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A polvnumially computuble upper bound for the weighted independence number
of u graph is studied. This gives rise 10 4 convex body contuining the vertex packing
pulstope of the graph. This body is 4 polytope if and only if the graph is perfect. As
an application of these notions. we show that the maximum weight independent set
of an h-perfect graph can be found in polynomial time. ¢ 1956 Academic Press, Inc.

. VERTEX PACKING AND [TS RELAXATIONS

Throughout the paper we assume that all graphs we consider have no
loops, no multiple edges. and are connected. For our purposes, these
assumptions can be made without loss of generality.

Let G be a graph and w: }(G)— R, any weighting of its nodes. Let
2(G: w) denote the maximum weight of an independent set. It is well
known that to determine 2(G;w) even in the special case when w=1 is
.4 #-hard.

A well-known approach to study 2(G; w) is to introduce the vertex pack-
ing polvtope VP(G ), which is defined as the convex hull of incidence vectors
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RELAXATIONS OF VERTEX PACKING 331

of independent sets of nodes. Then «(G;w) can be obtained as the
maximum of the linear function w”x for xe VP(G). For this abservation to
be of any use, however, we need a description of VP(G) as the solution set
of a system of linear inequalities.

The following sets of linear inequalities are obviously all valid for VP(G):

x;20 for all ie V(G), (1.1)
x+x<1 for all ije E(G). (1.2)

It is also easy to see that all inregral solutions of (1.1)-(1.2) are incidence
vectors of independent sets of nodes of G.

{1.3) PrOPOSITION. The inequalities (1.1 (1.2} are sufficient to describe
VP(G) if and only if G is hipartite.

This assertion follows, e.g., from the results of Egervary [3]. If G is, say,
a triangle, then the point (i, 1, 1) is a solution of (1.1}-(1.2) but does not
belong to VP(G). So to describe VP(G) we need some further inequalities.
The example of the triangle suggests the following set of inequalities, which
are also obviously valid:

Y x<1 for all complete subgraphs X of G. (1.4)

ie K
Unfortunately, even (1.4) is not enough to characterize VP(G). Those
graphs for which it is were characterized by Fulkerson [6] and Chvatal
[2]. A graph G is called perfect if for each induced subgraph G’ of G, the
chromatic number of G’ equals the maximum size of complete subgraphs of

G'. For examples and various properties of perfect graphs, see Golumbic
[8] and Lovasz [13].

(1.5) THEOREM. The inequalities (1.1) and (1.4) are sufficient to describe
VP(G) if and only if G is perfect.

We shall call the solution set of (1.1) -+ (1.4) the fractional vertex packing
polytope of the graph G and denote it by FVP(G).

To get a better description of the relationship between vertex packing
and fractional vertex packing polytopes let us introduce the following
notion (Fulkerson [5]). Let P< ®" be any non-empty closed convex set
with the following property: if xe P and 0<x'<x then x'eP. The
antiblocker of P is defined as the set

AB(P):= {xeR":y"x<1 for all ye P}.

Tt is easy to see that the antiblocker is also a non-empty closed convex

581b:40/3-7

_




14 GROTSCHEL, LOVASZ, AND SCHRIIVER

(2.1) TaroreMm. G xp=min! AXAX}): Ae (G) .

Proat.  Straightforwurd extension from the unweighted case. |

(2.2) THEGREM. (G x) = max | ¢/ BE: Be #(G)}.
Prout.  Straightforward extension from the unweighted case. ||
Note that Theorems {2.2) and (2.1} provide a min-max formula and

thereby - in some sense- 4 good characterization of 3(G; x).

(2.3) THEOREM. 9(G x)=max Y, , x,(dTv,) ., where the maximum is
taken over all vectors d with (di =1 and over all orthonormal representations
(¢,) uf the camplement of G.

Praaf. Straightforward extension from the unweighted case. |

Let us prove some properties of J. These will follow quite easily from the
characterizations given by the previous theorems.

(2.4) LEMMA. HG:x)- NG v)=xTy for all x, v =0.

Proaf. The lemma is obvious if x=0. Suppose x#0, then clearly
#(G. x}> 0. Let ¢ be a unit vector and let (u;) be an orthonormal represen-
tation of G such that J(G; x)=max, , x,/(cTu,).

Then by Theorem (2.3},

_ | 1
HG v )2 efu,)? =xy ’
(G yv) Z victu )= Z Vi ’}(G x) vy G x)

1¢ b 1€ V'

from which the assertion follows. }

(2.5) LEMMA.  For ervery rector xeR',, x#0, there exists a vector
veR, . v£0, such that WG x)- G yv)=xTy.
Proof. Let d be a unit vector and (r,) an orthonormal representation of

G such that $(G;x)=3,., x(d™r,)®. Choose v,=(d"r;)>. Clearly y#0.
Then by definition,

J(G;}‘)\rﬁx (dr =

and so

=Y x,¥,=%G;x)29(G;x) 3(G; y).

By Lemma (2.4), we have equality. |

' oW
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(2.6) LemMma. If x=2 v 20, then 3G, x) 2 HG; v). Moreover, for any
x, 320, and any 2 =0, we have

HG; ax)=23(G; x)
and
HG; x+ y) <G x)+ 3(G, v).

Proof. The first two assertions are obvious. To verify the third, let 4 be
a unit vector and let (v,) be an orthonormal representation of G such that
NG x+p) =2 (X + }'.')(drvi)z- Then

G x+p)=Y x(dvy+ > ydv) <3G x)+ 3G y) |

eV e b’

Lemma (2.6) implies that 3(G; -} can be viewed as a “norm” on the non-
negative orthant of R*. Moreover, Lemma (2.4) can be interpreted as a
type of mixed Cauchy—Schwarz inequality for the “norms” ${G;-) and
3(@G; - ) with respect to the Euclidean inner product.

(2.7) LEMMA. Let d be a unit vector and (v;) an orthonormal represen-
tation of G such that 3(G;x)=3,c - x(d"v,)*. Then

Y x(d"v)v,=8(G; x) d.

eV

Proof. By Theorem (2.3) we have

Z x(yv) <3G, x)

ieV

for all unit vectors y, and so the left-hand side is maximized by y = But
the left-hand side can be written as a quadratic form in

Z xa‘(}'T’-’iF:}'T(Z -"iUfUiT) b
i€V ie b

As is well known, the maximum of this quadratic form is attained at an
eigenvector, say, y, and the maximum value is the corresponding eigen-
value:

(z x,.u,.u;r) y=8(G;x)y. I

eV

Finally, let us recall the following result from [9]; see also (Grdtschel,
Lovasz, and Schrijver [10]).
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(2.8) THEOREM.  Given a graph G, a weighting x: V — Q _, and rational
&> 0, ane can compute in polvaemial time a rational matrix Be #(G) such
that ¥'Bx = (1 — &) HG: x).

Let us remark that the input size of the problem is | F{G){? + the number
of digits in the binary expansion of each numerator and denominator in x
and «. It is necessary to allow an error & since it may happen that all
matrices Be . #(G) maximizing x"Bx are irrational. This is the case, e.g.,
when x=1 and G is a pentagon, since then 9(G: x) =\/5—.

Let us also remark that for any vector xe R, ,

max{x: e lG) <HG: x)< Y x,.
i1e 1'1G)

This in particular implies that in Theorem (2.8) we could as well con-
sider an absolute error instead of a relative error.

We may use this result to derive an algorithmic version of Lemma (2.5),
which we will use in the next section.

(2.9) LemMma.  Given a graph G, a vector xe Q' , and a rational £¢> 0,
one can find in polynomial time another vector ve Q¥ , v #0, such that

NG xIHG )< (T +e)xTr

Proof. We may assume £<1. By Theorem (2.8). we can find in
polynomial time a matrix B=(h,le4(G) such that 8§(G;x)<
(1+&/3) 7 Bx. Without loss of generality we may assume that b, >0 for all
i Set 1:= ¥7BY, u:=8%, and z,:= u¥t°h,. We claim that x"z> 1 and
& z)< 1/t To show the first of these inequalities, we use the Cauchy-
Schwarz inequality:

RO L X U;
R

= \,”:\T,.u,- T —~ \°
= ;\,b”:‘_/b_ =F ;\/x,-ll, =1.

AL 1]

The second inequality follows by considering the matrices Z:=
diag(\/=;; i€ V) and U :=diag(l/u,;: ie V). Let J be the all ones matrix and
I be the identity matrix then

1
A :=J+? Z 2 tUBUe J(G)

and

1
-1— 1-ZAZ= —-2JZ + rZUBUZ=? Z(XJ—1U) B(XJ—:U) Z
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is positive semidefinite. (The last equation above follows from JXYBYXJ = tJ
and JYBU=J=UBXJ.) Hence A(ZAZ)< 1/t and so by Theorem (2.1),

NG 2) S AMZAZ) < .

To finish our argument, let us round each weight =, to a non-negative

rational number y, =z, + h, such that 0< A, <min{1, &/9¢ |4|| || Z]?) =

Y := diag(/y.: i€ V), then ||¥] <2 ||Z| and

AYAYYS A(ZAZ)+ A(YAY — ZAZ)

1
<=+ YAY - ZAZ|
!
S+ YAY = YAZ| + | YAZ — ZAZ|
f
ST+ IYI AN 1Y - ZI+ 1Y = Z| 4] [ Z]]
1
S7+3 [1Z) 141 1Y —Z|

1
S +3 1Z)* AN YZ 1

and hence

S(G;x)S(G;y)St(l +§)G+-;—t)< t+e<(l+e)xTy |

3. A NON-POLYHEDRAL RELAXATION OF VERTEX PACKING

Given a graph G =(V, E), define the following set of vectors:

TH(G) := {xeRY: 8(G; x) < 1}.

i Set

From the properties of 3, it will be easy to derive the following equivalent

definition of this set.

(3.1) TueoreM. TH(G)={xeR*: y"x<3(G; y) for all ye RY }.
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Proof. (1) Let xe TH(G), ie., let x>0 and 3(G; x)< 1. Then for any
r20,

yIX< 3G y) G x) < HG; y)

by Lemma (2.4).
(II) Conversely, assume that x>0 and v"x< 3(G;y) holds of all
y20. By Lemma (2.5), there exists a vector » =0, y#0 such that

HG: x) G y)=1"x <G y)
and hence
G x) <1,
ie, xeTH(G). §

The formula in Theorem (3.1) represents TH(G) as the intersection of
(infinitely many) halfspaces. We can obtain another such representation
which avoids J(G:yv) if we use that 3(G; x)=max ¥, x,(cTu;)? where
le!l=1 and (u,) is an orthonormal representation of G. Hence we obtain
the following description of TH(G):

(3.2) THeoreM. TH(G) consists af those vectors xe R*Y which are non-
negative and which satisfy 'Y, (¢"u,)" x;< 1 for everv ce RY with |c| =1
and every orthonormal representation (u,) of G in RV

Note that all the “clique constraints™ (1.4) occur here: for, if K< V spans
a complete subgraph of G, then let ¢ and u, (ie ¥—K) be mutually
orthogonal unit vectors and v, =¢ for ie K. Then (u,) is an orthonormal
representation of G and ¥, , x,(c"1,)° =¥, x X;, so we get the clique con-
straint belonging to K. Since 0 and also all the unit vectors trivially satisfy
the inequalities in Theorem (3.2), it follows that TH(G) is full-dimensional.

(3.3) CoroLLARY. TH(G) is a convex set.

Note that by Lemma (2.6), if 0 £x< )y and ye TH(G) then xe TH(G).
The following result gives the antiblocker of TH(G).

(3.4) CoroLLARY. AB(TH(G))=TH(G).

Proof. Let ye AB(TH(G)). Then x"y < 1 for each x e TH(G). Let x>0,
x#0. Then x,=x/3(G;x}eTH(G) (and so xTy<1). But then
xTy=8(G; x) x7 ¥ < 3&; x) and hence y e TH(G).

Conversely, let ye TH(G), then for any xe TH(G) we have xTy<
HG; x)<1 and so ye AB(TH(G)). |
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From this antiblocking relation, we obtain from Theorem (3.2) a further
description of TH(G), which is perhaps conceptually the simplest, but not
so well-suited to work with. (Note that from this description, it is not even
straightforward to see that xe TH(G) and 0< y < x imply v e TH(G).)

(3.5) THEOREM. For any graph G, TH(G) = {({(d"¢,)*: i€ (G))e R
il =1, (v,) is an orthonormal representation of G ).

As a further application of Theorem (3.1), we show

(3.6) THEOREM. VP(G)c TH(G)=FVP(G).

Proof. Let x be the incidence vector of an independent set A of nodes.
Then 3(G; x)=3(G[4];1)=1 since G[4] is a complete graph. So every
vertex of VP(G) is contained in TH(G). By convexity, VP(G)< TH(G).

Applying this to the complement graph, we obtain that VP(G) < TH(G).
Taking antiblockers, we obtain that FVP(G)2TH(G). ||

The next theorem will imply that TH(G) is in general not a polytope. Let
P<R" be a convex set of dimension »n and a”x < x an inequality (ue R").
We say that a7x < « determines a facet of P if it is valid for all xe P and,
moreover, the set {xe P:a’x=u} has dimension #— 1.

(3.7) THEOREM. If an inequality determines a facet of TH(G) then it is a
positive multiple of one of the non-negativity constraints (1.1) or one of the
cligue constraints (1.4).

Proof. Suppose that a’x < x determines a facet of TH(G}, and let = be a
point in the relative interior of F:= {xe TH(G):a"x=2a}. Then either
2,=0 for some i or 3(G;z)=1. In the first case a’x<a is trivially
equivalent to x;> 0. So suppose that 3(G; z) = 1. By Theorem (2.3) there
exists an orthonormal representation (u,) of G and a unit vector ¢ such that

Y z{cTu)y=1.
iel”
Since
Y xfeTu) < (3.8)

ie

is a valid inequality for all x € TH{G), it follows that it must be equivalent
with a"x <, and hence we may assume that x=1 and a,= (¢'u,)>. We
also see that

Z x{eTu,)?=1 (3.9)

ie V

for alli xe F.
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By Lemma (2.7)
Y xfc'uyu=c

'

holds for all x e F. ie..

Y xpcTuu),=¢

ie b
for all je . Since F is {n— l)-dimensional, these cquations must follow
from (3.9). and hence ¢,(¢'u,)* = (¢’u;)(u,);. Il we consider any ie V such
that ¢"u,#0 then this implies that (¢"u,) ¢ =u,. Since [, = [¢|j=1, this
vields that #; = +¢. Clearly, we may assume that v, =c.

So we see that for each i/, either ¢u;=0 or u;=c. Let u;=¢ for ie K and

¢"u,=0 for ie ¥'— K. Then K is a complete subgraph, since for any two
nodes i, je K, ufu;=¢*=1#0. So (3.8) is just

Z -‘:ié 11

ieXN

which proves the theorem. |

(3.10) CoroLtarY. TH(G) is a polytope iff G is perfect.

Proof. If G is perfect then VP(G)=TH(G)=FVP(G) by Theorems
(L.5) and (3.6). Conversely, suppose that TH(G) is a polytope. Then
TH(G) is the solution set of all inequalities determining a facet of TH(G).
By Theorem (3.7), all these inequalities occur in (1.1) and (1.4), and so
TH(G)=FVP(G). Since TH(G)=AB(TH(G)) is also a polytope, it follows
that TH(G)=FVP(&) and so, taking antiblockers, TH(G)=VP(G). So
VP(G)=FVP(G) and by Theorem (1.5), G is perfect. |

Two immediate corollaries are the following,

(3.11) CoroLLAarRY. TH(G)=VP(G) iff G is perfect.

(3.12) CoroLLarY. TH(G)=FVP(G) iff G is perfect.

4. OpTiMiZATION OVER TH(G) anp CVP(G)

We are going to show that every linear objective function can be
maximized over TH(G) as well as over CYP(G) in polynomial time. Let us
formulate this task more precisely, by recalling two definitions from [9].

Let K be a non-empty convex compact set in R”, and for zeR" let
d(z, K) := min{|- — x[: xe K}.
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(4.1) STRONG OPTIMIZATION PROBLEM. Given a vector c€@Q”, find a
rational vector z € K which maximizes ¢"x over K.

(42) WEAK OPTIMIZATION PROBLEM. Given a vector ceQ" and «

positive rational number ¢, find a vector ze Q" such that d(z, K)<e and
c’zzmax{c"x:xeK} —e.

This latter problem is needed because the vector maximizing ¢”x over a
nonpolyhedral convex body like TH(G) may not be rational.
We start with a lemma.

(4.3) LEMMA. For any ¢ 20,
max{c’x: xe TH(G)} = 9(G; c).

Proof. By Theorem (3.1), ¢"x< 3(G;c) is valid for TH(G), so the
maximum above cannot be larger than $(G;¢) On the other hand, if
0<t<3G;c) then (1/t)c¢ TH(G) and hence by Corollary (3.4) there
exists an x€ TH(G) such that (1/t) c"x> 1, ie., c"x>1. |

(4.4) THEOREM. Let G=(V, E) be u graph. Then the weak optimization
problem for TH(G) can be solved in polynomial time.

Proof. Let ce@" and > 0. We may assume that ¢ 2 0 since if ¢, <0 for
some [ e V' then obviously x;=0 for every vector x maximizing ¢"x and so
we can delete j from G.

By Lemma (2.9), we can find in polynomial time a vector 0 #de Q"
such that 3(G; d) 8(G; ¢)< (1 +¢€) c"d. Then for y := (1/9{G, d)) d we have
that ye TH(G) and ¢y > (1/{1 +e))3(Gic)=(1/(1 +¢&))max{c"x: xe TH(G)}.
By Theorem (2.8) we can compute a rational approximation of y with
arbitrary precision. |

Our next lemma is a preparation for the treatment of CVP(G). This
result is well known, but for the sake of completeness we give a short proof.

(4.5) LEMMA. Let G=(V, E) be a graph and let z: E— R, be "lengths™
assigned to its edges. Then a shortest odd circuit in G can be found in
polynomial time.

Proof. Replace each ve V by two points v’, v"; for each edge wre E,
connect ¥’ to v"” and u” to v’. Let G' be the graph obtained this way. Also
define a “length” of each edge of G’ by /(u'v") := l(#"v’} := z(uv). Find a
shortest v'v”-path in G’ for each ve V. A shortest among all these paths
gives a shortest odd circuit in G. ||
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(4.6) THEOREM. Let G = (1, E} he a graph. Then the strong aptimization
problem for CVYP(G) cun be sofved in polvnomial time. Moreover, an
optimum vertex solution can he Jound in polynomial time.

By Theorems (3.8) and (3.9) of [9], it suffices to prove the following.

(371 LeMMa.  Let G=(V, E) be a graph and y e Q" a vector. Then there
is an algorithm which concludes in polynomial time with one of the following:

(a) yeCVPIG),
(b) finding an inequality from (1.1), (1.2), or (1.6) violated by x= y.

Proof. The inequalities in (1.1) and (1.2) are easily checked by sub-
stitution. So we may assume that y>0, and for each edge wvek,
yr,+y. <L

Define, for each edge e=ure E, =, ;= 1—y,—¥,. S0 2,20 Then (1.6)
is equivalent to the following set of inequalities:

Y -2 for cach odd circuit C. (4.8)

vE Kl
If we view =, as the “length™ of edge e, then (4.8) says that the length of a
shortest odd circuit is at least 1. But a shortest odd circuit can be found in
polynomial time by Lemma {4.5). This proves the Lemma and thereby also
Theorem (4.6). |

(4.9) COROLLARY. There is a polvnomial time algorithm for the
maximum weight independent set problem for t-perfect graphs.

By combining the algorithms in Theorems (4.4) and (4.6), we can prove
the following stronger result:

(4.10) TueoreMm. There is a polynomial time algorithm for the maximum
weight independent set problem for h-perfect graphs.

Proof. Let G be an h-perfect graph. Then VP(G)=FVP(G)nCVP(G)
and hence also VP(G)=TH(G)nCVP(G). By Theorems (4.4} and (4.6),
we can solve the weak optimization problem for both of TH(G) and
CVP(G). Hence the weak optimization problem can also be solved for their
intersection by Corollary (3.4) of [9]. But then by Theorem (3.8) of [9],
the strong optimization problem can also be solved in polynomial time and
by Theorem (3.9) of [9], an optimum vertex can also be found in
polynomial time. |
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