � 
%$ � � � 
 ��� 

component balance:���� � � 
 
 
 � � � � � � � � 
 � � 
 
 � �� � � 
&$ � � 
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 � ��� 
 � 
�
energy balance:���� � � 
 � � � 
 � � � � � � � 
 � � � � � 
 � � � � 
%$ � � � � 
&$ � � � 
 � � � 
 ��� 
 � � � 

enthalpy calculation:��� � 
 � � ���� � 
 
� � �� � � 
 � ��� � 
 � � ���� � � 
� � �� � � 
 �
sum balances:� ���� � 
 
� � � � ���� � � 
� � �
vapor liquid equilibrium:� 
� �	' 
 � � � � 
 �� 
 � 
 
 � � 
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� � � � � ' 
 � � 
%$ �� � � �����
Francis weir equation:

� 
 � � � � 
 � � 
 � 
 
 � � 
 �� �
pressure drop equation:
� 
 � � � � 
 � �!� � � 
 � � 
 � � 
 � � � 
� � � �#" � � 
 � � � � 
 � � � 
 
 � �� � 
 
 � �� �

Total Condenser
total mass balance:���� � � � � � � � � �

� �	(
component balance:���� � � � 
 � � �� � � � � 
 � � �� � �

� 
 � � �� �	( 
 � � ��
enthalpy calculation:� � � � ��� ���� � 
 �� � �� � � � � ( �

� �*)�+ �-, �/. )

Table 1. Dynamics of the distillation process
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Construction Parameters
�

Number of trays 20 -�
Tray area 0.008992 m

�
� � Free area 0.00045 m

�
���

Weir length 0.015 m
� � Weir height 0.03 m

Operation Parameters
� Vol. fraction of liquid in the bubble area 0.5 -
��� Reflux Temp. 60 � C
� � Feed Temp. 60 � C�
� Vol. of Dist. Vessel 1.5 m

�

�
� Vol. of bottom Vessel 6.0 m

�

� � Feed tray 14 -

Table 2. Column specific data

for describing the dynamic behavior of the column is also estimated from experi-
mental data. The friction factor 	 � , a parameter in the pressure drop equation used
for calculating the dry pressure loss, has to be verified as well. Moreover, the total
heat loss � � from the column, reboiler and the pipelines has been found at a level
of about 10% of the reboiler duty. This result is important for the implementation of
the computed reboiler duty values � �

� � on the real plant.

To accomplish the above verifications, 10 steady-state operating points have
been gained through experiment. The parameters are adjusted by comparing the
measured data (temperature, pressure as well as pressure drop, flow rates, composi-
tions and reboiler duty) with the simulation results for these operating points. The
comparison was evaluated by the least square function related to the temperature
profiles. Moreover,the measured data of the dry pressure drop of the rectifying sec-
tion and the total pressure drop of the stripping section during the startup phase
were also used for estimating the parameters 	 � and � � . finally, the adjusted val-
ues for those parameters are � � 0 � � � � , � � 0 � � � � , � � 0 �

�
� ��� , 	 � 0 � � � � � � ,

� � 0 � � � % � .

To verify these values two tests were done by step changes of the feed rate,
reflux rate and reboiler duty from a steady-state operating point of the real plant.
Figure 2 (left) shows the temperature responses along the column in the first run,
where the black lines with noises are the measured curves and the grey lines are the
simulated results. It can be seen that a very good agreement has been received for the
top and bottom temperature. The temperature on tray 17 and 18, which are the two
most sensitive trays in the column, has a 2-3 C difference between the measured
and computed results. The reason for this is the existence of slight disturbances
from the atmospheric pressure and temperature during the experiment which led to
the oscillation of the column pressure and heat loss from the column. The fact that
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both the measured and simulated curves have the same tendency demonstrates that
the inclusion of the hydraulic computation leads to a successful description of the
dynamic behavior for the column operation. The second test was made for a step
change in the opposite direction. The temperature profiles are shown in Figure 2
(right). It can be noted that the temperature on the trays in the rectifying section
is not sensitive to the step changes, especially for the top of the column. But the
temperature in the stripping section has a significant sensitivity. This phenomenon
can be identified from the form of the x-y-diagram of the methanol-water mixture.

Figure 2. Simulated and measured temperature profiles: experiment 1 (left) and 2 (right)

2.4 Relation between Feed Rate and Reboiler Duty

Often one observes a tight relation between the feed supply and the required energy
(reboiler duty). In general (especially for dynamic processes), however, this rela-
tion is not strong enough to substitute one of these control variables by the others
which would lead to simpler mathematical models. In particular, the consideration
of probabilistic constraints to be described below could be separated then from the
dynamics of the distillation process. The following computational results demon-
strate that the total energy consumption (our goal function) is not only a function of
the total amount of feed but also of the shape of the feed rate profile.

Figure 3 shows two profiles for the feed flow rate having extremely different
shapes. If the required purity constraints are exactly satisfied (here: � � � � � for the
distillate and bottom products) during the time horizon, the theoretical energy con-
sumption in the two cases should have almost the same value. It turns out, however,
that the total energy consumption for the smooth profile is less than for the irregular
profile at a factor of around 0.97. The reason can be figured out from the respective
purity profiles in Figure 4: The purity constraints can be almost exactly satisfied for
the smooth feed trajectory, whereas in the second case a higher purity than required
has to be realized to ensure the constraints to be held under the drastically changing
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Figure 3. Two different profiles for the feed flow rate

feed stream. This behavior of the purity profiles results from the piecewise constant
profiles of the control functions on the discretization scheme.

Figure 4. Optimal purity profiles for the feed trajectory from Figure 3: smooth case (left) and
irregular case (right)

3 PROBABILISTIC FEED TANK CONSTRAINTS

We assume that our optimization horizon is given by the interval � � 8 	�� � � . As men-
tioned in the introduction, the filling level �

��� :
of the feed tank has to satisfy the

simple constraints

� min � �
��� : � � max for all

� � � � 8 	��
� � . (1)

In view of the contradiction between the finite optimization horizon and the infinite
nature of our continuous distillation process, one has to impose an additional so-



506 R. Henrion et al.

called cycling constraint on the filling level. Otherwise, an optimal strategy with
respect to energy consumption would certainly consist in running the unit on the
lowest possible feed extraction level. This would result in a high filling level �

���
�
:

at the end of the optimization horizon. If, for instance, �
���
�
: 0 � max, then it may

well happen that there does not exist any feasible control of feed extraction for the
next horizon � � �

	��
� � due to the risk of violating the upper level constraint (when

the inflow runs faster than the maximum possible rate of feed extraction). In other
words, one has to make sure that optimization during any time period is not done
at the expense of coming periods. This can be realized by the requirement, that all
inflow has to be processed over the interval, or in equivalent terms, the final and
initial filling levels coincide: �

���
�
: 0 �

��� 8 :
. For a higher operational flexibility it is

reasonable to formulate the following slight generalization of the last constraint:

�
���
�
: 0 ��� (2)

Here, � �
� � � min 	 � max � is any pre-defined end-level which may be in the middle of

� min and � max in the regular case, but which could also be appropriate to choose closer
to � max, for instance, in front of a week-end where no or few amounts of inflows only
can be expected.

Next, we are going to take into account the random character of the filling level
caused by the stochastic nature of inflows. To this aim, denote by � the inflow rate
which we assume to be a one-dimensional stochastic process. Now, the filling level
as a function of inflow rate � , of feed extraction rate � and of time

�
writes as

�
� � 	 � 	�� : 0 � 8 3

� 

 � � � ��� : 2 � ��� : : � � �
Here, � 8 denotes the initial level at

� 8
. Accordingly, (1) and (2) turn into uncertain

constraints of the type

� min � �
� � 	 � 	 � : � � max for all

��� � � 8 	��
� � and �

� � 	 � 	 � �
: 0 � �

�

According to [9], uncertain constraints can be turned into implementable constraints
by expected value substitution or by probabilistic constraints. Taking expected val-
ues seems to be justified for the cycling constraint, since violations of (3) by single
inflow realizations do not cause serious harms and we may content ourselves with
the fact that over many repeated optimization periods there will be no systematic
gain on average by violating (3) in a specific period at the expense of later periods.
Accordingly, (2) becomes

�
� � � 	 � 	 � �

: 0 � �
	

(3)

where ‘ � ’ denotes expectation. On the other hand, frequent violations of the level
constraints (1), as they have to be expected when feasibility is reached only for
an average profile of inflow rate, do cause troubles for the compensation of which
is difficult to measure in terms of costs. Consequently, one may be interested in
controls � being feasible with high probability according to the distribution of � :

� � � min � �
� � 	 � 	�� : � � max for all

��� � � 8 	��
� �
: � � � (4)
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Here, � refers to the probability measure associated with � and � � � � 	 � : is some
probability level at which we require the inequalities inside parentheses to be ful-
filled. According to [9], Section 4.1 there is much degree of modelling freedom
concerning a joint or individual treatment of probabilistic constraints. We shall fo-
cus on a formulation in which time dependence appears as joint constraints whereas
lower and upper levels are considered individually. More precisely, the following
two probabilistic constraints shall be imposed with respect to filling levels of the
feed tank:

� � � min � �
� � 	 � 	 � : for all

� � � � 8 	��
� �
: � � (5)

� � � max � �
� � 	 � 	 � : for all

� � � � 8 	��
� �
: � � �

4 THE OVERALL PROBLEM AND ITS NUMERICAL SOLUTION

Combining the model of dynamics described in section 2.2 and the stochastic feed
tank constraints, we are now in a position to set up our control problem in the fol-
lowing compact way:

min
� � � : � � :

subject to

˙� 0 ��� � 	�� 	 � :
� � � 	�� : 0 �
� ��� 8 : 0 � 8

�
� � � 	 � 	��

�
: 0 ���

� � � min � �
� � 	 � 	�� : � � � � � 8 	��

� �
: � �

� � � max � �
� � 	 � 	�� : � � � � � 8 	��

� �
: � �

� � � 	 � � � 	�� � �
Here, � 	 � 	�� 	 � are functions defined on our optimization interval � � 8 	 � � � and repre-
senting control, differential state, algebraic state and random variables, respectively.
For instance, � 0 �

�
	 � 	 	 �

:
comprises the extraction rates for feed, heat supply and

reflux rate. The state variables consist of all the remaining physical quantities in the
dynamics of the distillation system. Finally, � refers to the stochastic inflow rate.
The goal function to be minimized is the total heat consumption

� � � : 0
� 
 

 � � ��� : � � �

We assume that the condenser cooling duty is negligible since it will not influence
our solution approach and, furthermore, it depends on the specific circumstances
whether or not additional costs arise by cooling.

The first three equalities in the constraints above contain the differential and
algebraic equations of the dynamics as well as initial conditions. The following
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three inequalities relate to the cycling constraint (3) and to the probabilistic feed
level constraints (5). The abstract constraints at the end represent simple bounds
on the control and state variables; in particular, � � � incorporates limitations on
the feed rate, heat supply and flow rates for bottom and distillate products, � � �
includes purity conditions on the bottom and distillate products as well as constraints
for the holdup in the reboiler and condenser while

� � � defines bounds on physical
quantities like temperature, pressure etc.

A common approach for solving control problems like
� � : is the so-called direct

method [2,13,16–18], where the differential algebraic equations are discretized and
the corresponding functions are finitely parametrized in order to yield a (possibly
large scale) nonlinear optimization problem in finite dimensions. In our case, it may
be written as

min � � � : � � 	 � : (6)

subject to
� � � 	�� 	 � : 0 �
�
�
� � � 	 � : 0 ���

� � � � � � 	 � : � � : � �
� � � � � � 	 � : � � : � �

� � � 	 � � � 	�� � � 	
where now � 	 � 	�� 	 � are finite-dimensional vectors.

A direct simultaneous approach based on collocation will be used here to dis-
cretize the differential algebraic equation (DAE). The obtained optimization prob-
lem is then solved by the SQP method SNOPT [4], [5]. From technological require-
ments, the controls have to be piecewise constant on a given grid here. For instance,
the operator of the system may be able to only tune constant values once an hour.
The grid for the DAE is chosen equal to or as a refinement of the grid for the con-
trols to prevent that a jump of the controls is within an integration interval of the
DAE. On each subinterval of the refined grid the DAE is treated by a 3 stage Radau
IIa (collocation) scheme [7]. The resulting collocation conditions are formulated in
terms of the algebraic variables and in terms of the derivatives of the differential
state variables at the collocation points [16, 17]. Additional conditions are needed
to ensure continuity of the state variables between the end and the beginning of
two succeeding collocation intervals. For consistency purposes these conditions can
not be imposed on all variables but only for a part of the variables depending on
the index. Since the differential index of our DAE is 1, it is sufficient to restrict
the continuity condition to the differential state variables [12]. That means that for
the whole problem as well as for the integration intervals initial values are given
only for the differential state variables. In convergence, consistency is then auto-
matically fullfiled since the Radau IIa scheme includes the endpoint but excludes
the initial point of each collocation interval and for given differential state variables
the algebraic variables are uniquely determined by the algebraic constraints of the
Index-1-DAE.
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In order to solve the overall problem, one has to incorporate numerical tech-
niques for dealing with the probabilistic constraints into the framework described
before. The concrete realization depends on the structure of probabilistic constraints
as it results from different modelling assumptions. For instance, assuming � origi-
nally to represent a Gaussian process, the treatment of constraints (5) leads to the
evaluation of multivariate normal distribution functions after passing to a time dis-
cretization. For implementation, we linked Szantai’s simulation scheme described
in [9], Section 4.3 and realized in his code BERNOR to the SQP code SNOPT. As
a preliminary step of numerical solution, probability maximization was carried out
(see [9], Section 4.4).

5 STOCHASTIC MODELS FOR THE INFLOW RATES

We shall consider two basically different models for the stochastic inflow rate: a
model describing some elementary single process of inflow generation and a model
reflecting the superposition of numerous such elementary processes. Both situations
may be relevant in practice depending on the nature of production processes prior
to distillation. We start with the model relating to a lot of independent elementary
processes of equal structure. According to the law of large numbers, it is reasonable
to assume that the rate � 
 of overall inflows is a Gaussian process, which means
that each finite selection

� � �  	
�	�
� 	 � � � : of random variables with
�
�
	
�	�
� 	�� � �

� � 8 	 �
� � has a multivariate normal distribution. The second model considers a fixed

inflow function the realization of which takes place at a random starting time. The
difference between both models is illustrated in Figure 5.

Figure 5. Comparison of two different stochastic models for the inflow rate. Left: Gaussian
process; right: fixed profile with random initial time. Thick curves represent expected val-
ues of the corresponding processes and thin curves illustrate possible samples (observations)
thereof
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5.1 Inflow Rate with Multivariate Normal Distribution

According to the discretized optimization problem (6) let
� 8 � � � �

� � �
be a subdi-

vision of the time interval � � 8 	�� � � with
� 8 0 � 8

and
� � 0 �

� . For such fixed subdi-
vision, we may identify the average inflow rate � � during the interval � � � 5 � 	�� � � with
the total amount of inflow over this period

� � 0 � 	
�	�
� 	�� :
. According to the state-

ment above, it is assumed that the
�

- dimensional random vector � 0 � �
�
		�
�	� 	 � � :

has a multivariate normal distribution, i.e., ��� � � � 	 �9: , where � and
�

are the
expectation and covariance matrix, respectively, of � . In the numerical experiments
described below, we have supposed a covariance structure with decreasing positive
values at increasing distance in time. In practice, � and

�
have to be estimated from

observed data of the inflow process. In the first diagram of Figure 7 a set of sample
paths of an exemplary inflow process is illustrated. Here, loosely speaking, the typi-
cal profile corresponds to � , whereas

�
accounts for the scattering around � and the

smoothness of the sample paths.
In order to specify the functions

�
�
	 �
�
	 � � in

� � 	 � : , we recall that our feed
tank constraints are special cases of the storage level constraints introduced in [9],
Section 4.2. Accordingly, the filling level in the feed tank at time

� � calculates as

� 8 3
��
� �
�

� � 2
��
� �
�
� � 	 (7)

where � 8 is the filling level at
� 8 0 � 8

and � � 	 � � refer to the amounts of inflow
and feed extraction, respectively during � � � 5 � 	�� � � . Now, the cycling constraint (3)
requires that the expectation of the final filling level (at

� � 0 �
� ) equals � � . Taking

into account that � � � 0 � � , the cycling constraint writes as the following simple
linear restriction in the control variable � :

��
� �
�
� � 0 � 8 2 ��� 2

��
� �
�

� � .

Next, we turn to the first probabilistic constraint in (6) or (5), respectively (the sec-
ond one being analogous). According to (7), one may establish this lower level re-
striction in discretized form as

� � � min � � 8 3
��
� �
�

� � 2
��
� �
�
� ��� � 0 � 	
�	�
� 	�� : � � .

After some transformations detailed in [10], this last relation can be equivalently
written in the explicit form

� � 
 � � :�: � � , where 
 � � : is a simple affine linear map-
ping and

�
refers to a

�
-dimensional standard normal distribution with suitable

correlation matrix. Consequently, the whole issue of coping with probabilistic feed
tank constraints hinges upon the ability of calculating distribution functions of mul-
tivariate normally distributed random vectors. Some possible approaches to do so
have been presented in [9], Section 4.3.
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5.2 Fixed Inflow Profiles with Stochastic Initial Time

Next we turn to an inflow process with a deterministic profile which is realized at
a random starting time. In a non-discretized setting, the profile is given by some
nonnegative function � � 	�� � � � � 	 � � : (determined, e.g., by a fixed operating pattern
of some machine), where

�
denotes the duration of the inflow. In the simplest case,

the profile is constant over � � 	 � � . Defining � � as the random initial time, the inflow
process becomes

� 0 � � ��� 2�� � : if
� � � � � 	 � � 3 � �� else

�

In [8] it is shown that the probabilistic constraints (5) can be transformed into the
explicit linear (functional) constraints

� � ��� : �
� 


 � � ��� : � � � � � ��� : � � � � � 8 	��

� �

for the feed extraction rate � . Here,

� �
� � � ��� : 0 � 8 2 � max � � min : 3 min� max� � 	 � ��� 2 �

�
� �
�
: : � 	 � � � : � �

� ��� : 0
� 

8 � ��� : � � �

�
� 0 sup� � � � � � � � � : � � 2 � ��
� 0 inf� � � � � � � � � : � � �

This means that the constraining functions � �
	 � � are easily obtained from the data

of the problem. In particular,
�
� and

�
� are related with appropriate quantiles of

the distribution of the random initial time � � . In discretized form, one arrives at the
linear restrictions

� � ��� � : � ��
� �
�
� � � � � ��� � : � 0 � 	
�
�	� 	 � �

It is worth mentioning (cf. [8, Thm. 5]) that exactly the same constraints result if, in
contrast to (5), the probabilistic constraints are considered individually with respect
to time, i.e.,

� � � min � �
� � 	 � 	�� : : � � and � � � max � �

� � 	 � 	�� : : � � for all
� � � � 8 	��

� �
�

This means that the distinction between individual and joint constraints is no longer
relevant in this specific model (see discussion in [9], Section 4.1).

6 NUMERICAL RESULTS

In the following, we describe numerical results obtained for the model developed
above. A time horizon of � � hours is considered. In order to illustrate the gain of us-
ing stochastic information, the results of models with probabilistic constraints shall
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be opposed to those obtained when simply assuming the expected inflow profile. We
start with the model of a (discretized) Gaussian process for the inflow rate. The first
diagram of Figure 7 shows � � � possible inflow realizations for an example. As a dis-
tillation unit, a column consisting of a reboiler, a total condenser and three internal
trays, is considered. The required purities are defined by methanol concentrations
of
� � � % and � � � % in the condenser and reboiler, respectively.
If the calculations are based on the expected inflow profile then the solid curves

in the first three diagrams of Figure 6 result as optimal - in the sense of minimum
heat consumption - profiles for feed extraction rate, reflux rate and heat supply.
Not surprisingly, heat consumption and feed extraction run almost in parallel. The
last three diagrams illustrate the profiles of a selection of associated state variables,
namely purity, pressure and liquid flow rate. The purity diagram confirms in par-
ticular the satisfaction of required purities in reboiler and condenser, respectively.
These solutions are now contrasted with the solutions based on probabilistic feed
tank constraints when imposing a probability level of � 0 � � � . The optimal profiles
for control variables are represented by dotted curves in the first three diagrams of
Figure 6. Although the differences appear to be negligible, they have a significant
impact on the robustness of the process as shall be seen next. Corresponding plots
of state variable profiles are similar to the previous ones and omitted here for the
sake of brevity.

Assuming for a moment that the inflow profile realizes indeed its expected val-
ues, the filling levels plotted in the second diagram of Figure 7 result from applying
the respective feed extraction controls of the first diagram of Figure 6. Again, the
solid curve represents the solution based on the expected inflow profile whereas the
dotted curve relates to probabilistic constraints. Both trajectories are feasible with
respect to satisfying a filling level between the upper value of � � � � and the lower
value of � � � . Note that the lower level is attained by the solid curve after around
4 hours whereas the dotted curve remains slightly above. The starting level was
supposed to be at � � � � and a cycling constraint was set up in order to realize the
same level at the end of the time horizon which means that eventually all incoming
substance was separated by the distillation column.

In practice, however, it is very unlikely that the expected value is realized.
Rather, one is likely to observe one out of the � � � sample profiles plotted in the
first diagram of Figure 7 which scatter more or less around the expected profile.
Therefore, the filling level obtained from the optimal feed extraction profiles has
to be verified with regard to these samples instead. The associated � � � profiles of
filling levels are given in the third (application of the feed extraction control based
on assuming the expected inflow profile) and fourth (application of the feed extrac-
tion control based on probabilistic constraints) diagrams of Figure 7. In both cases it
becomes obvious how uncertainty evolves over time with ever increasing variances
of filling levels. Furthermore, in both cases the average filling level at the end coin-
cides with the initial value which illustrates satisfaction of the (stochastic) cycling
constraint imposed in (3).

In contrast, and more important, a frequent violation of the lower level constraint
can be observed in the first case. As this is hardly visible from the total diagram, the
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interesting section is zoomed in the diagrams below. Indeed, � � out of the � � � sam-
plesare found to violate the lower level at some time between three or five hours
after initial time. This means that undesirable compensating actions have to be car-
ried out with probability of around � � % upon choosing a feed extraction control
based on assuming the expected inflow profile and thus ignoring information on the
distribution of the random process. This result of � � % violations is not surprising if
one recalls that in the expected case the lower level is exactly attained (solid curve
in the second diagram of Figure 7).

In contrast, application of the feed extraction control based on probabilistic con-
straints yields significantly less violations of the lower level as can be easily verified
from the corresponding zoomed plot again. This time, just � � out of the � � � sam-
ples fall below � min which is in good accordance with the chosen probability level of� 0 � � � . The upper level constraint (not zoomed) is violated for less than � � samples
in both cases. Summarizing, there is a considerable gain in robustness when pass-
ing from expected value solutions to probabilistic constraints solutions. The value
of stochastic information is reflected by the probability of violation dropping from
� � % to � � %. In general, one would expect to obtain such gain in robustness only at
the expense of worsened values of the objective function. However, there is no mea-
surable difference in heat consumption for the two discussed controls here (compare
area below curves of the respective diagram in Figure 6).

Now we turn to corresponding results when assuming the alternative stochas-
tic model of a fixed inflow profile with random initial time. As a fixed profile, we
consider an inflow process with constant rate and with a duration of � hours. The ini-
tial time is assumed to be uniformly distributed in the interval � � 	 � � . As mentioned
above, any other bounded fixed profile and any other random distribution could be
chosen equally well as long as the required quantiles are available.

Figure 8 shows the obtained results relating to feed tank constraints and omitting
other plots related to the dynamics of the distillation process. In the first diagram,
the optimal feed extraction rates are plotted with the meanings of the two curves
being analogous to the discussion before. The two bottom diagrams represent the
realized filling levels when applying the two different controls to � � � samples of the
inflow process. Thick curves refer to the expected inflow. Again, the lower level is
violated by almost one half of the samples for the expected value solution whereas
just a few violations occur for the probabilistic constraints solution. In the right top
diagram the violation probabilities are plotted as functions of time.

It can be seen that the expected value solution reaches a peak of around � � % in
the period between � and � � hours. This is in contrast to the probabilistic constraints
solution with a peak of � 2 � � % (in good accordance with the level � 0 � � � ) in the
period between � and � hours.
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Figure 6. Results for the optimal control of continuous distillation with the inflow rate being
a Gaussian process. The first three diagrams plot the optimal profiles for the three control
variables (feed extraction rate, reflux and heat supply). The solid curves relate to the assump-
tion of the expected inflow profile whereas the dotted curve relates to the model with proba-
bilistic feed tank constraints. The last three diagrams illustrate the profiles of some selected
state variables (purity, pressure, liquid flow rate). Different curves correspond to subsequent
trays (possibly including reboiler and condenser) of the distillation column. The purity dia-
gram distinguishes methanol concentrations in the liquid phase (thick lines) from those in the
vapour phase (thin lines)
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Figure 7. Filling levels in feed tank upon applying the optimal The first diagram illustrates
����� samples of a possible inflow process. In the second diagram, the filling levels in the feed
tank are plotted under the assumption that the expected inflow profile is observed and the
feed extraction profiles from Figure 6 are applied. The next two diagrams show the resulting
filling levels for the ����� inflow samples of the first diagram. The left diagram relates to the
expected value solution whereas the right one relates to the probabilistic constraints solution.
The critical section with respect to lower level violation is zoomed in the respective diagrams
at the bottom
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Figure 8. Results for the optimal control of continuous distillation with the inflow rate having
a constant profile starting at random initial time. The first diagram provides the optimal feed
extraction profiles with a similar meaning as in Figure 6. The last two diagrams plot the
filling levels in the feed tank when applying these two extraction profiles to a set of �����
randomly generated inflow samples. Thick curves refer to the expected inflow profile. The
second diagram (top right) indicates the corresponding probabilities of lower level violation
as functions of time
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Numerics and Real-time Application
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Abstract In Optimal Stochastic Trajectory Planning of industrial or service robots the prob-
lem can be modelled by a variational problem under stochastic disturbances that compared to
ordinary deterministic engineering techniques also accounts for stochastic model parameters.
Using stochastic optimisation theory, this variational problem is transformed into a nonlinear
mathematical program, that can be solved by means of standard optimisation routines like
SQP. However, these methods are not applicable in the on-line control process of robots,
since they are not capable of solving mathematical programs in real-time. Hence, Neural
Networks are trained based on solutions obtained from a standard optimisation algorithm.

1 ADAPTIVE OPTIMAL STOCHASTIC TRAJECTORY PLANNING

1.1 Prescribed-Path and Point-to-Point Problems

In optimal trajectory planning of robots usually two main problem classes are dis-
cussed. The first, called prescribed-path problem (PP), is the task of following a
desired path in work or configuration space as exactly as possible, where addition-
ally a performance index like minimum-time, minimum energy consumption or a
combination of both has to be optimised. These sort of tasks appear, e.g. in laser
cutting or glueing. The second, called point-to-point problem (PTP), is having only
two given points in work or configuration space that have to be connected by an
optimal trajectory subject to the performance index and taking into account several
state and control constraints. Typical applications here-fore are, e.g., spot welding
in the automotive industry.

Mathematically the trajectory planning problem for a prescribed path in work or
configuration space can be described, after a nondecreasing time-path transforma-
tion

� � � � 8 	�� � � �� � � 8 	 � � � onto a given fixed
�
-parameter domain, see, e.g., [9, 23],

by a variational problem. This is necessary to incorporate a free final time
�
� like in

minimum-time problems. Then, the Optimal Trajectory Planning Problem (PP) for
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prescribed-path problems reads:

min� ��� �

����
� �
� 8 ��� 	�� � � � : 	��

�
� � � : 	��

� �
� ��� : 	 � ��� : 	 � �

��� : 	 � � : � � (1a)

subject to

� � � 8 : 0 � 	 � ��� � : 0 � 	 (1b)

� min� � � � � �
��� : 3�� � � ��� : 3 � � � � max� 	 � 8 � � � �

�
	 � 0 � 	 �
	
�	�
� 	 �

(1c)

˙
� min � �

�
� � � : �

� � � : � ˙
� max 	 � 8 � � � � � 	 (1d)

� � � : � � 	 � 8 � � � �
�
	

(1e)

� � � � � � : 	 � � : 0 � � � � : 	 � 8 � � � � � � (1f)

Remark 1. If the path is already given in configuration space, equation (1f) can be
replaced by � 0 � � � � : 	 � 8 � � � �

�
�

(1f’)

Here,
�
,
� 8 � � � �

� , denotes the path parameter,
� 0 � � � � :

is the vector of
configuration or robot coordinates, � 0 � ��� : � 0 ˙

� � ��� : denotes the velocity profile,
and � � 0 � � � 	 � � 	 � � :�� is the vector of unknown dynamic, kinematic and objec-
tive model parameters. � 0 � � � 	 � � : , the kinematic operator, describes the relation
between configuration coordinates

�
and the coordinates � in work space. The co-

efficients � � 0 � � � � � 	�� �
� 	 � �7: , � � 0 � � � � � 	�� �

� 	 �
� �
� 	 � �7: and � � 0 � � � � � 	 � � : ,� 0 � 	
�	�
� 	 � , are obtained by putting

� ��� : � 0 � � � � ��� :�:
into the dynamic equa-

tion of the robot [21], where � is the number of degrees of freedom. Moreover,� � � � : and
� � � � :

denote the prescribed path in work or configuration space, (1b) are
initial and terminal conditions for the velocity profile � 0 � � � : , (1c) represent con-
trol constraints, which restrict the forces and moments in the robot joints, and (1d)
are restrictions for the joint velocities. Uncertainties in the selection of appropriate
constraints are represented by a further parameter vector � � . Finally, the objective
function (1a) can describe different optimisation criteria:

– minimum time � 8 ��� 	�� � 	 �
�
� 	��

� �
� 	 � 	 � �

	 � � : 0 �� � ��� : (2)

– minimum joint forces and torques

� 8 ��� 	�� � 	 �
�
� 	��

� �
� 	 � 	 � �

	 � � : 0 ��
� � � :

��
���
�

� � � ��� :�: � 	 (3)

where � � � � : 0 � � � �
� � : 3 � � � ��� : 3 � �

– minimum energy consumption

� 8 ��� 	�� � 	 �
�
� 	��

� �
� 	 � 	 � �

	 � � : 0 �� � ��� :
��
���
�

� �
�
� � � � : �

� � � : � � ��� :�: � � (4)
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Having the optimal geometric path
� � � � :

in configuration space and the optimal
velocity profile � ��� : from (1a-f) and then also the time parameter transformation� 0 � ��� :

, the trajectory
� ��� :

in time domain is defined by

� ��� : � 0 � � � � ��� :�: 	 ��� � 8 �
(5)

A more detailed description can be found in [3, 9, 13, 17–21, 23–26].
Using the same techniques, point-to-point problems can also be represented by

variational problems. In this case the condition (1f) or (1f’) of (PP) is replaced
by initial and terminal conditions only for the position in work or configuration
space. Moreover, position constraints for the configuration coordinates

� 0 � � ��� :
have to be added, to prevent the now free path between initial and terminal position
from violating the physical boundaries of the robot joints. This leads to a variational
problem of the following form (PTP):

min� ��� � � ��� � � �
� ��
���
� 8 � � 	 � � ��� : 	 �

�
� ��� : 	 �

� �
� ��� : 	 � ��� : 	 � �

��� : 	 � � : � � (6a)

subject to

� ��� 8 : 0 � 	 � ��� � : 0 � 	 (6b)

� min� � � � � �
� � : 3 � � � ��� : 3 � � � � max� 	 � 8 � � � �

�
	 � 0 � 	 �
	
�	�
� 	 � 	

(6c)� min � � � ��� : � � max 	 � 8 � � � �
�
	

(6d)

˙
� min � �

�
� ��� : �

� ��� : � ˙
� max 	 � 8 � � � �

�
	

(6e)

� � � : � � 	 � 8 � � � �
�
	

(6f)

� � � � ��� 8 : 	 � � : 0 � 8 	 � � � � ��� � : 	 � � : 0 � � (6g)

Remark 2. Here, equation (6g) can be replaced by

� � � � 8 : 0 � 8 	 � � ���
�
: 0 �

�
	

(6g’)

if the initial and terminal position are given in configuration space.

1.2 Stochastic Parameters

A basic drawback is that the parameter vector � 0 � � � 	 � � 	 � � 	 � � : � is not a given
fixed quantity, but has to be considered as a random vector with a certain probability
distribution due to

– stochastic variations of the material,
– manufacturing errors,
– modelling errors,
– stochastic variations of the work space environment (e.g. stochastic payload).
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Hence, to reduce the on-line measurement and correction expenses [16], available a
priori and statistical information about the stochastic variations of � 0 � � � :

should
already be considered in the modelling phase as well as in certain future time-points
whenever new information about � 0 � � � :

is available. Assume in the follow-
ing, that the new information at times

� 8 	��
�
		�
�
�

can be represented by information
 -algebras
� 
 � 	�� 
  	
�	�
� , which can be determined by on-line estimation methods

like, e.g., recursive least square algorithms [8,22]. This leads to an adaptive stochas-
tic trajectory planning problem:

�
initial time-point,
main correction

time-points

� 8 �
�

�	�
� � � �
�	�

information
vector

���
�

� 8
� � 8 	

˙
� 8�:

or
� � 8 	 ˙� 8�:
� 
 �

����
�

���
�

�
�� �

�
	
˙
�
�
:

or
� �
�
	
˙� �
:

� 
 
����
� �	�
�

���
�

� �
� � � 	 ˙

� � : or
� � � 	 ˙� � :
� 
 �

����
� �
�	�

�
opt. velocity

profile,
opt. geom.

path in config-
uration space

� � � 8 � ��� :� � 8 �� ��� : � � � � � � ��� :� � � �� ��� : � �	�
� � � � � � ��� :� � � �� ��� : � �
�	�

AOSTP (Adaptive Optimal Stochastic Trajectory Planning)

1.3 Substitute Problems with Probability Constraints

Since the parameters � in (1a-f) or (6a-g) are random, (PP) and (PTP) can not be
solved directly. Instead we use deterministic substitute problems, that are available
from stochastic optimisation: In order to get robust optimal trajectories, random
parameter variations are incorporated [12–15] into the optimisation process [12–15]

- by taking expectations in (weighted) objective functions,
- by evaluating violations of constraints by the resulting expected penalty costs,

as, e.g., the separated or joint probability(ies) of violation of the constraints,

and

- by imposing upper bounds for the expected penalty costs or including them into
the objective function (sum of the expected process and penalty costs).

If we consider the conditional expectation of the objective function (1a) with respect
to the information available up to time

� � and demand that the control constraints
(1c) are fulfilled separately at least with given fixed probabilities 
 � � , � 0 � 		�
�
� 	 � ,
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and the joint velocity restriction (1d) with a reliability of 
 ˙� , then a basic substitute
problem for (1a-f) at stage � can be written as (SPP):

min� ��� �

����
� ���

� � 8 � � 	 � � ��� : 	 �
�
� ��� : 	 �

� �
� ��� : 	 � ��� : 	 � �

��� : 	 � � : � � 
 � : � � (7a)

subject to
�
�
� � � � : 	 � � � � : 0 ˙

� � 	 � ��� � : 0 � 	 (7b)

� � � min� � � � � �
� � : 3�� � � ��� : 3 � � � � max� � � 
 � : � 
 � � 	� � � � � � � 	 � 0 � 	��
		�
�	� 	 � 	 (7c)

� � ˙� min � �
�
� ��� : �

� ��� : � ˙
� max � � 
 � : � 
 ˙� 	 � � � � � �

�
	

(7d)

� � � : � � 	 � � � � � � � 	 (7e)� 0 � � ��� : 	 � � � � � �
�
	

(7f)

where equation (7f) is replaced by

�
� � � � � ��� : 	 � � : � � 
 � : 0 � � � � : 	 � � � � � � � 	 (7f’)

if the prescribed path is given in work space.

Remark 3. Since ˙
� 8 0 �

�
� ��� 8�: �

� � � 8�: 0 � the simpler condition � ��� 8 : 0 � is
used in (7b) at the initial stage.

The corresponding substitute problem for (PTP) is given by (SPTP):

min� � � � � ��� � � �
����
� ���

� � 8 � � 	 � � ��� : 	 �
�
� ��� : 	 �

� �
� ��� : 	 � ��� : 	 � �

��� : 	 � � : � � 
 � : � � (8a)

subject to
�
�
� � � � : 	 � � � � : 0 ˙

� � 	 � ��� � : 0 � 	 (8b)

� � � min� � � � � �
� � : 3�� � � ��� : 3 � � � � max� � � 
 � : � 
 � � 	� � � � � � � 	 � 0 � 	��
		�
�	� 	 � 	 (8c)

� � � min � � � ��� : � � max � � 
 � : � 
 � 	 � � � � � �
�
	

(8d)
� � ˙� min � �

�
� ��� : �

� ��� : � ˙
� max � � 
 � : � 
 ˙� 	 � � � � � �

�
	

(8e)

� � � : � � 	 � � � � � � � 	 (8f)� � � � � : 0 � � 	 � � ��� � : 0 �
�
	

(8g)

where equation (8g) is replaced by

�
� � � � � ��� � : 	 � � : � � 
 � : 0 � � � � � : 	

�
� � � � � ���

�
: 	 � � : � � 
 � : 0 � � � � � : 	 (8g’)
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if the initial and terminal position are given in work space. Furthermore, 
 � 	 
 ˙� are
prescribed minimum probabilities for the separated state chance constraints.

Let � � � � 0 � � � � � � : in case of (SPP) and
� � � � � 	 � � � �� : 0 � � � � � � � : 	�� � � �� � � : :

in case
of (SPTP), denote the optimal solution at stage � . Finally, the initial conditions in
(7a-f) and (8a-g) can be defined recursively as follows:

a) position
�

� 0 � � � 5 � �� ��� � : or
� 0 � � ��� � : 	 � 0 � 	��
		�
�
� 	 (9)

b) joint velocity ˙
� �

˙
� 0 � � � 5 � �� � ��� � : 	 � � � 5 � � � � � : or ˙

� 0 �˙� ��� � : 	 � 0 � 	���	
�
�	� 	 (10)

c) path parameter
� � : See Section 1.5.

In (9),(10) �
� ��� � : 	 �˙� ��� � : denotes an observation of

� ��� � : 	 ˙
� ��� � : , respectively.

1.4 A Path Parameter Transformation

In order to work on a fixed parameter interval � ˜� 8 	 ˜
�
� � , ˜
� 8 � ˜

�
� , let

� � � � 0 �
� 2 � �

˜
�
� 2 ˜

� 8 	 (11)

and consider the second parameter transformation [14, 15],

� 0 � �
˜
� : 0 � � 3 � � � � � � ˜� 2 ˜

� 8�: 	
˜
� 8 � ˜

� � ˜
�
� (12)

having the inverse transformation

˜
� 0 ˜

� � � : 0 ˜
� 8 3 �� � � �

�
��� 2 � � : 	 � � � � � � � � (13)
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At every stage � 0 � 	 � 	 �
	
�	�
� , problem (7a-f) can then be replaced by:

min
˜� � � �

˜� ��

˜��� �
� � 8 �

˜
� 	

˜
� � �

˜
� : 	

˜
�
�
� �

˜
� : �� � � � 	 ˜

�
� �
� �

˜
� : � �� � � � � � 	

˜� � ˜� : 	 ˜� �
�
˜
� : �� � � � 	 � � : � � 
 � : � � � � � � ˜

�
(14a)

subject to

˜
�
�
� �

˜
� 8 : �� � � � 	 ˜� � ˜� 8 : 0 ˙

� � 	 ˜� � ˜� � : 0 � 	 (14b)

� � � min� � ˜� � ˜� �
�
˜
� : �� � � � 3 ˜� � ˜� � ˜� : 3 ˜� � � � max� � � 
 � : � 
 � � 	

˜
� 8 � ˜

� � ˜
�
�
	 � 0 � 	��
		�
�
� 	 � 	 (14c)

� � ˙
� min � ˜

�
�
� �

˜
� : �� � � � 	 ˜� � ˜� : � ˙

� max � � 
 � : � 
 ˙� 	 ˜
� 8 � ˜

� � ˜
�
�
	

(14d)

˜� � ˜� : � � 	 ˜
� 8 � ˜

� � ˜
�
� (14e)� 0 ˜

� � �
˜
� : 	

˜
� 8 � ˜

� � ˜
�
�
	

(14f)

where ˜
� � �

˜
� : 0 � � ��� �

˜
� : :

, ˜� � ˜� : 0 � ��� � ˜� :�: and ˜� � 0 � � � ˜� � 	 ˜
�
�
� 	 � � � � 	 � �7: , ˜� � 0� � � ˜� � 	 ˜

�
�
� 	

˜
�
� �
� 	 � � � � 	 � �7: , ˜� � 0 � � � ˜� � 	 � � � � 	 � � : .

Similarly, the second path parameter transformation can be applied to (8a–g),
yielding also a fixed parameter interval � ˜� 8 	 ˜

�
� � .

1.5 Time-Path Parameter Transformation

According to Section 1.1, the velocity profile in Optimal Trajectory Planning is
defined [9, 23] as

� ��� : 0 ˙
� � ��� � � : : �

(15)

Hence, for calculating the time-path parameter transformation at stage � , the follow-
ing initial value problem has to be solved:

˙
� ��� : 0 �

� � � � � � ��� :�: 	 � � � � 	 (16a)� ��� � : 0 � � 	 (16b)

where
� 0 � ��� :

is a strictly increasing function.
Let � � � � 0 � � � � ��� : 	 � � � � � � � � �

�
	

(17)

denote the unique solution of (16a,b) on the remaining time interval � � � 	�� � � 0
� � � 	�� � � �� � . The terminal time-point

�
� 0 � � � �

� , valid for the � -th stage of the process, is
the unique solution of the equation� � � � ��� � � �

�
: 0 �

�
�

(18)
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Finally, the initial path parameters
� � 	 � 0 � 	 �
	
�	�
� , can be given recursively as

follows: � � � 0 � � � 5 � � ��� � : 	 � 0 � 	���	
�
�	�	� (19)

2 NUMERICAL SOLUTION OF THE SUBSTITUTE PROBLEMS

2.1 Numerical Calculation of the Expected Objective Function

Let
˜� 8 ��� 	 � � : � 0 � 8 ��� 	�� � � � : 	��

�
� � � : 	��

� �
� � � : 	 � � � : 	 � �

� � : 	 � � : (20)

denote the objective function in the Optimal Stochastic Trajectory Planning prob-
lem.

Hence, using a Taylor series expansion of ˜� 8 � � 	 � � : with respect to the stochastic

parameter � � at ¯� � � �� 0 �
� � � � � : � � 
 � : , we are able to approximate the expected

objective function by

�
� ˜� 8 � � 	 � � : � � 
 � : � ˜� 8 � � 	 ¯� � � �� : 3

��
� �
�

���
� � ˜� 8� � � �

��� 	
¯� � � �� :

�
� � � �� 	

(21)

where �
� � �
� is the system of the


-th conditional central moments.

Remark 4. Any other expectations which are involved in the substitute problem
(SPP) or (SPTP) can be approximated using the same method.

If ˜� 8 ��� 	 � � : is at least (K+1)-times continuous differentiable subject to � � , the

error in the Taylor expansion of ˜� 8 ��� 	 � � : with respect to � � at ¯� � � �� can be evaluated
as:

�
� % 3 � :

�

� � � �
�� � � � �� ˜� 8 ��� 	 �� � : � � � 2 ¯� � � �� : � � � 	 (22)

where �� � denotes a value between � � and ¯� � � �� . Now, if the system of the
� % 3 � :

derivatives is uniformly bounded on the support of � � � � :
, that is

� �
� � �

�� � � � �� ˜� 8 � � 	 � � : � � � � 8
�
� � � �

almost sure
: 	 � 8 � � � � � 	 (23)

with a fixed bound � 8
, the expected approximation error is less than

� 8
� % 3 � :

�

�
�
� � � � 2 ¯� � � �� � � �

� � � 
 � : � (24)

Under the standard assumption in robotics, that the parameter � � is nested in a
bounded domain, we finally get as upper bound for the approximation error:

� 8 � � � �� % 3 � :
�
	

(25)

where we used
� � � 2 ¯� � � �� � � � with probability 1. Hence, for � � � , small values

of % already provide good approximations.
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2.2 Numerical Evaluation of the Probability Constraints

Assume first that only a single dynamic parameter ˜� � of � � is modelled stochastic.
Then, evaluating, e.g., the probabilistic control constraint in (7a-f) and (8a-g), we
observe that due to the linear parameterisation property of robots [21,28], the coeffi-
cients � � � � � 	�� �

� 	 � � : , � � � � � 	�� �
� 	 �

� �
� 	 � � : and � � � � � 	 � � : , � 0 � 	
�
�	� 	 � , resulting

from the t-s-transformation, can be represented by

� � � � � 	 � �
� 	 � � : 0 � � 8 � � � 	�� �

� 	
¯� �7: 3 ˜� � �

�
:

� � �
� � � 	 �

�
� : 	

(26a)
� � � � � 	�� �

� 	��
� �
� 	 � �7: 0 � � 8 � � � 	 � �

� 	��
� �
� 	

¯� � : 3 ˜� � � � : � �
�
� � � 	 �

�
� 	��

� �
� : 	

(26b)

� � � � � 	 � � : 0 � � 8 � � � 	 ¯� � : 3 ˜� � � � : � � �
� � � : 	

(26c)

where ˜� � 0 ˜� � �
�
:

is the stochastic dynamic parameter and ¯� � contains the re-
maining deterministic dynamic parameters. Hence, introducing deterministic func-
tions

� � 8 � 0 � � 8 � � � 	�� �
� 	

¯� �7: � � 3�� � 8 � � � 	 � �
� 	��

� �
� 	

¯� �7: � 3 � � 8 � � � 	 ¯� �7: 	 (27a)

� � � � 0 � � �
� � � 	��

�
� : � � 3 � � �

� � � 	��
�
� 	 �

� �
� : � 3 � � �

� � � : 	
(27b)

we get � � 0 � � 8 3 ˜� � �
�
: � � �

	 � 0 � 	���	
�
�	� 	 � 	 (28)

and the separated chance constraints (7c) and (8c) may be represented by

� � � min� � � � 8 3 ˜� � �
�
: � � � � � max� � � 
 � : � 
 � � 	 � 0 � 	��
		�
�	� 	 � � (29)

Splitting up (29) for further simplification into the one-sided inequalities

� � � � 8 3 ˜� � � � : � � � � � max� � � 
 � : � 
 � � 	 � 0 � 	 �
	
�	�
� 	 � 	 (30a)
� � � min� � � � 8 3 ˜� � � � : � � � �

� 
 � : � 
 � � 	 � 0 � 	��
		�
�	� 	 � 	 (30b)

we find the following conditions, where

�
� 
 � ���� � � : � 0 � � ˜� � � � : � � � � 
 � : 	 � ��� 	

(31)

denotes the conditional distribution function of the random parameter ˜� � given
� 
 � ,

and we suppose that the bounds � min� and � max� ,
� 0 � 		�
�
� 	 � , are fixed:

� min� � � � 8 3 � � 
 � � � �� � � �
	 � 0 � 	
�	�
� 	 � 	 (32a)

� � 8 3 � � 
 � � � �� � � � � � max� 	 � 0 � 		�
�	� 	 � � (32b)

Here, � � 
 � � � �� and � � 
 � � � �� are defined as:

� � 
 � � � �� 0 � � 
 � � � �� � � � �
: 0

�� � �
� 
 � ����

5
� � � 2 
 � � : 	 � � � � � 	

� 	 � � � 0 � 	
�
� 
 � ����

5
� � 
 � � : 	 � � � � � 	

(33a)

� � 
 � � � �� 0 � � 
 � � � �� � � � �
: 0

�� � �
� 
 � �� �

5
� � 
 � � : 	 � � � � � 	

� 	 � � � 0 � 	
�
� 
 � ����

5
� � � 2 
 � � : 	 � � � � � �

(33b)
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For a more general case, represent � � , cf. (26a-c) by

� � 0 � � 8 3 � � ˜� � �
�
:�: � 	 � 0 � 	
�	�
� 	 � 	 (34)

where ˜� � is the vector of random dynamic parameters and � 0 � � � � 	��
�
� 	��

� �
� :

is
a deterministic matrix (linear parametrisation property of robots); moreover, sup-
pose in the following that � min� 0 2 � max� . Using a well known Chebycheff type
probability inequality, see [11], the conditional probability in (7c) or (8c) can be
approximated from below as follows:

� � � min� � � � 8 3 � � ˜� � �
�
: : � � � max� � � 
 � :

0 � � � � � 8 3 � � ˜� � �
�
: : � � � � max� � � 
 � :

0 � 2 � � � � � 8 3 � � ˜� � �
�
: : � � � � max� � � 
 � :

� � 2�� �
� � � � � � ��� ˜��� � 
 � � � ����� � � �� � � max� �

	�� 0 � 	
�	�
� 	 � 	

(35)

where � 0 � ��� : is an arbitrary positive function such that � � 2 � : 0 � ��� : , and � ��� :
is nondecreasing on the interval � � 	 3 � :

. Appropriate examples are � ��� : 0 � � � � for� � � . The chance constraint (29) may be guaranteed then by the condition

�
� � � � � 8 3 � � ˜� � � � :�: � : � � 
 � : � � � 2 
 � � :

�
� � � max� : 	

(36)

where the expectation can be calculated, in the general case, by the methods de-
scribed in Section 2.1.

2.3 Approximation of the Solution Curves by Spline-Functions

Approximating the solution � � � � 0 � � � � ��� : or
� � � � � 	 � � � �� � : 0 � � � � � � � : 	�� � � �� � � � : : ,� � � � � �

� ,
� 0 � 	��
		�
�	� 	 � , of (SPP) or (SPTP) by certain linear combinations

of known basis functions � �� ,

0 � 		�
�
� 	 % � , and � �� ,


0 � 		�
�	� 	 % � , they can be

represented by

� � � � � � : 0 �	�
�
� �
�
� �� � �� ��� : 	 � � � � � �

�
	

(37a)

� � � �� � � � : 0 ��

�
� �
�
� � �� � �� ��� : 	 � � � � � �

�
	�� 0 � 	 �
	
�	�
� 	 � 	 (37b)

with unknown coefficients �
�
� , � �

 � % � , and � � �� , � �
 � % � ,

� 0 � 	��
		�
�
� 	 � ,
where the representation (37a,b) may depend on the stage � .
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Hence, we can reduce the Stochastic Trajectory Planning Problem to a parameter
optimisation problem of following type:

min� � � � : (38a)

subject to � � � : 0 � 	 (38b)

� � � 	 � : � � 	 � � � � � �
�
	

(38c)

where � is the vector of all unknown coefficients in linear combinations (37a,b) and
� � � : , � � � : and � ��� 	 � : are obtained by substituting (37a,b) into (SPP) or (SPTP).
Since � 0 � � � 	 � : depends on the path parameter

�
, (38a-c) defines a semi-infinite

optimisation problem [7].
If we choose a finite number of path parameters

�
�
	 �
�
		�
�
� 	 � �

in � � � 	 � � � and
demand that the equation � ��� 	 � : � � is fulfilled in all

� � , 
 0 � 	 �
	
�	�
� 	�� , problem
(38a-c) can be approximated by an ordinary finite parameter optimisation problem
under equality and inequality constraints.

The solution of the problem therefore depends on the selection of the basis func-
tions � �� ,


0 � 		�
�
� 	 % � , and � �� ,


0 � 		�
�	� 	 % � . Due to their well known good

properties, we use spline basis functions [4, 27].

3 NEURAL NETWORK APPROXIMATION

In Sections 1 and 2 we have seen, how Adaptive Optimal Stochastic Trajectory
Planning problems can be modelled and how they could be solved using nonlinear
programming techniques. Since industrial robot applications demand, due to the
short cycle times, real-time processing ability, the methods described in the previous
section can not be used directly as they are computationally too expensive. However,
since the substitute problem at every stage � only depends on

i)
� � , the initial path parameter,

ii)
� 
 � , the available information about the parameter distribution, represented,
e.g., by certain conditional moments of the random model parameters arising in
the computation of conditional expectations by Taylor expansions, see (21) and
(35),(36),

iii)
� � , the initial position in configuration space,

iv) ˙
� � , the initial joint velocities,

we can solve (7a-f) or (8a-g) for a large amount of inputs 	 � 0 ��� � 	 � 
 � 	�� � 	 ˙
� � :�� . By

collecting these solutions we get large data sets
� 	 	 � � : � , � 0 � 	
�
�	� 	 � , where � � 0

� � � �� 	 � �  �� 	
�
�	� 	 � � � ��
:��

,

0 � 		�
�	� 	 % � 	 � 0 � 	
�
�	� 	 % � , denotes a set of optimal

spline coefficients for the input 	 calculated by means of nonlinear programming:

� 	 	 � � : � 0
��

��� � 	�� 
 � 	�� � 	 ˙
� � : �

� � � �
�

	
�	�
� 	 � � �� � 	 � �  �
�

		�
�	� 	 � � � �
�

	
�	�
� 	 � �  �� 
 	
�	�
� 	 � � � �� 
 :��
�� � 	

(39)
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� 0 � 	
�	�
� 	 � . Splitting up this data set into % � 3 �
�
% � sets

� 	 	 �
� �
�
: � 	
�
�	� 	 � 	 	 � � ��	� : � 	 � 0 � 	
�
�	� 	 � 	

(40a)
� 	 	 � � � �� : � 		�
�	� 	 � 	 	 � � � �� 
 : � 	 � 0 � 	
�
�	� 	 � 	� 0 � 	
�	�
� 	 � 	 (40b)

we get a pattern set for each unknown spline coefficient in linear combination
(37a,b). By means of a Neural Network Simulator for the training process, we
can finally interpolate the solution coefficients � � 0 � � � 	 : , for inputs 	 not in-
cluded in the pattern sets using its approximation �� 0 � �� �� 	 �� � � 	
�
�	� 	 �� � �� : �

,

0

� 	
�	�
� 	 % � 	 � 0 � 	
�
�	� 	 % � . In detail we get:

� � �� � �� �� 0 �� �� � 	 	 � �
	
�	�
� 	

� � : 	

0 � 		�
�	� 	 % � 	 (41a)

� � � ��
� �� � �� 0 �� � �� � 	 	 � �

	
�	�
� 	
� � : 	


0 � 		�
�	� 	 % � 	� 0 � 		�
�
� 	 � 	 (41b)

where the � � ,
� 0 � 		�
�	� 	
 , denote the weights of the trained neural networks. In

general optimal weights can be obtained by minimising the summed squared error
� � � �

	
�
�	� 	
� � : over all training patterns for the neural net subject to its weights

� �
		�
�
� 	

� � .
Hence, if � �� denotes the optimal coefficients related to the input 	 � , � 0

� 	
�	�
� 	 � , obtained by optimal stochastic trajectory planning and

�� 0 �� � 	 � 	 � � 	
�
�	� 	 � � :
represents the coefficients given by the neural network, we minimise

� � � �
		�
�	� 	

� � : 0
��� �
�

� � �� 2 �� � 	 � 	 � � 	
�
�	� 	 � � : � � � (42)

For a more detailed description of Neural Nets and their training we refer to [1,2,6,
29].

Remark 5. By means of B-spline basis functions, the necessary amount of neural
nets can be reduced to

� % � 2 � : 3 �
�
� % � 2 � :

, since in this case at every stage� we put � ��
� � � : 0 � ��

� � � : 0 � and � �� � � � � : 0 � �� 
 ��� � : 0 � , cf. [4]. Hence,
the initial and terminal conditions for the geometric path and velocity profile can be
guaranteed by choosing �

�
�
0 � � � 5 � � � � � : 	 � �� � 0 � and � � �� 0 � � � : � 	 � � ���
 0 � �

�
: � ,� 0 � 	
�	�
� 	 � , in case of a continuous stage transition. In case of a transition based

on observations in (9, 10) the same changes can be made accordingly.

4 NUMERICAL EXAMPLES

4.1 Industrial Robot Manutec r3

To test the previous theoretical models we consider a 6 joint Manutec r3 industrial
robot. Since the first 3 joints are mainly responsible for placing the end-effector in
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workspace and the last 3 joints for orientating the end-effector we used a simpli-
fied 3 d.o.f. model. In this model the last joints remain in a fixed locked position.
A detailed mathematical model for the Manutec r3 can be obtained from [28]. Fur-
thermore, we suppose that the payload mass 
 � is the only uncertain parameter.
Therefore, we get at stage � for (SPP) the following restrictions:

� � 2 �
� � � � � ��� : � �

� � � � 
 � : � 
 � � 	 � 0 � 	��
	 � 	 � � � � � � � 	 (43)

2 � � � rad
sec

� �
� �
� � : �

� ��� : � � � � rad
sec

	 � � � � � �
�
	

(44a)
2 � � � rad

sec
� �

� �
� � : �

� ��� : � � � � rad
sec

	 � � � � � �
�
	

(44b)
2 � � � rad

sec
� � � �

��� : �
� ��� : � � � � rad

sec

	 � � � � � �
�
	

(44c)

where 
 � � 0 � � � � , � 0 � 	��
	 � . For (SPTP) additionally the following position
constraints have to be fulfilled:

2 � � � � rad � �
�
� � : � � � � � rad

	 � � � � � �
�
	

(45a)
2 � � � � rad � �

�
� � : � � � � � rad

	 � � � � � �
�
	

(45b)
2 � � � � rad � � � ��� : � � � � � rad

	 � � � � � � � � (45c)

4.2 Probability Distributions

To study the influence of the probability distribution on (SPP) or (SPTP), consider
without loss of generality only the stage � 0 � and suppose that the stochastic pay-
load mass can be modelled by an uniform, an exponential or a Gaussian distribution.
In order to compare the different distributions, we assume that the payload mass has
an expectation of �

� 
 � : 0 � kg and a variance of � � 
 � : 0 � � . Additionally, the
case of a deterministic payload mass of � kg was considered. Hence for a reliability

 � � 0 � � � � , � 0 � 	��
	 � , we get according to (32a,b) the following deterministic
substitutes for control constraint (7c) or (8c):

� min� � � � 8 3 � � 
 � � � �� � � �
	 � 0 � 	
�	�
� 	 � 	 (46a)

� � 8 3 � � 
 � � � �� � � � � � max� 	 � 0 � 		�
�	� 	 � 	 (46b)

where for the different distributions � � 
 � � � �� and � � 
 � � � �� read as follows, cf. (33a,b):

a) uniform distribution

� � 
 � � � �� 0

�� �

� � � 2 
 � � : �
� � � 
 � : 3 �

� 
 � : 2 �
� � � 
 � : 	 � � � � � 	

0 2 � � � � � �� 	 � � � 0 � 	
� 
 � �

�
� � � 
 � : 3 �

� 
 � : 2 �
� � � 
 � : 	 � � � � �

0 � � � � � � � 	
(47a)

� � 
 � � � �� 0
�� � � � � � � � � 	 � � � � � 	
� 	 � � � 0 � 	
2 � � � � � � 	 � � � � � � (47b)



534 A. Aurnhammer and K. Marti

Figure 1. Manutec r3

b) exponential distribution

� � 
 � � � �� 0
�� � 2 ln

� 
 � � :
�
�
� 
 � : 0 � � � � � � 	 � � � � � 	

� 	 � � � 0 � 	
2 ln

� � 2 
 � � :
�
�
� 
 � : 0 � � � � � � � 	 � � � � � 	 (48a)

� � 
 � � � �� 0
�� � � � � � � � � 	 � � � � � 	
� 	 � � � 0 � 	
� � � � � � 	 � � � � � � (48b)

c) Gaussian distribution

� � 
 � � � �� 0
�� � �
� 
 � ����

5
� � � 2 
 � � : 0 2 � � � � ��� 	 � � � � � 	

� 	 � � � 0 � 	
�
� 
 � ����

5
� � 
 � � : 0 � � � � � ��� 	 � � � � � 	

(49a)

� � 
 � � � �� 0
�� � � � � � � ��� 	 � � � � � 	
� 	 � � � 0 � 	
2 � � � � ��� 	 � � � � � � (49b)

Here, in case of the uniform and the exponential distribution, the inverse conditional
distribution function can easily be computed analytically. For the Gaussian distribu-
tion it was calculated numerically.
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Remark 6. Though in reality not possible, in case of the uniform and Gaussian dis-
tribution negative payload masses are included here in the modelling of the prob-
abilistic constraints. However, the main goal in this example was to compare the
different distributions. Hence, we assumed the same expectation and variance for
all three cases, which led to this results. For applications its is of course more
favourable to use a cut off uniform or Gaussian distribution.

Now, in case of (SPTP), the robot should perform a time-optimal movement
between initial position � 8 0 � 2 � �

�
	 � � �
	 � � � : �

and terminal position �
� 0 � 2 � � � 	 � � ��	 2 � � � : � 	

where the SQP solver SNOPT [5] was used to solve (SPTP) on a SUN Ultra-Sparc II
with a 200 MHz processor.

Distribution tf
�
sec� CPU-time

�
sec �

deterministic 0.7857 5.25
uniform 0.9113 4.74

exponential 1.2049 9.97
Gaussian 1.0026 4.32

Table 1. Run-time and CPU-time

Table 1 clearly indicates, that the solution of (8a-g) computed by mathematical
programming can not be used directly in the on-line control process of the robot,
since the time to solve (SPTP) is much longer than the final time

�
� of a optimal

control. Thus, no adaptions with new information about the payload mass uncer-
tainty are possible without much faster (approximate) solution procedures. A way
out is presented in Section 4.3.

Now, using inverse dynamics, that is, substituting a calculated optimal veloc-
ity profile and geometric path in configuration-space into the dynamic equation of
the robot, also allows the computation of the related optimal feed-forward controls.
Finally, applying the inverse time-path parameter transformation, obtained by any
ODE-solver (see Section 1.5), the optimal solution, e.g., the third joint, can be plot-
ted in time-domain. Additionally, by means of the robots kinematic equation the
optimal trajectories in workspace are given.

In case of an exponential distribution the most cautious controls are obtained, see
Table 1. Comparing, e.g., the support of the uniform and exponential distribution,
we have that:

suppuni
� 
 � : 0 � �

� 
 � : 2 � 
 � 	 �
� 
 � : 3 � 
 � �

0 � �
�
� � 2 �

� : 	 �
�
� � 3 �

� : � 	
(50)
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Figure 2. Position � � � � � of the third joint

where � 
 � 0 �
�
�
� � 
 � : , and

suppexp

� 
 � : 0 � � �
(51)

Hence, in case of the exponential distribution a payload mass greater than �
�
� � 3 �
� :

contributes still with positive probability to the calculation of the optimal control.
Additionally, examining the distribution function

� exp��� � � : 0 � � 
 � � � : 0 � 2 � 5 � � 	 for all
� �

suppexp

� 
 � : 	 (52)

where here
� 0 � � � , we find that the payload can exceed the bound with probability

� � 
 � � �
�
� � 3 �

� : : 0 � 2 � � 
 � � �
�
� � 3 �

� :�:

0 � 2 �
�
� �� � � �

�
� � 3 �

� : : � � � � � � �
(53)

Thus, the exponential distribution incorporates a much wider range of possible pay-
load masses (given that expectation and variance are equal for both distributions)
and therefore we get a greater final time and more cautious controls (see Figure 4).
This enables us to preserve the robustness against the bigger payload uncertainty for
the exponential distribution. Similar relations between the other distributions can be
obtained.
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Figure 5. Optimal trajectories in workspace

4.3 Solutions in Real-Time by Neural Networks

As already discussed in Section 3, optimal solutions of the substitute problems in
real-time may be obtained by means of Neural Networks Approximation. Some first
results are presented in the following.

Prescribed-Path Problem

Consider the prescribed path in configuration space

� � � � : 0
�� �� � 3 �� � 3 �

�� 	 � � � � � 	 (54)

in (7a-f) and assume at stage � we have the following initial information for a time-
optimal solution:

– uniform distribution on � 
 � 2 � 
 � 	 
 � 3 � 
 � � , where 
 � 0 �
� � kg and

� 
 � 0 �
� � ,

– 
 � 0 � � � � ,
Furthermore, suppose the path is adapted twice at

�
� 0 � � ��� � � sec with new infor-

mation 
 � 0 � � � kg and � 
 � 0 � � � and at
�
� 0 � � � � � � with exact information
 � 0 � � � kg. Hence, at stage 2 there remains no uncertainty and we arrive at a
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STAGE METHOD tj sj tf
�
sec � CPU-time

�
sec�

0 SNOPT 0.0 0.0 0.9453 0.58
1 SNOPT 0.1484 0.2273 0.9264 0.43
1 Neural Networks 0.1484 0.2273 0.9278 0.02
2 SNOPT 0.3615 0.5949 0.9120 0.20
2 Neural Networks 0.3615 0.5949 0.9182 0.01

Table 2. Run-time and CPU-time for prescribed path problems

deterministic problem. Under this assumption we get the numerical results on a 200
MHz SUN Ultra-Sparc II shown in Figure 2.

Table 2 shows that, due to the reduced complexity of a prescribed path problem
compared to a point-to-point problem, the CPU-time for SNOPT is much smaller
here (see Table 1), but still not small enough to be applied for on-line control pur-
poses. However, according to Table 2, Neural Network approximation can be calcu-
lated about 20 times faster than a solution using the SQP-solver SNOPT. Moreover,
to demonstrate the accuracy of the Neural Network approximation, we plot the ve-
locity profile in time domain, where the curves have the following meanings: The
solid line in Figure 6 denotes the result for stage 0, obtained off-line by means of
SNOPT. Then, for stage 1 and as well for stage 2, the dashed and the dotted lines
which coincide almost exactly represent the results obtained from exact computa-
tion using SNOPT and by using Neural-Network-Approximation, respectively.

Point-to-Point Problem

For the point-to-point problem consider the initial and terminal positions
� 8 0

� � � � 	 2 � � � 	 � � � : � and
�

� 0 � � � � 	 2 � � � � 	 � � � : � . Moreover, a uniform distribution is
supposed, where again 
 � 0 �

� � , � 
 � 0 �
� � and 
 � 0 � � � � . The path is adapted

once at
�
� 0 � � � � � � with new information 
 � 0�� � � and � 
 � 0 � � � � . Then the

results shown in Table 3 and Figures 7-10 are obtained.

STAGE METHOD tj sj tf
�
sec � CPU-time

�
sec�

0 SNOPT 0.0 0.0 0.5817 2.340
1 SNOPT 0.2220 0.3339 0.5697 0.440
1 Neural Networks 0.2220 0.3339 0.5712 0.013

Table 3. Run-time and CPU-time for point-to-point problems

Figures 7-10 show again that the Neural Network solution can approximate the op-
timal path

� ��� :
and the optimal velocity profile � ��� : with high accuracy. Addition-

ally, according to Table 3, the Neural Network Approximation can be computed
much faster than a solution using the SQP-Solver SNOPT. Hence, this approach is
useful in the on-line control process of the robot.
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Stochastic Optimization Methods in Robust Adaptive
Control of Robots

Kurt Marti
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Abstract In the optimal control of industrial or service robots, the standard procedure is to
determine first off-line a feedforward control and a reference trajectory based on some nom-
inal values of the model parameters, and to correct then the resulting inevitable deviation of
the trajectory or performance of the system from the prescribed values by on-line (local) mea-
surement and control actions. Due to stochastic parameter variations, increasing correction
actions are then needed during the process.

By adaptive optimal stochastic trajectory planning and control (AOSPTC), the a priori
and sample information available about the robot is incorporated into the control process by
using stochastic optimization techniques. Moreover, the feedforward control and the refer-
ence trajectory are updated somewhat later in order to maintain a high quality of the reference
functions.

As a consequence, the deviation between the actual and prescribed trajectory or perfor-
mance of the robot is reduced. Hence, the on-line correction expenses can be reduced, and
more reliable, robust controls are obtained. Analytical estimates for the reduction of the on-
line correction expenses are given.

1 INTRODUCTION

An industrial or service robot is modelled mathematically by its dynamic equa-
tion, being a system of second order differential equations for the robot or config-
uration coordinates

� 0 � �
�
		�
�
� 	�� � : � (rotation angles in case of revolute links,

length of translations in case of prismatic links), and the kinematic equation, relat-
ing the space � � � of robot coordinates to the work space � � � of the robot. Thereby
one meets [5,9,10,14,40,44,48] several model parameters, such as length of links,
� � � 
 :

, location of center of gravity of links, �
� � � 
 :

, mass of links, 
 � �  � : , payload
� � :

, moments of inertia about centroid,

 � �  � 
 � : , (Coulomb-)friction coefficients,

� � � 8 � � :
, etc.. Let � � 	 � � denote the vector of model parameters contained in the

dynamic, kinematic equation, respectively. A further vector � � of model parame-
ters occurs in the formulation of several constraints, especially initial and terminal
conditions, control and state constraints of the robot, as, e.g., maximum, minimum
torques or forces in the links, bounds for the position, maximum joint, path ve-
locities. Moreover, certain parameters � � , e.g., cost factors, may occur also in the
objective (performance, goal) functional J.

Due to stochastic variations of the material, manufacturing errors, measurement
(identification) errors, stochastic uncertainty of the payload, errors in the selection
of appropriate bounds arising in state and control constraints, errors in the selection
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of cost factors, more general modelling errors, etc., the total vector

� 0

���
�
� �� �� �� �

� ��
� (1a)

of model parameters of the robot and its working environment is not a given, fixed
quantity. The vector � but must be represented therefore by a random vector

� 0 � � � : 	
�
� � 	 	�� 	 � : (1b)

on a certain probability space
� 	 	�� 	 � : , see [5, 16, 33, 43, 44, 50].

Having to control a robotic or a more general dynamical system, the control
input � 0 � ��� : , is represented [10, 14, 19, 37, 46, 47,51] usually by the sum

� ��� : � 0 � �
8
� ��� : 3 � � ��� : 	�� 8 � � � �

�
	

(2)

of a feedforward control (open-loop control) � 8 ��� : 	 � 8 � � � �
� , and an on-line

(local) control correction (feedback control) � � ��� : .
Replacing the unknown parameter vector � by a certain vector � � 8 � of nominal

parameter values, as, e.g., the expectation � � 8 � � 0 � 0 � � � � :
, in actual engineering

practice [19, 46, 47, 50] the feedforward control � 8 ��� : is determined off-line based
on a certain reference trajectory

� � 8 � ��� : 	�� 8 � � � �
� , in confi-guration space. The

resulting, and mostly growing deviation of the actual state of the robot from the
prescribed state, caused by the deviation of the actual parameter values � � � :

from
the chosen nominal values � � 8 � , must be compensated then by on-line control cor-
rections � � ��� : at each time point

� � � 8
. This usually requires extensive, growing

on-line state observations (measurements) and feedback control actions.
In order to determine a reference trajectory

� � 8 � 0 � � 8 � ��� : 	�� 8 � � � �
� , in

configuration space, being robust with respect to stochastic parameter variations,
the a priori information (given by certain moments or parameters of the probabil-
ity distribution of � �

�
:
) about the random variations of the vector � � � :

is taken
into account already at the planning phase. Thus, instead of solving a deterministic
trajectory planning problem with a fixed nominal parameter vector � � 8 � , here, an
optimal velocity profile � �

8
� � � : 	 � 8 � � � �

� , and - in case of point-to-point control
problems - also an optimal geometric path

� � 8 �� ��� : 	 � 8 � � � �
� , in configuration

space is determined by using a stochastic optimization approach, see [26–29, 36].
By means of � �

8
� � � : and

� � 8 �� ��� : 	 � 8 � � � �
� , we then find a more reliable,

robust reference trajecetory
� � 8 � ��� : 	�� 8 � � � � � 8 �

� , in configuration space. Apply-
ing now the so-called ”inverse dynamics approach” [10, 14, 31, 37, 40], also a more
reliable, robust feedforward control � � 8 � ��� : 	�� 8 � � � � � 8 �

� , is obtained. Finally,
by Taylor expansion of the dynamic equation of the robot in a neighbourhood of� � � 8 � ��� : 	 � � 8 � ��� : 	 � � � � � � : � � 
 � � � 	 � � � 8

, where
� 
 � denotes the 
 -algebra of

information up to the initial time point
� 8

, a control correction � � � 8 � ��� : 	�� � � 8
, is

obtained which is related to the so-called feedback linearization of a system [37,46].
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At later moments (main correction time points)
� � ,

� 8 � �
�
� �

� �
� � �

� � � 5
�
� � � � �
�	� 	

(3)

further information on the parameters of the control system and its environment is
available, e.g., by process observation, identification, calibration procedures etc..
Improvements

� � � � ��� : 	 � � � � ��� : 	 � � � � � ��� : 	 � � � � 	 � 0 � 	��
		�
�	� , of the preceding
reference trajectory

� � � 5
� �
��� :

, feedforward control � � � 5 � � ��� : , and control correc-
tion (feedback control) � � � � 5 � � ��� : can be determined then by replanning, i.e.,
by optimal stochastic trajectory planning (OSTP) for the remaining time interval� � � � 	 � 0 � 	��
		�
�
� , and by using the information

� 
 � on the robot and its working
environment available up to the moment

� � � � 8 	 � 0 � 	��
		�
�	� , see [15, 41, 42].

2 OPTIMAL TRAJECTORY PLANNING FOR ROBOTS

According to [6,7,9,10,14,19,34,40], the dynamic equation for a robot is given by
the following system of second order differential equations

�
� � � 	�� ��� : � ¨

� ��� : 3 � � � � 	�� ��� : 	
˙
� ��� : � 0 � ��� : 	�� � � 8 	

(4a)

for the � -vector
� 0 � ��� :

of the robot or configuration coordinates
�
�
	 �
�
	
�	�
� 	�� � .

Here, � 0 � � � � 	�� :
denotes the �

�
� inertia (or mass) matrix, and the vector

function
� 0 � � � � 	 � 	

˙
� :

is given by

� � � � 	 � 	
˙
� : � 0 � � � � 	�� 	

˙
� :

˙
� 3 � � � � � 	 � 	

˙
� : 3 � � � � 	�� : 	

(4b)

where �
� � � 	�� 	

˙
� : 0 � � � � 	 � :

˙
�

, and �
� � � 	�� : 0 �

� � � � � � � 	�� : �
���
��� ��� �

� � is the

tensor of Coriolis and centrifugal terms, � � 0 � � � � � 	�� 	
˙
� :

denotes the vector of
frictional forces and

� 0 � � � � 	�� :
is the vector of gravitational forces. Moreover,� 0 � ��� : is the vector of controls, i.e., the vector of torques/forces in the joints of

the robot. Standard representations of the friction term � � are given [19, 45] by

� � � � � 	 � 	
˙
� � 0 � �

� � � 	 � :
˙
� 	

(4c)

� � � � � 	�� 	
˙
� : � 0 � � � � 	 � :

sgn
�
˙
� : 	

(4d)

where sgn
�
˙
� : � 0 �

sgn
�
˙
�
�
: 	
�	�
� 	

sgn
�
˙
� � : � � . In the first case (4c), � � 0 � �

� � � 	 � :
is the viscous friction matrix, and in the Coulomb approach (4d), � 0 �

� � � 	�� : 0�
� � � � 	 � :�� � � � is a diagonal matrix.

Remark 1. Inverse dynamics. Reading the dynamic equation (4a) from the left to
the right hand side, hence, by inverse dynamics [10,14,31,38,40], the control func-
tion � 0 � ��� : may be described in terms of the trajectory

� 0 � ��� :
in configuration

space.
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The relationship between the so-called configuration space � � � of robot coordi-
nates

� 0 � �
�
		�
�	� 	�� � : � and the work space � � � of world coordinates (position and

orientation of the end-effector) � 0 � �
�
	
�	�
� 	 � � : � is represented by the kinematic

equation � 0 � � � � 	 � : � (5)

As mentioned already in the introduction, � � 	 � � denote the vectors of dynamic,
kinematic parameters arising in the dynamic and kinematic equation (4a–d), (5).

Remark 2. Linear parametrization of robots. Note that the parametrization of a
robot can be chosen, cf. [3, 14], so that the dynamic and kinematic equation depend
linearly on the parameter vectors � � 	 � � .

The objective of optimal trajectory planning is to determine [6, 7, 9, 19, 49] a
control function � 0 � ��� : 	 � � � 8

, so that the cost functional

� � � �
�
: � � 0


 ��

 � 	

� � � 	�� ��� : 	 ˙
� ��� : 	 � ��� : � � � 3 � � � � 	�� ��� �

: 	
˙
� ���

�
: � (6)

is minimized, where the terminal time
�
� may be given explicitly or implicitly, as,

e.g., in minimum-time problems [6,7,19]. Besides the minimization of (6), an opti-
mal control function � � 0 � � ��� : and the related optimal trajectory

� � 0 � � ��� : 	����� 8
, in configuration space must satisfy, of course, the dynamic equation (4a–d) and

the following constraints [6, 7, 9, 19, 34, 40, 45,49]:

i) The initial conditions
� ��� 8 : 0 q

8 �
�
: 	

˙
� ��� 8 : 0 q̇0

�
�
:

(7a)

ii) The terminal conditions


� �

�
	 � 	 � ���

�
: 	

˙
� ���

�
: � 0 � 	 (7b)

e.g. � ���
�
: 0 �

�
�
�
: 	

˙
� ���

�
: 0 ˙

�
�
�
�
: �

(7c)

iii) Control constraints

� min � � : � � ��� : � � max � � : 	�� 8 � � � �
� (8a)

� � � � 	�� ��� : 	
˙
� ��� : 	 � ��� : � � � 	�� 8 � � � �

� (8b)

� � � � � 	�� ��� : 	
˙
� ��� : 	 � ��� : � 0 � 	�� 8 � � � �

�
�

(8c)

iv) State constraints

� �
� � 	 � ��� : 	

˙
� ��� : � � � 	 � 8 � � � �

� (9a)

� ���
� � 	 � ��� : 	

˙
� ��� : � 0 � 	 � 8 � � � �

�
�

(9b)
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In robotics [9, 19] often the following state constraints are used:

� min � � � : � � ��� : � � max � � � : 	 � 8 � � � �
� (9c)

˙
� min � � � : � ˙

� ��� : � ˙
� max � � � : 	 � 8 � � � �

�
	

(9d)

with certain vectors
� min 	�� max 	 ˙

� min 	 ˙
� max of (random) bounds.

A special constraint of the type (9b) occurs if the trajectory in work space

� ��� : � 0 �
� � � 	 � ��� : � (10)

should follow as precise as possible a geometric path in work space

� � 0 � � � � �
	 � : 	 � 8 � � � �

� (11)

which is known up to a certain random parameter vector � � 0 � � � � :
, which then

is added to the total vector � of model parameters, cf. (1a,b).

Remark 3. In the following we suppose that the functions � 	 � 	 	 	 � and � arising
in (4a–d), (5), (6) as well as the functions  	 � � 	 � � � 	 � � 	 � ��� arising in the constraints
(7b-9b) are sufficiently smooth.

3 PROBLEM TRANSFORMATION

Since the terminal time
�
� may be given explicitly or implicitly, the trajectory

� � � :
in configuration space may have a varying domain � � 8 	 � � � . Hence, in order to work
with a given fixed domain of the unknown functions, the reference trajectory

� 0� ��� : 	 � � � 8
, in configuration space is represented, cf. [19], by

� ��� : � 0 � � � � ��� : � 	 � � � 8 �
(12a)

Here � 0 � ��� : 	 � 8 � � � �
�
	

(12b)

is a strictly monotoneous increasing transformation from the possibly varying time
domain � � 8 	�� � � into a given fixed parameter interval � � 8 	 � � � . E.g.,

� � � � 8 	 � � � may
be the path parameter of a given path in work space, cf. (11). Moreover,

� � 0 � � � � : 	 � 8 � � � �
�
	

(12c)

denotes the so-called geometric path in configuration space.
Assuming that the transformation

� 0 � ��� :
is differentiable on � � 8 	 � � � with the

exception of at most a finite number of points, we introduce now the so-called veloc-
ity profile � 0 � � � : 	 � 8 � � � �

� , along the geometric path
� � � � :

in configuration
space by

� ��� : � 0 ˙
� � � � � � : � 0

� � �
� �

� � � � : � � � 	
(13)
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where
� 0 � � � : 	 � 8 � � � �

� , is the inverse of
� 0 � ��� : 	�� 8 � � � �

� . Thus, we have
that

� � 0 �� � ��� : � � 	 (14a)

and the time
� � � 8

can be represented by the integral

� 0 � � � : � 0 � 8 3
��
���

� 
� � � 
 : � (14b)

Obviously, the terminal time
�
� is given, cf. (14b), by

�
� 0 � � �

�
: 0 � 8 3

� ��
� �

� 
� � � 
 : � (15)

3.1 Transformation of the Dynamic Equation

Because of (12a,b), we find that

˙
� ��� : 0 �

�
� ��� :

˙
� �

˙
� � 0 � �

� �
	��

�
� ��� : � 0 � � �

� � � (16a)

¨
� ��� : 0 �

�
� ��� :

¨
� 3 �

� �
� ��� :

˙
� � � (16b)

Moreover, according to (13) we have that

˙
� � 0 � � � : 	 ˙

� 0 �
� ��� : 	 (16c)

and the differentiation of (16c) with respect to time
�

yields

¨
� 0 �� � �

��� : �
(16d)

Hence, (16a–d) yields the following representation

˙
� ��� : 0 �

�
� ��� : �

� ��� : (17a)

¨
� ��� : 0 �

�
� ��� : �� � �

��� : 3 �
� �
� � � : � ��� : (17b)

of ˙
� ��� : 	

¨
� ��� :

in terms of the new unknown functions
� � � � : 	 � � � : .

Inserting now (17a,b) into the dynamic equation (4a), we find the equi-valent
relation � � � � � 	 � � � � � � : 	 � � � :�: 0 � ��� : with

� 0 � ��� : 	 � 0 � � � : 	
(18a)

where the function � � is defined by

� � � � � 	 � � � � � � : 	 � � � : � � 0 �
� � � 	 � � ��� : � � �� � �

� ��� : � �
� � : 3 �

� �
� ��� : � � � : � (18b)

3 � � � � 	 � � ��� : 	 �
�
� ��� : �

� ��� : � �
(18c)
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The initial and terminal conditions (7a–c) are transformed, see (12a,b) and (17a), as
follows

� � � � 8 : 0 q
8 �
�
: 	 �

�
� � � 8 : �

� ��� � : 0 q̇0
�
�
:

(19a)


� � 	�� � � �

�
: 	��

�
� � � � : �

� ��� � : � 0 � (19b)

or � � ���
�
: 0 q �

�
�
: 	 �

�
� � �

�
: �

� ��� � : 0 q̇f
�
�
: �

(19c)

Remark 4. In most cases we have that the robot is at rest at time
� 0 � 8

and
� 0 �

� ,
i.e., ˙

� ��� 8 : 0 ˙
� ���

�
: 0 � , hence,

� ��� 8 : 0 � ��� � : 0 � � (19d)

3.2 Transformation of the Control Constraints

Using (12a,b), the control constraints (8a–c) read in
�
-form as follows:

� min � � � : � � � � � � 	 � � � � � � : 	 � � � : � � � max � � � : 	 � 8 � � � �
� (20a)

� � � � � 	�� � � � : 	��
�
� � � : �

� � � : 	 � � � � � 	 � � � � � � : 	 � � � : � � � � 	 � 8 � � � �
� (20b)

� ��� � � � 	�� � � � : 	��
�
� � � : �

� ��� : 	 � � � � � 	 � � � � � � : 	 � � � : � � 0 � 	 � 8 � � � �
�
�
(20c)

3.3 Transformation of the State Constraints

Applying the transformations (12a,b), (16a) and (14b) to the state constraints (9a,b),
we find the following

�
-form of the state constraints:

� �
� � � 	�� � � � : 	��

�
� � � : �

� � � : � � � 	 � 8 � � � �
� (21a)

� � �
� � � 	�� � � � : 	��

�
� ��� : �

� ��� : � 0 � 	 � 8 � � � �
�
�

(21b)

Obviously, the s-form of the special state constraints (9c,d) read

� min � � � : � � � ��� : � � max � � � : 	 � 8 � � � �
�
	

(21c)

˙
� min � � � : � �

�
� ��� : �

� ��� : � ˙
� max � � � : 	 � 8 � � � �

�
�

(21d)

In the case that the end-effector of the robot has to follow a given path (11) in
work space, the equation (21b) reads

�
� � � 	�� � ��� : � 2 � � � � �

	 � : 0 � 	 � 8 � � � � � � (21e)

In (21e) the parameter vector � � describes possible uncertainties in the selection of
the path to be followed by the roboter in work space.



552 K. Marti

3.4 Transformation of the Objective Function

Applying the integral transformation
� 0 � � � : 	 � � 0

� �
� � � � : to the integral in the

representation (6) of the objective function
� 0 � � � �

�
: � , and transforming also the

terminal costs, we find the following
�
-form of the objective function:

� � � �
�
: � 0

� ��
� �
	
� � � 	�� � ��� : 	�� �

� ��� : �
� ��� : 	 � � � � � 	 � � � � � � : 	 � � � : � � � �

� � � � :
3 � � � � 	�� � � � � : 	�� �

� � � � : �
� � � � : � �

(22a)

For the class of time-minimum problems we have that

� � � �
�
: � � 0 �

� 2 � 8 0

 ��

 �

� � 0
� ��
� �

� �
� � ��� : � (22b)

Optimal deterministic trajectory planning (ODTP). By means of the
� 2 �

-
transformation onto the fixed

�
-parameter domain � � 8 	 � � � , the optimal control prob-

lem (4a–d),(6)-(11) is transformed into a variational problem for finding, see (12a–c)
and (13), an optimal velocity profile � ��� : and an optimal geometric path

� � � � : 	 � 8 �� � �
� . In the deterministic case, i.e. if the parameter vector � is assumed to be

known, for the numerical solution of the resulting optimal deterministic trajectory
planning problem several solution techniques are available, cf. [6,7,9,19,34,35,49].

4 OSTP – OPTIMAL STOCHASTIC TRAJECTORY PLANNING

In the following we suppose that the initial and terminal conditions (19d) hold, i.e.,
� 8 0 � � � 8 : 0 � � 0 � ��� � : 0 � or ˙

� ��� 8 : 0 ˙
� ���

�
: 0 � �

Based on the
��� 2 � :

-transformation described in Section 3, and relying on the
inverse dynamics approach, the robot control problem (4a–d),(6)-(11) can be rep-

resented now by a variational problem for
� � � � � : 	 � � � : � 	 � �

�
:
, resp., given in the

following. Having
� � � � � : 	 � � � : � 	 � �

�
:
, resp., a reference trajectory and a feedfor-

ward control can then be constructed.
After the

��� 2 � :
-transformation described before, the optimal control problem

takes the following equivalent
�
-form:

min

����
� �
	 � � � � 	 � � ��� : 	 � �

� ��� : 	 �
� �
� ��� : 	 � ��� : 	 � �

��� : � � � 3 � � � � � 	�� � � � � : � (23a)
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s.t.

� � � � 	�� � � � : 	��
�
� � � : 	��

� �
� � � : 	 � � � : 	 � �

� � : � � � 	 � 8 � � � �
� (23b)

� � � � 	 � � ��� : 	 �
�
� ��� : 	 �

� �
� ��� : 	 � ��� : 	 � �

��� : � 0 � 	 � 8 � � � � � (23c)

� � � � 	�� � � � : 	��
�
� � � : 	 � ��� : � � � 	 � 8 � � � �

� (23d)

�
� � � 	 � � ��� : 	 �

�
� ��� : 	 � ��� : � 0 � 	 � 8 � � � �

� (23e)

� � � : � � 	 � 8 � � � �
� (23f)� � � � 8�: 0 q

8 �
�
: 	��

�
� ��� 8 : �

� ��� 8 : 0 q̇0
�
�
:

(23g)� � � �
�
: 0 q �

�
�
: 	 � � � � : 0 � �

�
(23h)

Under condition (19d), a more general version of the terminal condition (23h) reads,
cf. (19b),


� � 	 � � ���

�
: � 0 � 	 � � � � : 0 � � � 0 � � (23h’)

Here,

	 � 0 	 � � � � 	�� � 	�� �
� 	��

� �
� 	 � 	 � � � 	 � � 0 � � � � � 	�� � : (24a)

� � 0 � � � � 	�� � 	��
�
� 	��

� �
� 	 � 	 � �

: 	 � � 0 � � � � 	�� � 	��
�
� 	 �

� �
� 	 � 	 � �

:
(24b)

� � 0 � � � � 	�� � 	 �
�
� 	 � : 	 �

�
0 �

�
� � 	�� � 	 �

�
� 	 � : (24c)

are the functions representing the
�
-form of the objective function (22a), the con-

straint functions in the control constraints (20a–c), and in the state constraints (21a–
d), respectively.

In order to get a reliable optimal geometric path
� � � 0 � � � ��� : in configuration

open and a reliable optimal velocity profile � � 0 � � � � : 	 � 8 � � � �
� , being robust

with respect to random parameter variations of � 0 � � � :
, the variational problem

(23a–h,h’) under stochastic uncertainty must be replaced by an appropriate deter-
ministic substitute variational problem. Depending on the decision theoretical point
of view, different approaches are possible.

Assume first that the a priori information about the robot and its environment up
to time

� 8
is described by means of a 
 -algebra

� 
 � , and let then

� �
8
�

� � � � 0 � � � � �
� �
� � 
 � � (25)

denote the a priori distribution of the random vector � 0 � � � :
given

� 
 � .
Using stochastic optimization methods [20, 21, 23–25, 30], the following two

basic classes of reliability-based deterministic substitute problems are considered,
see [13, 26–29, 36]:

I) Risk-based minimum expected cost problems
II) Expected total cost-minimum problems.
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The first class I of deterministic substitute is related to the chance- or expected
cost-constrained approach [20, 21, 30], while the second class II is related to the
so-called 2-stage or recourse approach [20, 21, 30] of stochastic optimization.

Substitute problems are constructed now by selecting certain scalar or vectorial
loss or cost functions

� � � 	 � � � 	 �
�
�
	 �
� � 	 ��� 		�
�
�

(26a)

for the cost evaluation of the random constraints (23b,c), (23d,e), (23h’), respec-
tively.

In the following all expectations are conditional expectations with respect to the
a priori distribution � �

8
�

� � � � of the random parameter vector � � � :
; all expectations are

assumed to exist. Moreover, the following compositions are introduced:
� �� � 0�� � � � � � 	 � �� � 0�� � � � � � (26b)
� �� � 0 �

�
� � �

� 	 �
�� � 0 �

� � � �
�

(26c)

 � � 0�� � �  �
(26d)

Now the two basic types of substitute problems are described.

I) Risk-based minimum expected cost problems

Minimizing the expected (primal) costs �
� � � � �

�
: � � 
 � � , and demanding that the

risk, i.e., the expected costs arising from the violation of the constraints of the
variations problem (23a–h,h’) do not exceed given upper bounds, we find the
following substitute problem:

min

����
� �
�

�
	 � � � � 	�� � ��� : 	�� �

� ��� : 	��
� �
� � � : 	 � � � : 	 � �

� � : � � � 
 � � � �
3 � � � � � � � 	�� � � � � : � � � 
 � � (27a)

s.t.

�
� � �� � � 	�� � ��� : 	��

�
� ��� : 	��

� �
� ��� : 	 � � � : 	 � �

� � : � � � 
 � � � � �� 	 � 8 � � � �
� (27b)

�
� � �� � � 	�� � ��� : 	 �

�
� ��� : 	 �

� �
� ��� : 	 � ��� : 	 � �

��� : � � � 
 � � � � �� 	 � 8 � � � �
� (27c)

�
� � �� � � 	�� � � � : 	��

�
� � � : 	 � ��� : � � � 
 � � � � �

�
	 � 8 � � � �

� (27d)

�
� � �� � � 	 � � ��� : 	��

�
� ��� : 	 � � � : � � � 
 � � � � �� 	 � 8 � � � �

� (27e)

� ��� : � � 	 � 8 � � � �
� (27f)� � ��� 8 : 0 � 8 	 �

�
� ��� 8�: �

� ��� 8 : 0 ˙
� 8

(27g)� � ���
�
: 0 �

�
�
if
� � 0 � : 	 � ��� � : 0 � � (27h)

and the more general terminal condition (23h’) is replaced by

� � � � : 0 � � � 0 � 	 � �
 � � � 	 � � ���

�
: � � � 
 � � � �

�
�

(27h’)
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Here,
� �
� 0 � �

�
� � : 	 � �� 0 � �� ��� : 	 � �

� 0 � �
�
��� : 	 � �� 0 � �� � � : 	 �

� 0 �

�
��� :

(27i)

denote scalar or vectorial upper risk bounds which may depend on the path
parameter

� � � � 8 	 � � � . Furthermore, the initial, terminal values
� 8 	

˙
� 8 	 �

� in
(27g,h) are determined according to one of the following relations: a)

� 8 � 0 � � ��� 8 : 	 ˙
� 8 � 0 �˙� ��� 8 : 	�� � � 0 � � ��� �

: 	
(27j)

where
�
� � ��� : 	 �˙� ��� : � denotes an estimate, observation, etc., of the state in con-

figuration space at time
�
; b)

� 8 0 � 8 � 0 � � q
8 �
�
: � � 
 � � 	

˙
� 8 0 ˙

� 8 � 0 � � q̇0
�
�
: � � 
 � � 	

�
� 0 �

�
� 8 � � 0 �

�
q �

�
�
: � � 
 � � 	

(27k)

where q
8 �
�
: 	

q̇0
�
�
:

is a random initial position, and q �
�
�
:

is a random termi-
nal position.
Having corresponding information about initial, terminal values � 8 	 ˙� 8 	 � � in
work space, related equations for

� 8 	
˙
� 8 	 �

� may be obtained by means of the
kinematic equation (5).

Remark 5. Problems with Chance Constraints
Substitute problems having chance constraints are obtained if the loss functions
� � � 	 �

�
� for evaluating the violation of the inequality constraints in (23a–h) are

0–1–functions, cf. [21, 22, 30].

To give a characteristic example, we demand that the control, state constraints
(20a), (21c), (21d), resp., have to be fulfilled at least with probability 
 � , 
 � ,

 ˙� , hence,

�
� � min � � � : � � � � � � 	 � � � � � � : 	 � � � : � � � max � � � : � � 
 � : � 
 � 	� 8 � � � �

�
	

(28a)
� � � min � � � : � � � ��� : � � max � � � : � � 
 � � � 
 � 	 � 8 � � � �

�
	

(28b)

�
�

˙
� min � � � : � �

�
� ��� : �

� ��� : � ˙
� max � � � : � � 
 � � � 
 ˙� 	 � 8 � � � �

�
�

(28c)

Sufficient conditions for the complicated chance constraints (28a–c) can be ob-
tained by applying certain probability inequalities, see [28]. Defining

�
�
� � � : � 0 � max � � � : 3 � min � � � :�

	 � � � � � : � 0 � max � � � : 2 � min � � � :�
	

(28d)
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then a sufficient conditions for (28a) reads, cf. [28],

�
�
� 
 � � � � � � : 5 ��

� � � 2 �
�
� � � : � � � � 2 �

�
� � � : � � � � � � � : 5 �� � � 
 � �
� � 2 
 � 	 � � � � � � � 	 (28e)

where � � 0 � � � � � 	 � � � � � � : 	 � � � : � , and � � � � � : � denotes the diagonal matrix

containing the elements of � � � � � : on its diagonal. Moreover, � denotes a pos-
itive definite matrix such that

�
� � � � � for all vectors

�
such that

� � �
�

� � .
Taking, e.g., � 0 


, (28e) reads

�
� � � � � � � : 5 ��

� � � � � � 	 � � � � � � : 	 � � � : � 2 �
�
� � � : � � � � � 
 � �
� � 2 
 � 	 � 8 � � � �

�
�

(28f)

Obviously, similar sufficient conditions may be derived for (28b,c).

We observe that the above class of risk-based minimum expected cost problems

for the computation of
� � � � � : 	 � � � : � 	 � �

�
:
, resp., is represented completely by

the following set of

initial parameters 	 8 � � 8 	 � 8 	 � 8 	 ˙
� 8 	 � � 8 �� � � � or �

8
(29a)

and

terminal parameters 	 � � � �
	 �

�
	 � �

	��
�
�

(29b)

In case of problems with a given geometric path
� � 0 � � � � :

in configuration
space, the values

� 8 	 �
� may be deleted. Moreover, approximating the expecta-

tions in (27a–h,h’) by means of Taylor expansions with respect to the parameter
vector � at the conditional mean

� �
8
� � 0 �

� � � � : � � 
 � � 	
(29c)

the a priori destribution � �
8
�

� � � � may be replaced by a certain vector

�
8 � 0 � � � ��

� �
�
��� � � : � � 
 � � � �  � � � � � ����� ���  (29d)

of a priori moments of � � � :
with respect to

� 
 � . Here,
�

denotes a certain
finite set of multiple indices

�
� �

	
�	�
� 	
� � : 	
 � � .

II) Expected total cost-minimum problem
Here, the costs arising from violations of the constraints in the variational prob-
lem (23a–h,h’) are added to the (primary) costs arising along the trajectory, to
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the terminal costs, respectively. Of course, corresponding weight factors may be
included in the cost functions (26a). Taking expectations with respect to

� 
 � ,
the following substitute problem ist obtained:

min

����
� �
�

�
	 �� � � 	�� � � � : 	��

�
� � � : 	��

� �
� � � : 	 � � � : 	 � �

� � : � � � 
 � � � �
3�� � � �� � � 	�� � � �

�
: � � � 
 � � (30a)

s.t.

� ��� : � � 	 � 8 � � � � � (30b)� � ��� 8 : 0 � 8 	 �
�
� ��� 8 : �

� ��� 8 : 0 ˙
� 8

(30c)� � ���
�
: 0 �

�
�

if
� �� 0 � : 	 � � � � : 0 � �

	
(30d)

where 	
�� 	 � �� are defined by

	 �� � 0 	 � 3 � �
�
� �� 3 � � � � �� 3 � �

�
� �� 3 � � � �

�� (30e)� �� � 0 � � � 
 � �� � 0 � � 3 �
�  � 	 (30f)

and
� �

�
	 � � � 	 � �

�
	 � � � 	 �

�
� � are certain positive scale factors.

We observe that the initial/terminal parameters characterizing the above class of
substitute problems (30a–f) are given again by (29a,b).

4.1 Computational Aspects

Two main techniques are available for solving substitute problems of type (I), (II):

a) Reduction to a finite dimensional parameter optimization problem

Here, the unknown functions
� � � � � : 	 � � � : � or � �

�
:

are approximated by a linear

combination

� � � � : � 0 � 
�
� � � � � � � � ��� : 	 � 8 � � � �

� (31a)

� � � : � 0 � ��
� � � � � � �

�
�
� � : 	 � 8 � � � �

�
	

(31b)

where � � 0 � � ��� : 	 � �� 0 � �� � � : 	 � 8 � � � �
�
	
� 0 � 	
�	�
� 	 � � � � � : , are given

basis functions, e.g., B-splines, and �
�
�
	 � � � 	 � 0 � 		�
�
� 	 � � � � � : , are vectorial,

scalar coefficients. Putting (31a,b) into (27a–h,h’), (30a–f), resp., a semiinfi-
nite optimization problem is obtained. If the inequalities involving explicitly
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the path parameter
� 	 � 8 � � � �

� , are required for a finite number
�

of para-
meter values

�
�
	 �
�
		�
�	� 	 � �

only, then this problem is reduced finally to a finite
dimensional parameter optimization problem which can be solved now numeri-
cally by standard mathematical programming routines or search techniques. Of
course, a major problem is the approximative computation of the conditional ex-
pectations which is done essentially by means of Taylor expansion with respect
to the parameter vector � at � �

8
� . Consequently, several conditional moments

have to be determined (on-line, for stage � � � ). For details, see [29].
b) Variational techniques

Using methods from calculus of variations, necessary and – in some cases – also
sufficient conditions in terms of certain differential equations may be derived

for the optimal solutions
� � � 8 �� 	 � �

8
� � 	 � �

8
� , resp., of the variational problems

(27a–h,h’), (30a–f). For more details, see [36].

An interesting variant of the above mentioned techniques (a,b) is obtained [19] by
applying the following bilevel optimization routine:

i) For a given geometric path ˜
� �

contained in a certain finite or infinite collection
� ˜
� � � � � � � � � of admissible geometric path in configuration space, an optimal

velocity profile ˜� � 0 ˜� �� is determined. Then
ii) in a second or outer optimization loop the parameter

� � �
is optimized.

4.2 Optimal Reference Trajectory, Optimal Feedforward Control

Assume now that, at least approximatively, the optimal geometric path
� � 8 �� 0� � 8 �� ��� :

and the optimal velocity profile � �
8
� 0 � �

8
� ��� : 	 � 8 � � � �

� , i.e., the

optimal solution
� � � 8 �� 	 � �

8
� � 0

� � � 8 �� � � : 	 � � 8 � � � : � 	 � 8 � � � �
� , of one of

the stochastic path planning problems (27a–h, h’), (30a–f), resp., is given. Then,
according to (12a–c), (13), the optimal reference trajectory in configuration space� � 8 � 0 � � 8 � ��� : 	�� � � 8

, is defined by

� � 8 � ��� : � 0 � � 8 �� � � � 8 � ��� : � 	�� � � 8 	
(32a)

where the optimal
��� � � :

-transformation
� � 8 � 0 � � 8 � ��� : 	 � � � 8

, is given by the
initial value problem

˙
� ��� : 0 	

� �
8
� � � : 	 ��� � 8 	 � ��� 8�: � 0 � 8 �

(32b)

By means of the kinematic equation (5), the corresponding reference trajectory� � 8 � 0 � � 8 � ��� : 	 ��� � 8
, in workspace may be defined by

� � 8 � ��� : � 0 �
�
�
� � � � � : 	 � � 8 � ��� : � � � 
 � � 0 �

� � � 8 �� 	 � � 8 � ��� : � 	�� � � 8 	
(32c)

where � �
8
�� � 0 � � � � � � : � � 
 � : � (32d)
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Based on the inverse dynamics approach, see Remark 1, the optimal reference
trajectory

� � 8 � 0 � � 8 � ��� : 	 � � � 8
, is inserted now into the left hand side of the

dynamic equation (4a). This yields next to the random optimal control function

�
� 8 � � � 	 � � � � : � � 0 �

� � � �
�
: 	�� � 8 � ��� : � ¨

� � 8 � ��� :
(33)

3 � � � � � � : 	�� � 8 � ��� : 	 ˙
� � 8 � ��� : � 	�� � � 8 �

Starting at the initial state
� � 8 	

˙
� 8 : � 0 � � � 8 � ��� 8 : 	 ˙

� � 8 � ��� 8 : � , this control obvi-
ously keeps the robot exactly on the optimal trajectory

� � 8 � ��� : 	�� � � 8
, provided

that � � �
�
:

is the true vector of dynamic parameters.
An optimal feedforward control law � � 8 � 0 � � 8 � ��� : 	�� � � 8

, related to the
optimal reference trajectory

� � 8 � 0 � � 8 � ��� : 	�� � � 8
, can be obtained therefore by

applying a certain averaging or estimating operator � 0 �
� �
� � 
 � � to (33), hence,

� �
8
� ��� : � 0 �

�
�
� 8 � � � 	 � � �

�
: � � � 
 � � 	 � � � 8 �

(34)

If �
�
�
� � 
 � : is the conditional expectation, then we find the optimal feedforward

control law

� �
8
� � 0 �

�
�

� � � �
�
: 	�� � 8 � ��� : � ¨

� � 8 � ��� : 3 � � � � � � : 	 � � 8 � ��� : 	 ˙
� � 8 � ��� : � � � 
 � � 	

0 �
� � � 8 �� 	 � � 8 � ��� : � ¨

� � 8 � ��� : 3 � � � � 8 �� 	 � � 8 � ��� : 	 ˙
� � 8 � ��� : � 	�� � � 8 �

(35a)

In (35a) � �
8
�� denotes the conditional mean of � � � � :

defined by (29c), and the sec-
ond equation in formula (35a) holds since the dynamic equation of a robot depends
linearly on the parameter vector � � , see Remark 2.

Inserting, instead of the conditional mean � �
8
�� of � � �

�
:

given
� 
 � , another es-

timator � �
8
�� of the true parameter vector � � or a certain realization � �

8
�� of � � � � :

at the moment
� 8

, we obtain the optimal feedforward control law

� �
8
� ��� : � 0 �

� � � 8 �� 	 � � 8 � ��� : � ¨
� � 8 � ��� : 3 � � � � 8 �� 	 � � 8 � ��� : 	 ˙

� � 8 � ��� : � 	�� � � 8 �
(35b)

5 AOSTP – ADAPTIVE OPTIMAL STOCHASTIC TRAJECTORY PLANNING

As already mentioned in the introduction, by means of direct or indirect measure-
ments, observations of the robot and its environment, as, e.g., by observations of the
state

� � 	 ˙� : 	 � � 	 ˙
� :

, resp., of the robot in work or configuration space, further infor-
mation about the unknown parameter vector � 0 � � � :

is available at each moment� � � 8
. Let denote, cf. Sections 1, 4,

� 
 � � � : 	�� � � 8 	
(36a)

the 
 -algebra of all information about the random parameter vector � 0 � � � :
up

to time
�
. Hence,

� � 
 : is an increasing family of 
 -algebras. Note that the flow of
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information in this control process can be described also by means of the stochastic
process

� 
 � � : � 0 � � � � � : � � 
 : 	 � � � 8 	
(36b)

see [4]. By parameter identification [16, 48] or robot calibration techniques [43, 44]
we may then determine the conditional distribution

� � 
 �� � � � 0 � � � � � � � � (36c)

of � � � :
given

� 
 . Alternatively, we may determine the vector of conditional mo-
ments

�
� 
 � � 0 � � � ��

� ��� ��� � � � : � � 
 � 
� �  � � � � � ����� ��� (36d)

arising in the approximate computation of conditional expectations in (OSTP) with
respect to

� 
 , cf. (29c,d).
The increase of information about the unknown parameter vector � � � :

from one

moment
�

to the next
� 3 � �

may be rather low, and the determination of �
� 
 �
� � � � or �

� 
 �
at each time point

�
may be very expensive, though identification methods in real-

time exist [43,44]. Hence, as already mentioned briefly in Section 1, the conditional
distribution � � 
 �� � � � or the vector of conditional moments �

� 
 � is determined/updated
at discrete moments

��� � : :
� 8 � �

� �
�
� �

� � �
� � � � � � � � � �
�	� �

(37)

The optimal functions
� � 8 �� ��� : 	 � � 8 � ��� : 	 � 8 � � � �

� , based on the a priori
information

� 
 � , loose in course of time more or less their qualification to provide
a satisfactory pair of guiding functions � � � 8 � ��� : 	 � � 8 � ��� : � 	�� � � 8

.
This functions can be renewed by using the updated information 
 -algebras

� 
 �
and then the updated a posteriori probability distributions � � 
 � �� � � � or conditional mo-

ments �
� 
 � � of � � � :

available at the main correction moments
� � 	 � � � . Adopt-

ing an adaptive stochastic control procedure, see [2, 3, 14], the pair of guiding
functions � � � 8 � ��� : 	 � � 8 � ��� : � 	 � � � 8

, is replaced by a sequence of renewed pairs
� � � � � ��� : 	 � � � � ��� : � 	 � � � � 	 � 0 � 	 �
	
�	�
� 	 of guiding functions determined by replan-

ning, i.e., by repeated (OSTP) for the remaining time intervals � � � 	�� � � �� � and by using
the new information given by

� 
 � .
The resulting substitute problem at a stage � � � follows from the corresponding

substitute problem for the previous stage � 2 � just by updating 	 � 5 � � 	 � 	 	 � � 5 � �� �
	 �
� �

� , the initial and terminal parameters, see (29a,b). The renewed

initial parameters 	 � � � � 	 � � 	�� � 	 ˙
� � 	 � � � �� � � � or � � (38a)
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for the � -th stage, � � � , are determined recursively as follows:� � � 0 � � � 5 � � ��� � : � � 2 � 2 transformation
� 0 � ��� : :

(38b)� � � 0 � � ��� � : (estimate or observation of
� ��� � : : (38c)

˙
� � � 0 �˙� ��� � : (estimate or observation of ˙

� ��� � : : (38d)

� � � �� � � � � 0 � � 
 � �� � � � 0 � � � � � � � � � (38e)

� � � 0 �
� 
 � � � (38f)

The renewed

terminal parameters 	 �
� �

�
� � � � �

�
	 �

�
	�� � � �

�
	 � � (39a)

for the � -th stage, � � � , are defined by�
� given (39b)� � � �

�
� 0 � � ��� �

: 	�� � � �
� 0 � � � �

� (estimate of
� ���

�
:
), cf. (27j,k) (39c)

� � 0 � (39d)� � � � � � � � �
� � 0 �

�
�

(39e)

As already mentioned above, the (OSTP) for the � -th stage, � � � , is obtained
from the substitute problems (27a–h,h’), (30a–f), resp., formulated for the � -th
stage, � 0 � , just by substituting

	 8 � 	 � and 	 � � 	 �
� �

�
�

(40)

Let then denote� � � � �� 	 � � � � � 0
� � � � �� ��� : 	 � � � � ��� : � 	 � � � � � �

�
	

(41)

the corresponding pair of optimal solutions of the resulting substitute problem for
the � -th stage, � � � .

The pair of guiding functions � � � � � ��� : 	 � � � � ��� : � 	�� � � � , for the � -th stage, � � � ,
is then defined as described in Section 4.2 for the � -th stage. Hence, for the � -th
stage, the reference trajectory in configuration space

� � � � ��� : 	�� � � � , reads, cf. (32a),

� � � � ��� : � 0 � � � �� � � � � � ��� : � 	�� � � � 	 (42a)

where the transformation
� � � � � � � � 	�� � � �� � � � � � 	 � � � is defined by the initial value

problem

˙
� ��� : 0 	

� � � � � � : 	 ��� � � 	 � ��� � : 0 � � � (42b)

The terminal time
� � � �
� for the � -th stage is defined by the equation� � � � � � � � �

� � 0 �
�
�

(42c)
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Moreover, again by the inverse dynamics approach, the feedforward control� � � � 0 � � � � ��� : 	�� � � � , for the � -th stage is given, (33), (34), (35a,b), by

� � � � ��� : � 0 �
�

�
� � � � � 	 � � �

�
: � � � 
 � � 	

(43a)

where

�
� � � ��� 	 � �7: � 0 �

� � � 	�� � � � ��� : � ¨
� � � � ��� : 3 � � � � 	�� � � � ��� : 	 ˙

� � � � ��� : � 	 ��� � � � (43b)

Using the conditional expectation �
�
�
� � 
 � : � 0 � � � � � 
 � : , we find the feedfor-

ward control

� � � � ��� : � 0 �
� � � � �� 	�� � � � ��� : � ¨

� � � � ��� : 3 � � � � � �� 	�� � � � 	 ˙
� � � � ��� : � 	 � � � � 	 (43c)

where, cf. (29c),
� � � �� � 0 � � � � �

�
: � � 
 � � � (43d)

Corresponding to (32c,d), the reference trajectory in work space � �
� � 0 � � � � ��� : ,

� � � � , for the remaining time interval
� � � � � � � � �

� reads

� � � � ��� : � 0 � �
�
� � � � � : 	�� � � � ��� : � � � 
 � � 0 �

� � � � �� 	�� � � � ��� : � 	�� � � � � � � � �
�

	
(44a)

where � � � �� � 0 �
� � � � � : � � 
 � � � (44b)

5.1 (OSTP)-Transformation

The variational problems (OSTP) at the different stages � 0 � 	 � 	 � �
�	� are deter-
mined uniquely by the set of initial and terminal parameters

� 	 � 	 	 � � ��
:
, cf. (38a–f),

(39a–e). Thus, these problems can be transformed to a reference problem depending

on
�
	 � 	 	 � � �� � and having a certain fixed reference

�
-interval.

Theorem 6. Let � ˜� 8 	 ˜
�
� � 	 ˜
� 8 � ˜

�
� � 0 �

� , be a given, fixed reference
�
-interval, and

consider for a certain stage � 	 � 0 � 	 � 	
�
�	� , the transformation

˜
� 0 ˜

� ��� : � 0 ˜
� 8 3 ˜

�
� 2 ˜

� 8�
� 2 � � � � 2 � � : 	 � � � � � �

�
	

(45a)

from � � � 	 � � � onto � ˜� 8 	 � � � having the inverse� 0 � �
˜
� : 0 � � 3 �

� 2 � ��
� 2 ˜

� 8 � ˜� 2 ˜
� 8 : 	

˜
� 8 � ˜

� � ˜
�
�
�

(45b)

Represent then the geometric path in work space
� � 0 � � ��� :

and the velocity
profile � 0 � ��� : 	 � � � � � �

� , for the � -th stage by

� � � � : � 0 ˜
� � �

˜
� ��� : � 	 � � � � � � � (46a)

� � � : � 0 ˜�
�

˜
� ��� : � 	 � � � � � �

�
	

(46b)
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where ˜
� � 0 ˜

� � �
˜
� : 	 ˜� 0 ˜� � ˜� : 	 ˜

� 8 � ˜
� � ˜

�
� , denote the corresponding functions on

� ˜� 8 	 ˜
�
� � . Then the (OSTP) for the � -th stage is transformed into a reference varia-

tional problem (stated in the following) for
�
˜
� � 	 ˜� : depending on the parameters

� 	 	 	 �
: 0 � 	 � 	 	 � � ��

:
(47)

and having the fixed reference
�
-interval � ˜� 8 	 ˜

�
� � . Moreover, the optimal solution� � � � �� 	 � � � � � 0

� � � � �� ��� : 	 � � � � ��� : � 	 � � � � � � � , may be represented by the optimal

(control) law

� � � �� ��� : 0 ˜
� � � � ˜

� ��� : � 	 � 	 	 � � �� � 	 � � � � � � � 	 (48a)

� � � � ��� : 0 ˜� � � ˜
� � � : � 	 � 	 	 � � �� � 	 � � � � � �

�
	

(48b)

where

˜
� � � 0 ˜

� � � � ˜� � 	 	 	 �
: 	

˜
� 8 � ˜

� � ˜
�
�
	

(48c)

˜� � 0 ˜� � � ˜� � 	 	 	 �
: 	

˜
� 8 � ˜

� � ˜
�
�
	

(48d)

denotes the optimal solution of the above mentioned reference variational problem.

Proof. According to (46a,b) and (45a,b), the derivatives of the functions
� � ��� :

,
� ��� : , � � � � � �

� , are given by

�
�
� ��� : 0 ˜

�
�
� �

˜
� ��� : � ˜

�
� 2 ˜

� 8�
� 2 � � 	 � � � � � �

�
	

(49a)

�
� �
� ��� : 0 ˜

�
� �
� �

˜
� ��� : � � ˜

�
� 2 ˜

� 8�
� 2 � � � � 	 � � � � � �

�
	

(49b)

� �
��� : 0 ˜� �

�
˜
� ��� : � ˜

�
� 2 ˜

� 8�
� 2 � � 	 � � � � � �

�
�

(49c)

Now putting the transformation (45a,b) and the representation (46a,b), (49a–c) of� � � � : 	 � ��� : 	 � � � � � �
� , and their derivatives into one of the substitute problems

(27a–h,h’), (30a–f), the chosen substitute problem is transformed into a correspond-
ing reference variational problem (stated in the following Section 5.2) having the
fixed reference interval � ˜� 8 	 ˜

�
� � and depending on the parameter vectors 	 � 	 	 � � �� .

Moreover, according to (46a,b), the optimal solution
� � � � �� 	 � � � � � of the substitute

problem for the � -th stage may be represented then by (48a–d). ��

Remark 7. Based on the above theorem, the stage-independent functions ˜
� � � 	 ˜� � can

now be determined off-line by using an appropriate numerical procedure.
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5.2 The Reference Variational Problem

After the (OSTP)-transformation described in Section 5.1 for the problems of type
(27a–h,h’), we find

min

˜����

˜� �
� � 	 � � � � 	 ˜

� ���
˜
� 	 : 	

˜
�
�
� �

˜
� : ˜
�
� 2 ˜

� 8�
� 2 � � 	 ˜

�
� �
� �

˜
� : � ˜

�
� 2 ˜

� 8�
� 2 � � � � 	

˜� � ˜� : 	 ˜� �
�
˜
� : ˜
�
� 2 ˜

� 8�
� 2 � � � � � 
 � � �

� 2 � �
˜
�
� 2 ˜

� 8 �
˜
� 3�� � � � � � � 	 ˜

� � �
˜
�
� � � � 
 � � (50a)

s.t.

� � � � � � 	
˜
� ���

˜
� : 	

˜
�
�
� �

˜
� : ˜
�
� 2 ˜

� 8�
� 2 � � 	 ˜

�
� �
� �

˜
� : � ˜

�
� 2 ˜

� 8�
� 2 � � �

� 	

˜� � ˜� : 	 ˜� �
�
˜
� : ˜
�
� 2 ˜

� 8�
� 2 � � � � � 
 � � ��� � 	 ˜

� 8 � ˜
� � ˜

�
� (50b)

˜� � ˜� : � � 	 ˜
� 8 � ˜

� � ˜
�
� (50c)

˜
� ���

˜
� 8 : 0 � � 	 ˜

�
�
� �

˜
� 8 : ˜

�
� 2 ˜

� 8�
� 2 � � 	 ˜� � ˜� 8 : 0 ˙

� � (50d)

˜
� ���

˜
�
�
: 0 � � � �

�
�
if
� � 0 � : 	 ˜� � ˜� � : 0 � (50e)

˜� � ˜� � : 0 � 	 � �


� � 	
˜
� ���

˜
�
�
: � � � 
 � � ���

�
	

(50e’)

where
� � 	 � � are defined by

� � � 0 � � �� 	 � �� 	 � �� 	 � �� : � 	 � � � 0 � � �� 	 � �� 	 � �� 	 �
�� :

�
�

(50f)

Moreover, for the problem type (30a–f) we get

min

˜� ��

˜� �
� � 	 �� � � 	

˜
� ���

˜
� : 	

˜
�
�
� �

˜
� : ˜
�
� 2 ˜

� 8�
� 2 � � 	 ˜

�
� �
� �

˜
� : � ˜

�
� 2 ˜

� 8�
� 2 � � �

� 	

˜� � ˜� : 	 ˜� �
�
˜
� : ˜
�
� 2 ˜

� 8�
� 2 � � � � � 
 � � �

� 2 � �
˜
�
� 2 ˜

� 8 �
˜
� 3�� � � �� � � 	

˜
� � �

˜
�
�
: � � � 
 � � (51a)

s.t.

˜� � ˜� : � � 	 ˜
� 8 � ˜

� � ˜
�
� (51b)

˜
� � �

˜
� 8 : 0 � � 	 ˜

�
�
� �

˜
� 8 : ˜

�
� 2 ˜

� 8�
� 2 � � 	 ˜� � ˜� 8 : 0 ˙

� � (51c)

˜
� � �

˜
�
�
: 0 � � � �

�
�
if
� �� 0 � : 	 ˜� � ˜� � : 0 � � (51d)
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6 ONLINE CONTROL CORRECTIONS

We now consider the control of the robot at the � -th stage, i.e., for time
� � � � ,

see [1–3, 7, 12, 14, 15]. In practice we have random variations of the vector � of the
model parameters of the robot and its environment. Moreover, there are possible

deviations of the true initial state
� � � 	 ˙

� � : � 0 � � � � � : 	 ˙
� � � � : � in configuration space

from the corresponding initial values
� � � 	 ˙

� � : 0 � � � 	�� � � � �� � � � : � � � � of the (OSTP)

at stage � . Thus, the actual trajectory

� � � : 0 � � � 	 � � 	 � � 	 ˙
� � 	 � �

�
: � 	 � � � � (52a)

in configuration space of the robot will deviate more or less from the optimal refer-
ence trajectory

� � � � � � : 0 � � � �� � � � � � � � : � 0 � � � 	 � � � �� 	 � � 	 ˙
� � 	 � � � � �

�
: � 	

(52b)

see (38a–f), (42a,b) and (43c).
In the following we assume that the state � � � � : 	 ˙

� � � : � in configuration space
may be observed for

� � � � . Now, the control correction (feedback control law) is
represented, see [10, 12, 14, 17, 18,47, 51], by

� � � � � � � : 0 � � � : 2 � � � � � � : � 0 � �
� � � � 	 � � � � � � � : � 	 ��� � � 	 (53a)

where

� � � � � � � : � 0 � � � : 2 � � � � � � : 	�� � � : � 0
� � � � :

˙
� � � : � 	 � � � � � � : � 0

� � � � � � � :
˙
� � � � � � : � (53b)

and � �
� � 0 � �

� � � � 	 � � 	 ˙� � : is such a function that

� �
� � � � 	 � 	 � : 0 � for all

� � � � � (53c)

For the construction of an appropriate function � �
� � , the trajectories

� � � :
and� � � � � � : , � � � � , are embedded into a one-parameter family of trajectories
� 0� � � 	 � : , � � � � , � � � � � , in configuration space which are defined as follows:

Consider first the following initial data for stage � :
� � � � : � 0 � � 3 � � � � 	 � � � � 0 � � 2 � � (54a)

˙
� � � � : � 0 ˙

� � 3 � ˙� � � 	 ˙� � � � 0 ˙
� � 2 ˙

� � (54b)

� � � � : � 0 � � � �� 3 � �� � 	 ��� � � 0 � � 2 � � � �� 	 ��� � � � � (54c)

Moreover, define the control input � � � : 	�� � � � , by (53a), hence,

� � � : 0 � � � � � � : 3 � � � � � � � : (54d)

0 � � � � � � : 3 � �
� � � � 	 � � � : 2 � � � � � � : 	 ˙

� � � : 2 ˙
� � � � � � : � 	 � � � � � (54e)
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Let then denote

� � � 	 � : 0 � � � 	 � � � � : 	�� � � � : 	 ˙
� � � � : 	 � �

�
:�: 	 � � � � � 	 � � � � 	 (55)

the solution of the following initial value problem consisting of the dynamic equa-
tion (4a) with the initial values, the vector of dynamic parameters and the total
control input � � � : given by (54a–d):

� � � � � � : 	 � � � 	 � : 	 ˙
� � � 	 � : 	 ¨

� � � 	 � : : 0 � � � 	 � : 	 ��� � � � 	 � � � � 	 (56a)

where

� � � � 	 � : 0 � � � � : 	 ˙
� � � � 	 � : 0 ˙

� � � � : 	 (56b)

� � � 	 � : � 0 � � � � � � : 3 � �
� � � � 	 � � � 	 � : 2 � � � � � � : 	 ˙

� � � 	 � : 2 ˙
� � � � � � : � 	

(56c)

and � 0 � � � � 	�� 	
˙
� 	

¨
� :

is defined, cf. (4a), by

� � � � 	�� 	
˙
� 	

¨
� : � 0 � � � � 	 � :

¨
� 3 � � � � 	�� 	

˙
� : �

(56d)

In the following we suppose that the initial value problem (56a–d) has a unique
solution

� 0 � � � 	 � : 	 � � � � , for each parameter value � 	 ��� � � � , see [11, 22].
Note that

� � 	 � : � � � � 	 � : 	 � � � � 	 � � � � � , can be interpreted as a homotopy
from the reference trajectory

� � � � � � : to the actual trajectory
� � � : 	 ��� � � , cf. [39].

6.1 Basic Properties of the Embedding
� � � 	 � :

� 0 � 8 � 0 �
Because of condition (53c) of the feedback control law � �

� � to be determined, and
due to the unique solvability assumption of the initial value problem (56a–d) at the� -th stage, for � 0 � we have that

� � � 	 � : 0 � � � � � � : 	 ��� � � � (57a)

� 0 � � � 0 �
According to (52a), (53a–c) and (54a–d),

� � � 	 � : 0 � � � : 0 � � � 	 � � 	�� � 	 ˙
� � 	 � �

�
: � 	�� � � � 	 (57b)

is the actual trajectory in configuration space under the total control input � � � : 0� � � � � � : 3 � � � � � � � : 	 � � � � , given by (54d).

Taylor-Expansion with Respect to �

Let � � 0 � � 2 � 8 0 � , and suppose that the following property known from
parameter-dependent differential equations, cf. [11, 22], holds:
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Assumption 7. The solution
� 0 � � � 	 � : 	 � � � � 	 � � � � � , of the initial value

problem (56a–d) has continuous derivatives with respect to � up to order � � � for
all

� � � � � � � 3 � � � 	 ��� � � � , with a certain � � � � � .

Based on the above assumption and (57a,b), by Taylor expansion with respect
to � at � 0 � 8 0 � , the actual trajectory of the robot can be represented by

� � � : 0 � � � 	 � � 	�� � 	 ˙
� � 	 � �

�
: � 0 � � � 	 � : 0 � � � 	 � 8 3 � � :

0 � � � 	 � 8 : 3
�
5 ��
� ��� �� � � � � � � : � � � : � 3 �

�
�

� � �
� � � � � 	�� : � � � : �

0 � � � � � � : 3
�
5 ��
� ��� �� � � � � � � : 3 �

�
�

� � �
� � � � � 	�� : 	�� � � � � � � 3 � � � 	 (58a)

where
� 0 � � � 	

�
: 	 � � � � � , and

� � � � � : � 0
� � �
� � �

� � 	 � : 	 � � � � � � � 3 � � � 	 � 0 � 	��
		�
�	� 	 � 2 � 	 (58b)

denote the � -th order differentials of
� 0 � � � 	 � : with respect to � at � 0 � 8 0 � .

Obviously, differential equations for the differentials
� � � � � : 	 � 0 � 	��
		�
�
� 	 may be

obtained, cf. [22], by successive differentiation of the initial value problem (56a–d)
with respect to � at � 8 0 � .

7.1 The 1st Order Differential
� �

Next to we have to introduce some definitions. Corresponding to (53b) and (55) we
put

� � � 	 � : � 0
� � � � 	 � :

˙
� � � 	 � : � 	�� � � � 	 � � � � � � (59a)

then, we define the following Jacobians of the function � given by (56d):

% � � � 	�� 	
˙
� 	

¨
� : � 0

� �� � � � � 	�� 	
˙
� 	

¨
� :

(59b)


 � � � 	 � 	
˙
� : � 0

� ��
˙
� � � � 	�� 	

˙
� 	

¨
� : 0

� �
�

˙
� � � � 	�� 	

˙
� : �

(59c)

Moreover, it is

� � � � 	 � : 0
� ��

¨
� � � � 	 � 	

˙
� 	

¨
� : 	

(59d)

and due to the linear parametrization property of robots, see Remark 2, � may be
represented by

� � � � 	 � 	
˙
� 	

¨
� : 0 � �

� 	
˙
� 	

¨
� : � � (59e)

with a certain matrix function � 0 � � � 	 ˙
� 	

¨
� :

.
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By differentiation of (56a–d) with respect to � , for the partial derivative
� �
� � � � 	 � :

of
� 0 � � � 	 � : with respect to � we find, cf. (53b), the following linear initial value

problem [11, 22]

�
� � � � 	 � : 	 ˙

� � � 	 � : 	 ¨
� � � 	 � : � ��� � 3 %

� � � � � : 	 � � � 	 � : 	 ˙
� � � 	 � : 	 ¨

� � � 	 � : � � �� � � � 	 � :
3 
 � � � � � : 	�� � � 	 � : 	 ˙

� � � 	 � : � �

� �
� �
� � � � 	 � : 3 �

� � � � � : 	�� � � 	 � : � � �
� � �

� �
� � � � 	 � :

0
� �� � � � 	 � : 0

� � � � �� �
� � 	 � � � � � � � : � �

�
� � � � 	 � : (60a)

with the initial values, see (54a,b),
� �
� � � � � 	 � : 0 � � � 	

�

� �
� �
� � � � � 	 � : 0 ˙� � � � (60b)

Putting now � 0 � 8 0 � , because of (53a,b) and (57a), system (60a,b) yields
then this system of 2nd order differential equations for the 1st order differential
� � � � : 0 � �

���
� � 	 � : �

�
� � � � � : �� � 3 % � � � � � : � � � � : 3 
 � � � � � : ˙� � � � : 3 �

� � � � � : ¨� � � � :
0 � � � � : 0

� � � � �� � � � 	 � : � � � � :

0
� � � � �� � � � 	 � : � � � � : 3

� � � � ��
˙
� � � 	 � : ˙� � � � : 	�� � � � 	 (61a)

with the initial values

� � � � � : 0 � � � 	 ˙� � � � � : 0 ˙� � � � (61b)

Here,

� � � � : � 0
� �� � � � 	 � : 	 (61c)

� � � � : � 0
� � � � � :

˙� � � � : 	 � 	 ˙� � � 0
�

� �
� � 	 ¨� � � 0

� �
� � �

� � 	
(61d)

and the matrices � �
� � � � : 	 % � � � � � : 	 
 � � � � � : and � � � � � � : are defined, cf. (59b–e), by

�
� � � � � : � 0 �

� � � � � � � : 	 ˙
� � � � � � : 	 ¨

� � � � � � : � (61e)

% � � � � � : � 0 %
� � � � �� 	�� � � � � � : 	 ˙

� � � � � � : 	 ¨
� � � � � � : � (61f)


 � � � � 0 
 � � � � �� 	�� � � � � � : 	 ˙
� � � � � � : � 	 �

� � � � � : � 0 �
� � � � �� 	�� � � � � � : � � (61g)
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Local (PD-)control corrections
� � 0 � � � � : stabilizing system (61a,b) can now

be obtained by the following definition of the Jacobian of � �
� � � � 	�� : with respect to�

at
� 0 � :
� � � � �� � � � 	 � : � 0

� �� �
� � � � �� 	�� � � � � � : 	 ˙

� � � � � � : 	 ¨
� � � � � � : � 2 �

� � � � � : � % � 	 % � :
0

�
% � � � � � : 2 �

� � � � � : % � 	 

� � � � � : 2 �

� � � � � : % � � 	
(62)

where % � 0 � � � � � � � : 	 % � 0 � � � � � � � : are positive definite diagonal matrices
with positive diagonal elements � � � 	 � � � � � 	  0 � 	
�	�
� 	 � .

Inserting (62) into (61a), due to the regularity [3] of � � � � 0 � � � � � � : , for
� � � �

we find the following linear system of 2nd order differential equations for
� � 0

� � � � :
:

¨� � � � : 3 % � ˙� � � � : 3 % � � � � � : 0 2 � � � � � � : 5 � � � � � � � : ��� � 	�� � � � 	 (63a)
� � � � � : 0 � � � 	 ˙� � � � � : 0 ˙� � � � (63b)

Considering the right hand side of (63a), according to (61e), (59e) and (56d) we
have that

�
� � � � � : ��� � 0 �

� � � � � � � : 	 ˙
� � � � � � : 	 ¨

� � � � � � : � ��� �
0 �

�
��� � 	�� � � � � � : 	 ˙

� � � � � � : 	 ¨
� � � � � � : �

0 �
�
��� � 	 � � � � � � : � ¨

� � � � � � : 3 � �
�� � 	�� � � � � � : 	 ˙

� � � � � � : � �
(64a)

Using then definition (42a,b) of
� � � � � � : and the representation (17a,b) of ˙

� � � � � � : ,
¨
� � � � � � : , we get

�
� � � � � : ��� � 0 �

�
��� � 	�� � � �� � � � � � � � : � �

�
� � � � � �� � � � � � � � : � �� � � � � � � � � � � � � : � 3 � � � � � �� � � � � � � � : � � � � � � � � � � � � : � �

3 � � ��� � 	 � � � �� � � � � � � � : � 	�� � � � �� � � � � � � � : � �
� � � � � � � � � � � : �  �

(64b)

From (18b) now we obtain the following important representations, where we
suppose that the feedforward control � � � � � � : , � � � � , is given by (43c,d).

Lemma 8. The following representations hold:

�
� � � � � :�� � � 0 � � � � � � 	 � � � � � � : � � � � �� �

�
: 	 � � � � �

�
: � 	 ��� � � (65a)

� � � � � � : 0 � � � � � � �� 	 � � � � � � : � � � � �� �
�
: 	 � � � � �

�
: � 	�� � � � (65b)

� � � � � � : 3 �
� � � � � :�� � � 0 � � � � � 	 � � � � � � : � � � � �� �

�
: 	 � � � � �

�
: � 	 ��� � � � (65c)
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Proof. The first equation follows from (64b) and (18b). Equations (43c), (17a,b) and
(18b) yield (65b). Finally, (65c) follows from (65a,b) and the linear parametrization
of robots, cf. Remark 2.

Remark 9. Note that according to the transformation (18a) of the dynamic equation
onto the

�
-domain, for the control input � � � : we have the representation

� � � : 0 � � � � � 	 � � � ��� � : 	 � � � : :
0 � � � � � � �� 	 � � � ��� � : 	 � � � : � 3 � � � � � � 	 � � � ��� � : 	 � � � : : (65d)

with
� 0 � � � :

.

Using (61d), it is easy to see that (63a,b) can be described also by the 1st order
initial value problem

˙� � � � : 0 � � � � � : 3
� �
 � � � � � : � 	�� � � � (66a)

� � � � � : 0 � � � 0
� � � 2 � �

˙
� � 2 ˙

� � � 	
(66b)

where
�

is the stability or Hurwitz matrix

� � 0
� � 

2 % � 2 % �

� 	
(66c)

and  �
� � � � : is defined, cf. (65a), by

 � � � � � : � 0 2 � � � � � � : 5 � � � � � � � :�� � �
0 2 � � � � � � : 5 � � � � � � � 	 � � � � � � : � � � � �� �

�
: 	 � � � � �

�
: � �

(66d)

Remark 10. Proceeding this way, also the higher order differentials
� � � � � : 	 � 0�
	 � 		�
�	� , may be obtained. This also enables to determine the higher order (tensorial)

coefficients of the Taylor expansion of the feedback control law � �
� � 0�� �

� � � � 	 � � : .
Here we mention that related constructions of feedback controllers by using series
expansion techniques are studied in [32].

For the first order expansion term
� � � � :

of the deviation
� � � � � � � : between the

actual state
� � � : 0

� � � � :
˙
� � � : � and the prescribed state

� � � � � � : 0
� � � � � � � :

˙
� � � � � � : � 	 � � � � ,

we have now the representation [11, 22]

� � � � : 0 � � � � � � � : 0 � � � 
 5 
 � � � � � 3

�

 � � � � 
 5 � � � �

 � � � � � : � � � �
(67a)
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Because of �
� � � � � � : � � 
 � � 0 � , see (54c) and (43d), we have that

�
�
 � � � � � : � � 
 � � 0 � 	 (67b)

� � � � � � : � � 
 � � 0 � � � 
 5 
 � � � � � 	 � � � � � (67c)

It is easy to see that the diagonal elements � � � 	 � � � � � 	  0 � 	
�
�	� 	 � , of the
positive definite diagonal matrices % � 	 % � , resp., can be chosen in such a way that
the fundamental matrix

� � � 	 � : 0 � � � 
 5 � � 	�� � �
, is exponentially stable, i.e.

� � � � 	 � : � � �
8 � 5 � � � 
 5 � � 	 � � � 	

(68a)

with positive constants �
8 	 � 8

. A sufficient condition for (68a) reads

� � � 	 � � � � � 	  0 � 		�
�
� 	 � 	 and � � � � �

in case of double eigenvalues of
�

. (68b)

For the behaviour of
� � � � : 	�� � � � , we may formulate now the following result:

Theorem 11. Suppose that the diagonal matrices % � 	 % � are selected such that
(68a) holds. Moreover, apply the local (i.e., first order) control correction (PD-
controller)

� � � � : � 0
� � � � �� � � � 	 � : � � � � : 	 (69a)

where

� � � � �� � � � 	 � : is defined by (62). Then, the following relations hold:

a) Asymptotic local stability in the mean:

�
�
� � � � : � � 
 � � � � 	 � � � � (69b)

b) Mean absolute deviation
�
�
� � � � : � � 
 � � � 0 � � � � � � � : 2 � � � � � � : � � 
 � � � � � 
 � �

of
� � � � : �

�
�
� � � � : � � 
 � � � �

8

�

 �

	
� � �  � � � � � : � � � � 
 � �

� � � � 
 5 � � � � 	
(69c)

c) Covariance of
� � � � :

:

�
cov

�
� � � � : � � 
 � � � � �

� 8
��
�

�

 � �

5 � � � 
 5 � � 	 � � �  � � � � � : � � � � 
 � � � � ���� � 	

(69d)
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where

�
� �  � � � � � : � � � � 
 � � � �

�
� � � � � : 5 � � � 
 � � � �� � � � � � � � � : �
� �

�
� � � � � : 5 � � � � � � � � � � : � � var

� � � �
�
: � � 
 � � � (69e)

Here, 
 � � � �� 0 var
� 	 � � 
 � : � 0 � � � 	 2 � � 	 � � 
 � : � � � � 
 � � for any random vector

	 , and 
 � � �� � � � : is defined by


 � � � 	� � � � : � 0 var
� � � � � � �

�
: 	 � � � � � �� 	 � � � � � �

�
: � � � 
 � � 	 � � � � � �

�
�

(69f)

Proof. Using the PD-controller
� � � � : 	�� � � � , defined by (69a) with the gain matrix

(62), according to (61a–g) we find that the first order differential
� � � � :

has to fulfill
the system of second order linear differential equations (63a,b) which can be repre-
sented then by the system of first order linear differential equation (66a,b), cf. (61d).
Its solution

� � 0 � � � � :
can be represented in the integral form (67a). Taking then

conditional expectations, because of (66d) and �
� � � � � � 
 � � 0 � , we get relation

(67c) which yields now the first assertion (69b) since % � 	 % � are chosen such that
(68a) holds. From (67a,c) and (68a) we obtain

� � � � � : 2 � � � � � � : � � 
 � � � �

�

 � � � � 5 � � � 
 5 � � �  � � � � � : � � � � (70a)

Taking expectations in (70a), by means of Hölder’s inequality we get (69c). Using
again (67a) and (67c), we have that

cov
�
� � � � : � � 
 � � 0 �

� �
� � � � : 2 � � � � � � : � � 
 � � � � � � � � :
2 � �

� � � � : � � 
 � � � �
�
�
�
�
� 
 � �

0

�

 �


�

 � � � � 
 5 � � � � � �

 � � � � � : � � �
 � � � � � :

� �
�
�
�
�
�

� 
 �  � � � 
 5�� � � � � � � � (70b)

Using again (68a), the norm of the covariance matrix can then be estimated from
above by

�
�
� cov

�
� � � � : � � 
 � � ��� �


�

 �


�

 � �

� 8 � 5 � � � 
 5 � � � 5 � � � 
 5�� �
� �

� �  � � � � � : � � �  � � � � � : � ��� � 
 � � � � � � � (70c)
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Applying now Hölder’s inequality to the conditional expectation in (70c), we
get (69d). Finally, inequalities (69e) are a consequence of equations (65a), (66d),
the linearity of � � with respect to � � , cf. Remark 2, and the definition of the (gen-
eralized) variance 
 � � � �� 0 var

� 	 � � 
 � : of a random vector 	 . ��

Remark 12. 
 � � � �� � � � � � � � � : � can be interpreted as the risk of the feedforward control

� � � � � � : 	 � � � � .
Using (52b), (61g), (69e) and then changing variables

� � �
in the integral in

(69c,d), we obtain the following result:

Theorem 13. Let denote
� � � � 0 � � � � � � : 	 � � � � , the inverse of the parameter trans-

formation
� � � � 0 � � � � � � : 	 � � � � . Under the assumptions of Theorem 11, the follow-

ing inequality holds for
� � � � � � � � �� :

�
�
� � � � : � � 
 � � �

��� ��� � 
 ��
� �

�
8 �
5 � � � 
 5 
 � ��� � � � � �

�
� � � � �� 	 � � � �� � � : � 5 � �

�
� � � � � � : 
 � � �� � � � : � � 	

(71)

and
�

cov
�
� � � � : � � 
 � � � can be estimated from above by the square of the right hand

side of (71).

Proof. Having the basic inequality (69c) of Theorem 11, by means of the first in-
equality in (69e) and defintion (69f) of the generalized variance of � � we get

�
�
� � � � : � � 
 � � �


�

 � �

8 � 5 � � � 
 5 � � � � � � � � � : 5 � � 
 � � �� � � � � � � � � : � � � �
(72)

Changing now variables
� � � � 0 � � � � � � : in the above integral, because of defini-

tion (61g) of � � � � � � : and the transformation (14a) of the corresponding differentials
� � 	 � �

, inequality (72) yields the assertion (71). ��

The meaning of the above results is indicated by the following important mini-
mality/bounding properties depending on the chosen substitute problem for the tra-
jectory planning problem under stochastic uncertainty:

i) the factor
� 8

can be decreased by an appropriate selection of the damping matrix
% � ;

ii)

� � � �
�

� � � � �� 	 � � � �� � � : 5 � � � � � � 	 � � � � � �
�
	

(73a)

with positive constants � � 	 � � � � . This follows from the fact that the mass
matrix is always positive definite, cf. [3].
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iii) � � ��� � 
 ��
� �

� �
�
� � � � � � : �

� ��
� �

� �
�
� � � � � � : 0 � � � �

�
2 �

�
	

(73b)

where according to (OSTP), for minimum-time and related substitute problems,
the right hand side takes a minimum.

iv) Depending on the chosen substitute problem, the generalized variance 
 � � �� � � � : ,� � � � � �
� , is bounded point by point by an appropriate upper risk level, or
 � � �� � � � : is minimized in a certain weighted mean sense. Two important cases are

treated in the following.
iv.1) Working with the chance constraints discussed in Remark 5, we find that

the probabilistic constraints (28f) can be guaranteed by


 �� �

� � � : 3�� � � � � � � � � �� 	 � � � � � �� �
�
: 	 � � � � �

�
: � 2 �

�
� � � : � � ��� � 
 � �

� � � 2 
 � : � min � 	 � � � � � � � 	 (73c)

where � min � � is a fixed positive lower bound of the components of the
vector � � � � � : defined in (28d). However, (73c) implies the variance con-
straints 
 �� � � � : � � � 2 
 � : � min � 	 � � � � � �

�
�

(73d)

iv.2) Define the cost function 	 0 	 � � � 	�� 	 ˙
� 	 � : along the trajectory, cf. (6) by

	 � � � 	�� 	 ˙
� 	 � : � 0 � � 2 �

� � � 	 (73e)

where � � 0 � � � � � : is the center point of the control domain (8a) defined
in (28d). According to (22a) we find that the expected total costs along the
trajectory are given by

�

��
�

 ��

 � 	

� � � � � : 	�� � � : 	
˙
� � � : 	 � � � :�: � � �� � 
 �

���
� 0

� ��
� �

 �� � � � : � �

� � � � :
3

����
� �
�
� �
�
� � � � � � � �� 	 � � � ��� � : 	 � � � : � 2 �

�
� � � � � :�: ��� � �� � 
 � � � �

� � � � : �
(73f)

Hence, a weighted mean of the generalized variance 
 �� � � � : 	 � � � � � �
� , is

minimized.

8 CONCLUSIONS

Due to several stochastic disturbances and random variations, most of the model pa-
rameters of an industrial or service robot and its working environment must be mod-
elled in practice by random variables. Instead of working with some fixed nominal
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parameter values and facing then fast increasing tracking errors, using a stochas-
tic optimization approach, more robust guiding functions, i.e., reference trajectories
and feedforward controls, are obtained. Moreover, having then much smaller track-
ing errors, the online correction expenses are reduced. Obtaining further informa-
tion about the control process at later time instants, by a replanning procedure the
guiding functions can be updated. Since the optimal stochastic trajectory planning
problems arising at later stages have the same basic form, they can be transformed
to a unique reference variational problem depending on the varying initial/terminal
values only.
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Abstract We consider linear multistage stochastic integer programs and study their func-
tional and dynamic programming formulations as well as conditions for optimality and sta-
bility of solutions. Furthermore, we study the application of the Rockafellar-Wets dualiza-
tion approach as well as the structure and algorithmic potential of corresponding dual prob-
lems. For discrete underlying probability distributions we discuss possible large scale mixed-
integer linear programming formulations and three dual decomposition approaches, namely,
scenario, component and nodal decomposition.

1 INTRODUCTION

Stochastic programming deals with the optimization of decision making under un-
certainty over time. Typical objects of study are random optimization problems
where outcomes of random data are unveiled over time, and the decisions to be opti-
mized must not anticipate future outcomes (non-anticipativity). The latter provides
a tight link to real-time optimization seen as the need for optimal “here-and-now”
decision in an incomplete (or uncertain) data environment. Provided that probabilis-
tic information on the uncertain data is available, operational models suitable for
real-time optimization often may be formulated as multi-stage stochastic programs.
Basic references for theory, algorithmics, and application of stochastic program-
ming are the textbooks [7, 24, 34]. The edited volume [50] provides insight into
recent research in the field.

Indispensability of integer requirements is a basic modeling experience in prac-
tical optimization. Like in other branches of mathematical optimization this has con-
siderable consequences on structural properties and algorithm design in stochastic
programming, too. The models best understood so far are (purely) linear stochastic
programs. This is mainly due to the fact that the optimal value of a linear minimiza-
tion problem is a convex function of the right-hand side and a concave function of
the objective function vector. This enables application of the machinery of convex
analysis in various contexts, such as duality, stability, and subgradient minimization.
For an impression on these developments we refer to [12,14,36,49], with accent on
theory, and to [5, 42], with accent on computation.

With integer requirements, the above convexity/concavity observation is not
valid anymore, and the mentioned functions become discontinuous. Thus, compar-
atively little is known on theory and algorithms for mixed-integer linear stochastic
programs. A recent survey is provided in [26]. Impressions on developments in the-
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ory can be obtained from [2, 43, 46] and on algorithm design from [9, 11, 19, 27, 30,
33, 47], see also the Ph.D. thesises [8, 32, 48].

The present paper aims at a short introduction into some essential theoretical
and algorithmic issues in multi-stage stochastic integer programming. Accent is
placed on introducing approaches. Proofs are omitted, with references to the original
sources instead. The main topics will be modeling, approximation, and algorithmics.

2 MULTISTAGE STOCHASTIC INTEGER PROGRAMS

2.1 Modeling

We consider a finite horizon sequential decision process under uncertainty, in which
a decision made at stage

�
is based only on information available at

�
( � � � �

� ). We assume that the information is given by a discrete time stochastic process
� � 
 � �
 ��� defined on some probability space

� 	 		� 	 � : and with � 
 taking values
in � � � . The information available at stage

�
consists of the random vector � 
 � 0� � � 		�
�	� 	 � 
 : , and the stochastic decision � 
 at stage

�
varying in � � � is assumed to

depend only on � 
 . The latter property is called nonanticipativity and is equivalent
to the measurability of � 
 with respect to the 
 -algebra

� 
 � �
which is generated

by � 
 . Clearly, we have
� 
 � � 
 � � for

� 0 � 	
�
�	� 	 � 2 � and, with no loss of
generality, we may assume that

�
� 0 � � 	 	 � , i.e., � � and � � are deterministic, and

that
� � 0 �

.
More precisely, we consider a decision model where the objective is given by

expected linear costs and the constraints consist of three groups: the measurability
constraints on � 
 , a linear constraint describing the relation between decisions at
different stages, and constraints characterizing feasibility of the

�
-th stage decision� 
 . The latter constraints consist of a linear inequality constraint and of the general

constraint � 
 � � 
 where the (fixed) set � 
 has the property that its convex hull
conv

� � 
 : is polyhedral, allowing for mixed-integer decisions in all stages. Further-
more, the data � 
 at stage

�
may enter all corresponding cost coefficients, matrices

and right-hand sides. This leads to the following stochastic decision model:

min� � �
��
 ��� � 
 � � 
 : � 
 � � � 
 is measurable with respect to

� 
 	 (1)

� 
 � � 
 	 � 
 � � 
 : � 
 � � 
 � � 
 : 	 � 2 �
� � � 	 � 0 � 		�
�
� 	 � 	 (2)
�

� ��� � 
 � � � 
 : � � � � 
 � � 
 : 	 � 2 �
� � ��	 � 0 ��	
�
�	� 	 � � (3)

Throughout, the following is imposed: The sets � 
 are nonempty and closed. The
matrices

� 
 � � � : , � 
 � � : as well as the coefficients � 
 � � : and the right-hand sides
� 
 � � : ,� 
 � � : are affine linear functions of the corresponding component of � , for each
� 0

� 	
�	�
� 	 � 	 � 0 � 	
�
�	� 	 � . In order to have the model (1)–(3) well defined, we need
that the scalar products � 
 � � 
 : � 
 are integrable. The latter property is implied by
the integrability of

� � 
 � � � 
 � and by the conditions � 
 � 	 � � � 	 	�� 
 	 � � � � � : and
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� 
 � 	 � �
� 	 		� 
 	 � � � � � : where

� 
 	
 
 � � � 	 � � with
�� � 3

�

� � 0 � . Since it is
desirable to impose only weak conditions on the data process � and since we assume
later on that the set � 
 is bounded, we may restrict our attention to decisions � 
 �
	
�

� 	 		� 
 	 � � � � � : and to the first order moment condition � 
 � 	 � � 	 		� 
 	 � � � � � :
on the data at stage

�
for each

� 0 � 		�
�
� 	 � . Then the nonanticipativity constraint
(1) may be expressed equivalently as

� 
 � 	
�

� 	 	�� 	 � � � � � : and � 
 0 � � � 
 � � 
 � 	 � 0 � 		�
�	� 	 � 	 (4)

by using the conditional expectation � �
�
� � 
 � with respect to the 
 -algebra

� 
 . Con-
dition (4) describes a linear subspace

� � � of the space
� �
 ��� 	

�

� 	 		� 	 � � � � � : .
This combination of functional and (P-a.s.) pointwise constraints in our model, i.e.,
the functional condition � � � � � and the P-a.s. constraints (2) and (3), forms
the theoretical and algorithmic challenge of multistage stochastic programs. A spe-
cial role is played by the two-stage case (i.e., T=2) where

� � � takes the spe-
cific form

� � � 0 � �  � 	 � � 	 		� 	 � � � ��	 : . An additional complication of the
model (1)–(3) is caused by the mixed-integer constraints hidden in the condition� 
 � � 
 	 � 0 � 	
�	�
� 	 � .

2.2 Multistage Models, Dynamic Programming and Optimality

We adopt the setting of the previous section and assume that � 
 is compact and� 
 � 	 � � 	 	�� 	 � � � � � : for
� 0 � 	
�	�
� 	 � . For each �

� 	
we define the subset� �

�
:

of � � 0 � �
 ��� � � � by
� �
�
: � 0 � � � � � � 
 � � 
 	 � 
 � � 
 � � : : � 
 � � 
 � � 
 � � :�: 	 � 0 � 		�
�	� 	 � 	 (5)
�

� ��� � 
 � � � 
 � � :�: � � � � 
 � � 
 � � :�: 	 � 0 �
	
�	�
� 	 � �

and the extended real-valued function �

� � � � 	
�
�	� 	�� � 	 � : � 0
�� � �
�
 � � � 
 � � 
 � � :�: � 
 	 � �

�
	
�	�
� 	�� � : � � �

�
: 	

3 � 	
otherwise

(6)

from � � 	
to
� 2 � 	 3 � � . With these notations, the model (1)–(3) is equivalent to

the optimization problem

min� � � � � � � 	
�
�	� 	 � � 	 � : � � � 
 is measurable w.r.t.
� 
 	 � 0 � 		�
�
� 	 � � � (7)

The real-valued function
� � 	
�
:

�� � �
 ��� � 
 � � 
 � � :�: � 
 is continuous in
�

for each
�

� 	
and measurable in � for each

� � � , and the set-valued mapping
�

from	
to � is closed-valued and measurable (cf. Theorem 14.36 in [40]). Hence, the

function � is � � � :�� �
-measurable (cf. Example 14.32 in [40]). Furthermore, the

following estimate is valid for each
� � � �
 ��� � 
 and �

� 	
:

� � � � � 	
�
�	� 	�� � 	 � : � �
��
 ��� � � 
 � � 
 � � :�: �

sup� � ��� �
� � 
 � (8)
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Hence, � � � � � � 	
�
�	� 	 � � 	 � : � is finite for each decision � 0 � � � 	
�
�	� 	 � � : such that� � � : � � �
�
:

for � -almost all �
� 	

. As in [16], we construct recursively two
sequences of functions by putting  �
� � � 0 � and

� 
 � � � 	
�	�
� 	�� 
 	 � : � 0 � � �  
 � � � � � 		�
�	� 	�� 
 	 � : � � 
 � � � : 	
(9)

 
 � � � 	
�
�	� 	�� 
 5 � 	 � : � 0 inf� � 
 � � � 		�
�	� 	�� 
 5 � 	�� 	
�
: 	

(10)

for
� 0 � 		�
�
��	 � , and for each �

� 	
and

� � � � � ,
� 0 � 		�
�	� 	 � . Here, � � �

�
� � 
 �

denotes the regular conditional expectation with respect to
� 
 .

We recall that the regular conditional expectation is a version of the conditional
expectation (i.e., � � �

�
� � 
 � 0 � � � � � 
 � , � -a.s.) having the property that the mapping� � 	

�
:

�� � � � 	
�
: � 0 � � � � � � 	

�
: � � 
 � � � :

from 	 
 � 	 to
� � 	 3 � � is � ��� 
 :�� � 
 -

measurable if � is � ��� 
 :�� �
-measurable. Here, 	 
 denotes a closed subset of

a Euclidean space. The regular conditional expectation exists if � is � ��� : � �
-

measurable and uniformly integrable, i.e., there exists a (real) random variable 	
with finite first moment such that � � � � 	

�
: � � 	 � � :

for
� � 	 
 and �

� 	
(see

[15]). Due to condition (8), relation (9) is well defined for
� 0 � and leads to a

� ��� :�� � � -measurable function
� � , where 	 � 0 � �
 ��� � 
 . It is shown in [16]

that the relations (9) and (10) are well defined for all
� 0 � 		�
�
� 	 � . Furthermore,

the following optimality criterion and existence result for (7) or, equivalently, for
(1)–(3) are valid.

Theorem 1. Let the general assumptions be satisfied and assume that there exists
a feasible solution of (1)–(3). Then � ¯� 
 � �
 ��� is a solution of (1)–(3) iff

� 
 � ¯� 
 � � : 	
�
: 0  
 � ¯� 
 5 � � � : 	

�
: 	 � 2 a.s.

	 � 0 � 	
�	�
� 	 � � (11)

Moreover, there exists a solution ¯� � of the first-stage optimization problem

min � � � � � � : 0 � �  � � � � 	 � : � � � � � � � 	 � � � � � : � � � �
�
� � � : � 	 (12)

and, given
� � -measurable functions ¯� � for

� 0 � 	
�	�
� 	�� 2 � , there exists an
� 
 -

measurable function ¯� 
 such that � 
 � ¯� 
 � � : 	
�
: 0  
 � ¯� 
 5 � � � : 	

�
: 	 � 2 a.s.

The theorem is a special case of the more general results (Theorems 1 and 2) in [16].
Theorem 1 implies the existence of a solution to (1)–(3) and justifies the solution
approach (11) which is usually called dynamic programming approach. Due to mea-
surable selection arguments (cf. Chapter 14 in [40]), a feasible solution of (1)–(3)
exists if the model (1)–(3) has relatively complete recourse, i.e., if

� �
�
: �0 � � -a.s.

2.3 Structure and Stability

We adopt the setting of the previous sections, denote by � � � : the set of all Borel
probability measures on some closed subset

�
of � � with

� 0 � �
 ��� � 
 , which is
chosen such that it contains the support of � . By �

� � � � : we denote the probability
distribution of � . We consider the probability space

� � 	 � � � : 	 � : as the underlying
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probability space
� 	 		� 	 � : in Section 1, and define a function

�
from � � � � to

the extended real numbers � by
� � � � 	 � : � 0  � � � � 	 � : , where  � is defined by

(9) and (10). Then the first-stage optimization problem (12) can be rewritten in the
following form:

min�
�
�
� � � � 	 � : � � � � : � � � � � �

	 � � � � � : � � � �
�
� � � : � (13)

The techniques exploited in [16] and used in the previous section imply that the
integrand

�
is � � � � :�� � � � : -measurable. The recursions (9) and (10) together with

the Fatou Lemma for (conditional) expectations as well as lower semicontinuity
properties of infima in parametric minimization (e.g., Theorem 1.17 of [40]) imply
lower semicontinuity of

�
with respect to � � and of the objective function � � ���

�
� � � � 	 � : � � � � : . If the multistage model (1)–(3) has relatively complete recourse,

it holds that � � � � � 	 � : � � % � � 3 max 
 � � � � � � � � � � 
 � : for each feasible � � , each � �
�

and some constant % � � . Hence, the integrand has a uniform and integrable
upper bound, and the objective function is finite at all feasible ¯� � . By Lebesgue’s
theorem, the objective function is continuous at some feasible ¯� � if �

� � � � � �
� �
�
	 � : is not continuous at ¯� � � : 0 � . Such discontinuity sets of the integrand

�
have

been studied in [43] for the two-stage situation with fixed recourse matrix
�
� � and

recourse costs � � .
When developing approximation schemes and algorithmic approaches for solv-

ing the model (1)–(3), the behaviour of its optimal value val( � ) and of the set Sol( � )
of first-stage solutions to (1)–(3) is important when perturbing or approximating the
underlying distribution � . We say that the model (1)–(3) is stable if val(

�
) and Sol(

�
)

satisfy certain continuity properties at � with respect to some suitable convergence
of probability measures. Here, we follow the presentation in [35] and consider the
distance

�
�
� � 	 �

: � 0 sup� �
�
�
� � � � 	 � : � � 2 �

: � � � : � � � � � � � � (14)

of probability measures � and � belonging to the set � � � � : � 0 � � � � � � : �
�
�
� � �

�
� � � : � � � . Then it holds for any perturbation � of the original underlying

probability distribution � that

�val
� � : 2 val

�
�
: � � �

�
� � 	 �

:
(15)

� �0 Sol
�
�
: � Sol

� � : 3 �
� �

�
� � 	 �

: : � �  (16)

where � �  denotes the closed unit ball in � �  and � is some monotonically in-
creasing function on � � with �

� � : 0 � , which is related to the growth behaviour
of the objective function near the set Sol( � ) (see [35]). While (15) represents a Lip-
schitz type estimate for the optimal value at � , the relation (16) says that the sets
of first-stage solutions behave upper semicontinuously at � with respect to

�
� . In

general, the distance
�

� is rather involved and difficult to handle. Hence, it is of con-
siderable interest to derive estimates of

�
� in terms of simpler probability metrics

and to expose relations to the classical concept of weak convergence of probability
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measures. For two-stage models with fixed recourse matrix and costs, such results
are obtained in [44] and [35]. We also refer to relevant stability studies in [2,18,49].
Altogether, such stability results justify the approximation of the underlying distri-
bution � by simpler measures and provide techniques for designing approximation
schemes. Next, we show that approximations by discrete measures having finitely
many atoms or scenarios play a prominent role since they lead to specially struc-
tured large-scale mixed-integer linear programs.

2.4 Scenario Based Models

We assume throughout this section that
	

is finite, i.e.,
	 0 � � � � �� � � , � is the

power set of
	

and � � � � � � : 0 � � 	 � 0 � 	
�	�
� 	 � . We denote by � �
 � 0 � 
 � � � : the
value of the data scenario

�
at stage

�
and by � �
 the value of the decision scenario

�
at

�
for

� 0 � 		�
�	� 	 � 	 � 0 � 		�
�
� 	 � . Since
	

is finite, there exists a finite subset �



of the 
 -algebra
� 
 , for each

� 0 � 		�
�
� 	 � , such that �

 is a partition of

	
and that

the smallest 
 -algebra containing �

 is just

� 
 . Then the conditional expectation
w.r.t.

� 
 in the nonanticipativity condition (4) takes the form

� � � 
 � � 
 � 0 �
� � � �

�
� � � :

�
�
� 
 � � : � � � � : � �

0 �
� � � �

�

��
���


� ��� �
� � : 5 � �

��
���


� ��� �
� � � �
 : � � (17)

where � � denotes the characteristic function of the set �
�
�

 . Hence, the nonan-

ticipativity condition (4) is equivalent to the following equality constraints

���
 0 �
� �
	 ���� � �

�

��
���


� � � �
� � : 5 �

��
��


� � � �
� � � �
 	 
 0 � 	
�
�	� 	 � 	 � 0 � 	
�	�
� 	 � � (18)

Clearly, for
� 0 � we have �

� 0 � 	 � and, hence, condition (18) is equivalent to the
equations � � � 0 �

�
� ��� � � � � � 	 
 0 � 	
�	�
� 	 � , i.e, to �

�

� 0
� � �

0 � �
� .

Hence, the multistage stochastic program (1)–(3) takes the following form which
will be called its scenario formulation:

min �
��

� ���
��
 � � � � � 
 � � �
 : � �
 � � satisfies the constraints

� � � : 	 (19)

� �
 � � 
 	 � 
 � � �
 : � �
 � � 
 � � �
 : 	 � 0 � 		�
�
� 	 � 	 � 0 � 		�
�
� 	 � 	
�
� � � � 
 � � � �
 : � �� � � 
 � � �
 : 	 � 0 � 	
�
�	� 	 � 	 � 0 �
	
�	�
� 	 � �

Since
� 
 � � 
 � � , every element of �


 � � can be represented as the union of certain
elements of �


 . Furthermore, formula (17) shows that the number of elements in
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�

 coincides with the number of realizations of � and � at period

�
, respectively.

Hence, representing the relations between the elements of �

 and �


 � � for
� 0

� 	
�	�
� 	 � 2 � , leads to a tree having the same structure as the sets of scenarios of �
and � , respectively. Therefore, such a tree is called scenario tree. It is based on a
finite set

� ��� of nodes. Figure 1 shows an example of a scenario tree where the� � denote the branching points of the tree.

1 t1 t2 tK T

Figure 1. Example of a (binary) scenario tree

The root node � 0 � stands for period
� 0 � . Every other node � has a unique

predecessor node � 5 and a transition probability � ��� � 	 � � , which is the proba-
bility of � being the successor of � 5 . The probability � � of each node � is given
recursively by � � 0 � 	 � � 0 � ��� � 	 � � 	 	 � � � . We denote by

� � � �
:

the set of
successors to node � , by path

�
�
:

the path from the root to node � and by
� �
�
:

its
length, i.e.,

� �
�
: � 0 card

�
path

�
�
:�:

.
� 
 denotes the set � � � � � � � � : 0 � � , and it

holds � � ��� � � � 0 � for each period
�
. Nodes � with

� � � �
: 0 �

are called leaves;
they constitute the terminal set

� � . A scenario corresponds to a path from the root
node to a leaf. Clearly, it holds that card

� � � : 0 � and � � � � � ��� � 0 � � � � �� � � . Con-
versely, given these scenario probabilities, the remaining node and transition proba-
bilities are generated recursively by � � � 0 � ��� ��� � � � � � �	� , � ���
� � � 0 � ��� � � �
for � �

� � � � �
:
. We use the following notation for the sequence of predecessors

of any node �
� �

: �
8 � 0 � , � 5 � � 0 � 5 if � � � , � 5 ��� � � � � 0 �

� 5 � : 5 if� �� : � � . Note that
� �
� 5 � : 0 � �

�
: 2 

for
 0 � 	
�	�
� 	�� � � : 2 � . Furthermore, we

denote by � � � � � ��� � the realizations of � 
 and by � � � � � ��� � the realizations of � 
 .
After these preparations the scenario tree formulation of the multistage stochastic
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program reads:

min �
�� ��� � � � 
 � � � � � � : � � � � � � � 
 � � � 	 � 
 � � � � � � : � � � � 
 � � � � � � : 	 (20)


 � � � 5 ��
� � 8 � 
 � � � � 
 � � � 5 � � � � : � � 	�� � � 
 � � � � � � : 	 � � � �

Both formulations of the multistage stochastic program will be used for the descrip-
tion of decomposition approaches. We recall that the nonanticipativity condition
appears explicitly in the scenario formulation (19), but disappears in the scenario
tree formulation (20) because it is incorporated into the tree construction. Since it
holds that � � � � 0 card

� � : � � � � , the dimensions of both model formulations are
quite different. More precisely, the model (19) contains

� � �
 ��� 
 
 : � decision vari-
ables and � �
 ��� � 
 
 3  
 3 
 
 : � linear constraints, whereas the model (20) contains
� � ��� 
 
 � � � decisions and � � ��� �  
 � � � 3 
 
 � � � : linear constraints. Here,

 
 and
 
 denote the dimensions of
� 
 � � : and � 
 � � : , respectively, for

� 0 � 	
�	�
� 	 � .

2.5 Dualization and the Convex Case

We assume � � � �
 ��� 	
�

� 	 	�� 	 � � � � � : and consider the multistage stochastic inte-
ger program of Section 1 as an abstract (infinite) optimization problem in the Banach
space

� �
 ��� 	
�

� 	 	�� 	 � � � � � : , i.e., in the form

min � � �
��
 ��� � 
 � � 
 : � 
 � � � � � �
 ��� 	 � � 	 	�� 	 � � � � � : 	 � � � � ��	 (21)

� 
 � � 
 	 � 
 � � 
 : � 
 � � 
 � � 
 : 	 � 2 �
� � ��	 � 0 � 	
�
�	� 	 � 	 (22)
�

� ��� � 
 � � � 
 : � � � � 
 � � 
 : 	 � 2 �
� � ��	 � 0 �
	
�	�
� 	 � � � (23)

Let � �
�
:

denote the objective function, i.e., � � � : � 0 � � � �
 ��� � 
 � � 
 : � 
 � .
Our aim is to introduce a Lagrangian associated with the essential groups of

constraints of problem (21)–(23), namely, the (functional) nonanticipativity con-
straint � � � � � , the

 
 coupling constraints � 
 � � 
 : � 
 � � 
 � � 
 : and

 
 dy-

namic constraints (23). We make use of the concepts and results of [38] and in-
troduce the following sets

�
� � 0 � � � � � �
 ��� 	 � � 	 	�� 	 � � � � � : � � � � � 
 � � 
 � 0� 	 � 2 a.s.

	 � 0 � 	
�	�
� 	 � � , � � � 0 � � � � � �
 ��� 	 � � 	 	�� 	 � � �
� � : � �

�
� � 	 � 2 a.s. �

and
� � � 0 � � � � � �
 ��� 	 � � 	 		� 	 � � � � � : � � � � � 	 � 2 a.s. � of Lagrange mul-

tipliers. The sets
�
� and

� � are convex cones and
�
� is a linear space which is

complementary to the nonanticipativity subspace
� � � with respect to the dual pair-

ing
� � 	 ���

of 	 � and 	 � , i.e., it holds
� �
�
	 �

�
� 0 � � � �
 � � � � 
 � 
 � 0 � for all

�
�
� �

�

and � � � � � .
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The Lagrangian is defined to be the function

	 � � 	 � : � 0 � �
��
 ��� � � 
 � � 
 : � 
 2 �

� 
 � 
 3 �
� 
 � � 
 � � 
 : 2 � 
 � � 
 : � 
 : � (24)

3
��
 � � � � 
 � � 
 � � 
 : 2


�
� ��� � 
 � � � 
 : � � : �

from
� �
 ��� 	

�

� 	 	�� 	 � � � � � : � �
to � , where

� � 0 � ������ � � . The dual function



from
�

to � is defined by


 � � : � 0 inf� 	 � � 	 � : � � � � �
 ��� 	
�

� 	 		� 	 � � �
� � : 	 (25)

� 
 � � 
 	 � 2 a.s.
	 � 0 � 		�
�
� 	 � � 	

and the dual problem associated with (21)–(23) is

max� 
 � � : � � � � � � (26)

We assume again that the sets � 
 	 � 0 � 		�
�	� 	 � 	 are compact. Then the Lagrangian
	 and the dual function



are well-defined,



is concave and the weak duality

estimate


 � � : � � � � : for all
� � �

and all � satisfying (21)–(23)
�

(27)

is valid. In the following, we say that the model (21)–(23) is strictly feasible if there
exist ˜� � � � � and �

� � such that

˜� 
 3 �
� � � � conv
� � 
 : 	 � 
 � � 
 : ˜� 
 � � 
 � � 
 : 3 �

	 � 2 �
� � ��	 � 0 � 	
�	�
� 	 � 	
�

� ��� � 
 � � � 
 : ˜� � � � 
 � � 
 : 3 �
	 � 2 �

� � � 	 � 0 �
		�
�
� 	 � 	

where � � denotes the closed unit ball in � � . Then we conclude from Theorem 1
and from Theorem 3 of [39] that the following holds.

Theorem 2. Assume that the general assumptions are satisfied, that the sets � 
 , � 0
� 	
�	�
� 	 � 	 are convex compact and that the model (21)–(23) has relatively complete
recourse and is strictly feasible. Then there exist optimal solutions ¯� to (26) and ¯�
to (21)–(23), and it holds


 � ¯� : 0 � � ¯� : .
Since the sets � 
 	 � 0 � 	
�	�
� 	 � 	 fail to be convex, such a duality result is not avail-
able in our setting and, due to (27), we are faced with a duality gap


 � � 0 � � ¯� : 2 sup� ��� 
 � � : � � � (28)

This inequality is strict, in general. On the other hand, in case of a discrete under-
lying probability distribution, the theory of Lagrangian relaxation in mixed-integer
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linear programming (cf., e.g., Chapter II.3.6 of [31]) implies that the optimal value
of (26) is greater than or equal to the optimal value of the linear programming re-
laxation to (19) or (20). In other words, the lower bound obtained by dualizing
constraints is never worse the bound obtained by relaxing the integer requirements.

So far we have associated Lagrange multipliers with nonanticipativity, coupling
as well as dynamic constraints. Of course, it is also of interest to consider restricted
Lagrangians and restricted duals by associating multipliers with one or with two
of these three groups of constraints, only. For such restricted dualization schemes,
duality results for the convex case that are similar to Theorem 2 may be derived
as well (see [37] for dualizing the nonanticipativity constraints and [38] for other
inequality constraints). It is worth recalling that the duality gap increases when du-
alizing additional constraints (see Section 3.1 in [29]). Since small duality gaps are
of algorithmic interest, we take a closer look at dualization schemes where either
nonanticipativity or coupling or dynamic constraints are associated with Lagrange
multipliers. We denote the corresponding dual functions from

� � to � by

 � for� 0 � 	��
	 � and start with dualizing nonanticipativity constraints, i.e.,



�
� �
�
: � 0 inf� � �

��
 ��� � � 
 � � 
 : � 
 2 �
� 
 � 
 : � � � � � �
 ��� 	

�

� 	 	�� 	 � � �
� � : 	

� 
 � � 
 	 � 
 � � 
 : � 
 � � 
 � � 
 : 	 � 2 a.s.
	 � 0 � 	
�	�
� 	 � 	
�

� ��� � 
 � � � 
 : � � � � 
 � � 
 : 	 � 2 a.s.
	 � 0 �
		�
�
� 	 � �

0 � � inf�
��
 ��� � � 
 � � 
 : � 
 2 �

� 
 � 
 : � � 
 � � 
 	 � 
 � � 
 : � 
 � � 
 � � 
 : 	
� 0 � 		�
�	� 	 � 	


�
� ��� � 
 � � � 
 : � � � � 
 � � 
 : 	 � 0 �
		�
�
� 	 � � � 	

where the infimum and expectation may be interchanged since the minimization
problem only contains � -a.s. pointwise constraints (see e.g., Theorem 14.60 of [40]).
Hence, the multistage stochastic program defining



� decomposes into pathwise

minimization problems. This effect becomes more transparent if the underlying
probability distribution of � is discrete, i.e., if

	 0 � � � 	
�
�	� 	 � � � . Adopting the
notation of Section 2.4, the dual function takes the form



�
� �
�
: � 0

��
� ��� � � inf�

��
 � � � � 
 � � �
 : � �
 2 � �
� 
 � �
 � � � �
 � � 
 	 (29)

� 
 � � �
 : � �
 � � 
 � � �
 : 	 � 0 � 	
�	�
� 	 � 	
�
� ��� � 
 � � � �
 : � �� � � 
 � � �
 : 	 � 0 �
	
�	�
� 	 � � 	
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where
�
�
� �

� has the scenarios � � � � 
 � �
 ��� with probabilities � � for
� 0 � 	
�	�
� 	 �

and
�
� is given by the linear subspace

�
� 0 � � � � � � � � 
 � � 
 � 0 �

� � � �
�

��
���


� � � � �
� : 5 �

��
���


� � � � �
� � � � 
 � � 0 � 	 � 0 � 	
�	�
� 	 � �

0 � � � �
��
���


� ��� � �
� � � � 
 0 � 	 � �

�

 	 � 0 � 	
�	�
� 	 � � (30)

of the Euclidean space of dimension
� � �
 ���  
 3 � �
 � � 
 
 : � . Since �

� 0 � 	 � and

�
� 0 � � � � � 	
�
�	� 	 � � � � � , the conditions for

� 0 � and
� 0 � in (30) are equivalent

to �
�
� ��� � � � � � � 0 � and

� �
� � 0 � 	 � 0 � 		�
�
� 	 � , respectively. We note that the

constraint
�
�
� �

� means that each
�
�
�0 � is anticipative, i.e.,

�
� 
 is not

� 
 -
measurable for some

�
(see also the example in [22]). Sometimes, one might find

it more convenient that the dual function is defined and maximized on the whole
space, i.e, without regard to the subspace constraint

�
�
� �

� . This can be done be
replacing

�
� 
 in the right-hand side of (29) by

�
� 
 2 � � � � 
 � � 
 � for

� 0 � 	
�	�
� 	 � .
Then the subspace constraint for the multiplier is automatically satisfied and the
dual maximization problem is unconstrained.

Next we consider dualizations of certain inequality constraints by some mul-
tiplier, but leave the nonanticipativity constraint untouched. In contrast to the an-
ticipativity of multipliers in the previous case, the multipliers may now be chosen
nonanticipative, i.e., as elements of

� �
 � � 	 � � 	 		� 
 	 � : . This is due to the linear sep-
arability properties of (21)–(23) (Theorem 7 of [38]). In particular, when dualizing
the coupling constraints, the restricted dual function



�
� �
�
: � 0 inf� � �

��
 � � � � 
 � � 
 : � 
 3 �
� 
 � � 
 � � 
 : 2 � 
 � � 
 : � 
 :�: � � � � � � �
	 (31)

� 
 � � 
 	 
�
� ��� � 
 � � � 
 : � � � � 
 � � 
 : 	 � 2 �

� � ��	 � 0 ��	
�
�	� 	 � � 	

has to be maximized on the convex cone
�
� � 0 � � � � � �
 ��� 	 � � 	 	�� 
 	 � � � � � : �

�
� 
 � � 	 � 2 a.s.

	 � 0 � 		�
�
� 	 � � . Dualizing the dynamic constraints leads to maxi-
mizing the restricted dual


 � � � � : � 0 inf� � �
��
 � � � 
 � � 
 : � 
 3 ��
 � � � � 
 � � 
 � � 
 : 2


�
� ��� � 
 � � � 
 : � � : � � (32)

� � � � �
	 � 
 � � 
 	 � 
 � � 
 : � 
 � � 
 � � 
 : 	 � 2 �
� � ��	 � 0 � 	
�	�
� 	 � � �

subject to the convex cone
� � � 0 � � � � � �
 ��� 	 � � 	 	�� 
 	 � � � � � : � � � 
 � � 	 � 2

a.s.
	 � 0 � 		�
�
� 	 � � . Clearly, both optimization problems on the right-hand sides of

(31) and (32), respectively, are stochastic integer programs. While the program in
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(31) exhibits the typical multistage structure, the specific feature of the program in
(32) is the lack of a dynamic constraint. In Sections 3.2 and 3.3 we gain further infor-
mation on these programs in case of a discrete underlying probability distribution,
i.e., when the data, decisions and multipliers form scenario trees.

3 DECOMPOSITION METHODS

Due to the enormous size of scenario based models in multi-stage stochastic pro-
gramming, decomposition is the method of choice when it comes to numerical
solution. This is further enhanced by special structures met, both in the scenario
formulation (19) and in the scenario tree formulation (20) of multi-stage stochastic
programs. If integer requirements are missing in (21) - (23), powerful convexity and
duality results (cf. Theorem 2) are the basis of efficient decomposition methods.
These methods can be subdivided into primal and dual ones.

Primal decomposition methods employ the scenario tree formulation (20). Start-
ing from the root node, primal proposals are passed down the tree where they are
used to compute so called feasibility and optimality cuts that are passed upward
to be included into convex optimization problems whose solutions lead to updated
primal proposals that are again passed down the tree, and so on. This procedure
(nested decomposition) is enhanced by regularization and cut deletion. Its mathe-
matical backbone is convexity, in particular ideas from the area of bundle-trust and
proximal point methods.

Dual decomposition circles around duality results such as Theorem 2. The ap-
proaches discussed in Section 2.5 then all benefit from a zero duality gap. Particu-
lar attention has been paid to dualizing nonanticipativity in the framework of aug-
mented Lagrangians and related proximal point algorithms (progressive hedging,
cf. [39]). The survey papers [5, 42] provide further insights into both primal and
dual decomposition of multi-stage stochastic linear programs.

With integer requirements in (21)–(23) the mentioned powerful convexity and
duality results are lost. Approaches to decomposition, that have proven efficient for
purely linear models, have to be rethought from their very beginnings.

The impact of integrality on primal decomposition is twofold: Feasibility and
optimality cuts can no longer be obtained as linear functionals but as merely sub-
additive functionals instead. Primal proposals can no longer be obtained via con-
vex programs but via merely lower semicontinuous (discontinuous) nonconvex pro-
grams instead. For algorithmic realization this leads to obstacles impossible to over-
come with existing methods, [8,11]. Two-stage models have been tackled with lim-
ited success by solving the mentioned lower semicontinuous programs via enumera-
tion [45] or branch-and-bound [1] and exploiting problem similarities in the second
stage.

The impact of integrality on dual decomposition has already been mentioned in
Section 2.5: Theorem 2 is no longer valid, and we face a non-zero duality gap (28).
Although progressive hedging then is no longer formally justified, quite satisfactory
results have been observed empirically for specific applications, [30, 47].
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In what follows, we will return to the dualization schemes introduced in Sec-
tion 2.5 in case that the underlying probability distribution is discrete. We will dis-
cuss the solution of the corresponding dual maximization problems

max� 
 � � � � : � � � � � � � � � 0 � 	��
	 � :

by subgradient type methods and examine the decoupling potential of the different
dualizations. Under the conditions imposed in Section 2.5 the dual functions


 � are
finite, concave and polyhedral. They have the form


 � � � � : 0 inf
�
� � � � : 3 � � � 	 � � � � :

�
� 	 (33)

where � is the objective function,
� � is some affine linear function from 	

� to
	
� , and

� � 	 � �
denotes the dual pairing of 	 � and 	 � . Hence,

� � � � � � � � :�: is a sub-
gradient of


 � if � � � � � : is a solution to the minimization problem (33) defining
 � . Furthermore, the solution sets of the dual problems are nonempty since their
objectives are polyhedral and their suprema finite. Therefore, subgradient bundle
methods may be used for solving the duals, [23, 25, 28]. Let us consider the proxi-
mal bundle method [17,23,25] in some more detail. Starting from an arbitrary point� �� 0 ¯� �� � � � , this method generates a sequence � � �� � � ��� in

� � converging to
some solution of the dual problem, and trial points ¯� �� for evaluating the solutions� �� 0 � � � ¯� �� : of (33), the subgradients

� � � � �� : of

 � and its linearizations


 �� �
�
: � 0 
 � � � �� : 3 � � 2 ¯� �� 	 � � � � �� :

�
� 
 � �

�
: �

Iteration


uses the polyhedral model

 � � �

�
: � 0 min � � � � 
 �� �

�
:

with
 � � � �

� � 		�
�
� 	
 � for finding the next trial point ¯� � � �� as a solution of the quadratic subprob-

lem

max� 
 � � � � : 2 �� � � � � 2 � �� � � � � � � � � 	 (34)

where the proximity weight � � � � and the penalty term �
�
� � � 0 � � 	 � �

should
keep ¯� � � �� close to the prox-center

� �� . An ascent step to
� � � �� 0 ¯� � � �� occurs if
 � � ¯� � � �� : � 
 � � � �� : 3  � � , where

 � � � 	 � : is a fixed Armijo-like parameter and
� � � 0 
 � � � ¯� � � �� : 2 
 � � � �� : � � is the predicted ascent (if

� � 0 � then
� �� is a

solution and the method may stop). Otherwise, a null step
� � � �� 0 � �� improves the

next model

 ��� � � � with the new linearization


 � � �� . The choices of the weights� � and of the index set
� � � �

are dicussed in [17,25] (see also Section 3.4 of [19]).
The quadratic subproblem (34) is essentially influenced by the dual pairing

� � 	 ���
.

The latter reads
� � � 	��

�
0 �

�
� ��� � � � �
 ��� � �� 
 � �
 and

� � � 	��
�
0 � � ��� � � � �� � �

for the scenario and the node formulations, respectively.

3.1 Scenario Decomposition

Scenario decomposition rests on the dualization of nonanticipativity constraints if
the probability distribution of � is discrete. This leads to the dual maximization
problem

max� 
 � � � � : � �
�
� �

� � (35)
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where


� and

�
� are defined as in (29), (30) of Section 2.5. Since the computation

of


� decomposes into solving pathwise minimization problems, function values

and subgradients of


� are obtained by solving the single-scenario problems

min�
��
 � � ��� 
 � � �
 : � �
 2 � �

� 
 � �
 � � � �
 � � 
 	
� 
 � � �
 : � �
 � � 
 � � �
 : 	 � 0 � 	
�
�	� 	 � 	
�
� � � � 
 � � � �
 : � �� � � 
 � � �
 : 	 � 0 �
	
�	�
� 	 � �

for all
� 0 � 		�
�
� 	 � .

Indeed, if ¯� � 	 � 0 � 	
�
�	� 	 � , denote optimal solutions to these problems, then



�
� �
�
: 0

��
� ��� � � �

��
 ��� ��� 
 � � �
 : ¯� �
 2 � �
� 
 ¯� �
 � : 	

and
�
�
�
¯� : 0 ¯� is a subgradient of



� at

�
� , where ¯� has the scenarios ¯� � , � 0

� 	
�	�
� 	 � . Compared with the scenario formulation (19) of the multi-stage stochastic
program (1)–(3), which is a mixed-integer linear program in dimension �

�
� �
 ��� 
 
 ,

the above single-scenario problems are � mixed-integer linear programs each of
dimension � �
 ��� 
 
 , only. In view of (28), solving (35) provides a lower bound to
the optimal value of the multi-stage stochastic integer program (19).

If the single-scenario solutions ¯� � � 		�
�
� 	 ¯� �� for the optimal
�
� in (35) fulfilled

the nonanticipativity constraints then ¯� would be optimal to (19). In general, how-
ever, one faces a non-zero duality gap (28). Therefore the lower bounding has to be
accompanied by upper bounding procedures resting on the generation of “promis-
ing” feasible solutions. This can be accomplished by primal heuristics starting from
the results of the dual optimization, i.e., from single-scenario solutions ¯� � � 		�
�
� 	 ¯� ��
corresponding to optimal or nearly optimal

�
� .

An algorithmic realization of scenario decomposition for the case � 0 �
, i.e.,

for two-stage stochastic integer programs, has been proposed in [8–10]. The nonan-
ticipativity constraints then read � � � 0 �

�
� ��� � � � � � 	 
 0 � 	
�	�
� 	 � . In [8–10], the

equivalent representation �
�

� 0
� � �

0 � �
� is employed, and the scenario formulation

(19) is set up with (18) replaced by �
�

� 0
� � �

0 � �
� . Then, the usual Lagrangian re-

laxation of mixed-integer linear programming is performed with respect to the con-
straints �

�

� 0
� � �

0 � �
� . In particular, this leads to a non-probabilistic Lagrangian,

in contrast to the probabilistic Lagrangian (24) introduced in Section 2.5. As a con-
sequence, the Lagrangian dual of [8–10] is unconstrained and lives in dimension� � 2 � :

�

 � . In the setting of Section 2.5, cf. (30), we obtain a dual in dimension

�
�

 � constrained by �

�
� ��� � � � � � � 0 � , i.e., essentially an unconstrained program

in dimension
� � 2 � :

�

 � as well.

In [8–10], the scheme of lower and upper bounding outlined above is further
enhanced by embedding into a branch-and-bound algorithm in the spirit of global
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optimization. As stated in (13), the stochastic program can be rewritten as a noncon-
vex global optimization problem. In the branching part of the algorithm, the feasible
region of (13) is subdivided. On each member of the subdivision, the bounding part
employs dualization of nonanticipativity for the lower and a primal heuristic for the
upper bounds. For further details on scenario decomposition for two-stage stochastic
integer programs we refer to [21].

Only little is known about algorithmic realizations of scenario decomposition for
multi-stage stochastic integer programs with � � �

. First experiences on extending
the approach of [8–10] will be reported in [4].

3.2 Component Decomposition

Dualization of component coupling constraints results in the dual maximization
problem

max� 
 � � � � : � �
�
� �

� � 	

where


� and

�
� are defined in Section 2.5. We assume that the underlying prob-

ability distribution of the data process � is discrete and, hence, given in form of a
scenario tree � � � � � ��� , where

�
denotes the finite set of nodes. The notation of

Section 2.4 is used, and we denote by � 0 � � � � � ��� the decision scenario tree and
by

�
� 0 � � �� � � ��� the multiplier scenario tree. Then the dual function (31) may be

rewritten in the following form (see also (20)):



�
� �
�
: � 0 inf�

�� ��� � � ��� 
 � � � � � � : � � 3 � �
�
� � 
 � � � � � � : 2 � 
 � � � � � � : � � : � � (36)

� � � � 
 � � � 	 
 � � � 5 ��
� � 8 � 
 � � � � 
 � � � 5 � � � � : � � 	�� � � 
 � � � � � � : 	 � � � �

where
�
�
� �

� 0 � � � �� � � ��� � � �
�
� � 	 � � � � . In order to demonstrate the

component decoupling potential hidden in


� , we assume that � 
 has the specific

structure � 
 0 � � ������ � 
 � , where the � 
 � are closed subsets of � , that 
 
 0 
 , 
 0 
and


 
 0 
 

for

� 0 � 	
�	�
� 	 � and some

 � � , and that the matrices

� 
 � � � :
are block-diagonal with 
 blocks �

� 
 � � � : � � � for
� 0 � 	
�
�	� 	 
 . In particular,

this condition means that the constraints in (36) are expressible as componentwise
constraints. We denote by � � 
 � � : the

�
-th component of � 
 � � : , by � � 
 � � : � � � the

�
-th

component vector of � 
 � � : , and by � � 
 � � : the i-th column of the matrix � 
 � � : . With� �� denoting the
�
-th component of � � , we obtain by exchanging summation w.r.t.
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� and
�



�
� �
�
: 0 inf�

�� ��� � � � �� ��� � � � � 
 � � � � � � : 2 � �
� � � 
 � � � � � � : � � �� 3 � �

�
� 
 � � � � � � : � �

� �� � �
� 
 � � � 	 
 � � � 5 ��

� � 8 �
� 
 � � � � 
 � � � 5 � � � � : � � 	��� � � � 
 � � � � � � : 	

� 0 � 		�
�
� 	 
 	
�
� � �

0
��
����� 
 � � � � � : 3 �� ��� � � � �� � 
 � � � � � � :

where the functions


� � , � 0 � 		�
�
� 	 
 , from

�
� to � are defined by



� � � � � : 0 inf�

�� ��� � � � � � 
 � � � � � � : 2 � �
� � � 
 � � � � � � : � � �� � � �� � �

� 
 � � � 	 (37)


 � � � 5 ��
� � 8 �

� 
 � � � � 
 � � � 5 � � � � : � � 	��� � � � 
 � � � � � � : 	 � � � � �

By specifying (33) we obtain that
�
�
�
¯� : 0 � � 
 � � � � � � : 2 � ���� � � � 
 � � � � � ��: ¯� �� � � ���

is a subgradient of


� at

�
� , where ¯� � 0 � ¯� �� � � ��� is a solution of (37). The dual

function (36), which is defined by a multistage stochastic integer program of di-
mension 
 � � � , decomposes into 
 functions each given by a multistage stochastic
integer program of dimension � � � . Since the dimension of the dual problem is


� � � ,

the computational potential of this dualization approach takes effect in situations,
where the number


of coupling constraints to be dualized is much smaller than the

decision dimension 
 (i.e.,

� � 
 ) and where the 
 subproblems (37) of dimen-

sion � � � can be solved much faster than the original multistage model of dimension
 � � � . The latter could appear, for example, if complex mixed-integer models de-
compose into pure integer and pure linear programs.

Component decomposition has been applied successfully under the label La-
grangian relaxation of coupling constraints to solving hydro-thermal power man-
agement models under data uncertainty. Lagrangian relaxation has a long tradition
for solving (deterministic) unit commitment problems of power systems operation.
Recently, this technique has been extended to stochastic power management models,
where the stochasticity enters the model, for example, via the electric load, stream-
flows to hydro units, and electricity prices. When letting the production decisions of
individual power units play the role of components, the above dualization scheme
leads to a decomposition into single (thermal or hydro) power unit models. Such
approaches for determining lower bounds have been proposed and implemented
in [3, 13, 19, 33, 41]. In [19, 20, 32] encouraging numerical results and computing
times have been reported for both solving the dual and determining a nearly optimal
primal solution by a Lagrangian based heuristic.
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3.3 Nodal Decomposition

Finally, we return to the dualization of the dynamic constraints of (21) - (23) in
case of a discrete underlying probability distribution and show that the dual function
exhibits a nodewise decoupling structure. We let


 � and
� � be defined as in Section

2.5 and consider the corresponding dual problem

max� 
 � � � � : � � � � � � � �

Let � � � � � ��� be the scenario tree representing the data process � ,
�

the finite set of
nodes, � � � � � ��� the node probabilities, and � � � � � ��� and � � �� � � ��� the correspond-
ing scenario trees of the decision and of the multiplier process, respectively. Using
the notation of Section 2.4, the dual function


 � takes the following scenario tree
representation


 � � � � : 0 inf��� � � � � : � � 3 �� ��� ��� ��� � � � � 
 � � � � � � : � � 3 � �� � � 
 � � � � � � : (38)

2

 � � � 5 ��
� � 8 � 
 � � � � 
 � � � 5 � � � � : � � 	�� : � �

� � � � 
 � � � 	 � 
 � � � � � � : � � � � 
 � � � � � � : 	 � � � � 	

where
� � � � � 0 � � � �� � � ��� � � �� � � 	 � � � � . Since the minimization problem

in (38) contains only node constraints for the decision tree, we rearrange its objective
function with respect to the decision nodes and obtain


 � � � � : 0 inf�
�� ��� � � � � 
 � � � � � � : 2 �

� �
Tr � � � � � �

�� � 
 � � � � 
 � � � � � � : : � �
3 �� ��� ��� ��� � � � �� � 
 � � � � � � : �
� � � � 
 � � � 	 � 
 � � � � � � : � � � � 
 � � � � � � : 	 � � � � 	

where Tr
� � : � 0 � � � � � , and Tr

�
�
:

for � � � denotes the set of all nodes belonging
to the subtree with root node � , i.e., Tr

�
�
: � 0�� � � ��� � � path

�
� � : � � �

path
�
� � : � �

path
�
� 5 : . Now, we may interchange summation and minimization and arrive at the

node decomposed formulation


 � � � � : 0 �� ��� 
 � � � � � : 3 �� ��� ��� ��� � � � �� � 
 � � � � � � : (39)

of

 � , where the functions


 � � , �
� �

, are defined on
� � and given by


 � � � � � : � 0 inf� � � � � 
 � � � � � � : 2 �
� �

Tr � � � � � �
�� � 
 � � � � 
 � � � � � � : : � � � (40)

� � � � 
 � � � 	 � 
 � � � � � � : � � � � 
 � � � � � � : � �
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Hence, the representation (39) of

 � provides a decomposition of the original

mixed-integer program of dimension � � ��� 
 
 � � � into � � � subproblems (40) of
dimension 
 
 � � � for �

� �
. Formulas for computing subgradients of


 � may be
derived similarly to the previous section. Computational experience of such nodal
decomposition schemes for determining lower bounds of multistage stochastic inte-
ger programs is not available yet.
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Decomposition Methods for Two-Stage Stochastic
Integer Programs

Raymond Hemmecke and Rüdiger Schultz

Fachbereich Mathematik, Gerhard-Mercator-Universität Duisburg, Germany

Abstract Stochastic programs are proper tools for real-time optimization if real-time fea-
tures arise due to lack of data information at the moment of decision. The paper’s focus is
at two-stage linear stochastic programs involving integer requirements. After a discussion of
basic structural properties, two decomposition approaches are developed. While the first ap-
proach is directed to decomposition of the stochastic program itself, the second deals with
decomposition of the related Graver test set.

1 INTRODUCTION

The two-stage stochastic program is the optimization problem

min
�
����� � 3�� 
 � min� � � � � : � � ��� �

��� ��� � �
���	� � � ��� � 	 � � � � � � � � � � (1)

Here, � � � � 	�� � � � 	 � � ��� � � � � �
��� 	 � �

�
� 	 � � ��� 	 � � ����� denotes a random
vector on some probability space

� 	 	 � 	� � , and the symbol � 
 is used for expec-
tation. The sets � � � � 	 � � � � are polyhedra, possibly involving integer re-
quirements to components of � and

�
. Accordingly, two-stage linear and two-stage

linear mixed-integer stochastic programs are distinguished. Model (1) is a two-stage
version of the more general multi-stage stochastic program discussed in [23].

For real-time optimization, model (1) offers the following features. Consider the
random optimization problem

min
� � � �����

��� � �
��� � � � � � �
� ��� � �

�
� ��� � �
��� 	 � � � 	 � � � � (2)

where decisions on � have to be taken under incomplete information on � � ��� �� � �
�
� 	 � �

��� 	 � � ��� 	 � � ����� , and where recourse actions
�

are permitted after de-
cision on � and observation of � � ��� . Model (1) then optimizes the here-and-now
decision � such that � is feasible (� � � ) and the sum of the direct costs � � � and
the expected future costs becomes minimal. The future costs depend on both � and� � ��� , and the recourse action

�
is selected best possible.

As a two-stage linear stochastic program, the model (1) is well understood, both
structurally and algorithmically. This is different when including integer require-
ments to components of � and (mainly)

�
. In the present paper we start out from the

roots of these difficulties, present some structural results, and place the main accent
on two recently developed decomposition approaches to solving (1).
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2 FROM LINEAR TO MIXED-INTEGER LINEAR STOCHASTIC PROGRAMS

For ease of exposition we assume that
� 	 � 	 � in (1) are deterministic such that� � ��� � � �

�
� . So far, most of the subsequent results on stochastic integer programs
were obtained for that special case. Where appropriate, we will point to existing
results under more general randomness in the vector

� � 	 � 	 � 	 � � . It is convenient
to reformulate (1) as follows

min��� � ��� � � � � � � � � � (3)

where

� � � � � �
�
� � � � � � � � � � � � � � (4)

and � � � � � � min� � � � � � ��� � 	 � � � ���
Here we assume that

� �
��� � � � and that � denotes the image measure � � � � � ��� �

on � � . The reason for (3) being so well understood in the purely linear situation, i.e.,
where � � � � � � , is the convexity of � in that case. Indeed, by linear programming
duality, we have

� � � � � max � � � � � � � � � � � . Assuming that � � ��� � � � � �
has vertices

�
�
	 ����� 	 � � , this yields

� � � � � max � ��� � � � � � � � �� � , for all
� � � � such

that
� � � � is finite. Therefore,

� � � � � � � is convex in � , and, if the integral in (4)
is finite, the function � is convex, too. This can be summarized into the following
standard result of stochastic linear programming.

Proposition 1. Assume that � � � � � � � � � 	 � � � � � � � � � � � � �� �
, and� � � � � � � � � � � � � . Then � � � � � � � is a real-valued convex function.

For further reading on stochastic linear programming we refer to the textbooks
[2, 15, 21].

The situation changes if components of
�

are restricted to the integers. Consider
the following examples:

�
�
� � � � min� � � � ��� � � � � ��� � � 	 � � � � � 	 ��� � � � � 	

�
	 � � � � min� ���� � � � � � � � � � � � � � � 	 � � ZZ � 	 � � � � � 	 � � � � � �
�

min� ���� � � � �� � � � � ZZ � � 	
� � � � � � min� � � � � � � � � � � ��� � � � 	 � � � � 	 � � �

ZZ � 	 � � �
ZZ � �

� � � � � �
�� � ��� � � � � �

Whereas
�
�
� � � � � � � is convex,

� 	
is neither convex nor concave but still (Lip-

schitz) continuous, and
� � is discontinuous but still lower semicontinuous. If

� � � �
in (3) is given by

� � � � � � min� � � � � �
� � � � � � � � � �

�
�
� � 	 �

�
� � ���� 	 � �

ZZ ¯� � � 	 (5)
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with rational matrices � 	 � � of conformal dimensions, then the following is known
from parametric integer optimization [1, 3].

Proposition 2. Assume that � �
ZZ ¯� � � � � �

� � ���� � � � � and � � � � � ��� � � �� 	 � � � � � �
� � �� �

. Then it holds

(i)
�

is real-valued and lower semicontinuous on � � ,
(ii) there exists a countable partition � � �

� �������� � such that the restrictions of�
to � � are piecewise linear and Lipschitz continuous with a uniform constant

	 � � not depending on
�
,

(iii) each of the sets � � has a representation � � � � � � ��� � � �
�� ��� � � � � ��� � where �

denotes the polyhedral cone � �
� � ���� � and

� � 	�� � � are suitable points from � � ,
moreover,

�
does not depend on

�
,

(iv) there exist positive constants � 	 � such that � � � � � � � � � � 	 � � � � � � � � � 	 � � �
whenever

�
�
	 � 	 � � � .

Returning to (4), we observe that the integrand is measurable by the lower semi-
continuity of

�
. Moreover, the growth property in (iv) and the assumption that� � � � � � � � � � � ��� imply that the integral in (4) is finite. In addition, (iv) then

provides integrable lower and upper bounds for
�

, enabling the application of Fa-
tou’s Lemma and Lebesgue’s Dominated Convergence Theorem. This leads to the
following (see [26] for details).

Proposition 3. Assume that � �
ZZ ¯� � � � � �

� � ���� � � � � 	 ��� � � � � � � � �� 	 � � � � � �
� � �� �

, and
� � � � � � � � � � � � � . Then it holds

(i) � � � � � � � is a real-valued lower semicontinuous function,
(ii) if � has a density, then � is continuous on � � .

It is still possible to find verifiable and indispensable, but rather technical condi-
tions ensuring Lipschitz continuity of � on bounded subsets of � � , [25]. From an
algorithmic viewpoint, however, it has to be stated:

- Although a well-defined nonlinear program, (3) lacks essential smoothness and
convexity properties for employing the algorithmic machinery of nonlinear pro-
gramming.

- Computing exact function values of � requires multidimensional integration of
implicitly given integrands. With continuous measure � , this is beyond existing
numerical capabilities and hence motivates discrete approximation of � .

- For discrete � , the function � becomes computable, but is discontinuous, on
the other hand.

In conclusion, approximation of the underlying probability measure is a key
issue of numerical methods in stochastic programming. Its justification leads to an-
alyzing the stability of (3) under perturbations of � . Without going into details, we
mention that optimal value and optimal solutions to (3), viewed as mappings acting
on some topological space of probability measures, fulfil natural continuity require-
ments. For details see the survey [27] and the references therein. Therefore, “small”
perturbations of � imply only “small” perturbations of the optimal value and the set
of optimal solutions to (3).
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3 SCENARIO DECOMPOSITION

From now on we assume that the probability measure � in (3) is discrete, with
realizations

� � and probabilities � � 	 � � � 	 � ��� 	 � . To circumvent the discontinuity
of � we reformulate (3) as a mixed-integer linear program:

min
� � � � � ���

� �
��
� ��� � � � � � � � � ��� � � � � � � 	 � � � � 	 � � � ��� (6)

Here, the variables
� � 	 � � � 	 � ��� 	�� 	

are copies of the vector
�

according to the
number

�
of realizations (or scenarios) of � .

�
being big in general, (6) quickly

becomes large-scale and intractable by general purpose algorithms and software in
mixed-integer linear programming.

On the other hand, the constraints interlinking the variables � and
� � , � �

� 	 � ��� 	 � 	
have a block-angular structure giving rise to decomposition. Fixing � re-

sults in decoupling of these constraints into
�

independent blocks. Since the ob-
jective is separable, problem (6) then decomposes into

�
independent problems.

The latter forms the basis of an algorithmic approach referred to as L-shaped or pri-
mal decomposition in the literature [7, 22, 32]. The idea is to iterate � in an outer
master problem, to avoid solving the full problem by resorting to the mentioned
subproblems, and to stop the process when some optimality condition is fulfilled
sufficiently accurately. This works nicely provided there are no integer requirements
in (6). Then the master problem is a tractable non-smooth convex program. With in-
teger requirements among the

� � variables, however, the master problem turns into
a discontinuous minimization problem with lower semicontinuous objective. This
problem is far less tractable than the mentioned convex counterpart [7, 28].

As an alternative, we propose the following. Introduce copies � � 	 � � � 	 � ��� 	�� 	

according to the number of scenarios, and add the constraints � � �
� � �

� � � (or
an equivalent system), for which we use the notation �

�� ��� � � � � � � with proper� �
	
� � � matrices � � 	 � � � 	 � ��� 	 � . Problem (6) then becomes

min�
��
� ��� � � � ��� � � � � � � � � � � � � � � � � � � � 	 � � � � 	 � � � � 	

��
� ��� � � � � � � ��� (7)

This model is amenable to Lagrangian relaxation of the constraints �
�� � � � � � � � � .

For
� � � � we consider the functions

	 � � � � 	�� � 	 � � � � � � � � � � � � � � � � � � � � � � � � 	 � � � 	 � ��� 	�� 	

and form the Lagrangian

	 � � 	�� 	 � � � �
��
� � � 	 � � � � 	�� � 	 � � �

The Lagrangian dual of (7) then is the optimization problem

max� 
 � � � � � � � � � (8)
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where


 � � � � min�
��
� � � 	 � � � � 	�� � 	 � � � � � � � � � � � � � 	 � � � � 	�� � � � ��� (9)

For separability reasons we have


 � � � �
��
� ��� 
 � � � � (10)

where

 � � � � � min� 	 � � � � 	�� � 	 � � � � � � � � � � � � � 	 � � � � 	�� � � � � � (11)


 � � � � being the pointwise minimum of affine functions in
�

, it is piecewise affine
and concave. Hence, (8) is a non-smooth concave maximization problem, or equiv-
alently, a non-smooth convex minimization problem. Non-differentiable optimiza-
tion [14,16] offers advanced bundle methods for tackling (8). At each iteration, these
methods require the objective value and one subgradient of



. Here, the separability

in (10) is most beneficial. Altogether, the optimal value � ��� of (8) provides a lower
bound to the optimal value � of problem (6). This is made precise by the following
well-known result [20].

Proposition 4. It holds � � � ��� . If for some multiplier
� � � � the optimal solu-

tions
� � � 	�� � � 	 � � � 	 ��� � 	 � 	

to the optimization problem in (9) fulfil �
�� ��� � � � � �

� , then � � � ��� and
� � � 	�� � � 	 � � � 	 ��� � 	�� 	

are optimal for (7).

The lower bound � ��� is obtained by decomposing the stochastic program (6)
into scenario-specific subproblems that are very close to the non-stochastic version
of (6), where

� � � , see (9), (11). Therefore the name scenario decomposition. It
is well-known that � ���

� � �
�

where � �
�

denotes the optimal value to the LP
relaxation of (6), [20].

The total computational effort is distributed. The single-scenario problems in
(11), which differ in their objectives and right-hand sides but have common con-
straint matrix, have to be solved repeatedly to provide the input for the concave
maximization in (8). Powerful software is available for these tasks. In our computa-
tional experiments we resorted to CPLEX [9] for solving the single-scenario prob-
lems, and to the bundle method NOA 3.0 developed and implemented by K.C. Ki-
wiel [16,17]. With more complex stochasticity (cf. (1)), the above bounding scheme
is still working. The only difference is that single-scenario problems may also differ
in their constraint matrices.

In Lagrangian relaxation, feasible points for the original problem are often ob-
tained by suitable heuristics starting from the results of the dual optimization. Our
relaxed constraints being very simple ( � � �

� � �
� � � ), ideas for such heuris-

tics come up straightforwardly. For example, examine the � � � components, � �
� 	 � ��� 	 � , of solutions to (11) for optimal or nearly optimal

�
, and decide for the

most frequent value arising or average and round if necessary.
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If the heuristic results in a feasible solution to (7), then the objective value of
the latter provides an upper bound ¯� for � . Together with the lower bound � ���
this yields a quality certificate (gap) ¯� � � ��� . If necessary, this certificate can be
improved by embedding the procedure described so far into the following branch-
and-bound scheme. Let � denote the list of current problems and � ���

� � ���
� � �

the Lagrangian lower bound for �
� � .

Step 1 Initialization: Set ¯� � � � and let � consist of problem (7).
Step 2 Termination: If � � �

then the solution �� that yielded ¯� � � � �� � � � �� � , cf.
(3), is optimal.

Step 3 Node selection: Select and delete a problem � from � and solve its La-
grangian dual. If the optimal value � ���

� � � hereof equals � � (infeasibility of
a subproblem) then go to Step 2.

Step 4 Bounding: If � ���
� � � � ¯� go to Step 2 (this step can be carried out as soon

as the value of the Lagrangian dual rises above ¯� ).
(i) The scenario solutions � � , � � � 	 � ��� 	�� , are identical: If � � � � � � � � � � �

¯� then let ¯� � � � � � � � � � � � and delete from � all problems � � with
� ���

� � � � � ¯� . Go to Step 2.
(ii) The scenario solutions � � , � � � 	 ��� � 	�� differ: Compute the average ¯� �

�
�� ��� � � � � and round it by some heuristic to obtain ¯�

�
. If � � ¯�

� � � � ¯�
�
� �

¯� then let ¯� � � � ¯�
� � � � ¯�

�
� and delete from � all problems � � with

� ���
� � � � � ¯� . Go to Step 5.

Step 5 Branching: Select a component � � � � of � and add two new problems to �
obtained from � by adding the constraints � � � � � �

¯� � � � � and � � � � � �
¯� � � � � � � ,

respectively (if � � � � is an integer component), or � � � � � ¯� � � � � � and � � � � �
¯� � � � � � , respectively, where �

� � is a tolerance parameter to have disjoint
subdomains.

In the subsequent section we will report about some practical experience with
the above method. For the moment we state that the method is obviously finite in
case � is bounded and all � � components have to be integers. If � is mixed-integer
some stopping criterion to avoid endless branching on the continuous components
has to be employed. For further details see [5, 6].

4 UNIT COMMITMENT WITH INCOMPLETE INFORMATION

Unit commitment aims at finding a fuel cost optimal scheduling of start-up/shut-
down decisions and operation levels for power generation units over some time
horizon. This is a central task in reliable and efficient operation of power systems.
Here we consider a hydro-thermal system as met with the German power company
VEAG Vereinigte Energiewerke AG Berlin. This system comprises conventional
coal and gas fired thermal units as well as pumped-storage plants. At the beginning
of the optimization horizon, information on essential unit commitment data such as
electrical load or availability of generating units is incomplete. Furthermore, starting
up a coal fired block involves some time delay before the block becomes available
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for electricity generation. Therefore, switching decisions for these units have to be
taken well in advance and cannot be employed as short-term corrective actions. Gas
turbines, however, have a sufficiently small delay in this respect such that switching
is feasible for short-term corrections. For further technological details of the power
system we refer to [6].

As an example on how to employ the modeling of Section 1 and the algorith-
mics of Section 3 we deal with the problem of finding a cost optimal weekly hedg-
ing policy for start-up decisions of coal fired units under incomplete information
on the electrical load to be covered. Grouping of decisions follows the operational
characteristics above. Start-up decisions for coal fired units will become first-stage,
whereas start-up decisions for gas turbines and output levels for all units will be
the second-stage decisions. The optimization aims at minimizing the sum of direct
costs for first-stage decisions and the expected value of the costs induced by the
first- together with the second-stage decisions.

Let
� � � 	 � ��� 	 � denote the subintervals (e.g., hours) of the optimization hori-

zon. Suppose that there are
� � � 	 � ��� 	 
 coal fired thermal units,

 � � 	 � ��� 	 %
gas turbines, and � � � 	 ����� 	 � pumped storage plants. The stochastic behavior of
electrical load is represented by a random variable

�
on some probability space� 	 	�� 	�� � with values in � � . We assume that

�
follows a discrete distribution with

finite support and use the symbol
� 
 	

�
� 	

, to denote its realizations. (For clarity
of exposition we modify the notation from Section 3 by indexing the scenarios by
� and placing the index in superscript throughout.)

By � � 
 � � �
	 � � , � � � 	 ��� � 	 
 and

� � � 	 ��� � 	 � we denote the first-stage variables
indicating whether the coal fired unit

�
is on or off at time

�
. Correspondingly, � 
� 
 �

� �
	 � � ,

 � � 	 ��� � 	 % 	 �
� � 	 � ��� 	 � 	 � � 	
, denotes the on/off decision for gas

turbine


in time interval
�

under scenario
� 


. Along with the on/off decisions we
have output levels � 
� 
 	 � 
� 
 of the mentioned units. The output limitations of thermal
units then read as follows

� min� � � 
 � � 
� 
 � � max� � � 
 	 � � � 	 ��� � 	 
 	 � � � 	 ��� � 	 � 	 � � 	
(12)

� min� � 
� 
 � � 
� 
 � � max� � 
� 
 	  � � 	 � ��� 	 % 	 � � � 	 ����� 	 � 	 � � 	 � (13)

Here, � min� 	 � min� and � max� 	 � max� are the minimal and maximal outputs of the respec-
tive units. By

� 
� 
 and �

� 
 	 � � � 	 � ��� 	 � 	 � � � 	 � ��� 	 � 	 � � 	

, we denote the
levels of generation and pumping in pumped storage plant � at time

�
under scenario

� 

. With upper bounds

� max� 	
� max� we have the following box constraints on these

variables

� � � 
� 
 � � max� 	 � � � 	 � ��� 	 � 	 � � � 	 ����� 	 � 	 � � 	
(14)

� � �

� 
 � � max� 	 � � � 	 � ��� 	 � 	 � � � 	 ����� 	 � 	 � � 	

(15)

The variables �

� 
 	 � � � 	 � ��� 	 � 	 � � � 	 � ��� 	 � 	 � � 	

, are introduced for the
fills (in energy and at the end of the time interval) of the upper dams. Water balances
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in the pumped storage plants can then be expressed as follows

� � �

� 
 � � max� 	 � � � 	 � ��� 	 � 	 (16)

�

� 
 � �


� 
 � � � � 
� 
 � � � �

� 
 	 � � �
	 � ��� 	 � 	 (17)

�

� � � � ini� � � 
� � � � � �


� � 	 (18)

�

� � � � end� (19)

for � � � 	 ��� � 	 � 	 � � 	
. The constants � � 	 � � � � � � , are the pumping effi-

ciencies, and � max� 	
� ini� 	

� end� denote the maximal, initial and final fills, respectively.
Inequalities (16) state that the fills must not exceed certain bounds and equations
(17) - (19) display the fill dynamics with (19) avoiding empty dams at the end of the
time horizon by prescribing proper end conditions. The equilibrium between total
generation and electrical load reads��

����� � 
� 
 �
��
� ��� � 
� 
 � ��

� ��� � � 
� 
 � �

� 
 � � � 

 	 � � � 	 ��� � 	 � 	 � � 	 � (20)

Fuel costs can be divided into start-up costs and operation costs for the power units.
There are no direct fuel costs for pumped storage plants, although the latter have in-
direct impact on fuel costs by the pumping energy needed to establish the necessary
levels in the upper dams. Start-up costs for thermal units depend on the preceding
down time of the block. Here, we will neglect this dependence and assume constant
costs � � 	 � � for start-ups in coal fired blocks and gas turbines, respectively. Total
start-up costs for the coal fired units then compute as��
 � 	

��
� ��� � � max� � � 
 � � � 
 � � 	 � ��� (21)

Denoting by � 
 expectation with respect to
�

, the expected value of total start-up
costs for the gas turbines reads

� 
 � ��
 � 	 ��
� ��� � � max��� 
� 
 � � 
� 
 � � 	 � � � � (22)

For reasons of clarity we prefer the (nonlinear) maximum term in (21) and (22). For
computations, of course, these are transformed in the usual way into linear terms by
introducing further variables and including additional linear constraints. Fuel costs
of coal and gas fired thermal units in operation are assumed to be affinely linear with
coefficients � � 	 � �� and � � 	 � �

� , respectively. Total expected operation costs compute
as

� 
 � ��
 ��� �
��
��� � � � 
 � � � � 
� 
 � � �� � �

��
� � � � 
� 
 � � � � 
� 
 � � �

� � � � �
Here, nonlinearities can be removed using (12), (13), and we obtain��
 ���

��
����� � �� � � 
 � � 
 � ��
 ���

��
� ��� � � � 
� 
 � ��
 ���

��
� ��� � � � 
� 
 � ��
 ���

��
� ��� � �

� � 
� 
 � � (23)
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Altogether, we have the following optimization problem:

Minimize

��
 ���
��
����� � �� � � 
 � ��
 � 	

��
����� � � max� � � 
 � � � 
 � � 	 � � �

� � 
 � ��
 � �
��
� ��� � � � 
� 
 � ��
 ���

��
� ��� � � � 
� 
 � ��
 ���

��
� ��� � �

� � 
� 
 �
�

��
 � 	
��
� ��� � � max��� 
� 
 � � 
� 
 � � 	 � � � (24)

subject to
� � � � � � �

� � and � � 
 	 � 
� 
 � � �
	 � � 	� � � 	 � ��� 	 
 	  � � 	 ����� 	 % 	

� � � 	 � ��� 	 � 	 � � 	 �
The algorithm from Section 3 was coded in Fortran using NOA 3.0 by Ki-

wiel [16, 17] and the CPLEX Callable Library [9] and run on realistic problem
instances. The power system of VEAG comprises 17 coal fired blocks, 8 gas fired
units and 7 pumped storage plants. For a typical weekly unit commitment problem
involving 168 time periods, each of the scenario subproblems has approximately
14000 constraints and 16000 variables, of which 4200 are binary. A characteristic
feature of the power system met at VEAG is that several of the coal-fired thermal
blocks are identical. This allows us to reduce the size of the scenario subproblems
by aggregation of these units. The start-up/shut-down decisions for these units are
then represented by one integer variable, namely the number of units which are
turned on. In the following we present results for both formulations. We generated
16 scenarios for uncertain load and build 3 instances with 4, 10 and 16 scenarios for
each of the examples. For simplicity we assume the scenarios in all 3 instances have
probabilities according to a uniform distribution. The load profiles for a 4-scenario
instance are depicted in Figure 1. Seen as a mixed-integer linear program of the
type (6), the stochastic program then involves up to 180000 constraints and 172000
variables of which 21000 are integers.

The branch-and-bound scheme from Section 3 is the algorithmic guideline for
our implementation. In addition there are some enhancements and specifications: To
save computation time, the Lagrangian dual is solved at the root node only, and the
obtained multipliers are then used for solving the Lagrangian relaxation of non-root
nodes. There are no NOA iterations at non-root nodes. The “Without NOA” column
in Table 1 reports on tests where even at the root node no iterations with NOA were
carried out. Instead, the feasible point

� �
� was used for the lower bound. The table

shows that this leads to gaps which are about 10 times wider than the gaps obtained
when using NOA in the described way. Hence, although quite costly, it pays to use
NOA for heading towards the maximum of the function


 � � � and improving the
lower bound this way.

As already mentioned in Section 3, candidates for feasible solutions can easily
be found in our case due to the simple structure of the non-anticipativity constraints.
We used the average ¯� and rounded all components to the nearest integer. For all our
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Figure 1. Profiles for uncertain load in 4-scenario instance

test runs good feasible solutions were obtained this way already in the root node of
the branching algorithm.

The main workload of our algorithm consists of solving the scenario subprob-
lems and it is therefore crucial to solve them as fast as possible. To this end, we
store and update optimal bases for the LP-relaxations of all scenario subproblems
every 5 iterations of the NOA code. The bases are used to start the solution process
of the scenario subproblems. During NOA-iterations we employ primal Simplex for
solving LP-relaxations since primal feasibility is maintained and multipliers affect
cost coefficients, only. For non-root nodes dual feasibility is maintained since vari-
able bounds are being fixed, thus dual Simplex is employed during the branching
procedure for solving LP-relaxations.

Special attention has been paid to the branching and node selection criteria of
our branch-and-bound algorithm. For problems with only binary integer variables
we take the average ¯� and branch on the component for which the fractional part
is closest to 0.5. Intuitively, this corresponds to the component for which the non-
anticipativity condition is violated most. For the formulation with general integer
variables we calculate the sum of squared deviations, � �

� ��� � � � � � � ¯� �
	
, and

choose the component for which this dispersion measure is largest.

In the bounding step of our algorithm we check whether nodes in the branching
tree can be fathomed. However, since the subproblems are not solved exactly, � ���
will not necessarily be a lower bound for the optimal value of the initial problem if
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it is computed on the basis of approximate solutions to the subproblems. Instead of
approximate solutions we use the subproblem (lower) bounds returned by CPLEX
when computing � ��� . This guarantees that the � ��� are indeed lower bounds, how-
ever, not necessarily the best possible, so a larger branching tree may result. As node
selection strategy we use a best-bound search to quickly improve the lower bound
obtained from the Lagrangian dual of the root node problem.

The computational results are given in Table 1.

NOA Best Lower Without
Formulation Scenarios Steps solution Bound Gap NOA
Binary 4 30 3.6598 3.6411 0.5% 1.4%

10 10 3.6955 3.5781 3.3% 8.3%
16 5 3.6225 3.5276 2.7% 10.1%

Integer 4 100 3.6579 3.6527 0.1% 4.1%
10 40 3.6195 3.6080 0.3% 3.1%
16 25 3.5698 3.5556 0.4% 2.5%

Table 1. Computational results for uncertain-load instances

5 TEST SETS IN INTEGER PROGRAMMING

In the remainder of the present paper we will pursue an alternative idea of decom-
position. This idea involves the consideration of Graver test sets which are objects
containing essential solution information, and that turn out to be decomposable if
the underlying optimization problem has the block structure of (6). We will confine
ourselves to the pure-integer case. In the present section we collect some neces-
sary prerequisites on test sets for general integer programs. In particular, we will
present an algebraic procedure for computing test sets (Algorithms 8 and 9 below).
We already announce that the pattern behind that procedure will reappear in a dif-
ferent context in Algorithms 15 and 16 in Section 6. These algorithms enable a
direct computation of building blocks that arise as results of the mentioned test set
decomposition for optimization problems with the block structure of (6).

For given rational
� �
	 � � -matrix

�
consider the family of optimization problems

� 
 � � � � 
 � min��� � � � � ��� � 	 � � ZZ �� �
as � � � � and � � � � vary.

Definition 5 (Test set). A set � � � ZZ � is called a test set for the family of problems� 
 � � � � 
 as � � � � varies if

1. � � � � � for all
��� � � , and
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2. for every � � � � and for every non-optimal feasible solution
�

�
�

ZZ �� to� ��� � , there exists a vector
� � � � such that

�
� � �

is feasible. Such a vector
is called an improving vector or an improving direction.

A set � is called a universal test set for the family of problems
� 
 � � � � 
 as � � � �

and as � � � � vary if it contains a test set � � for every � � � � .

Once a finite test set � � is computed or given, we may apply the following
augmentation algorithm in order to solve the optimization problem

� 
 � � � � 
 .
Algorithm 6 (Augmentation algorithm).

Input: a feasible solution
�

� to
� 
 � � � � 
 , a test set � � for

� 
 � � � � 

Output: an optimal point

�
min of

� 
 � � � � 

while there is

��� � � with � � � � � such that
�

� � �
is feasible do�

� � � �
� � �

end while
return

�
�

Under the assumption that the optimization problem is solvable, this augmen-
tation process always terminates with an optimal solution to

� 
 � � � � 
 [11, 31, 33].
Thus, if we were given a finite universal test set for

� 
 � � � � 
 then for any given right-
hand side � and for any given cost function vector � an optimal solution to

� 
 � � � � 

could be easily found as long as an initial feasible solution is available.

Without elaborating this in more detail, we assume an initial feasible solution to
be given (cf., e.g., [13] for a test set augmentation algorithm to find such a solution).

Naturally, all the vectors in the integer kernel ker
� � � � � � � �

ZZ � � � � � � �
of
�

form an infinite universal test set. However, for all rational matrices
�

there
always exist finite universal test sets as well. In the following we present a particular
universal test set, the Graver test set, and show how to compute it. For proofs and
further reading we refer to the seminal paper of Graver [10] and to [11, 29, 30, 33].

Let � be a polyhedral cone with rational generators. A finite set

� � � � � 	 � ��� 	 � 
 � � ����� �
is called a Hilbert basis of � if every

� � ����� � has a representation of the form��� �


����� � � � � , with non-negative integral multipliers

�
�
	 � ��� 	 � 
 . Every pointed,

rational cone has a unique Hilbert basis that is minimal with respect to inclusion
[24]. Let � � be the � 
 � orthant of ZZ � and � � � � � be the unique minimal Hilbert
basis of the pointed rational cone � � � � � � � � � � � ��� � .
Lemma 7. � � � � � � � � � � � � � � � � is a universal test set, called the Graver test set
or Graver basis, for the family of problems

� 
 � � � � 
 as � � � � and � � � � vary.

Now let �	� � iff � � � � � and � � � � � , where, for
� � � � , we denote� � � � max� � 	 � � and

� � � � max� � � 	
� � . Then the elements of � � � � are minimal in

ker
� � � � � � � with respect to the partial ordering � on ZZ � . Graver test sets exist, are

finite, and can be computed using the algorithmic pattern of a completion procedure
[4].
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Algorithm 8 (Algorithm to Compute Graver Test Sets).

Input: � � �
� � � � � �

� � 	 � � � , where � � � � is a set of vectors generating ker
� � � over ZZ

Output: a set
�

which contains the Graver test set � � � �
{forming S-vectors:}
� � � �

� � � ��� � � � � �
while � �� �

do� � � an element in �
� � � � � � � �� � � normalForm

� � 	 � �
if
� ��

� then
{adding S-vectors:}
� � � � �

�� ��� �
� � � �

� � � �
� � � �

end if
end while
return

�
.

Behind the function normalForm
� � 	 � � there is the following algorithm.

Algorithm 9 (Normal Form Algorithm).

Input: a vector
�
, a set

�
of vectors

Output: a normal form of
�

with respect to
�

while there is some � � �
such that � � � do� � � � � �

end while
return

�
We aim at computing � -minimal vectors of ker

� � � . This motivates to say that
�

can be reduced by � to
� � � if � � � . In this case,

�
, � , and

� � � all belong to the
same orthant.

The Graver test set is the set of all elements
� � �

which are irreducible with
respect to

� � � � � .
The Graver test set algorithm works correctly for arbitrary choices of the element� � � in the Graver test set algorithm and of the element � in the normal form

algorithm.

Lemma 10. Algorithm 8 terminates and computes a set containing the Graver test
set.
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6 DECOMPOSITION OF TEST SETS IN STOCHASTIC INTEGER PROGRAMMING

Theoretically, the procedure from Section 5 can be used to solve stochastic inte-
ger programs (6) as well. However, due to the huge amount of stored information,
Graver test sets are quite large already for small problems. Therefore, a direct test
set approach to (6) should be avoided.

The block angular structure of the problem matrix in (6) now induces a sym-
metry structure on the elements of the Graver basis, telling us, that these test set
vectors are formed by a comparably small number of building blocks. We will show
that these building blocks can be computed without computing the Graver test set
of (6) itself and that we can reconstruct an improving vector to a given non-optimal
feasible solution to (6), scenario by scenario, using building blocks only.

To study Graver test sets of (6) we assume that � �
ZZ
�
� 	 � �

ZZ
�
� . This dif-

fers from the setting in (1), where � 	 � denote (integer) points in polyhedra rather
than just in orthants. Here we assume that the matrices � 	 � capture the remaining
polyhedral conditions. We consider the matrix

� � � �
����
�
� � �

� � �
�� � �

� � �
�...

...
...

. . .
...

� � �
� � �

�

� ���
�

together with the objective function vector

� � � � �
	 � � 	 ��� � 	 � � � � � � � � 	 � � � 	 ����� 	 � � � � �

and the right-hand-side � � � � � 	 ��� � 	 � � � � , where
�

corresponds to the number of
scenarios. Problem (6) then may be written as min� � � � � � � � � � 	�� � ZZ �� � with
� �
� � � 
 . We assume all entries in � and � to be rational.

When referring to components of
�
, the notation

� � � � 	 � � 	 � ��� 	 � � � will be
used throughout. Herein, � corresponds to the first-stage and is always of dimension
� , whereas � � 	 � ��� 	 � � are the second-stage vectors whose dimension is 
 .

The following simple observation is the basis for the decomposition of test set
vectors.

Lemma 11.
� � 	 � � 	 � ��� 	 � � � � ker

� � � � ��� � � 	 � � � 	 ��� � 	 � � 	 � � � � ker
� �
� � .

Thus, by permuting the � � we do not leave ker
� � � � . Moreover, a � -minimal ele-

ment of ker
� � � � will always be transformed into a � -minimal element of ker

� � � � .
Thus, a Graver test set vector is transformed into a Graver test set vector by such a
permutation. This leads us to the following definition.

Definition 12 (Building blocks). Let
� � � � 	 � � 	 ��� � 	 � � � � ker

� � � � and call the
vectors � 	 � � 	 ��� � 	 � � the building blocks of

�
. Denote by � � the Graver test set

associated with
� �

and collect into
� �

all those vectors arising as building blocks
of some

� � � � . By
�
� denote the set

� � � ��� � �

.
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The set
�
� contains both � -dimensional vectors � associated with the first-

stage in (6) and 
 -dimensional vectors � related with the second-stage in (6). For
convenience, we will arrange the vectors in

�
� into pairs

� � 	 � � � . For fixed � �
�
� , all those vectors � � �

� are collected into � � for which
� � 	 � � � ker

� �
� � . In

what follows, we will employ this arrangement into pairs to arbitrary sets of � - and
 -dimensional building blocks, not necessarily belonging to
�
� .

The set
�
� is of particular interest, since, by definition, it contains all building

blocks of test set vectors of (6) for an arbitrary number
�

of scenarios. Next, we
will address finiteness of

�
� , computation of

�
� , and reconstruction of improving

vectors using
�
� .

Definition 13. We say that
� � �

	 � � � � reduces
� � 	 � � � , or

� � �
	 � � � � � � � 	 � � � for

short, if the following conditions are satisfied:

– � � � � ,
– for every � � � � there exists a � �

� � � � with � � � � ,
– � �

��
� or there exist vectors � � � � and � �

� � � � with �
�� � � � � .

Theorem 14. Given rational matrices � and � of appropriate dimensions, and let
�
� be defined as above. Then

�
� is a finite set.

Proof. First we show that there are only finitely many pairs
� � 	 � � � � �

� . Then
we show that each � � is finite.

Consider the set
�

� � � �
� � � � �

	 � � � � . We associate with each
� � 	 � � � � �

�
the monomial ideal


 � � 	 � � � � � � � � 	 ����� 	 � 	 � � 	 � � generated by all the monomials
� � � � � � 	 � � � � � 	 � with � � � � . Call �

� �
� � the family of all these monomial ideals.

Clearly,
� � �

	 � � � � �� � � 	 � � � for all different pairs
� � �

	 � � � � 	 � � 	 � � � � �
� .

That is, either � �
�� � , or there is some � � � � such that there is no � �

� � � � with� � � � , or both. In all of these three cases we find a monomial � �
� � � � 	 � � � � � 	 � �


 � � 	 � � � with � � � � such that there is no monomial generator � �
� � � � � � 	 � � � � � � � 	 �

of

 � � �

	 � � � � which divides � �
� � � � 	 � � � � � 	 � . Therefore,


 � � 	 � � � �� 
 � � �
	 � �� � .

Thus, no ideal

 � �

� �
� � is contained in another ideal

� � �
� �

� � . Therefore,
by Maclagan’s Theorem [18, 19], the family �

� �
� � is finite, which proves that

�
�

contains only finitely many pairs
� � 	 � � � .

It remains to show that each pair
� � 	 � � � � �

� is finite, that is, that � � is finite.
Fix some arbitrary

� �
ZZ � .

If � �
� then any Graver basis element

� � �
�
	 � � 	 ��� � 	 � � � contains exactly

one non-zero building block � � . If, on the contrary, � � and � � were both non-zero,
then we could construct a non-zero vector

�
�
�

ker
� � � � with

�
� � �

and
�
�
�� �

by replacing � � by � in
�
. This contradicts the � -minimality of the Graver basis

element
�
. Since there is only one non-zero building block � � in

�
, this building

block has to be � -minimal in ker
� � � , that is, � � belongs to the Graver basis of � .

Thus, � �
� � � � � � � � � is finite.

If � ��
� then any Graver basis element

��� � � 	 � � 	 � ��� 	 � � � can contain only
� -minimal solutions � of � � � � � � as building blocks � � 	� � � 	 � ��� 	�� . If � � were
not such a � -minimal solution, then there exists some � �� �� � � with � � �� � � � �
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and � �� � � � . Thus, replacing in
�

the building block � � by � �� we obtain a non-zero
vector

�
�
�

ker
� � � � with

�
� � �

and
�
�
�� �

contradicting the � -minimality of
the Graver basis element

�
. The set � � � � of � -minimal solutions of � � � � � � ,

however, is finite. To see this, apply the Gordan-Dickson-Lemma (see, e.g., [8]) to
the set � � � � 	 � � � � � � � � � � � . ��

Using the finiteness of
�
� , we could find this set by computing the Graver test

set � � for sufficiently large
�

and by decomposing its elements into their building
blocks. Even when disregarding that we do not know in advance how big

�
then has

to be taken, this approach is not very practical, due to the size of � � . The idea now
is to retain the pattern of Graver test set computation from Algorithm 8, but to work
with pairs

� � 	 � � � instead, and to define the two main ingredients, normalForm and
S-vectors, appropriately. In what follows, the objects

�
, � , and

�
all are pairs of the

form
� � 	 � � � .

Algorithm 15 (Algorithm to compute
�
� ).

Input: a generating set � of ker
� �
� � in

� � 	 � � � -notation to be specified below
Output: a set

�
which contains

�
�

{forming S-vectors}
� � � �

� � � ��� � ��� � �
while � �� �

do� � � an element in �
� � � � � � � �� � � normalForm

� � 	 � �
if
� �� �

�
	 � � � � then

{adding S-vectors}
� � � � �

�� ����� � � �
� ��� � �

� � � �
� � � �

end if
end while
return

�
.

Behind the function normalForm
� � 	 � � there is the following algorithm.

Algorithm 16 (Normal form algorithm).

Input: a pair
�
, a set

�
of pairs

Output: a normal form of
�

with respect to
�

while there is some � � �
such that � � � do� � � ��� �

end while
return

�
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It remains to define an appropriate input set, the sum
�

and the difference
�

of
two pairs

� � 	 � � � and
� � �

	 � � � � . To get good candidates we may think of a compu-
tation of � � where every vector is decomposed into its building blocks.

Lemma 17. Let � be a generating set for ker
� �
� � over ZZ which contains a gen-

erating set for � � �
	 � � � � � � � � � ker

� �
� � consisting only of vectors with zero

first-stage component. Moreover, let � � be the set of all those vectors in ker
� � � �

whose building blocks are also building blocks of vectors in � � � � � . Then, for any�
, the vectors � � generate ker

� � � � over ZZ.

Proof. cf. [13]. ��

This lemma suggests the following input set.

Definition 18. We define the building blocks of all vectors in � � � � � � � � in
� � 	 � � � -

notation to be the input set to the above algorithm. Herein, � is a generating set for
ker

� �
� � over ZZ which contains a generating set for � � �

	 � � �	� � � � � � ker
� �
� �

consisting only of vectors with zero first-stage component.

Definition 19. Let

� � 	 � � � � � � �
	 � � � � � � � � � � �

	 � � � � � � � 	
where

� � � � � � � � � � � � � � � � � � 	 � �
� � � � ���

Moreover, let

� � 	 � � � � � � �
	 � � � � � � � � � � �

	 � ��� � � � � � � � 	 � �
� � � � 	 � � � � � � �

Remark 20. In
� � 	 � � � � � � �

	 � � � � � � � � � � �
	 � � � � � � � � � � 	 � �

� � � � 	 � � � � � �
it suffices to collect only one difference � � � � for every � � � � . It will be elaborated
in the proof of the subsequent proposition that Algorithm 15 still terminates and
works correctly if we defined

� � 	 � � � � � � �
	 � � � � this way.

Proposition 21. If the input set, the procedure normalForm, and
� � � ,

� � � are
defined as above, then Algorithm 15 terminates and satisfies its specifications.

Proof. In the course of the algorithm, a sequence of pairs in
� � � is generated,

let us denote it by
� � � � 	 � �  � 	 � � 	 	 � � 	 � 	 � ��� � , with the property that

� � � 	 � � � � ��� � � 	 � � � � whenever
� � � . We will show that the subsequences with � � � and with� ��

� are both finite. Therefore, Algorithm 15 terminates.
Let

� �
�
	 � � � 	 � �

	 � 	 � 	 ��� � � be a sequence of pairs such that
�
�
	 � � � �� �

�
	 � � �

whenever
� � � . We associate with each pair

�
�
	 � � � the monomial ideal


 �
�
	 � � � �

Q � � � 	 � ��� 	 � 	 � � generated by all monomials � ���
� � � 	 � with � �� � and � � � � . Then�

�
	 � � � �� �

�
	 � � � whenever

� � � implies that there is some nonzero vector � �
� � �

such that there is no � � � � with � ��
� and � � � � . Thus, there exists a generator

� ��� � � � � � 	 � of

 �
�
	 � � � which is not divisible by any generator � � �

� � � 	 � of

 �
�
	 � � � .
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But this means that

 �
�
	 � � � �� 
 �

�
	 � � � whenever

� � � . Maclagan’s Theorem [18,
19] now implies that the sequence

� 
 �
�
	 � � � 	 
 � �

	 � 	 � 	 � ��� � terminates. Therefore,
the subsequence

� �
�
	 � � � 	 � �

	 � 	 � 	 � ��� � generated by Algorithm 15 is finite.
Let

� � � � 	 � �  � 	 � � 	 	 � � 	 � 	 � ��� � be a sequence of pairs such that � � �� � for
all

� � � 	��
	 ��� � , and such that
� � � 	 � � � � �� � � � 	 � � � � whenever

� � � . We asso-
ciate with

� � � 	 � � � � , � � �� � , the monomial ideal

 � � � 	 � � � � � Q � � � 	 ��� � 	 � 	 � � 	 � �

generated by all the monomials � �
� �� � � 	� � � � � � 	 � with � � � � � . Consider the se-

quence
� 
 � � � 	 � �  � 	 
 � � 	 	 � � 	 � 	 ��� � � of monomial ideals.

� � � 	 � � � � �� � � � 	 � � � �
whenever

� � � implies that � � �� � � or that there is some � �
� � � � such that

there is no � � � � � with � � � � . Thus, there exists a generator � �
� �� � � 	� � � � � � � � 	 �

of

 � � � 	 � � � � which is not divisible by any generator � �

� �� � � 	� � � � � � 	 � of

 � � � 	 � � � � .

Hence,

 � � � 	 � � � � �� 
 � � � 	 � � � � whenever

� � � . Maclagan’s Theorem [18,19] now
implies that the sequence

� 
 � � � 	 � �  � 	 
 � � 	 	 � � 	 � 	 ����� � terminates. Therefore, the
subsequence

� � � � 	 � �  � 	 � � 	 	 � � 	 � 	 ��� � � generated by Algorithm 15 is finite. We
conclude that Algorithm 15 terminates and it remains to prove its correctness.

To show that
�
�
� �

, we have to prove that
� � � �

for all
� �

ZZ � . Fix
�

and start a Graver test set computation (Algorithm 8) with ¯� � � � � � 	 � � 	 � ��� 	 � � � �� � 	 � � � � � 	 � � � � � � as input set. ¯� generates ker
� � � � over ZZ for all

� �
ZZ � ,

since � � � ¯� by the assumption on the input set to Algorithm 15.
We will now show that all sums

� � � � of two elements
� 	 �

�
� ¯� reduce to � with

respect to ¯� . In this case, Algorithm 8 returns the input set ¯� which implies � � � ¯� .
Therefore,

� � � �
as desired.

Take two arbitrary elements
� � � � 	 � � 	 ��� � 	 � � � and

�
�
� � � �

	 � ��
	 ��� � 	 � �

� �
from ¯� , and consider the vector

� � �
�
� � � � � �

	 � � � � ��
	 ��� � 	 � � � � �

� � .
In the above algorithm,

� � 	 � � � � � � �
	 � � � � was reduced to zero by elements� � � 	 � �  � 	 � ��� 	 � � � 	 � � � � � �

. From this sequence we can construct a sequence�
�
	 ��� � 	�� � of vectors in ¯� which reduce

� � �
� to zero as follows.� � � 	 � �  � � � � 	 � � � � � � �

	 � � � � implies that � � � � � � � and that there exist� � � � 	 ��� � 	 � � � � � � �  such that � � � � � � � � � �� for
��� � 	 � ��� 	�� . Therefore,

�
� � �

� � � 	 � � � � 	 ����� 	 � � � � � � � � � � and
� � �

� can be reduced to
� � �

� � �
� . Moreover,�

�
� ¯� and all the building blocks of

� � �
� � �

� lie in
� � � 	 � � � � � � �

	 � � � ��� �� � � 	 � �  � .
But

� � � 	 � � � � � � �
	 � � � ��� � � � � 	 � �  � was further reduced by

� � 	 	 � � 	 � , ��� � ,� � � 	 � � � � � �
. Therefore, we can construct from

� � 	 	 � � 	 � a vector
� 	 � ¯� with� 	 � � � � � � � � . Therefore,

� � � � � � � can be further reduced to
� � � � � � � � � 	 .

Repeating this construction, we obtain in the
 
 �

step
� � � � � � � �

� � �
� � � � � whose

building blocks lie in
� � � 	 � � � � � � �

	 � � � ��� � � � � 	 � �  � �
� � �
� � � � � � 	 � � � 	  � . The

latter can be reduced to
�
�
	 � � � � by the pair

� � � 	 � � � � � �
. Therefore, there exists a

vector
� � � ¯� such that

� � � � � � � � � � �
� � �
� � � � � and �

� � � � � � � � �
� � �
� � � .

��

To solve the optimization problem min��� � � � � � � � 	�� � ZZ
��� � �
� � by Algo-

rithm 6 we have to reconstruct improving vectors from building blocks in
�
� . The

following lemma shows how to accomplish this.
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Lemma 22. Suppose there exists no pair
� � �

	 � � � � � �
� with the properties

1. � � � � ,
2. for all

� � � 	 ��� � 	 � there exists ¯� � � � � � � ¯� � � � � ,
3. � � � � � � , where

�
�
� � � �

	 � ��
	 ����� 	 � �

� � and � �� � argmax� � �� ¯� � � ¯� � � � � 	 ¯� � �
� � � � for

� � � 	 ����� 	�� .

Then
�

�
� � � 	 � � 	 ��� � 	 � � � is optimal for min��� � � � � � ��� � 	�� � ZZ �� � .

If there exists such a pair
� � �

	 � � � � � �
� then

�
� � �

� is feasible and it holds� � � � � � �
� � � � � � � .

Proof. Suppose that
�

� is not optimal.
Then there is some vector

�
� �
� � � � �

	 � � ��
	 � ��� 	 � � �

� � � � � so that
�

� � �
� � is

feasible and � � � � � � �
� � � � � � � � . Feasibility of

�
� � �

� � implies
�

� � �
� �
�
� ,

hence
�
� � � �

� . Therefore, � � � � � and � � �� � � � , � � � 	 � ��� 	�� , the latter implying
that for any

� � � 	 ��� � 	 � there exists a ¯� � � � � � � such that ¯� � � � � . Let
�
� � �� � � �

	 � ��
	 ��� � 	 � �

� � where � �� � argmax��� �� ¯� � � ¯� � � � � 	 ¯� � � � � � � � .
Now � � � � � � � � � � � � � � � implies that � � � � � � � . Moreover, � � � � � � � � � � � � .

In conclusion, the pair
� � � �

	 � � � � � fulfills conditions � � – � � proving the first claim of
the lemma.

With
�
�
� � � �

	 � ��
	 � ��� 	 � �

� � according to � � we obtain � � � � � � �
� � � � � � � .

Moreover � �� � � � , � � � 	 � ��� 	�� , and � � � � together imply
�
� � �

� , and
�

� � � � �

� . Finally,
� � �

	 � ��
	 � ��� 	 � �

� � � ker
� � � � , and therefore

� � � �
� � � � � � � � � � � �

�
� which completes the proof. ��

The reconstruction procedures in the above lemma yield an improving vector in
linear time with respect to the number

�
of scenarios. Accordingly, we observed in

test runs that the method is fairly insensitive with respect to growing of the number�
of scenarios. Of course, this becomes effective only after

�
� has been computed.

Algorithm 15 together with an initialization procedure and the augmentation
procedure from Lemma 22 have been implemented. The current version of that im-
plementation can be obtained from [12]. To indicate the principal behaviour of our
method, we report on test runs with an academic example. The algorithmic bottle-
neck of the method is the completion procedure in Algorithm 15. Therefore the sizes
of the matrices � and � are very moderate in this initial phase of testing. On the
other hand, the method is fairly insensitive with respect to the number of scenarios.

Consider the two-stage program

min� � � � � � � � �
	 � ��

��
� ��� ��� � � � � � � � � 	 � � �

� � � � � � � � � �
� � � � � � � � � � � � �

�
	

� 	 � � � 	 � � � � � � � 	 	
� � �
� � � � 	 � � � � 	

� �
� � � � � 	 � � � � 	

� � 	 � 	 	�� � � 	�� � 	 	�� � � 	�� � � �
ZZ � ���
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Here, the random vector
� � � � is given by the scenarios

� � 	 ��� � 	 � � , all with equal
probability � � � . The realizations of

� � �
�
	 � � 	 � and

� � � � 	 � � � � are given by uniform
grids (of differing granularity) in the squares � � � �

	 � � � �
� � � � �

	 � � � � and � �
	��
� � � �

�

� �
	 �
� � � � , respectively. Timings are given in CPU seconds on a SUN Enterprise � � � ,� � � MHz Ultra-SPARC.
It took � � � � to compute

�
� altogether consisting of � � � � building blocks ar-

ranged into
� � pairs

� � 	 � � � . Aug
� �

� � then gives the times needed to augment the
solution � � � � 	 � � �

�
� � � 	 �

� ,
� � � � � �

� , and
� � � � � � 	 , �

� � 	 ����� � to
optimality.

� �
�
	 � 	 � � � � 	 � � � scenarios variables optimum Aug

� �
� � CPLEX scendec

� � � � � � � � � � �
� � � � �

	 � � � � � � � � � � � � � � � � �� � � � � � � � � � �
� � ��� � �

� � � � �
	 � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � ��� � � � � � � � �
	 � � � � � � � � � � � day �

Although further exploration is necessary, the above table seems to indicate lin-
ear dependence of the computing time on the number

�
of scenarios, once

�
� has

been computed. Existing methods in stochastic integer programming are much more
sensitive on

�
. The scenario decomposition from Section 3, for instance, involves

a non-smooth dual optimization in a space of dimension
� � � � � � . This explains

the failure reported in the column “scendec”. Tackling the full-size integer linear
program (6) by CPLEX directly is possible, but, as shown in the respective column,
becomes inferior when

�
becomes large.

7 CONCLUSIONS

Two-stage stochastic integer programs are possible modeling alternatives for op-
timization problems where real-time features arise due to incompleteness of data
information at the moment of decision. From structural viewpoint, stochastic inte-
ger programs bear nonconvexities which prevents straightforward extension of al-
gorithms known from stochastic programming without integer requirements.

With discrete probability distributions, linear two-stage stochastic integer pro-
grams can be reformulated as large-scale, mixed-integer linear programs. The latter
are amenable for decomposition. We have proposed two such methods. The first
one combines Lagrangian relaxation of nonanticipativity and a branch-and-bound
scheme. This method works for general mixed-integer linear two-stage stochastic
programs, which we have illustrated at an example from unit commitment under
uncertainty.

Our second decomposition method works with test sets instead with the problem
itself. We have demonstrated that the Graver test set of a pure-integer linear two-
stage stochastic program can be decomposed into building blocks. The set of these
building blocks stabilizes with growing number of scenarios. It can be computed
by a critical-pair/completion procedure, directly, without advance knowledge of the
Graver test set. The building blocks finally lead to an augmentation algorithm for
stochastic integer programs. According to our preliminary testing, this algorithm is
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far less sensitive to the number of scenarios than hitherto stochastic programming
methods are.
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Abstract A major issue in the application of multistage stochastic programming to model
the cost-optimal generation and trading of electric power is the approximation of the under-
lying stochastic data processes by tree-structured schemes. We present a methodology for the
generation of scenario trees for the stochastic load process from historical load profiles. The
statistical modeling of the load process exploits the decomposition of the load process into
a daily mean load process and a mean-corrected load series. The probability distribution of
the load process over the optimization horizon is derived by using a time series model for the
daily mean load process and regression models for the mean-corrected load series. We utilize
the explicit representation of the distribution to compute approximate load scenarios and their
probabilities. In a final step we reduce the number of load scenarios by a scenario deletion
procedure. We report on the application of our approach to the cost-optimal generation of
electric power in the hydro-thermal generation system of a German power utility.

1 INTRODUCTION

In industrial practice, mathematical models for the efficient generation, transmis-
sion, and distribution of electric power have been proved indispensable. The ongo-
ing liberalization of electricity markets stimulates the interest of power utilities in
developing modeling and optimization techniques for operating power systems and
trading electricity under uncertainty. Utilities participating in deregulated markets
observe increasing uncertainty in load (i.e., demand for electric power), inflows to
reservoirs and prices for fuel and electricity on spot and contract markets. The mis-
matched power between actual and predicted demand may be supplied by the power
system or by trading activities. The competitive environment forces the utilities to
rate alternatives within a few minutes.

In the present paper we develop approximate tree-structured schemes for the
stochastic load process entering a multistage mixed-integer stochastic program. It
models the weekly cost-optimal generation and trading of an electric hydro-thermal
based utility under data uncertainty. The relevant uncertain data may comprise elec-
tric load, stream flows to hydro units, and fuel and electricity prices. For solving
the stochastic power management model a stochastic Lagrangian relaxation algo-
rithm [15] has been designed. With a state-of-the-art bundle method for solving the
dual, specialized subproblem solvers and Lagrangian heuristics, the stochastic ver-
sion of classical Lagrangian relaxation becomes fairly efficient.

The stochastic power management model has emerged from a collaboration
with the German utility Vereinigte Energiewerke AG (VEAG). The VEAG genera-
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tion system consists of 25 (coal-fired or gas-burning) thermal units and 7 pumped-
storage hydro units. Its total capacity is about 13,000 megawatts (MW), including a
hydro capacity of 1,700 MW; the system peak loads are about 8,600 MW. In contrast
to other hydro-thermal based utilities the amount of installed pumped-storage capac-
ity enables the inclusion of pumped-storage plants into the optimization. An addi-
tional feature of that system is that for a planning period of one week, the changes
of reservoir levels in the pumped-storage hydro units caused by stream inflows are
negligible.

The paper is organized as follows. In §2 we describe the stochastic power man-
agement model and the stochastic Lagrangian relaxation approach for its solution.
The model selection for the electric load is addressed in §3.2. Our procedures for
generating and reducing load scenario trees are presented in §3.3 and §3.4, respec-
tively. In §3.5 we report on numerical tests.

2 POWER SYSTEM MODELING

2.1 Modeling

We consider a power generation system comprising thermal units, pumped storage
plants and contracts for delivery and purchase, and describe a model for its cost-
optimal operation under uncertainty in electrical load (i.e., demand), stream flows
in hydro units and prices for fuel or electricity.

The scheduling horizon for unit commitment is typically discretized into uni-
form (e.g., hourly) intervals. Accordingly, the load, stream flows and prices are as-
sumed to be constant within each time period. The scheduling decisions for thermal
units are: which units to commit in each period, and at what generating capacity. The
decision variables for hydro plants are the generation and pumping levels for each
period. Contracts for delivery and purchase are regarded as special thermal units.
The schedule should minimize the total generation costs, subject to the operational
requirements.

We use the following notation. There are � time periods.



and
�

are the numbers
of thermal and hydro units, respectively. For a thermal unit

�
in period

�
, � � 
 � � �

	 � �
is its commitment ( � if on, � if off), and � � 
 its production, with � � 
 � � if � � 
 � � ,� � 
 � � � min� 
 	 � max� 
 � if � � 
 � � , where � min� 
 and � max� 
 are the minimum and maximum
capacities. Additionally, there are minimum up/down-time requirements: when unit�

is switched on (off), it must remain on (off) for at least ¯
� � (

� � , resp.) periods. For
a hydro plant � , � � 
 and � � 
 are its generation and pumping levels in period

�
, with

upper bounds � max� 
 and � max� 
 respectively, and � � 
 is the storage volume in the upper
dam at the end of period

�
, with upper bound � max� 
 . The water balance relates � � 


with � ��� 
 � � , � � 
 , � � 
 and the water inflow � � 
 , using the pumping efficiency � � . The
initial and final volumes are specified by � in� and � end� .

The basic system requirement is to meet the electric load. Another important re-
quirement is the spinning reserve constraint. To maintain reliability (compensate
sudden load peaks or unforeseen outages of units) the total committed capacity
should exceed the load in every period by a certain amount (e.g., a fraction of the
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demand). The load and the spinning reserve during period
�

are denoted by
� 
 and
 
 , respectively. Typical load curves exhibit daily and weekly cycles with lows dur-

ing nights and weekends, and morning and early evening peaks. Efficient operation
of pumped storage hydro plants exploits such cycles by generating during peak load
periods and pumping during off-peak periods.

Since the operating costs of hydro plants are usually negligible, the total system
cost is given by the sum of startup and operating costs of all thermal units over
the whole scheduling horizon. The fuel cost � � 
 for operating thermal unit

�
during

period
�

has the form

� � 
 � � � 
 	 � � 
 � � � max
� � � � � � � � ¯� � � � � 
 � � 
 � � � � 
 � � 
 � 	 (1)

with coefficients � � � 
 , � � � 
 such that � � 
 � � 	 � � is convex and increasing on � � ; note
that � � 
 � � 	 � � � � . The startup cost of unit

�
depends on its downtime; it may vary

from a maximum cold-start value to a much smaller value when the unit is still
relatively close to its operating temperature. This is modeled by the startup cost

� � 
 � � � � � � max� � � � � � � � � ��
� � � � � � 
 � ��

� ��� � � � 
 � �  	
(2)

where �
� � � � �

� � �
� � � � �� are fixed cost coefficients,

� �� is the cool-down time
of unit

�
, � � � �� is its maximum cold-start cost, � � � � � � � 
 � �
 � � , and � � � � � �

	 � � for� � � � � �� 	 ��� � 	 � are given initial values.
In electric utilities, schedulers forecast the electric load for the required time

span. Since the load is mainly driven by meteorological parameters (temperature,
cloud cover, etc.), the actual load deviates from its prediction. Of course, the load
uncertainty increases with the length of the planning horizon. Other sources of un-
certainty are generator outages, stream flows in hydro units, and prices of fuel and
electricity.

To formulate a power generation model that incorporates fluctuations in stream
inflows in hydro plants, and fuel and electricity prices in addition to the load uncer-
tainty, we use a probabilistic description of uncertainty. Thus

� � 
 � � � � 
 	�
 
 	 � 
 	 � 
 	 � 
 	 � 
 � � �
 � � (3)

is assumed to be a discrete-time stochastic process on a probability space
� 	 	�� 	 � � ,

where
� 
 , 
 
 and � 
 represent the load, the spinning reserve and the water inflows

in period
�
, while � 
 , � 
 and � 
 collect the cost coefficients of (1) and (2).

The scheduling decisions for period
�

are made after learning the realization of
the stochastic variables for that period. Denote by

� 
�� �
the 
 -field generated

by � � � � 
� ��� , i.e., the events observable till period
�
. Since the information on � � is

complete,
�
�
� � � 	 	 � , i.e., � � is deterministic. By assuming

� � � �
we require

that full information be available at the end of the planning horizon. The sequence of
scheduling decisions ��� 
 	 � 
 	 � 
 	 � 
 � also forms a stochastic process on

� 	 		� 	 � � ,
which is assumed to be adapted to the filtration of 
 -fields, i.e., nonanticipative.
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Nonanticipativity means that the decisions
� � 
 	 � 
 	 � 
 	 � 
 � may depend only on the

data observable till period
�
, or equivalently that

� � 
 	 � 
 	 � 
 	 � 
 � is
� 
 -measurable.

We now assume that we have a discrete distribution of the data process � � 
 � �
 ���
(cf. (3)). Its support consists of scenarios (i.e., realizations of � � 
 � �
 ��� ) that form
a scenario tree based on a finite set of nodes

�
. The root node �

� � stands
for period

� � � . Every other node � has a unique predecessor node � � and a
transition probability � ��� � 	 � � , which is the probability of � being the succes-
sor of � � . The successors to node � form the set

� � � � � ; their transition proba-
bilities add to � . The probability � � of each node � is generated recursively by
� �

� � , � � � � ��� � 	 � � 	 for �
�� � . Nodes � with

� � � � � � �
are called

leaves; they constitute the terminal set
� � . A scenario corresponds to a path from

the root node to a leaf. The probabilities � � � � � ��� � provide a distribution for the set
of all scenarios. Conversely, given such scenario probabilities, the remaining node
and transition probabilities are generated recursively by � � � � ��� ��� � � � � � ��� ,
� ��� � � � � ��� � � � for � �

� � � � � � .
Let � �

� � �
� � denote the path from the root to node � . Then node � corre-

sponds to a set of realizations of � � 
 � �
 ��� that coincide until the period
� �
� � � �

� � �
� � �
� � � associated with node � ; their common value � 
 � � � is denoted by � � � �

� � � 	�
 � 	 � � 	 �
� 	 � � 	 � � � . Let the decisions for period

�
be made after learning

the realization of � � 
 � 
� � � . The scheduling decisions
� � � 	 � � 	 � � 	 �

� � assigned
to nodes � in

� 
 � � � � � � � � � � � � are realizations of the stochastic decisions� � 
 	 � 
 	 � 
 	 � 
 � ; note that � � ��� � � � � � . We denote by
�

first
� � �


 
 ��� � 
 the
set of first-stage nodes, where

�
� is the maximal period such that the data process

� � 
 � 
 
 ��� is deterministic.

Let � �
� 
 � � � �� � � � � � � � � � � � 
 � � � � . We use the following notation for the se-

quence of predecessors of any node �
� � � � � � : � � � � � � � , � � � � � � � � � �

� � � � �
if

� �  � � � ; note that
� �
� � � � � � �

� � � 
for

 � � 	 ��� � 	�� � � � � � . To han-
dle initial values of the commitment decisions � � we let � � � �  � � �

� � for � � �
� � � � ini

	 � ��� 	 � � � � , where
�

ini
� � � � max � ��� � � � � � � � � �� 	 ¯

� � � � 	�� � � � � , and
assume that fixed initial values � � 	��� for

 � �
ini

	 ��� � 	 � , are given. Then (cf. (1) and
(2))

�
�� � � �� 	 � �� � � � max

� � ��� ¯�
� �
�� � � �� � � �� � � �� �

and

�
�� � � �

� 
 � � � �� � � � max� � � � � ��
� �� � � � �� � ��

� � � � � 	���  (4)

are the fuel and startup costs of unit
�

at node � .
The scenario-tree formulation of the power generation problem reads:

min
�� ��� � � ��

����� � � �� � � �� 	 � �� � � � �� � � � � 
 � � � �� � � s.t. (5)

� min� 
 � � � � �� � � �� � � max� 
 � � � � �� 	 � �� � � �
	 � � 	 � � � 	 � � � 	 � ��� 	 
 	 (6a)
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� � 	 �� � � � 	 � � �  �� � � �� 	  � � 	 ��� � 	 ¯
� � � � 	 � � � 	 � � � 	 � ��� 	 
 	 (6b)

� � 	 � � �  �� � � � 	��� � � � � �� 	  � � 	 ��� � 	 � � � � 	 � � � 	 � � � 	 � ��� 	 
 	 (6c)

� � �
�� � � max� 
 � � � 	 � � �

�� � � max� 
 � � � 	 � � �
�� � � max� 
 � � � 	 � � � 	 � � � 	 ����� 	 � 	

(7a)
�
�� � �

� 	� � � �� � � � �
�� � � �� 	

�
� � 	 � � � 	 � ��� 	 � 	 (7b)

�
�� � � in� 	 �

�� � � end� 	
�
� � � 	 � � � 	 ��� � 	 � 	 (7c)

��
� ��� � �� � ��

� � � � � �� � �
�� � � � � 	

�
� � 	

(8a)

��
� ��� � � �� � max� 
 � � � � � �� � � 
 � 	

�
� � � (8b)

Here, (5) is the expected cost, (6) describes the operating ranges and minimum
up/down-time requirements of thermal units, (7) models the operating ranges and
dynamics of hydro units (with � � treated as state variables), and (8) imposes the
load and reserve requirements. The nonanticipativity constraint is handled implic-
itly (i.e., it is ensured automatically) by the tree-based model. Note that the model

S N Variables Constraints Nonzeros
binary continuous

1 168 4200 6652 13441 19657
20 1176 29400 45864 94100 137612
50 2478 61950 96642 198290 289976

100 4200 105000 163800 336100 491500

Table 1. Size of the scenario-tree model (5)–(8) depending on the numbers of scenarios and
nodes for

� � � ��� , � � ��
 and � � �

(5)–(8) forms a large-scale linear mixed-integer program. For
� � � � � � nodes and

� � � � � � � scenarios, this model involves

 �

binary and
� 
 � � � � � continuous deci-

sion variables, and
� � � � � � � � � (in)equality constraints and

� 
 � � � � � bounds for
continuous variables (without taking into account the constraints of type (6b)–(6c)
and the objective function). Table 1 shows how the size of the scenario-tree model
(5)–(8) increases with the number of nodes and scenarios.

2.2 Lagrangian Relaxation

Recent algorithmic approaches to large-scale mixed-integer stochastic programs
[1, 4, 5, 24, 31] are based on a successive decomposition into finitely many smaller
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subproblems. The stochastic programming model (5)–(8) is almost separable with
respect to generation decisions of individual units, since only the constraints (8)
couple different units. Hence, when dualizing these coupling constraints, the cor-
responding Lagrangian dual decomposes into much smaller subproblems, namely,
into power generation models for single (thermal or hydro) units. Such a Lagrangian
decomposition approach is discussed in [28] for general multistage stochastic inte-
ger programs under the label component decomposition. In the following, we give
a brief description of this approach and of a Lagrangian relaxation algorithm for
solving (5)–(8). For a more detailed presentation we refer to [7, 15, 25].

Let
� � � � � 	 � 	 � 	 � � , � � � � � � and let

� � � �
�
	 � 	 � � � � � �

�
	 � �	 � � ��� �

�
�

� � �
�

� denote the Lagrange multiplier in scenario-tree form. Then (cf. [7, §4])
with the Lagrangian

	 � � � � � � � �� ��� � � � ��
����� � � �� � � �� 	 � �� � � � �� � � path � � �� � � (9)

� � �
�
� � � � ��

� ��� � �� � ��
� ��� � � �� � �

�� � �
� � �	 � 
 � � ��

����� � � �� � max� 
 � � � � � �� � � � 	

and the dual function

 � � � � � min

�
� 	 � � � � � s.t. constraints (6)–(7) � 	 (10)

the dual problem reads
max
� 
 � � � � � � �

	 �
��� � (11)

Under the assumptions made on the fuel costs, the dual function



is concave and
polyhedral. The dual problem is separable and its solution may be found by solving
stochastic single unit subproblems. Specifically, the dual function


 � � � �
��
��� � 
 � � � � � ��

� ��� �
 � � � � � � �� ��� � � � � � � � � � � �	 
 � � 	 (12)

decomposes into the thermal subproblems


 � � � � � min� � � �� ��� � � �
min� �� � � �� � � �� 	 � �� �	� � � �

� � � �	 � � �� � (13)

� � �	 � �� � max� 
 � � � � � �� � � path � � �� � � s.t. (6) � 	

and the hydro subproblems

�
 � � � � � � min� � � � � � � � �� ��� � � � � � � �
�� � � �� � s.t. (7) � � (14)
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Both subproblems represent multistage stochastic programming models for the op-
eration of a single unit. While the thermal subproblem (13) is a combinatorial mul-
tistage program involving stochastic costs, the hydro subproblem (14) is a linear
multistage model with stochastic costs and stochastic right-hand sides.

In short, our method for solving the stochastic programming model (5)–(8) con-
sists of the following ingredients:

(a) Solving the dual problem (11) by a proximal bundle method using function and
subgradient information;

(b) Efficient solvers for the single unit subproblems: dynamic programming for
(13) and a special descent algorithm for (14);

(c) Lagrange heuristics for determining a nearly optimal first-stage decision.

Thus, the approach is based on the same, but stochastic, ingredients as in the clas-
sical case: a solver for the nondifferentiable dual, subproblem solvers, and a La-
grangian heuristics. The interaction of these components is illustrated in Figure 1.
They have been extensively described in previous studies [15,24] and are now briefly

solution of the dual problem
(proximal bundle method)

�

Lagrangian heuristics

�

�

(stochastic) economic dispatch

�

�

�

�

solution of subproblems
(stochastic dynamic programming)

(descent algorithm)

Figure 1. Structure of the (stochastic) Lagrangian relaxation algorithm

discussed. For a single unit, the hydro subproblem (14) can be solved by stochas-
tic linear programming techniques that are presently available, see, e.g., [2, 29].
However, a specialized descent method [24] is found to be more efficient for these
problems. The outer minimization of the thermal subproblem (13) with respect
to the commitment state � � is solved by dynamic programming, while the min-
imization with respect to � � is carried out explicitly. Since the dual function



is non-differentiable, the dual problem (12) has to be attacked by a subgradient-
type method for concave nondifferentable maximization. The reason for employing
the proximal bundle method [20] in our algorithm are its very strong convergence
properties. The optimal value


 � � � � for (12) delivered by the bundle method pro-
vides a lower bound for the optimal cost of the model (5)–(8). In general, however,
the “dual optimal” scheduling decisions

� � � � � � � � � � � � 	 � � � � � 	 � � � � � 	 �
� � � � � vi-

olate the load and reserve constraints (8) such that a low-cost primal feasible so-
lution has to be determined by a Lagrangian heuristic. Two Lagrangian heuristics
(cf. [15,24]) have been developed that determine nearly optimal first stage decisions
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� � � � 	 � � 	 � � 	 �
� � � � ��� first starting from the optimal multiplier

� � and
� � � � � . While

the first heuristics provides a nearly optimal decision only at nodes �
� �

first, the
result of the second one is a nearly optimal solution at every node in

�
.

3 MODELING OF UNCERTAINTY

3.1 Introduction

Since the stochastic power management model (5)–(8) uses a set of scenarios to
model data uncertainty, new questions are raised on generating approximate scena-
rio-based data processes. Recent scenario tree generation methods [8] may essen-
tially be classified into two categories: (a) approaches that are embedded in the
solution procedure of stochastic programs [6,11,14,17,19], and (b) approaches that
control the goodness-of-fit of the approximation by certain distances [18,27,32]. For
power management under uncertainty discrete time stochastic models are calibrated
from historical time series for the load and stream flows [13, 16, 26, 31, 32]. The
calibrated models can be used to simulate or select a large number of sample paths,
which are combined into scenario trees. The algorithmic approaches in (a) are com-
putationally demanding, but allow possible updates of the scenario tree structure as
part of the solution procedure in the case of linear or convex stochastic programs
without integrality constraints. The tree building procedures in (b) generate a tree-
structured discrete distribution that minimizes the selected distance (Wasserstein
distance of probability measures in [27],

�
� - and

� 	
-distances of certain parameters

of the distributions in [18] and [32], resp.).
Our approach to load scenario tree generation for the stochastic power manage-

ment model proceeds according to the following steps:

1. Identify a statistical model of the load.
2. Generate an initial load tree.
3. Reduce the number of scenarios in the tree optimally.

These steps are explained in the following subsections.

3.2 A Statistical Model for the Electric Load

Description of the Data

The identification of a statistical model for the electric load of the VEAG generation
system is based on an hourly load profile for a period of three years (1098 days). A
plot of the hourly load data is displayed in Figure 2.

The historical load records show seasonal variations caused by meteorological
factors like temperature, cloud cover, etc. The periodic patterns complete themselves
within the calendar year and are then repeated on a yearly basis. In the weekly and
monthly load data there are recurring patterns of length 24 (one day) and of length
168 (one week). Interruptions of this regularity are caused by customs like public
holidays or the start/end of the daylight saving time. Thus, in principle the electric
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Figure 2. Hourly load data versus time

load depends on the category of the day (Monday, � ��� , Sunday, public holiday, etc.)
and on the season. Figure 3 highlights the periodic components of our historical
data.
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Figure 3. Hourly load data for a period of two weeks

In a first step days of a similar load pattern are identified using daily load records
(24 load data of a day). To each record there we assign a day category (1 if it is a
Monday, � ��� , 7 if it is a Sunday, 8 for a public holiday following a working day, 9
for days between holidays and weekends, 10 for a public holiday following a week-
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end or a holiday). Clustering methods from [30] are applied to answer the question
whether the records can be grouped or classified into useful or informative clusters.
After eliminating seasonal effects of the load records, clustering and ANOVA-tests
lead to a classification of the load records into 8 categories:

category 1: Monday or working day after a public holiday
category 2: working day (Tuesday, Wednesday, Thursday)
category 3: Friday or working day before a public holiday
category 4: Saturday
categroy 5: Sunday
category 6: public holiday not following days of the categories 2,3
category 7: public holiday following days of the categories 2,3
category 8: working day between days of the categories 4-7

Transformation of Data

The statistical modeling of the load process exploits the decomposition of the load
process into a daily mean load process and a mean-corrected load series. The com-
ponent series are treated separately. To do this, let � � � be the observed load at time
step

��� � 	 ��� � 	�� � of day � (record � of the data base). Due to the daily mean load
� � � � � � � � � � �

	 �
� � � � � � and the mean-corrected load record

� � � � � � � � � � � � � 	
�

� ��� ,
the historical load records are decomposed according to

� � � � � � � � � � � � � � 	 ��� � 	 � � � � � � 	 � ��� 	 � � � � � � (15)

The daily mean load series against the day number are plotted in Figure 4. Fig-
ure 5 and 6 display the mean-corrected load records

� � � � � cat � � � � � for days of the
categories

 � � 	 ��� � 	 � .
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Figure 4. Daily mean load versus the day number
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Figure 5. Mean-corrected load records for days of category 1, 2, 3
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Figure 6. Mean-corrected load records for days of category 4, 5

Model for the Daily Mean Load

The mean load depends on the category of the day and on the season. Further, there
is an interaction between the mean load and meteorological factors like temperature,
cloud cover etc. The meteorological impact on the daily mean demand could not be
modelled because of missing meteorological parameters.

To select a suitable class of models for the daily mean load series � � ��� � � J with
J � ZZ � � � �

	�� � 	�� �
	 � ��� � , � � ��� � � J is considered as part of a realization of the
stochastic mean load process � � � � � � ZZ. A time series model for � � ��� � � J is a specifica-
tion of the joint distributions of � � ��� � � ZZ. (The term “time series” is frequently used
for both the observed data and the corresponding stochastic process.) We now recall
some concepts of time series analysis.
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A complete time series model for a stochastic process � � 
 � 
 � ZZ should specify
the distribution of any random vector

� � 
  	 ����� 	 � 
 � � . Often the analysis focuses on
the second-order properties of � � 
 � : the expected values E � 
 and the covariances
cov

� � 
 	 � � � � � E � � � 
 � E � 
 � � � � � E � � � � for all
� 	 �

. In the particular case of
Gaussian time series all random variables � 
 are normally distributed. Therefore, all
the joint distributions are multivariate normal and completely characterized by the
second-order properties of � � 
 � . Classical time series analysis relies on the concept
of stationarity. Recall that � � 
 � is stationary if E �

	
 � � , E � 
 is constant and
cov

� � � 	 � � � � cov
� � � � 
 	 � � � 
 � , � 
 	 � 	�� � ZZ.

To select an appropriate class of time series models for observed data, their
properties are analyzed first. In particular, the data graph is searched for any sea-
sonal (periodic) or trend (nonconstant mean) components, outlying observations or
sharp changes in behavior. Then suitable transformations are applied to the data
to get a new stationary series (residuals) with zero mean and unit variance. The
trend and seasonal components may be removed by estimating these components
and subtracting them from the data; this is the classical decomposition model incor-
porating trend, a seasonal component and random noise. Another transformation is
called differencing; it replaces � � 
 � by � � 
 � � � 
 � � 
 � � � for some lag

� � � , thus
eliminating a seasonal component of period

�
.

In the daily mean load series � � � � � � J there is clearly a recurring pattern with
the seasonal period of 365 (one year). There are further periodic components of
length 7 (one week) and change points due to the start/end of the daylight saving
time. Irregularities of the weekly patterns have been removed from the time series by
replacing outlying observations by the value of the nearest day of the same category.

Most approaches for fitting a time series to the deseasonalized data rely on lin-
ear models. Autoregressive moving average (ARMA) models are characterized by
finite-order linear difference equations with constant coefficients. The process � � 
 �
is called ARMA

� � 	�� � if it is stationary and

� 
 � �
� � 
 � � � � � �

� � � � 
 � � � 	 
 � � � 	 
 � � � � � �
� � � 	 
 � � � � 	 (16)

where
� � � � � � ��� and

� � � � �� ��� are real coefficients and � 	 
 � 
�� ZZ is the white noise
process WN

�
�
	 
 	 � with zero mean and variance 
 	 , i.e., E 	 
 � � , E 	 	
 � 
 	 ,� � � ZZ, and E 	 � 	 
 � � if


 �� �
. Using the backward shift operator � defined by

�
�

� 
 � � � 
 � � for
� 	 � �

ZZ, the ARMA equations (16) can be rewritten as� � � � � 
 � � � � � 	 
 	 � � � ZZ
	 � 	 
 � � WN

�
�
	 
 	 � 	

where
�

and � denote the polynomials
� � � � � � � �

�
� �

� � �
� � � � � , � � � � �

� � � � � �
� � �
� � � � � . An ARMA

� � 	 � � process � � 
 � 
�� ZZ is said to be causal (or
future-independent) if there exists a real sequence �  � � such that � � � � �  � � �
and

� 
 � ��
� � �

 � 	 
 � � 	 � � � ZZ �
If the differenced series � � 
 � � � � � � � � 
 � 
�� ZZ is an ARMA

� � 	�� � process then the
model for the original series � � 
 � reads

� � � � � � � � � � � 
 � � � � � 	 
 ; further, � � 
 � be-
longs to the class of seasonal autoregressive integrated moving average (SARIMA)
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processes if � � 
 � is causal. General SARIMA processes are defined as follows. The
process � � 
 � 
�� ZZ is said to be a SARIMA

� � 	 � 	 � � � � � 	 
 	 � � � process with period
�

if the differenced process � 
 � � � � � � � � � � � �
�
� � � 
 is the causal ARMA process

� �
� � � � � � � � 
 � � � � ��� � � � � 	 
 	 ��	 
 � � � � �

�
	 
 	 � 	

where
� � � � � � �

� � �
� � �

� � 	 � � � � � � �
� � �
� � � � �

, � � � � � � �
� � �
� � � � �

and � � � � � � �
� � �
� � � � � . Then the model for � � 
 � 
�� ZZ reads

� �
� � � � �

�
� � � �

� � � � � � �
�
� � � 
 � � � � ��� � �

�
� 	 
 .

To identify a suitable SARIMA model for the given time series, the differenc-
ing orders

�
,



, the model orders � , � ,
�

, � and the length � of the seasonal
component must be identified. They can be discovered by inspecting the empiri-
cal autocorrelation function, the empirical counterpart of the autocorrelation func-
tion cov

� � � 	 � � � � var
� � � � , � �

ZZ; see, e.g., [3]. The model coefficients
� � � � � � ��� ,

� � � �
�
� ��� , � � � � �� ��� , � � � � �� ��� and the white noise variance 
 	 can be estimated via

parameter estimation procedures for ARMA processes. The maximum likelihood
method produces the most efficient estimates in the particular case of Gaussian
time series. Initial values for the model coefficients can be obtained by the Hannan-
Rissanen algorithm (cf. [3, §5]) which solves the problem of order selection and
parameter estimation for ARMA processes simultaneously.

In our case, we obtained stationary residuals after three differencing operations
(two lag-364 differencing operations followed by one lag-1 differencing). The resid-
uals were treated as part of a realization of the stochastic process

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�� � � � � � 	 " ���
For � � � � the Hannan-Rissanen algorithm from the Mathematica Time Series Pack
[33] selected an ARMA(1,1) model that served as an initial model for the maximum
likelihood method. The resulting maximum likelihood estimates for the model co-
efficients and random noise process are
��
�
�
� � � � ��� � �

	 �� � � � � � � � � � � �
	 ��	 ��� � � � �

	 � � � � � � � � � 	 � � ZZ �
The time series model for � � � � reads � � � �� � � � � � � 	 � � �� � 	 � � � 	 � � ZZ. Accord-
ingly, the time series model for the daily mean load process � d ��� � � ZZ is

� � � � � � � � �
� � � �

	
� � � �� � � � d � � � � � �� � � � 	 � � (17)

The above SARIMA
� � 	 � 	 � � � � �

	��
	
� � � �

�
model can be converted to the following

ARMA
� � � �

	 � � model:

� � � � � � �� � � � � � � � �� � � � � 	 � � � � � � � � � � � � � �� � � � � � � � � � � ��
�
� � � � ���

� � � � � 	�� � � ��
� � � � � � � � 	 " � �� � � � � � � �

� 	 � � �� � 	 � � � 	 � � ZZ � (18)

Model for the Mean-Corrected Load Records

We have selected polynomials to model the time dependence of the mean-corrected
load records corresponding to days of the same category


,
 � � 	 � ��� 	 � . More
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specifically, we fit models of the form

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	 �  � � 	 ��� � 	 � � � � � 	 � ��� 	 � � � 	 (19)

where the error term � � � � is normally distributed with zero mean and variance
 	 � � . These models are known as linear or polynomial regression models (cf. [10]).
From (19) we obtain the predicted load records

� � � � � � � � � � � � � � � � �
� � � � � � � � 	 �  � � 	 � ��� 	 � � � � � 	 � ��� 	�� � � � (20)

For model fitting, regression diagnostics, and forecasting we used the statistical
package S-PLUS [30]. It remains to answer the question how we selected the de-
gree 
 � of the polynomials. This will be done in the following subsection.

Model for the Load

The statistical model for the load is obtained by combining the models for the daily
mean load and the mean-corrected load records according to (15). Regression mod-
els for the mean-corrected load records corresponding to different day categories
may be included into (15) by using dummy or artificial variables


 � ,
 � � 	 � ��� 	 � .

These variables are defined as follows.


 � � � � � 	 if the record corresponds to a day of category


,

�
	
otherwise,

�  � � 	 � ��� 	 � � �

With these definitions (15) may be rewritten as

� � � � 

�
�
� � �

� � �
� 
 � � � � � � � 	 � � � � 	 ����� 	�� � � � � � 	 ��� � 	 � � � � � � (21)

The different time scales for the historical load records and the load process can be
synchronized by an index transformation:

� 
 � 

�
�
� � 


%
	 � �

� � �
� 
 � � � � 
 % 	 � � � � 
 � 	 � � 	 � � �

ZZ � � (22)

(By � � � � � � and
�
%

�
� we denote the (rounded down) integral part and the remainder

of dividing
�

by 24.)
Inserting (18) and (19) into (22) we obtain the statistical model for the load:

� 
 � 

�

� �
� � �

� � � � � % �
� � � �

� � �
� 
 �

� ��
� � �

� � � � � % �
� � � (23)

� � � � �� � � � � 
 � 	 � � � � � �� � � � 
 � 	 � � � 	 � � � � 
 � 	 � � � � � � � � � � � �� � � � � 
 � 	 � � � � � �
� � ��

�
� � 
 � 	 � � � � ��� � � � 
 � 	 � � � � 	�� � � ��

� � � � � � 
 � 	 � � � � 	 " � �� � � � 
 � 	 � � � � � �

� 

� � � �  �

� � �
� 
 � � � � � � 	 � � �� � 	 � 
 � 	 � � � � 	 � � � ZZ � �

To select the degrees 
 � of the regression polynomials we measured the squared
distance between (23) and the historical load data for the third year. The best fit we
obtained for 
 � � � � ,

 � � 	 ��� � 	 � .
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3.3 Generation of Load Scenario Trees

An important initial decision is the choice of the number of stages and of the branch-
ing scheme for the scenario tree, i.e., the number and positions of branching levels
and the branching degree in every node. We choose the following initial structure of
the load scenario tree:

– A balanced tree with % � � branching periods
� � ,

 � � 	 � ��� 	 % . The branching
periods

� � ,
 � �
	 � ��� 	 % , are equidistant within the time span

� � �
�
	 ����� 	 � ,

i.e.,
� � � � �

� � � � � �
� � �  � � � � % ,

 � �
	 � ��� 	 % .

– � � � � � � � � � �
	
�
� � 
 � � � � � � � � � � � � � 	  � � 	 � ��� 	 % 	

� 	 otherwise �
Thus, the tree consists of � � � � � � � � scenarios. The first branching period

�
�

is defined by the length of the planning period within the scheduling horizon. The
branching periods

� � ,
 � �
	 ��� � 	 % , should correspond to the (normally fixed) times

when already observable meteorological and load data provide the possibility to re-
adjust the unit commitment. For the scheduling horizon of one week with an hourly
discretization,

� � � �
�


for
 � � 	 ����� 	 � is a reasonable choice for the generation

system of the utility VEAG. For longer scheduling periods, non-equidistant branch-
ing periods would be preferable in order to restrict the number of scenarios. By
assigning two successors to any node � in

� 
 � ,
 � � 	 ��� � 	 % , we may distinguish

the events “low load” and “high load” for periods
� � � � � � 	 ��� � 	�� � � � , where� � � � � � � . An additional event such as “medium load” would increase the scenario

number to � � � � � �
� � .

It remains to specify the realizations (scenario values) and their probabilities.
Suppose the power utility supplies starting values

� � 
 � �
 � � � 	 " . The realizations for
nodes of the first stage period are given by

� � � � 

�
� �
� 
 � � � % 	 � � � � �

� 
 � � � � 
 � � � % 	 � � �
�
	 � �
� � � � 	 ��� � 	 � � 	

their probabilities �
� � � � . To assign realizations and probabilities to the remain-

ing nodes we first compute the probability distribution of
� � 
 � �
 � 
  � � . By (23),

� � 
 � �
 � 
  � � has a
� � � �

� � -variate normal distribution with mean � � � �
E
� 
 � �
 � 
  � �

and covariance matrix � � � �
cov

� � 
 	 � � ��� �� � 
 � 
  � � . The following properties reduce
the computational effort. First,

E
� � 
 � ��

� ��� 
 � � � � 
 % 	 � � � E
� � 
 � � ��

� ��� 
 � � � � 
 � %
	 � � (24)

for
� � � � � � � � 	 ��� � 	�� � ,

 � �
	 ����� 	 % . Second, the random vector
� � 
 � � � 
 �


�
� �
� 


%
	 � �

� � �
� 
 � � � � 
 % 	 � � �
  � � has a

� � � �
� � -variate normal distribution with

mean �
 � � � � � �
� � � 
 � � � � 
 � %

	 �
and covariance matrix � . By (23) and (24), �


and � are completely determined by E
� 
 � and cov

� � 
 � 	 � 
 � � for
 	

�
� � 	 � ��� 	 % .

With
� � � �

�


, E
� 
 � � E

� � and

cov
� � 
 � 	 � 
 � � � cov

�
��

� ��� 
 �
�
� ��� 	

��
� ��� 
 � � � ��� � � cov

� � � 	 � � �
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for
 	

�
� � 	 ��� � 	 % . To compute E

� � and cov
� � � 	 � � � we use the following lemma:

Lemma 1. Let random variables � 
 , � �
� , be defined by the ARMA equation

(16) with starting values
� � � � 	 ����� 	 � � � � � � � and 	 
 � � � � 	 
 	 � , � � � � . For� 	 ���

� the expected value E � 
 and the covariance cov
� � � 	 � 
 � are given by

E � 
 � � � 

� � � � 
 � � � � � � ��� � � � � � � � � � � 	 � �

�
	 ��� � 	 � � �

� � � �� � � � 
 � � � � � � � � � � � � � � � � � � 	 ��� �
	

cov
� � � 	 � 
 � � 
 	 
�

� � �

��
� � �

� 
 � � � � � �
� � � � � � ��
� � �

� � � � � � � � � � 	

where � � 
 � �
 � � is defined by

� � � � � 	 � � � � � � � � � � � � �
	 � � � 	 �
� � �
� � � � �

	 � �
 � ��

� � � � � � �
	 � � � 	 �
� � �
� � � � � � � 	

 � � �
Proof. By induction.

Using the computer algebra system Mathematica [33], the mean �
 and the co-
varince matrix � of the transformed random vector

� � 
 � �
 � 
  � � can be computed
within a few seconds. The mean � of

� � 
 � �
 � 
  � � can be obtained by the transfor-

mation �
� �
 � � �

� ��� 
 � � � � 
 � %
	 �

.
After computing the distribution of

� � 
 � �
 � 
  � � , a scenario tree for its approx-
imation is constructed in a standard way. Suppose that we already assigned real-
izations and probabilities to all nodes of a path from the root to node �

� �
. We

distinguish two cases.

(a)
� �
� � �� � � ,

 � � 	 ����� 	 % .
Then there is a single successor � � to � with probability � ��� � � � � and real-
ization

� ��� � � E
� � 
 � � � � � � � � ��� � � � � , the conditional mean of

� 
 � � � � � given
the past realizations

�
�
� � � 	 ��� � 	 � 
 � � � � � �

.
(b)

� �
� � � � � , for some

 � � � 	 ����� 	 % � .
Let

� � � � � � � � � 	 � 	 � , i.e., � �
	
�
	

are the successors to node � . The condi-
tional (normal) distribution of

� 
 � � � given
�
�
� � � 	 ��� � 	 � 

� � � �

is approx-
imated by a discrete distribution with the two realizations

� �  � � � � � � � ��
� ��� 
 � � � � � � � � � � � � � � � � 	 (25)

� �
	 � � � � � � � ��
� ��� 
 � � � � � � � � � � � � � � � � � (26)

A criterion for determining the innovation
� � and the transition probability

� �  � � ( � �
	 � � � � � � �  � � ) is that their choice preserves the first two mo-
ments of the conditional distribution for

� 
 � � � given the past realizations
�
�
�

� � 	 ��� � 	 � 
 � � � � � �
[23].
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With the conditional mean � � � � E
� � 
 � � � � � � ��� � � � � and the conditional vari-

ance 
 	� � � var
� � 
 � � � � � � ��� � � � � , the innovation and the transition probability

satisfies

� � � 	
� � � � � � � 	 � 
 	� 	 � �  � � � � � � � � � � 	 � 
 	� � � � � � � � � � �

� �
	� �

The node probabilites �
� 

and � � 	 , resp., are recursively computed from the
relations �

�  � � �  � � � � and �
� 	 � � � � � �  � � � � � .

Figure 7 and 8 show load scenario trees for a planning horizon of one week with
an hourly discretization and branching periods

� � � �
�
 	  � � 	 � ��� 	 � . For the

summer week (Figure 7) the scenario probabilities vary between 0.37 and � �
� � �

,
for the winter week (Figure 8) between 0.7 and � �

� � �
. The generation of one load

scenario tree took less than two minutes on an HP 9000 (780/J280) Compute-Server
with 180 MHz frequency and 768 MByte main memory under HP-UX 10.20.
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Figure 7. Load scenario tree for one week in summer

A few comments on the tree construction procedure are in order. First, the con-
struction of the load scenario tree is consistent with the normality assumption im-
posed on

� � 
 � �
 � 
  � � by the statistical model (23).
�

preserves the mean and co-
variance matrix. In particular, the scenario tree resembles the correlation structure
of the time series model. Second, in general the two transistion probabilities for a
branching point are different. As a consequence, the probabilities of the scenarios in
the tree differ. Third, the construction of the load scenario tree does not prevent unre-
alistic (“too large”) load values. Load values may exceed the maximum capacity of
the thermal system. Empirical results have shown that they are related to very small
node probabilities ( � � �

� � �

). In order to avoid computational difficulties these load
values are replaced by the maximum capacity of the thermal system.
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Figure 8. Load scenario tree for one week in winter

3.4 Optimal Reduction of Load Scenario Trees

The initial scenario tree generated in Section 3.3 may contain too many nodes to
solve the power management model (5)–(8) within acceptable time. Therefore, one
often incorporates a procedure to reduce the number of scenarios of the initial tree
[9, 34].

The load scenario tree provides a first approximation of the distribution of the
discrete-time stochastic load process. Our reduction concept determines a scenario
subset of prescribed cardinality and a probability measure based on this set that is
closest to the initial approximation in terms of a natural (or canonical) probability
metric. Quantitative stability results for stochastic programs (cf. [9]) indicate that
the Fortet-Mourier metrics 	 � ,

� � � , are canonically associated for a multistage
stochastic program like (5)–(8).

Let
� 
 denote the probability measure on � � having unit mass at �

� � � .
The initial scenario tree represents a discrete probability distribution � carried by
scenarios � � � 	

with weights � � � � , �
�
����� � � � � . A reduced scenario tree

is obtained by deleting all scenarios � � 	 � � �
belonging to some index set

� �
� � 	 ����� 	 � � and by assigning new probabilistic weights

� � to each scenario � � , � �� �
.

Let � denote the corresponding probability distribution, i.e.,

� �
��
����� � � � 
 � 	 � � �

���� �
� � � 
 � �
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The Fortet-Mourier metric 	 � ,
� � � , of the discrete probability measures � , �

may be derived by solving the dual transportation problem

	 � � � 	 � � � max

�� �
��
� ��� � � � � � �

���� �
� � � � � � � � � � � � � � � � 	 � � �

� �

�
	

where � � � � 	
� � � � � max� � 	 � � � � � � 	 � � �

� � � � � � ��� � �
�

and
�
�
�

is the Euclidean
norm on � � . Since the two measures � and � have the same support � � � � �� ��� , but
different weights, upper and lower bounds for 	 � � � 	 � � can be derived [9].

Now, let

 � be the distance of � to a closest probability distribution having

support � � � � ��� � 	 � ��� 	 � 	 � �� � � , i.e., corresponding to deleting all scenarios of
� belonging to some index set

�
:


 � � � min� 	 � �
��
��� � � � � 
 � 	 � ���� � � � � 
 � � � � � � �

	 �
���� �

� � � � � �

Then we have (cf. [9])

 � � �

��� � � � min���� � � � � � � 	 � � � �

The optimal weights
� � � � � �� � for the scenarios remainimg in the reduced tree are

¯
� � � � � � �

� � ��
�
� � � �

� � � � �� �
(27)

where � � � � � arg min���� � � � � � � 	 � � � for
� � �

.

An optimal rule for reducing � to a measure � with a prescribed number ˜� of
scenarios is given as the solution of the combinatorial optimization problem

min� 
 � � �
��� � � � min���� � � � � � � 	 � � � � � � � � 	 � ��� 	 � � 	 #

� � � � ˜� ��� (28)

Explicit solutions to (28) are available for the cases ˜� � � � � (single scenario
deletion) and ˜� � � (keeping only one scenario) [9]. Upper and lower bounds for
(28) yield heuristic reduction strategies for the general case. The forward selection
algorithm recusively determines the indices � � , � � � 	 � ��� 	 ˜� for the scenarios in the
reduced tree. It uses the lower bound

min� 
 � � � � � � 	 ��� � 	 � � 	 #
� � � � ˜� � �

�
�	� ��� � � min���� ��� � � � � � 	 � � � 	

where
� � � � � 	 � ��� 	 � � � ��� � 	 ����� 	 � ˜

� � . The indices � � , � � � 	 ��� � 	 ˜� are chosen
recursively such that

� � � arg min
� �� � �  � � � � � � � 	  �

��
� � ������ ��
	������	 � � 	 �	 ���

� � min� � � �  � � � � � � � 	  � � � � �
�
� �

	
� � � �
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Figure 9. Reduced load scenario tree with 5, 10, and 20 scenarios
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Optimal probabilistic weights
� � � � � �� ��� are computed from (27) (with

�
replaced by� � ). Figure 9 shows the reduced load scenario trees with 5, 10 and 20 scenarios

obtained by the forward selection algorithm with � � � � 	
� � � � � �

� � � �
�
.

3.5 Numerical Testing Results

For numerical tests we considered the hydro-thermal power system of VEAG (with
� � ��� � , 
 � � � and

� � � ) under uncertain load (i.e., the remaining data were
deterministic). Previous tests [15, 24] of our implementation of the stochastic La-
grangian relaxation algorithm have proved its potential for solving the stochastic
power management model within a few minutes.

In this testing, we combined the stochastic Lagrangian relaxation algorithm with
the tree generation and reduction technique. The methods for solving the subprob-
lems and the heuristics are kept identical. Again, the test runs were performed on
an HP 9000 (780/J280) Compute-Server with 180 MHz frequency and 768 MByte
main memory under HP-UX 10.20. First we generated a load scenario tree (cf.
§3.3) for an hourly discretized time horizon of one week ( � � ��� � ) with branch-
ing points

� � � �
�


,
 � � 	 � ��� 	 � (cf. Figure 8). The initial number of scenarios

� � � � was reduced by applying the forward scenario selection rule of §3.4 with
� � � � 	

� � � � � �
� � � �

�
. Due to the nonconvexity of the underlying stochastic pro-

grams, primal solutions for (5)–(8) are obtained by a heuristic method. This is the
reason for comparing the solutions of the dual problem. Table 2 reports the objec-

˜� �
objective time ˜� �

objective time
[s] [s]

1 168 2.83589e+07 10.83 15 1166 2.84102e+07 109.40
2 313 2.81617e+07 28.41 20 1387 2.84189e+07 141.59
3 386 2.82691e+07 28.71 25 1656 2.84164e+07 186.07
4 411 2.83139e+07 35.32 30 1829 2.84159e+07 186.32
5 532 2.83874e+07 40.33 35 2122 2.84146e+07 259.52
6 581 2.83942e+07 57.84 40 2295 2.84248e+07 301.57
7 678 2.83964e+07 55.95 45 2492 2.84219e+07 276.72
8 703 2.83999e+07 58.71 50 2689 2.84149e+07 321.04
9 728 2.84124e+07 63.24 55 2838 2.84207e+07 379.66

10 801 2.84071e+07 83.61 60 2987 2.84181e+07 374.44

Initial tree: 64 3111 2.84210e+07 487.27

Table 2. Objective values and computing times of the dual stochastic problem (11) for differ-
ent numbers of scenarios ( ˜�

) in the reduced tree

tive and computing time of the dual stochastic problem (11) for different numbers
of scenarios ( ˜� ) in the reduced tree, each having a different number of nodes (

�
).
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The reduced trees with ˜� � � 	 � �
	��
� have been presented in Figure 9. It can be

seen that the optimal values of (11) for reduced scenario trees slowly converge to
the objective of the full scenario tree problem ( � � � � ). Rough approximations of
the full scenario tree generally require only short computing times. For ˜� � � � the
scenarios are highly concentrated and the true objective is therefore underestimated.
The approximation of the initial scenario tree improves for ˜� � �

� , resulting in a
better approximation of the objective.
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Abstract In this contribution, we propose a telescopic decomposition approach for solving
scheduling problems from the chemical processing industries online. The general concept is
realized for a real-world benchmark process by a two-level algorithm, which comprises a
planning step with explicit consideration of uncertainties and a scheduling step where non-
linearities are include in the model. Both steps constitute optimization problems, which are
modeled and solved by mathematical programming techniques. Besides conceptual consid-
erations concerning online scheduling, we present the two mathematical models and their
problem specific solution algorithms with some numerical results.

1 INTRODUCTION

In the chemical processing industries supply chain management received increasing
attention during the last years: faster changing demands for an increasing variety of
products have to be met in a marketplace which grows from a local into a global one.
It is an undisputed challenge for future research to develop strategies to increase the
efficiency of the material flows within the supply chains from the raw material sup-
pliers to the customers. An important next step in this direction is the improvement
of the currently used strategies for the operation and flexible adaptation of individ-
ual plants. Major issues are to improve the dynamics of the processing systems, to
handle disturbances in an active manner and to master the computational complexity
by a feedback control schemes and decomposition approaches [3].

Within the growing market for specialty chemicals, the multiproduct batch plant
is a widespread concept that points to the future for producing small volumes of
high-valued products in several complicated synthesis steps [13, 30]. Multiproduct
batch plants consist of a number of units which are grouped in stages with sev-
eral parallel units per stage. They are used for the manufacture of products with
similar recipe structures, e.g. modifications of one type of polymer, such that each
product undergoes a similar sequence of processing tasks. To operate flexible batch
plants efficiently, the resources (e.g. reactors or storages) have to be assigned to
the processing tasks in order to match certain production goals. To make these as-
signments properly, known as scheduling, has a large economic impact on process
operations [30, 39]. Recent surveys of batch scheduling in the chemical processing
industries can be found in e.g. [2, 15, 24, 38].
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In this contribution, we present an online scheduling algorithm for a real-world
multiproduct batch plant, which provides solutions for the three issues above. The
remainder is organized as follows. First, we give an outline of the mentioned prop-
erties of the considered benchmark process under scheduling aspects (Section 2).
Motivated by this example, in Section 3 we elaborate a new online scheduling ap-
proach, and we state the various aspects that have to be taken into account. The
solution concept for the specific example, presented in Section 4, is based on a two-
level telescopic decomposition framework, which utilizes mathematical program-
ming techniques to solve the emerging optimization problems. The framework con-
sists of a long-term planning problem under uncertainty and a deterministic short-
term scheduling problem. The models and the solution algorithms for theses two
problems are discussed in Sections 5 and 6, respectively. The contribution closes
with suggested research directions for current and future work (Section 7).

2 BENCHMARK PROCESS

The production of expandable polystyrene (EPS) is used here as a benchmark pro-
cess. It exhibits, in addition to common properties of recipe-driven multiproduct
batch processes (e.g. limited capacity of equipment items, shared and non-shared
intermediates, different storage policies) some features which give rise to special
difficulties. In the plant which is shown schematically in Figure 1, two EPS-types
(A and B) with five grain size fractions each are produced from several raw materials
(E). The plant consists of a preparation stage operated in batch mode, a polymeriza-
tion stage with four batch reactors and two continuously operating finishing lines.

Figure 1. EPS-Process
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2.1 Process Structure

Recipes. One EPS-batch is produced from one batch of each intermediate (two dis-
pergators and one organic phase). It contains portions of all five grain size fractions
of one EPS-type, which are separated in the finishing lines. There are five recipes
for each of the EPS-types, which give rise to different grain-size distributions. The
composition of the organic phase is for each recipe specific, whereas the same dis-
pergators are used in all batches.

Preparation Stage. For the scheduling task, unlimited raw material supply can be
assumed. Each of the dispergators is produced in one reactor which has a capacity
sufficient for several batches. After the reaction is finished, the intermediate has to
be transferred immediately into the tanks (no-wait storage policy), which can store
one batch each for a limited period of time. One batch of organic phase is produced
in one out of two reactors and may be stored in the reactors for an unlimited period
of time.

Polymerization Stage. The polymerization stage comprises four reactors with equal
capacities. One batch of polymer is produced from three batches of intermediates.
Between two starts of polymerizations there has to be a safety interval of a fixed
duration. When a polymerization is terminated the product is transferred to a mixing
tank immediately.

Finishing Lines. Each finishing line is exclusively assigned to one EPS-type. Each
line consists of a mixer tank and a separation stage. The mixers are driven semicon-
tinuously with instantaneous inflow of batches from the polymerization stage (neg-
ligible transfer times) and continuous but variable outflow of feed to the separation
stages. The mixing process is assumed to be, which leads to non-linear relations for
the concentrations of the grain size fractions in the feed, see Section 6.3. The sep-
aration units are driven continuously, and the separation process takes a feed-rate
independent amount of time. As long as a finishing line is running, the mixer con-
tent and the feed-rate are constrained by upper and lower bounds. If a mixer runs
empty the corresponding separation stage, and consequently the whole finishing
line, has to be shut down. Shut-down and start-up procedures are time consuming
and expensive, so that on- and off-duty intervals must not be shorter than several
days.

Degrees of Freedom. The following degrees of freedom have to be controlled by a
scheduler:

– Starting times and batch sizes for the production of both dispergators,
– starting times and choices of recipes for the production of the organic phase,
– starting times and choices of recipes for the polymerizations, and
– feed-rates for the separation units for both finishing lines. This implicitly deter-

mines the start-up and shut-down times of the finishing lines.
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2.2 Production Goals

A basic requirement for a scheduling algorithm for a technical process is to ensure
the feasibilities of the decisions despite disturbances. For technical applications like
this one, feasibility is essential and much more important than optimality in a math-
ematical sense. With respect to (mathematical) optimization, the primary production
goal of a demand-driven process is to fulfill all demands without any or with mini-
mal delay. Second to the primary production goal, further goals result from the need
to drive the plant as cost efficiently as possible. Key targets are to avoid production
of not demanded fractions and to shut down the finishing lines rarely, if at all.

2.3 Uncertainties

There are different sources of uncertainties which affect the scheduling activities.

1. Demands. The demands are not completely known in advance. They are an-
nounced between a few days and a few weeks in advance, and the demanded
amounts and the due dates are subject to changes.

2. Processing times. The processing times of the dispergator production and of the
polymerizations may vary.

3. Product yields. With a certain (small) probability, a polymerization runs astray,
which leads to a bimodal grain size distribution (with a second maximum at
large grains) and a shortened processing time. The grain size distributions are
in general only reproducible with a certain variance.

4. Breakdowns. Each of the reactors or storage tanks of the preparation and poly-
merization stage may break down.

3 ONLINE SCHEDULING: GENERAL REMARKS

A heuristic analysis of the benchmark problem shows that the preparation stage
does not constrain the main stages (polymerization stage, finishing lines), even un-
der consideration of uncertainties. But it also shows that the various main decisions
concerning the polymerizations and the finishing lines may interact over a finite
horizon of some days with respect to feasibility, and they may interact for an in-
finite horizon with respect to the production goals. Because of the long term-term
effects of the decisions, there is a large number of degrees of freedom, which are
continuous or discrete in nature and interact via complex linear and non-linear con-
straints, possibly subject to stochastic changes.

The classical approach for solving large-scale scheduling problems is a multi-
scale decomposition over the entire time horizon under the assumption of complete
information (see Figure 2). The decisions are assigned to hierarchically structured
layers and optimized on the basis of deterministic models with different degrees of
temporal aggregation. The aim is to generate detailed decisions over the entire hori-
zon by solving the models from coarser to finer scales with possible backtracking to
avoid infeasibilities [4,41]. If the problem of uncertainty is addressed, this is usually
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done either by recomputation of nominal schedules, which are computed based on
deterministic data depending on the actual situation, or by the offline generation of
robust schedules, which are insensitive to a priori defined uncertainties [17, 27].

Efficient scheduling of chemical batch processes necessitates the ability to re-
act quickly to new information while the process is running. Since the mentioned
approaches are based on offline views on the problem, they disregard the ability to
react to new information in the future, which leads to a loss of optimization poten-
tial. The scheduling decisions should be generated as late as possible based on the
information available before the time of the decision under explicit representation
of the uncertainties. An online algorithm should generate only such decisions here-
and-now, which are actually supposed to be implemented, whereas all other coupled
decisions should be regarded as a recourse for the effects of realized uncertainties.

The above implies that the scheduling task must be treated as a decision prob-
lem on a moving horizon. A control scheme with feedforward and feedback should
be applied, conceptually known from model predictive control (see e.g. [1]). New
information about the demands or the process state is passed to the scheduler (feed-
back) which generates the next decisions (feedforward). In real-time applications
generating detailed decisions over the full horizon does not make sense in general,
since uncertainties make detailed decisions obsolete soon after they were obtained.
By generating superfluous information, optimization effort is wasted, which reduces
the overall process efficiency in real-time applications. Due to the strong coupling it
is inevitable to include decisions which may never be implemented, but they should
be regarded as a recourse. The time of the decision influences the solution of the
decision problem itself, since there is a trade-off between the gain of information
and the loss of performance. The response time of the scheduling algorithm enters
indirectly into the performance because it determines the delay after which new
information leads to new decisions. Online scheduling goes beyond solving opti-
mization problems, since there is always a trade-off between the accuracy of the
model, the accepted optimality gap and the response time. This means firstly that
proper problem identification and adequate modeling are crucial solution steps and
secondly that earlier sub-optimal answers may be more efficient than later optimal
ones.

In the following, we propose a solution concept for the EPS scheduling problem
which deals with the special structural aspects of real-time applications.

4 SOLUTION CONCEPT

4.1 Problem Size

It has been shown for several examples that mathematical programming techniques
offer appropriate methods to solve complex constrained problems which arise in the
scheduling of chemical plants [2, 3, 38]. An ideal scheduler would be based upon a
monolithic model of the decision problem for a horizon of several weeks, param-
eterized by the data available online about the demands and the process state as
well as by probability distributions of the uncertain parameters. To guarantee the
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Figure 2. Decomposition Approaches

feasibility of the decisions, a temporal resolution of not less than one hour and im-
mediate responses to disturbances within a few minutes are necessary. Considering
these aspects, this constitutes a large-scale mixed-integer andnon-linear real-time
optimization problem. To solve real-world scheduling problems efficiently, approx-
imating strategies are necessary, as e.g. the formulation and solution of simplified
substitute problems [2, 3].

4.2 Telescopic Decomposition

For the solution of online scheduling problems we propose a telescopic decom-
position approach with a number of layered sub-models of different degrees of
temporal aggregation (see Figure 2). The sub-models should reflect the alternat-
ing sequence of making decisions and receiving new information adequately. This
approach avoids the generation of superfluous information, since the level of detail
of the integral overall model decreases with increasing distance from the known
situation depending on the sensitivity of the modeled effect. The sub-models com-
municate by implementing results on the coarser scales as targets or constraints on
the finer scales. Due to usually strictly constrained response times on each of the
levels, backtracking steps from finer to coarser scales are prohibitive. New informa-
tion is processed adequately on the various levels by updating a scale after a few
decisions on the next finer scale either time- or event-triggered. However, despite
the lack of backtracking within the scheduler, this iterative strategy implements an
information flow from the lower to the higher aggregated levels by the update of the
respective models.

Multiple scales only make sense if there are additional degrees of freedom avail-
able on the finer scales to cope with the more detailed constraints and to use the ad-
ditional information. This implies that either there is room for improvement relative
to the goals set on the coarser scales or the target cannot be met due to additional
constraints or uncertainties. Ideally, feasibility on the coarser scales should imply
feasibility on the finer scales; if this cannot be ensured, optimization on the finer
scales can be a means to achieve feasibility.
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There is an urgent need for designing multi-scale real-time algorithms for spe-
cific types of problems with adequate formulations of uncertainty; in particular,
there are no such approaches in the literature for the online scheduling of multi-
product batch plants.

4.3 EPS Scheduling Problem

With respect to the process dynamics and the size of the problem, a two-level algo-
rithm is proposed to schedule the EPS-process. The overall problem is hierarchically
structured into a long-term, stochastic linear planning problem and a short-term, de-
terministic non-linear scheduling problem, implemented in the feedback structure
shown in Figure 3 (see also [33, 34]). This approach on one hand exploits that the
scheduling decisions can be divided into those with long lasting and others with
short lasting effects; on the other hand it takes into account that the degree of un-
certainty increases with increasing distance in time. Not reflecting the uncertainties
explicitly on the lower level leads to a smaller model with shorter computing times
and makes online reactions possible.

The planning algorithm uses an aggregated process model for a horizon of two to
four weeks and generates scheduling guidelines for a horizon of four to eight days. It
is formulated as a two-stage stochastic program, which can – under certain assump-
tions – be transformed into a mixed-integer linear program (MILP) and be solved
by a problem specific decomposition algorithm. The model highlights the discrete
long-term decisions of the main stages of the process and uses a linear approxima-
tion for concentrations in the mixing tanks (see Section 5). Each optimization run
is based on deterministic data of the actual process state and the demand profile as
well as probability distributions of the uncertain parameters. A set of guidelines is
valid for the next 24 hours.

The scheduler is based on a detailed deterministic process model, which com-
prises all scheduling decisions (including the preparation stage) and the non-linear
model of the mixing process (26). This modeling approach results in a MINLP
(Mixed-Integer Non-Linear Program) which is solved by a problem specific depth-
first search (see Section 6). It is event-triggered and completely re-schedules the
process with respect to the guidelines after new information about the demands or
the process state is obtained. The process dynamics require response times of less
than five minutes. In the moving horizon approach only those scheduling decisions
are actually implemented on the plant which can be realized before the next stochas-
tic event occurs. To enable the scheduler to react flexibly to new information and
to ensure feasibility of the decisions, the guidelines from the long-term stochastic
optimization do not have to be kept strictly, but their violation is punished by the
objective function.
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5 LONG-TERM PLANNING UNDER UNCERTAINTY

5.1 Modeling Framework

A study of modeling frameworks under uncertainty from the literature showed that
a two-stage stochastic program (stochastic program with recourse) is a valid choice
for formulating the planning problem [32]. This framework has the potential to re-
flect both the need to make some of the decisions here and now and the possibility
to react to realizations by recourse decisions. The deterministic equivalent of a two-
stage stochastic program is defined as follows, cf. [6, 16, 29]:

min
�

� � T � � � � � � s.t. � � � � (1)

where

� � � � � � � min� � � T
�
��� � s.t. � �

��� � � � � ��� � � � �
��� 	 � � � � 	 (2)

� � � n 	 � � 	 � � m � � m
�
s � � s � � n

�
s 	 � � ��� � � � � �
� 	 � �

��� 	 � � ��� 	 � � �
� � 	 is
a random variable on a probability space

� 	 	�� 	�� � , and � � denotes the expectation
w.r.t. the distribution of � . We distinguish first-stage ( � ) and second-stage (

�
) vari-

ables in terms of their dependence on the random experiment. Components of both
types of variables may be restricted to integer values.

For computational reasons, the probability distribution of � is assumed to be
discrete or is approximated discretely [9]. If one introduces additional second-stage
variables

� � for each scenario
� � � 	 ��� � 	�� problem (1) can be transformed into the

large-scale deterministic optimization problem

min
� � �  � � � � � ��� ���

T ���
��
� ��� � � � T� � � s.t. � � � � � � � � � � � 	

� � �
	�� � � � 	 � � � 	 ��� � 	�� � 	

(3)
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whereby
�

denotes the number of mass points (scenarios) of the probability distri-
bution of � and � � the corresponding probabilities1.

The problem is stated as a mixed-integer linear program (MILP) for the sake of
computational efficiency [14].

5.2 Single-Scenario Model

Modeling Approach

The two-stage stochastic model is derived from a MILP-formulation for one sce-
nario. In order to be able to consider a planning horizon of some weeks and to meet
the computing time limitations at the same time, the degree of accuracy of the model
is reduced relative to the scheduling model following a problem specific approach.
It can be characterized by three key features:

1. The model highlights decisions with long-term effects. These are, on the one
hand, the discrete mixer states (on-duty/ off-duty), because the change-over in-
tervals of several days are beyond the length of the scheduling horizon. On the
other hand, the choices of the recipes for the polymerizations are optimized for
the entire horizon. Due to the coupled production of all grain size fractions, one
polymerization may cover demands with very different due dates.

2. The model is based on an aggregated time representation with time intervals of
equal lengths. Consequently, similar decisions (mixer states, polymerizations)
in one interval are grouped and modeled by a single variable. So the scheduling
decisions are not assigned to points of time but only to intervals of one or two
days length.

3. The non-linear mixing effects are approximated linearly by constant delays for
each input batch. This approximation causes only small errors and ensures fea-
sible planning decisions because the mass balances for the mixers are still sat-
isfied. However, it should be noted that the results of the decisions, namely the
amount of material which is produced, may not be feasible for the scheduler,
because they are not only affected by aggregation but also by the linear approx-
imation of the mixer. The non-linear mixing are smoothed out over a period of
several days, so they can be neglected for planning horizons of several weeks
and aggregation intervals of several days. In addition, the mixing effects are
only relevant for the production goal “fulfill demands with minimal delay” but
not for the other production goals.

Problem Formulation

A single-scenario instance of the planning problem can be characterized as follows.
For each product � � � we are given a set of EPS-types � � � � 	 ����� 	 � max � , a set of
fractions � � � � � 	 ����� 	 � max� � and recipes � � � � � 	 � ��� 	�
 max� � as well as a set of time

1 Due to the large number of symbols and their colliding definitions in the stochastic pro-
gramming and in the scheduling literature, the symbols may have different meanings in
different sections.
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intervals

 � � � 	 � ��� 	�� max � covering the planning horizon. We denote by

� ��� � � � � �
a variable indicating the number of polymerizations in interval

�
of type � and recipe


and by � � � � a {0,1}-variable indicating the state of finishing line � in interval
�

(off-
duty/ on-duty, see Section 2.1). Furthermore, we introduce variables � ��� �

� � �

for the contents of the mixer tanks and parameters � � � � � �
� � �

which specify
customers’ demands at the interval endings.

Polymerization Stage. The number of polymerizations which can be started in one
aggregation interval is constrained not only by the number of available reactors but
also by the number of polymerizations that are still running at the beginning of the
interval. Consequently, the capacity in one interval depends on the used capacity in
the preceding intervals, which is not known a priori. This dynamic dependency is
modeled by constraining the number of polymerization starts for all intervals

�
to



by
��
� � � �� � �

�
� � �

� ��� � � � � � max��� � � � � 
 	 �  � � � 	 ��� � 	�� max � � (4)

The right hand side parameters
� max��� � can be determined before the optimization run.

Finishing Lines. The mixers are fed with batches at points of time which are shifted
against the polymerization starts by the processing time. So, the horizon of the mix-
ers is shifted against the polymerization horizon by this fixed delay. The mixer
contents at the beginning of the planning horizon are regarded as known, and the
contents at the interval boundaries then follow from the mass balances around the
mixers. The mixer input is modeled by the variables

� � � � � � , which are now inter-
preted as the number of polymerizations which end in the interval

�
on the mixer

horizon. The feeds are restricted by
� min� and

� max� and thus

� � � � � � � � � � � �
�
� � � �

� ��� � � � � � � � � � min� � � � 
 	 � � � � (5)

and
� ��� � � � � � � � � �

�
� � � �

� � � � � � � � ��� � � max� � � � 
 	 � � � � � (6)

The binary variables � enforce that the feed equals 0 in off-duty intervals.
The mixer tanks may not contain any material in and at the boundaries of idle

intervals. We indicate the state of mixer � at the ending of interval
�

with the variable� ��� � � � �
	 � � . It is logically constrained by

� � � �
� � � � � � � � � � � � � � � 
 	 � � � � 	 (7)

which can easily be transformed into linear constraints [28]. The capacity con-
straints of the mixer tanks are stated as

� ��� � � � ��� � � min� � � � 
 	 � � � � (8)

and
� � � � � � � � � � max� � � � 
 	 � � � � � (9)
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To guarantee a smooth operation of the finishing lines with at least
� � � sub-

sequent off-duty and �
� � on-duty intervals, the filter constraints

� � � ��� � � � � � � � � � � � � � � � � � � � � 
 	 � � � � 	 � � � � � 	 ��� � 	 � � (10)

and

� � � ��� � � � � � � � � � � � � � � � � � � � � 
 	 � � � � 	 � � � � � 	 ��� � 	 � � (11)

are introduced.

Production Goals. The production goals “fulfill demands with minimal delay” and
“avoid production of not demanded fractions” may be translated into the aim to
maximize the coincidence of the demand and production profiles. A prerequisite
for such a formulation is a relaxed mass balance around the product storages. We
propose the following two types of relaxations:

��
� ��� �� � � �

� � � � � � � ��� � � � �
��
� ��� � ��� � � � � �

�� � � � � � � � 
 	 � � � � 	 � � � � � (12)

and
��
� ��� �� � � �

� � � � � � � ��� � � � �
��
� ��� � � � � � � � � � � � � � � � � � 
 	 � � � � 	 � � � � � (13)

with �
� � � � � � �

� � �  � 

(14)

On the left-hand-sides of the inequalities the production profile is calculated
as the product of the number of performed recipes

� � � � � � and the relative amount� � � � � � of type � and fraction
�

in a polymerization batch, produced according to
recipe



. To fulfill all demands � � � � � � for interval

�
without delay, the production

profiles should not be smaller than the demand profiles. In (12) infeasibilities are
avoided by introducing amounts of under-production �

�� � � � �
� � �

, which leads to
a profile shift in material direction. In contrast, the indicator variables � � � � � � �

	 � �
in (13) allow for shifting the profile in time direction.

To minimize the number of start-ups and shut-downs of the finishing lines they
have to be counted; indication variables �

���� � and �
���� �

� � �
are introduced and

constrained as follows:

� � � � � � � � � � � � �
�� � � � �

���� � � � � 
 	 � � � � (15)

For any fixed values of � � � � the optimal values (e.g. according to (16)) of �
���� �

and �
���� � are 1 for start-ups and shut-downs, respectively, and 0 otherwise.
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The objective function models a trade-off between the three production goals
and is stated as a weighted sum with appropriate weights 
 	 � 	 � �

and � � :

min� 	 	 � 	
�
� 	 � 	

�� � �
� ���

� ���

� �
��� � 


��� � � � �
���� � � � �

�
� � �

� � � � � �
� ��� � � � � � ���� � �

�� � � � � �� � � �
���� � 

� �

�

(16)
This formulation is based on the mass balance (12) and models the goal “avoid
production of not demanded fractions” by minimizing the sum of performed recipes.
A formulation based on the mass balance (13) can be stated analogously.

Numerical Results

The model was implemented in and solved with GAMS/ CPLEX 6.5, which com-
prises an implementation of a branch-and-bound algorithm based on LP-relaxation
[7]. The most important setting concerning the solution algorithm is the sequence
of branching variables: assigning the highest branching priority to the mixer states
leads to the shortest average CPU-times for given integrality gaps. It turned out that
(16) is the objective function with the best numerical condition. In terms of numer-
ical efficiency, the weights 
 , � , � �

and � � should not be too different to avoid
large integrality gaps, and � ��� � � � should be a non-linear function of

�
, � and



to

avoid multiple solutions (see [42]). A reasonable choice is e.g.


 ��� � � � = 10,

� ��� � � � = � �
� � max � � max � � � � � � � � max � � � � � � � � � � � �

� max � � max � � max
� � �
	
,

� ���� � = 3,
� ���� � = 3.

The definition of � � � � � � as a non-linear function of
� 	 � and



ensures for two dif-

ferent vectors
�

that the corresponding objective function sums are different, even
if the sum of polymerizations is equal, and that a larger total number of polymer-
izations leads to a larger objective function sum. As a consequence, the solution
algorithm excludes branches from the search tree earlier and closes the optimality
gap faster. The exponent 1.2 turned out to be numerically efficient.

The model size mainly depends on the number of aggregation intervals
� max.

Table 1 gives an impression on the size and the numerical performance of some
model instances with � max � �
	 
 max � � max � � and at least three subsequent
intervals with the same states of the finishing lines (

� � � � � ). The CPU-time was
limited to ten seconds.
The integrality gaps are given as intervals, since they significantly depend on the
allocated plant capacity. Larger gaps are observed if the plant runs close to full
capacity, whereas demand profiles which constantly under- or overload the plant
lead to inherent complexity reductions. A further extension of the CPU-time does
not lead to substantial improvements of the integrality gaps, and under practical
aspects they can be regarded as satisfactory. The gaps indicate that the potential for
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Intervals 6 8 10 12 14

No. of Variables 181 241 301 361 421
No. of Integers 72 96 120 144 168
No. of Constraints 174 241 312 387 466
Integrality Gaps [%] 0 – 4.3 0 – 5.8 0 – 6.6 0 – 12.1 0 – 17.8

Computations performed on a SUN Ultra 2 1300.

Table 1. Single-Scenario Planning Model

improvement is bounded by the equivalent of switching the recipes or timings of
one or two out of up to more than 100 polymerizations.

5.3 Two-Stage Stochastic Model

First and Second Stage

In two-stage stochastic programming, the involved random variable separates the
decision variables. First-stage decisions have to be taken before the realization of the
random variable, second-stage decisions can be taken afterwards. A basic modeling
aspect is therefore the assignment of the model variables to these groups.

The planning model is designed to transform long-term information into infor-
mation that can be handled by the short-term scheduling algorithm. One should
note in this context that a feasible first-stage solution of the two-stage stochastic
programs (3) – if it exists – is feasible for all possible scenarios, i.e. if first-stage
and second-stage variables are separated in terms of the time intervals they belong
to, we are able to pass short-term information (first-stage solution) to the scheduling
taking long-term information (second-stage solution) into account.

We propose two different choices for the grouping of the variables. Due to the
time horizon of the scheduling model, information about the state of the finishing
stages has to be generated by the planning model (see also Section 6.1). If the em-
phasis is placed on qualitative information about the production process only, the
variables � ��� � � � � � � 	 ��� � 	 � � � 	 � � � � max 	 � � � � representing the operation
mode of the finishing units should be chosen as first-stage variables. In this case the
first-stage solution determines the operation and idle time intervals for the single
products similar to the model used in [8].

If the information the planning model provides is desired to have a more quan-
titative character, in addition to the finishing states � ��� � the variables

� ��� � � � � � ��
� 	 ��� � 	 � � � 	 � � � � 	 � 
 � � � should form the first-stage vector. By fixing the poly-

merization variables the operation modes of the finishing units are fixed as well.
The latter approach offers two ways of constraining the scheduler, to prescribe

the generated (first-stage) scheme of polymerizations or to fix the corresponding
production profile. The time interval

� � � 

can be chosen such that it corresponds to

the length of scheduling horizon.
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We will refer to the two proposed models as FIN and POLY. Note that the size
of the planning model increases with the number of first-stage variables. The model
POLY generates larger problems than model FIN in terms of the number of con-
straints, the number of first-stage variables, and consequently in terms of the number
of multipliers of the resulting Lagrangian dual (see [9] and Section 5.4).

Scenarios

In Section 2.3, a number of sources of uncertainty influencing the EPS production
process was listed. Due to the complexity of the model and the rare numerical ex-
periments reported in the literature, we decided to perform a step by step inclusion
of uncertainties. To date, our numerical experiments take into account stochastic
demand and stochastic polymerization yields.

The most substantial source of uncertainty is customers’ demand. The uncer-
tainty about future demand scenarios applies to many other production processes
in chemical engineering as well [3]. In our model, we made several assumptions
about the structure of demand scenarios that were derived from the knowledge of
the demand structure on the market for the products considered here.

– The total amount of demand which is accepted does not exceed the capacity of
the plant.

– The demand discrepancy between different scenarios increases with time.
– There are only two sources of uncertainty in the demand data:

� Shifts of single demands to another time interval.
� Changes in the amounts of single demands.

Scenarios for the production yield (grain size distribution) were generated from the
fixed distribution used in the single-scenario case. For each recipe three equally
likely outcomes were assumed.

In the formulation of the two-stage stochastic program (1), stochastic demands
imply stochastic right-hand sides

� � � � and stochastic production yields imply a
stochastic matrix � � � � as well as a stochastic recourse matrix � � � � .

We assume the independence of demand and production yield, i.e. the stochastic
independence of the corresponding components of the random variable.

5.4 Solution Algorithm

Problem (3) is a large-scale mixed-integer linear program (MILP). The size of the
problem depends on the size of the single-scenario problems but also on the di-
mension of the first-stage vector and the number of scenarios used to represent the
uncertainties. In general, standard mixed-integer solvers fail to produce acceptable
solutions when the size of the problem is large (Table 2). We therefore use the de-
composition method proposed in [9] and explained in detail in [14]. By means of
Lagrangian relaxation, the method splits the problem into a number of subproblems
which correspond to the single-scenario case. The Lagrangian dual is a concave
non-smooth program that is tackled by bundle methods [19, 20].
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5.5 Numerical Results

We extended the easiest single-scenario model from Section 5.2 by multiple scenar-
ios as mentioned above and set

� � � � (no. of first-stage intervals). Table 2 reports
the results obtained by CPLEX for a model-instance POLY with

� max � � (no. of
intervals) after four hours CPU-time.

No. of Scenarios 10 100

No. of Variables 430
�
566
�
2,240 4,030

�
5,606

�
22,400

(integer
�
binary

�
continuous)

No. of Constraints 3,379 33,709
Optimality Gaps [%] 10.71 64.49
First Feasible Solution [s] 30 3,200

Computations performed on a SUN Ultra Enterprise 450.

Table 2. Multi-Scenario Planning Model Solved by CPLEX

The decomposition algorithm was implemented in C and FORTRAN77. We use
CPLEX 7.0 [10] to solve the subproblems and NOA 3.0 [21] to obtain lower bounds
for the master problem. Upper bounds are generated by heuristics based on the so-
lutions of the subproblems (frequency of occurrence, distance to average, rounding,
best solution etc.). The current implementation as well as the decomposition algo-
rithm can be used for general MILP’s.

Instance FIN POLY
No. of Scenarios 10 100 10 100

No. of Integer Variables 700 7,000 700 7,000
No. of Binary Variables 620 6,200 620 6,200
No. of Continuous Variables 2,240 22,400 2,240 22,400
No. of Constraints 3,514 35,194 3,730 37,570
No. of Multipliers 54 594 324 3,564
Solution Time [s] 710 9,806 14,400 14,400
Optimality Gap [%] 0 0 3.7 5.9

Computations performed on a SUN Ultra Enterprise 450.

Table 3. Multi-Scenario Planning Model with
�

max ���

Tables 3 and 4 report the size of several problem instances in decomposition
structure, i.e. including

�
copies of the first-stage vector (see [14] for more detail),

and the worst run out of five with different scenario sets. Since neither the demand
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Instance FIN POLY
No. of Scenarios 10 100 10 100

No. of Integer Variables 1,400 14,000 1,400 14,000
No. of Binary Variables 1,180 11,800 1,180 11,800
No. of Continuous Variables 4,480 44,800 4,480 44,800
No. of Constraints 7,364 73,694 7,600 76,270
No. of Multipliers 54 594 324 3,564
Solution Time [s] 1,234 14,400 14,400 14,400
Optimality Gap [%] 0 5.9 4.8 7.7

Computations performed on a SUN Ultra Enterprise 450.

Table 4. Multi-Scenario Planning Model with
�

max � ���

nor the production-yield scenarios influence the feasibility of a solution, i.e., of a
sequence of polymerizations and finishing-stage states, each solution of a subprob-
lem is a solution of the master problem. A feasible solution for the master problem
can therefore be found in the root node of the branch-and-bound tree. Problem FIN
could partially be solved to optimality, since the small number of first-stage vari-
ables enabled us to completely enumerate the solution space. A major difficulty
results from the relatively bad numerical properties of the single-scenario problems.
Solving these problems to optimality or with a gap of, say, less than � �

� �
% is very

time consuming. Therefore we impose time and node limits for the subproblems and
have to be satisfied with approximate solutions.

6 DETERMINISTIC SCHEDULING

6.1 Interfaces

A detailed process model including the preparation stage is used here, since the
scheduler has to generate feasible decisions for the entire process. To couple the
planner with the scheduler the guidelines generated on the higher level have to be
implemented in the lower one, either by constraints or in the objective function. As
the durations of the discrete mixer states (up/ down) may be outside the scheduling
horizon, the scheduler has to be given information about the start-up and shut-down
strategy of the finishing lines as constraints. Furthermore, the guidelines should in-
clude information about what and when to produce to achieve a high long-term
efficiency. According to the possible first-stage decisions of the planning problem
mentioned in Section 5.3 there are two approaches:

Decision Oriented Approach. The discrete decisions of the planning step, namely
the number and type of recipes in the aggregation intervals, are passed to the sched-
uler. According to Section 5, these guidelines can be kept strictly despite any mod-
eled disturbances. If they are defined as hard constraints, the scheduler is only re-
sponsible for optimizing the exact timing of the polymerization starts and the choice



Online Scheduling of Multiproduct Batch Plants under Uncertainty 665

of the flow rates. This restricted degree of freedom leads to reduced optimization
potential on the scheduling level but enables fast reactions and ensures a high long-
term efficiency. The lack of short-term efficiency can be avoided by interpreting the
set of recipes as targets, which may be subject to changes. However, since the plan-
ner does not generate any information about this reaction to disturbances, the long
term effects of such changes are not under control.

Target Oriented Approach. The aggregated production profiles an the known de-
mands are given to the scheduler as predicted demand profiles. In contrast to the
decision oriented approach, the aggregated amount of material may not be feasi-
ble for the detailed model (cf. Section 5). So these guidelines have to be modeled
as targets to ensure feasibility of the decisions. The scheduler does not affect the
long-term targets, since it has the freedom to react on realizations (e.g. runaway
reactions) by choosing a recipe immediately.

6.2 Model Formulation

In our modeling effort, we tried to develop compact, generic models for the type
of problems under consideration. The crucial decision to be made is the choice of
the representation of time, where, roughly speaking, two concepts can be distin-
guished. In the first, the planning horizon is divided into intervals of fixed length
and the scheduling of task and resource usage is relative to this fixed grid. The sec-
ond approach is to use a continuous representation of time, where the duration of
all intervals is determined by the optimization algorithm. This approach may lead,
depending on the process characteristics, to a smaller number of intervals and thus
a smaller number of variables in the scheduling problem.

In the models, we exploit specific properties of the process in order to reduce the
problem size. In particular for the continuous representation of time, modifications
in the synchronization mechanism and the use of a priori knowledge about the min-
imal period of time between events leads to a significant reduction of the problem
size.

The resulting problems are large nonconvex MINLPs with non-linearities which
can neither be linearized nor convexified exactly. Therefore, solution algorithms
which exploit the problem structure had to be developed to produce solutions within
reasonable times (approx. one minute). For further details see [23, 36, 37].

6.3 Continuous-Time Representation

The main reason for developing mathematical models based on a continuous rep-
resentation of time was the observation that for models with fixed durations of the
intervals the number of events in the model by far exceeds the number of possible
events in the process, cf. e.g. [31]. Since each possible event is associated with sev-
eral variables in the model, the reduction of the number of events can be expected
to lead to a better performance of the solution algorithms.
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Recently, several types of continuous-time models were suggested, e.g. [25,35,
43]. One main difference among the models is how events which occur in differ-
ent parts or stages of the process are handled. One approach is to define a common
reference grid with which all events are synchronized and where all resource bal-
ances are calculated. Another approach is to define one grid for each stage and to
synchronize only the stages which are directly connected, e.g. via mass balances.
An advantage of the latter approach is that one can easily compute the maximum
number of events for each reference grid, whereas the first approach avoids the addi-
tional effort of synchronization. A common feature is, however, that external events
as e.g. supplies, demands and changes in resource availability must be synchronized
with the stages affected.

For the process under consideration, it turned out to be effective to use two
groups of stages each with a common reference grid.

The first group consists of the preparation stage together with the raw materials,
the second comprises the polymerization stage, the finishing lines and the final stor-
age. Forming the second group, we exploit the fact that almost all events in this part
are driven by the events in the polymerization stage. Besides, almost all events in the
stages after the polymerization are related by a constant shift because all operations
in the polymerization stage have the same duration. This allows us to use a single
reference grid for this group where all internal events are inherently synchronized
by a constant shift. The only events which have to be considered as external events
are due dates for customer orders and changes in the resource availability. Changes
in the mode of operation of the finishing lines are also referenced against this com-
mon grid, which does not restrict the degrees of freedom, since the throughput is
defined as an integral quantity.

Another key issue in continuous-time models is how to determine or to bound
the maximum number of events, since this number has a major impact on the prob-
lem size, esp. on the number of binary (or integer) variables. A bound for one type
of events, the starts of the polymerizations, is given by the minimum offset between
two starts; this, however, does not limit the overall number of events if it is still
required that the start and the end of all operations must coincide with points of the
reference grid. This condition is usually required in order to formulate resource (or
capacity) balances in a uniform manner. For the specific process considered here,
one can drop this condition, since the capacity constraints can be represented in an
alternative manner (see below). The maximum number of - internal - events then
equals the maximum number of polymerizations which can be started in the plan-
ning horizon.

Polymerization Stage. To state the mathematical formulation of the reactor group,
we introduce the following variables:

��� � � �
: time of event �

� � � � � � � 	 � ��� 	 � max � � in the reactor
group,� � � � � � �

	 � � : equals 1 if polymerization
� � 
 � 
 � � � 	 ��� � 	� max � � is

started at event � , 0 otherwise,
� � � � �

: duration of interval � .
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The time of each event has an upper bound of � max � � �
which is larger

than the scheduling horizon considered, since we allow operations which are started
at the end of the scheduling horizon. We enforce that at each event, exactly one
operation is started: �

��� �
� � � � � � � � � �

(17)

For each event, it must be ensured that the offset between the operations
� �

is
larger than the minimal offset

� � � �
:

��� � � � ��� � � � 	 � � � � � � ���
(18)

Capacity constraints are usually imposed by summing up the starting and fin-
ishing of operations at each point of the grid. For our problem, we use two different
approaches, a simple one which is applied for constant resource availability and a
more complex one which has to be applied when the maximum number of avail-
able reactors,

� max
R

� � , changes over the scheduling horizon. In the first case, the
resource constraints can be fulfilled by the conditions

��� � ��� � � max
R

� � � � � � � � max
R

� � 	 ��� � 	 � max � 	 (19)

where
� � � � �

denotes the duration of the polymerizations. In the second case,
we have to synchronize an external event, a change of the resource availability, with
the internal events, since it is not known a priori how the external and the internal
events are ordered relatively to each other. The resource availability is modeled
similar to the approach in [43], where a sequence of intervals is used during which
the availability remains constant. We define intervals

� � R�
	 � R� � �

�
,

 � � during

which the maximum capacity � R� � � is given. Further, the number of operations
running at each event has to be calculated. Therefore, the following binary variables
are defined:

� � � � � � � �
	 � � : equals 1 if

� � � � � � � � � , 0 otherwise.� R� � � � � �
	 � � : equals 1 if

� R� � � �
, 0 otherwise.

The capacity restriction then can be represented as�
� ��� �

� 	 � ����� ���

 � 

�
� � � � � �

�
� R� � � R� � � � � R� � � � � � � � � � 	

(20)

where the left term denotes the number of running operations and the right term acts
as a filter which calculates the capacity at the time of event � . In the sum on the left,
the number of terms is reduced to the necessary minimum; the number of the binary
variables � R� � � can also be restricted by calculating a maximum duration of each
event: if a certain duration is exceeded, one (or both) of the finishing lines will run
empty, regardless of the amount stored initially in the mixing stage. The definition
of these bounds is omitted due to the limited space, as well as the set of equations
defining the binary variables � R� � � and � � � � � (for details of the latter cf. [43]).
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Finishing Lines. In the finishing lines, each event occurs with a constant offset rel-
ative to the polymerization stage, we can thus use the same index � for each event.
Before stating the equations for the mass balances, the necessary variables and pa-
rameters are introduced:

� � � �
� � �

: Total mass in mixer
 � % � % � � � 	 � ��� 	  max � �


 � � � � � �
: Mass of each grain size fraction

� � � �
� � �

� � � 	 � ��� 	 � max� � �
� � � �

� � �
: Integral feed into separation stage


� � � � � � �

: Feed of fraction
�

� � � � � � �
: Mass of product

�
� � � �

: Batch size of each polymerization (constant)� ��� � � � �
: Relative amount of fraction

�
in polymerization batch,

produced according to recipe
�
.

The mass balances then follow directly as


 � � � � 
 � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	 �  � % 	 � � � � �
	
(21)

� � � �
� �

� � � � 

� � � � � � � 	 �  � % 	

(22)

� � � �
� �

� � � �
� � � � � � � � 	 �  � % 	

(23)

together with the bounds

� min � � � � � � � max � � � � 	 �  � % 	
(24)

� � � min � � � � � � � � � max � � � � 	 �  � % � (25)

In the mixer, the mass from several polymerizations is mixed; thus, we cannot
assume that each batch is directly transferred to the finishing lines. Instead, we must
calculate the concentration of each fraction in the mixers and ensure that a feed with
this concentration is fed into the finishing lines:


 � � �
�

� � �

� � � � �
�
� � �

� � � � 	 �  � % 	 � � � � � (26)

Since the amount of each fraction
�

in the feed is added to the amount in the
final storage after passing the finishing lines, it can be calculated by the expression

� � � � � � � � � � � � � � � � � � � � ��� 	 �  � % 	 � � � � � � (27)

Preparation Stage. Each line in the preparation stage operates independently of the
other lines, the only coupling occurs at the connection to the polymerization reac-
tor into which the intermediates are transferred. For the reasons mentioned above,
each line � � � � � � � � 	 ��� � 	 � max � � has its own reference grid

�
�
� � �

which is
synchronized with the reference grid of the reactor group. Since all intermediates
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must be used up before the next batch of intermediates is produced, we filter out
the polymerizations which take place between two such productions. This can be
accomplished by introducing another set of binary variables:

� ��� � � � � � �
	 � � : equals 1 if

�
� � � � ���

, 0 otherwise.

The mass balance of the intermediates then is


 I
� � � � 
 I

� � � � � � ��� � � � � � � � � � � ��� � � � � � ��� � � � � � � � � � 	 	 � � � �
(28)

with


 I
� � � � � �

: Mass of intermediate � at event �
� 	 � 	 � � � 	 ����� 	 � max � � ,

��� � � � � �
: Batch size of intermediate � at event � ,� � � � �
: Relative amount for polymerisation.

The bounds of all quantities as well as the capacity restrictions for the vessels
are straightforward. Furthermore, the number of the necessary grid points � and the
range of the sum in (28) can be restricted if we take the consumption of intermedi-
ates by the polymerizations into account.

Production Goals. To reflect the production goals, the fulfillment of the due dates
together with minimum overproduction, we do not directly calculate the lateness
of each order. Instead, for each order, the over- and underproduction is calculated
at the due date and the objective then is to minimize a weighted sum of over- and
underproduction.

Since each due date has to be regarded as an external event, it must be synchro-
nized with the internal events. The synchronization follows the same principle as
above; thus, for each of the � � � due dates

� L� � � �
a binary variable is defined:

� D� � � � � �
	 � � : equals 1 if

� L� � ���
, 0 otherwise.

The amount of each product at the due date can then be calculated by a filter sim-
ilar to the one in (20), but an additional complication has to be taken into account:
the amount of each fraction in the final storage increases between two consecutive
events because the finishing lines continuously feed into the final storage. Thus, the
intermediate amount, denoted by � D� , has to be considered in the filter equation:

� D� � �
� � � D� � � � � � � D� � � �

�
� � � � � � � � �

� D� � ���
� �

� � � � � (29)

The objective function then can be stated as

� � min
�
�


 � max � �
	 
 � � � D� � � � � max � �

	 � D� � 
 � � 	
(30)

which can easily be represented by linear terms.
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6.4 Fixed-Grid Representation

Due to the limited space, we can only give an outline of this model and highlight
the main differences to the continuous-time representation. It basically follows the
ideas developed in [22], i.e. one common reference grid is used for the whole plant.
Then, at each point of the grid, any of the operations of the intermediate and poly-
merization stage can be started but no start is required. The mass balances, e.g. (21)
- (23), (26) - (28) and the objective function (30), then are formulated at all points
of the grid.

The main difference to the previous model is that no synchronization is neces-
sary, since all events, internal and external ones, can be mapped on the grid; the
remaining binary decision variables only represent the decision for the choice and
the timing of the operations.

6.5 Solution Strategy

Both models presented above are large, nonconvex MINLPs with non-linearities
((26) for both models and (29) for the continuous-time representation) that cannot
be eliminated or transformed into convex representations.

The size of the problems, esp. the number of binary variables (cf. Table 5 below),
creates problems for general purpose algorithms like DICOPT++ [40] or branch-
and-bound algorithms. The application of branch-and-bound algorithms is prob-
lematic due to the nonconvexity of the problem, because good bounds cannot be
derived or require a large computational effort for solving and tightening convex
relaxations. In the algorithms presented here, however, the continuous relaxation is
used as a basis for the scheduling decisions, since its solution provides good hints
for the scheduling decisions.

The strategy used in our algorithms is to find an integer feasible solution of
the problem by a depth-first search by repeated solutions of relaxed MINLP on
each search level. The key question for a depth-first search is the choice and the
setting of the binary variables which differ for the two types of problems due to the
different types of binary variables in the model, although they both represent the
same scheduling decisions.

In general branch-and-bound algorithms, the choice of the branching variable
usually depends on numerical properties, e.g. the fractional value or the reduced
costs etc. This is inappropriate for our problem, since we wish to reduce the likeli-
hood of frequent and deep backtracking due to infeasibilities, because of the compu-
tational effort which is spent for the solution of each relaxed MINLP. Furthermore,
we try to fix as many binary variables as possible in each step by rounding heuristics.

The core decisions of the scheduling algorithms are

– to choose the recipes of the polymerizations and their timing,
– to schedule the operations in the preparation stage, and
– to determine the feed rates for the two separation stages.
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We first describe the algorithm for the fixed-grid representation and then the mod-
ifications which are necessary to set the binary synchronization variables of the
continuous-time representation.

Instead of the criteria mentioned above, the choice of the binary variables starts
at the beginning of the scheduling horizon, subsequently scheduling the polymeriza-
tions. The scheduling of the preparation stage is performed after each of the schedul-
ing decisions by setting the affected binary variables up to the starting time for the
currently scheduled polymerization.

The choice of the polymerization which is scheduled next is based on the largest
nonzero value of the next relaxed binary variables; “next” in this context means the
time interval starting at the current scheduling time.

Before solving the next relaxed MINLP, all binary variables which can be fixed
by applying the capacity restrictions of the affected resources are set. This is done
as far forward in time as possible. Since the search starts with the beginning of the
scheduling horizon, we can thus ensure that no capacity restrictions of the reactors
are violated, not even for the intermediates. The only source of infeasible subprob-
lems are violations of the capacity constraints of the mixers and the separation stages
which are, however, inevitable and cause backtracking.

In order to limit the amount of backtracking, the next choice after a backtrack-
ing step is determined by the reason for the infeasibility. The constraint violation
reported by a NLP-solver can however not reveal this reason. Instead one gets
a good guess from partially simulating the production plan which allows to de-
tect e.g. overflows. This partial simulation is performed before solving the relaxed
MINLP because the determination of infeasibilities by simulation is computation-
ally much less expensive than by an NLP-solver.

When backtracking, one has the following choices:

– schedule a polymerization which produces into another line at the same point
of time,

– schedule the last polymerization earlier or later or
– go back in time and perform the above possibilities for the previous polymer-

ization.

At each stage, the scheduling of the production of intermediates has to be recalcu-
lated. The search is stopped when the end of the scheduling horizon is reached.

A similar algorithm is used for the solution of the continuous-time model with
the exception that the second choice for backtracking is not available because the
event times are determined by the NLP-solver. In order to find a branching strategy
for the additional binary synchronization variables, several strategies were tested: to
branch on these variables along with branching on the variables denoting the start
of the operations, to fix them before and to fix them after the scheduling choices
were made. It turns out, however, that these strategies fail because they dramatically
increase the amount of backtracking because infeasibilities introduced by branching
on one of these variables are mostly detected far down in the tree. This is due to
choices concerning conflicting external events.
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The strategy which turned out to be effective branches on one group of synchro-
nization variables before the scheduling decisions are made: all synchronization
variables which belong to the polymerization stage, reflecting both internal and ex-
ternal events. The remaining synchronization variables belong to the due dates of
the customer orders and are fixed along with the scheduling decisions.

In order to fix the first group, a linear substitute problem is formed which ab-
stracts from the single fractions and takes into account only the overall masses in
the mixers and the finishing lines. The integer values of a solution of this problem
are always feasible values for the complete problem and are used as fixed values
during the solution of the remaining non-linear problem.

6.6 Numerical Results

To investigate the relative merits of the two models and algorithms, tests for several
scheduling horizons were performed. For each of these tests, the capacity of the
polymerization stage was assumed to change over time. Table 5 lists the size of the
problems.

Due to the nonconvexity of the problem, a global optimum cannot be determined
in general. To examine the quality of the solution, we used satisfiable demands in
the objective function which were determined by simulation runs. Thus the optimal
value of the objective function always equals 0. Furthermore, the overall sum of the
demands is shown which serves as a relative measure of the delays in the schedule,
since overproduction is weighted by a factor of 1/10 relative to underproduction
and, as an analysis has shown, the main part of the value of the objective function
results from underproduction.

The numerical results shown in Table 5 are only an excerpt but give a good
indication of the overall picture. The results obtained by both algorithms are very
similar but the solution times required by the fixed-grid model are much longer than
for the continuous-time model which is due to the larger problem size.

Continuous-Time Fixed-Grid
Horizon [days] 6 10 14 6 10 14

No. of Variables 1,747 3,554 5,678 5,965 10,977 15,999
No. of Binary Variables 316 635 1,021 1,060 2,020 2,980
No. of Constraints 1,437 2,997 4,886 4,347 8,015 11,693
Cost Function 0.49 1.07 2.06 0.56 1.13 2.33
Demand Sum 20.3 52.3 128.4 20.3 52.3 128.4
Solution Time [s] 37 346 1,301 239 1,311 4,294

Computations performed on a SUN Ultra 2 1300.

Table 5. Scheduling Model
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As a horizon of six days is sufficient if the scheduler is combined with the
stochastic planning algorithm, the proposed solution is sufficiently efficient for re-
active rescheduling.

7 SUMMARY AND PERSPECTIVES

In this contribution we presented a multi-level decomposition approach for online
scheduling of multiproduct batch plants under uncertainty. In contrast to classical
approaches, the telescopic decomposition avoids the generation of superfluous in-
formation and reflects the ability to react to new information an the modeling level.
The proposed approach is realized for a real-world benchmark process by means of
a two-level model. The higher level sub-model is formulated as a two-stage stochas-
tic program, whose deterministic equivalent can be stated as a large mixed-integer
linear program (MILP). The problem is solved by a decomposition algorithm spe-
cific for multi-stage stochastic programs. The lower-level sub-model is a determinis-
tic mixed-integer non-linear program (MINLP) with a continuous representation of
time. It is solved by problem specific algorithms based on a depth-first search. Nu-
merical experiments for both algorithms were performed and show the applicability
of the proposed approach for real-world problems.

Building on these promising results, the current and future research will be on
three main points. Firstly, we will design, implement and evaluate different inter-
faces between the planning and the scheduling level. The focus will be on the ques-
tion how to utilize and transmit second order information, i.e. information about
sensitivities of scheduling decisions. Secondly, additional sources of uncertainties
will be integrated in the models on both levels. Therefore, the properties of the un-
certainties will have to be analyzed with respect to recourse as well as short-term
and long-term effects.

Thirdly, we will develop models that are able to reflect risk aversion of deci-
sion makers. In the classical approach of two-stage stochastic programming one
minimizes the sum of here-and-now costs (first-stage costs) and the expected value
of recourse costs (second stage), but the optimization of the expected-value is of-
ten not satisfactory. There may be realistic scenarios for which the performance
is not acceptable, and a human scheduler would prefer a more cautious policy,
e.g. keeping a larger stock. In multiproduct batch plants the huge input of capital
suggests that solutions which lead to excessive losses for certain scenarios should
be excluded (cf. [32]). In financial mathematics this approach has been studied for
many years, starting with the models of Markowitz [26]. Other models are due to
Duffie et al. [11], Eppen et al. [12] and King et al. [18]. We follow an approach
introduced by Bereanu [5]. The idea is to minimize the probability of a “disastrous
event”, i.e. to find a solution that performs acceptably for (almost) all scenarios.
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Abstract Optimization is the task of finding a best solution to a given problem. When the
decision variables are discrete we speak of a combinatorial optimization problem. Such a
problem is online when decisions have to be made before all data of the problem are known.
And we speak of a real-time online problem when online decisions have to be computed
within very tight time bounds. This paper surveys the art of combinatorial online and real-
time optimization, it discusses, in particular, the concepts with which online and real-time
algorithms can be analyzed.

1 INTRODUCTION

Models and methods from Combinatorial Optimization provide powerful tools for
solving highly complex problems from a broad spectrum of industrial and other
applications. The traditional optimization techniques assume, in general, knowledge
of all data of a problem instance. There are many cases in practice, however, where
decisions have to be made before complete information about the data is available.
In fact, it may be necessary to produce a part of the problem solution as soon as a
new piece of information becomes known. We call this an online situation, and we
say that an algorithm runs online if it makes a decision (computes a partial solution)
whenever a new piece of data requests an action.

Practice may be even more demanding. The online algorithm may indeed be
required to deliver the next piece of the solution within a very tight time bound.
In this case, we speak of a real-time problem (or real-time system), i.e., a problem
where an online algorithm is required to react in real-time.

How tight do time bounds have to be in order to turn an online problem into
a real-time problem? There is no general rule. A standard answer is: The required
reaction time of the algorithm must be short compared to the “time frame of the sys-
tem”, i.e., the definition depends on problem-specific settings. For example, we all
expect telecommunication and computer systems to react within a few seconds or
faster. Thus, real-time algorithms that, e.g., decide about routing, switching, capac-
ity, or paging must answer within milliseconds. Real-time algorithms controlling
chemical reactions or other production processes may be given a few seconds for
the computation of a solution, while in transportation or traffic a few minutes lead
time could be acceptable. In fact, what could be considered real-time or not may
also depend on the complexity of the mathematical model applied, the importance
of the decision, and other problem-specific items.
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Online and real-time problems have been around in continuous optimization
(e.g., control of airplanes, re-entry of a spacecraft) for quite a long time, while com-
binatorial optimizers have neglected this issue to a large extent. With a few excep-
tions, systematic investigation of combinatorial online problems started only about
15 years ago. Initially, research was mainly driven by applications in computing
and communication machinery. The emergence of new paradigms for the analysis
of online algorithms particularly fostered this “combinatorial online research”. In-
teresting and important additional applications broadened its scope.

Why is new theory necessary? Isn’t it possible to transfer online results from
continuous optimization to combinatorial optimization? The (unfortunate) truth is
that continuous and discrete optimization are very different in nature. Combina-
torial decision making is, in general, non-convex and non-continuous. Continuous
techniques rarely apply to discrete models.

In this paper we will discuss many of the models that have been proposed in the
recent years for the analysis of online algorithms. These models usually differ in the
way information becomes available to the online algorithm. We will describe the by
far most common online paradigms, the sequence model and the time-stamp model,
in greater detail.

Despite significant research efforts in recent years, combinatorial online opti-
mization is not in a mature state yet. Compared to this, combinatorial real-time
optimization is even still in its infancy. No commonly accepted tools and concepts
for the analysis of combinatorial real-time algorithms that take both, solution qual-
ity and time requirements, into account have been established yet. We will address
this topic in Section 3.

It is, however, important to note that practical applications have become a driv-
ing force in this area. And, thus, we may hope to see new success stories on both,
the theoretical and the practical side, in the near future.

1.1 The Sequence Model

An online problem in the sequence model can be described as follows. An algorithm
ALG, we call it the online algorithm, is confronted with a finite request sequence
 ��


�
	�
 	 	 � ��� . The requests must be served in the order of their occurrence. More

precisely, when serving request

 � , the online algorithm ALG does not have any

knowledge of requests

 � with � � �

. When request

 � is presented to ALG it must

be served by ALG according to the specific rules of the problem. The action taken
by ALG to serve


 � incurs a cost and the overall goal is to minimize the total service
cost.1 The decision by ALG of how to serve


 � is irrevocable. Only after

 � has been

served, the next request

 � � � becomes known to ALG. In some cases the appearance

of the last request is announced, in some not.
We begin with sketching a very basic decision problem that occurs in various

forms frequently in everyday life. We phrase it as a ski rental problem. Despite its

1 It is also possible to define online profit-maximization problems. For those problems, the
serving of each request yields a profit and the goal is to maximize the total profit obtained.
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simplicity the ski rental problem will enable us to point out some of the subtleties
in the modeling and analysis of online algorithms.

Example 1 (Ski Rental Problem). Suppose that a woman goes skiing for the first
time in her life. She is faced with the question of whether to buy skis for ��� � Euro
or to rent skis at the cost of � Euro per day. Of course, if the woman knew how
many times she would go skiing in the future, her decision would be easy. But
unfortunately, she is in an online situation where the number of skiing days only
becomes known at the very last day. ��

The above situation can be modeled as an online problem in the sequence model.
In the Ski Rental Problem each request


 � is a day the woman goes skiing. Each
request can be “served” in three different ways: (i) rent skis at the cost of � Euro,
(ii) buy skis at the cost of � Euro, (iii) use the skis that she already owns at the cost
of � Euro (where of course this option is only available in case she already bought
skis when serving some request


 � with � � �
). Request


 � � � (that is, the next skiing
day, if there is any) only becomes known to the woman after


 � has been served.
The overall goal is to minimize the total rental/buying cost.

Some comments apply to the ski rental problem. We have formulated the prob-
lem in such a way that the skiing woman does neither have any lookahead (that is
knowledge about a certain number of subsequent requests) nor any statistical infor-
mation about the future. This is in accordance with the basic sequence model. If we
want to incorporate any of these additional information into the problem then the
sequence model must be augmented.

Example 2 (Paging Problem). Consider a two-level memory system (e.g., of a com-
puter) that consists of a small fast memory (the cache) with


pages and a large slow

memory consisting of a total of
�

pages. Each request specifies a page in the slow
memory, that is,


 � � � � 	 ��� � 	 � � . In order to serve the request, the corresponding
page must be brought into the cache. If a requested page is already in the cache, then
the cost of serving the request is zero. Otherwise one page must be evicted from the
cache and replaced by the requested page at a cost of � . A paging algorithm specifies
which page to evict. An online algorithm must base its decisions when serving


 �
only on the requests



�
	 ��� � 	
 � without any knowledge of future requests. The ob-

jective is to minimize the total cost of processing the sequence of page requests. ��

1.2 The Time Stamp Model

In the time stamp model requests become available over time at their arrival or
release dates. The release date

� � � � is a nonnegative real number and specifies
the time at which request


 � is released (becomes known). An online algorithm ALG

must determine its behavior at a certain moment
�

in time as a function of all the
requests released up to time

�
. Again, we are in the situation that an online algorithm

ALG is confronted with an input sequence 
 � 

�
	 � ��� 	
 � of requests which is given

in order of non-decreasing release times and the service of each request incurs a cost
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for ALG. The difference to the sequence model is that the online algorithm is allowed
to wait and to revoke decisions. Waiting incurs additional costs, typically depending
on the elapsed time. Previously made decisions may, of course, only be revoked as
long as they have not been executed.

Example 3 (Online Machine Scheduling with Jobs Arriving Over Time).
In scheduling one is concerned with the distribution of jobs (activities) to a number
of machines (the resources). In our example, one is given 
 identical machines and
is faced with the task of scheduling independent jobs on these machines. The jobs
become available at their release dates, specifying their processing times. An online
algorithm learns the existence of a job only at its release date. Once a job has been
started on a machine the job may not be preempted and has to run until completion.
However, jobs that have been scheduled but not yet started may be rescheduled. The
objective is to minimize the average flow time of a job, where the flow time of a job
is defined to be the difference between the completion time of the job and its release
date. ��

The above problem can be modeled as an online problem in the time stamp
model. Request


 � (corresponding to job
�
) is a pair


 � � � � � 	 � � � , where
� � is the re-

lease time of job
�

and � � is the processing time. An online algorithm must make its
decisions at point

�
in time only based on the jobs released up to time

�
. The online

algorithm may leave some of its machines idle for some time even if unprocessed
jobs that have already been released exist. (Using a small amount of idle time can
actually be beneficial in order to gather information about potential new jobs).

Example 4 (Online Traveling Salesman Problem). An instance of the Online Trav-
eling Salesman Problem consists of a metric space � � � � 	 � � with a distinguished
origin �

� � and a sequence 
 � 

�
	 ����� 	
 � of requests. Each request is a

pair

 � � � � � 	 � � � , where

� � is the time at which request

 � is released (becomes

known), and � � � � is the point in the metric space requested to be visited. A
server is located at the origin � at time � and can move at unit speed. A feasible
online/offline solution is a route for the server which serves all requested points,
where each request is served not earlier than the time it is released, and which starts
and ends in the origin � . The cost of such a route is the time when the server has
served the last request and has returned to the origin (if the server does not return to
the origin at all, then the cost of such a route is defined to be infinity). This objective
function is also called the makespan in scheduling.

It is assumed here that an online algorithm does neither have information about
the time when the last request is released nor about the total number of requests. An
online algorithm must determine the behavior of the server at a certain moment

�
of

time as a function of all the requests released until time
�
. ��

Notice that the Online Traveling Salesman Problem differs from its famous rel-
ative, the Traveling Salesman Problem (see Example 17 in Section 3.2), in certain
aspects: First, the cost of a feasible solution is not the length of the tour but the to-
tal travel-time needed by the server. The total travel time is obtained from the tour
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length plus the time during which the server remains idle. Second, due to the online
nature of the problem it may be unavoidable that a server reaches a certain point in
the metric space more than once.

A delicate issue arises when designing an online algorithm for the Online Trav-
eling Salesman Problem: Suppose that at some moment in time all known requests
have been served. If the algorithm wants to produce a solution with finite cost, then
its server must return to the origin after a finite amount of waiting time. But how long
should this waiting time be? If the server returns immediately, then a new request
might become known and all the traveling to the origin has been in vain. However, a
too large waiting time before returning to the origin increases the cost of the solution
unnecessarily.

2 COMPETITIVE ANALYSIS

Combinatorial online problems and algorithms had been studied in the sixties to
eighties rather sporadically. Broad systematic investigation started when Sleator and
Tarjan [46] suggested comparing an online algorithm to an optimal offline algo-
rithm, thus laying the foundations of competitive analysis. The term “competitive
analysis” was coined in the paper [33].

We call an algorithm deterministic if its actions are uniquely determined by the
input. A randomized algorithm may, in contrast, execute random moves, i.e., one
and the same input given to such an algorithm twice may result in two different
outputs. For the analysis of deterministic and randomized algorithms, of course,
different tools are needed.

2.1 Deterministic Algorithms

Let ALG be a deterministic online algorithm. Given a request sequence 
 denote
by ALG

� 
 � the cost incurred by ALG when serving 
 and denote by OPT
� 
 � the

optimal offline cost (the optimal offline algorithm OPT knows the entire request
sequence in advance and hence can serve it with minimum cost).

Definition 5 (Competitive Algorithm, Deterministic Case). Let � � � be a real
number. A deterministic online-algorithm ALG is called � -competitive if

ALG
� 
 � � � OPT

� 
 � (1)

holds for any request sequence 
 . The competitive ratio of ALG is the infimum over
all � such that ALG is � -competitive. ��

We want to remark here that the definition of � -competitiveness varies in the
literature. Often, an online algorithm is called � -competitive if there exists a constant� such that

ALG
� 
 � � � OPT

� 
 � � �
holds for any request sequence. Some authors even allow � to depend on some prob-
lem or instance specific parameters. Thus, whenever � -competitiveness is addressed
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one should check which definition is applied. We will stick to the definition given
above since, in the examples we consider, requiring � � � is the natural choice.

Observe that, in the above definition, there is no restriction on the computational
resources of an online algorithm. The only scarce resource in competitive analysis is
information. In many practical applications, severe restrictions on the computation
time of an online algorithm apply. We address this issue in Section 3.

Competitive analysis of online-algorithms can be imagined as a game between
an online player and a malicious offline adversary. The online player uses an online
algorithm to process an input which is generated by the adversary. If the adversary
knows the (deterministic) strategy of the online player, he can construct a request se-
quence which maximizes the ratio between the player’s cost and the optimal offline
cost.

We illustrate competitive analysis of deterministic online algorithms on two ex-
amples.

Example 6 (A Competitive Algorithm for the Ski Rental Problem). Due to the sim-
plicity of the Ski Rental Problem all possible deterministic online algorithms can
be specified. A generic online algorithm ALG � rents skis until the woman has skied � � times for some

 � � and then buys skis on day


. The value
 � � is

allowed and means that the algorithm never buys. Clearly, each such algorithm is
online. Notice that on a specific request sequence 
 algorithm ALG � might not get
to the point that it actually buys skis, since 
 might specify less than


skiing days.

We claim that ALG � for
 �

� is � -competitive with � � � � � � � .
Let 
 be any request sequence specifying � skiing days. Then our algorithm has

cost ALG �
� 
 � � � if � � � � � and cost ALG �

� 
 � � � � � � �
� �

� � � if � � � .
Since the optimum offline cost is given by OPT

� 
 � � min� � 	
� � , it follows that our

algorithm is
� � � � � � � -competitive. ��

Example 7 (A Bad Algorithm for the Paging Problem). The algorithm LFU – least
frequently used – for the Paging Problem given in Example 2 works as follows:
For each page � from the main memory, LFU maintains a counter on the number of
times that � has been requested so far. Upon a request


 � which is currently not in
the cache, LFU evicts the page from the fast memory which has been requested least
frequently in the past.

The algorithm LFU is not competitive. Indeed: suppose that �
� ��� � 	 ��� � 	 � � � is

the initial cache contents and � � � � is one additional page from the slow memory.
Let

� � � , and consider the sequence 
 � � � � 	 � �	 	 ��� � 	 � �� � � 	 � � � � � 	 � � � � . Here � ��
means that page � � is requested

�
times in a row and

� � � � � 	 � � � � states that � � � �
and � � are requested alternatingly

�
times. Starting with the

� �  � � � � � st request,
LFU has cost � for every subsequent request, which gives LFU

� 
 � � � �
. On the

other hand, OPT can process the sequence at cost � by evicting page � � upon the
first request to � � � � . Since

�
can be chosen arbitrarily large, it follows that LFU is

not competitive. ��

Example 8 (Negative Result in Machine Scheduling). The online scheduling prob-
lem in Example 3 is notoriously difficult. It can be shown that even in the case of a
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single machine any deterministic online algorithm has a competitive ratio that grows
with the number of jobs presented in the input sequence. More precisely, any deter-
ministic online algorithm has a competitive ratio of at least � � � , where � is the
number of jobs. (see [24, Chapter 9]). ��

Example 9 (Competitive Algorithms for the Online TSP). Probably the most obvi-
ous algorithm for the Online TSP (see Example 4 for the definition) is given by
the following “REPLAN”-strategy: If a new request becomes known, plan a shortest
route starting at the current position, serving all yet unserved requests and ending in
the origin. It can be shown that this algorithm is � � � -competitive (see [8, 9]). How-
ever, there are more complicated algorithms which achieve a competitive ratio of

�

(see [6, 8, 9]) in general metric spaces. For the special case that the metric space is
the real line, a � � � -competitive algorithm is presented in [8, 9]. ��

2.2 Randomized Algorithms

So far we have only considered deterministic online algorithms. The definition of
competitiveness for randomized algorithms is a bit more subtle. In the case of a
deterministic online algorithm, the adversary has complete knowledge about his
opponent and can exploit this knowledge. For randomized algorithms we have to be
precise in defining what kind of information about the online player is available to
the adversary. This leads to different adversary models which are explained below.
For an in-depth treatment we refer to [15, 39].

An oblivious adversary (OBL) must choose the entire request sequence in ad-
vance. He does neither have knowledge about the outcome of the random experi-
ments of the online algorithm ALG nor about the specific actions taken by ALG as a
result of the random decisions. However, the oblivious adversary knows the online
algorithm ALG itself including the probability distributions guiding ALG’s decisions.

An adaptive adversary can choose each request in the input sequence based on
knowledge of all actions taken by the randomized algorithm so far, and of the out-
come of all random experiments. One distinguishes different adaptive adversaries
depending on how the adversary himself must serve the input sequence.

The adaptive offline adversary (ADOFF) defers serving the request sequence
until he has generated the last request. He then uses an optimal offline algorithm.
The adaptive online adversary (ADON) must serve the input sequence (generated by
himself) online. Notice that in case of an adaptive adversary ADV, the adversary’s
cost ADV

� 
 � for serving 
 is a random variable.

Definition 10 (Competitive Algorithm, Randomized Case). A randomized algo-
rithm ALG is � -competitive against an adversary of type ADV

� � OBL,ADON,ADOFF �
for some � � � , if

� � ALG
� 
 � � � ADV

� 
 � � � � (2)

for all request sequences 
 . Here, the expectation on the left hand side is taken over
all random choices made by ALG. ��
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In case of an oblivious adversary, the adversary’s cost ADV
� 
 � � OBL

� 
 � does not
depend on any random choices made by the online algorithm. Hence, a randomized
online algorithm ALG is � -competitive against an oblivious adversary, if for any
request sequence the inequality � � ALG

� 
 � � � � OPT
� 
 � holds.

The power of a randomized algorithm depends on the adversary it competes
with. Relations between the adversaries have been studied in a general model called
request-answer games (see [15]). It turns out that randomization does not help
against an adaptive offline adversary. More precisely, it can be shown that the ex-
istence of a � -competitive algorithm against an adaptive offline adversary implies
the existence of a deterministic algorithm which is � -competitive (see [15]). How-
ever, against an oblivious adversary, a randomized algorithm can “hide” its current
configuration from the adversary which might enable him to achieve a better com-
petitive ratio.

Example 11 (Ski Rental Problem Revisited). We look again at the Ski Rental Prob-
lem given in Example 1. It is easy to see that any deterministic algorithm has a
competitive ratio at least

� � � � � � � . Any competitive algorithm must buy skis at
some point in time. The adversary simply presents skiing requests until the algo-
rithm buys and then ends the sequence. A straightforward calculation shows that
this forces a ratio of at least

� � � � � between the online and the offline cost.
We consider the following randomized algorithm RANDSKI against an oblivious

adversary. Let � � � � � � � � � � and 
 � � � � �
� � � � . At the start RANDSKI chooses

a random number
 � � �

	 ��� � 	 � � � � according to the distribution Pr �
 � � � � �


 � �

. After that, RANDSKI works completely deterministic, buying skis after having
skied


times. We analyze the competitive ratio of RANDSKI against an oblivious

adversary. Note that it suffices to consider sequences 
 specifying at most � days
of skiing. For a sequence 
 with � � � days of skiing, the optimal cost is clearly
OPT

� 
 � � � . The expected cost of RANDSKI can be computed as follows

� � RANDSKI
� 
 � � �

� � ��
� � �


 � � �  � � � �
� � ��

� � � 
 � � �

A lengthy computation shows that

� � RANDSKI
� 
 � � � � �

� � � � OPT
� 
 � �

Hence, RANDSKI is � � -competitive with � �
� � �

� � � � . Since lim � � � � �
� � � � � �

� � � � � � � , this algorithm achieves a better competitive ratio than any deterministic
algorithm whenever

�
� � � � � � � � � � � , that is, when � � � � � � � � � � � � � � � . ��

Example 12 (Paging Revisited). It can be shown that no deterministic algorithm for
the Paging Problem (see Example 2) can achieve a competitive ratio smaller than


,

the size of the cache. However, there exists a randomized algorithm which is
� � � ,

competitive, where � �
� � � � � � �

� � �
� � �


is the


th harmonic number. Proofs

and the algorithm can be found in [15]. ��
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Example 13 (Machine Scheduling Revisited). The scheduling problem from Exam-
ple 3 remains difficult even for randomized algorithms. Every randomized algorithm
has a competitive ratio of

	 � � � � against an oblivious adversary where again � de-
notes the number of jobs given in the request sequence (see [49]). ��

2.3 Alternatives to Competitive Analysis

Competitive analysis is a type of worst-case analysis. It has (rightly) been criticized
as being overly pessimistic. The competitive ratios observed in practice are usually
much smaller than the pessimistic bounds provable from a theoretic point of view.
Often the offline adversary is simply too powerful and allows only trivial competi-
tiveness results. This phenomenon is called “hitting the triviality barrier” (see [24]).
To overcome this unsatisfactory situation various extensions and alternatives to pure
competitive analysis have been investigated in the literature.

In comparative analysis the class of algorithms where the offline algorithm is
chosen from is restricted. This concept has been explored in the context of the
Paging Problem [34] and the Online TSP [14]. Another approach to strengthen
the position of an online algorithm is the concept of resource augmentation (see,
e.g. [10, 41, 42, 46]). Here, the online algorithm is given more resources (more or
faster machines in scheduling) to serve requests than the offline adversary. The dif-
fuse adversary [34] model deals with the situation where the input is chosen by an
adversary according to some probability distribution. Although the online algorithm
does not know the distribution itself, it is given the information that this distribution
belongs to a specific class of distributions. Other approaches to go beyond pure
competitive analysis include the access graph model for paging [16, 17, 32] and the
statistical adversary [18]. We refer to [24, Chapter 17] for a comprehensive survey.

All of the extensions and alternatives to competitive analysis have been proven
to be useful for some specific problem and powerful enough to obtain meaningful
results. However, none of these approaches has yet succeeded in replacing compet-
itive analysis as the standard tool in the theoretical analysis of online algorithms.
Hence, it is particularly irritating that competitive analysis can only give substantial
decision support for a few “real-world problems”.

3 REAL-TIME ISSUES

In real-time systems (cf. section 1), an algorithm has to deliver a solution within
prescribed time constraints. The behavior of a real-time system depends of course on
the quality of the solution but it depends as well as on the time needed for producing
the solution. A solution provided too late may be useless or, in some cases, even
dangerous because it does not fit to the current system parameters which may vary
over time.

For instance, if a decision support system watching the stock market needs a
long time to propose buying or selling a certain share, the price of the share (espe-
cially in a volatile market) may have changed so much that this action is no longer
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reasonable. If, however, the decision support system of a pilot takes long to suggest
the right action in case of an emergency the result may be fatal.

In our context, the notion time emphasizes the fact that the system significantly
depends on the time in which answers to requests are produced. The notion real
indicates that the system’s reaction to external events must occur instantaneously.
In other contexts, real-time reaction is just a synonym for fast reaction to external
events. We have to be more precise, the speed of real-time reaction must correspond
to the specific time requirements of the systems environment and the problem set-
ting. The time available for computation may vary, e.g., from milliseconds to min-
utes. The general objective of real-time optimization is to match the problem specific
timing requirements of each task and to produce a best possible solution within the
incurred time constraints. Since the solution is based on the information available at
the beginning of the computation, it may be necessary to check its feasibility for the
state of the system at the end of the computation.

3.1 Real-Time Decision Support Systems

Real-time algorithms are often integrated into computerized decision support sys-
tems, see [44] for such examples in local transport.

Decision support can be based on the knowledge of a previously forecasted de-
velopment of the real-time system. In our context, such forecasts may be obtained
via offline computations of optimal solutions of some combinatorial optimization
problem for real-world data describing the standard situation of the real-time sys-
tem. We will thus call the presently available forecasted development of the real-
time system briefly the current solution. Real-time decision support systems provide
proposals for “quick” reactions to external unforseen events which change the cur-
rent solution. Real-time decisions usually have to be made subject to and despite of
severe limitations of resources: hardware, time, and information. Some fundamental
components of such a decision system (according to [44]) are:

1. Information management: current update of incoming information.
2. Situation assessment: evaluation of the situation, decision whether or not a re-

action of the system is required (or should be proposed).
3. Evaluation of alternatives: checking possible actions for the real-time event.
4. Decision: determining an action (or choosing to do nothing).

Real-time decision support systems for complex real-time systems are (more or
less) semi-autonomous systems that support and assist human operators. Due to
efficiency, responsibility, and security issues, human operators are seldom replaced
by such systems. On the other hand, these systems usually require highly qualified
personnel.

Decision support systems may propose actions with different degree of influence
on the development of the real-time system. Three different types of decisions with
increasing impact [44] are reactive planning, incremental planning, and deliberative
planning. In reactive planning, the current solution is only locally adapted to some
real-time event. Incremental planning already results in a more global update of the
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current solution. Deliberate planning is a complete revision of the current solution.
This is advisable when the observed situation significantly differs from the predicted
state so that the current solution becomes ineffective or even infeasible. The choice
of reactions on real-time events depends on the time available for computation and
on the observed effects of the real-time event.

Example 14 (Dispatching Trams in Local Transport). In municipal tram dispatch,
trams start from a certain depot for serving scheduled round trips. In the depot, trams
are stored in several sidings one behind the other. The dispatcher has to assign the
trams to a sequence of round trips each requiring a certain type of tram [13, 50, 51].

Due to unforeseen external events, e.g., delays, the pre-calculated current fea-
sible assignment of trams to round trips has to be replaced by a new one. The dis-
patcher needs to find the new feasible assignment as fast as possible within a few
minutes. His objective is to minimize (or prevent) shunting of trams. Otherwise, new
delays may be generated or more tram drivers may be required for moving trams.

��

For results on competitive analysis for online versions of tram dispatch prob-
lems, unfortunately mainly negative observations have been made, we refer to [50,
51].

In the following sections we survey some of the prominent methods for solving
offline-optimization problems and comment on their usability in a real-time context.

3.2 Exact Solution Methods for Combinatorial Optimization Problems

Online and real-time algorithms try, of course, to make use of the existing machinery
of combinatorial optimization. Core ingredients are, thus, fast solvers for linear,
integer and mixed-integer programs.

Mixed-integer programming (MIP) provides effective tools for solving combi-
natorial optimization problems which arise from industrial applications. Constraints
from combinatorial optimization can often easily be reformulated in terms of linear
MIP-constraints though it may turn out to be difficult to find a computationally ef-
fective formulation. Modelling software like AMPL [25] or GAMS [19] is available
which support modelling and problem solving. Powerful state-of-the-art solvers for
linear and mixed integer programming problems such as CPLEX [12] have success-
fully been applied to such formulations of industrial applications.

Definition 15 (Mixed integer programming). In (linear) mixed integer program-
ming the given (linear) objective function

� � ��� � � �
(3)

has to be minimized subject to the given (linear) constraints
�
� � � � 	 � � � � (4)� � � � � � � � � 	 (5)

for integer valued vectors � and real valued vectors
�

. ��
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Solving MIPs is difficult in theory (NP-hard) and, in general, hard in practice.
Nevertheless, MIP formulations and solution techniques may help under real-time
constraints. Here are two examples of the MIP approach.

Example 16 (Load Balancing on Identical Machines). Consider the Load Balanc-
ing Problem (also called makespan minimization) arising in machine scheduling.
One is given a sequence


 � � � 	 ����� 	 � � of jobs where job
�

has processing time � � .
The task is to distribute the jobs on 
 identical machines such that the maximum
load of a machine is minimized. Here, the load of a machine is defined to be the sum
of job processing times assigned to the machine.

The above problem can be formulated as the following Integer Linear Program:

minimize �
subject to��
� ��� � � � � � � � for � � � 	 ����� 	 
 (6)

��
� ��� � � � � � for � � � 	 ��� � 	 � (7)

� � � � � �
	 � � for all

�
, � (8)

The binary (decision) variable � � � has the following meaning: � � � � � if and only
if job

�
is assigned to machine � . Constraints (7) ensure that each job is assigned to

exactly one machine, constraints (6) ensure that � is greater or equal to the load of
any of the 
 machines. Since � is minimized it follows that in an optimal solution
� will be exactly the maximum load of a machine. ��

Example 17 (Offline Traveling Salesman Problem). In the famous symmetric Trav-
eling Salesman Problem one is given a complete undirected graph

� � � � 	 � � on
� vertices � � � � 	 � ��� 	 � � with (symmetric) edge weights

� � � for each edge
� � � � .

The problem consists of finding a shortest tour starting and ending at the same ver-
tex and visiting each other vertex exactly once. The cost of a solution is the total
length of all edges in the tour. ��

We formulate the Traveling Salesman Problem as an Integer Linear Program. To
this end define, for a subset � � � , the set

� � � � � � � � � � � � � � � 	 � �� � � of edges
incident with � . Then using the decision variables � � � , with � � � � � if and only if
edge

� � is contained in the tour, we can write the TSP as the following Integer Linear



Combinatorial Online Optimization in Real Time 691

Program

minimize

��
��� � ��� � � � � � �

subject to�
� � ��� � � � � �

� � � � �
for

� � � 	 ��� � 	 � (9)�
� � ��� � � �

� � � � �
for all � � � ,

� � � � � � � � � � � (10)

� � � � � �
	 � � for all

�
, � (11)

A proof that the feasible solutions to the above Integer Linear Program are in fact
exactly (incidence vectors of) tours, can be found, e.g., in [22, 36].

As already noted, there are important differences between the objectives in the
Offline TSP and the Online TSP specified in Example 4. However, an algorithm
for the Online TSP can make use of an (exact or approximate) algorithm for the
Offline TSP to solve the following sub-problem: For a set of known but yet unserved
requests � find a shortest route which serves all requests in � and returns to the
origin.

Integer programming formulations are quite flexible and general. While adding
or cancelling of constraints and/or variables in a MIP may severely change the com-
plexity of the model, it still remains a MIP and thus basic methods for solving MIP’s
still apply. Combinatorial algorithms specially designed and tuned for some com-
binatorial optimization problem usually break down when such changes become
necessary.

For example, integer programming methods have successfully been applied to
real-time problems in transport and logistics. If solving a complete real-time model
turns out to be too time-consuming, it may be decomposed into smaller parts which
can be solved fast enough. Trading computing time versus solution quality helps to
adapt the problem setting to the changing requirements in real-time applications.

Example 18 (Dispatching Trams in Local Transport Revisited). The task of finding
shunting free assignments for the tram dispatching problem of Example 14 can be
modelled as a 0-1-quadratic assignment problem [50, 51].2 Shunting-free assign-
ments correspond to assignments that obey certain additional side constraints [13].
After exact linearization and some model tuning, the resulting integer programming
model can be solved within reasonable time [50, 51]. ��

A similar approach has proved to be useful in the context of container logistics [47].
Exact solution methods, here based on mixed integer programming formulations

of the combinatorial optimization model, are essential for pre-calculation of good or

2 See [20] for a definition of the quadratic assigment problem and a comprehensive survey
of solution approaches.
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optimal solutions to real-time optimization problems. While computation times are
reasonable, matching tight real-time requirements in real-time applications may en-
force tradeoffs between solution quality and computation time. However, even then,
exact methods provide indispensable information on the quality of other approaches.

3.3 Approximation Algorithms

If exact methods fail to produce answers in real-time the next step is to look for sub-
optimal solutions which have a guaranteed quality. Approximation algorithms for
offline minimization problems are closely related to competitive online algorithms.

Definition 19 (Approximation algorithm). A deterministic algorithm ALG is 
 -
approximative if

ALG
� 
 � � 
 OPT

� 
 � (12)

holds for any problem instance


. The quantity 
 � � provides a worst case bound

on the relative error of the approximation. The infimum of all values of 
 for which
ALG is 
 -approximative is called performance ratio of ALG. (The remarks made on
variants of the definition of � -competitiveness also apply here.) ��

By the above definition, a � -competitive online algorithm is � -approximative.
Conversely, if a � -approximate algorithm is also online, it is also � -competitive. In
view of applications, in the design of approximation algorithms speed is of first pri-
ority since here computation time is the scarce resource. Thus, one usually restricts
approximation algorithms to the class of polynomial time algorithms.3 In contrast,
time complexity is not an issue in competitive analysis: there is (at least in theory)
no bound on the computation time for an answer generated by an online algorithm.

Many approximation algorithms have a simple structure and are in fact online.
For NP-hard problems, polynomial time approximation algorithms offer a way to
trade solution quality for computation time. Polynomial time approximation algo-
rithms have intensively been considered within the last years. Comprehensive sur-
veys on approximation algorithms can be found in [7, 31, 38, 48].

Example 20 (Load Balancing on Identical Machines revisited). Consider again the
load balancing problem described in Exampe 16. Graham [27, 28] proposed the
following greedy-type heuristic LIST: Consider the jobs in order of their occurence
in the input sequence



. Always assign the next job to the machine currently with

the least load (breaking ties arbitrarily). Clearly, LIST can be implemented to run in
polynomial time. Moreover, LIST is also an online algorithm for the online version
of the problem where jobs are revealed to an online algorithm according to the
sequence model.

We are now going to analyze the performance of LIST. Obviously, the optimum
load is at least as large as any job processing requirement resp. at least as large the

3 In the literature often the notion of an approximation algorithm includes the property of
the algorithm being polynomial time.
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average processing time for each machine, i.e.:

OPT
� 
 � � � � for

� � � 	 ����� 	 � and OPT
� 
 � � �



� � � � (13)

Consider the machine � where LIST generates the maximum load when processing


.

Let � � be the load of the last job assigned to machine � and let 	 be the load of �
before job

�
was assigned. With these notations we have LIST

� 
 � � 	 � � � .
By definition of LIST, at the moment job

�
was assigned to machine � all other

machines had load at least 	 . Hence, the total sum of job sizes is at least 
 	 � � � .
Hence from the second inequality in (13) we get OPT

� 
 � � � � 
 � 
 	 � � � � �
	 � � � � 
 . This results in

LIST
� 
 � � 	 � � � � OPT

� 
 � �
�
� � �



� � � � �

� � �


�

OPT
� 
 � 	

where for the last inequality we have used the first inequality in (13).
This proves that LIST is

� � � � � 
 � -approximative. Since we have already re-
marked that LIST is in fact an online algorithm, LIST is also

� � � � � 
 � -competitive
for the online variant of the problem in the sequence model. ��

For 
 � �
, Albers [1] describes an online scheduling algorithm which is � � � � � -

competitive. Her algorithm tries to prevent schedules which distribute the load uni-
formly on all machines by keeping some machines with a “low” load whereas the
other machines have a “high” load. For 
 � � � , Albers [1] derives a lower bound
of � � � � � on the competitive ratio of deterministic online algorithms for the machine
scheduling problem.

In the offline case, LIST can easily be improved by taking advantage of the in-
formation about



. In worst-case examples for LIST, the last job has a very long

processing time. By sorting the jobs in non-increasing order according to their pro-
cessing times, i.e., processing jobs with the longest processing times first, a better
approximation ratio of

�
� � �� � can be achieved [28]. Since sorting is quite fast, this

algorithm may still be applied to real-time versions of machine scheduling problems
where several jobs arrive simultaneously.

Example 21 (Offline Traveling Salesman Problem Revisited). It is easy to see that
for the Traveling Salesman Problem (see Example 17), polynomial-time approxima-
tion algorithms with constant performance ratio can only exist if the edge weights
satisfy the triangle inequality [26]. In this case, a

�
-approximative algorithm can be

constructed using a minimum spanning tree in the graph [40]. Christofides’ algo-
rithm [21] also starts with a minimum spanning tree. For the nodes with odd degree
in this tree a shortest perfect matching is computed. Then, a tour following a Eule-
rian walk in the multi-graph formed by the spanning tree and the perfect matching
is constructed. The solution found this way is

�	 -approximative.
For the special case that the vertices in the input graph corresponds to points

in the Euclidean plane and the edge lengths are given by the Euclidean distances,
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Arora [2] and independently Mitchell [37] have devised polynomial time approxi-
mation schemes.4 However, no practical implementation of these fairly complicated
algorithms has been reported yet. ��

Real-time applications require that answers are computed online and within
tight time windows. The length of this time window is closely connected to the
arrival times of the requests. In view of the discussion of polynomial approxima-
tion algorithms, one may define a real-time algorithm as an online algorithm that
generates answers in constant or, at least, in “suitably” low polynomial time. A con-
cept for the evaluation of the performance of real-time algorithms, that combines
approximation aspects and time requirements in a convincing manner, would be of
great value for real-time applications. Up to now, no convincing concept has been
proposed.

3.4 Offline Heuristics (without Provable Worst-Case Performance Guarantees)

In some applications, optimal or approximate solutions even for small problem in-
stances cannot be computed within the tight required real-time bounds. The typical
approach in this case is to look for algorithms that quickly produce a feasible so-
lution and iteratively keep on improving the solution. There are general principles,
such as local search (or more fashionable: meta heuristics), that can be adapted to
special applications and have indeed successfully been applied to many real-world
applications. For a comprehensive introduction to local search we refer to [23, 43].

Local search for a combinatorial optimization problem proceeds in the following
way. Let

�
be the set of all feasible solutions (also called solution space). For each

feasible solution � � �
, one defines a neighborhood

�
� �

�
containing all feasible

solutions which are “close“ to � and which can be reached from � by applying
certain modifications to � . The solution space

�
is covered by the collection of

neighborhoods � � �
� � � � � .

Starting from an initial feasible solution, local search moves from one feasible
solution to another, while storing the best solution found so far. Local search can
thus be stopped at any time and will always provide a feasible solution. In our con-
text, local search algorithms may thus be called any-time algorithms. The initial so-
lution for a local search algorithm is usually generated using a starting heuristic. The
local search algorithm terminates either after a certain number of steps (in the con-
text of real-time computation this may also be after a user-defined time threshold)
or according to some other stopping criterion with respect to the objective function
value.

The basic local search paradigm leaves open how a successor � �
� �

� to the
current solution � is selected. Different rules to select a successor lead to different
incarnations of local search. For instance, a Greedy-type local search would always
choose the solution with the best objective function value among all solutions in

�
� .

4 An approximation scheme consists of a collection � ALG � � ��� ��� of algorithms where
ALG ��� -approximate and has polynomial running time.
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However, since such an algorithm can get stuck at local optima, various other ap-
proaches have been suggested in the literature. In Simulated Annealing one accepts
also successors with worse objective function value but only with a certain probality
which decreases over time. Tabu Search is another implementation of local search
which attempts to avoid a breakdown at local optima. Other approaches include so
called improvement heuristics like


-opt. We refer to [23, 43] for comprehensive

survey.

Example 22 (Dispatching Trams in Local Transport by Local Search). An example
for a powerful local search algorithm is the reactive tabu search (RTS) heuristic de-
veloped by Battiti and Tecchiolli [11]. In RTS, the next solution in the neighborhood
is chosen at random while recording whether and how often this solution has been
visited before. If a re-visiting counter exceeds a threshold, some random steps are
executed in order to leave the previously visited neighborhood in which RTS threat-
ens to stall. RTS is known to be very effective for instances for quadratic assignment
problems.

The real-time tram dispatch problem introduced in Example 14, requires to com-
pute tram assignments within two minutes. Reactive tabu search provided optimal
solutions for more than 80 percent of the considered real-world instances as well as
for randomly generated instances within these tight time bounds [50, 51]. ��

4 GENERAL-PURPOSE ONLINE-HEURISTICS

There are general principles which can be used to design an online algorithm.

4.1 First-In-First-Out (FIFO)

The FIFO-strategy does only make sense in the time stamp model. This approach to
control the order in which requests are served completely works without regard of
efficiency issues: FIFO strictly serves requests in the order of appearance.

Although it is clear form the definition that this strategy is almost never cost-
efficient it is incredibly popular in production-planning and control. One reason for
this might be that FIFO has a desired side-effect: items in a production environment
are delivered according in the order of production, so that no newer items are sold
(or used) before the old items are cleared. One other reason is that a FIFO-heuristic is
sometimes hidden in a control system based on priority rules. These systems usually
employ FIFO as a tie-breaker inside the priority classes. Whenever there are many
requests in one priority class the efficiency problem will take effect. Thus, a major
problem for such controls is catching up after system break-downs.

In principle it is possible to use any of the following strategies as a tie-breaker
in a priority-based control system. Therefore, FIFO– if not explicitely required –
is usually an inferior strategy whenever there is a substantial number of requests
available for planning.
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4.2 Greedy

The greedy algorithm is a well defined algorithm in the context of matroids or in-
dependence systems in combinatorial optimization. In terms of online optimization
the notion of an algorithm being “greedy” is used for all kinds of algorithms which
have in common the following strategy: Make a “locally most promising” decision
how to process the next request.

In the sequence model the GREEDY principle amounts to serving the next re-
quest that is revealed to the online algorithm by such an action that has least service
cost. In the time stamp model at any time GREEDY serves that request (among the
yet unserved requests) next that can be served with the least cost with respect to the
current system state. This is one extremal case of local optimization: GREEDY only
decides upon the next request to be served, i.e., it does not plan into the future or
does not consider the system state after the service. That means, even when no other
request arrives, GREEDY is very likely to be sub-optimal. Moreover, GREEDY does
not take into account possible future requests.

Although the above GREEDY-strategy is very shortsighted and the solutions pro-
duced maybe sub-optimal it is very popular because it is

– easy to implement,
– usually real-time compliant, and
– it produces a stable, predictable behavior since no decision is revised.

However, if cost-efficiency is the main-goal one usually needs a more sophisticated
approach.

4.3 Replan

The REPLAN-strategy for an online problem in the time stamp model assumes that
we have a method that computes an optimal (or almost optimal) solution to the
static optimization problem (the corresponding offline-problem) at a specific point
in time. Note that, in a realistic environment, this imposes the restriction of real-time
compliance on the algorithms used to compute the optimum of the offline-problem
(see Section 3).

While the GREEDY-approach 4.2 acted as locally as one could think, for RE-
PLAN we find the other extreme case: at any time REPLAN tries to be “as globally
optimal as possible”, given the information it has at that point.

More specific: REPLAN maintains a “plan” containing the information on how
to serve the already known requests. This plan is followed as long as no relevant
event happens. Whenever a relevant event happens (a new request arrives, a change
of the system state gives rise to a new cost of the current solution, etc.), REPLAN

computes a cheapest solution of all known request in the current system state. Due
to its nature, REPLAN is also called REOPT in the literature.

At any point in time we compute an optimal solution that is globally optimal at
that particular moment. However, with respect to the complete instance the current
solution is yet only locally optimal. Whenever a new request arrives the plan maybe
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revised, and the global efficiency of the old plan is never really exploited since only
the first couple of requests have been served according to that plan.

A more serious problem, however, is the fact that REPLAN can completely revise
all decisions for which this is still possible. This often leads to an unpredictable
behavior over time. One can even produce “oscillating” solutions. This means the
following: assume, e.g., at some point in time, we find an optimal solution serving
some request



of type

�
before another request



� of type � . Before we can serve



,

a new request of type � arrives. Now the optimal plan may suggest to serve


� prior

to


. But then there might arrive a new request of type

�
changing the plan back,

and so on.

4.4 Ignore

The IGNORE-strategy also assumes that we are working in the time stamp model
and that we have a way of computing (sub-) optimal solutions to the static (offline)
version of the problem. The main idea of this method is to make sure that the effi-
ciency of an optimal offline-solution computed at a certain point in time be exploited
completely. More important even: once we computed an optimal plan it is absolutely
predictable how the system will work in the near future.

The way it works is the following: IGNORE again maintains a plan. In contrast
to REPLAN, the strategy IGNORE will stubbornly serve requests according to this
plan until the plan is finished. Upcoming requests are temporarily ignored and col-
lected in a buffer. When the current plan is finished IGNORE computes a new plan
optimizing the service of all not yet served requests.

Although IGNORE might give away optimization potential by temporarily ig-
noring requests it still exploits optimization. Moreover, the upcoming requests that
fit “very well” into the old plan (i.e., with no cost) can be incorporated with no harm.

We illustrate the general purpose strategies FIFO, GREEDY, IGNORE and RE-
PLAN for the Online Traveling Salesman Problem:

Example 23 (Online TSP Revisited). Applying FIFO to the Online Traveling Sales-
man Problem leads to a tour that visits all cities in the order of appearance. If not
required by other constraints this is certainly not the best choice.

The GREEDY-heuristic for the Online Traveling Salesman Problem means the
following: At any point in time visit the closest city next. It is known that this
can lead to a very inefficient solution. In some practical applications of the Online
Traveling Salesman Problem, however, the experience shows that even this simple
heuristics is acceptable.

Whenever a new city becomes known the REPLAN-heuristic computes an op-
timal tour (according to the objective function used to model the cost) visiting all
cities known so far. This tour is followed until the next city pops up.

The observed performance depends heavily on the application. In practical in-
stances it maybe necessary to cope with the problem of system break-downs: the
salesman has to interrupt his work at some point. During the break the number
of unserved requests increases, and so does the gain of offline-optimization of all
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unserved requests. For instance, an automatic storage system where transportation
tasks are served by a stacker crane can be modeled as an asymmetric Online Trav-
eling Salesman Problem (see [4, 5]). In this specific application unexpected system
break-downs of the automatic storage system may occur. During the forced idle
period of the server a lot of requests pile up. All these requests can be taken into
account by REPLAN when the server resumes. Thus, it is plausible that REPLAN

yields a good recovery method.

The effort to get the necessary offline-solutions is usually large and not always
real-time compliant. This, however, could be achieved in cases where good approx-
imation algorithms (see Section 3.3) exist, like in the metric case (see Example 21).

The method IGNORE waits for the first city to be “released”. Then it moves its
salesman to that city. Once arrived, it computes an optimal tour through all the cities
that have been released during the time the salesman was underway. Then this tour
is completely traveled. At the end of the tour, the cities that have become known in
the meantime are planned.

Again, the success of this method in realistic systems modeled by variants of
this problem is application dependent. Simulation experiments show that in single
server systems there usually is a substantial gain in stability and predictability of the
system behavior over REPLAN. ��

4.5 Chasing the Offline Optimum and Balancing Costs

Suppose that there are � (system-) states
�
�
	 ��� � 	 � � in which an algorithm can be

and that the service cost for a request depends (only) on the current state. Moreover,
there is a cost for changing states. (This situation can be stated more formally as a
Metrical Task System, see [15]).

Upon arrival of a new request

 � , the strategy of chasing the offline optimum

changes to that state
� � in which the offline optimum for the sequence



�
	 � ��� 	
 �

would process

 � . A balancing costs type algorithm would change from the current

state
�

to that state
�
� which minimizes some function of the following two values:

(i) the charge for changing from
�

to
�
� , and (ii) the cost of serving


 � in
�
� . The

most famous representative of the latter class is the work function algorithm which
has been successfully applied to the theoretical analysis of the Paging Problem and
the


-Server Problem [15, 35].

5 SIMULATION

One can view simulation as a method of checking industrial system layouts and as-
sociated algorithms by an organized sequence of computer based experiments and
evaluations. This takes place, of course, on the border line of mathematics and engi-
neering. Therefore, we cannot hope for exact mathematical definitions of all relevant
objects in the realm of simulation.
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In this section we informally describe the method of discrete event based sim-
ulation and address issues that may come up during the process of modeling and
computing. More elementary information can be found in [45].

5.1 Why Simulation?

The theoretical background surveyed in Section 2 leads to mathematical problems of
substantial difficulty, even for seemingly easy online optimization problems. On the
other hand, the performance guarantees achieved by these methods are often very
poor. This renders competitive analysis problematic for most industrial purposes. In
this case, evaluation and comparison of the practical performance of online algo-
rithms are necessary.

There are new theoretical developments – one of them in this volume – that
provide some improvements in this area; the final decision about which algorithm to
choose in practice, however, is usually done on the basis of simulation experiments.

5.2 Discrete Event Based Simulation

Simulating an aspect of the real world on a computer requires a quantitative defi-
nition of the relevant part of the real world. This is referred to as the system. The
system may consist of several components. In order to investigate waiting time dis-
tributions in a supermarket consider, e.g., the check-out area in that supermarket as
the system. This system consists of several cashiers, waiting queues, etc.

The part of the real world outside the system is usually called environment.
Sometimes there is a feed-back between system and environment, and it is at times
a difficult modeling issue to find a suitable separation. The system interacts with the
environment by producing an output of the system for an input of the environment.

In the area of online optimization we are usually concerned with dynamic sys-
tems, i.e., the system parameters change over time. For example, the lengths of the
lines at the cashiers in the supermarket are not constant. Moreover, in the realm
of combinatorial online optimization it is usually possible to find discrete points in
time where the system changes its state. Such systems are called time-discrete. In
the sequel we restrict ourselves to time-discrete systems.

A simulation model is a translation of the relevant parameters of the system
into mathematical language so that the behavior of the system over time can be
investigated by a computer calculation. In this step it is necessary to specify the
components and their attributes that one would like to keep track of. Very important
attributes are strategies or algorithms that hold information about how components
react on system events. Some attributes are time-dependent, some are not. In the
supermarket example we could specify a component “cashier” and a component
“customer”. The attributes for a cashier, e.g., could be open/closed, operator speed,
length of line.

The changes of a time-discrete system over time is described by Events. First,
an event specifies a system transition function that assigns to every possible system



700 M. Grötschel, S. O. Krumke, J. Rambau, T. Winter, and U. T. Zimmermann

state a new system state. Second, it defines a successor function that assigns to every
system state a set of succeeding events together with their time of occurrence.

In the supermarket example the event “customer arrives in line at cashier
�
”

can be formalized as follows: for all current system states the new system state
incorporates the following changes: the queue at cashier

�
contains a new customer,

and the set of succeeding events is empty.
The event “customer is being served at cashier

�
” can be defined as follows:

the customer is no longer in the corresponding queue, and there is one successor
event, namely “customer leaves the system” in five seconds times number of items
in shopping cart from now.

Simulation means computing the output of the system (over time) for a given
input (over time) of the environment. In Discrete Event Based Simulation this is
done by dynamically processing events, i.e., computing the system states and the
successor events until no events are left or a specified time is over. To start the
simulation one uses environment input events modeling the input of the environment
to the system.

An example of a discrete event based simulation system is the library AM-
SEL [3]. It was used in the investigations in [29].

5.3 Issues for the Practitioner

The quality of an evaluation of algorithms by means of simulation experiments
heavily depends on the input data used. The following ways of generating input
data are common:

– Generate data according to a probability distribution (random data).
Advantages: It is possible to generate an arbitrarily large set of test data.
Draw-backs: A realistic probability distribution maybe hard to come by.

– Compile data in the system under consideration.
Advantages: One can adjust parameters of the simulation model by comparing
the outcome of the simulation experiments with the outcome in the real world
operation.
Draw-backs: Compiling the data is extremely time-consuming, often it is not
clear whether the compilation contains typical or unusual data.

Although we are advertising here the use of simulation for the performance eval-
uation of online algorithms we are aware of the fact that simulation experiments may
be misguiding. It is a nontrivial matter to come up with meaningful and representa-
tive simulation tests.

6 CONCLUSION

More and more industrial decision makers appear to understand the issues coming
up in online and real-time systems. Solution techniques are requested in a range of
applications which will certainly improve research and development in online and
real-time algorithms.
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We have introduced competitive analysis as a mathematical method for the eval-
uation of combinatorial online-algorithms resulting in provable performance guar-
antees. A shortcoming of this approach is that it does not take into account the
real-time requirements that are present in many real-world systems. Moreover, for
complex systems and complicated algorithms a rigorous competitive analysis is in
most cases impossible.

Thus, using this method on elementary problems that are similar to the given
complex problems seems to be the right utilization: it is possible to get an idea
about what kind of strategies are promising for real-world systems and why.

There are new developments in the area of theoretical evaluation of online-
algorithms [30]; this field is, however, still in its childhood.

Most online-strategies caring about cost efficiency employ offline-algorithms.
Here the need for real-time compliant methods is apparent. Theoretical concepts to
get a hand on the issue that a solution is computed under circumstances that might
have changed when the computation finishes are not yet available. Some achieve-
ments are presented in this volume.

After all, up to now there is no way to replace the experience in simulation exper-
iments completely by a purely theoretical concept for evaluation of combinatorial
online-algorithms.
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Abstract This paper discusses online optimization of real-world transportation systems. We
concentrate on transportation problems arising in production and manufacturing processes,
in particular in company internal logistics. We describe basic techniques to design online
optimization algorithms for such systems, but our main focus is decision support for the
planner: which online algorithm is the most appropriate one in a particular setting? We show
by means of several examples that traditional methods for the evaluation of online algorithms
often do not suffice to judge the strengths and weaknesses of online algorithms. We present
modifications of well-known evaluation techniques and some new methods, and we argue that
the selection of an online algorithm to be employed in practice should be based on a sound
combination of several theoretical and practical evaluation criteria, including simulation.

1 INTRODUCTION

The strategic planning of complex transportation systems such as public transporta-
tion networks, automatically guided vehicles in warehouses, etc. has received a con-
siderable amount of attention in the last decade. Strategic planning is the stage of
system design where an object (e.g., a telecommunication network) is designed that
will remain static for a certain planning period (the network topology, and edge
capacities will not change) such that a few control parameters (e.g., routing and
switching) will allow an (almost) optimal handling of all input data (within a cer-
tain realistic or predicted range). The system itself is usually not yet operational
when this “strategic optimization” takes place. Here, methods of offline optimiza-
tion apply. The increasing computing power and significant advances in traditional
optimization techniques have resulted in substantial savings of resources in this area.

Despite many successes of this approach, e.g., for transportation systems, it has
turned out that achieving savings also requires an optimized operational control.
Such a control involves actions to be executed while a system is running; i.e., in-
put data arise over time, have to be processed, and (irrevocable) decisions have to
be made before all input data are known. This means that methods of online opti-
mization have to be employed. In many cases decision making has to satisfy certain
real-time requirements: every decision has to be made within strict time limits.

In this paper, we survey some new methods (beyond standard competitive anal-
ysis) to obtain decision support for the choice of online algorithms in real-world
transportation systems. In each case, we are looking for a “good” online control
on the basis of online algorithms. The methods discussed are competitive analysis
against restricted adversaries (a variant of competitive analysis where the offline
adversary is given less power), analysis under

�
-reasonable load (we compare the
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cost of the online algorithm to a certain property of the input), a-posteriori-analysis
(we perform an approximate, instance wise competitive analysis to compute a lower
bound on the unavoidable cost), and comparative simulation (we compare algo-
rithms that run simultaneously in simulation experiments).

These concepts are employed along with standard competitive analysis in real-
world examples. We indicate which combination of methods could support deci-
sions best.

The rest of the paper is structured as follows: We start out by sketching our
real-world examples in Section 2. In Section 3 we present the above mentioned
evaluation methods for online algorithms. In Section 4 the applications of traditional
and new methods to real-world systems is discussed. Section 5 summarizes what we
consider the key findings of our research.

2 FOUR REAL-WORLD EXAMPLES AND WHY THEY RAISE QUESTIONS

In this section we introduce four real-world online optimization problems. One com-
mon feature is the difficulty to evaluate online algorithms for them.

The first example is the automated stacker crane in a production plant of Siemens
Nixdorf Informationssysteme AG (SNI). The question is in which order the stacker
crane should perform storage and retrieval operations so as to minimize the un-
loaded travel time. We show that for the related objective “minimize the makespan”
(the time the system needs to serve a set of requests) we find a � � � -competitive
algorithm. This is the REPLAN-heuristics already discussed in [10]. This algorithm
is, however, not competitive with respect to the minimization of the total unloaded
travel distance. Shall we use this algorithm anyway?

The second example studies a system of automated guided vehicles for commis-
sioning greeting cards in a large distribution center of Herlitz PBS AG, Falkensee,
one of the main distributors of office supply in Europe. Orders specifying a combi-
nation of greeting card sets have to be assigned to vehicles. These must stop at the
shelf positions where the corresponding cards have to be collected (“order picking”).
The question is how orders should be assigned to vehicles so that the total number
of stops over all vehicles is minimized. It turns out that competitive analysis tells us
nothing about which algorithm to choose in practice. For a greatly simplified prob-
lem we show that competitive analysis is even in favor of an intuitively senseless
algorithm. Is there an evaluation method that proves dumb algorithms to be dumb?

The next example is a pallet elevator in the same distribution center. In this case
it was already difficult to isolate a single objective function to be optimized. We
decided to consider several objectives: We want to guarantee a small average and/or
a small maximal flow time over a set of pallets requesting transportation. It turns out
that for these objectives there is no competitive algorithm, mainly because the cost
of an offline solution cannot be bounded from below. Can we evaluate algorithms
without using a lower bound on the offline cost?

Finally, we investigate the integrated elevator system plus conveyor belt that
distributes the pallets among the elevators. We find out that a similar analysis as
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in the single elevator case is still valid; the improvements, however, are leveled off
by the conveyor control. Therefore, we studied an integrated optimization model
for the combined elevator-conveyor system. Does this help to improve the overall
performance of the system?

We will give answers to the above questions in Section 4 after we have intro-
duced our “evaluation toolbox” in Section 3. Some of the answers are quite satis-
factory, others show the need for further research.

3 MODELING AND EVALUATION TECHNIQUES

In this section, we present a sequence of methods to analyze the performance of
online algorithms. The methods are ordered by decreasing mathematical strength,
that is to say, the first method – if successful – yields the most rigorous analysis of
the ones in this section, the last one is merely experimental. (Classical competitive
analysis as described in [10] would belong to the very beginning of the section.)

3.1 Competitive Analysis with Restricted Adversaries

In restricting the class of algorithms for the adversary, one attempts to deal with the
(justified) objection – frequently encountered against competitive analysis – con-
cerning the unrealistic power of the adversary against which performance is mea-
sured. In standard competitive analysis the adversary is an optimal offline algorithm
which has complete knowledge about the whole input in advance. There have been
a number of approaches in the literature to devise “more realistic” adversary models
for specific problems than the omnipotent standard offline adversary.

For the exposition we consider the Online Traveling Salesman Problem ON-
LINETSP on the non-negative real numbers � �

� endowed with the Euclidean metric
(see [10, Example 4] for the ONLINETSP in general metric spaces). The origin of
the salesman is the point � . In the ONLINETSP requests for visits to cities (points in
a metric space) arrive online while the salesman is traveling. The salesman moves
at unit speed and starts and ends his work at the origin � . The objective is to find a
route for the salesman which finishes as early as possible.

Each request is a pair 
 � � ��� � 	 � � � , where
� � � � is the time at which request 
 �

is released (becomes known to an online algorithm), and � � � � �
� is the point

requested to be visited. It is assumed that an online algorithm does neither have
information about the time when the last request is released nor about the total
number of requests. An online algorithm must base its decisions at time

�
solely on

the requests released up to time
�
.

Notice that the offline version of the ONLINETSP in � �
� can be solved very

easily even in the presence of release times (the problem is almost trivial!). However,
in the online case, there does not exist an algorithm that always finds an optimal
solution. More specifically, it can be shown that there is no deterministic online
algorithm that achieves a competitive ratio smaller than � � � . The competitive ratio
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of � � � is achieved by the following very natural and simple strategy MRIN (see [7]
for the proofs):

Strategy MRIN(“Move-Right-If-Necessary”) If a new request is released and the
request is to the right of the current position of the server operated by MRIN,
then the MRIN-server starts to move right. The server continues to move right as
long as there are yet unserved requests to the right of the server. If there are no
more unserved requests to the right, then the server moves towards the origin � .��

In the lower bound construction the offline adversary abuses his power in the
sense that he can move to points where he knows a request will pop up without re-
vealing the request to the online server before reaching the point. This has motivated
the concept of a “fair adversary” in the ONLINETSP: A fair adversary always keeps
its server within the convex hull of the requested points released so far. As shown
in [7] this adversary model indeed allows for lower competitive ratios. For instance,
the above mentioned � � � -competitive algorithm MRIN against the conventional ad-
versary is � � � -competitive against the fair adversary. In addition, one can prove the
following:

Theorem 1 ( [7]). There exists an online algorithm for the ONLINETSP in � �
� with

competitive ratio
� ��� � �� � � � � � against a fair adversary. Moreover, no determin-

istic online algorithm can achieve a competitive ratio smaller than
� ��� � ��

against
the fair adversary. ��

The use of a restricted adversary falls within the concept of comparative anal-
ysis, which was introduced by Koutsoupias and Papadimitriou [14]. The authors
compare the performance of an online algorithm for the Paging Problem with that
of the best paging algorithm having limited lookahead. Let � be a minimization
(online) problem. The comparative ratio of an algorithm ALG for � relative to a
class � of algorithms is defined as the worst case ratio between the solution cost
produced by ALG and the best solution produced by an algorithm in � . If � is the
class of all offline algorithms for � , then the comparative ratio reduces to the stan-
dard competitive ratio.

The comparative ratio has also been studied in the context of online financial
problems. For most of these problems the standard adversary also appears to be too
strong. To obtain meaningful (theoretical) results about the performance, e.g., of
online portfolio selection algorithms, a comparison with a restricted class of offline
algorithms is used. We refer to [8, Chapter 14] for details.

3.2 Reasonable Load

This concept was motivated by the problem of minimizing the maximal or average
flow time of pallets transported by an elevator. Such a system can be modeled by
the so-called online dial-a-ride problem ONLINEDARP. The concept of reasonable
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load also works in a more general setting. However, we do not want to go too much
into abstraction in this paper, and we restrict our attention to ONLINEDARP, which
we explain in the sequel.

We are given a metric space
� � 	 � � with a special point �

� � (the origin).
Requests are triples


 � � � 	
�
	 � � , where � is the start point of a transportation task,� its end point, and

�
its release time, which is – in this context – the time where


becomes known to an online algorithm. A transportation move is a quadruple
 � ��� 	 � 	�� 	 � � , where � is the starting point,
�

the end point, and
�

the starting
time, while � is the set (possibly empty) of requests the server has loaded during
the move. We say in this case, the move 
 carries � . The arrival time of a move
is the sum of its starting time and

� � � 	�� � . A (closed) transportation schedule is a
sequence

� 
 �
	 
 	 	 � ��� � of transportation moves such that

– the first move starts in the origin � ;
– the starting point of 
 � is the end point of 
 � � � ;
– the starting time of 
 � carrying � is no earlier than the maximum of the arrival

time of 
 � � � and the release times of all requests in � (it may be later, though);
– the last move ends in the origin � .

An online algorithm for ONLINEDARP has to move a server in � so as to fulfill
all released transportation tasks without preemption (i.e., once an object has been
picked up it is not allowed to be dropped at any other place than its destination),
while it does not know anything about requests that come up in the future. In order
to plan the work of the server, the online algorithm may maintain a preliminary
(closed) transportation schedule for all known requests, according to which it moves
the server. A posteriori, the moves of the server induce a complete transportation
schedule that may be compared to an offline transportation schedule that is optimal
with respect to some objective function (competitive analysis). For a detailed set-up
see [4].

Recall that the flow time of a request is the difference between its completion
time and its release time, while the waiting time is the difference between its service
starting time and its release time. In the sequel, we are concerned with the following
objectives:

– Minimize the makespan (also called the completion time) for the given set of
requests. This is the time the server needs to fulfill all the transportation tasks.

– Minimize the maximal flow time (or waiting time) of the requests.
– Minimize the average flow time (or waiting time).

We will consider the online heuristics REPLAN and IGNORE from [10]. Since
we did not choose a particular objective function yet we need to specify according to
which objective function REPLAN and IGNORE will solve the corresponding offline
problems. We will evaluate REPLAN- and IGNORE-heuristics that use a different
objective for the local optimization than the one that is to be minimized globally in
the online problem.

Thus, for an arbitrary objective function obj we denote by REPLANobj resp. IG-
NOREobj the following online heuristics:
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REPLANobj Follow the current plan. Whenever a new request becomes available
compute a new plan minimizing obj starting at the current position.

IGNOREobj Follow the current plan; while executing it collect upcoming requests in
a buffer. When done and there are non-served requests in the buffer compute a
new plan for all these requests minimizing obj.

The motivation to consider the concept of reasonable load in this situation was
two-fold.

First, competitive analysis of ONLINEDARP provides the following [4]:

– The two online heuristics IGNOREmakespan and REPLANmakespan are both � � � -
competitive for the goal of minimizing the makespan of the schedule.

– For the tasks of minimizing the maximal (or average) waiting time or the maxi-
mal (or average) flow time there can be no algorithm with constant competitive
ratio.

– In particular, the algorithms IGNOREmakespan and REPLANmakespan that repeat-
edly minimize the makespan of all known requests have an unbounded com-
petitive ratio for the overall task of minimizing the maximal or average flow
time.

Second, in simulation studies a fundamental difference in the behavior of IG-
NORE and REPLAN was observed: the maximal flow times on similar inputs pro-
duced by REPLAN varied a lot while the ones produced by IGNORE were better
predictable. The concept of reasonable load was developed to find a mathematical
explanation of this phenomenon.

We start with some useful notation.

Definition 2. The offline version of a request

 � � � 	

�
	 � � is the request


 offline � � �
�
	

�
	 � � �

The offline version of a request set � is the request set

� offline � � � 
 offline � 
 � � � � ��

An important characteristic of a request set with respect to system load consid-
erations is the time period in which it is released.

Definition 3. Let � be a finite request set for ONLINEDARP. Let the release time of
a request



be denoted by

��� 
 � . The release span
� � � � of � is defined as

� � � � � � max� � �
��� 
 �	� min� � �

��� 
 � � ��

Provably good algorithms exist for the makespan and the weighted sum of com-
pletion times. How can we make use of these algorithms in order to get performance
guarantees for minimizing the maximum (average) waiting (flow) times? We sug-
gest a way of characterizing request sets which we want to consider “reasonable”.
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In a continuously operating system we wish to guarantee that work can be ac-
complished at least as fast as it is presented. In the following we propose a math-
ematical set-up that models this idea in a worst-case fashion. Since we are always
working on finite subsets of the whole request set the request set itself may be infi-
nite, modeling a continuously operating system.

We start by relating the release spans of finite subsets of a request set to the time
we need to fulfill the requests.

Definition 4. Let � be a request set for the ONLINEDARP. A weakly monotone
function

� � � � � � 	
�

�� � � � � �
is a load bound on � if, for any

� � � and any finite subset � of � with
� � � � � �

, the
makespan OPTmakespan � � offline � of the optimum schedule for the offline version � offline

of � is at most
� � � � . In formula:

OPTmakespan � � offline � � � � � � � ��

Remark 5. If the whole request set � is finite then there is always the trivial load
bound given by the makespan of � . For every load bound

�
, we may set

� �
� � to be

the maximum completion time we need for a single request, since nothing better can
be achieved. ��

A stable situation would be characterized by a load bound equal to the identity
on � . In that case we would never get more work to do than we can accomplish,
even if we had an optimal offline algorithm at hand.

If � has a load bound equal to a function id � � , where id is the identity and
where � � � , then � measures the “tolerance” of the request set: An algorithm that
is by a factor � worse than optimal will still accomplish all the work that it gets.
However, we cannot expect that the identity (or any linear function) is a load bound
for ONLINEDARP because of the following observation: a request set consisting of
one single request has a release span of � whereas in general it takes non-zero time
to serve this request. In the following definition we introduce a parameter describing
how far a request set is from being load-bounded by the identity.

Definition 6. A load bound
�

is called (
�

, � )-reasonable for some
� 	 � � � � if

� � � � �
�

� for all
� � �

A request set � is
� �

, � )-reasonable if it has a (
�

, � )-reasonable load bound. For� � � , we say that the request set is
�

-reasonable, and we call a request set or a
load bound reasonable if it is

� � 	 � � -reasonable for some
� 	 � � � � . ��

In other words, a load bound is (
�

, � )-reasonable, if it is bounded from above
by � � �

�
id
� � � for all � � �

and by the constant function with value � � � � otherwise.
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Remark 7. If
�

is sufficiently small so that all request sets consisting of two or more
requests have a release span larger than

�
then the first-come-first-serve strategy

suffices to ensure that there are never more than two unserved requests in the system.
Hence, the request set does not require “scheduling” the requests in order to provide
for a stable system. (By “stable” we mean that the number of unserved requests in
the system does not become arbitrarily large.) ��

Resonable load is a plausible restriction:

Observation 8 (Justification of Reasonable Load). Assume that a request set for
ONLINEDARP is not reasonable. Then the following holds: For all

� �
� there is

a request set with release span at least
�

whose offline makespan is larger than its
release span.

In other words: no matter how long one collects requests there is provably no
method to accomplish their service in a time equal to the collection time.

Finally, we state the theorem that mathematically shows the (somewhat sur-
prising) fundamental difference of IGNOREmakespan and REPLANmakespan on ON-
LINEDARP. (See [11] for a proof.)

Theorem 9. For ONLINEDARP under
�

-reasonable load, IGNOREmakespan guaran-
tees a maximal and an average flow time of at most

� �
, whereas the maximal and

the average flow time of REPLANmakespan are unbounded.

In Sections 4.3 and 4.4 we present practical applications where an analysis under
reasonable load is possible.

3.3 A-Posteriori-Analysis

Competitive analysis – even in the case of existing competitiveness results – does
often not provide performance guarantees that appear convincing in an efficiency
oriented industrial environment. Consider a statement such as “The solution pro-
duced is in each and every situation at most � times worse than the optimum”. Will
a user be happy to hear that? Such a result is too weak in terms of the performance
ratio and too strong in the sense that it covers too many (from a customer’s point of
view probably irrelevant) situations.

The same problem occurs in the framework of approximation algorithms: a per-
formance guarantee for all instances of a problem is often not required. One ap-
proach that made combinatorial optimization methods have impact in real life was
the delivery of instance-wise performance guarantees via the computation of so-
called lower bounds for the very special instance of the minimization problem to be
solved in a particular situation.

Lower bounds can usually be derived by relaxing side constraints of a prob-
lem. The most prominent relaxation technique in combinatorial optimization is to
relax the integrality constraints, thereby transforming notoriously difficult (Mixed)
Integer Programs into efficiently solvable Linear Programs [10]. Optimal solutions
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of these may be easier to come by, and an optimal solution of the original prob-
lem cannot be cheaper than the one of the relaxed problem. On the other hand, the
value of any feasible solution to the original problem yields an upper bound for
the optimal solution. The gap between lower and upper bound at any stage of the
optimization process provides, thus, an instance specific quality guarantee: the dif-
ference between the objective function values of the current feasible solution and a
presently unknown optimal solution is not bigger than this gap.

In this framework the role of fast approximation algorithms is to provide for
good feasible starting solutions. Good initial solutions often help to close the gap
between lower and upper bounds fast and, thus, help to speed up the optimization
process.

One can similarly compute lower and upper bounds for a special instance of an
online optimization problem. This leads to an instance-wise competitive analysis.
Since, in an online situation, a special instance is not known in advance, this kind
of analysis can only be applied after all decisions have been made. Therefore, this
approach is called a-posteriori analysis.

We now state an observation that shows what a-posteriori-analysis can achieve.
We concentrate on online optimization in the time stamp model (see [10] for details).
We may assume w.l.o.g. that all time stamps are positive, and we assume also that
the way how a request sequence is served by an online algorithm does not influence
this sequence. (This assumption is not always satisfied in real systems, since after
observing how an algorithm has handled the first elements of a request sequence,
the remaining requests may be altered or their order may be changed.)

Suppose that



is an instance of an online optimization problem in the time
stamp model and that A is an online algorithm for this problem. Denote by A

� 
 �
the value of the solution A produces on



. Denote by

�
the corresponding instance

of the offline optimization problem induced by



where all requests are known in
advance and where a feasible solution has to respect all release times. Denote by %
the corresponding instance of the offline optimization problem induced by



where

all time stamps are removed (set to zero). Denote the optimal solution values of
�

and % by OPT
� � � and OPT

� % � , respectively.
Then the following simple observation can be made.

Observation 10 (Justification of A-posteriori Analysis). Let


,
�
, % be as above.

Then, under the above assumptions, there exist real numbers � � 
 	 A � and � �
� 
 	

A � ,
depending on



and on the online algorithm A, satisfying � �

� 
 	
A � � � � 
 	 A � � � ,

such that

OPT
� % � � OPT

� � � � A
� 
 � � � � 
 	 A � OPT

� � � � � � � 
 	 A � OPT
� % � �

The above chain of equations and inequalities yields two versions of instance-
wise competitive analysis depending on the chosen relaxations

�
or % . Usually, the

quality guarantee � � 
 	 A � is reported as the relative gap

�
- GAPA

� � � � 
 	 A � � � � A
� 
 � � OPT

� � �
OPT

� � � �
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It is, however, not clear how the instance
�

can be solved. The corresponding
combinatorial offline problems may, in fact, be hard. Even worse, it is often not
apparent how to formulate these offline problems properly. The reason is that on-
line problems in real life may come along with implicit restrictions that are diffi-
cult to model. In this sense, online problems coming from practice are sometimes
“ill-posed”. In such cases, one has to relax further side constraints in addition to as-
suming full knowledge of the input sequence in the beginning. The resulting offline
problems may then turn out to be useless in practice because of rather poor instance
specific gaps. (Even for the relaxation % this is often the case.)

Thus, a-posteriori analysis is often used as follows: find relaxations between
�

and % that model the online restrictions as faithfully as possible and replace OPT
� � �

by the optimal objective function value of this modified problem. An example of
this technique can be found in 4.1.

3.4 Comparative Simulation

The draw-back of a-posteriori analysis is that all decisions have irreversibly been
made when the analysis of these decisions is available. One way out is testing the
system behavior in a simulation experiment. An a-posteriori analysis can be made
for every possible online algorithm. If the data used for the runs of the simulation
system is “typical enough” then one can hope that a strategy whose gap in the sense
of Observation 10 is convincingly small will behave well in reality.

Sometimes even this is too much to ask for: even in an instance-wise analysis
the optimal offline algorithm may be too strong in the sense that the computed gap
is quite large for every conceivable, non-clairvoyant online strategy. Then we are
left with a comparison of online algorithms in simulation experiments.

One feature that makes this (somewhat “soft”) method valuable is that evalua-
tion is not limited to the computation of a single scalar objective function. Visualiza-
tion of the system behavior may, e.g., help to grasp the influence of various online
strategies from different perspectives: efficiency, stability, predictability, maybe oth-
ers. Some of these aspects are very difficult to hard-code in a mathematical model
so that the evaluation of simulation experiments by experienced human operators is
still one of the most commonly accepted ways of evaluating online algorithms. We
describe simulation experiments in all of our applications in Section 4.

4 THE TOOLBOX IN ACTION

In this section we apply the methods outlined in Section 3 including standard com-
petitive analysis to the real-world problems sketched in Section 2. We describe the
systems and the corresponding mathematical models in more detail, show that clas-
sical methods of evaluation of online algorithms are not sufficient, and apply com-
binations of the methods from Section 3. Where a greater level of detail is beyond
the scope of this paper we provide references to the original research articles.



Online Optimization of Complex Transportation Systems 715

4.1 Automated Stacker Cranes

Siemens Nixdorf Informationssysteme AG (SNI) maintains a production plant in
which all their personal computers (PCs) and related products are assembled. Parts
are brought into one of six automatic storage systems (AUSS). The AUSS serve as
material buffers between the receiving area and the assembly lines located at each
side of the AUSS. For each of the AUSS, there is one stacker crane fulfilling trans-
portation tasks between the receiving buffer, the storage locations, and the buffers
for the assembly line. (For a more detailed description of the layout, see [1].) The
goal is to minimize the unloaded travel time of the stacker crane.

Mathematical Models

If we were to minimize the total travel time (makespan) of the stacker crane then
our problem would be known as the online stacker crane problem ONLINESCP, a
special case of the ONLINEDARP, explained in Section 3.2. Here we are concerned
with a slightly different objective function.

The offline problem without release times can be modeled as an Asymmetric
Traveling Salesman Problem (ATSP). An instance of ATSP consists of a complete
directed graph


 � � � 	 � � � . Each node in � corresponds to a transportation task,
and the the weight of the arc from � to � corresponds to the travel time from the
end point of task � to the starting point of task � .

If release times have to be taken into account we are concerned with an Asym-
metric Traveling Salesman Problem with release times, a special case of the Asym-
metric Traveling Salesman Problem with time windows, the ATSPTW: here, for each
request



, there is a time window � � � 	 � � � given with a release time (earliest possible

start of service) � � and a deadline (latest possible completion of service)
� � .

We investigated the ATSPTW because there were given deadlines for the service
of requests anyway.

Time windows impose precedence constraints on the order in which the requests
are served. Relaxing the time windows of an instance of the ATSPTW to the cor-
responding precedence constraints yields an instance of the so-called Sequential
Ordering Problem SOP: here we are given a partial order on the set of requests and
we try to find a shortest tour through all requests respecting the given partial order.

The problems ATSP, SOP, and ATSPTW are NP-hard. While much attention had
already been paid to the investigation of the ATSP a thorough polyhedral study of
SOP and ATSPTW was carried out for the first time in [6]. Those results were later
strengthened in [1].

The goal was the design of a branch&cut algorithm able to solve on the one
hand typical instances of the ATSP used for the REPLAN online heuristic and on the
other hand the larger SOP resp. ATSPTW instances used for the a-posteriori analysis
of several online heuristics (see Section 3.3). In the following we summarize the
achievements for the SOP as an example for the polyhedral investigations contained
in this article.
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There are related results for the ATSPTW. We do not include them here since
they are of similar nature and their statement would not shed more light on the
principle situation. The interested reader may want to check again [1].

Let us start with the graph theoretic formulation of SOP. Recall that we are given
a complete directed graph


 � � � � � � 	 ��� � 	 � � 	 � � � on � nodes with non-negative
arc costs � � � � � . Moreover, in the SOP we are given a partial order “ � ” on � with
��� � � � for all

� � � , w.l.o.g. A feasible solution to the SOP is a set of arcs
forming a path that visits all nodes in � exactly once and that visits node

�
before

node � whenever
� � � . The goal is to find a feasible solution with minimal total arc

costs.
There are several possibilities to formulate the SOP as an integer program. The

polyhedral model chosen here is the following. We define the feasible arc set
�

as
follows:

� � � � � � � � � � 	�� � � � � � � � � � � � � � 	
 � � � � ��� � � � � � � ��� � �  � � �

For all feasible arcs
� ��� � � � � we introduce binary arc variables � � � meaning that� � � � � if and only if arc

� ��� � � is chosen to be in the solution.
With the notation

� � � � � � �
� � � � � � �

� � � for � � � �

� � � � � � � � �
�

� � � � � � �
�

� �
� � � for � � � �

�	� � � � � � � � ��� � � � � � ��� � � � � �
� � � � � � � � � � ��� � � � � ��� � � � � �

� � � � � � � � � � ��� � � � � � �
� � � �

� � � � � � � � � � �
�� � � � � �

� � �

an integer programming formulation of the SOP can be stated as follows:

min � � �� � � � � � � � � � ��� � � � � � ��� � � � (1)
� � �
� � � ��� � � � � � ��� � � � (2)
� � � � � ��� � � � � � � � � � � ��� � � � � (3)

� � � � � � � � � � � � ��� � � � � � � � � � � � � � � � � � � ��� � ��� � � � � �� �
(4)

� � � � � �
� � � � � ��� � � � � � (5)

The object of study is the sequential ordering polytope SOP defined as

SOP
� � � � � � � conv

� � � �
 � � satisfies (1)–(5) �

This polytope had already been studied in [6], where new inequalities such as
the predecessor/successor inequalities were derived. The following theorem sum-
marizes the new results achieved in our project group. For details see [1].
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Theorem 11 (Offline Problems – Polyhedral Study). For SOP
� � � � � the follow-

ing hold:

(i) If “ � ” is obeys a certain regularity condition then the dimension of SOP
� � � � �

equals � � � � � � � � � � � � , where � is the set of nodes whose position in the path
is fixed by “ � ”.

(ii) There are three types of new valid inequalities for SOP
� � � � � : the strength-

ened

 � -inequalities, the strengthened � � -inequalities, and the strengthened

two-matching constraints.

We refrain from explicitely listing the inequalities here because the overhead
in notation would not pay off given the purpose of this article. The corresponding
results on the ATSPTW can be found in [2].

Evaluation of Algorithms

The online version ONLINEATSP of the ATSP is defined in the same way as the
ONLINETSP, except that the distances are not symmetric. A competitive analysis
of the ONLINEATSP with the objective to minimize unloaded travel time cannot
provide additional insight. The reason for this is the following: one can find request
sequences that can be served by an offline algorithm without unloaded travel time
and that incur a positive cost for any online algorithm. Thus, the competitiveness
ratio would be infinite: not particularly helpful.

If one, however, replaces the objective “minimize total unloaded travel time”
by the objective “minimize total travel time (makespan)” then – as we mentioned
already – we are concerned with a special case of the ONLINEDARP. Note that these
objective functions are equivalent in the sense that their function values only differ
by an additive constant and that, therefore, the sets of optimal solutions are equal.
From the point of view of competitive analysis, however, this change in the objective
makes a huge difference.

As an application of a result in [4] we mention the following (see Theorem 20):

Theorem 12 (Competitive Analysis). REPLAN is � � � -competitive for the problem
of minimizing the makespan of the stacker crane.

Such a performance guarantee does not really help a decision maker. Therefore,
it does make sense to evaluate the REPLAN-strategy by other means. An a-posteriori
analysis was also made: we investigated the ATSP, the SOP, and the ATSPTW as
relaxations in the spirit of Section 3.3.

Observation 13 (A-Posteriori Analysis). Real data sets from SNI provided the fol-
lowing a-posteriori analysis for the REPLAN-strategy repeatedly solving the ATSP

of all known requests:

(i) The online solution is 46%–120% worse than an optimal a-posteriori solution
for the ATSP.

(ii) The online solution is 24%–98% worse than an optimal a-posteriori solution
for the SOP.
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(iii) The online solution is 3%–72% worse than an optimal a-posteriori solution
for the ATSPTW.

Since these gaps are not small enough to convince decision makers to use the
REPLAN-heuristics, simulation experiments were made.

Observation 14 (Comparative Simulation). On real data sets, REPLAN slightly
outperforms other online heuristics such as best insertion heuristics. The at SNI
previously used priority strategy with FIFO as a tie breaker performs roughly 50%
worse than REPLAN; the FIFO priority algorithm is no better than a random se-
quencing of request.

Thus, the conclusion was to implement the REPLAN-heuristic.

Implemented Solution and Practical Impact

Although the subproblems to be solved within the REPLAN-heuristics are NP-hard,
there are codes available so that the REPLAN-heuristics can be used in real-time
situations in practice. In order to obtain an any-time algorithm [10], we implemented
an optimization process working in three phases:

Phase 1: Perform cheapest insertion (BESTFIT).
Phase 2: Run a random insertion. Then pick the winner of Phase 1 and 2.
Phase 3: Solve the ATSP to optimality (branch&bound from [2]) and replace the

old sequence completely by the optimal one (REPLAN).

Phase 1 runs in time linear in the number of requests and is always completed.
For the typical problem sizes that occur in our application (the number of requests
is less than � � ) this is done in fractions of a second. Even Phase 3 could always be
completed within a few seconds. If the stacker crane becomes idle before Phase 3 is
finished, the optimization process is interrupted, and the best sequence found so far
is passed to the stacker crane.

Our simulation experience showed that REPLAN empirically gives the best re-
sults on average. SNI provided data for one week of production. During this period
on one AUSS each generated task and each move of the stacker crane were recorded.
It turned out that in heavy load periods the times needed for unloaded moves could
be reduced by approx. 30%.

As a result the optimization package was put in use on five AUSS, and the results
were confirmed in everyday production.

4.2 Commissioning of Greeting Cards

One of the commissioning departments in the distribution center of Herlitz is de-
voted to greeting cards. The cards are stored in four parallel shelving systems. In
accordance with the customers’ orders, the different greeting cards are collected in
boxes that are eventually shipped to the recipient. Order pickers on eight highly
automated guided vehicles collect the orders from the storage system, following a
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circular course. The vehicles are unable to pass each other. Moreover, due to secu-
rity reasons, only two vehicles are allowed to be in the middle aisles at the same
time, whereas three are allowed in the first and last aisle.

At the loading zone, each vehicle is logically “loaded” with up to � � orders from
a pool that changes over time. A dispatcher decides when to send a vehicle onto the
course. After leaving this area the vehicles automatically stop at a position where
cards have to be picked from the shelf according to the logical load. The goal is
the minimization of the makespan of all requests generated on one day subject to
some side constraints explained in [3, 13]. Congestion among the vehicles should
be avoided. This is important because congestions lead to undesirable side-effects
(that are very difficult to evaluate mathematically). These include human order pick-
ers leaving for an extra-break when their vehicles run into congestions. (For more
details consult [13].)

Mathematical Models

For the theoretical analysis it is necessary to provide a proper mathematical formu-
lation of the problem under consideration. We remark again that the modeling phase
may already result in a heuristic approach because the practical problem comes in
day-to-day terms that have no straight-forward mathematical translations. The Com-
missioning Vehicle Routing Problem (CVRP) to be considered in the competitive
analysis in Section 4.2 is the following.

An instance of CVRP consists of a set 	
� � � ��� � ����� � 
 � , the pick positions, and

a set of empty vehicles � � � � ��� � � � , each with capacity � . A request sequence 
 �

�
�
 	 � ��� � consists of a chronologically ordered collection of sets of pick positions.
A vehicle to which � requests have been assigned is replaced by a new empty

vehicle. In the online situation we require that request

 � is permanently assigned

to vehicle � � 
 � � before

 � � � becomes known and that the length of the sequence is

unknown until the last request comes in. That means, CVRP is an online problem in
the sequence model (see [10] for basic facts on online problems).

For a sequence of requests, a solution to the CVRP is an assignment of every
request


 � to a vehicle � � 
 � � so that the number of requests assigned to each vehicle
does not exceed � . The objective is to minimize the total number of pick positions
assigned to the vehicles. In [13] it was shown that the offline version of CVRP with
no release times is already an NP-hard problem. In fact, solving the corresponding
integer program in reasonable time turned out to be out of reach for commercial
software packages like CPLEX.

One explanation for the intrinsic difficulty of this variation of a capacitated as-
signment problem is given by the following result that we state informally here
(see [13] for details):

Theorem 15 (Offline Problem). The optimal solution of a certain linear-program-
ming relaxation of CVRP corresponds to the evenly distributed fractional assign-
ment, i.e., every request is partially assigned to each available vehicle.

This observation yields that the linear programming relaxation does not provide
any exploitable information on how to assign requests to vehicles.
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Evaluation of Algorithms

In [13] the following result was shown:

Theorem 16 (Competitive Analysis). The following hold for the CVRP:

(i) Any rule for the assignment of requests to vehicles yields a � -competitive al-
gorithm for the CVRP, where � is the capacity of a vehicle.

(ii) No online algorithm for the CVRP can be better than
�
-competitive.

(iii) The algorithm BESTFIT– set � � 
 � � to the vehicle whose number of pick posi-
tions gets the least increase – is no better than � -competitive.

In other words: competitive analysis does not provide much insight. In particu-
lar, the intuitively “reasonable” BESTFIT-heuristic is, from a competitive analysis
point of view, not better than any stupid rule.

Even worse: recent investigations showed that even for a substantially simplified
version of the CVRP we run into the odds of competitive analysis. In the following
excursion into theoretical online optimization we sketch the result.

Consider the following Online Bin Coloring Problem ONLINEBC: We are given
a natural number

� � � , infinitely many numbered bins with volume capacity � ,
and a sequence of requests



�
�
 	 � ��� � consisting of colored items of unit volume. We

have to place the items into the bins so that, at any time, no more than
�

bins contain
more than zero and less than � items. We have to stuff


 � into a bin before we get to
know


 � � � (sequence model). The goal is to minimize the number of colors in the
most colorful bin, i.e., the maximum number of items of distinct colors in a bin over
all bins.

This translates to the language of commissioning as follows: every request has
only one stop position, and we try to minimize over all vehicles the maximal number
of stops of a vehicle, rather than the total number of stops. (This is a useful objective
that helps to balance the vehicle load and, thus, to reduce congestion).

Consider the following online algorithms for ONLINEBC:

– Algorithm ONEBIN puts all items into one single bin until it is full. Then it
picks another bin etc. (This is a truly dumb algorithm.)

– Algorithm BESTFIT puts every item into the bin that already contains that color,
if such a bin exists. Otherwise, it puts the item into the bin with the least number
of colors so far, with ties broken arbitrarily.

The following theorem shows that standard competitive analysis is problematic
for this class of problems:

Theorem 17 (Competitive Analysis). The following hold for the ONLINEBC:

(i) BESTFIT is min� � � ��� � � � � � � � � � � � � � � � -competitive.
(ii) ONEBIN is min� � � � ��� � � � � -competitive.

(iii) BESTFIT is no better than
���

-competitive whenever � � ��� � � � 	 � � � � .
(iv) No deterministic online algorithm can be better than

� � � � -competitive.

This proves that competitive analysis does not provide any hint as to which
algorithm should be chosen in practice, even in the restricted models of this section.
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Implemented Solution and Practical Impact

Several heuristics that reduce the total number of stops and distribute them evenly
among the vehicles were implemented. These are versions of the BESTFIT algo-
rithm, together with local exchange heuristics. The computation times of these al-
gorithms are short so that they can be run in a real-time situation.

We implemented a detailed simulation model for the whole commissioning area
in which we compared our approach to the one used so far. Herlitz provided produc-
tion data from a period of about six weeks, which were the basis for the comparison.
The main results are the following:

– A significant improvement with respect to the completion times of the orders
can be achieved.

– The number of vehicles, used at Herlitz, can be reduced from eight to six with-
out any negative impact on the system performance.

– Congestions over a few seconds can be avoided completely.

We conclude that BESTFIT– although not distinguished in the competitive anal-
ysis – was the basis for significant improvements in practice. The simulation results
convinced Herlitz to test a prototype of the simulation program as a decision support
tool for the dispatcher.

4.3 Elevators

The automated pallet transportation system in the Europe-wide distribution center
of Herlitz PBS AG has been designed to handle all pallet transportation taks from/to
the receiving docks, the production and commissioning departments, the automated
shelf system, and the loading dock from where the products are shipped to the cus-
tomers by trucks. This pallet transportation network runs on nine floors and is quite
complex. The overall goal is to run the operations “smoothly”, a mathematically not
well-defined term that means something like: each individual transportation task
should be executed quickly, time windows (existing for some of the tasks) should
be observed, and the whole system should be congestion free. The last objective
may be in conflict with the others, and a difficulty is to find an appropriate balance.

We address here the elevators, one of the building blocks of the pallet trans-
portation system. There are two systems of five elevators. Each elevator can carry at
most one pallet. Transportation requests occur (unpredictably) throughout the day
and are somehow distributed to the elevators. Congestion does frequently occur at
the entry points and should be avoided by running the elevators “well”. Of course,
congestion depends on both the assignment of requests to the elevators and on the
control of the elevators. We discuss here the second issue.

At Herlitz, each elevator is controlled independently from the others; there is
no “master control” watching over the whole elevator system simultaneously. It is
therefore clear that optimizing the individual elevators may not result in the desired
congestion-free system, but it will at least help running the system faster. We de-
cided to investigate the following problems for individual elevators and systems of
elevators (compare to Section 3.2):
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– Minimize the makespan for the given set of requests.
– Minimize the maximal flow time of the requests.
– Minimize the average flow time of the requests.

While the makespan is a measure for how fast the system is as a whole the other
two objectives are rather a measure for the speed of the system as “experienced”
by the individual pallets. Note that in contrast to the makespan the maximal and
average flow times also make sense in a continuously operating system, i.e., with
infinite request sets.

Mathematical Models

The basic model chosen for investigating algorithms for the control of elevators
is the ONLINEDARP, which we introduced in Section 3.2. In the sequel we first
investigate the control of a single elevator. Briefly, this is the problem of how to
serve online transportation requests in a metric space which is a path, where the
server is assumed to have capacity one.

In the context of pallet transportation there is a subtle additional side constraint
involved: we do not have random access to the pallets waiting on a particular floor.
That means that requests from the same floor need to be scheduled in their order of
appearance, while requests on different floors can still be shuffled. This leads to the
problem ONLINEFIFODARP. Here the subset of requests occuring at a particular
point in the metric space must be served in the order of appearance.

As an extension of ONLINEDARP we also investigated the corresponding prob-
lem with capacity larger than one, the ONLINECDARP.

In order to be able to use REPLAN- or IGNORE-heuristics for any of the online
problems in real-time we need to find efficient algorithms for the corresponding
offline problems. In the following theorem we summarize the results:

Theorem 18 (Offline Problems). The following complexity results hold:

(i) There is a polynomial time algorithm for DARP on paths.
(ii) DARP on trees (even on so-called caterpillars) is NP-hard.

(iii) There is a polynomial time algorithm for FIFODARP on paths.
(iv) CDARP is NP-hard on paths. ��

Theorem 19 (Offline Problems). The following approximation results hold:

1. There is a � � � -approximation algorithm for FIFODARP on trees.
2. There is a � � � -approximation algorithm for FIFODARP on general graphs.
3. There is a � -approximation algorithm for CDARP on paths. ��

The observed performances of the approximation algorithms for FIFODARP

on instances occuring in the online situation (e.g., while applying the REPLAN-
heuristics) are much better. Therefore, these approximation algorithms can be used
to produce a starting solution for a branch&bound procedure to find reasonably good
offline solutions to feed the REPLAN-heuristics in real-time.
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Evaluation of Algorithms

Motivated by results on the ONLINETSP in [5] we carried out a competitive anal-
ysis for ONLINEDARP for the minimization of the makespan. The results are the
following:

Theorem 20 (Competitive Analysis). For the problem of makespan minimization
in ONLINEDARP the following hold:

(i) No deterministic online algorithm can be better than
�
-competitive. (This fol-

lows easily from [5].)
(ii) The REPLAN- and the IGNORE-heuristic are � � � -competitive.

(iii) There is a
�
-competitive algorithm (called SMARTSTART in [4]).

In other words, we found one optimally competitive online algorithm for our
problem.

For the other objective functions, the approach via competitive analysis yields
the strongest conceivable negative result, i.e., no decision support at all:

Observation 21 (Competitive Analysis). There are no competitive algorithms for
the tasks of minimizing the maximal or average flow times in ONLINEDARP.

The concept of reasonable load (see 3.2) was developed to get at least a weaker
performance evaluation. We have already seen two canonical online heuristics in
that section: REPLANmakespan and IGNOREmakespan. Recall that both work by repeat-
edly minimizing the makespan: while REPLANmakespan computes a new plan when-
ever a new request becomes available, IGNOREmakespan does not compute a new plan
before the old plan is completely served. What about REPLANmaxflow, REPLANavgflow,
IGNOREmaxflow, IGNOREavgflow? What about the problems ONLINECDARP and ON-
LINEMDARP (more than one server)? Some answers are collected in the following
theorem:

Theorem 22 (Analysis Under Reasonable Load). For all of ONLINEDARP, ON-
LINEFIFODARP, ONLINECDARP, ONLINEFIFOCDARP, ONLINEMDARP, ON-
LINEFIFOMDARP the following hold under

�
-reasonable load:

(i) The maximal and average flow times of IGNOREmakespan are at most
� �

.
(ii) The maximal and average flow times of REPLANmakespan maybe arbitrarily

large.
(iii) The maximal and average flow times of REPLANavgflow maybe arbitrarily large.

We do not know the performance of REPLANmaxflow at present. We have, how-
ever, found another provably good algorithm that imposes additional restrictions on
the repeatedly computed plans. We assume that this algorithm, called DELTARE-
PLAN, knows

�
. The algorithm DELTAREPLAN follows the current plan. When-

ever a new request comes up DELTAREPLAN computes a new plan minimizing the
makespan subject to the condition that all requests in the plan have a flow time of
no more than

� �
. If the optimal plan is shorter than

�
then it is accepted as the new
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plan. Otherwise it is rejected, and the algorithm proceeds with the old plan. When
the old plan is done, a new plan is accepted in any case.

We could prove the following in [9]:

Theorem 23 (Analysis Under Reasonable Load). For all of ONLINEDARP, ON-
LINEFIFODARP, ONLINECDARP, ONLINEFIFOCDARP, ONLINEMDARP, ON-
LINEFIFOMDARP the following holds under

�
-reasonable load:

The maximal and average flow times of DELTAREPLAN are at most
� �

.

This theorem motivates the problem of finding out the
�

while working on a�
-reasonable request set. Observe that for, e.g., IGNOREmakespan it is not necessary

to have information on the correct
�

.
Assume that DELTAREPLAN dynamically computes and uses an approximation

˜� of
�

while working on a
�

-reasonable request set. If always ˜� �
� then we

observe that all plans are rejected and the algorithm behaves like IGNOREmakespan,
thus the performance guarantee in Theorem 22 takes effect. More general: whenever
we underestimate

�
then DELTAREPLAN achieves the same performance guarantee

as in Theorem 23.
In the following we define a modification DYNDELTAREPLAN of DELTAREPLAN

that needs not know the real
�

. Algorithm DYNDELTAREPLAN works similar to
DELTAREPLAN except that it computes a dynamically changing ˜� . This ˜� is defined
to be the makespan of the latest accepted plan. The first value for ˜� is the length of
the first plan computed. Whenever a new request occurs DYNDELTAREPLAN com-
putes a potential new plan with all flow times at most

� ˜� . If the makespan of the
potential plan is at most ˜� then DYNDELTAREPLAN accepts it as the new plan.

The following result could be achieved.

Theorem 24 (Analysis Under Reasonable Load). For all of ONLINEDARP, ON-
LINEFIFODARP, ONLINECDARP, ONLINEFIFOCDARP, ONLINEMDARP, ON-
LINEFIFOMDARP the following holds under

�
-reasonable load:

The maximal and average flow times of DYNDELTAREPLAN are at most
� �

.

A “heuristic reason” for the correctness of this result is the following: when-
ever we underestimate

�
we may get fewer accepted new plans. But whenever no

new plan is accepted and the old plan is accomplished we are working like IG-
NOREmakespan, which is fine because of Theorem 22.

In order to get some idea how the investigated algorithms behave on the average
with respect to speed, stability, and predictability we carried out simulation studies
for the basic elevator control problem. In addition to our algorithms we tested the
heuristics FIFO and NN. The latter one always serves the nearest request next. More-
over, we included the heuristic NN-MAXAGE. This heuristic works like NN except
that whenever a request is older than a maximal age parameter this request has to be
served next. These three heuristics are implemented as possible elevator controls in
the Herlitz system.

Observation 25 (Comparative Simulation). A simulation experiment on several
random data sets for the ONLINEDARP yielded the following results:
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– The FIFO-heuristic is suitable only for very low load situations. Otherwise, the
maximal and the average flow times explode; heavy system congestion is ap-
parent.

– The NN-heuristic produces very low average flow times on the average. The
maximal flow times are – especially in medium load situations – unpredictable,
i.e., sometimes very high.

– The NN-MAXAGE-heuristic cures the problem of unreliability of NN only in
low load situations. In high load situations it suddenly behaves like the FIFO-
heuristic and leads to heavy system-congestion.

– The REPLANmakespan-heuristic shows mostly good average flow times. Its maxi-
mal flow times are comparable to NN, i.e., at times very bad.

– The IGNOREmakespan-heuristic produces slightly worse average flow times than
NN or REPLANmakespan. The maximal flow times, however, are among the best
for all load situations. This heuristic is in a sense self-calibrating.

– The DYNDELTAREPLAN-heuristic behaves like IGNOREmakespan but shows on
the average a little bit worse maximal flow times and slightly better average
flow times.

The additional benefit of the simulation studies over a mere evaluation of an
objective function is the possibility of watching the system behavior as a whole. The
algorithm that is chosen eventually depends on the preferences of the administrator
of the system under consideration. At Herlitz, there is a strong focus on stability
over mere speed so that IGNOREmakespan and related heuristics seem suitable.

4.4 Integrated Elevator Systems

We mentioned in the previous section that the software at the Herlitz plant does
not support a so-called synchronized pallet transportation. This means the controls
for the individual elevators make their decisions without taking into account each
other’s and the conveyor system’s states. Thus, we investigated the control of single
elevators as discussed in the previous section. The interplay between these modules
of the transportation system is not negligible, though.

In simulation studies where the conveyor belts from and to the elevators were
included in the simulation system we found out that many effects observed for single
elevators are leveled out. This motivated the investigation of the integrated system of
conveyor belts and multiple elevators. Since the software base of the transportation
system at Herlitz cannot be changed easily; research results in this area do not have
direct bearing in practice.

Having this in mind we simplified the layout of the combined conveyor/elevator
system in order to approach an integrated system control in reasonable steps. At
Herlitz, on each floor, the conveyor system lets the pallets move on a circular belt
with one entry and one exit to the production and commissioning area. There are
five elevators in the interior of the circle. The pallets can reach and leave the cor-
responding waiting slots via switches. The waiting/leaving slots have capacity one.
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A pallet may move to the waiting slot only if the corresponding leaving slot on its
destination floor is empty.

The coupling in this system is very difficult to model. Moreover, one question
that arises in this context is whether layouts of this type are suitable for efficient
control. Thus, we started our investigation on the basis of the following hypothetical
layout: Pallets line-up in a waiting queue of infinite capacity. Behind that queue they
enter separate waiting queues in front of the elevators. We call this problem online
multi server sequential ordering problem, ONLINE 
 -COST-SOP for short. The
task is to distribute pallets online to the elevator queues and to control the elevators
so that the maximal or average flow times are minimal.

The idea is to use a variant of the IGNOREmakespan-heuristic. This requires min-
imizing the makespan in the corresponding offline problem. Here, the makespan is
the time when the last elevator has finished. In contrast to the case of single eleva-
tors, not all types of REPLAN-heuristics can be employed (at least not in a straight-
forward form) because of the following problem: Once a set of pallets is distributed
among the elevator queues the pallets will immediately move into their queues. Be-
cause the pallets cannot change the elevator the decision which elevator a particular
pallet should take can not be revised.

Mathematical Models

The main idea is to model the problem as an ATSP on the request digraph (cf. Sec-
tion 4.1) with two modifications: first, there is more than one server. Second, the
pallets in the waiting queue at a particular elevator on some floor need to be served
in a FIFO order. Each of these generalizations of the ATSP has been studied already
in the literature: the first one in the case of a single server type was reduced to the
single server case in [15]; in a more general form for servers with distinct proper-
ties ( 
 -COST-ATSP) it was studied in [12]. The second one was already discussed
in Section 4.1. We decided to investigate the combined problem 
 -COST-SOP: the
multi server sequential ordering problem.

There is one further subtlety involved: since in the 
 -COST-SOP-model the
maximal length of a tour in the request graph over all servers is minimized we need
to take into account the loaded travel time in the arc costs. Otherwise we might get
a solution where all the servers have similar unloaded travel times but their total
travel times (makespans) may vary a lot and the makespan of the whole system is
not optimal at all. That means: in the case of more than one server minimizing the
makespan and minimizing the unloaded travel times are no longer equivalent.

Having this in mind, our model is almost the same as the 
 -COST-ATSP in [12]
except that it also contains the corresponding precedence forcing constraints. These
look like the constraints (4) in 4.1. We do not want to reproduce the complete model
here. We just state that several properties of the SOP and the 
 -COST-ATSP survive
in their common generalization 
 -COST-SOP.

Theorem 26 (Offline Problems – Polyhedral Study). The following hold for the
 -COST-SOP-polytope:
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– The dimension of the 
 -COST-SOP-polytope for regular precedences equals
 � �
	
� � � � �	� � , where � is the set of comparable pairs of nodes.

– Modified versions of the so-called 
 , � , � � - 
 and � � - � -inequalities are valid
for the 
 -COST-SOP-polytope.

– Facets of the one-server subproblem of 
 -COST-SOP can be lifted to facets of
the 
 -COST-SOP.

Computational experiments have shown that the integrated optimization of all
servers yields an improvement in the unloaded travel times of 50% on the average.

Evaluation of Algorithms

It turns out that, also for the ONLINE 
 -COST-SOP, the analysis under reasonable
load is analogous to the previously discussed cases.

Theorem 27 (Analysis Under Reasonable Load). The maximal and average flow
times of IGNOREmakespan for the ONLINE 
 -COST-SOP under

�
-reasonable load

are at most
� �

.

This theoretical result is hard to implement in a real-time compliant way: the
 -COST-SOP turned out to be very difficult. It rarely happens that one can find
optimal solutions for instances with

�
� requests in less than a minute. The real-time

restrictions on an elevator control rather require answers within seconds. Thus, only
heuristic solutions can be used in the online situation. Evaluation of such heuristics
is research in progress.

There is another strong argument against using the unmodified IGNOREmakespan:
all servers but one would very frequently wait idle for the last server to finish its
part of the plan. This can be by-passed by, e.g., letting the servers work on some
requests inbetween. Still, the theoretical analysis matches reality much less than in
the single server case.

Preliminary simulation studies on the basis of simple heuristics for the 
 -COST-
SOP and on modified IGNORE- and NN-heuristics are no longer in favor for the
IGNORE-approach for certain parameter settings.

This shows among other things that it is quite hard to find a well-performing
online control of an integrated transportation system.

5 CONCLUSION

We have discussed various evaluation methods for online optimization problems on
the basis of four real-world examples. I turns out that, usually, only a combination
of such methods is able to deliver convincing advice to decision makers.

To meet real-time requirements fast offline optimization algorithms are needed,
in general, as building blocks for the online heuristics such as IGNORE and REPLAN.
We have, e.g., introduced fast approximation algorithms for DARP that enable us to
run these heuristics in real-time in the elevator control problem.

We have shown that, for the evaluation of online algorithms, classical compet-
itive analysis may lead to either void conclusions (all algorithms are equally bad
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for the minimization of flow times for ONLINEDARP) or may even be in favor of a
senseless algorithm (ONEBIN is best possible for ONLINEBC). New methods such
as analysis under reasonable load provide new insight in some of these cases. For
example, we could tell which of the two online heuristics IGNORE and REPLAN is
more suitable with respect to the minimization of flow times for the ONLINEDARP.

The observation of the system behavior as a whole in simulation experiments is
still unavoidable because, this way, it is possible to monitor more complex effects
than the projection to a one-dimensional objective function can possibly detect.
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Abstract We consider the ship planning problem at maritime container terminals where con-
tainers are loaded onto and discharged from ships using quay cranes. The container transport
between the ships and the yard positions in the terminal is carried out by a fleet of straddle
carriers. Based on a stowage plan provided by the shipping company, the dispatcher assigns
containers to specified bay positions. Then, subject to operational and stability constraints,
he schedules containers in order to avoid waiting times at the quay cranes. We propose an
approach combining stowage planning and the selection of “good” loading and transport se-
quences. For a just-in-time scheduling model, we present computational results based on
real-world data of a German container terminal. Moreover, we discuss some real-time and
online influences on the daily dispatch situation.

1 INTRODUCTION

Within the last years, the rate of containerization increased by approximately 8 per-
cent per year. Shipping a larger number of containers around the world requires
matching efficiency improvements in maritime container terminals. Besides the in-
troduction of computer-aided decision systems and infra-structural improvement,
the complete logistic chain has to be examined in order to increase the container
handling rates. In this article, we focus on a particular problem arising at the quay
side.

In maritime container terminals, a large number of containers is handled day by
day. The containers arrive at the terminal by truck, ship, or train. Before leaving
the terminal, containers are usually stored in the terminal’s yard area. In the yard’s
storage blocks, the containers are arranged in stacks, one beside the other in several
rows. Transport between the storage positions in the yard and the terminal’s exit
points is usually handled by straddle carriers, by automated guided vehicles, or by
transtainers. In this article, we only consider straddle carriers as, e.g., used at the
terminal “Burchardkai” terminal in Hamburg, Germany. The turnover at the terminal
“Burchardkai”, operated by the Hamburg Port and Warehouse Company (HHLA),
increased from 1.1 million container units (TEU) in 1992 to 1.6 million TEU in
1998 and 2.1 million TEU in 2000. It is expected that the number of container
units will soon reach the actual maximum number of 2.6 million TEU which can
be handled at Burchardkai. This increase requires improved, intelligent logistics.
At “Burchardkai”, more than 3200 vessel calls are operated per year. Loading and
discharging is carried out by quay cranes whereas the transport is performed by a
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fleet of straddle carriers. The complete dispatch process consists in about 10000
container movements per day.

Combinatorial optimization models apply for instance when assigning vessels
to berths, when planning the tours for each transport vehicle, or when computing
good storage positions for the containers. The berth planning problem is modelled
by Lim [10] as a rectangular packing problem with side constraints. Lim presents
a heuristic based on (heuristically) computing longest paths in a graph model. An
alternative network flow approach is due to Chen [6]. Different versions of tour plan-
ning models for straddle carriers have been considered by Steenken et al. [11–13].
A linear sum assignment model of the dispatch of straddle carriers for discharging
and loading trucks is iteratively solved in real-time [12, 13]. A travelling salesman
model combining various hinterland operations is heuristically solved in [11].

In this article, we discuss the following combination of stowage and transport
of containers to be loaded to certain container vessels, named export containers. At
first, an export container is moved to a respective quay crane. Then, the quay crane
loads the container into a suitable position in the bay currently served.

For each export container, the corresponding loading position is specified in
accordance with the stowage plan. This stowage plan is derived from information
provided by the shipping company. For each bay position, the shipping company
defines properties for a container which may be stored at this position. In particular,
the shipping company specifies the discharge port, the container type, and its weight.
Even restrictions on stored goods may apply.

Today, the transport of export containers to the quay cranes is not taken into
account when deciding on the final bay position for a container aboard the vessel.
The ship planning process starts two days before the vessel arrives at the terminal. At
that time, the responsible dispatcher prepares a stowage plan based on the following
information: the onboard storage situation at the previous port and a preliminary list
of export containers. In particular, potential information on transportation times is
not used.

In section 2, we propose a just-in-time scheduling formulation for combined
stowage and transport planning and we introduce a corresponding mixed integer
model as well as exact and heuristical methods to solve it. Moreover, we consider
different objectives.

In section 3 we discuss how the proposed approach extends to real-time re-
quirements. Particularly flexible update techniques allow adaptation of previously
computed schedules with regard to real-time requirements.

2 SHIP PLANNING IN CONTAINER TERMINALS

Maritime container terminals form important links in the transport chain of con-
tainers. Import and export containers are temporarily stored in the terminal area.
Ship planning is very important for the productivity of a container terminal. Ship
planning is based on preliminary information provided by the shipping company.
The first information, submitted two days before the arrival of a container vessel,
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consists of a map of the current storage situation at the previously visited port. At
the same time, information on import containers, i.e., containers which have to be
discharged, is made available. For each bay position, the shipping company defines
properties for a container which may be stored at this position. In particular, the
shipping company specifies the discharge port, the container type, and its weight.
Before the vessel’s arrival, information about the export containers is updated from
time to time.

From the information provided by the shipping company, the dispatcher derives
a stowage plan which assigns a particular export container for each loading position.
After discharging the vessel, these export containers are moved to the quay cranes
by straddle carriers. For each bay, the chosen loading strategy implies a loading
sequence of containers for each quay crane. In order to avoid waiting times during
the loading process, the transport sequences of the straddle carriers have to match
the loading sequence of the respective crane.

For a large number of containers arriving by truck, the exact delivery times are
unknown. Up to 30 percent of the export containers arrive at the terminal after the
beginning of the loading process. Due to lack of complete information and due to
tight timing constraints, the dispatcher has to handle online and real-time versions
of the above problems [15].

2.1 Stowage Planning on Container Vessels

In [1, 2], a stowage plan model for a container vessel visiting several ports is pre-
sented. For each bay position, this stowage plan specifies the destination port for the
container to be loaded in any given port. Hence, it could be used as the preliminary
stowage plan which is provided by the shipping company. In this model, the weights
of containers are not taken into consideration. However, for stability reasons, con-
tainer weights must be considered (see for instance [3, 4]): heavy containers should
be stored below containers having less weight.

A potential stowage plan for one bay is presented in Figure 1. For each bay
position, a container type is specified. Hence, at this position, only a container with
prescribed weight and destination can be stored. The required size of the container
is defined by the type of the bay. Usually, a bay is restricted to 20’ containers or to
40’ containers. Some bays may contain both types of containers, whereas all the 20’
containers should stand on top of the 40’ containers.

In the combined stowage and transport problem, an abstract container type is de-
scribed by: the container’s discharge port, the container weight including the weight
of the stored goods, the type of the container, i.e., its size (20’ or 40’) as well as spe-
cial equipment attributes, the kind of goods stored in the container, and the delivery
time of the container.

We distinguish between the above abstract container types described above and
the real world container types named in the following list which does not claim to
be comprehensive: general purpose container, hardtop container, high cube general
purpose container, high cube hardtop container, flat container, open top container,



734 D. Steenken, T. Winter, and U. T. Zimmermann

���� ���� �����
�����		

���

� ���� ����
�� �� �� �������� !"# $% &' ()*+

,,--

./

discharge port SIN  weight 20t

discharge port HKG  weight 10t

discharge port SIN  weight 10t
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container already being on board

Figure 1. An example for a stowage plan provided by the shipping company

high cube flat container, platform, insulated container, ventilated container, reefer
container, bulk container, high cube reefer container, or tank container. Some types
require that the container must be stored at a specially equipped position. For in-
stance, reefer containers should be kept cool and must be supplied with electricity.
High cube containers differ in height from the standard general purpose containers
and will probably occupy two stowage positions.

In the following, we use the notion of the abstract container types which may be
defined as refinement of the real container types. Furthermore, we suppose that we
know a preliminary stowage plan specifying a container type for each bay position.
We assume, that the number of export containers of a specific type exactly matches
the number of bay positions of the same container type.

2.2 Stowage Planning in Container Terminals

Ship planning (or stowage planning) in container terminals differs from stowage
planning for container vessels. As discussed in the previous section, for container
vessels it suffices to specify a certain container type for each bay position. This
preliminary type-based stowage plan provided by the shipping company and the
list of export containers form the basis for the dispatcher’s work at the container
terminal. The dispatcher prepares a final stowage plan which assigns to each bay
position a particular export container with matching type.

As mentioned above, a large number of export containers arrives after the be-
ginning of the loading process. The dispatcher has to take such difficulties into con-
sideration when assigning containers to bay positions. Additionally, the dispatcher
must take into account that containers are stored in stacks (cf. Figure 2). Contain-
ers on top of a stack should be moved before a container at a bottom position is
required. In order to minimize unnecessary container shifts, stacks of containers of
identical type are preferable. Obviously, this may be impossible. In fact, up to 30
percent of the stacks contain containers of differing types.

Nowadays, a dispatcher subsequently assigns export containers in inverse order
of ports to be visited. First, he chooses a bay. Then, he marks all free positions for
containers of the currently considered type. For these positions, the decision support
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Figure 2. An example for the storage situation in the yard

system offers a list of not yet assigned export containers of that type. The dispatcher
selects some containers from this list. The final assignment is determined by a sim-
ple heuristic in accordance with a specified loading strategy and with regard to con-
tainer weights. When all containers are assigned, the stowage plan is transmitted to
the shipping company which may accept the plan or may ask for some changes.

2.3 Combining Ship and Transport Planning

By now, the stowage plan is generated ignoring loading and transport sequences.
In particular, containers are assigned to bay positions without consideration of the
necessary transportation times between storage positions in the yard and the quay
cranes. As mentioned before, for each bay position, the preliminary stowage plan
only assigns a container type. For each bay, the dispatcher chooses a loading strat-
egy which specifies a linear order of export container types. Since bays consists of
stacks, there are two straight-forward strategies used in real-world ship planning:
loading column-wise or loading layer by layer. For reasons of visibility, the quay
cranes always start with the bay positions at the water-side of the vessel. This fixes
a loading sequence for both strategies. Two examples of these common loading
strategies and the resulting loading sequences are presented in Figure 3.

DEFG
HIJK LM NO PQ RS

(partial) bay 1 (partial) bay 2loading sequence: row-wise loading sequence: column-wise

Figure 3. An example of two loading strategies and the resulting loading sequences

Each bay may be partitioned into some partial bays which are considered sepa-
rately. These partial bays correspond to the bay positions on deck or in the hold of
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the vessel. Moreover, the bay is partitioned into areas that correspond to the hatches.
For each partial bay of the vessel, the loading strategy implies a linear list of con-
tainer types to be loaded.

After the dispatcher has decided for each bay which loading strategy will be
used, for each bay we obtain a fixed loading sequence of bay positions. In combina-
tion with the stowage instructions provided by the shipping company, this results in
a sequence of container types to be loaded into the bays.

2.4 The Crane Split

Next, the bays of a vessel are partitioned into bay areas. Each bay area will be served
by one quay crane. This step is called crane split. Based on availability information
of cranes, a crane split can be computed by solving a partitioning problem with some
operational side constraints. Since the number of cranes available for the loading
process is small, an optimal solution of this partitioning problem can be computed
within acceptable time.

More formally, we are given a set of bays (or partial bays) � �
� ��� � � � � . � � denotes
the number of containers to be loaded into bay � , � ��� � . This number is defined by
the stowage plan provided by the shipping company. The vessel will be loaded using
� quay cranes each of which has capacity

� � , � � � � � . The capacity corresponds
to the time the crane will be available.

We search for a partition � � � � 	 � ��� � � � � of � �
� ��� � � � � where each bay area � �
contains only consecutive bays, i.e., � � � ��� � � � � � �
� ��� � � � � ��� � � for all

� � � � � .
Obviously, for a given partition, the resulting absolute load is � � � �	� ��
 � � � , i.e.
the total number of export containers for bay area � � . A good choice of a partition
may balance the resulting relative loads � � � � � for all quay cranes

� � � � � as
much as possible. Minimizing the maximum relative imbalance, we find

min max�� � � � ��� � � � � � �
�
�
�
�
� �� � � � �� �

�
�
�
�
�

For � , a value between
�

and � is reasonable for real world container terminals. The
number of bays may vary between

�
� and � � . Consequently, we may solve this par-

titioning problem by straight-forward enumeration. An initial upper bound can be
derived from the weighted average loads � � � � �� �� �  � � � �� ��� � � . A corresponding

“partition” may recursively be constructed. Let � ��� � � � � � � � ��� � � � � where � � is
chosen minimal such that � ��� � � . Then, � 	 is defined by � 	 � � � � � 	 . The
remaining partition is analogously constructed except for the last bay area which
contains all remaining bays. Better upper bounds may easily be obtained by slightly
varying the values of � � .
Combining the Loading Strategies

For each quay crane and for each bay, we obtain a loading sequence of container
types (cf. Figure 4). A loading sequence is served by the straddle carriers available
for the crane. We assume that a certain fixed number of straddle carriers is available



Stowage and Transport Optimization in Ship Planning 737

for each crane. These straddle carriers move containers from their current stowage
position in the yard to the crane. Here, pooling of straddle carriers is not consid-
ered but may help to stay within real-time bounds at a particular crane where more
straddle carriers are required.

������������

������������������
������������������

������������������

	�		�	
�

�
 ������������
��������

������������
������������
������������

������������

bay 1 bay 2 bay 3 bay 4 bay 5 bay 6 bay 7 bay 8 bay 10bay 9

quay crane 1
quay crane 2

quay crane 3 quay crane 4

... ... ... ... ... ... ... ... ... ...

loading sequences

quay crane 1
quay crane 2

quay crane 3 quay crane 4

Figure 4. A crane split and the corresponding loading sequences

For each loading event of a loading sequence of a quay crane, an export container
of the required type is moved to the crane. At the crane, the containers should arrive
in the order defined by the loading sequence. If a straddle carrier with a container
for a subsequent loading event arrives too early, it may have to wait until all the
predecessors of that container have been handled since there is only limited buffer
space close to cranes. Usually, at most one or two containers can be placed in this
buffer area.

Consequently, only a careful assignment of transportation duties to straddle car-
riers will optimize the overall loading process. There are several objectives which
may be considered. Minimizing the loading time of the last export container corre-
sponds, in the notation of scheduling problems, to the latest completion time. For
further improvement it will also be interesting to find the bottleneck of a loading
process. Empirical studies and discussions with HHLA showed that the time re-
quirements for the loading process strongly depends on the effectiveness of the quay
cranes. Therefore, another promising approach is to minimize the waiting times of
the quay cranes, or in other words, to avoid the late deliveries of export containers.

In all experience of HHLA, a quay crane requires between 80 and 120 seconds to
load a single container to its bay position. Thus, 30 to 45 containers may be loaded
per hour and crane. A more or less regular sequence of loading events ensures a
smooth loading process which helps to avoid waiting times. This observation sug-
gests loading events every 80 to 120 seconds and defines reasonable due dates for
each loading event. Thus, container transports with � straddle carriers may be mod-
elled as a parallel � -machine scheduling problem with due dates, minimizing late
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deliveries. Obviously this problem is NP-hard, since it contains parallel machine
scheduling problem with due dates (cf. for instance [7, 9]).

We assign export containers to each loading event of the loading sequence. An
export container will be moved by some specified straddle carrier. The respective
transportation time corresponds to the distance between the stack position of the
container and the position of the quay crane. An example for a schedule of straddle
carriers is presented in Figure 5. The respective transportation times are represented
by the thick strokes behind the containers. In particular, the first and second straddle
carriers will at first move the first and second containers in the loading sequence.
Due to the different transportation times, the second straddle carrier should start
with some delay in order to arrive at the quay crane later than the first straddle
carrier.
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time 1 time 3
time 2
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Figure 5. The scheduling model for the straddle carriers. The corresponding transport times
for each container stored in the stacks are illustrated by the rectangles of different lengths.
Six containers are chosen and assigned to the three straddle carriers (VC). Since the arrival
of container two at the quay crane should be after the arrival of container one the transport
of container two is delayed. The containers are assigned to the transport jobs in accordance
with the container types given by the loading sequence

2.5 Just-in-Time Transport of Containers

Just-in-time scheduling problems have been applied in production by Steiner and
Yeomans [14], for a single machine by Liaw [9] and for parallel machines by Chen
and Powell [7] who assume a large common due date. For a related introduction to
scheduling we refer to [8].
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We present a mixed integer model for just-in-time container scheduling with one
quay crane. Here,

�
denotes the number of export containers, i.e., the length of the

loading sequence.
�

denotes the set of loading events in the loading sequence. For� � � � �
, the � -th container of requested type

��� � � is delivered at the crane at
time � � . � denotes the set of eligible export containers. For ����� , the transportation
time of container ����� from its yard position to the crane is denoted by � � and
its type is denoted by

��� � � . The set of available straddle carriers is denoted by 	 �
� � � � � � ��� � � � .

A solution of this problem is a schedule assigning the straddle carriers to con-
tainer transports. By the one-to-one correspondence of container transport and load-
ing jobs, the assignment implies a stowage plan for all bays considered. We call
this just-in-time container scheduling problem the combined container stowage and
transport planning problem. It is NP-hard, since it contains the scheduling problem
introduced in [7]. We consider the following mixed integer programming formula-
tion (CSTP) of the combined container stowage and transport planning problem:

min
�
�	��

� � (1)

s.t.
�
�	��


�
� ��
� � � � � �

for all ����� � ��� � � � ��� � � (2)�
� ���

�
� ��
� � � � � �

for all ��� � � ��� � � � ��� � � (3)�
� ��
 � � � �

�
� ��� �

� � � � � � � � � � � for all ��� � � � ��	 (4)

� � � � � � �
� � � for all ����� � ��� � � ��� � � � ��� � � � � ��	 (5)

� � � � for all ��� � (6)

The schedule is defined by assignment variables � � � � , where � � � � � �
if and

only if container ����� is assigned to loading event ��� � and moved by straddle
carrier � ��	 . An assignment � may imply that the � -th container arrives later at the
quay crane than required, i.e., later than at time � � � � � � � � � �

� � � �

� where � denotes
the loading rate per hour in a regular loading sequence. The value of the variable

� �
carries the resulting lateness. Since the CSTP contains no precedence constraints,
the � -th container may arrive earlier than the � -th container despite of � � � . Here,
we presume sufficient buffer space at the quay crane. In our computational results
for real-world data buffer space for two containers was sufficient.

We discuss computational results for real-world data about four vessels pro-
vided by HHLA (cf. Table 1). For each quay crane, we solve the CSTP for different
lengths of the loading sequence

�
. Here, the startup offset value is � ���

� , and
the loading rate � ��� � implies a regular loading time of 90 seconds for all load-
ing events of

�
. We display results for three real-world instances. The lengths of�

vary from 20 to 60 loading events which are the typical lengths of loading se-
quences dispatched in real-time at container terminals. We apply the standard MIP
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solver CPLEX 6.6 to the resulting instances of CSTP. We compare the best feasi-
ble solution determined within a real-time computation limit of 60 seconds to the
final optimum solution. Within this one minute limit, we obtain quite good solu-
tions which are in fact optimum solutions in most cases. We will take advantage of
this good computational performance in section 3 where we describe an integrated
approach for solving CSTP in a real-time setting. Smaller CSTP will iteratively be
solved for each quay crane and for each part of the loading sequence. The number
of iterations depends on the length of the partial loading sequence considered in one
step. The length of a partial loading sequence strongly depends on the computation
time available as well as on the real-time effects influencing the incumbent solution.

Instance
�����

Constraints Variables Nonzeros 1 min. UB Optimum CPU sec.

1 20 191 6680 83310 20 20 5.99
30 231 10020 174915 20 20 21.98
40 271 13360 299820 20 20 16.48
50 311 16700 458025 60 20 916.27
60 351 20040 649530 156 20 6037.04

2 20 130 335 3666 43 43 0.07
30 199 627 8844 43 43 0.34
40 248 961 17451 43 43 0.84
50 298 1607 31797 43 43 2.72
60 346 1881 49524 43 43 26.50

3 20 186 1844 17571 2894 2894 201.39
30 396 3219 45306 3074 2894 463.17
40 443 6274 104138 3002 2894 1289.70
50 516 6893 170967 3201 2894 1821.24
60 586 7236 241494 3178 2894 1737.07

Table 1. Computational results for CSTP within a one minute time limit applying CPLEX
6.6 MIP solver on a Pentium-III PC with 700 MHz and 1 GByte core memory. 1 min. UB is
the lateness � �

�
of the best solution obtained within the one minute computation time limit.

Opt. is the lateness of an optimum solution, as was proved after CPU sec

Precedence Constraints due to the Container Stacks

As mentioned in section 1, the containers are stored in stacks on the yard. In the
considered terminal, these stacks consists of one, two, or three containers. Since
straddle carriers can lift containers only up to layer three, a loaded straddle carrier
cannot pass a stack of height three. Therefore, some care is necessary when using
layer three. In particular, third layer containers are stored in such a way that no
deadlocks occur and the third layer containers in a row have the same type. Third
layers are only used for short time periods.

The question whether or not a feasible assignment of containers to loading
events without rearranging stacks exists, is equivalent to a certain tram scheduling
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problem in depots in local transport which is known to be NP-complete [5]. The tram
scheduling problem is described in example of [8] in this volume. In [5] a dynamic
programming approach is used in order to decide whether or not a linear sequence
of type-constrained events (tram departures) can be served by items (trams) stored
in stacks (sidings). The resulting algorithm is polynomial in the number of depar-
tures (here: containers) and exponential in the number of stacks. For stacks of height
two, the problem of minimizing the number of rearrangements can be reduced to a
minimum weight perfect matching problem in a related graph and, therefore, it is
polynomially solvable [16]. Due to the small height of container stacks, the related
rearrangement problem in container terminals is solvable in reasonable time. For
more details on the above mentioned problems, we refer to [5] and [16].

We may model necessary rearrangements of stacks in CSTP by increasing the
transportation times of the affected containers so that additional time needed for
the rearrangement is covered. Of course, this simple modification is correct only if
the final rearrangement is already known. Alternatively, we may add penalty con-
straints for rearranging stacks and stack related precedence constraints (c.f. in [16])
to the CSTP. However, the raised complexity of modified enlarged CSTP reduces its
applicability in real-time decision support systems.

Heuristic Approaches for more than one Quay Crane

The following best-fit heuristic offers an alternative to the exact algorithms solving
the above mixed integer program. The best-fit heuristic can be applied in parallel for
all quay cranes available.

Container-Best-Fit (CBF)

For each quay crane and each � -th loading event, we select an available straddle
carrier and a previously not assigned container � of matching type minimizing the
time delay max

� � � � � � � � to the actual delivering time � of � . We always prefer
containers with � � � � .

Computational results for CBF are displayed in Table 2. We apply CBF to two
real-world instances for different values for the loading rate and the (average) speed
of the straddle carriers. We observe that a loading rate of about 40 containers per
hour results (i.e., in intervals of 90 seconds) in a reasonable value of cumulative
lateness and makespan. Simulation studies covering more side constraints promise
a reduction of the time needed to load a vessel.

3 REAL-TIME SHIP PLANNING

Ship planning in the real world has to handle uncertain, changing and missing data
as well as general real-time influences. For example, decision support systems must
provide proposals within sometimes quite tight time bounds. A short introduction
to the general difficulties of combinatorial online optimization in real time can be
found in this volume [8].

Here, based on the incomplete information available before the container ship
enters the port, a stowage plan is prepared. This stowage plan is sent to the shipping
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570 containers 758 containers

Loading rate VC speed [ � � ] Lateness Last event Lateness Last event

45 1.6 3 h 35’ 4 h 46’ 6 h 18’ 6 h 57’
40 1.6 2 h 28’ 4 h 53’ 4 h 54’ 7 h 09’
36 1.6 1 h 46’ 5 h 05’ 3 h 35’ 7 h 21’
33 1.6 1 h 14’ 5 h 23’ 2 h 24’ 7 h 37’

45 1.8 2 h 11’ 4 h 20’ 4 h 21’ 6 h 21’
40 1.8 1 h 54’ 4 h 33’ 3 h 02’ 6 h 33’
36 1.8 57’ 4 h 51’ 1 h 52’ 6 h 50’
33 1.8 33’ 5 h 11’ 1 h 15’ 7 h 05’

45 2.0 1 h 25’ 4 h 04’ 2 h 52’ 5 h 52’
40 2.0 51’ 4 h 22’ 1 h 42’ 6 h 09’
36 2.0 28’ 4 h 42’ 1 h 07’ 6 h 25’
33 2.0 19’ 5 h 03’ 47’ 6 h 49’

45 2.2 54’ 3 h 55’ 1 h 44’ 5 h 32’
40 2.2 27’ 4 h 14’ 1 h 02’ 5 h 48’
36 2.2 17’ 4 h 35’ 42’ 6 h 11’
33 2.2 13’ 4 h 57’ 18’ 6 h 35’

Table 2. Computational results for CBF for different values of loading rate and straddle car-
rier velocity. Lateness compared with the time of the last loading event (“makespan”)

company querying for acceptance. When the vessel has arrived at its berth posi-
tion, the quay cranes start discharging import containers and those containers that
must be reloaded later on, possibly to a different bay position. When a quay crane
finishes the discharge process, the loading process starts as described in the above
accepted stowage plan. According to the corresponding loading sequences for the
bay currently served, export containers are moved from the yard to the quay crane.

In particular, containers should be moved by straddle carriers as defined in the
previously computed optimal or approximative assignment solution of the combined
stowage and transport planning problem. Unfortunately, the stowage plan was gen-
erated using only incomplete information which is now out of date. Real-time effects
influence the performance of the loading process and require a partial or complete
update of previous assignments of containers and straddle carriers. Some examples
of such real-time influences are:

– delay of a container’s delivery to the terminal
– unavailability of a container due to customs regulations
– delay of a container’s delivery to the quay crane due to high yard traffic
– delays in the loading process due to unavailable quay cranes

Due to real-time influences transportation times used in the model may differ
substantially from the current transportation times. Due to delays, assigned con-
tainers may be not available on time. Then, if possible, different containers should
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be assigned to the loading sequence. Consequently, assignments of containers and
straddle carriers must be adapted in real-time to the different online situations. Since
the accepted stowage plan should not be changed, the resulting update problem is a
just-in-time scheduling problem with due dates for each container.

Update algorithms working in real-time for changing time limits require a high
flexibility. We shortly describe a possible algorithmic scheme. Whenever changed
transportation times require an update of assignments of containers and straddle
carriers, we re-optimize the next

�
, say twenty to thirty, assignments of containers

and straddle carriers. The size of the update problem is chosen subject to the real-
time requirements, i.e., we may use as much new information as possible in the
available computation time.

Then, the complete remaining assignment of containers and straddle carriers is
updated accordingly. In an update, we may apply a MIP solver for CSTP, dynamic
programming, or heuristics like CBF. Furthermore, we may generate exact solutions
to smaller update problems (less new information) or we may generate approximate
solutions of larger update problems (more new information). In this way such al-
gorithmic schemes allow to choose the amount of new information with regard to
the real-time requirement. Here, as a result, the length of the adapted part of the as-
signment varies according to the available computation time. Similar “

�
-REPLAN”

techniques have previously been proposed in [16,17] for dispatch problems in local
transport.

Failing availability of a quay crane is a severe online event requiring a more
global update. Besides technical failure, a quay crane may be withdrawn in order to
serve another vessel. In any case, the crane split has to be recomputed and bay areas
will be redistributed among the remaining quay cranes. Crane split computation
is very fast and can be performed within usual real-time requirements. Of course,
updates for the assignment of containers and straddle carriers are required, too. In
this way, the proposed combined stowage and transport planning approach allows
to handle such failures, too.

4 CONCLUSION

In this article, we propose an integrated approach for combined stowage and trans-
port planning in container terminals. The basic underlying concept of the resulting
model is similar to a certain model for tram dispatch. In ship planning, containers
are partitioned into classes of types. The shipping company defines type require-
ments for stack positions in the bays of a vessel. The dispatcher has to assign the
export containers to matching stack positions in the bays. Contrary to tram dispatch
in [5, 16], containers do not arrive in a completely predefined sequence. However,
the set of export containers is stored in stacks, implying a partial order on the set of
containers which may be modelled by precedence constraints. We propose a just-
in-time scheduling model (CSTP) combining the stowage plan for the quay cranes
and the transportation schedule for the straddle carriers. The resulting model as well
as the proposed algorithms for solving the model are particularly suitable for real-
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time planning in maritime container terminals where various online and real-time
influences require flexible response in order to guarantee and improve the overall
performance of the terminal.
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Abstract Computational Annealing, a class of optimization heuristics that are inspired by
statistical physics of phase transitions has been demonstrated to be highly effective for large,
non-linear combinatorial optimization problems. In many applications in computer vision and
pattern recognition one encounters non-linear objective functions with a very large number
of discrete and possibly additional continuous variables. Typical cases of such problems are
clustering, grouping and image segmentation or assignment problems in motion or stereo
analysis or in object recognition. For this type of problems, standard integer programming
techniques are not applicable and one has to resort to optimization heuristics that are fast, yet
avoid a possibly exponential number of unfavorable local minima. A particularly powerful,
generic class of algorithms is provided by simulated or deterministic annealing techniques.
Simulated annealing and the Gibbs sampler are discussed first to present the basic concepts;
then, the theory of deterministic annealing is presented in great detail and the relation to
continuation methods are discussed.

1 INTRODUCTION

Heuristic optimization techniques are promising candidates to find at least approxi-
mately optimal solutions to very large combinatorial and mixed combinatorial opti-
mization problems. Stochastic optimization methods which are inspired by statisti-
cal physics like Simulated Annealing (SA) or their deterministic variants Determin-
istic Annealing (DA) mimic the ordering process in solids during carefully controlled
cooling. Kirkpatrick et al. [35] and, independently, Černy [10] have proposed in two
seminal papers to apply SA as stochastic search strategy to large scale combinato-
rial and discrete optimization problems. The essential idea is to treat the variables
of an optimization problem as random variables and to define a stochastic process
which is controlled by the quality of solutions, i.e., it has to converge to solutions
with low costs. The basic strength of these techniques is their flexibility and the ease
of adaptation to new problems including non-linear and constrained cost functions.
While convergence in probability to the global minimum has been established [18],
SA techniques are often inherently slow because of their randomized local search
strategy.

Two generic, closely related methods are reviewed in this chapter: a Monte Carlo
algorithm known as the Gibbs sampler [18] and a deterministic variant known as
mean-field annealing [3]. The two approaches estimate the random optimization
variables either by sampling (SA) or by analytical calculation/approximation of their



750 J. Buhmann and J. Puzicha

expectation value (DA). The degree of approximation is parameterized by a compu-
tational temperature in both methods, which offer a number of advantages:

1. They are general enough to cover a large class of linear and non-linear integer
programming objective functions,

2. they yield scalable algorithms (in terms of the complexity-quality trade-off),
and

3. they provide robust algorithms which are insensitive to the specific data in-
stances and which, therefore, exhibit increased generalization performance.

While SA provides a universally applicable optimization principle, stochastic
techniques are often inherently slow compared to deterministic algorithms. DA com-
bines the advantages of a temperature controlled continuation method with a fast,
purely deterministic computational scheme. To stress the possibility to canonically
derive efficient optimization algorithms for general grouping and quantization prob-
lems, results are presented which apply to a large class of grouping objective func-
tions.

The underlying rationale of DA is to replace the search through a discrete search
space of a combinatorial optimization problem by an optimization problem over
the space of probability distributions over the discrete solution space. That means
that we calculate exactly or approximate the stationary probability distribution of
the stochastic search process by analytical techniques rather than by sampling. This
program is carried out by analytically calculating the characteristic function of these
distributions which is known as the free energy in statistical physics. The character-
istic function yields a complete characterization of the statistical equilibria. While
DA has originally been motivated as an analytic approximation of the simulated an-
nealing algorithm, it is analyzed from a purely mathematical viewpoint providing
additional insight in its algorithmic structure. The DA scheme relies on two major
ideas.

(i) A relaxation is introduced, i.e. an embedding of the combinatorial search space
in a continuous optimization space. The main reason for embedding the original
discrete search space � into a continuous search space is to avoid the integer
constraints inherent in � . In DA, the space of probability distributions � or a
suitably restricted subspace provide the relaxation spaces. In the probabilistic
relaxation, the original cost function � is replaced by the expected costs under a
probability distribution.

(ii) A homotopy is defined to enable continuation methods [1] for optimization.
The underlying rationale of a homotopy is the smooth deformation of a non-
convex functional realized by a one-parametric family of cost functions. These
cost functions become convex for one end of the homotopy parameter range and
converge to the original cost function at the other end of the parameter range.
Continuation methods proceed by tracking the solution computed for the convex
functional while varying the homotopy parameter. In DA, the inverse tempera-
ture parameterizes the homotopy induced by the generalized free energy. The
idea of annealing in the context of DA refers to the tracking of solutions from
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high temperatures where the free energy is convex, to zero temperature where
the original cost function is recovered.
The main components of any continuation method are the predictor and the
corrector step. In the predictor step, a new value of the variable configuration
is extrapolated for a small variation of the homotopy parameter. In the cor-
rector step, a new variable configuration is computed by minimizing the cost
function corresponding to the new homotopy parameter. In DA, the step size is
controlled by the annealing schedule, i.e., how fast the temperature is decreased
as a function of iteration steps. The predictor is chosen as a constant extrapola-
tion, i.e. the variable state of the last iteration is simply kept as initial condition.
Usually, iterative update equations derived by differentiation of the generalized
free energy provide a suitable, efficient corrector method.

DA methods are applicable to non-linear cost functions and yields efficient al-
gorithms which possess a favorable scaling behavior in terms of computational
complexity. DA has empirically shown to compute optimal or near-optimal solu-
tions [26, 30, 46], which makes it a promising optimization procedure for large
problem instances. Global optimality, however, has not yet been established even
for careful annealing. Convergence of DA to a local optimum of the effective cost
function is established for a large class of assignment cost functions [50].

The presentation proceeds as follows: First, the class of clustering optimization
problems is introduced and motivated with � -means and pairwise clustering. Then
several fundamental definitions are formally introduced, followed by a discussion of
the maximum entropy principle, the Metropolis algorithm and the simulated anneal-
ing optimization technique. In the subsequent sections, the deterministic annealing
optimization strategy is introduced and the mathematical derivation is presented.

2 THE CLASS OF CLUSTERING PROBLEMS

For simplicity, we focus the following discussion of annealing techniques on the
class of grouping or clustering problems. Let

� � ��� � � ��� � � � � � denote a set of �

(abstract) objects. The number of groups � is assumed to be fixed. The grouping task
is formalized as a disjunctive partition of the set of objects

�
into groups � � � �

,

� � � � � ��� � � with ˙� � � ��� � � � �
. As a suitable coding of such a data partition,

an assignment function � � � � � � � ��� � � � � is introduced. � � � � � � denotes an
assignment of object � to cluster � , hence � � � � � � if and only if object � � � � .
The space of all possible assignments is denoted by

� � � �
���
� ��� �

� � ����� � � � � �
� � (1)

For notational convenience an explicit dependency on � and � is often dropped
if it is obvious from the context. To motivate the general definitions and assumptions
on clustering cost functions we first discuss the most widely used clustering criterion
of grouping vectorial data into � clusters.
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INPUT vectorial data X, number of clusters
�

INITIALIZE ) randomly
repeat

RECALCULATE Y according to (4)
RECALCULATE ) according to (5)

until CONVERGENCE()

Algorithm 1: � -means Clustering

Central Clustering. Vectorial data X
� �

x � � � ��� � � vec, x � � � � is the most
common data type. Many algorithms have been developed for grouping of vectorial
data, which are known as Central Clustering in data analysis or as Vector Quantiza-
tion in coding. The most important optimization model is the � -means cost function
defined by

� km � � � Y � X � � �
� ����� x � � y

��� ��� �
	 � (2)

Here, the y
� � � � denote

�
-dimensional cluster prototypes and they constitute

a continuous parameter space
�

� � � � � �

. The � -means criterion1

� km � � � Y � X � defines a monotone clustering criterion, i.e., the global minimum
of a � partition is always an upper bound on the global minimum of a � � �

parti-
tion. Intuitively, this property is important in our view, since a clustering criterion
should always make use of additional structure, e.g., an additional cluster parameter.
Clustering cost functions which lack this property are biased towards preferred clus-
ter numbers, but these preferences should be inferred from the data by appropriate
inference principles rather than being encoded in the bias of a search criterion.

A slightly more general form of � -means clustering is introduced by considering
an additional object-specific scalar weighting �

� � � � �
� � � � �

� � � � � � for each
object � ,

� gkm � � � Y � X � � �
� ��� �

� � � � x � � y
��� ��� �

	 � (3)

The minimization of the cost function (3) w.r.t. y
� � �

�
� � � � � � ��� � � � � can be

solved for arbitrary partitions leading to the generalized centroid equations

y
� � � � ���
	 �

� � � x �
� � ��� 	 �

� � �
� (4)

For constant weights, the prototypes are the centroids of the associated data
objects y

� � � � ���
	 x � � � � � � . The optimal grouping solution for fixed centroids y
�

is given by

� � � � � arg min� �
� � � � x � � y

�
�
	 � (5)

1 We use the notation for conditioning widely used in statistics that data are separated by a
semicolon in the argument of (2).
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This rule leads to a simple alternating minimization algorithm known as � -
means algorithm, which converges to a local minimum of (2). The � -means algo-
rithm is summarized in Alg. 1.

Graph Partitioning. Frequently, an explicit representation of data as vectors in a
�

-dimensional Euclidian space is not available for data analysis but objects are im-
plicitly characterized by their mutual dissimilarities D � � prox. Here, D denotes a
matrix of pairwise dissimilarity scores between objects � � � � � . More generally,
sparse representations are often necessary due to the scaling behavior of D which is
quadratic in the number of objects. Therefore, we introduce a graph notation

� � �
� �with an edge set � �

� 	
for convenience.

� � � � � � � denotes that there exists a dis-
similarity measurement


 � � � 

� � for the objects � and � . By D

� � 
 � � � � � � � � � �
the sparse matrix of existing dissimilarity measurements is summarized. Note, that
reflexive graphs are permitted and, thus, self-similarities


 � � are not explicitly ex-
cluded. For a given object � the graph neighborhood

� � � �
is defined as the

set
� � � � � � � � � � � � � � �

� � � � � � � �
� � (6)

The most popular cost function for proximity data [31] is the graph partitioning
cost function

� gp � � � D � �
�
�

�� � � � � � � ���� ��� � � � � � 
 � � � (7)

For notational convenience, the following sets of objects are introduced for a given,
fixed partition � . Let

� � � � � � � � ��� � � � � � � � � (8)

�
� � � � � � � � � � �

� � � ��� � � � ��� � � � � � � � � � � ��� � � � � (9)

Thus, � � � � � denotes the set of objects that are in the graph neighborhood
� �

of � and belong to the cluster � . �
� � denotes the set of all edges with one vertex

belonging to cluster � and one vertex belonging to
�

. �
� � �

�
� �

denotes the set of
all edges with both vertices in cluster � . The graph partitioning cost function can
then be rewritten as

� gp � � � D � �
�
�

��
� ��� �� � � � � � � 	 
 � � � (10)

Thus, a cluster specific score is computed simply by adding up all known dis-
similarities between objects in that cluster. The final value is obtained by summing
over all cluster scores. One should note that the graph partitioning cost function
is applicable solely to ratio scale data where positive and negative dissimilarities
must be carefully balanced. A negative dissimilarity is interpreted as a vote to join
both objects in the same cluster while positive dissimilarities provide an indicator
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to separate the objects. Therefore, graph partitioning does not define a monotone
clustering criterion as can be seen from the case of purely negative dissimilarities.
For all


 � � � � the global minimum of � gp � � � D � is achieved by assigning all ob-
jects to one cluster. The opposite limit of


 � � � � favors partitions with exactly
the same number of objects despite the fact that data sources might generate objects
with different frequencies.

Pairwise Clustering. This observation of the sensitivity on the mean dissimilarity
motivates a normalized cost function which is given by

� pc � � � D � �
��
� ��� � � � � ¯
 � with ¯
 � �

�
� �
� �

�� � � � � � � 	 
 � � � (11)

The variable ¯
 � denotes the average dissimilarity of the cluster � . This cost function
is invariant to the shifts of the mean dissimilarity score, at the expense of a normal-
ization factor which makes it impossible to linearize the costs � pc � � � D � . This case
is a typical instance of a non-linear integer program encountered in many pattern
recognition applications.

General Partitioning Problem. A theory of optimization is developed in the fol-
lowing for a generic cost (objective) function � � � �

� � � Y � X � with � discrete � -state
assignment variables summarized by � � � � � � and a � -tuple of

�
-dimensional,

real-valued optimization parameter Y � �
� � � � � � . Here, the cost function is pa-

rametrized by a fixed observation X � � � � � from some (abstract) measurement
space � � � � .
Definition 1. Objective Function Let

�
� be a compact subset of � � � � . The set

� � � �
� � � � � � � �

� �
� � � � � � � � � � � Y � � � � Y � � � � � � � (12)

is called the space of objective functions defined over � � � � and
�

� .

An objective function has to be bounded from below by some constant � to ensure
the existence of a global minimum and thus a globally optimal variable state

� � � � Y � � � arg min� � �
Y
� � � � � Y � � (13)

The continuous parameters Y are typically group-specific parameters and they char-
acterize complete cluster properties. In the � -means case the parameters Y are the
centroids. They solely simplify the representation and the algebraic structure of the
cost function since they can be canonically removed from the formulation by defin-
ing

� � � � � min
Y
��� � � � � � Y � � (14)

which introduces a cost function depending solely on � . This problem formulation
is equivalent to (13) in the sense that both cost functions possess identical minima
in � � � � . For most of the typical grouping objective functions (14) can be solved
analytically. Next, the notion of a clustering criterion is introduced, which basically
formalizes a class of algebraically related cost functions.
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Definition 2. (Clustering Criterion) A family
�

of objective functions
� � � � � � �

� � � Y � X � � � � � � � X � � � � � � � � � � � � � � � � � � (15)

is called a clustering criterion. A clustering criterion is called monotone, if for all X
and for all � � �

min� �
Y
� � � � � � � � � Y � X � � min� �

Y
� � � �

� � � Y � X � (16)

Thus, a clustering criterion provides a unique objective function for each � � �
,

each
� � � � � and each measurement instance X � � � � � . For a monotone clus-

tering criterion, solutions with decreasing costs are obtained as optimal solutions, if
the number of groups is increased. As discussed in the � -means case monotonicity
avoids a preference (bias) of a particular number of clusters without reference to the
data.

3 ALGORITHMS FOR CLUSTERING

A cost function � defines an unconstrained, mixed combinatorial optimization prob-
lem, which is typically a non-linear function in its optimization variables

� � � Y � �
� � �

. Therefore, the development of efficient, yet global optimization algorithms
is essential, i.e. algorithms which avoid getting trapped in local minima at least
to some degree. The following definitions can be generalized to cases where the
assignment configuration space � is replaced by an abstract configuration space� � � � ��� � � , with a local configuration space

� � being associated with each
site � as a minimal requirement. The more general notation becomes necessary for
the development of deterministic annealing algorithms, which typically replace �
by a probabilistic search space. Elements of

�
are denoted by Z

� �
z
� � ��� � ��� .

The notion of a locally optimal state is well-defined for continuous variables as�
inherits the natural topology of � � � � . For discrete spaces, the definition of a local

minimum depends on an additional topology in optimization space. Let

� �
Z
�
Z � � � ��� � � � � z � � � �� z �

� � � � � (17)

define a metric on the space
�

which is known as the Hamming distance. This metric
induces a topology in the search space

�
. The set

� �
Z
� � Z � � � �

Z
�
Z � � ��� � is

called the � -neighborhood of Z. In the following, the attention is restricted to
�
-

neighborhood optimality. This motivates the following definition.

Definition 3. (Minimum) A variable state
�
Z � � Y � � is called a local minimum of

� , if it is
�
-neighborhood optimal. It is called a global minimum, if the condition

holds:
�
Z � � Y � � � arg min�

Z
�
Y
� � � Z � Y � X � (18)

The main focus of this chapter is on the development of numerical algorithms to
compute a solution of (18). Formally, the notion of a (possibly stochastic) optimiza-
tion algorithm is introduced as a sequence of states

�
Z
��� � �

Y
��� � � .
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Definition 4. (Optimization Algorithm) A map

� � � � � � � � � � � � � ��� � � � � (19)
�
Z
�

� � �
Y
�

� � �
X
� � �

��� � � � �� �
� �

Z
��� � �

Y
��� � � � � ��� (20)

is called an optimization algorithm for � , where �
��� �

is a real-valued, uniformly
distributed random number generated by a source

�
. The state

�
Z
�

� � �
Y
�

� � � is called
the initial configuration which might itself be a random variable. A variable state�
Z
��� � �

Y
��� � � may depend on �

��� �
and on

�
Z
��� � � �

Y
��� � � � with

�
� �

�
, but not on �

��� � �
.

– An algorithm
� �

is called deterministic, if
�
Z
��� � �

Y
��� � � does not depend on �

��� �
for any

� � � . Otherwise it is called stochastic.
–
� �

is called convergent, if
�
Z � � Y � � � lim

� �
�

�
Z
��� � �

Y
��� � � exists and

�
Z � � Y � �

is a local minimum of � .
–
� �

is called an alternating minimization algorithm, if Y
��� � � �

is computed by

Y
��� � � � �

arg MinY
��� � � Z

��� � � � �
Y � � (21)

The deterministic minimization operator2 Min computes the next local mini-
mum of � with respect to Y for the initial state Y

��� �
.

For a deterministic algorithm, the initial state provides the only source of ran-
domness, while for a stochastic algorithm, each state transition

�
Z
��� � �

Y
��� � � ��

Z
��� � � � �

Y
��� � � � � can be stochastic in nature. Convergence is a natural requirement

for any algorithm. In the numerical implementation, convergence is implemented
by two thresholds � Z and � Y. The numerical convergence of an algorithm is then
tested by the simultaneous validity of the conditions ��� Z

��� � �
Z
��� � � ��� � �

Z and

� Y
��� � � Y

��� � � � � � � Y. Alternating minimization provides the key concept to ad-
dress mixed combinatorial optimization problems, as it effectively decouples the
joint problem in a purely combinatorial and a purely continuous part. Alternating
minimization is employed in all algorithms developed in the sequel. As seen from
the definition, for the continuous minimization only local optimization strategies are
employed.

The configuration space for grouping problems
� � � � � � ��� � � naturally

decomposes into single site configurations � � . The cardinality of � grows with� � � � � which is exponential in the number of sites. Thus, exhaustive search be-
comes prohibitive even for medium size problems and alternative search strategies
have to be employed. This motivates the definition of a local algorithm.

Definition 5. (Local Algorithm) An algorithm
� �

is called local (with respect to
the

�
-neighborhood), if at most one site configuration is modified in each step, i.e. if

� � � � � �
�
Z
��� � �

Z
��� � � � � � � � (22)

2 The capitalized notation Min is used to distinguish this local operator from the global
minimization operator min.
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– A map � � � � � �
is called a site visitation schedule for the local algorithm� �

, if for all
� � � � � � � � � �

��� � � � � �

� �� � ��� � � � Z
��� � � � � � � � Z

��� � � � � (23)

and if all sites are visited infinitely often.

Markovian algorithms provide an especially important class of local, stochastic
algorithms. In this section we will define several concepts from information theory
which allow us to characterize the properties of annealing algorithms. � � � � denotes
a locally modified assignment vector, which is obtained by setting � � � � � �

and by
keeping all other function values of � unchanged.

Definition 6. (Markovian Algorithm) A local algorithm
� �

is called Markovian,
if �

��� �
is a Markov chain, i.e. if there exists a site visitation schedule � and a state

transition probability � � � � � � � � � Y � such that �
��� � � � � �

��� �� ��� � � � and
�

is distributed

according to � � ��� � � � ��� � � ��� � � Y ��� � � .
Thus, the outcome of a local Markovian algorithm depends only on the previous
state and a single random number distributed according to the state transition prob-
ability. Local Markovian algorithms are stochastic algorithms, which only locally
change the state of the assignment variable. The site visitation schedule simply se-
lects which assignment variable does change for a given algorithmic time step

�
.

To further analyze stochastic algorithms over � , we study the space � of all
probability distributions over � ,

� � � � � � � ��� � � � ��� �
� ��� � � � ��� � � � � � � � � (24)

The expectation of a function � w.r.t. � is denoted by E
� � � � . Moreover, � � � �

denotes the Dirac distribution at � , i.e. � � � � � � �
.

An entity, which is of special interest for the design of stochastic algorithms,
is the entropy of a probability distribution. The entropy measures the information
content of a probability distribution. This topic has been extensively studied in In-
formation and Communication Theory (see [12] for an axiomatic justification).

Definition 7. (Entropy) The functional

� � � � � � E
� � log � � � � �� ��� � � � � log � � � � (25)

is called the entropy of a distribution � , where � log �
�
� by continuation.

The entropy is a measure of the uncertainty of a random variable distributed ac-
cording to � . Moreover, the entropy is bounded by log

	 � � � � � � � � , where
� � � � � � ���	� � � � for some � . The maximal value log

	
is obtained if all

configurations � ��� are assumed with the same probability � � � � � � � � � � .
A fundamental family of probability distributions associated with a cost function

� is the Gibbs distribution � � .



758 J. Buhmann and J. Puzicha

Definition 8. (Gibbs Distribution) The probability distribution

� � ��� � Y � � � �
�

� � ��� �
Y

exp
� � � � � � � Y � � (26)

is called a Gibbs distribution associated with � . The normalization constant
� � �����

Y

is called the partition function, the free parameter � � � � � is called computational
temperature.

The notation is chosen by analogy to statistical physics where these distributions
have been studied since Boltzmann’s ground-breaking work on gas dynamics. The
Gibbs distribution is parameterized by the inverse temperature � and the state of
the continuous variable Y. For notational convenience, the explicit dependency is
dropped in the sequel, whenever unmistakable. The Gibbs distribution can be mo-
tivated by the maximum entropy inference principle [32] as the probability distri-
bution � with maximal entropy for a fixed expectation E

� � � � . Alternatively, the
Gibbs distribution minimizes the expected costs E

� � � � constrained to all distribu-
tions with a fixed entropy. The computational temperature then plays the role of a
Lagrange parameter. More formally, the Gibbs distribution with inverse temperature
� minimizes the Lagrangian known as generalized free energy over � .

Definition 9. (Generalized Free Energy) The functional

�
�
� � � Y � � E

� � � � �
�
� �

� � � � �
� ��� �

� � � � � � � Y � �
�
�
�
� ��� �

� � � log � � � � (27)

defined on � is called the generalized free energy w.r.t. � . The value of
�

�
� � � ����� Y �

which is the minimum of the generalized free energy is simply called the free energy
and is given by

�
�
� � � ����� Y � � �

�

� log
� � �����

Y.

The functional
�

is called generalized free energy again in reminiscence to the
nomenclature used in statistical physics. It can be seen from its functional form that
the minimizing Gibbs distribution optimizes a mixture of the expected costs E � � �
and of the entropy, while the inverse computational temperature balances these com-
peting effects. The generalized free energy plays a fundamental role in the derivation
of deterministic annealing algorithms.

4 ANNEALING ALGORITHMS

Alternating minimization as defined in Def. 4 provides an efficient way to decouple
mixed combinatorial problems into a continuous and a purely combinatorial task.
While standard local optimization routines are applicable for continuous optimiza-
tion, it is a central question how to design optimization procedures for combinatorial
problems � � � � over � , which are capable to avoid local minima intrinsic in almost
all combinatorial optimization problems.
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Simulated Annealing. The underlying mathematical idea can be stated as follows.
The Gibbs distribution � � converges to the uniform distribution over � for � � �
and it converges to the uniform distribution on the set of global minima of � � � �
for � � � . Thus, finding a global optimum of � can be understood as sampling
from the Gibbs distribution for � � � . While this is difficult without solving
the optimization problem directly, sampling the approximately uniform distribution
for small � is feasible. The key idea of annealing is to sample � � ��� , but to gradu-
ally increase the inverse temperature � during the sampling process. Monte Carlo
sampling provides a generic possibility to sample from the Gibbs distribution for
arbitrary, but fixed � .

Definition 10. (Monte Carlo Sampler) A local algorithm is called a Monte Carlo
sampling scheme for a probability distribution � , if

lim� �
�
� � �

��� � � � � � � � � (28)

A Monte Carlo sampler is called a Monte Carlo Markov chain (MCMC), if it is
implemented as a local Markovian algorithm.

A valid MCMC scheme can be mathematically characterized by two properties, the
irreducibility of the underlying Markov chain [38] and the detailed balance condi-
tion

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � (29)

where the state transition probabilities � � � � � � � � for the algorithmic time step
�

are
induced by the transition probabilities of the local Markovian algorithm as defined
in Def. 5.

The Gibbs sampler provides an example of an MCMC method, which is par-
ticularly efficient, if the conditional distribution of one site given fixed assignments
for all other sites can be calculated efficiently. This property holds for the cost func-
tions mentioned so far. The Gibbs sampler is implemented as a local Markovian
algorithm, which performs only state transitions between configurations, which dif-
fer in the assignment of at most one site. Following Def. 5, it is completely specified
by a site visitation schedule � and a state transition probability � � � � � � � � � .
Definition 11. (Gibbs Sampler) For a fixed site visitation schedule � the Gibbs
sampler is defined as the local Markovian algorithm with the state transition proba-
bilities

� � � � � � � � � � exp � � � ��� ��� � � � � �
�

� � ��� exp � � � � � ��� � � � � �
�

(30)

where � �
� � � � � � � � � � � and � � � � � � .

The Gibbs sampler draws a new state for site � � � � from the conditional distribution
� � � � � � � � � given the assignments at all other sites � � � � �� � ��� � � . The entities � �

� � �
are called Gibbs fields by analogy to statistical physics. The Gibbs sampler can be
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INPUT )�� ��� � � start � � final � itmax � site visitation schedule
�

SET
� � � start

repeat
for
� � ��� . . . � itmax � do

CALCULATE � � � � � ��� � ��� � ) � � � � � � � for all �
SAMPLE � according to � ��� �
SET ) � � � � � � � �
SET � � � � �

end for
SET

�
= SCHEDULE � �

until
� � � final

Algorithm 2: Simulated annealing

efficiently implemented, if and only if the Gibbs fields can be calculated efficiently.
For constant � ��� � , the Markov chain defined by (30) fulfills the detailed balance
condition (29) and, therefore, converges towards its equilibrium distribution.

The basic idea of annealing is to use Monte Carlo sampling, but to gradually
raise the inverse temperature � ��� � , on which the transition probabilities depend.
This forces the system into solution states with low costs. The effect of the tem-
perature can be seen as a random force with an amplitude inversely proportional to
� . Cost differences smaller than

� � � smear out and vanish in the stochastic search.
For a logarithmic annealing schedule � ��� � � � � � � log

� � the Gibbs sampler con-
verges in probability to the uniform distribution on the global minima of � [18, 24].
Of course, in practice � is increased too fast to guarantee convergence to a global
minimum. Large deviation estimates applied to exponential schedules are discussed
in [7–9]. SA offers a generally applicable, heuristic random search strategy. Despite
its success it has the reputation of being slow compared to deterministic optimiza-
tion techniques. The main reason is the random walk behavior of the sampling pro-
cess. As one of the major motivations deterministic annealing tries to overcome this
deficiency. The SA algorithm is summarized in Alg. 2.

In the infinite inverse temperature limit � � � , only state transitions are ac-
cepted which do not increase the configuration costs. In this limit, a deterministic
greedy optimization algorithm known as Iterated Conditional Mode (ICM) is ob-
tained. The probabilistic sampling step � � � � � � � � � of (30) degenerates to a simple
minimum search.

Definition 12. (ICM) For a fixed site visitation schedule � the local, deterministic
algorithm with �

��� � � � � �
��� �� ��� � � � where

� �
arg min� � � ��� � � � � � (31)

is called the Iterated Conditional Mode (ICM) algorithm.

The ICM algorithm thus simply selects the state of maximal conditional probability
instead of sampling. Again, the efficiency of the ICM algorithms critically depends
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on an efficient evaluation of the Gibbs fields. The ICM algorithm may serve as an
algorithmic step in the alternating minimization scheme as described in Def. 4, i.e. a
complete ICM algorithm is run on � � � � Y

��� � � with �
��� �

as initial condition to com-
pute �

��� � � �
. The ICM algorithm for a purely combinatorial problem is summarized

in Alg. 3.

INPUT ) � ��� , site visitation schedule
�

repeat
CALCULATE � � � � � ��� � ��� � ) � � � � � � � for all �
UPDATE ) � � � � � � according to (31)
SET � � � � �

until CONVERGENCE()

Algorithm 3: Iterated conditional mode (ICM)

INPUT Yinit � � start � � final �
SET

� � � start, Y � Yinit

repeat
repeat

CALCULATE average costs E � � � ) � Y � X ��� w.r.t. �����	�
� Y
MINIMIZE E � � � ) � Y � X �	� w.r.t.Y

until CONVERGENCE()
SET

�
= SCHEDULE � �

until
� � � final

Algorithm 4: Deterministic annealing

Deterministic Annealing. While SA performs a stochastic search over a discrete
space, DA is a deterministic optimization procedure with probabilistic search space.
DA determines a probability distribution which minimizes the generalized free en-
ergy

�
�
� � � Y � (27) over the space of all distributions � defined on � or a suitably

restricted subspace of distributions � . For the non-restricted case � � � , the min-
imum of the free energy with respect to � is known to be the (temperature depen-
dent) Gibbs distribution � � ��� � Y. Then, alternating minimization by averaging the
cost function � with respect to � � ����� Y and minimizing the average costs with respect
to the continuous parameters Y provides the corrector step. Deterministic annealing
in this abstract form is depicted in Alg. 4. However, depending on the algebraic form
of � the necessary averages E

��� 	 � 	
Y � � � are computationally intractable since there

is no efficient way known to calculate the exponentially large sum
� � �����

Y. For the
general case of Q � � several important algorithmic issues have to be addressed in
order to define a tractable procedure.
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– The definition of a proper relaxation space. The deterministic annealing ap-
proach relies on the possibility of minimizing the generalized free energy. As
a consequence, deterministic annealing only results in a tractable procedure for
� , if an explicit summation over � � � � can be avoided in calculating the aver-
ages. Otherwise the calculation of assignment probabilities would require an
exhaustive overall evaluation of � . In such cases, the space � must be restricted
to a suitable subspace � . As the premium choice, in Section 5.1 the space of
factorial distributions is introduced, where the minimization of

�
� can be car-

ried out efficiently for a large class of objective functions. The main properties
of factorial distributions are outlined in this section.

– The design of the corrector step. In Section 5.2, a generic algorithm known
as mean-field approximation is described to carry out the minimization of

�
�

over the space of factorial distributions for fixed � . Its convergence to a local
minimum of the free energy is established and the inherent connection to the
Gibbs sampler is clarified.

– The validity of the homotopy includes the correspondence between local and
global minima of � and the minima found for EQ � � � in the relaxation space
� as well as the convergence of minimal points of

�
�
�
Q � to minimal points

of
�
�

�
Q � � EQ � � � . These theoretical issues are addressed in Section 5.4.

Therefore, the mean-field approximation can be combined with the concept of
annealing and alternating minimization to compute a minimum of EQ � � ����
�

�
Q
�
Y � � lim � �

�

�
�
�
Q
�
Y � and thus a minimum of � .

Thus, all mathematical details are provided which are necessary to understand and
implement a generic mean-field annealing procedure. Section 6 illustrates additional
properties of deterministic annealing, e.g., the phase transition behavior.

5 APPROXIMATION TECHNIQUES IN ANNEALING

5.1 Factorial Distributions

It is well known that the minimum of the generalized free energy is assumed by the
associated Gibbs distribution. The deterministic algorithm as presented in Alg. 4
only results in a tractable procedure if averages

E � � � � � Y � X � � � �
� ���

� 	 �
� � � � Y � X � � � ��� � Y � � � (32)

can be evaluated efficiently. An explicit summation over � � � � should be avoided
since the cardinality � � � � � � grows exponentially in the number of objects � . If the
algebraic structure of � � ��� � Y is too complex, e.g., it contains an exponentially large
sum, then one possibility is to restrict the space of probability distributions � to
a suitable subset � . The discrete search space � � � � has a canonical embedding in
� by mapping each � � � � � � to the distribution � � , where � � defines the Dirac
distribution on � , i.e. � � � � � � �

. This provides a canonical requirement for any
subspace � � � .
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Definition 13. (Probabilistic Relaxation) A set � � � defines a permissible re-
laxation space, if � � � � for all � .

Factorial Gibbs distributions are a particularly simple case for which the averages
(32) can be carried out efficiently, and deterministic annealing becomes tractable.
This motivates the following definition.

Definition 14. (Factorial Distribution) The space � � � with

� � �
� ��� �

� � � Q � � � Q � � � � �
� ���

� � � � � � � � � � � � � � � � �
� ��� � � (33)

is called the space of factorial distributions. A deterministic annealing procedure
over the space of factorial distributions is called mean-field annealing.

Thus a factorial distribution over � � � � is specified by � � � continuous parameters� � � � � . It is easily verified that the normalization conditions � � � � � � � � �
must be

valid for all ��� � in order to define a valid probability distribution. For notational
convenience, the distribution Q is identified with its parameters, Q

� � � � � � ��� � ��� ,� � � � � . The parameter vector q �
� � � � � � � � ��� � defines a generic probability

distribution over � �
� � � � ����� � � � . The space of factorial distributions is a permissi-

ble probabilistic relaxation space, since � ��� � � � � � ��� with
� � � � � � � � � ��� ��� . The

relationship between Gibbs distributions and factorial distributions is clarified by
the following proposition.

Proposition 15. Let

�
� � � � � �

� ���
� � � � � � ��� (34)

be a linear cost function and denote by � ��� �
exp

� � � � � � � � �

the associated
Gibbs distribution with respective partition function

� �

. Then

– � � � is factorial, and
– every factorial distribution Q can be expressed as a Gibbs distribution with a

linear cost function.

Thus, the set of Gibbs distributions with a linear Hamiltonian and the space of fac-
torial distributions are in fact isomorphic.3 The parameters

� � � � � are often called
mean-fields by analogy to statistical physics. Some important properties of factorial
distributions are summarized in the following proposition.

Proposition 16. Let Q be a factorial distribution. Then

1. the parameter value
� � � � � equals the probability of assigning object � to clus-

ter
�

,

Q
� � � � � � � � � � � � � � � (35)

3 Note, that the space of factorial distributions is not isomorphic to the set of all linear cost
functions, since a constant offset on the cost function yields an identical Gibbs distribution.
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2. all correlations w.r.t. Q vanish for assignment variables of different objects.
More precisely, for all � ��� � � � , 	 � �

and for all functions
� � � � � depending

on the assignment of a single object �

EQ

� �
� ��

� � � � � � � ��� � �
� �� Eq � � � � � � � � � (36)

This property of factorial distributions is extremely valuable as it ensures that the
expectation can be carried out separately for all objects � for a large class of cost
functions � .

For discrete search spaces, a local minimum has been introduced as a
�
-neigh-

borhood optimal variable state. The space of factorial distributions can be consid-
ered as the canonical topologically equivalent probabilistic embedding space, as
it introduces a single coordinate axis for each object. For a given variable state
Q � � �

q �� � � � each coordinate axis defines an one-dimensional, localized search

space � � � Q � � � � �
� �� � q �� ��� � � which is obtained from Q � by varying only

the variable associated with a single object � . Thus, the choice of factorial distribu-
tions arises naturally, when considering solely local algorithms. This motivates the
following definition.

Definition 17. (One-change Optimality) The distribution Q � � �
q �� � � � is

called (strictly) one-change optimal w.r.t. � and Y, if Q � is a (strict) local minimum
of EQ � � � � � Y � � w.r.t. all subspaces � � � Q � � .
5.2 Mean-Field Approximation

The original cost function
�
�

�
Q � � EQ � � � is embedded into the one-parametric

family of cost functions
�

�
�
Q � . It is thus a key algorithmic issue to compute opti-

mal states of
�

�
�
Q � . The solution for the space of factorial distributions � is known

as mean-field approximation. Differentiation w.r.t. Q yields the following character-
istic equations of the critical points of

�
�
�
Q � .

Theorem 18. Let � be an arbitrary partitioning cost function. The factorial dis-
tributions Q � � � , which minimize the generalized free energy

�
� over � , are

characterized by the stationarity conditions

� �� � � � � exp � � � � � � � � �
�

� � ��� exp � � � � � � � � �
� � � � � � � EQ � � � � � � � � � EQ �� � 	 � � � � (37)

Here, Q �� � � denotes the probability distribution obtained by replacing the � -th row
with the unit vector � � , i.e. Q �� � � is defined by setting

� � � � � � �
,
� � � � � � �

for all
� �� � and keeping all other parameters

�
�
� � � , � �� � . For a proof of the

theorems in this section see App. 7. The theorem establishes an intrinsic relationship
between the Gibbs sampler and the mean-field approximation scheme. The mean-
fields

� � � � � in (37) are the Q � -averaged versions of the local costs (Gibbs weights)
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� �
� � � defined by (30). This fact enables a constructive derivation of efficient mean-

field equations if an efficient implementation of the Gibbs sampler is available. The
equations for stationary points motivate a deterministic, local algorithm where one
object is updated while the assignment probabilities of all other objects are kept
fixed. Its convergence properties are clarified by the following theorem.

Theorem 19. For any schedule � ��� � and arbitrary initial conditions, the following
local, deterministic algorithm converges to a one-change optimal minimum of the
generalized free energy

�
� :

� � � �� � � � � exp
� � � �

� � �� � � � �
�

� � � � exp
� � � �

� � �� � � � �
�

where (38)

� � � �� � � � � EQ � � � � � � � � � EQ �� � 	 � � � and � � � ��� � � (39)

Note that Prop. 15 allows us to efficiently evaluate the averages EQ �� � 	 � � � for poly-
nomial cost functions, while for non-polynomial � some approximations have to
be introduced. The theorem establishes the convergence to a (one-change optimal)
local minimum of the free energy for the complete class of grouping objective func-
tions. The mean-field approximation (MA) algorithm is summarized in Alg. 5.

INPUT Qinit � � � object visitation schedule
�

, objective function �
repeat

CALCULATE all partial costs �
�� � � � ��� � according to (39)

CALCULATE all �
�� � � � ��� � according to (38)

SET � � � � �
until CONVERGENCE()

Algorithm 5: Mean-Field Approximation (MA)

5.3 Exemplary Mean-Field Equations

� -means: For the � -means cost function (2) the associated Gibbs-distribution is al-
ready factorial and the mean-field approximation is exact. The Gibbs weights equal
the mean-fields and are simply given by

� km� � � � �
� km� � � � � �

� � � � x � � y
�
�
	 � (40)

The equations for stationary points in (38) can then be solved without iteration in
one step.

Proximity-Based Clustering. To obtain an efficient implementation of the Gibbs
sampler, one has to find a way to efficiently calculate � �

� � � under single object
changes. The mean-field algorithm in addition requires to perform the Q-averages
EQ � � � � � � � . A straightforward implementation of the Gibbs sampler would parti-
tion the cost function into a sum of clique potentials and recalculate at each step
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all potentials of cliques to which object � belongs [18]. For the normalized clus-
tering objective functions � pc as given by (11) this procedure is highly inefficient,
since the assignments enter in the denominator. It is a key observation that all ad-
ditive terms of � � � � � � � and

�
EQ � � 	 � � � � , which do not depend on � � � � (

� � � � �
for any

�
), simply cancel in (30) and (37). They can be neglected for efficiency

reasons. Consequently, we propose a different implementation, defining � �
� � � �

� � � � � � � � � � � � � � , where the costs � � � � � � of the reduced system without object
� have been subtracted. Let� � � �

� ��� 	
� ��� � � with

� � � � � � �
� ��� 	 � ���


 � � (41)

define the sum over known dissimilarities in the same cluster and
� ��� � � the restric-

tion of this sum to the neighborhood of � . The Gibbs fields for the graph partitioning
and the pairwise clustering criteria are then given by

� gp� � � � � ��� �� � � � � (42)

� pc� � � � � � � � � �� � � � � � � �� � � � �� � � �
� �
� �� � � � � � �� � � � � �

�
� � � �� �

�
� � ��
� �
� �� �

� (43)

Here, for a set
� �

the notation � � � �� � denotes the set size after removing object �
from the statistics,

� � � �� � � � � � � � � ��� ��� � � � (44)

� �
� �� � � � �

� � � � � � � � � � � (45)

� � � �� � � � � � � � � � � � � � � � ��� � � � � � ��� ��� � � � � (46)

Similarly, for the cluster dissimilarity score of �� � �� � � � � � � � � � � � � ��� � � � � � � � ��� � � � 
 � � � (47)� � �� � � � � � � � � � � (48)

The quantities
� �

,
� � � � � , � � � � , � � � � , and � � � � � � � are used as bookkeeping quantities

to achieve a fast evaluation of � �
� � � . These bookkeeping quantities must only be

updated after changing the assignment of an object.
The remaining technical difficulty in calculating the mean-field equations are the

averages of the normalization constants, especially their inverse proportional depen-
dency on functions of sets of assignment variables. Although a polynomial normal
form exists, which would in principle eliminate the involved denominator, some
approximations have to be made to avoid an exponential number of conjunctions.
These approximations are implemented by independently averaging the numerator
and the normalization in the denominator in (43),

� � � � � � Q � � EQ � � � � � � � � � � � � �
� � � � EQ � � � � � (49)

The compact notation EQ � � � used here implies rewriting the cost function in terms
of indicator functions

� ���
� � � � by replacing cluster assignment conditions in the ar-

gument of a sum. In the mean-field approximation, all indicator functions
� ��� ��� � �
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are replaced by the probabilities
� � � � � � EQ

� � ��� ��� � � � of assigning object � to
cluster

�
. This approximation is exact in the limit of � � � for any � and in the

thermodynamic limit of � � � for arbitrary � . General bounds as well as higher
order corrections of the approximation error can be obtained by a Taylor expansion
around EQ � � � [27]. The technical details are omitted here for the sake of readability.
To illustrate the general formula (49) the mean-field equations for the normalized
pairwise clustering cost function are depicted here:

� pc� � � � � Q � �

� �
� ��� �
� �� � � �

� � � � � �
��

� � � � � � �� �� � � � �� � � �
� � � � � � � � 
 � � � �

� ��� � �
� �� � �

�
� � � 
 � � � � � ��� � 
 � �

��
� � � � � � �� �� � � � �� � � �

� � � � � � � � � �
� ��� � �
� �� � �

�
� � � � � � ��� �

�
� �

� ��� �
� �� � � �

� � � �
��

� � � � � � �� �� � � � �� � � �
� � � � � � � � 
 � �

��
� � � � � � �� �� � � � �� � � �

� � � � � � � �
� (50)

Similar bookkeeping entities as for the Gibbs sampler and ICM are used for efficient
implementation.

5.4 Mean-Field Annealing

Theorem 19 establishes the convergence of the mean-field approximation to a (one-
change optimal) local minimum of the free energy

�
�
�
Q
�
Y � over � for fixed

inverse temperature. Alternating the minimization of
�

�
�
Q
�
Y � with respect to Y

and the mean-field approximation, the algorithm converges to a (local) minimum of�
�
�
Q
�
Y � . These results motivate a predictor-corrector method, which uses a con-

stant predictor and tracks the trivial solution at low inverse temperature for � � � .
However, several theoretical issues arise when varying the parameter � . The most
fundamental one is concerned with the convergence of minimal points of

�
�
�
Q
�
Y �

to minimal points of
�
�

�
Q
�
Y � . The sufficient condition for the convergence of

minima is the uniform convergence of lim � �
�

�
�
�
Q
�
Y � .

Proposition 20 (Uniform Convergence). The free energy
�

�
�
Q
�
Y � over � con-

verges uniformly to
�
�

�
Q
�
Y � � E � � � .

The proofs of all propositions in this section are collected in App. 7. A sec-
ond crucial question concerns the relation between global and local minima of the
combinatorial optimization problem and the respective minima of the probabilistic
relaxation. For global minima the following relation is valid.
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Proposition 21. Let � be a permissible probabilistic relaxation space and let � � �
� � � � be a global minimum of � . Then � � � is a global minimum of

�
� over � .

Convergence to the global minimum, however, should not be expected in the
general case for two reasons. First, there might not exist a connected component
in the set of local minima for all values of the parameter � defining the homotopy.
Second, if such a path exists, it is not a priori guaranteed that the minimum reached
for � � � corresponds to a global minimum of the original cost function.

The following proposition clarifies the relation between local minima of � and
strictly one-change optimal states of EQ � � � over the space of factorial distributions.

Proposition 22. Let a factorial distribution Q � ��� and a cost function � be given.

1. If Q � is strictly one-change optimal w.r.t. � , then Q � � � � for some � .
2. � � � is strictly one-change optimal w.r.t. � iff � � is strictly one-change optimal

w.r.t. � .

The proposition establishes a one-to-one correspondence between the strictly
local minima of the combinatorial problem and its probabilistic relaxation, which
justifies the choice of the space of factorial distributions as a proper relaxation space.
For critical points, which are not strict local minima, the situation is less satisfactory.
Non-strict minima � � of � induce a corresponding continuum of minima over EQ � � � .
They can be easily recovered for a given one-change optimal Q � , however, Q � is not
unique. A second type of critical points are saddle points of

�
� , which frequently

occur as minima of
�

� traced for � � � and which become unstable while raising
� . They correspond to symmetric superpositions of different local minima of � and
must be circumvented by adding noise during the annealing process.

The convexity of
�

� for � � � is the second important condition for a valid
homotopy. The convexity of

�
� for small � is ensured by the following proposition.

Proposition 23.
�

� is strictly convex over � for � sufficiently small.

This ensures that deterministic annealing over the space of factorial distribu-
tions, which is referred to as mean-field annealing, defines a valid continuation al-
gorithm. The complete mean-field annealing algorithm is summarized in Alg. 6.

6 PROPERTIES OF DETERMINISTIC ANNEALING

Phase Transitions and Cluster Splits. At an inverse temperature � � � , the effec-
tive number of clusters of the optimal solution degenerates to one, i.e. the positions
of the prototypes, e.g., for the � -means cost function are identical for all clusters
and objects are assigned to all prototypes with uniform probability. The reason for
this phenomenon is the dominance of the entropy as opposed to the distortion costs
measured by the cost function. The collapse of clusters occurs for all grouping and
quantization cost functions. To determine the effective number of groups, clusters �
and

�
are identified if they have identical assignment probabilities

� � � � � � � � � � �
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INPUT
� start � � final �

SET
� � � start

INITIALIZE ��� � ) � � �

�

repeat
add a small random perturbation to Q � � � � � ) � �
repeat

MINIMIZE E � � � ) � Y � X �	� w.r.t.Y
CALL MA � Q � � � � � as given by Alg.5

until CONVERGENCE()
SET

�
= SCHEDULE � �

until
� � � final

Algorithm 6: Mean-Field Annealing

Figure 1. Cluster splits and phase transition behavior in DA. Depicted is (a) the one-
dimensional input density of the data samples and (b) the computed optimal prototype posi-
tions depending on

�
for the

�
-means clustering criterion with

� � � different clusters. The
input density is a linear superposition of

� � � Gaussian distributions with identical weights
and identical variance. Note that the centers of the Gaussian distributions are approximately
recovered by the cluster prototypes

for all � � � . While all annealing algorithms exhibit a similar behavior it is partic-
ularly easy to measure cluster degeneracies in deterministic annealing.

The annealing process exhibits a series of bifurcations, also called phase tran-
sitions for the large data limit � � � in Statistical Physics, where cluster assign-
ments successively split. In a bifurcation, symmetric superpositions of optimal clus-
ter configurations become unstable. This phenomenon is illustrated in Figure 1 for
a simple one-dimensional � -means example, but similarly occurs for all objective
functions. As demonstrated in [52] for � -means, the first bifurcation occurs along
the first principal axis at a critical temperature

� � � �
max which depends on the largest

absolute eigenvalue
�

max of the data co-variance matrix.
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7 BIBLIOGRAPHIC NOTES

Statistical Physics. The concept of entropy first emerged in the context of ther-
modynamics and plays a fundamental role in information and communication the-
ory [55]. Shannon axiomatically derived the entropy as a unique measure of uncer-
tainty and identified the entropy as a lower bound of the expected coding length
for a stochastic source. The maximum entropy principle has been first proposed by
Jaynes [32,33] and can be seen as an application of the Laplace principle of insuffi-
cient reasoning [39]. The maximum entropy principle has been justified in terms of
repeated random trials, culminating in the entropy concentration theorem [34]. An
axiomatization of maximum entropy inference has been presented in [13].

The free energy plays an important role in statistical physics, as it summarizes
all relevant thermodynamic properties of a system defined by a Hamiltonian � . De-
pending on the specific structure of � , Gibbs expectation values can be calculated
simply by differentiation of the free energy. It is referred to [43] for a deeper treat-
ment. Annealing as discussed in this paper emphasizes the discrete search space
� . It is possible to define annealing algorithms by entropic smoothing over

�
as

developed in [36] for MultiDimensional Scaling.

There is a vast literature on MCMC methods, e.g., [25, 38]. The idea of Monte
Carlo sampling dates back to [41], who proposed a sampling scheme now known as
the Metropolis sampler. Other popular choices include the heat bath acceptance rule
[25] and the described Gibbs sampler [18]. Important improvements have been made
recently in the theory of Markov chain methods to speed up stochastic sampling for
special systems, but are not generally applicable [21, 56].

Simulated Annealing. The idea of simulated annealing has first been introduced
in [10, 35]. A first proof for the convergence of the annealing process to the uni-
form distribution on the global minima of � has been established in [18] for loga-
rithmic annealing schedules. These results have been sharpened by B. Hajek [24].
Structured introductions to simulated annealing are found in [37, 38]. An annotated
bibliography is found in [11]. Simulated annealing has been extended to continuous
search spaces [17, 19], but the theoretical results are less well established.

The iterated conditional mode (ICM) algorithm, though already applied e.g.,
in [18], is usually attributed to [2]. Both the simulated annealing and the ICM have
been applied in numerous vision applications, especially in the context of Markov
random field models. The reader is referred to [40, 58] for an overview and further
bibliographic cues. While the ICM is fast, it suffers from its inherent locality, i.e. the
ICM is frequently getting trapped in local minima. One class of techniques, which
combines stochastic with gradient-based methods are known as hybrid Monte Carlo
methods [14,42]. Hybrid methods define a stochastic dynamics to replace the mem-
oryless random walk behavior. Cutting plane algorithms as developed in [22, 23]
provide global optimization algorithms in the strict sense. However, they are re-
stricted to linear cost functions. Moreover, it is not clear how to extend them to
mixed combinatorial objective functions.
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Deterministic Annealing. Deterministic annealing has originally been proposed as
an efficient approximation to simulated annealing [15, 45, 46]. In the sequel, deter-
ministic annealing has been applied to the traveling salesman problem [46], graph
partitioning [57], quadratic assignment and graph matching [20, 59], vector quanti-
zation [6, 51–53], surface reconstruction [16], image restoration [4, 61], and edge
detection [60]. More specifically, mean-field theory as an approximation princi-
ple [3, 15, 45, 62] has been used to obtain computationally tractable algorithms.
In the context of distributional clustering, deterministic annealing has been applied
by [44]. A deterministic annealing approach for clustering and visualization of com-
plete proximity data has been presented in [26]. For sparse proximity matrices it has
been introduced in [28–30]. Its application for color quantization has been proposed
in [47]. Astonishingly, deterministic annealing algorithms have only been derived
independently for highly specific optimization instances despite these widespread
research activities. The generic scheme presented here maximally encapsulates the
dependency on the cost function. It has first been published in [29, 30, 48]

Convergence of mean-field annealing has been established for a very specific
problem instance by [62]. The general results presented in this section including
the general convergence results have been published in [30, 49]. The analysis of
the relaxation and the correspondence between global and local minima has been
presented in [48].

The minimization of
�

� over � can be seen as an approximation procedure
for a problem, which is intractable over the full search space � . It can be shown
that minimizing the generalized free energy is equivalent to minimizing the cross
entropy to the Gibbs distribution. A proof can be found, e.g., in [3].

Continuation Methods. A theory of continuation methods has been developed in the
context of nonlinear systems of equations [1]. A popular example in computer vision
is the graduated non-convexity algorithm (GNC) developed in [5]. Deterministic
annealing can be interpreted as a continuation method in that it defines a linear
homotopy by adding entropic contributions to a given objective function and in that
it globally solves the optimization problem for low � and then tracks the solution
for � � � . Optimization with respect to the reduced set � has been introduced
as a variational approximation to a continuation method, which is intractable in
� . However, it should be noted that minimization with respect to � yields a valid
homotopy in its own right.

Conventional continuation methods have only been designed for low-dimension-
al, continuous optimization problems [1] and it is by no means obvious how to ex-
tend them to high-dimensional, discrete search spaces. As the temperature defines a
natural resolution parameter the maximum entropy rationale seems to be a natural
framework to derive efficient and robust continuation algorithms. This has been con-
firmed by the excellent empirical results in numerous independent studies as cited
above. However, it has to be admitted though that there is still a lack of theoreti-
cal understanding. Especially, in general no convergence to the global optimum of
a cost function should be expected [54]. Nothing is theoretically known about the
average quality of local minima found by deterministic annealing.
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APPENDIX: PROOFS

Theorem 18: Let � be an arbitrary partitioning cost function. The factorial dis-
tributions Q � � � , which minimize the generalized free energy

�
� over � , are

characterized by the stationary conditions

� �� � � � � exp � � � � � � � � �
�

� � ��� exp � � � � � � � � �
� � � � � � � EQ � � � � � � � � � EQ �� � 	 � � � � (51)

Proof. Introducing Lagrange parameters
� � to enforce the normalization

��
� ��� � � � � � � �
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and taking derivatives of the Lagrangian of the generalized free energy (27) results
in

�

� � � � � �
�
EQ � � � �

�
� �

�
Q � � �

� ���
�

�

��
� ��� � �

� � � � (52)

� �
EQ � � �

� � � � � �
� �
�

�

� � � � � �
�
� ���

��
� � � � �

� � � log
�

�
� � � � � � (53)

� �
EQ � � �

� � � � � �
� �
� log

� � � � � � � � �
�
�
� (54)

Setting the derivatives equal to zero establishes stationary conditions.

� �� � � � � exp
� � � � � � � ���

�
� � � � exp

� � � � � � � ���
�

where

� � � � � �
�
EQ � � � �

� � � � � � � (55)

Performing the derivatives gives

� � � � � � �
� ���

� � � �
�
Q � � � �

� � � � � �
� �
� ���

� � � � � ��� ��� � � �
� �� � � �� � � � � � � Q � � � � (56)

� �
� ���

� � � ��� � �� �� � � � � � � � � EQ � � � � � � � ��� EQ �� � � � � � � (57)

��

Theorem 19: For any schedule � � � � and arbitrary initial conditions, the following
local, deterministic algorithm converges to a one-change optimal minimum of the
generalized free energy

�
� :

� � � �� � � � � exp
� � � �

� � �� � � � �
�

� � ��� exp
� � � �

� � �� � � � �
�

where (58)

� � � �� � � � � EQ � � � � � � � � � EQ �� � 	 � � � (59)

and � � � � � � .
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Proof. By differentiating (54) the Jacobian of the generalized free energy can be
expressed as

�
	 � �

�
�
Q � � � � ��� �

� �
� � � � � �

� � � �
� � � � � � � �

�
� � � (60)

� EQ
� � � � ��� � � � � � � � � � � �� � � � � � �

� � �
�
� �
� � � � � � �

EQ
� � ��� ��� � � � �� � � � � 	 � � � � � � � � � (61)

�
�� �
� � � � � � � � � � for � � � and � � �

� for � � � and � �� �

EQ
� � ��� ��� � � � ��� � � � � � � � � � � � � � � �

� � � � otherwise

(62)

which is positive definite, when considering only the subspace � � � �
� �� � � � � �

� � �
spanned by one site � . This reduced configuration space is obtained by varying� � � � � keeping the configurations

�
�
� � � � � �� � fixed. An asynchronous step (37)

minimizes
�

� with respect to � � � �
� �� � � � � �

� � � . As � and thus
�

� are bounded
from below by definition, this ensures convergence of the asynchronous update
scheme to a local minimum. ��

Proposition 20 (Uniform Convergence): The free energy
�

�
�
Q
�
Y � over � con-

verges uniformly to
�
�

�
Q
�
Y � � EQ � � � .

Proof. It must be shown that for all � there exists � � such that for all � � � � ,
Q ���

� � �
�
Q
�
Y �	� �

�

�
Q
�
Y � � � � � (63)

The difference can be uniformly bounded by

� � �
�
Q
�
Y �	� �

�

�
Q
�
Y � � �

�
�
� log � (64)

which can be made arbitrarily small for large � . ��

Proposition 21: Let � be a permissible probabilistic relaxation space and let � � �
� � � � be a global minimum of � . Then � � � is a global minimum of

�
� over � .

Proof. Let � � � � be a global minimum of � . Then for all � � � � � � � � � � � � � �
and, therefore,

� � � � � � E
� 	 � � � � � �

� ��� �
� � � � � � � � � (65)

� �
� ��� �

� � � � � � � �
E
� � � � (66)

for any � . ��
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Proposition 22: Let a factorial distribution Q � ��� and a cost function � be given.

1. If Q � is strictly one-change optimal w.r.t. � , then Q � � � � for some � .
2. � � � is strictly one-change optimal w.r.t. � , iff � � is strictly one-change optimal

w.r.t. � .

Proof. The proof relies on Theorem 19. Let Q � be one-change optimal and let� � � � � � EQ � 	 � � � � � . Then, according to (37),
� �� � � � � � implies that � � � � � � � � �� � � � � and, therefore, according to (37) and (56):

EQ �� � 	 � � � � � � � � � � �
�

� �� � � � � � � � � � �
�

� �� � � � � � ��� � ��� ��� � �� �� � � � � � � � Q � � � �
� �
� ��� � � � � � � ��� � �  � � � � Q � � � � � EQ � � � � � (67)

Strict one-change optimality in conjunction with the convexity of EQ � � � over the
subspace � � � Q � � as established by Theorem 19 implies Q � � Q �� � � . ��

Proposition 23:
�

� is strictly convex over � for � sufficiently small.

Proof. The proof is a direct consequence of (62) since the Jacobian of the general-
ized free energy becomes diagonal dominant for � � � . ��
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Abstract Multiscale Annealing is an extension of the idea of deterministic annealing which
link the approximation quality of the algorithms to their effective spatial resolution. The op-
timization variables of a particular scale are linked together to reduce the spatial resolution,
and, thereby, to simplify the computational complexity of the optimization task. Robustness
and efficiency issues are discussed in this article on research questions of annealing tech-
niques.

1 INTRODUCTION

Annealing techniques for optimization have steadily gained acceptance in the pat-
tern recognition, computer vision and speech processing community since their in-
vention by Kirkpatrick et al. [19] and, independently, by Černy [6]. These stochas-
tic optimization techniques are well adapted to probabilistic modeling concepts like
Markov Random Fields [10], Hidden Markov Models [35], probabilistic neural
networks [36] and, more general, the class of graphical models [18]. The popular-
ity of the methods is partially based on the observed ease of implementation and
the experimentally observed robustness against noise distortions in the data. Active
research areas are concerned with questions of provably efficient implementations
and with a theoretical understanding of robustness.

Deterministic Annealing (DA) [5] shows an increased the computational effi-
ciency compared to the Gibbs sampler. It is, however, still too slow by an order of
magnitude for the typical demands of low-level computer vision tasks. Large scale
optimization problems as they occur, e.g., in image segmentation need to be solved
within at most a few seconds. Many of these problems can be phrased in a grouping,
clustering or quantization framework, which result in non-linear, large optimization
problems. To gain additional efficiency in optimization, a novel real-time approach1

to global optimization of several grouping and quantization criteria (cost functions)
is developed. It relies on the concept of Multiscale Optimization [14]. Available
(image) neighborhood information is used to significantly accelerate computation
by exploiting the fact, that nearby objects belong with high probability to the same
cluster. The optimization problem is redefined on different scales such that the orig-
inal cost function is minimized over a suitable nested sequence of subspaces in a

1 Note that a weak notion of real-time processing is adopted, i.e., any time algorithms are
developed with processing times that are simply short enough, i.e. at most a few seconds.
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coarse-to-fine manner. As the major advantage this procedure reduces the number
of variables and thus significantly saves computational effort.

Multiscale techniques are combined with the deterministic annealing algorithm.
The annealing process is tightly coupled with the coarse-to-fine optimization by a
uniform convergence criterion derived from statistical learning theory. The proposed
algorithm, which is referred to as Multiscale Annealing, couples the resolution hi-
erarchy in image and in cluster space with the resolution in optimization space in-
troduced by annealing with a computational temperature. The essential structure
of the grouping solution is detected on the coarse scales using global optimization
techniques and is then propagated into the details using high-speed low or zero tem-
perature algorithms. Large deviation bounds adapted from statistical learning theory
yield a criterion for a finite stopping temperature.

This chapter is organized as follows: In Section 2 the canonical multiscale oper-
ator is introduced, and equations for multiscale optimization for different grouping
criteria are formally derived. We continue by linking optimization resolution and
spatial resolution using a statistical learning theory approach in Section 3, followed
by real-world texture segmentation experiments in Section 4. Here, we demonstrate
the efficiency of the proposed optimization techniques yielding acceleration factors
from 1.5–50 in typical applications. This chapter makes heavy use of the notation
and the material covered in the introductory chapter on deterministic annealing in
this volume [5].

2 MULTISCALE ANNEALING: EFFICIENCY ISSUES

A theory of optimization is developed in the following for a generic cost function
� � � �

� � � Y � X � with � discrete � -state assignment variables summarized by ��� � � � �

and a � -tuple of
�

-dimensional, real-valued optimization parameter Y � �
� �

� � � � . Here, the cost function is parametrized by a fixed observation X � � � � �
from some (abstract) measurement space � � � � .
Definition 1. Objective Function Let

�
� be a compact subset of �

� � � . The set
� � � �

� � � � � � � �
� �

� � � � � � � � � � � Y � � � � Y � � � � � � � (1)

is called the space of objective functions defined over � � � � and
�

� .

Typical objective functions include central clustering (vector quantization) given by

� km � � � Y � X � � �
� ��� � x � � y

��� ��� �
	

(2)

with vector-valued observations x � , where the y
� � � � denote additional real-

valued,
�

-dimensional cluster prototypes to be optimized. For indirect observations,
i.e. similarity measurements


 � � � 

� � between the objects � and � , the graph

partitioning cost function

� gp � � � D � �
�
�

�� � � � � � � ���� ��� � ��� � � 
 � � � (3)
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and the normalized graph partitioning cost function

� pc � � � D � �
��
� ��� � � � � D̄ � with D̄

� � �
� � � �

�� � � � � ��� 	

 � � � (4)

are frequently used cost functions. See the introductory chapter [5] in this volume
for nomenclature and a detailed motivation of these cost functions.

2.1 The Canonical Multiscale Operator

In the following presentation, a generic objective function ��� � � � � is assumed to
be given. Let the number of objects � and the number of clusters � be fixed for
now. The objects which should be clustered are assumed to be arranged as a two- or
three-dimensional grid which corresponds to the pixel or voxel structure in computer
vision. There are multiple possibilities to define the coarse grids and the respective
prolongation and restriction operators, i.e. coarse-to-fine and fine-to-coarse maps of
optimization variables. In the usual grouping application, the number � of (discrete
assignment) variables � � � � is extremely large, while only a few continuous variables
Y � �

enter the optimization problem. Therefore, only coarsening operations on
�

are considered. Denote by
� � � �

the original set of sites and assume a set of grid
sites

� � � � � � � ��� � � � � be given for each coarse grid level � . To each coarse grid, a
reduced set of optimization variables � � � � � is assigned,

� � ��� � � � � � � � � ��� � � � � � � � � � � � � ��� � � ��� � (5)

These grids as well as the corresponding variable sets are linked by a coarsening
map



� � � � � � � � � � defined on the sets of sites. Thus, any fine grid point is linked

to a single coarse grid point, which gathers the information. In image analysis, typi-
cally

� � � � sites are combined in a single coarse site by the two-dimensional index
operation

� � � � � � � � � � � � � . A typical multiscale hierarchy is visualized in Figure 1
which contains an exemplary illustration of



� and


 � �
� . As



� is a many to one map

the inverse

 � �
� is a subset of the fine grid sites,


 � �
�
� � � � �

� . Recursive applica-
tion of


 � �
� yields the set or block of sites B

� � � represented by � . For notational
convenience the following summarizing notation is introduced.

Definition 2. (Coarsening Structure) The family
� � � � 


� � is called the coarsening
structure relative to which all coarsening operations are defined.

� � � � � � � 
 � �� � � � �
denotes the set sizes for the inverse coarsening operation, i.e. the number of fine grid
sites connected to � . If

� � � � � is constant, i.e. independent of � , then the coarsening
structure is called regular, otherwise it is called irregular.

The coarsening map



connects the variable sets between grids and thereby defines
the configuration subspace on the fine grid that is spanned by the coarse grid vari-
ables. The corresponding prolongation map is formally given by

� � � � � � � � � �

� � � � �� � � � � � � � � � � with � � � � � � � � � � � 
 � � � ��� � (6)
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Figure 1. Exemplary multiscale hierarchy with three level: Represented in detail is the
relation between the coarse site � and the corresponding fine grid sites � � � � � � � � � ��� :
� � � � � �

�
� � � � � � � � � � � � ����� � ���

�

� ��� �

Each fine grid variable is thus set to the value of the corresponding coarse grid
entity. Now, a family

� � � � of coarse grid cost functions can be canonically derived
for a given cost function �

�

.

Definition 3. (Multiscale Operator) The recursively defined operator �

� � � � � � � � � � � � � � � �� � � � � � � � � � � � � (7)

is called the coarsening operator relative to the coarsening structure
� � � � 


� � .
Thus the value of the coarsened cost function is given by the value of the original
cost function at the prolongated point. It has to be emphasized that the multiscale
coarsening operator is well-defined for arbitrary cost functions � .

But even for cost functions of simple algebraic structure the corresponding
coarse cost functions can become arbitrarily complex [13]. Thus it is a valuable
property of a cost function, if the algebraic structure does not change under the
coarsening structure. This motivates the following definition.

Definition 4. (Closure under Coarsening) A family of objective functions
�

is
closed under multiscale coarsening, if � ��� � there exist constants

�
�
� � 	

such that�
�
� � � � � � � 	 � � .

Thus, a family of cost functions is closed under coarsening, if either the coarse ver-
sion of a cost function itself or some affine transformation is again a clustering ob-
jective function of the same algebraic type. Note that an affine transformation does
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not change the position of the minimum of a cost function. Closure under coarsen-
ing is an extremely valuable property as it guarantees highly efficient optimization
of the coarse cost functions and thus improved performance.

2.2 Multiscale Equations for Grouping

In this subsection, multiscale equations are derived for the objective functions dis-
cussed earlier.

Central Clustering. Multiscale equations for central clustering as defined by the
generalized � -means objective function with centroids y

� � ��� and cluster weights
w
� � � (see [5])

� gkm � � � Y � X � � �
� ��� w

� � � � x � � y
��� ��� �

	 � (8)

are derived by recursively applying (7), thus constraining the original cost function
to a constant label for each B

� � � .
Theorem 5. For arbitrary coarsening structures the generalized � -means cluster-
ing criterion � gkm is closed under multiscale coarsening. More specifically, using
the recursive definition

w
� �

w
�

w �
� � � � � � �

� � � 	 � � ��� w
� � � � � (9)

x
� �

x
�

x �
� �� � �

w � � � � � �
�

� � � 	 � � ��� w
� � � � x ��

the coarse grid cost functions

� � � � � � Y � � �
� ��� � w

� � � � �� x �� � y
� � � ��� �� 	 � � � � x � � (10)

are obtained where
� � is independent of � � and Y.

Therefore, optimization problems of identical algebraic structure are obtained for all
coarse levels. The coarse grid data entities are computed as the weighted centroid of
the associated data vectors of the fine grid.

Proof. Inserting the generalized � -means cost function (8) into recursive definition
(7) of the canonical multiscale operator yields (10) by setting

� � � X � to

� � � � � X � � �
� ��� � � 

��
� w �

� � � � � � x � � �� � �
x �
� �� � �

� � � 	  � ��� w
� � � � � x �� �

	��� � � � � X � �
(11)

Note that
� � does not depend on � � or Y. ��
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The usual � -means clustering criterion (8) is not closed under irregular coarsen-
ing. However, for regular coarsening structures, the coarse grid weight w �

� � � equals
the number of associated fine grid sites and is, therefore, independent of � .

Corollary 6. For regular coarsening structures the � -means clustering criterion
� km is closed under coarsening. The coarse grid cost functions are obtained by

� � � � � � Y � � � � � ��
� ��� � �  �

� ��� �
�� x �� � y

� � � ��� �� 	 � � � � x � � (12)

where
� � is independent of � � and Y.

As the minimum of a cost function is invariant under affine transformation, the pa-
rameters c � and

� � can be dropped during optimization. Again optimization prob-
lems of identical algebraic structure are obtained for all coarse levels.

Sparse Pairwise Clustering. Considering any of the proximity-based clustering op-
timization problems over sparse random graphs immediately raises the question how
to define sparse graphs on coarse grids and how to obtain consistent graph structures
across resolution levels. One possibility is to start with a graph on the finest level
and to recursively define the coarser levels by

�
� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � �
� � � � � � � � � 


�
� � � � � 
 � � � � ��� � �

(13)
Thus �

� � � simply contains all edges for which there exists at least one correspond-
ing edge on the fine graph.

As a major drawback the sparseness property of a random graph is lost under
coarsening. Starting with a sparse graph defined on a coarse grid provides a solution
but is more complicated to realize. There is no canonical way to propagate edges
to finer resolution, where consistency provides only a necessary requirement. There
still remain numerous possibilities to define a suitable fine grid graph. This degree of
freedom can be easily exploited for deriving random graph families, which are uni-
formly sparse over all scales and sufficiently randomized to avoid the introduction
of artificial structure.

Definition 7. (Uniform Sparseness) A family of graphs is called uniformly sparse,
if the degree of a node at level � does not change under the coarsening operation.

The normalized pairwise clustering criterion [8,15] � pc � � � D � is not closed under
coarsening. By recursively applying (7) to the pairwise clustering criterion � pc a
family of coarse grid cost functions is defined, which have a slightly more general
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Figure 2. Uniformly sparse random graph: Illustrated are the descendents of the edge
� � � � � � � � � ��� � � . At level � only the edges below � and � are depicted

functional form. They are obtained using the following recursive definitions:

�
�

� � � � � � � �� � �
� � � 	 � � ��� �

�
�

�
(14)

� �

� � � � � � � � �� � � �
� � � � � � � � � 	 � � � � � �

� �� � � � � (15)

D
�

� � � D � �
� � � � � � � � � � D �

� �� � � �
� � � � � � � � � 	 � � � � � � D

�� � � � � (16)

Here,

 � �
�
� � � � � abbreviates the set


 � �
�
� � � � 
 � �

�
� � � . Then

� � �
��
� ��� � �� ��� 	 � �� � � � � � � � ��� �	 D �� �

� � � � � � ��� �	 � �� � � (17)

Therefore, a slightly more general type of optimization problem is obtained, that can
be efficiently optimized, if �

� is sufficiently sparse. Assuming a regular coarsening
structure and a uniformly sparse family of random graphs, (17) simplifies to the
functional form in (4), as � �� � � �� � � � � . This yields the following theorem.

Theorem 8.

1. For arbitrary coarsening structures the clustering criterion � gp and the gener-
alized pairwise clustering criterion (17) are closed under coarsening.

2. For a regular coarsening structure and a uniformly sparse family of random
graphs the normalized clustering criterion � pc is closed under coarsening.

The multiscale equations for � gp are obtained simply by applying the recursive defi-
nition (16) to the (dis)similarity matrix. For all proximity-based clustering schemes
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equations of identical algebraic structure are obtained at all grids. From (16), it fol-
lows that (dis)similarity scores between coarse grid entities are simply obtained by
adding up all known (dis)similarity values between corresponding sites in the fine
grid. A proof of Theorem 8 is straight forward and is omitted here. A uniformly
sparse family of random graphs is highly advantageous for efficient optimization
for all pairwise clustering cost functions.

3 ANNEALING AND GENERALIZATION

3.1 Statistical Learning Theory and Clustering

Multi-scale optimization coarsens the data space to facilitate the search for good
clustering solutions. Annealing algorithms coarsen the quality of solutions by treat-
ing the optimization variables as random variables with fluctuations controlled by
a computational temperature [5]. Evidently, both coarsening concepts should be in-
terleaved to achieve the optimal speedup (see Section 3.3) since high temperature
solutions at a fine resolution scale as well as zero temperature solutions at a coarse
data scale are inefficient and might lead to suboptimal solutions. To understand how
both coarsening concepts can be linked we investigate DA from the point of statis-
tical learning theory to bound the maximally achievable approximation accuracy in
the presence of noise in the data.

By choosing different finite stopping temperatures
� � � final � � in annealing, a

complete family of different estimation procedures is defined. The natural question
arises, which of the methods provides the “best” estimate and, more fundamentally,
according to which criterion should the quality be compared, since all algorithms
optimize different effective cost functions — the generalized free energies (see [5]).
As a key observation in this context, grouping algorithms should be robust with re-
spect to measurement noise in the data recording process and should not be affected
by modeling uncertainty and the natural within-class variability. More specifically,
algorithms should abstract from the peculiarities of the specific problem instance
and should only extract significant grouping structure. Thus, they should generalize
to similar problem instances. We present the related theoretical issues in two steps:
(i) the generalization issues related to � -means clustering are discussed for the case
of nearest neighbor assignments, i.e., the vector quantization case; (ii) we sketch the
essential ideas for the general case allowing arbitrary assignments.

Deterministic annealing with finite stopping temperature � final � � can be uti-
lized to efficiently prevent the algorithm to over-fit to a given data (image) instance.
As a key observation, factorial cost functions like the � -means criterion (8) can be
understood as an empirical estimate of an underlying risk functional � defined over
the unknown true data distribution.

Definition 9. (Expected and Empirical Risk) The measurements X
� �

x � � �
� � � � are assumed to be drawn independently and identically distributed (i.i.d.)
according to the distribution Ptrue � x � . � � x � denotes the density of Ptrue � x � . Given
is a set of prototypes Y

� �
y
� � � �

and the nearest neighbor rule � � � x � �
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Figure 3. Overfitting results of a 15-means clustering results for different inverse tempera-
tures

�
of
� � � � ��
�� data vectors in � � ��
 dimensions. The circles indicate cluster splits.

Ỹ are the cluster centers which have been estimated by deterministic annealing

arg min
�

w
� � � � x � y

�
�
	

for the discrete variables. Then

� km � Y � �
�

x
� � �

�� x � y �
� �

x
� �� 	 � � x � dx (18)

is called the expected risk of � -means clustering and

�� km � Y � � �
� ���

�� x � � y �
� �

x � � �� 	 � (19)

is known as the empirical risk of � -means clustering.
�

Y
�

arg minY
�� � Y � denotes

the minimizer of the empirical risk and Y � � arg minY � � Y � is the minimizer of
the expected risk.

From the statistical point of view, Y � defines the optimal solution. But as the
density � � x � is typically unknown, Y � is not algorithmically computable. The in-
ductive principle of Empirical Risk Minimization [40] proposes to use

�

Y instead
of Y � . Naturally, one is interested in the approximation error � km � �Y � � � km � Y � � .
As
�

� km � Y � and thus
�

Y are random variables, the deviation should be bounded in
probability, i.e.

P
�
� km � �Y � � � km � Y � � � � � (20)

should be small for a given, fixed precision � . Then the deviation (20) is uniformly
bounded independently of � � x � by the following theorem due to Linder et al. [22].



788 J. M. Buhmann and J. Puzicha

Theorem 10 (Linder, Lugosi & Zeger). Let � � � ��� � � � � be values of an i.i.d. ran-

dom variable � such that P � � � � � � �
� �

and � � �� 
 �
	
� �

. Then

P
�
� km � �Y � � � km � Y � � � � � � � � � � � �

� � � � � exp

� � � � 	
� � � �

	 � � (21)

Thus, the theorem establishes consistency, i.e. the error probability (20) converges
to zero � � � � in the limit of an infinite data set ( � � � ). For a proof of the
theorem the reader is referred to [22]. The theorem presents a zero-temperature
result typical for statistical learning theory, i.e. the discrete variables are interpreted
as optimization variables. It, however, provides no answer whether

�

Y is an optimal
estimate in the sense of (20) for a finite number of measurements.

3.2 Statistical Learning Theory and Annealing Methods

There exists both empirical and theoretical evidence that DA with an optimally se-
lected finite stopping temperature provides uniformly better estimates [3] than solu-
tions which minimize the empirical risk, i.e., solutions at zero temperature. Figure 3,
e.g., shows a typical � -means clustering result as derived by deterministic annealing
at different temperatures. The centroids Ỹ have been estimated by deterministic an-
nealing for � -means clustering at a finite inverse temperature � using algorithm 5.2
of [5]. The figure clearly demonstrates that the empirical risk is decreasing faster
than the expected risk for � � � � � – a phenomenon called overfitting. The mono-
tonicity of the � -means cost function yields a decreasing expected risk of the em-
pirically estimated centroids

�

Y when more centroids are used after a cluster split.
However, only the first three splits decrease the deviation between expected and em-
pirical risk which is normalized with the variance of the loss function � x � y �

� �
x
� �
	
.

How can we understand such a behavior in statistical estimation? Intuitively, it is
clear that estimates with too many clusters and with too few data samples per cluster
reflect more the noise in the data than the signal. Therefore, averaging over cluster-
ing solutions which are statistically indistinguishable should ameliorate the noise
influence and leads to robust estimates. To describe this averaging effect in pre-
cise mathematical terms we extend the inference principle of Empirical Risk Mini-
mization to a new inference principle called Empirical Risk Approximation (ERA).
Rather than finding the set of solutions with minimal empirical risk we determine
as the solution set all functions which do not exceed the minimal empirical risk
by more than � in costs. We then can either (i) select an arbitrary solution from
this solution set or (ii) we average over all such solutions. The first choice samples
from solutions which are statistically equivalent to the global empirical minimum,
whereas the second procedure averages models in the Bayesian spirit. The following
definitions allow us to characterize the bias-variance tradeoff which causes overfit-
ting in clustering.

Definition 11.

– A training data set Z � and a test data set Z
	

are given.
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– The index 
 � �
enumerates the different clustering solutions, e.g., 
 �

� � � � � � Y � enumerates the different � -means clustering solutions.
– � � � 
 � Z � defines the partial risk of object � , e.g., for � -means clustering Z

�
X � � � � � and � � � 
 � X � � � � x � � y

��� ��� �
	
.

– The risk functional � � 
 � Z � � �� � � ��� � � � 
 � Z � measures the total risk or the
quality of clustering solutions.
The abbreviations � � � 
 � � � � � 
 � Z � � and � 	 � 
 � � � � � 
 � Z 	 � are used for the
training costs and test costs.

– The distance between two clustering solutions 
 � ˜
 is defined by the � � metric
� � 
 � ˜
 � � �� � � ��� � � � � 
 � Z � � � � � ˜
 � Z � �

Definition 12 (Approximation Set). Let 
 � � � arg min � ��� � � 
 � Z � � denote the
best clustering solution on the training instance defined by Z � .� � � � � 
 � � � � 
 � � � � � 
 � � � � � defines the set of approximative solutions on the
training instance.

Definition 13 (� -cover). A subset
� � � �

such that for all 
 � �
there exists

a solution ˜
 � � � with
� � 
 � ˜
 � � � denotes a � -cover. The minimal cardinality

of a � -cover is called the � -covering number. The function in the � -cover with the
smallest test costs is denoted by 
 	 � � � � arg min � ����� � 	 � 
 � .
The � -cover replaces the original solution space of a clustering problem with a
coarsened version of it. The approximation quality of solutions is controlled by the
coarsening parameter � . The following analysis which generalizes an argument of
Vapnik & Chervonenkis to � -covers will yield an upper bound on the optimal �
value.

Lemma 14. Let 
 � � � be a � -bounded approximation of the lowest training costs
and let

� � 	 � 
 � � � � � 	 � 
 � � � � 	 � 
 	 � be the difference between 
 � ’s test costs and
the minimal test costs. Then

� � 	 � 
 � � � �
sup

� ����� � 
 � �
� 
 � Z � �	� � � 
 � Z 	 � � � � � (22)

Proof.

� � 	 � 
 � � � � 	 � 
 � �	� � � � 
 � � � � � � 
 � �	� � 	 � 
 	 �
� � 	 � 
 � �	� � � � 
 � � � � � � 
 	 � � � � � 	 � 
 	 � � � � �
� � 	 � 
 � �	� � � � 
 � � � sup

� ����� � �
�
� 
 � � � 	 � 
 � � � � �

� sup
� ��
 � �

�
� 
 � � � 	 � 
 � � � sup

� ����� � �
�
� 
 � � � 	 � 
 � � � � �

� �
sup

� ��� � � 
 � �
�
� 
 � � � 	 � 
 � � � � � ��

The inequality (22) reflects the wellknown bias-variance tradeoff in statistics. If
� is very small or vanishes then the bias

� � decays to zero. On the other hand, the
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supremum has to be taken over a large set of functions which increases the vari-
ance. In the opposite limit of large � we decrease the variance at the expense of an
increasing bias.

� � 	 � 
 � � depends on the training data and the test data. To achieve
an estimate on the generalization performance

� � 	 � 
 � � we have to derive an upper
bound for the probability P � � � 	 � 
 � � � � � � which results from the concentration-
of-measure inequality by Bernstein.

Theorem 15 (Bernstein (1946)). Let � � � � ��� � � �
be independent real valued ran-

dom variables with zero mean and assume that � � � � � � with probability one. Let
 	 � �� �
�
� ��� V � � � � . Then for any � � �

P � ����
�

�
�

��
����� � �

�
�
�
�
�
� � � � �

exp

�
�

� � 	
� 
 	 � � �

� � (23)

Large deviations of the generalization performance P � � � 	 � 
 � � � � � � can be
bounded by using the Vapnik Chervonenkis inequality (22) and the union bound.

Theorem 16. Given is a clustering risk � � 
 � Z � � �� � � ��� � � � 
 � Z � where the
loss � � � 
 � Z � of object � for fixed 
 is an independent distributed random variable
bounded by � � � � 
 � Z � � � � . Let 
 	 � � �� � � ��� V � � � � 
 � Z � � . Then

P � � � 	 � 
 � � � � � � � � � � � � � � sup
� ����� � 
 exp

�
�

� � � � � �
	

� 
 	 � � � � � � � �
�

(24)

We set the right side of (24) equal to the selected confidence level
�
. In the proof we

first replace the generalization performance
� � 	 � 
 � � by the uniform convergence

criterion using the VC-inequality (14). Then the union bound allows us to replace
the large deviation of the supremum term by a sum of probabilities which then is
bounded by the largest element times the cardinality of the respective function set:

Proof.

P � � � 	 � 
 � � � � � � � P � sup
� � ˜� � ���

� � � � 
 �	� � 	 � 
 � � � � � � �
� �
� � ˜� � ���

P � � � � � 
 � � � 	 � 
 � � � � � � �

� � � � � � � � sup
� ����� � 
 exp

�
�

� � � � � �
	

� 
 	 � � � � 
 � � � � � �
� �

This large deviation inequality weighs two competing effects in the estimation
problem, i. e. the probability of a large deviation exponentially decreases with grow-
ing sample size � , whereas a large deviation becomes increasingly likely with grow-
ing cardinality of the � -cover of the hypothesis class. According to the bound (24)
the sample complexity � �

� � � � � � � with confidence value
�

is defined by

log � � � � � � � sup
� ����� � 


� �
� � � � �

	
� 
 	 � � � � � � � �

� log
�
�
�
� � (25)
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The optimal coarsening of the hypothesis class according to the bound (24) is
achieved if we fulfil the condition

� � � � � �
� . To establish the link between the

large deviation bound (25) and annealing algorithms we interpret the log-cardinality
log � � � of the approximation set

�
as microcanonical entropy and the approxima-

tion parameter � as energy which completely corresponds to the microcanonical
approach to statistical physics. Furthermore, we bound � � � � � � � � � � � � � � � �
� � � � � � � � � � � and we approximate

�

� � log

� � � �
� � �

� � � � � � � � � � � �
	 � � � �� � � � �
	 � � � �

�

� � log � � � � � � � � (26)

We have used the well-known relation from statistical physics � entropy� energy

� � � � to

derive the stop temperature in (26). Neglecting the small correction term � � �
	 � � � � ,

the stop temperature is given by
�
� stop

� �
�

� � sup
� ��� � � 


� �
� � � � �

	
� 
 	 � � � � � � � �

�
�
�
�
� ���
�
� � �

� (27)

With probability
� � �

the deviation of the empirical risk from the expected risk
is bounded by

� � opt � � � . Averaging over all � -close functions to the empirical min-
imum or sampling from this set yields a robust clustering solution. The remaining
key task is to evaluate the right side of (27) and to use problem dependent informa-
tion to calculate or bound 
 	 � .

3.3 Multiscale Optimization and Annealing

Algorithms like � -means efficiently minimize � km by splitting techniques to obtain
successive solutions for a growing number of clusters. Deterministic Annealing with
its sequence of cluster bifurcations (see Figure 1 in [5]) supports this optimization
strategy. On the other hand, enough data points have to be available for a reliable
estimate of a given number � of clusters as outlined in Section 3. Since the num-
ber of effective data points available drastically reduces at coarser resolution levels,
splitting strategy and coarse-to-fine optimization should be interleaved. The ques-
tion of how many effective data points are needed to distinguish � clusters has been
addressed for the � -means cost function in the context of uniform convergence of
empirical means to their expectations [22, 30].

As a main result, the deviation between empirical and expected risk should be
bounded to obtain robust and reliable results. Bounds for the deviation of the em-
pirical costs � km � � � Y � X � from the expected costs of a grouping solution can be
derived independently of the underlying distribution and are given by Theorem 10.
Given � data points, an accuracy � and a bound

�
for the large deviation probability

P
�
� � �Y � � � � Y � � � � � an upper bound for the maximal number of clusters � max is

obtained from (21) by

�
max

� � 	
� � � �

	 � � � � �
�

log
� � � log

� � log
�

� � �
�

log
� � � (28)
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This bound has been derived by a worst case analysis independent of specific
assumptions on the probability distribution of the data. Although the bound is im-
practically low as a consequence of this distribution independence it is assumed
that it exhibits the correct asymptotic behavior. This assumption yields the selection
criterion

�
max

� � �

log
� � (29)

for some empirically selected constant
�
. Thus, an approximately linear dependency

of the maximal number of clusters on the number of data points is conjectured,
which roughly corresponds to the statistical rule-of-thumb to use at least 10 data
points for each parameter to be estimated.

Input: objective function � ,
� start � � final � site visitation schedule

�
,
� max

Output: clustering solution

for
� � ��� . . . � � max do

compute
��� ��� � ��� � � � recursively by (9),(14)-(16)

end for
� � � start,

� � � max

5: while
��� � AND

� � � final do
{//— Annealing loop}
call MA � Q � � Y � � � � � � � � as given by Alg. 2.5
determine effective number of clusters

�

if
� � �

max then
10: propagate Q

�
to Q

�
�

�

by �
�
�

�

�
� 	  � ) � � � � � � � � 	  � � ) �� � � � �

else
�

= SCHEDULE � �
end if

15: end while) � � � � � arg max � � �� � ��� �
while

� � � do
{//— Zero temperature refinement}
propagate ) � to ) � � �

20:
� � � � �
call ICM � ) � � Y � � � � � �

end while

Algorithm 7: Multiscale Annealing (M-DA)

One of the key advantages of the DA approach is the inherent splitting behav-
ior, as clusters degenerate at high temperature and successively split in bifurcations
or phase transitions when � is raised. As demonstrated in [5] Section 2.9, there is
a monotone relationship between the computational temperature and the effective
number of clusters. Therefore, at a specific temperature scale � an easily measur-
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able2 effective number � � of clusters can be observed. Thus, for a given resolution

level � it is proposed to anneal until � � � exceeds the bound
� � �

log
	 � � for some critical

temperature � � . After prolongation to level � � �
the DA optimization is continued

at the same temperature � � . The essential structure of the grouping solution is de-
tected on the coarser scales using global optimization techniques and is then refined
at the finer scales using fast low or zero temperature algorithms. This scheme, which
is referred to as multiscale annealing (M-DA), works very well for all proximity-
based clustering criteria as well as spatial quantization, even though in these cases
the concept of uniform convergence is theoretically not yet well understood. The
complete multiscale annealing algorithm is summarized in Alg. 7.

Multiscale annealing couples the resolution hierarchies in object and label space
in a systematic fashion with the resolution in optimization space introduced by
the computational temperature. The object resolution determines the maximally al-
lowed number of clusters by (29), which in turn determines the maximal value for
� allowed at a specific resolution. Alternatively, given the number of data points �

one could estimate the optimal stopping temperature as in [4] which in turn deter-
mines the effective number of clusters. Thus, the link between clustering resolution
and computational temperature is an intrinsic property of deterministic annealing,
while the object scale at one hand and the clustering and optimization scale at the
other hand are coupled by the results of statistical learning theory, i.e. the demands
of robustness in algorithm design.

4 EMPIRICAL RESULTS

The unsupervised segmentation of textured images is now used as a prototypical
application to evaluate the performance of the different clustering models and the
optimization algorithms. The unsupervised segmentation of images is a typical com-
puter vision problem and serves nicely to evaluate and benchmark the designed
algorithms. It can be phrased as a grouping or clustering problem in many ways,
including central clustering [23], graph partitioning [9] and normalized graph par-
titioning [16] as treated in this chapter. For completeness we provide results for
two additional approaches, the normalized cut [37] and histogram clustering [33],
which also result in grouping criteria that are closed under coasening. Thus the ex-
perimental data covers a large number of modeling approaches, multiscale anneal-
ing improving all of them from a computational perspective. A typical example is
presented in Figure 4 with � � �

� different segments.

4.1 Pre-Processing

As outlined in Figure 5, the different grouping approaches need different feature
extraction and pre-processing stages, which are now specified.

2 Two clusters ) and � are identified, if � ��� � ) � � ��� ��� �� � � �

� � ����� � � � � ) � � ��� ��� � � ���

� for some small threshold parameter � . In the experiments, � � � . � � has been used.
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Figure 4. Typical segmentation result with
� � � � for three different models and four dif-

ferent optimization algorithms. For the proximity-based algorithms a random graph with an
average node degree ��
�� has been used. Misclassified blocks are depicted in black. The im-
age captions show the optimization time needed. In (d) a typical course-to-fine optimization
is illustrated for

� pc

Figure 5. Overview of the unsupervised segmentation pipeline. Illustrated are the pre-
processing and feature extraction stages necessary for the different grouping models
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Multiscale DA Multiscale ICM DA ICM ( � -means)
� km 6.8 % / 5.7 % 6.8 % / 5.6 % 6.8 % / 6.0 % 6.8 % / 6.0 %

0.44s / 0.94s / 5 % 0.11s / 0.33s / 5 % 4.0s / 27.1s / 7% 0.41s / 2.1s / 9 %� acm 5.1 % / 3.7 % 5.1 % /3.7 % 5.0 % / 3.9 % 5.3 % / 3.8 %
1.6s / 3.5s / 4 % 1.0s / 3.1s / 5 % 21.1s / 89.8s / 6 % 4.6s / 20.7s / 6 %� gp 11.0 % / 5.3 % 12.0 % / 5.6 % 13.4% / 7.1 % 19.2 % / 9.9 %
4.0s / 4.8s / 18 % 0.35s / 1.6s / 16 % 42.2s / 219.0s / 18 % 0.8s / 4.0s / 28 %� pc 5.9 % / 3.7 % 5.9 % / 3.6 % 5.8 % / 3.6 % 5.9 % / 3.7 %
2.4s / 3.6s / 8 % 0.54s / 1.6s / 11 % 16.1s / 308.6s / 9 % 1.1s / 5.9s / 8 %� nc 5.9 %/ 4.7 % 6.6 % / 5.3 % 5.8 % / 4.2 % 7.2 % / 5.1 %
2.4s / 2.5s / 8 % 0.44s / 1.3s / 17 % 18.8s / 155.5s / 10 % 1.0s / 5.0s / 18 %

Table 1. Quality and run-time of different grouping methods for unsupervised texture seg-
mentation on Brodatz-5-86. First row: Median error [%] / Median error [%] after noise
removal. Second row: Mean run-time [sec] for � ��� � � / Mean run-time for 128x128 [sec] /
Segmentations with more than 20% error rate after noise removal [%]. Errors are obtained by
comparison with ground truth for segmenting ����� randomly generated images for a segmen-
tation resolution of 128x128

– All segmentations are based on a filter bank of 12 Gabor filters using 4 orien-
tations ( �

�
,
� � � , � �

�
,
��� � � ) and 3 scales, separated by octaves. A wavelength

of 2 pixels has been chosen for the smallest scale. If not specified differently,
segmentations have been obtained on a regular grid of

� � � � � � � image sites.
– For % -means, each Gabor channel is spatially smoothed using a Gaussian kernel

with standard deviation proportional to the filter scale.
– For histograms, the marginal feature distribution at a site is estimated in a

� � �� � window for the finest resolution. The distribution is estimated using 16 bins
adapted to the dynamic range of the filter output.

– For the proximity-based clustering methods, a sparse reflexive graph was cho-
sen at a coarse grid of

� � � � � sites consisting of the
�

nearest neighbors and
on average 80 randomly selected sites. Then, a uniformly sparse graph structure
for all grids was constructed. This graph structure has been employed in all ex-
periments. The sparse dissimilarity matrix has been computed applying the �

	
test statistic.

– For � gp the matrix has been normalized to a maximal dissimilarity of
�

and
shifted to a mean dissimilarity of � �

� � . This optimal shift was obtained af-
ter extensive bench-marking. For the normalized cut � nc the dissimilarity data
has first been normalized to unit maximum and then converted to similarity
scores applying the transformation Dnew� � �

exp
� � D � � � � � as suggested by Shi

et al. [37] with a parameter
� �

� � �
�

obtained after extensive bench-marking.

The processing times needed for the feature extraction are summarized in Tab. 2.
The processing times for the Gabor transformation can be further accelerated by
a pyramidal implementation of the Gabor transformation or by implementation on
special purpose hardware. All times mentioned in the next subsections solely denote
the processor time needed during optimization.
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Feature extraction Processor time � ��� � � Processor time ����� � �����
Gabor transformation 6.5s 6.5s
Feature smoothing (

�
-means only) 4.6s 10.5s

Histogram extraction 3.8s 13.7s
Pairwise comparison 9.1s 34.3s

Table 2. Processor time spent on a PC Pentium II, 300 MHz for different feature extraction
schemes and for a resolution of 
���� � 
���� pixels and � � � � � / ����� � ����� sites. In brackets run-
time on the special-purpose hardware DataCube, if applicable. Execution times for pairwise
comparisons are measured for an average node degree of 80. The implementation of the
histogram extraction for the multivariate case has not been optimized

4.2 Acceleration

To empirically evaluate the acceleration, that is obtained when using multiscale op-
timization as opposed to its single-scale counter parts, the test set Brodatz-5-86
is utilized which consists of 100 patchwork images composed of 86 different micro-
textures taken from the Brodatz photographic album, each image is composed of 5
different, randomly chosen textures. The main question examined in detail in this
section addresses the benefits of multiscale techniques w.r.t. run-time. A typical
coarse-to-fine optimization is illustrated in Figure 4 (d). The essential structure is
detected during early optimization on the coarse-grids and is then propagated to the
finer levels. Figure 4 also highlights the interleave between annealing schedule and
coarse-grid optimization, where jumps between grids occur whenever a maximum
number of effective clusters is reached. This illustrates the any-time characteristic
of the algorithms, where approximative intermediate coarse results are obtained al-
ready after a small fraction of the overall run-time.

As seen from Tab. 1 the multiscale ICM optimization is 2–4.5 times faster than
ordinary ICM ( � -Means) for � � � and a segmentation resolution of � � � � � pix-
els, while the speed gain for the global multiscale annealing (M-DA) optimization
procedure is 6.5–13 compared to its single resolution counterpart DA, where mean
optimization times of 0.44s for % -means, 1.6s for ACM, 4.0s for graph partition-
ing (GP), 2.4s for normalized pairwise clustering (PC) and 2.4s for the normalized
cut (NC) have been obtained using multiscale annealing. Thus it is possible for all
clustering schemes to compute globally optimal solutions within a few seconds.

The performance of multiscale techniques is even better for a larger number of
segments resulting in a speed gain of 4–7.5 for ICM and 10–40 for DA for � �
�
� . The same result holds, when the segmentation resolution is increased, as seen

from Figure 6. The gap between multiscale and ordinary optimization increases
for larger number of optimization variables, resulting in a gain of 3–9 for ICM
and 20–90 for DA for a problem size of 327680 Boolean variables at resolution� � � � � � � . In addition, the speed gain of multiscale ICM (M-ICM) compared to
M-DA significantly shrinks for large problem sizes.
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Figure 6. Average optimization time in seconds on a logarithmic scale depending on the
segmentation resolution: (a)

�
-means, (b) ACM, (c) PC and (d) NC. The error-bars show the

empirical standard deviation. The results are based on the database Brodatz-86-5

5 BIBLIOGRAPHIC NOTES

Multiscale Optimization. Multiscale optimization in the strict sense, i.e. the canon-
ical multiscale operator, has been first proposed in [14] for a visual reconstruction
application. Since then, it has been developed and refined for clustering [31,32] and
color image quantization [34]. In addition, multiscale optimization has been applied
to visual reconstruction [26] and motion estimation [29, 38]. It should be empha-
sized that in contrast to all other cost functions discussed in literature which are not
closed under coarsening, no approximations have to be made for all grouping and
quantization cost functions discussed in this paper since the multiscale coarsening
yields cost functions of identical algebraic form for all grids. This is a very valu-
able property as it enables highly efficient optimization with acceleration rates far
beyond the results reported, e.g., for visual reconstruction [14].

The multiscale annealing scheme has first been proposed in [31] in the context of
texture segmentation where previous approaches solely relied on local optimization
techniques like iterative conditional mode (ICM) [7,17,20,23,27,41] or single scale
annealing techniques [9, 16]. Multi-resolution optimization techniques have been
used only occasionally [1].

For other vision applications, several optimization approaches relying on coarse
versions of a cost function have been proposed in the past. Technically similar are
multi-grid methods, which have first been developed for the solution of partial dif-
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ferential equations [2] and have since then been adopted to a broad range of op-
timization problems with locally interacting variables including image processing
tasks [24, 39, 42]. Multi-grid methods rely on incremental coarse grid corrections
and, therefore, on continuous optimization variables. Similar in spirit but technically
different are Monte Carlo multi-grid methods [12]. For discrete problems multi-
scale optimization techniques are better suited than multi-grid methods [14]. Multi-
scale optimization in this context is sometimes referred to as the Block Label (BL–)
heuristics [25].

Most multi-resolution techniques developed for image processing tasks are se-
mantic multi-resolution techniques. They adopt the same model class for features
extracted from different image scales. Note that there is no guarantee that coarse
grid solutions are good initializations for finer levels, as different cost functions are
optimized and interactions between variables are often severely resolution depen-
dent. Multiscale optimization significantly outperformed semantic multi-resolution
methods in visual reconstruction and motion estimation problems both in terms of
accuracy and speed [14, 38].

The most principled multiscale methods are renormalization group approaches
[11,28]. Renormalization group algorithms rely on coarsening the Gibbs distribution
which is associated with a given objective function. The transformation is not only
order preserving (for small temperature parameters) but also preserves the expecta-
tion of arbitrary functions and thus the statistics inherent in the cost function. Thus
the renormalized cost function summarizes the coarse scale statistics of a model
while multi-grid and multiscale cost functions are merely computational artifacts.
However, computing exact renormalized cost functions is notorious difficult and
even in very simple examples considerable approximations like the cummulant ex-
pansion proposed in [11] have to be made. It has been conjectured that one should
not expect to derive renormalized cost functions for any reasonably large class of
functions [25]. Moreover, from the optimization perspective one is not interested in
maximally preserving the statistics of a system. Solely the minima of the coarse sys-
tem should be close to the minima of original cost function. It is the computational
complexity, that provides the main characteristic which should guide the selection
of a coarsening method. For renormalization group approaches acceleration factors
of approximately 1.5 have been obtained [11]. As shown, multiscale annealing is
closed under coarsening for most grouping problems and thus enables highly effi-
cient optimization with typical acceleration factors of

� � � � . It is thus preferable
from the optimization perspective. It has been established in [25] that the canonical
multiscale operator is an excellent approximation to the renormalization group ap-
proach in the zero temperature limit and can thus be expected even theoretically to
yield very good results.

Closely related to renormalization group approaches are multi-resolution
Markov Random Field (MRF) models [21] which effectively rely on subsampling of
random fields [13]. It has been established that most multi-resolution MRF as well
as most renormalized cost functions loose their local structure at coarse levels and
substantial approximations have to be made in order to obtain tractable models [13].
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6 CONCLUSION

Multi-scale Annealing methods for grouping have been demonstrated in a number
of studies as efficient and easily applicable methods to approximately optimize large
combinatorial optimization problems. The method combines the acceleration idea
of optimization on different scales with the stochastic approximation of annealing
strategies. Deterministic Annealing has been characterized as a continuation method
which establishes a homotopy between combinatorial optimization problems and
their corresponding space of probability distributions. The homotopy parameter is
known as the inverse temperature � and it controls the degree of relaxation of the
discrete problem.

Another important advantage of annealing methods is their empirically reported
robustness to distortions in the problem instance, e.g., by noise. In noisy optimiza-
tion problems as they arise in computer vision or statistical pattern recognition the
main goal is to minimize the expected costs of a solution and not the empirical costs
defined by the available sample set. A controlled approximation can avoid overfit-
ting and yields solutions which perform better on future problem instances drawn
from the same probability distribution than the empirical risk minimizer. The ro-
bustness requirement yields a maximal value of the homotopy parameter � which
can be determined by numerical techniques or by analytical bounds from Statistical
Learning Theory.
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