A Algorithms and Combinatorics 2

Editorial Board

R.L.Graham, Murray Hill B.Korte, Bonn
L.Lovasz, Budapest

Martin Grotschel
Laszl6 Lovasz

Alexander Schrijver

Geometric Algorithms
and Combinatorial
Optimization

Springer-Verlag Berlin Heidelberg NewYork
London Paris Tokyo

Martin Grotschel

Institute of Mathematics
University of Augsburg
Memminger Stralle 6
D-8900 Augsburg

Fed. Rep. of Germany

Laszlo Lovasz

Department of Computer Science
Eo6tvos Lorand University
Budapest

Muzeum krt. 6-8

Hungary H-1088

Alexander Schrijver

Department of Econometrics
Tilburg University

P.O. Box 90153

NL-5000 LE Tilburg

The Netherlands

1980 Mathematics Subject Classification (1985 Revision):
primary 05-02, 11Hxx, 52-02, 90Cxx; secondary 05Cxx, 11HO06,
11H55, 11J13, 52A43, 68Q25, 90C05, 90C10, 90C25, 90C27

ISBN 3-540-13624-X Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-13624-X Springer-Verlag New York Berlin Heidelberg

With 23 Figures

Library of Congress Cataloging-in-Publication Data

Groétschel, Martin.

Geometric algorithms and combinatorial optimization.

(Algorithms and combinatorics ; 2)

Bibliography: p. Includes indexes.

1. Combinatorial geometry. 2. Geometry of numbers. 3. Mathematical optimization.
4. Programming (Mathematics) 1. Lovasz, Laszlo, 1948—. 1II. Schrijver, A. III. Title.
IV. Series. QA167.G76 1988 511°.6 87-36923

ISBN 0-387-13624-X (U.S.)) -

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and
storage in data banks. Duplication of this publication or parts thereof is only permitted
under the provisions of the German Copyright Law of September 9, 1965, in its version
of June 24, 1985, and a copyright fee must always be paid. Violations fall under the
prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1988

Printed in Germany

Media conversion, printing and binding: Universititsdruckerei H. Stiirtz AG, Wiirzburg
2141/3140-543210

Preface

Historically, there is a close connection between geometry and optimization.
This is illustrated by methods like the gradient method and the simplex method,
which are associated with clear geometric pictures. In combinatorial optimization,
however, many of the strongest and most frequently used algorithms are based
on the discrete structure of the problems: the greedy algorithm, shortest path
and alternating path methods, branch-and-bound, etc. In the last several years
geometric methods, in particular polyhedral combinatorics, have played a more
and more profound role in combinatorial optimization as well.

Our book discusses two recent geometric algorithms that have turned out to
have particularly interesting consequences in combinatorial optimization, at least
from a theoretical point of view. These algorithms are able to utilize the rich
body of results in polyhedral combinatorics.

The first of these algorithms is the ellipsoid method, developed for nonlinear
programming by N. Z. Shor, D. B. Yudin, and A. S. Nemirovskil. It was a great
surprise when L. G. Khachiyan showed that this method can be adapted to solve
linear programs in polynomial time, thus solving an important open theoretical
problem. While the ellipsoid method has not proved to be competitive with the
simplex method in practice, it does have some features which make it particularly
suited for the purposes of combinatorial optimization.

The second algorithm we discuss finds its roots in the classical “geometry
of numbers”, developed by Minkowski. This method has had traditionally
deep applications in number theory, in particular in diophantine approximation.
Methods from the geometry of numbers were introduced in integer programming
by H. W. Lenstra. An important element of his technique, called basis reduction,
goes in fact back to Hermite. An efficient version of basis reduction yields a
polynomial time algorithm useful not only in combinatorial optimization, but
also in fields like number theory, algebra, and cryptography.

A combination of these two methods results in a powerful tool for combi-
natorial optimization. It yields a theoretical framework in which the polynomial
time solvability of a large number of combinatorial optimization problems can
be shown quite easily. It establishes the algorithmic equivalence of problems
which are “dual” in various senses.

Being this general, this method cannot be expected to give running times
comparable with special-purpose algorithms. Our policy in this book is, therefore,
not to attempt to obtain the best possible running times; rather, it is to derive
just the polynomial time solvability of the problems as quickly and painlessly as

VI Preface

possible. Thus, our results are best conceived as “almost pure” existence results
for polynomial time algorithms for certain problems and classes of problems.

Nevertheless, we could not get around quite a number of tedious technical
details. We did try to outline the essential ideas in certain sections, which should
give an outline of the underlying geometric and combinatorial ideas. Those
sections which contain the technical details are marked by an asterisk in the list
of contents. We therefore recommend, for a first reading, to skip these sections.

The central result proved and applied in this book is, roughly, the following.
If K is a convex set, and if we can decide in polynomial time whether a given
vector belongs to K, then we can optimize any linear objective function over K
in polynomial time. This assertion is, however, not valid without a number of
conditions and restrictions, and even to state these we have to go through many
technical details. The most important of these is that the optimization can be
carried out in an approximate sense only (as small compensation, we only need
to test for membership in K in an approximate sense).

Due to the rather wide spread of topics and methods treated in this book, it
seems worth while to outline its structure here.

Chapters 0 and 1 contain mathematical preliminaries. Of these, Chapter 1
discusses some non-standard material on the complexity of problems, efficiency
of algorithms and the notion of oracles.

The main result, and its many versions and ramifications, are obtained by
the ellipsoid method. Chapter 2 develops the framework necessary for the
formulation of algorithmic problems on convex sets and the design of algorithms
to solve these. A list of the main problems introduced in Chapter 2 can be found
on the inner side of the back cover. Chapter 3 contains the description of (two
versions of) the ellipsoid method. The statement of what exactly is achieved
by this method is rather complicated, and the applications and specializations
collected in Chapter 4 are, perhaps, more interesting. These range from the main
result mentioned above to results about computing the diameter, width, volume,
and other geometric parameters of convex sets. All these algorithms provide,
however, only approximations.

Polyhedra encountered in combinatorial optimization have, typically, vertices
with small integral entries and facets with small integral coefficients. For such
polyhedra, the optimization problem (and many other algorithmic problems) can
be solved in the exact sense, by rounding an approximate solution appropriately.
While for many applications a standard rounding to some number of digits is
sufficient, to obtain results in full generality we will have to use the sophisticated
rounding technique of diophantine approximation. The basis reduction algorithm
for lattices, which is the main ingredient of this technique, is treated in Chapter
5, along with several applications. Chapter 6 contains the main applications of
diophantine approximation techniques. Besides strong versions of the main result,
somewhat different combinations of the ellipsoid method with basis reduction give
the strongly polynomial time solvability of several combinatorial optimization
problems, and the polynomial time solvability of integer linear programming in
fixed dimension, remarkable results of E. Tardos and H. W. Lenstra, respectively.

Preface viI

Chapters 7 to 10 contain the applications of the results obtained in the
previous chapters to combinatorial optimization. Chapter 7 is an easy-to-read
introduction to these applications. In Chapter 8 we give an in-depth survey of
combinatorial optimization problems solvable in polynomial time with the meth-
ods of Chapter 6. Chapters 9 and 10 treat two specific areas where the ellipsoid
method has resolved important algorithmic questions that so far have resisted
direct combinatorial approaches: perfect graphs and submodular functions.

We are grateful to several colleagues for many discussions on the topic
and text of this book, in particular to Bob Bixby, Andras Frank, Michael
Jiinger, Gerhard Reinelt, Eva Tardos, Klaus Truemper, Yoshiko Wakabayashi,
and Zaw Win. We mention at this point that the technique of applying the
ellipsoid method to combinatorial optimization problems was also discovered by
R. M. Karp, C. H. Papadimitriou, M. W. Padberg, and M. R. Rao.

We have worked on this book over a long period at various institutions. We
acknowledge, in particular, the support of the joint research project of the German
Research Association (DFG) and the Hungarian Academy of Sciences (MTA),
the Universities of Amsterdam, Augsburg, Bonn, Szeged, and Tilburg, Cornell
University (Ithaca), Eétvos Lorand University (Budapest), and the Mathematical
Centre (Amsterdam).

Our special thanks are due to Frau Theodora Konnerth for the efficient and
careful typing and patient retyping of the text in TEX.

March 1987 Martin Grotschel
Laszlé6 Lovasz
Alexander Schrijver

Table of Contents

Chapter 0. Mathematical Preliminaries

0.1

0.2

Linear Algebra and Linear Programming .

Basic Notation .

Hulls, Independence, Dlmensmn :
Eigenvalues, Positive Definite Matrices .
Vector Norms, Balls
Matrix Norms .

Some Inequalities

Polyhedra, Inequality Systems

Linear (Diophantine) Equations and Inequahtlcs
Linear Programming and Duality

Graph Theory .

Graphs .
Digraphs . :
Walks, Paths, Clrcu1ts Trees

Chapter 1. Complexity, Oracles, and Numerical Computation

1.1

1.2

1.3

The sections and chapters marked with * are technical. We recommend that the reader

Complexity Theory: # and /2 .

Problems .

Algorithms and Tunng Machlnes

Encoding . .

Time and Space Complex1ty . .
Decision Problems: The Classes 2 and /VQP :

Oracles .

The Running T1me of Oracle Algorlthms
Transformation and Reduction
HP-Completeness and Related Notlons

Approximation and Computation of Numbers .

Encoding Length of Numbers :
Polynomial and Strongly Polynomial Computatlons .
Polynomial Time Approximation of Real Numbers

skip these on the first reading.

O 00 ~1 W W) = i

P ok
o

[am—y
(o)

et
Vol RN |

21

21

21
22
23
23
24

26

26
27
28

29

29
32
33

X Table of Contents

1.4 Pivoting and Related Procedures

Gaussian Elimination .

Gram-Schmidt Orthogonahzatlon

The Simplex Method :
Computation of the Hermite Normal Form

Chapter 2. Algorithmic Aspects of Convex Sets:
Formulation of the Problems .

2.1 Basic Algorithmic Problems for Convex Sets .
* 22 Nondeterministic Decision Problems for Convex Sets

Chapter 3. The Ellipsoid Method

3.1 Geometric Background and an Informal Description

Properties of Ellipsoids . . .
Description of the Basic Elhpsmd Method
Proofs of Some Lemmas . .
Implementation Problems and Polynom1al1ty
Some Examples

* 3.2 The Central-Cut Ellipsoid Method

* 33 The Shallow-Cut Ellipsoid Method

Chapter 4. Algorithms for Convex Bodies

4.1 Summary of Results
* 4.2 Optimization from Separation
* 4.3 Optimization from Membership .
* 44 Equivalence of the Basic Problems .
* 4.5 Some Negative Results . oo oo
* 4.6 Further Algorithmic Problems for Convex Bodles :
* 4.7 Operations on Convex Bodies

The Sum .

The Convex Hull of the Umon
The Intersection

Polars, Blockers, Antlblockers

Chapter 5. Diophantine Approximation and Basis Reduction .

5.1 Continued Fractions

5.2 Simultaneous Diophantine Approximation: Formulatlon of the
Problems .

5.3 Basis Reduction in Lattlces
* 5.4 More on Lattice Algorithms

36

36
40
41
43

46

47
56

64

66

66
73
76
80
83
86

94

102

102
105
107
114
118
122
128

128
129
129
131

133
134

138
139
150

Table of Contents

Chapter 6. Rational Polyhedra .

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Optimization over Polyhedra: A Preview

Complexity of Rational Polyhedra .

Weak and Strong Problems o
Equivalence of Strong Optimization and Separation .
Further Problems for Polyhedra .

Strongly Polynomial Algorithms .

Integer Programming in Bounded Dimension

Chapter 7. Combinatorial Optimization: Some Basic Examples .

7.1
7.2
73
7.4
7.5
7.6
7.7

Flows and Cuts
Arborescences .
Matching .

Edge Coloring .
Matroids .

Subset Sums
Concluding Remarks

* Chapter 8. Combinatorial Optimization: A Tour d’Horizon

*

*

*

*

*

8.1
8.2
8.3
8.4

8.5

8.6

Blocking Hypergraphs and Polyhedra

Problems on Bipartite Graphs

Flows, Paths, Chains, and Cuts :
Trees, Branchings, and Rooted and Dlrected Cuts

Arborescences and Rooted Cuts .
Trees and Cuts in Undirected Graphs
Dicuts and Dijoins

Matchings, Odd Cuts, and Generalizations

Matching .

b-Matching .

T-Joins and T- Cuts .
Chinese Postmen and Travelmg Salesmen)

Multicommodity Flows

* Chapter 9. Stable Sets in Graphs

*

*

*

*

*

91
9.2

9.3
94
9.5

0dd Circuit Constraints and t-Perfect Graphs
Clique Constraints and Perfect Graphs .
Antiblockers of Hypergraphs .

Orthonormal Representations

Coloring Perfect Graphs . .
More Algorithmic Results on Stable Sets

X1

157

157
162
170
174
181
188
192

197

197
201
203
208
210
218
221

225

225
229
233
242
242
247
251
254

255
257
259
262

266

272

273
276
284

285

296
299

XII Table of Contents

Chapter 10. Submodular Functions

* 10.1 Submodular Functions and Polymatroids

* 10.2 Algorithms for Polymatroids and Submodular Functions .

Packing Bases of a Matroid

* 10.3 Submodular Functions on Lattice, Intersecting, and
Crossing Families

* 10.4 Odd Submodular Function Minimization and Extensions

References
Notation Index
Author Index
Subject Index

Five Basic Problems (see inner side of the back cover)

304

304
308
311

313
325

331
347
351
355

Chapter 0

Mathematical Preliminaries

This chapter summarizes mathematical background material from linear algebra,
linear programming, and graph theory used in this book. We expect the reader
to be familiar with the concepts treated here. We do not recommend to go
thoroughly through all the definitions and results listed in the sequel — they are
mainly meant for reference.

0.1 Linear Algebra and Linear Programming

In this section we survey notions and well-known facts from linear algebra,
linear programming, polyhedral theory, and related fields that will be employed
frequently in subsequent chapters. We have also included a number of useful
inequalities and estimates. The material covered here is standard and can be
found in several textbooks. As references for linear algebra we mention FADDEEV
and FADDEEVA (1963), GANTMACHER (1959), LANCASTER and TISMENETSKY (1985),
Marcus and MINC (1964), STRANG (1980). For information on linear program-
ming and polyhedral theory see for instance CHVATAL (1983), DaNTZIG (1963),
Gass (1984), GRUNBAUM (1967), ROCKAFELLAR (1970), SCHRIJIVER (1986), STOER
and WITZGALL (1970).

Basic Notation

By R (Q, Z, N, €) we denote the set of real (rational, integral, natural, complex)
numbers. The set IN of natural numbers does not contain zero. R, (Q,, Z,)
denotes the nonnegative real (rational, integral) numbers. For n € N, the symbol
R" (@, Z", N", €") denotes the set of vectors with n components (or n-tuples
or n-vectors) with entries in R (Q, Z, N, €). If E and R are sets, then Rf is
the set of mappings of E to R. If E is finite, it is very convenient to consider
the elements of RE as |E|-vectors where each component of a vector x € RE is
indexed by an element of E, i. €., x = (x.)eeg. For F < E, the vector ¥ e RE
defined by xf =1ifee F and yf =0if e E \ F is called the incidence vector
of F.

Addition of vectors and multiplication of vectors with scalars are as usual.
With these operations, R" and @Q" are vector spaces over the fields R and
@, respectively, while Z" is a module over the ring Z. A vector is always
considered as a column vector, unless otherwise stated. The superscript “7”

2 Chapter 0. Mathematical Preliminaries

denotes transposition. So, for x e R”, x7 is a row vector, unless otherwise stated.
R" is endowed with a (Euclidean) inner product defined as follows:

n

xTy = zx,-y,- for x,y e R".
i=1

For a real number «, the symbol [«] denotes the largest integer not larger
than a (the floor or lower integer part of «), [a] denotes the smallest integer not
smaller than a (the ceiling or upper integer part of) and [a] := [0 — %] denotes
the integer nearest to a. If a = (ay, ..., a,)T and b = (by, ..., b,)T are vectors,
we writtea<bifa; <b;fori=1, ..., n.

For two sets M and N, the expression M = N means that M is a subset
of N, while M = N denotes strict containment, i. e, M < N and M # N. We
write M \ N for the set-theoretical difference {x e M | x ¢ N}, MAN for the
symmetric difference (M \ N) U (N \ M), and 2™ for the set of all subsets of M,
the so-called power set of M. For M,N < IR" and a € R, we use the following
standard terminology for set operations: M + N = {x+y | xe M,y € N},
aM ={ax | xeM},—M ={—x|xeM},M —N :=M + (—N).

For any set R, R™*" denotes the set of mxn-matrices with entries in R. For a
matrix A € R™", we usually assume that the row index set of A is {1, ..., m} and
that the column index set is {1, ..., n}. Unless specified otherwise, the elements
or entries of 4 € R™" are denoted by a;, 1 <i <m, 1 <j < n; we write
A = (a;;). Vectors with n components are also considered as nx 1-matrices.

If I is a subset of the row index set M of a matrix A and J a subset of the
column index set N of A4, then A;; denotes the submatrix of 4 induced by those
rows and columns of 4 whose indices belong to I and J, respectively. Instead of
Amy (Ajny resp.) we frequently write A.; (A;. resp.). A submatrix A of the form
Aq is called a principal submatrix of A. If K = {1, ..., k} then Axg is called
the k-th leading principal submatrix of A. A;. is the i-th row of A (so it is a row
vector), and A, is the j-th column of 4.

Whenever we do not explicitly state whether a number, vector, or matrix is
integral, rational, or complex it is implicitly assumed to be real. Moreover, we
often do not specify the dimensions of vectors and matrices explicitly. When
operating with them, we always assume that their dimensions are compatible.

The identity matrix is denoted by I or, if we want to stress its dimension,
by I,. The symbol O stands for any appropriately sized matrix which has all
entries equal to zero, and similarly for any zero vector. The symbol 1 denotes a
vector which has all components equal to one. The j-th unit vector in R”, whose
j-th component is one while all other components are zero, is denoted by ¢;. If
x = (x1, ..., x,)T is a vector then the nxn-matrix with the entries xy, ..., x, on
the main diagonal and zeros outside the main diagonal is denoted by diag(x).
If A e R™? and B € R™“ then (4,B) (or just (4 B) if this does not lead to
confusion) denotes the matrix in R™*?+49) whose first p columns are the columns
of A and whose other g columns are those of B.

The determinant of an nxn-matrix A is denoted by det(A4). The trace of an
nxn-matrix A, denoted by tr(A4), is the sum of the elements of the main diagonal
of the matrix A.

0.1 Linear Algebra and Linear Programming 3

When using functions like det, tr, or diag we often omit the brackets if there
is no danger of confusion, i. e., we frequently write det A instead of det(4) etc.

The inverse matrix of an nxn-matrix A is denoted by A~!. If a matrix has an
inverse matrix then it is called nonsingular, and otherwise singular. An nxn-matrix
A is nonsigular if and only if det 4 # 0.

Hulls, Independence, Dimension

A vector x € R" is called a linear combination of the vectors x;,xs, ..., xy € R"
if, for some 4 € R,
k
X = Z i,-x,- .

If, in addition, i=1

A>0 conic
AT1 =1 } wecall x a affine combination
Tq _
420, =1 convex
of the vectors xj,x3, ..., xx. These combinations are called proper if neither
A=0nor A =g¢ for somej € {1,2, ..., k}. For a nonempty subset S = R", we
denote by
lin(S) linear
cone(S) conic
the hull of the elements of S,
aff(s) affine
conv(S) convex

that is, the set of all vectors that are linear (conic, affine, convex) combinations
of finitely many vectors of S. For the empty set, we define lin(@) := cone(§) = {0}
and aff(@) := conv() := 0.

A subset § = R" is called

a linear subspace S = 1in(S)
a cone i S = cone(S)
an affine subspace S = aff(§)
a convex set S = conv(S)

A subset S < R” is called linearly (affinely) independent if none of its members
is a proper linear (affine) combination of elements of §S; otherwise S is called
linearly (affinely) dependent. It is well-known that a linearly (affinely) independent
subset of IR” contains at most n elements (n + 1 elements). For any set § < R”",
the rank of S (affine rank of S) denoted by rank(S) (arank(S)), is the cardinality
of the largest linearly (affinely) independent subset of S. For any subset § < IR",
the dimension of S, denoted by dim(S), is the cardinality of a largest affinely
independent subset of S minus one, i. €, dim(S) = arank(S) — 1. A set § = R”
with dim(S) = n is called full-dimensional.

The rank of a matrix A (notation: rank(A4)), is the rank of the set of its
column vectors. This is known to be equal to the rank of the set of its row
vectors. An mxn-matrix A is said to have full row rank (full column rank) if
rank A = m (rank A = n).

4 Chapter 0. Mathematical Preliminaries

Eigenvalues, Positive Definite Matrices

If A is an nxn-matrix, then every complex number A with the property that there is
a nonzero vector u € C" such that 4u = Au is called an eigenvalue of A. The vector
u is called an eigenvector of A associated with A. The function f(A) := det(1l,—A)
is a polynomial of degree n, called the characteristic polynomial of 4. Thus the
equation

det(Al, —A) =0

has n (complex) roots (multiple roots counted with their multiplicity). These roots
are the (not necessarily distinct) n eigenvalues of A.

We will often consider symmetric matrices (i. €., nxn-matrices A = (a;) with
aj = aj;, 1 <i<j <n). Itis easy to see that all eigenvalues of real symmetric
matrices are real numbers.

There are useful relations between the eigenvalues 4, ..., 4, of a matrix A,
its determinant and its trace, namely

n
0.1.1) deta =[]
i=1
(0.1.2) trd = Z A
i=1

An nxn-matrix A is called positive definite (positive semidefinite) if A4 is
symmetric and if x” Ax > 0 for all x e R"\ {0} (xTAx > 0 for all x e R"). If 4 is
positive definite then A4 is nonsingular and its inverse is also positive definite. In
fact, for a symmetric nxn-matrix A the following conditions are equivalent:

(0.1.3) (i) A is positive definite.
(i) A~!is positive definite.
(iti) All eigenvalues of A are positive real numbers.
(ivy A = BT B for some nonsingular matrix B.
(v) detAdy >O0for k=1, ...,n where Ay is the k-th leading
principal submatrix of A.

It is well known that for any positive definite matrix A4, there is exactly one
matrix among the matrices B satisfying (0.1.3) (iv) that is itself positive definite.
This matrix is called the (square) root of A and is denoted by 4!/2,

Positive semidefinite matrices can be characterized in a similar way, namely,
for a symmetric nxn-matrix A the following conditions are equivalent:

0.1.4) (1) A is positive semidefinite.
(i) All eigenvalues of A are nonnegative real numbers.
(i) A = BT B for some matrix B.
(iv) detA;; > 0 for all principal submatrices 4;; of A.
(v) There is a positive definite principal submatrix 4;; of A
with |I| = rank A.

0.1 Linear Algebra and Linear Programming 5
Vector Norms, Balls

A function N : R" — R is called a norm if the following three conditions are
satisfied:

(0.1.5) () N(x)=>0 forxeR", N(x) =0 if and only if x =0,
(i) N(ax)=|«|N(x) forall xe R", a e R,
(i) N(x+y) <N(x)+N(y) for all x,y € R" (triangle inequality).

Every norm N on R" induces a distance dy defined by
dyv(x,y) =N(x—y) forx,yeR"

For our purposes four norms will be especially important:

1 12
x| :==VvxTx = (Z x~2> (the ;- or Euclidean norm).

i=1
(This norm induces the Euclidean distance d(x, y) = || x—y|. Usually, the Euclidean
norm is denoted by | - [|>. But we use it so often that we write simply || - ||.)

x|y = Z|xi| (the l1- or 1-norm),
i=1

X |00 := 1n<1;1x |xil (the l,- or maximum norm),
<i<n
Ixlla:=vVxTA 1 x,

where A is a positive definite nxn-matrix. Recall that 4 induces an inner product
xTA7'y on R". Norms of type || - |4 are sometimes called general Euclidean or
ellipsoidal norms. We always consider the space IR” as a Euclidean space endowed
with the Euclidean norm || - |, unless otherwise specified. So all notions related
to distances and the like are defined via the Euclidean norm.

For all x € R", the following relations hold between the norms introduced
above:

(0.1.6) IxI - < lIxlh < Valx],
(0.1.7) Xl < %Il < VAlxllo0,
(0.1.8) Xl < lixlls < nlixloo -

If A is a positive definite nxn-matrix with smallest eigenvalue 4 and largest
eigenvalue A then

(0.1.9) Vx|l < llxll4r < VA|x| for all x e R™.

6 Chapter 0. Mathematical Preliminaries

The diameter of a set K = IR", denoted by diam(K), is the largest distance
between two points of K ; more exactly:

diam(K) := sup{[lx — yll | x,y € K}.

The width of K is the minimum distance of two parallel hyperplanes with K
between them; that is,

width(K) = inf {sup{c"x|xe K} —inf{c"x|xeK}}
ce R c|| =1

For any set K = R" and any positive real number &, the set
(0.1.10) S(K,e) ={xeR"| |x—y| <¢forsomeye K}

is called the ball of radius ¢ around K (with respect to the Euclidean norm). For
K = {a} we set
S(a,e) == S({a},¢)

and call S(a,¢) the ball of radius ¢ with center a. S(0, 1) is the unit ball around
zZero.

The “unit ball around zero” with respect to the maximum norm is the
hypercube {x e R" | -1 < x; < 1,i = 1, ..., n}. For any positive definite
matrix A4, the “unit ball around zero” with respect to || - |4 is the ellipsoid
{x e R" | xTA7'x < 1} - see Section 3.1 for further details. We shall frequently
use the interior e-ball of K defined by

(0.1.11) S(K,—¢) = {xe K |S(x,e) = K.

The elements of S(K,—¢) can be viewed as the points “deep inside of K. Note
that if K is convex, then

(0.1.12) S(S(K,e),—e) =K, S(S(K,—e),e) =K,
and that
(0.1.13) S(S(K,—¢1),—&) = S(K,—& — &),

S(S(K,e1),&) =S(K,&e +¢&).

Equality does not always hold in the containment relation of (0.1.12). (Take,
e. g, K =S8(0,0) where 0 < § < &) But if diam(K) < 2R for some R > 0, and if
we know that K contains a ball with radius r, then one can easily see that

(0.1.14) Kc S(S(K,——%),s)

for all e e R with 0 < ¢ < 2R.

0.1 Linear Algebra and Linear Programming 7

Matrix Norms

Any norm on the linear space R™*" of mxn-matrices is called a matrix norm. If
Ny is a norm on R" and N, a norm on R™, then a matrix norm M on R™" is
said to be compatible with N; and N, if

Ny(Ax) < M (A) Ni(x) for all xeR", and all 4 e R™".

If N is a vector norm on R"” and M a matrix norm on R"*" such that N (4x) <
M (A)N (x) for all x e R" and 4 € R™", then we say that M is compatible with
N. A matrix norm M on R™" is called submultiplicative if

M(AB) < M(A) M(B) forall 4,B e R"™".

Every vector norm N on R" induces a matrix norm on R™", called the norm
subordinate to N and denoted by luby (least upper bound), as follows:

0.1.15) luby (4) = max NN—(?;)C—) = max{N (4x) | N(x) = 1}).

Clearly, luby is the smallest among the matrix norms compatible with N ; and

luby is submultiplicative. The norm subordinate to the Euclidean norm | - || is
xTAT Ax

where A(A47 A) is the largest eigenvalue of A7 A. | A| is called the spectral norm
of A. If A is a symmetric nxn-matrix then one can show

(0.1.17) 4|l = max{|4| | 4 eigenvalue of A} = max{|x" Ax|| ||x| = 1}.

Moreover, if A is symmetric and nonsingular then

T

_ . xTx
(0.1.18) IA7!| = max{|A|™" | 2 eigenvalue of A} = max ——— .
The norm subordinate to the maximum norm || - | 18
= = i norm).
(0.1.19) | Al = luby.y, (4) = max ; laj| (row sum norm)
The norm subordinate to the 1-norm | - |1 is

0.1.2 := luby., (4) = max a;j column sum norm).
(0.1.20) Al := luby, (4) lsisrligfl il (

8 Chapter 0. Mathematical Preliminaries

Further submultiplicative matrix norms are

(0.1.21) lAll2 = /3 a} (Frobenius norm)

and

(0.1.22) |Allmax = nmax{|a;| | ij=1,...,n}.

The matrix norm | - ||max 1S compatible with the vector norms | - |, || - |1, and
Il - llo, and the matrix norm || ||, is compatible with the Euclidean norm | - ||. The

following inequalities hold:

0.1.23) Al < [Allmaxs 1Al < [Allmaxs 14l < [Allmax for 4 e R™,
1
vn

If M is a matrix norm on R™" that is compatible to some vector norm on R",
then

(0.1.24) Al < l4 < 4|2 < [Allmax ~ for A e R™".

(0.1.25) |Al <M (A) for each eigenvalue A of A.

Some Inequalities

The following well-known inequality will be used frequently:
(0.1.26) |x"y| < |x||lly] forall x,yeR" (Cauchy-Schwarz inequality).

This inequality holds with equality if and only if x and y are linearly dependent.

The parallelepiped spanned by ay, ..., a, € R" is the convex hull of the zero
vector and all vectors that are sums of different vectors of the set {ay, ..., am}.
Let A be the nxm-matrix with columns ay, ..., a,. Then

Vdet(AT A)

is the volume of the parallelepiped spanned by aq, ..., a,. This observation
implies

(0.1.27) Vdet(ATA) < H la;l (Hadamard inequality).

i=1

Equality holds in (0.1.27) if and only if the vectors a; are orthogonal (i. e,
alaj =0 for 1 <i<j < m),in other words, if and only if the parallelepiped is
a rectangular box. In particular, for an nxn-matrix A the Hadamard inequality
reads

(0.1.28) |det 4] < [] lail,
i=1

where ay, ..., a, denote the columns of A.

0.1 Linear Algebra and Linear Programming 9
Polyhedra, Inequality Systems

If A is a real mxn-matrix and b € R", then Ax < b is called a system of
(linear) inequalities, and Ax = b a system of (linear) equations. The solution set
{x e R" | Ax < b} of a system of inequalities is called a polyhedron. A polyhedron
P that is bounded (i. e, P = S(0,R) for some R > 0) is called a polytope. A
polyhedral cone is a cone that is also a polyhedron.

If a e R"\ {0} and a¢ € R, then the polyhedron {x e R" | a’x < ay} is called
a halfspace, and the polyhedron {x e R" | a’x = ao} a hyperplane. To shorten
notation we shall sometimes speak of the hyperplane a’ x = aq and the halfspace
a’”x < ag. Every polyhedron is the intersection of finitely many halfspaces.

An inequality a’x < ag is called valid with respect to a polyhedron P if
P < {x| a’x < ao}. A set F < P is called a face of P if there exists a valid
inequality a”x < ao for P such that F = {x € P | a’x = ay}. We say that F is
the face defined (or induced) by a” x < ao. If v is a point in a polyhedron P such
that {v} is a face of P, then v is called a vertex of P. A polyhedron is called
pointed if it has a vertex. One can easily prove that a nonempty polyhedron

= {x | Ax < b} is pointed if and only if 4 has full column rank. A facet of P
is an inclusionwise maximal face F with § # F # P. Equivalently, a facet is a
nonempty face of P of dimension dim(P) — 1.

Note that the linear subspaces of R" are the solution sets of homogeneous
equation systems Ax = 0, and that the affine subspaces are the solution sets of
equation systems Ax = b. Hence they are polyhedra.

Let us remark at this point that the description of a polyhedron as the
solution set of linear inequalities is by no means unique. Sometimes it will
be convenient to have a kind of “standard” representation of a polyhedron.
If the polyhedron P is full-dimensional then it is well known that P has a
representation P = {x € R" | Ax < b} such that each of the inequalities 4. x < b;
defines a facet of P and such that each facet of P is defined by exactly one of
these inequalities. If we normalize the inequalities so that ||4;.[l» = 1 for all rows
A;. of A, then this representation of P is unique. We call this representation the
standard representation of the full-dimensional polyhedron P.

If the polyhedron P is not full-dimensional, then one can find a system Cx = d
of linear equations whose solution set is the affine hull of P. We can choose —
after permuting coordinates, if necessary — the matrix C and the right hand side
d so that C = (I,C’) holds. Moreover, given such a matrix C, we can find an
inequality system Ax < b such that each of the inequalities A;.x < b; defines a
facet of P, each facet of P is defined by exactly one of these inequalities, each
row of A is orthogonal to each row of C, and | A.|» = 1 holds for each i. A
representation of a polyhedron P of the form

= {xeR"| Cx = d,Ax < b},

where C, d, A, b satisfy the above requirements will be called a standard repre-
sentation of P. This representation is unique up to the choice of the columns

forming the identity matrix I.
Let A € R™" be a matrix of rank r. A submatrix B of A is called a basis of

A if it is a nonsingular 7 xr-matrix. Let A € R™" have full column rank, and let

10 Chapter 0. Mathematical Preliminaries

b e R™. For any basis B = A]. of A, let by be the subvector of b corresponding
to B. Then the vector B~'b; is called a basic solution of Ax < b. Warning: B~'b;
need not satisfy Ax < b. If B~1b; satisfies Ax < b it is called a basic feasible
solution of this inequality system. It is easy to see that a vector is a vertex of the
polyhedron P = {x | Ax < b}, A with full column rank, if and only if it is a basic
feasible solution of Ax < b for some basis B. Note that this basis need not be
unique.

There is another way of representing polyhedra, using the convex and conic
hull operation, that is in some sense “polar” to the one given above. Polytopes
are the convex hulls of finitely many points. In fact, every polytope is the convex
hull of its vertices. Every polyhedron P has a representation of the form

P = conv(V') + cone(E),

where V' and E are finite subsets of R". Moreover, every point in a polytope
P = R" is a convex combination of at most dim(P) + 1, and thus of at most
n+ 1, affinely independent vertices of P (Carathéodory’s theorem). The following
type of polytopes will come up frequently. A set £ = R” is called a d-simplex
(where 1 <d < n) if £ =conv(V) and V is a set of d + 1 affinely independent
points in R". Instead of n-simplex in R" we often say just simplex.

For any nonempty set S < R",

rec(S) ={yeR"|x+AyeS forall xeS and all 1> 0}

denotes the recession cone (or characteristic cone) of S. We set rec(9) := {0}.
Intuitively, every vector of rec(S) represents a “direction to infinity” in S. A
more general version of Carathéodory’s theorem states that every point in a
d-dimensional polyhedron P can be represented as a convex combination of
affinely independent points vy, ..., v, v1+eq, ..., v1 +e;, where s+t < d+1, the
points vy, ..., vs are elements of minimal nonempty faces of P, and the points
e, ..., e are elements of minimal nonzero faces of the recession cone of P.
By
lineal(S) := {y € rec(S) | —y € rec(S)} = rec(S) N (—rec(S))

we denote the lineality space of a set S = R". If S # @, the lineality space of S
is the largest linear subspace L of R" such that x+ L < S for all x € S. The
recession cone and the lineality space of polyhedra can be characterized nicely.
Namely, if P = {x | Ax < b} is nonempty, then

rec(P) = {x | Ax < 0},
lineal(P) = {x | Ax = 0}.

If P = conv(V) + cone(E) and V # §, then

rec(P) = cone(E),
lineal(P) = lin({e € E | —e € cone(E)}) = cone(E) N (cone(—E)).

0.1 Linear Algebra and Linear Programming 11

A set § = R" is called up-monotone (down-monotone) if for each y € S all
vectors x € R" with x > y (x < y) are in S. Sometimes we shall restrict our
attention to subsets of a given set T’ (for instance T = R% or T = [0,1]"), in
which case we call a set S = T up-monotone (down-monotone) in 7 if, for each
y €S, all vectors xe T with x > y (x < y) are in S.

The dominant of a set S is the smallest up-monotone convex set containing
S, that is, the dominant is the set conv(S) + R’,. Similarly the antidominant of S
is the smallest down-monotone convex set containing S, i. e., conv(S) — R}. The
dominant and antidominant in a convex set T are defined in the obvious way.

For any set S € R",

S ={yeR"|y"x<0 forall xe S}
is called the polar cone of §, and

S*:={yeR"|y"x<1 forall xe S}
is called the polar of S. S is a closed cone if and only if (S°)° = S§. § is
a closed convex set containing zero if and only if (S*)" = S. Moreover, if

P = conv(V') + cone(E) is a nonempty polyhedron then

P°={x|y"x<0 forallye V UE},
P '={x|v'x<1 forallveV ande’x<0 forall eecE}.

There are two related operations which are important in combinatorial ap-
plications. For any set § < R’ its blocker is

bl(S) :={yeR? |y"x>1 forall xe S},
and its antiblocker is
abl(S) :=={yeR" |y"x <1 forall xe S}.
It is well known that bl(bl(S)) = S if and only if § = R’ and S is closed, convex,

and up-monotone. Furthermore, abl(abl(S)) = § if and only if § < R} and § is
nonempty, closed, convex, and down-monotone in R’.

Linear (Diophantine) Equations and Inequalities

There are some basic problems concerning linear spaces and polyhedra which will
occur frequently in our book and which play an important role in applications.
Let an mxn-matrix A and a vector b € R™ be given. Consider the system of

linear equations

(0.1.29) Ax =b.

12 Chapter 0. Mathematical Preliminaries

Then we can formulate the following four problems:

(0.1.30) Find a solution of (0.1.29).

(0.1.31) Find an integral solution of (0.1.29).

(0.1.32) Find a nonnegative solution of (0.1.29).

(0.1.33) Find a nonnegative integral solution of (0.1.29).

Borrowing a term from number theory, we could call problems (0.1.31) and
(0.1.33) the diophantine versions of (0.1.30) and (0.1.32), respectively.

We can ask similar questions about the solvability of the system of linear
inequalities

(0.1.34) Ax < b,

namely:

(0.1.35) Find a solution of (0.1.34).

(0.1.36) Find an integral solution of (0.1.34).

(0.1.37) Find a nonnegative solution of (0.1.34).

(0.1.38) Find a nonnegative integral solution of (0.1.34).

Obviously, the nonnegativity conditions in (0.1.37) and (0.1.38) could be included
in (0.1.34); hence, (0.1.37) is equivalent to (0.1.35), and (0.1.38) is equivalent to
(0.1.36). Furthermore, it is rather easy to see that problem (0.1.35) is equivalent
to (0.1.32); and if A and b are rational then (0.1.36) is equivalent to (0.1.33).

For problems (0.1.30), (0.1.31), and (0.1.32), there are classical necessary and
sufficient conditions for their solvability.

(0.1.39) Theorem (Solvability of Linear Equations). There exists a vector x € R"
such that Ax = b if and only if there does not exist a vector y € R" such that
yTA =0 and yTb # 0. O

(0.1.40) Theorem (Integral Solvability of Linear Equations). Assume A and b
are rational. Then there exists a vector x € Z" such that Ax = b if and only if
there does not exist a vector y € R™ such that yT A is integral and y™b is not
integral. O

(0.1.41) Theorem (Nonnegative Solvability of Linear Equations). There exists a
vector x € R" such that Ax = b, x > 0 if and only if there does not exist a vector
y e R™ such that y"A >0 and y7b < 0. O

Theorem (0.1.41) is known as the Farkas lemma. The Farkas lemma has the
following equivalent version which gives a necessary and sufficient condition for

(0.1.35).

0.1 Linear Algebra and Linear Programming 13

(0.1.42) Theorem. There exists a vector x € R" such that Ax < b if and only if
there does not exist a vector y e R™ such that y"A =0,y > 0and yTb < 0. t

We leave it to the reader as an exercise to formulate the version of the Farkas
lemma characterizing the solvability of (0.1.37).

Problem (0.1.33) (equivalently (0.1.36) and (0.1.38)) is much more difficult
than the other problems. A kind of characterization was obtained by CHVATAL
(1973) and SCHRUVER (1980a), based on work of GomoRy (1958, 1960). We shall
formulate this criterion for problem (0.1.38) only, and leave its adaptation to
problems (0.1.33) and (0.1.36) to the reader.

The essence of the solvability characterizations (0.1.39), (0.1.40), and (0.1.41)
is that if Ax = b does not have a solution of a certain type, then we can infer one
single linear equation from Ax = b for which it is obvious that it does not have
a solution of this type. Here “infer” means that we take a linear combination of
the given equations. The version (0.1.42) of the Farkas lemma characterizing the
solvability of (0.1.35) may be viewed similarly, but here we use the inference rule
that we can take a nonnegative linear combination of the given linear inequalities.

The solvability criterion for (0.1.38) can be formulated along the same lines,
but we have to allow the following more complicated rules.

(0.1.43) Rules of Inference.

Rule 1. Given inequalities aITx <p ..., a,f,x < PBm and Ay, ..., A, > 0, infer
the inequality (31, Aal)x <377, Aifi.

Rule 2. Given an inequality a1 x| +...+onXx, < B, infer the inequality |ay|x1 +. ..
+ o] x < |B). O

It is obvious that, if a nonnegative integral vector x satisfies the given
inequalities in Rule 1 or Rule 2, it also satisfies the inferred inequality. This
observation gives the trivial direction of the following theorem.

(0.1.44) Theorem (Nonnegative Integral Solvability of Linear Inequalities). As-
sume that A and b are rational. Then there exists a vector x € Z", x > 0 such
that Ax < b if and only if we cannot infer from Ax < b by a repeated application
of Rule 1 and Rule 2 of (0.1.43) the inequality 0"x < —1. a

It is important to note here that to derive the inequality 07 x < —1, it may be
necessary to apply the Rules 1 and 2 of (0.1.43) a large number of times.

(0.1.45) Example. Consider the following inequality system in R?:

X+ y < 355
x—y< 05,
—X + y < 055

—x—y < =25

14 Chapter 0. Mathematical Preliminaries

This system does not have a nonnegative integral solution. First we apply Rule 2
to each of the given inequalities to obtain

x+y< 3,
x—y< 0,
—x+y< 0
—x—y < -3

From the first two inequalities above we infer by Rule 1 that
x< 15

Similarly, the last two inequalities yield, by Rule 1, that

—x < —1.5.
Now applying Rule 2 gives
x< 1,
—x < =2,
adding these by Rule 1 gives
Ox +0y < —1.

The reader is invited to verify that, in this example, to infer Ox + 0y < —1
from the given system, Rule 2 has to be applied more than once; in fact, Rule 2
has to be applied to an inequality that itself was obtained by using Rule 2 at
some earlier step. 0

It is also true that if we start with any system of inequalities Ax < b with
at least one nonnegative integral solution, we can derive, using Rules 1 and 2 a
finite number of times, every inequality that is valid for all nonnegative integral
solutions of Ax < b.

Linear Programming and Duality

One of the most important problems of mathematical programming, and in
various ways the central subject of this book, is the following problem.

(0.1.46) Linear Programming Problem (LP). Given an mxn-matrix A, a vector
beR"™, and a vector c € R", find a vector x" € P = {x e R" | Ax < b} maximizing
the linear function c¢” x over P.

A linear programming problem (we also say just linear program) is usually
written in one of the following short forms:

(0.1.47) max ¢’ x
Ax < b,

or max{c’x | Ax < b},
or maxc’x, Ax <b,
or maxc’x, xeP.

0.1 Linear Algebra and Linear Programming 15

As we will see in the sequel there are various other ways to present a linear
program. A vector X satisfying AX < b is called a feasible solution of the linear
program, and a feasible solution X is called an optimal solution if ¢’X > ¢Tx
for all feasible vectors x. The linear function ¢ x is called the objective function
of the linear program. If we replace “maximizing” in (0.1.46) by “minimizing”,
the resulting problem is also called a linear program and the same terminology
applies.

With every linear program max ¢’ x, Ax < b, another program, called its dual,
can be associated; this reads as follows:

(0.1.48) min y7h, yTA =cT, y > 0,

where y is the variable vector. Using trivial transformations this program can be
brought into the form of a linear program as defined above. The original program
is sometimes referred to as the primal program. The following fundamental
theorem establishes an important connection between a primal problem and its
dual.

(0.1.49) Duality Theorem. Let (P) maxc’x, Ax < b be a linear program and
(D) miny”b, yTA = T, y = 0 be its dual. If (P) and (D) both have feasible
solutions then both problems have optimal solutions and the optimum values of
the objective functions are equal.

If one of the programs (P) or (D) has no feasible solution, then the other is
either unbounded or has no feasible solution. If one of the programs (P) or (D)
is unbounded then the other has no feasible solution. O

This theorem can be derived from, and is equivalent to, the Farkas lemma
(0.1.41). A useful optimality condition for linear programming problems is the
following result.

(0.1.50) Complementary Slackness Theorem. Suppose u is a feasible solution to
the primal linear programming problem (P) maxc”x, Ax < b and v is a feasible
solution for the dual (D) minyTh, yTA = cT, y > 0. A necessary and sufficient
condition for u and v to be optimal for (P) and (D), respectively, is that for all i

v; >0 implies Aju=b;,
(equivalently, Aiu < b; implies v; =0).
a

It follows from the definition of optimality that the set of optimum solutions
of a linear program over a polyhedron P is a face of the polyhedron P. If P is
a pointed polyhedron, then every face contains at least one vertex. Hence, if P
is pointed and the linear program maxc” x, x € P is bounded then it has at least
one optimum solution x* that is a vertex of P. In particular, this implies that
every linear program over a nonempty polytope has an optimum vertex solution.

There is a diophantine version of the linear programming problem, important

in view of combinatorial applications.

16 Chapter 0. Mathematical Preliminaries

(0.1.51) Integer Linear Programming Problem. Given an mxn-matrix A, vectors
b e R™ and c € R", find an integral vector x* € P = {x e R" | Ax < b}
maximizing the linear function c” x over the integral vectors in P.

Almost every combinatorial optimization problem can be formulated as such
an integer linear programming problem.

Given an integer linear program, the linear program which arises by dropping
the integrality stipulation is called its LP-relaxation. We may also consider the
dual of this LP-relaxation and the associated integer linear program. Then we
have the following inequalities (provided that the optima involved exist):

(0.1.52) maxc’x < maxc’x = miny’h < minyTh
Ax <b Ax <b yTd=cT yTa=cT

x integral y>0 y=0
y integral

In general, one or both of these inequalities can be strict.

We say that the system Ax < b is totally primal integral (TPI) if A and b are
rational and the first inequality in (0.1.52) holds with equality for each integral
vector ¢, for which the maxima are finite. The system Ax < b is totally dual
integral (TDI) if A and b are rational and the second inequality in (0.1.52) holds
with equality for each integral vector ¢, for which the minima are finite. The
following theorem due to EDMONDS and GILES (1977) relates these two concepts.

(0.1.53) Theorem. Ifb is an integral vector and Ax < b is totally dual integral,
then it is also totally primal integral. O

Note that total primal integrality and total dual integrality are not dual
concepts (the roles of b and ¢ are not symmetric); in fact, the converse of
Theorem (0.1.53) does not hold. Observe that the condition that ¢ is an integral
vector can be dropped from the definition of total primal integrality without
changing this notion. Geometrically, total primal integrality means that P is
equal to the convex hull of the integral points contained in P — in particular, if
P is pointed then all vertices of P are integral. A further property equivalent to
total primal integrality is that for each integral vector ¢ the optimum value of
max c’ x, Ax < b is an integer (if it is finite).

0.2 Graph Theory

Unfortunately there is no standard terminology in graph theory. We shall use
a mixture of BERGE (1973), BoLLoBAS (1978), BoNDY and MURTY (1976), and
LAWLER (1976) but we shall also introduce some new symbols which are more
appropriate for our purposes.

0.2 Graph Theory 17

Graphs

A graph G = (V,E) consists of a finite nonempty set ¥ of nodes and a finite
set E of edges. With every edge, an unordered pair of nodes, called its endnodes,
is associated and we say that an edge is incident to its endnodes. Note that we
usually assume that the two endnodes of an edge are distinct, i. e., we do not
allow loops, unless specified otherwise. If there is no danger of confusion we
denote an edge e with endnodes i and j by ij. Two edges are called parallel if
they have the same endnodes. A graph without parallel edges is called simple.
The number of nodes of G is called the order of G.

A node that is not incident to any edge is called isolated. Two nodes that
are joined by an edge are called adjacent or neighbors. For a node set W, I'(W)
denotes the set of neighbors of nodes in W. We write I'(v) for I'({v}). The set
of edges having a node v € V' as one of their endnodes is denoted by §(v). The
number |6 (v)| is the degree of node v € V. More generally, if W < V, then
0 (W) denotes the set of edges with one endnode in W and the other endnode in
V \ W. Any edge set of the form § (W), where @ # W # V, is called a cut.

If s and ¢ are two different nodes of G, then an edge set F < E is called an
[s, t]-cut if there exists a node set W < V with se W, t ¢ W such that F = §(W).
(We shall often use the symbol [.,.] to denote a pair of objects where the order of
the objects does not play a role; here in particular, an [s, t]-cut is also a [t, s}-cut.)

If W =V and F < E then E(W) denotes the set of edges in G = (V,E)
with both endnodes in W, and V (F) denotes the nodes of G which occur as an
endnode of at least one edge in F.

If W is a node set in G = (V, E), then G — W denotes the graph obtained by
removing (or deleting) W, i. e., the node set of G—W is V' \ W and G—W contains
all edges of G which are not incident to a node in W. By G[W] we denote the
subgraph of G induced by a node set W < V,i. e, G[W] = G—(V \ W). For
F < E, the graph G—F = (V,E \ F) is called the graph obtained from G by
removing (or deleting) F. For v € V and e € E, we write G —v and G — e instead
of G — {v} and G — {e}.

For a node set W < V, the graph G - W denotes the graph obtained by
contracting W, i. e., G- W contains all nodes V' \ W and a new node, say w, that
replaces the node set . All edges of G not incident to a node in W are kept, all
edges of G with both endnodes in W are removed, and for all edges of G with
exactly one endnode in W, this endnode is replaced by w (so parallel edges may
result). If e = uv € E and G contains no edge parallel to e, then the contraction
G- e of e is the graph G - {u,v}. If G contains edges parallel to e, G - e is obtained
by adding as many loops to G - {v,w} containing the new node w as there are
edges parallel to e in G. Since here loops come up, we will be careful with this
operation. The contraction of a loop results in the same graph as its deletion.
The contraction G - F of an edge set F is the graph obtained by contracting the
edges of F (in any order).

A matching (or 1-matching) M in a graph G = (V, E) is a set of edges such
that no two edges of M have a common endnode. A matching M is called perfect
if every node is contained in one edge of M.

18 Chapter 0. Mathematical Preliminaries

A simple graph is called complete if every two of its nodes are joined by an
edge. The (up to isomorphism unique) complete graph of order n is denoted by
K,. A graph G whose node set V' can be partitioned into two nonempty disjoint
sets V1, V, with Vi U V> = V such that no two nodes in V; and no two nodes in
V> are adjacent is called bipartite. The node sets Vi, V, are called color classes, a
2-coloring, or a bipartition of V. If G is simple and bipartite, |V;| = m, | V3| = n,
and every node in V| is adjacent to every node in V>, then G is called complete
bipartite and is denoted by K,,,. The complete bipartite graph K, , is called a
star, and the star K3 a claw.

If G is a graph, then the complement of G, denoted by G, is the simple graph
which has the same node set as G and in which two nodes are adjacent if and
only if they are nonadjacent in G.

The line graph L(G) of a graph G is the simple graph whose node set is the
edge set of G and in which two nodes are adjacent if and only if the corresponding
edges of G have a common endnode.

A stable set (clique) in a graph G = (V, E) is a set of nodes any two of which
are nonadjacent (adjacent). A coloring (clique covering) of a graph G = (V,E) is
a partition of V' into disjoint stable sets (cliques).

Clearly, every graph G = (V, E) can be drawn in the plane by representing
nodes as points and edges as lines linking the two points which represent their
endnodes. A graph is called planar, if it can be drawn in the plane in such a way
that no two edges (i. €., the lines representing the edges) intersect, except possibly
in their endpoints.

Digraphs

A directed graph (or digraph) D = (V/, A) consists of a finite nonempty set V' of
nodes and a set A of arcs. With every arc a, an ordered pair (u, v) of nodes, called
its endnodes, is associated; u is the initial endnode (or tail) and v the terminal
endnode (or head) of a. As in the undirected case, loops (u, u) will only be allowed
if explicitly stated. If there is no danger of confusion we denote an arc a with
tail u and head v by (u,v); we also say that a goes from u to v, that a is incident
from u and incident to v, and that a leaves u and enters v. If there is an arc going
from u to v, we say that u is a predecessor of v and that v is a successor of u.

If D= (V,A)is adigraphand W < V', B < A, then V (B) is the set of nodes
occurring at least once as an endnode of an arc in B, and A(W) is the set arcs
with head and tail in . Deletion and contraction of node or arc sets is defined
in the same way as for undirected graphs.

If D = (V,A) is a digraph, then the graph G = (V,E) having an edge ij
whenever (i,j) € A or (j,i) € A is called the underlying graph of D. A digraph has
an “undirected property” whenever its underlying graph has this property. For
example, a digraph is planar if its underlying graph is planar.

If v € ¥V then the set of arcs having v as initial (terminal) node is denoted
by 6+ (v) (6~ (v)); we set 6(v) := 6 (v) U (v). The numbers |61 (v)|, |6~ (v)|, and
|6 (v)| are called the outdegree, indegree, and degree of v, respectively.

Foranyset W SV, 0 #W # V,weset 61 (W) ={(i,j)e A|ie W,j¢ W},
6~ (W) :=6T(V\W),and (W) := 61 (W)US(W). If 5,t are two different nodes

0.2 Graph Theory 19

of a digraph D = (V, A), then an arc set F < A is called an (s, t)-cut ([s, t]-cut)
in D if there is a node set W with s € W and t ¢ W such that F = §Y(W)
(F = 6(W)). An arc set of the form 6+(W),) # W #+ V, is called a directed cut
ordicut if 5= (W) =0,i.e, (W) =8 (W) =56"(V \W).If r e V then every arc
set of the form 6~ (W), where § # W < V \ {r} is called an r-rooted cut or just
r-cut.

Walks, Paths, Circuits, Trees

In a graph or digraph, a walk is a finite sequence W = vg, e, vy, e2,0s, ..., e, Uk
(k = 0), beginning and ending with a node, in which nodes v; and edges (arcs)
e; appear alternately, such that for i = 1,2, ..., k the endnodes of every edge
(arc) e; are the nodes v;_y, v;. The nodes vy and v, are called the origin and the
terminus, respectively, or the endnodes of W. The nodes vy, ..., vx_; are called
the internal nodes of . The number k is the length of the walk. If (in a digraph)
all arcs e; are of the form (v;,_y,v;) then W is called a directed walk or diwalk.
An edge (arc) connecting two nodes of a walk but not contained in the walk is
called a chord of the walk.

A walk in which all nodes (edges or arcs) are distinct is called a path (trail).
A path in a digraph that is a diwalk is called a directed path or dipath. If a node
s is the origin of a walk (diwalk) W and ¢ the terminus of W, then W is called
an [s, t]-walk ((s, t)-diwalk).

Two nodes s,t of a graph G are said to be connected if G contains an [s, t]-
path. G is called connected if every two nodes of G are connected. A digraph D
is called strongly connected (or diconnected) if for every two nodes s,¢ of D there
are an (s,t)-dipath and a (¢, s)-dipath in D.

A graph G (digraph D) is called k-connected (k-diconnected) if every pair
s,t of nodes is connected by at least k [s,t]-paths ((s,t)-dipaths) whose sets of
internal nodes are mutually disjoint. The components of a graph are the maximal
connected subgraphs of the graph. An edge e of G is called a bridge (or isthmus)
if G — e has more components than G. A block of a graph is a node induced
subgraph (W,F) such that either F = {f} and f is a bridge, or (W,F) is
2-connected and maximal with respect to this property.

A walk is called closed if it has nonzero length and its origin and terminus
are identical. A closed walk (diwalk) in which the origin and all internal nodes
are different and all edges (arcs) are different is called a circuit (dicycle or directed
cycle). A circuit (dicycle) of odd (even) length is called odd (even). A circuit of
length three (five) is called a triangle (pentagon).

A walk (diwalk) that traverses every edge (arc) of a graph (digraph) exactly
once is called an Eulerian trail (Eulerian ditrail). We refer to a closed Eulerian
trail (ditrail) as an Eulerian tour. An Eulerian graph (Eulerian digraph) is a graph
(digraph) containing an Eulerian tour.

A circuit of length n in a graph of order n is called a Hamiltonian circuit. A
graph G that contains a Hamiltonian circuit is called Hamiltonian. Similarly, a
digraph D is called Hamiltonian if it contains a Hamiltonian dicycle. Hamiltonian
circuits or dicycles are often called (Hamiltonian) tours.

20 Chapter 0. Mathematical Preliminaries

We shall also use the words “path, circuit, dipath, dicycle, Eulerian tour” to
denote the edge or arc set of a path, circuit, dipath, dicycle, Eulerian tour. Thus,
whenever we speak of the incidence vector of a circuit etc., we mean the incidence
vector of the edge (arc) set of the circuit etc.

A forest is an edge set in a graph which does not contain a circuit. A
connected forest is called a tree. A spanning tree of a graph is a tree containing
all nodes of the graph. A digraph or arc set which does not contain a dicycle is
called acyclic.

A branching B is an arc set in a digraph D that is a forest such that every
node of D is the head of at most one arc of B. A branching that is a tree is called
an arborescence. A branching that is a spanning tree of D is called a spanning
arborescence of D. Clearly, in a spanning arborescence B of D every node of D
is the head of one arc of B except for one node. This node is called the root of
B. If r is the root of arborescence B we also say that B is rooted at r or r-rooted.

Chapter 1

Complexity, Oracles, and Numerical Computation

This chapter is still of a preliminary nature. It contains some basic notions of
complexity theory and outlines some well-known algorithms. In addition, less
standard concepts and results are described. Among others, we treat oracle
algorithms, encoding lengths, and approximation and computation of numbers,
and we analyse the running time of Gaussian elimination and related procedures.
The notions introduced in this chapter constitute the framework in which algo-
rithms are designed and analysed in this book. We intend to stay on a more
or less informal level; nevertheless, all notions introduced here can be made
completely precise — see for instance AHO, HOPCROFT and ULLMAN (1974), GAREY
and JOHNSON (1979).

1.1 Complexity Theory: & and N &

Problems

In mathematics (and elsewhere) the word “problem” is used with different mean-
ings. For our purposes, a problem will be a general question to be answered
which can have several parameters (or variables), whose values are left open. A
problem is defined by giving a description of all its parameters and specifying
what properties an (optimal) solution is required to satisfy. If all the parameters
are set to certain values, we speak of an instance of the problem.

For example, the open parameters of the linear programming problem
(0.1.46) are the m xn-matrix 4, and the vectors ¢ € R", b € R™. If a partic-
ular matrix A4, and particular vectors ¢, b are given, we have an instance of the
linear programming problem. A solution of an instance of (0.1.46) is one of the
following: the statement that P = {x | Ax < b} is empty, the statement that c” x
is unbounded over P, or a vector x* € P maximizing ¢’ x over P.

Two problems of a different sort are the following. Suppose a graph G =
(V,E) is given, and we ask whether G contains a circuit, or whether G contains
a Hamiltonian circuit. The first problem is called the circuit problem, the second
one the Hamiltonian circuit problem. In both cases the open parameter is the
graph G, and the answer is not a vector or a statement as in the LP-problem,
but just a “yes” or “no” decision.

22 Chapter 1. Complexity, Oracles, and Numerical Computation

These two problems have natural optimization versions. Namely, suppose in
addition to the graph G = (V,E) a “length” or “weight” ¢, € Z, is given for
every edge e € E. The problem of finding a circuit such that the sum of the
lengths of the edges of the circuit is as small as possible is called the shortest
circuit problem. The problem of finding a Hamiltonian circuit of minimum total
length is called the (symmetric) traveling salesman problem (on G).

To give a formal definition of “problem”, we assume that we have an encoding
scheme which represents each instance of the problem as well as each solution
as a string of 0’s and 1’s. So mathematically, a problem is nothing else than a
subset IT of {0,1}*x{0,1}", where {0,1}* denotes the set of all finite strings of
0’s and 1’s. Each string o € {0,1}" is called an instance or input of IT while a
7 € {0,1}" with (o,7) € Il is called a corresponding solution or output of I1. We
shall assume that, for each instance o € {0,1}", there exists at least one solution
7 € {0,1}" such that (o,) € I1. (Informally, this only means that if, in its natural
setting, an instance of a problem has no solution we declare “no solution” as the
solution.)

Algorithms and Turing Machines

In many books or papers it suffices to define an algorithm as anything called
an algorithm by the authors. In our case, however, algorithms using oracles will
play a major role. Since this notion is less standard, we have to go into some
details.

Informally, an algorithm is a program to solve a problem. It can have the
shape of a sequence of instructions or of a computer program. Mathematically,
an algorithm often is identified with some computer model. We want to describe
one such model, the (t-tape) Turing machine. For the reader not familiar with
Turing machines it helps to imagine a real-world computer.

The machine consists of a central unit, ¢ tapes, and ¢ heads, where ¢ is some
positive integer. Each head is able to read from and write on its tape. The central
unit can be in a finite number of states. A tape is a 2-way infinite string of
squares (or cells), and each square is either blank or has “0” or “1” written on
it. At a particular moment, each head is reading a particular square of its own
tape. Depending on what the heads read and on the state of the central unit,
each head overwrites or erases the symbol it has read, possibly moves one square
to the left or right, and the central unit possibly goes into another state.

At the beginning of the computation, the first tape contains the input string
and the first head is reading the first symbol on the tape. The other tapes are
blank and the central unit is in a special state B called “beginning state”. The
computation ends when the central unit reaches another special state E called the
“end state”. At this moment, the first tape contains the result of the computation
(blanks are ignored). So a Turing machine can be described formally as a 6-tuple
T=(X,B,E,®,¥,E) where:

(i) X is a finite set of states;
(i) B, E are special elements of X, B is the beginning state and E the end state;
(iii) @ : X x{0,1,*}' — X is the function describing the new state of the central
unit;

1.1 Complexity Theory 23

(iv) ¥ : X x{0,1,*}' — {0,1,*}' is the function determining the new symbols
written on the tapes;

(v) E : Xx{0,1,*} - {0,1,—1}" is the function determining the movement of
the heads.

(Here “#” stands for blank.) Now an algorithm can be considered as nothing
else than a Turing machine 7'. It solves problem IT = {0,1}" x{0,1}" if, for each
string ¢ € {0,1}", when we give strings g, :=g,0, ;== 0, ..., 0, ;= 0 to T with
beginning state B, then, after a finite number of moves of the read-write heads,
it stops in state E, while “on tape 1” we have a string o; = t which is a solution
of the problem, i. e, (o,7) € II.

There are other computer models that can be used to define an algorithm
(like the RAM (= random access machine) or the RASP (= random access
stored program machine)), but for our purposes — deciding the polynomial-time
solvability of problems — most of them are equivalent.

Encoding

It is obvious that, for almost any imaginable problem, the running time of an
algorithm to solve a problem instance depends on the “size” of the instance. The
concept of “size” can be formalized by considering an encoding scheme that maps
problem instances into strings of symbols describing them. The encoding length
or input size (or just length or size) of a problem instance is defined to be the
length of this string of symbols.

Different encoding schemes may give rise to different encoding lengths. For
our purposes, most of the standard encoding schemes are equivalent, and for the
generality of our results it is not necessary to specify which encoding scheme is
used. However, when using encoding lengths in calculations we have to fix one
scheme. In these cases we will use the usual binary encoding — details will be
given in Sections 1.3 and 2.1.

We would like to point out here that the publication of the ellipsoid method
put into focus various controversies about which parameters should be counted
in the encoding length. In particular, for an instance of a linear programming
problem given by a matrix 4 € Q™" and vectors b € Q", c € Q", the question is
whether the number n - m (of variables times constraints) should be considered
as the size of the instance, or whether, in addition, the space needed to encode
A, b and ¢ should be counted. Both points of view have their merit. They lead,
however, to different notions of complexity.

Time and Space Complexity

Given an encoding scheme and an algorithmic model, the time complexity function
or running time function / : N — N of an algorithm expresses the maximum time
f(n) needed to solve any problem instance of encoding length at most n € N.
In the Turing machine model “time” means the number of steps in which the
machine reaches the end state E from the beginning state B, for a certain input
string o.

24 Chapter 1. Complexity, Oracles, and Numerical Computation

Similarly, the space complexity function g : N —» IN of an algorithm expresses
the maximum space g(n) needed to solve any problem instance of encoding length
at most n € IN. In the t-tape Turing machine model “space” means the maximum
length of strings occuring throughout executing the steps on tape i, summed over
i=1tot.

A polynomial time (space) algorithm is an algorithm whose time (space)
complexity function f(n) satisfies f(n) < p(n) for all n € N, for some poly-
nomial p.

The main purpose of this book is to derive — with geometric methods —
that many interesting problems can be solved by means of a polynomial time
algorithm. There are, however, many problems for which such algorithms are
not known to exist, and which appear to be much harder.

Decision Problems: The Classes 2 and NP

In order to distinguish between “hard” and “easy” problems it is convenient to
restrict the notion of problem, and to analyse decision problems only. Decision
Problems are problems having merely two possible solutions, either “yes” or
“no”. Decision problems are for instance the circuit problem and the Hamiltonian
circuit problem. The class of all those decision problems for which a polynomial
time algorithm exists is called the class 2.

More exactly, a decision problem is a problem IT such that for each ¢ € {0,1}",
exactly one of (6,0), (d,1) belongs to Il, and if (o,7) € IT then 7 € {0,1}. (0
stands for “no”, and 1 for “yes”.) The class # consists of all decision problems
that can be solved by a polynomial time algorithm.

An example of a problem in £ is the circuit problem, since the existence of a
circuit in a graph G = (V, E) can be checked in O(|E|) time by depth-first search.
Recall that a function f(n) is O(g(n)), in words “f is of order g”, if there is a
constant ¢ such that | f(n)| < c|g(n)| for all integers n > 0.

It is by no means the case that all combinatorial problems one encounters
are known to be solvable in polynomial time. For example, no polynomial time
algorithm is known for the Hamiltonian circuit problem. In fact, it is generally
believed that no polynomial time algorithm exists for this problem. Similarly,
many other combinatorial problems are expected not to be solvable in polynomial
time. Most of these problems have been proved to be equivalent in the sense
that if one of them is solvable in polynomial time then the others are as well. In
order to sketch the theory behind this, we first describe a class of problems, most
probably wider than £, that contains many of the combinatorial problems one
encounters.

Informally, this class of problems, denoted by 42, can be defined as the class
of decision problems IT with the following property:

If the answer to an instance of Il is in the affirmative, then this fact has a proof
of polynomial length.

Note that this definition does not require any method for finding the short proof.
For example, if a graph is Hamiltonian then somebody may find a Hamiltonian
circuit (by pure luck, intuition, or supernatural power) and mark it with a red

1.1 Complexity Theory 25

pencil. This yields a proof that the graph is Hamiltonian, and even if we write out
all steps of this proof right from the axioms of set theory, its length is polynomial
in the size of the graph.

The definition of class A% is nonsymmetric in “yes” and “no” answers. In
order to get the point, and thus to see that the definition of 42 is not pointless,
the reader is invited to try to see whether for a non-Hamiltonian graph the
nonexistence of a Hamiltonian circuit has a proof of polynomial length.

The example above motivates the following formal definition. A4Z consists
of all decision problems Il for which there exists a decision problem X in 2 and
a polynomial @ such that for each ¢ € {0,1}",

(0,1) e T <=> 31 € {0,1}" such that ((s,7),1) € £ and
encoding length (7) < ®(encoding length (0)).

The string 7 is called a succinct certificate for o.

A third equivalent way to define the class 4?2 is via nondeterministic polyno-
mial time algorithms; in fact, this is the definition from which the notation A2 is
derived. Roughly speaking, these are algorithms in which “guesses” are allowed,
provided the correctness of the guess is verified; e. g., we “guess” a Hamiltonian
circuit and then verify in polynomial time that the guess was correct. We shall
not, however, go into the details of this definition; the reader may find them in
the literature cited above.

It is clear that 2 < 4. It also appears natural that 2 # A2, since
nondeterministic algorithms seem to be more powerful than deterministic ones.
However, despite enormous research efforts the problem whether or not # = 42
is still one of the major open problems in mathematics.

The problem obtained by negating the question of a decision problem IT is
called the problem complementary to I1. That is, the complementary problem to I1
is {(o,1—1) | (6,7) € IT}. The class of decision problems that are complementary
to problems in a class C of decision problems is denoted by co-C. For example,
the class complementary to A2 is the class co-4#Z which, e. g.,, contains as a
member the problem “Does a given graph G contain no Hamiltonian circuit?”.

Trivially 2 = co-#, hence < AP N co-A#P. The class /P 1 co- NP
is of particular importance, since for every problem in this class any answer
(positive or negative) to an instance has a proof of polynomial length. Following
J. Edmonds these problems are called well-characterized. Many deep and well-
known theorems in combinatorics (Kuratowski’s, Menger’s, Konig’s, Tutte’s) in
fact prove that certain problems are in A% N co-AZ.

Another outstanding question is whether 2 equals 42 N co- A2, i. e, can
every well-characterized problem be solved in polynomial time. The Farkas
lemma (0.1.41) actually yields that the question: “Given a system of linear
equations, does it have a nonnegative solution?” is well-characterized. But no
polynomial algorithm for this problem was known until 1979, when Khachiyan
published his solution using the ellipsoid method. Much of the interest in the
ellipsoid method derives from this fact. Several applications of the ellipsoid
method treated in this book can be viewed as methods to make use of good
characterizations in the design of algorithms.

26 Chapter 1. Complexity, Oracles, and Numerical Computation

It is also unknown whether /% equals co-A#Z?. Note that /P # co- AP
would imply 2 # A2.

1.2 Oracles

Informally, we imagine an oracle as a device that solves certain problems for us,
i. e, that, for any instance g, supplies a solution . We make no assumption on
how a solution is found.

An oracle algorithm is an algorithm which can “ask questions” from an
oracle, and can use the answers supplied. So an oracle algorithm is an algorithm
in the usual sense, whose power is enlarged by allowing as further elementary
operations the following: if some string ¢ € {0,1}" has been produced by the
algorithm, it may “call the oracle I1,” with input g, and obtain a string t such
that (o, 1) € I1;. A realization of an oracle IT is an algorithm solving (problem) II.

Mathematically, when working in the Turing machine model, this means that
we have to enlarge the concept of Turing machine slightly to that of a (t-tape)
k-oracle Turing machine. (The reader not familiar with these concepts may view
an oracle Turing machine as a (real-world) computer which can employ satelite
computers, or as a computer program having access to subroutines.)

Let (X,B,E,®,¥,E) be a Turing machine with ¢ tapes; the last k of these
are called oracle tapes. On the oracle tapes special “oracles” for problems
M, ..., II; are sitting. The set X of states contains a special subset {xy, ..., x}.
If the central unit is in state x;, i € {1, ..., k}, then nothing happens to the
heads and tapes except that the string o on the i-th oracle tape is erased and
(miraculously) replaced by some other string t such that (o, 1) € I1;; the string t
starts at the position currently read by the corresponding head.

Note that the (k + 1)-tuple (T";I1,, ..., II;) entirely describes the machine.

We say that such an oracle Turing machine solves problem IT < {0, 1}*x{0, 1}*
if for each ¢ € {0,1}°, when we give strings 6, = 0,072 :=0, ...,0, =0 to it
with beginning state B, then, whatever answers p are given by the oracle when
we are in one of the states xj, ..., xi, it stops after a finite number of steps in
state E with o; = t such that (o,7) € [1.

The Running Time of Oracle Algorithms

The introduction of a running time function for oracle algorithms requires some
care. For our purposes, it is convenient to make one general assumption about
oracles:

(1.2.1) General Assumption. We assume that with every oracle we have a
polynomial ® such that for every question of encoding length at most n the
answer of the oracle has encoding length at most ®(n).

This assumption is natural for our purposes, since if an algorithm uses
an oracle which produces an exponentially long output, then it would take
exponential time just to read the output.

1.2 Oracles 27

Mathematically, this general assumption means that an oracle is a pair (IT, @),
where IT = {0,1}"x{0,1}" and ® is a polynomial such that for each ¢ € {0,1}"
of encoding length n, say, there is a 7 € {0,1}" of encoding length at most ®(n)
with (o,7) e T

We define the number of steps performed by an oracle Turing machine as the
number of interations needed to transform the machine from the beginning state
B to the end state E, where a call on an oracle as described above counts as one
step. (Reading the answer of an oracle may require more than one step.)

Let POL define the collections of polynomials p : N — IN. Thus we define
the time complexity function or running time function / : (N x (POL)¥) - N of

a k-oracle Turing machine (7,11, ..., I1k) by: f(n;®y, ..., @) is the maximum
number of steps performed by the Turing machine when giving any input of
encoding length at most n to the machine (7,I1; N @, ..., IT; N &), where

®; == {(¢,7) € {0,1}*x{0,1}" | encoding length (r) < ®;(encoding length (0))}.
Here the maximum ranges over all possible inputs of encoding length at most n,
and over all possible answers given by the oracles (ITy,®,), ..., (Ilx, ®;), while
executing the algorithm.

It follows from the General Assumption (1.2.1) by a compactness argument
that there are only a finite number of possible runs of the algorithm for any
given input. Hence the “maximum” in the definition of f is finite.

An oracle algorithm is called oracle-polynomial, or just polynomial if, for
each fixed @, ..., ®, € POL, the function f(n, @y, ..., ®;) is bounded by a
polynomial in n.

So if we substitute each problem II; in a polynomial time oracle Turing ma-
chine T by a polynomial time algorithm, we obtain a polynomial time algorithm
for the problem solved by T.

Transformation and Reduction

Suppose we have two decision problems IT and IT' and a fixed encoding scheme.
A polynomial transformation is an algorithm which, given an encoded instance
of TI, produces in polynomial time an encoded instance of IT" such that the
following holds: For every instance ¢ of Il, the answer to ¢ is “yes” if and only
if the answer to the transformation of ¢ (as an instance of IT') is “yes”. Clearly,
if there is a polynomial algorithm to solve I1' then by polynomially transforming
any instance of Il to an instance of IT’ there is also a polynomial algorithm to
solve IT.

Optimization problems are of course not decision problems. But we can
associate decision problems with them in a natural way. Assume a maximization
(or minimization) problem, e. g., a linear program, is given. Then we introduce
an additional input Q € @ and ask “Is there a feasible solution (e. g., to the
LP) whose value is at least (or at most) Q?”. Supposing there is a polynomial
algorithm to solve the optimization problem, we can solve the associated decision
problem in the following way. We first compute the optimal solution and its
value, then we compare the optimal value with the bound Q and hence are able
to solve the decision problem in polynomial time.

28 Chapter 1. Complexity, Oracles, and Numerical Computation

Conversely, one can often use a polynomial time algorithm for the associated
decision problem to solve a given optimization problem in polynomial time. For
example, consider the traveling salesman (optimization) problem and its decision
version. Let s and ¢ be the smallest and largest numbers occuring as edge lengths,
respectively. Since every tour contains exactly n = || edges, the shortest tour
cannot be shorter than ns and cannot be longer than nt. Suppose now there is a
polynomial time algorithm for the traveling salesman decision problem, then we
can ask whether there is a tour of length at most n(t —s)/2. If this is the case we
ask whether there is a tour of length at most n(t — s)/4; if not we ask whether
there is a tour of length at most 3n(t —s)/4, and continue by successively halving
the remaining interval of uncertainty. Since the optimum value is integral, the
decision problem has to be solved at most [log,(n(t —s))] + 1 times. Hence, if
the traveling salesman decision problem could be solved in polynomial time, the
traveling salesman (optimization) problem could be solved in polynomial time
with this so-called binary search method.

The polynomial transformation and the binary search method described above
are special cases of a general technique. Suppose IT and II" are two problems.
Informally, a polynomial time Turing reduction (or just Turing reduction) from II
to IT’ is an algorithm A which solves IT by using a hypothetical subroutine A4’
for solving IT' such that, if A’ were a polynomial time algorithm for II', then A
would be a polynomial time algorithm for I1.

More precisely, a polynomial time Turing reduction from II to IT’' is a poly-
nomial 1-oracle Turing machine (7";IT’) solving Il. If such a reduction exists, we
say that IT can be Turing reduced to IT'.

Now we can state some more notions relating the complexity of one problem
to that of others.

N P-Completeness and Related Notions

Cook (1971) and KARrRP (1972) introduced a class of decision problems which
are in a well-defined sense the hardest problems in A#%. We call a decision
problem IT A4#Z?-complete if I1 € A% and if every other problem in A% can
be polynomially transformed to Il. Thus, every 4Z-complete problem IT has
the following property: If IT can be solved in polynomial time then all #2-
problems can be solved in polynomial time, i. e., if I1 is A4#Z-complete and if
IT € # then 2 = A/Z. This justifies saying that A#Z-complete problems are the
hardest 4#Z-problems. The Hamiltonian circuit problem, for instance, is known
to be A#?-complete, and in fact, many of the natural problems coming up in
practice are #/P-complete — see GAREY and JOHNSON (1979) and the ongoing
“NP-Completeness Column” of D. S. Johnson in the Journal of Algorithms for
extensive lists of A#Z-complete problems.

The main significance of the notion of A#?-completeness is that it lends a
mathematically exact meaning to the assertion that a certain problem is “hard”.
But the fact that 4#/Z?-complete problems exist also suggests a way to standardize
problems in A4%: we may consider every problem in A2 as a special case of,
say, the Hamiltonian circuit problem. The usefulness of such a standardization
depends on whether or not the natural special features of various problems in

1.3 Approximation and Computation of Numbers 29

NP are translated into manageable properties by the reductions. So far, the
most succesful A#Z-complete problem used for such standardization has been the
integer programming problem. Various combinatorial problems (e. g., matching,
stable set, matroid intersection, etc.), when reduced to integer programming
problems, give rise to polyhedra having good properties from the point of view
of integer programming. Polyhedral combinatorics is the branch of combinatorics
dealing with such questions; this will be our main approach to combinatorial
optimization problems in the second half of the book.

A problem IT is called 4#?-easy (“not more difficult than some problem in
A P”) if there is a problem I1" € 42 such that IT can be Turing reduced to
IT'. A problem II is called .#%-hard (“at least as difficult as any problem in
HP”) if there is an A4ZP-complete decision problem IT" such that IT' can be
Turing reduced to I1. The discussion above shows, for instance, that the traveling
salesman problem is A4 ?-easy, and also, that optimization problems are A-
hard if their associated decision problems are A4 Z-complete. In particular, the
traveling salesman problem is A4Z-hard.

An optimization problem that is both A4Z-hard and A#ZP-easy is called A-
equivalent. By definition, if 2 # 42 then no .#Z2-hard problem can be solved
in polynomial time, and if # = A2 then every .#/%-easy problem can be solved
in polynomial time. Therefore, any 4?-equivalent problem can be solved in
polynomial time if and only if Z = A2.

Since we do not want to elaborate on the subtle differences between the
various problem classes related to the class 4% we shall use the following
quite customary convention. In addition to all decision problems that are
NP-complete, we call every optimization problem A4Z-complete for which the
associated decision problem is 4#Z-complete.

To close this section we would like to remark that Turing reductions will be
the most frequent tools of our complexity analysis. We shall often show that a
polynomial algorithm A for one problem implies the existence of a polynomial
time algorithm for another problem by using 4 as an oracle.

1.3 Approximation and Computation of Numbers

The introduction to complexity theory in the foregoing two sections has made
some informal assumptions which we would like to discuss now in more detail.
One important assumption is that all instances of a problem can be encoded in
a finite string of, say, 0’s and 1’s.

Encoding Length of Numbers

For integers, the most usual encoding is the binary representation, and we will
use this encoding, unless we specify differently. To encode an integer n # 0, we
need one cell (or bit) for the sign and [log,(jn| + 1)] cells for the {0, 1}-string of
the binary representation of its absolute value. For 0, only one cell is needed.

30 Chapter 1. Complexity, Oracles, and Numerical Computation

Hence, the space needed to encode an integer is
(1.3.1) (n) =1+ [log,(|n| +1)], ne Z,

and we call (n) the encoding length (or the input size or just size) of n. If we
say that an algorithm computes an integer, we mean that its output is the binary
encoding of this integer.

Every rational number r can be written uniquely as p/q with ¢ > 0 and p
and g coprime integers; so the space needed to encode r is

(1.3.2) (ry ={p)+{q),

and we call this the encoding length of r. Similarly, if x is a rational vector or
matrix then the encoding length (x) is defined as the sum of the encoding lengths
of its entries. If a”x < b is an inequality with a € Q" and b € @ then we say
that (a) + (b) is the encoding length of the inequality; and the encoding length
of an inequality system is the sum of the encoding lengths of its inequalities. To
shorten notation, for any sequence ay, as, ..., a, of matrices and vectors, we will
write {(ai, ..., a,) to denote the sum of the encoding lengths of ay, ..., a,. In
particular, we write (A4, b, c) to denote the encoding length of the linear program
max{cTx | Ax < b}.

There are some useful relations between encoding lengths and other functions
of vectors and matrices.

(1.3.3) Lemma.

(a) For every rational numberr, |r| <2771 1.
(b) For every vector x € Q", x|l < fx); <257 —1.
(c) For every matrix D € @™", |detD| < 20" _1,

Proof. (a) follows directly from the definition. To prove (b), let x =
(x1, ..., x5)T. By (0.1.6) ||x|| < ||x|l;. Then by (a)

L+ fxlls =14) Il < [[+ < [[250t =200
i=1 i=1 i=1

To prove (c), let dy, ..., d, be the rows of D. Then by Hadamard’s inequality
(0.1.28) and (b):

1+|detD| <1+ n ld;]] < H(l +dil) < H2<d,~)—n — 2(D)-n?
i=1 i=1 i=1

1.3 Approximation and Computation of Numbers 31

(1.3.4) Lemma.

(@) Forr,seq, (rs) < {r)+(s).
(b) For every matrix D e Q™", (detD) < 2{(D)—n?,
and if D € Z"" then (detD) < (D) —n?>+1.

Proof. (a) is trivial. The second statement of (b) follows immediately from (1.3.3)
(c). To prove the first statement of (b), let D = (p;;/gy)ij-1,...,» be such that p;
and g;; > 1 are comprime integers for i,j = 1,..., n. The same argument as in
the proof of Lemma (1.3.3) shows that

|det D| < 22.,j=1<pu)—,.z 1

Let Q = szzl gij. Then det D = (Q detD)/Q, where Q det D and Q are integers.

Hence
(det D) < (Q det D) + (Q)

= 1+ [log,(|Q det D[+ 1)] + (Q)
< 1+ [logy(1 + Q2P _1))] 1 (Q)
< 1+[log, @+) (py) — 1’1 +(Q)

<24Q) + Z(Pij> —n?
< 2(D) —n>.

(1.3.5) Exercise.

(a) Prove that for any zy, ..., zn € Z:
(zi+...+zn) < {z1)+ ...+ (zn).
(b) Prove that for anyry, ..., r, € Q:
(ri+...+r) <2(Kr) +... 4 ().

(c) Show that the coefficient 2 in Lemma (1.3.4) (b) and in (b) above cannot be
replaced by any smaller constant.
(d) Prove that if A € Q™" is nonsingular then

(A7Y) < 4n*(A).
(e) Prove that if A e Q™", B € Q™? then

(AB) < p(A) + m(B).

32 Chapter 1. Complexity, Oracles, and Numerical Computation
Polynomial and Strongly Polynomial Computations

We will now discuss our model of computing with numbers in more detail. We
assume that every integral or rational number is represented in binary notation
in the way described above. Then, in the Turing machine model, an arithmetic
operation like addition of two integers takes a number of steps (moves of the
read-write head) which is bounded by a polynomial in the encoding lengths of
the two integers. Unless we state a different model we mean this model of
computation throughout the book.

It is often more natural and realistic (cf. real-life computers) to consider the
elementary arithmetic operations:

addition, subtraction, multiplication, division, comparison,

rather than the number of moves of a head of some fictitious Turing machine, as
one step. If we count elementary arithmetic operations, we say that we analyse
an algorithm in the arithmetic model. For instance, computing the product of
two nxn-matrices in the standard way takes O(n’) steps in the arithmetic model,
while in the Turing machine model its running time depends on the encoding
lengths of the entries of the matrix. In the arithmetic model, the encoding
length of an instance of a problem is the number of numbers occuring in the
input (so we do not count the encoding length of the input numbers). If the
input has some nonnumerical part (e. g., 2 graph or a name) we assume that it is
encoded as a {0, 1}-sequence. Each entry of this sequence is considered a number.
Correspondingly, we consider nonnumeric steps in the algorithm (like setting or
removing a label, deleting an edge from a graph) as arithmetic operations.

The running time of an algorithm may be bounded by a polynomial in the
Turing machine model but not in the arithmetic model, and vice versa. For
instance, the well-known Euclidean algorithm to compute the greatest common
divisor of two integers runs in polynomial time in the Turing machine model
but not in the arithmetic model. On the other hand, the algorithm that reads n
numbers and computes 2" by repeated squaring is polynomial in the arithmetic
model but not in the Turing model since the number of digits of the result is
exponentially large.

[t is easy to see that the elementary arithmetic operations listed above can
be executed on a Turing machine in polynomial time. Using this we can further
develop the idea of counting arithmetic operations (instead of moves of a read-
write head) if we supplement it by verifying that the number of digits of the
numbers occuring during the run of the algorithm is bounded by a polynomial
in the encoding length. Then, of course, a polynomial number of arithmetic
operations can be executed in polynomial time on a Turing machine.

We say that an algorithm runs in strongly polynomial time if the algorithm is
a polynomial space algorithm and performs a number of elementary arithmetic
operations (addition, subtraction, multiplication, division, comparison) which
is bounded by a polynomial in the number of input numbers. So a strongly
polynomial algorithm is a polynomial space algorithm (in our standard Turing
machine model) and a polynomial time algorithm in the arithmetic model. The

1.3 Approximation and Computation of Numbers 33

notion of strong polynomiality involves some subtleties which we will discuss in
more detail now.

Since the definition of strong polynomiality mixes the arithmetic and the
Turing model in some sense we have to make precise how numbers and the
results of arithmetic operations are encoded. Let us begin with integers. Integers
are encoded in the usual binary notation. Adding, subtracting, multiplying and
comparing two integers does not cause any problems. However, we have to
specify what dividing two integers means. There are at least four alternatives to
define the result of the division “a : b” for a,be Z, b # 0:

~ the rational number a/b,

— the rational number a/b, and if it is known in advance that a/b is an integer,
the integer a/b,

~ the rational number a/b, and if a/b is an integer, the integer a/b (so this
operation involves a routine testing whether b divides a),

— the integer |a/b] (this is equivalent to division with remainder).

We reduce the arithmetic for rational numbers to that for integers by setting

fl_+£_ad+bc a ¢ _ad—bc
b d~ bd b d bd’
ac._% a.c _od
b d" bd’b'd" bc’

It is important to note that in this model of computation we do not assume that
a rational number is represented in coprime form. The reason is that a rational
number, for instance coming up as a result of a computation as above, may not
be in its coprime form. To bring it into coprime form is a polynomial but not a
strongly polynomial procedure.

The four versions of division of integers mentioned above lead to increasingly
more powerful models of computation. However, it has to be pointed out that a
strongly polynomial algorithm — using any of these kinds of division — is always
a polynomial time algorithm in the Turing machine model.

We regard the first version of division as too weak. Namely, consider the
following example. Given a € Z, a # 0, square a/a repeatedly to obtain a*’/a*".
Even though the result is just 1, the first version of division does not allow us
to get rid of many factors of a. Throughout the book we will adopt the second
notion of division. It will allow us to turn most of the polynomial time algorithms
(in the Turing machine sense) into strongly polynomial ones. However, there are
a few examples where we could obtain a strongly polynomial algorithm only in
the sense of making use of the fourth version of division. On the other hand,
we will describe a number of strongly polynomial algorithms which could be
described in such a way that no multiplication or division is performed at all.

Polynomial Time Approximation of Real Numbers

Since there is no encoding scheme with which all irrational numbers can be
represented by finite strings of 0’s and 1’s it is customary to accept only rational

34 Chapter 1. Complexity, Oracles, and Numerical Computation

numbers as inputs or outputs of algorithms. It will, however, be convenient to
speak about certain irrational numbers as inputs and outputs. This is done by
making use of the fact that irrational numbers can be approximated by rationals.
To make this precise, we have to discuss how errors of approximations can be
measured.

We say that a rational number r approximates the real number p with absolute
error ¢ > 0 if

lp—rl<e

holds, and we say that a rational number r approximates p with relative error
e>0if
lp —r| < élpl.

These two kinds of error measurements are in general not equivalent. In
particular, statements about relative errors are very sensitive with respect to
addition of constants, while statements about absolute errors are sensitive with
respect to multiplication by constants.

Given some input, we shall say that a real number p is polynomially com-
putable with absolute (relative) error from this input if for every rational ¢ > 0 a
rational number r can be computed in time polynomial in the encoding length
of the input and in (&) that approximates p with absolute (relative) error ¢&. An
algorithm accomplishing this will be called a polynomial computation algorithm
with absolute (relative) error.

We now want to show that a polynomial computation algorithm with relative
error can be used to obtain a polynomial computation algorithm with absolute
error. Suppose we have a polynomial computation algorithm A which guarantees
a relative error and we want to find a polynomial computation algorithm B
which guarantees an absolute error. Assume ¢ > 0 is the absolute error we want
to achieve. Then we call B with relative error d; := 1/2 and obtain a rational
number r; satisfying |p —r;| < %IPI, and hence |p| < 2|ry]. If r; =0, then p =0
and we are finished. Since B is a polynomial computation algorithm, (r() is
bounded by a polynomial of the original encoding length. Now we run B again
with relative error 6, := ¢/(2|r;|) which yields a rational number r, satisfying
lp —ra| < g|lp|/(2|r1]) < ¢ and obtain the desired polynomial computation with
absolute error &.

The reverse implication is not true in general: small numbers cause problems.
If we assume, however, that p is nonzero and that a positive lower bound on |p|
can be computed in polynomial time, say 0 < b < |p|, then the existence of a
polynomial computation algorithm A with absolute error implies the existence of
a polynomial computation algorithm B with relative error as follows. We simply
call A with absolute error § := ¢b and obtain a rational number r satisfying
lp—rl < eb<elpl.

From now on we call a real number p polynomially computable from a given
input if it is polynomially computable with relative error. This is equivalent to the
existence of a polynomial computation algorithm with absolute error, together
with a polynomial auxiliary algorithm that determines whether or not p = 0
and if not, computes a positive lower bound for |p|. In fact, it suffices to have
a polynomial auxiliary algorithm that computes a positive rational b such that

1.3 Approximation and Computation of Numbers 35

either p = 0 or |p| > b. Then whether or not p = 0 can be decided by running
the computation algorithm with absolute error b/3.

If the number p to be computed is known to be an integer, then the existence
of a polynomial computation algorithm with absolute error (and hence with
relative error) means that p can be computed exactly in polynomial time. We
only have to run the algorithm with absolute error 1/3 and round the result to
the nearest integer.

More generally, if p is a rational number polynomially computable from
a given input and an upper bound for its denominator can be polynomially
computed, then p can be computed exactly in polynomial time. This can be done
in a manner similar to that above, but for the final rounding one must use the
technique of continued fractions — see Section 5.1.

Sometimes an approximation algorithm with relative error & can be obtained
whose running time is bounded by a polynomial in 1/¢ (but not necessarily in
(¢)) and the encoding length of the original input. Such an algorithm is called a
fully polynomial approximation algorithm (or scheme). An even weaker notion is
an algorithm that is polynomial in the original encoding length for every fixed
¢ > 0. Such an algorithm is called a polynomial approximation algorithm (or
scheme).

An integer (depending on some input) for which a fully polynomial approx-
imation algorithm exists is not necessarily computable in polynomial time (at
least if 2 # A2). In fact, a fully polynomial approximation algorithm exists
for the #?P-complete knapsack problem (IBARRA and KiM (1975)). We remark
that the well-known Agmon-Motzkin-Schonberg relaxation method yields a fully
polynomial approximation algorithm, but not a polynomial algorithm, for the
optimum value of a linear program.

If p is a real number for which upper and lower bounds are polynomially
computable, and if we have a polynomial time algorithm to decide whether or
not a rational number r is smaller than p, then binary search can be used to
obtain a polynomial computation algorithm with absolute error for p. (The
simple-minded way of finding an approximation of p with absolute error ¢ by
searching the given interval in steps of length ¢ would yield just a fully polynomial
approximation algorithm.)

As an illustration we mention that to approximate the irrational number

(3) =) ’—113(= 1.2020569031 ...

n=1

by the partial sums is a fully polynomial approximation algorithm (the absolute
error of the sum of the first k terms is about 1/(2k?)). However, if we use the
expansion

due to R. Apeéry — see VAN DER POORTEN (1979) — then we get a polynomial
computation algorithm. The difference between these two notions is illuminated
by the fact that, to obtain the above 10 digits behind the point, about 100,000

36 Chapter 1. Complexity, Oracles, and Numerical Computation

terms of the first expansion have to be added up, while only 14 terms of the
second suffice.

1.4 Pivoting and Related Procedures

We shall now describe four fundamental matrix manipulation algorithms in linear
algebra, linear programming, and number theory, and we shall prove that three
of them have polynomial running time. The running time analyses of these
algorithms will show some of the basic techniques used in the sequel.

Gaussian Elimination

Perhaps the most frequently used algorithm in linear algebra is the Gaussian
elimination method. This algorithm is mainly employed for solving linear equa-
tions but it can also be viewed as a method that transforms a matrix into some
“canonical” form. It consists of a successive application of an iteratively applied
forward step and an iteratively applied backward step. Let us describe it as a
matrix manipulation algorithm.

Suppose an mxn-matrix A is given. We would like to transform A4 into an
mxn-matrix of the following form

(1.4.1) (g ’g) :

where A is a diagonal r xr-matrix and r is the rank of A, using the following
operations only:

(14.2) (1) adding a multiple of one row to another row,
(i) permuting rows or columns.

The Gaussian elimination method works as follows. For any given mxn-matrix

A, we first find matrices Ag, Ay, ..., A, where each of the matrices 4;, 0 <k <,
has the form

B C
(1.4.3) Ay = (0 D)

and where B is a nonsingular upper triangular kxk-matrix. We start with 49 .= A
(so B is an empty matrix). The matrix A, is determined from Ay in the following
way :

(1.4.4) Forward Step. Given a matrix A, of form (1.4.3), choose a nonzero
element of D, called the pivot element, and permute the rows and columns of Ay
so that this pivot element is dyy. Now add multiples of the first row of D to the

1.4 Pivoting and Related Procedures 37

other rows of D in such a way that d|; becomes the only nonzero element in the
first column of D. So

d:
dj =d; —‘d_lld]j fori=1,....m—k;j=1,...,n—k.
1
The resulting matrix is called Ay, .. O

The Forward Step (1.4.4) is applied until D contains no nonzero element. So

the last matrix, say A,, in this sequence has the form A, = (Ig g), with B an
upper triangular r xr-matrix. It is obvious that r is the rank of A.
Now we go backwards. Starting with E, := A,, matrices E,, E, 4, ..., Eg are
determined which have the form
B 0 C
(1.4.5) Ey, = (0 A D) ,
0 0 O

such that B is a nonsingular upper triangular kxk-matrix and A is a diagonal
(r — k) x(r — k)-matrix. Given the matrix E;, the matrix E;_; is determined with
the following procedure.

(1.4.6) Backward Step. Add multiples of the k-th row of E; to the other rows
of Ey so that by, will be the only nonzero entry in the k-th column of E,. The
matrix obtained in this way is called E;_,. |

After r applications of the Backward Step (1.4.6) we obtain the matrix Eg
which — by construction — is of form (1.4.1).

It is obvious from the descriptions of the Forward Step (1.4.4) and the
Backward Step (1.4.6) that the number of elementary arithmetic operations
(additions, subtractions, multiplications, divisions, comparisons) of the method
is bounded by a polynomial in n and m. For instance, if n = m, then O(n?)
divisions and @(n’) additions and multiplications have to be performed. To
show polynomiality, one only has to prove that none of the numbers calculated
during the execution of the algorithm becomes too large. This has been done
by EDMONDS (1967b)). In fact, Edmonds showed that Gaussian elimination is
strongly polynomial in the sense described in Section 1.3. To be precise, we have
to specify in which form the rational numbers occuring are stored and which
divisions are carried out as integer divisions (recall the four divisions “a : b”
mentioned in 1.3).

One version would be to present each rational number in its coprime form and
bringing each update into this form. This procedure is not strongly polynomial,
but polynomial as will follow from the discussion below. Another possibility is to
store each rational number in the form it is computed. This is polynomial in the
arithmetic model but it leads to an exponential growth in the encoding lengths.

To see this, let us assume that the initial matrix A4 is an integral nxn-matrix. (If
4 is not integral, we multiply all entries of 4 by the product of the denominators

38 Chapter 1. Complexity, Oracles, and Numerical Computation

of all entries.) After the k-th step, the entries d;; of the (n — k) x(n — k)-matrix D
in (1.4.3) can be represented in the form

.k)

di = _’f_,
Y g(k)

where g is a common denominator for all d;. The update formula in (1.4.4)
yields that we can take

k+1) _ Ak) AK) k) Ak) k+1) _ pAKk) (K
i—-1j—-1 = Jij Jn _ﬁl TR gl)—fﬁg()-

These formulas are not good for our purposes. Namely if we start the procedure
with the nxn-matrix 4 with 2’s on the main diagonal, 1’s below the main diagonal,
and 0’s above the main diagonal and we always pivot on the elements of the
main diagonal then, for k = 0,1, ..., n— 1, we get

k 2k k) 2k—1
£ =27 gl =2,

Clearly, it takes exponential space to represent these numbers in binary.

To achieve strong polynomiality we use a third way of encoding the rationals
occuring. This is based on an analysis of the update formula. We assume - as
stated before — that A is an integral mxn-matrix. For k = 0,1, ..., m— 1, we
write each entry di; of D — see (1.4.3) — in the form

P
(1.4.7) dy =L,
T

where g®) = detB. We claim that pg‘) and gq® are integers, in fact, they
are subdeterminants of 4. Let us assume for simplicity that we have pivoted
along the first k elements of the main diagonal. Setting K = {1, ..., k},
I:={1...,kk+i},J ={1,...,kk+j}, we see that (4x)kx = B and that
(Ak);s is an upper triangular matrix with the entry d; of D in the lower right
hand corner. Thus

det ((Ak)1s)

det (A)kk)

Now recall that the determinant of a matrix does not change if a multiple of
one row is added to another. Since A4, arises from A by adding multiples of the first
k rows of A to the other rows of A, we observe that det(A4;,) = det((44);s) and
det(Akk) = det((Ax)kk) hold. Therefore p}’ = det(4,,) and ¢® = det(4k«),
and hence

dy =

- det(Aw)
Y det(dkk)

(k)

By Lemma (1.3.4), the encoding of d; as the ratio of p;;” and q® takes only

polynomial space. Hence the coprime representation of d;; takes only polynomial

1.4 Pivoting and Related Procedures 39

space, and therefore the version of the forward step using coprime representations
of all rationals can be executed in polynomial time.

Now we show that, using representation (1.4.7), the updates can be performed
in strongly polynomial time. In fact, an easy computation shows that the update
formulas are the following

(k) (k) (k) (k)
p(k+1) _ Py Piy — Pit Py

i - q® ’

(k+1) _ (k)
) = Pyy -

q
Since we know from the above discussion that pg‘“)
it by an integer division.
To analyse the Backward Step (1.4.6), view Ei, 0 < k < r, as a matrix of form
(1.4.5). Subdivide the matrix 4, accordingly, say

B, B, (i
A,z(o B, cz).

o 0 O

is an integer, we can obtain

By and B; are upper triangular matrices of order kxk and (r — k) x (r — k),
respectively. Note that by construction B; = B, and that the diagonal entries
of B3 are the same as those of A. So — by the previous part of the proof — we
only have to show that the entries of C and D are small. Let us write the r — k
executions of the Backward Step (1.4.6) to obtain E; from A, = E, in compact
matrix form. We see that

I —BzB%‘l B, B, C B 0 C,—B:B;'C
Ek=(0 ABj) 0 By C) = (0 A ABJ'C)
0 0 0 0 0

and so C = C; —B;B;'C), D = AB;'C,. Since By, B3, C; and C, are submatrices
of A, their encoding lengths are bounded by a polynomial in (4). The same
holds for A as remarked above. Since the entries of the inverse of a matrix are
quotients of subdeterminants of the original matrix, we can conclude that the
encoding length of each entry of By ! is bounded by a polynomial in (A4) — see
also (1.3.5) (d). Therefore, the encoding lengths of C and D are bounded by
a polynomial in {(A). This shows that the backward step can be performed in
polynomial time using coprime representation for all rationals occuring. By a
similar analysis as carried out above for the forward step, one can show that the
backward step can also be executed in strongly polynomial time. Thus we have
Edmonds’ theorem:

(1.4.8) Theorem. For any rational mxn-matrix A, the Gaussian elimination me-
thod (using coprime representation of rationals) runs in time polynomial in (A).
There is a representation scheme for rationals so that the Gaussian elimination
method runs in strongly polynomial time. O

40 Chapter 1. Complexity, Oracles, and Numerical Computation

Let us remark that the general results of STRASSEN (1973) for eliminating
division imply that det A can be computed in strongly polynomial time without
any division — see also BERKOwITZ (1984).

The fact that Gaussian elimination runs in polynomial time implies the
polynomial time solvability of a number of basic problems in linear algebra. In
fact, (1.4.8) shows that these problems are also solvable in strongly polynomial
time.

(1.4.9) Corollary. There are strongly polynomial algorithms for the following
problems:

(a) finding a solution of a rational equation system Ax = b,

(b) determining the rank of a rational matrix,

(c) determining the determinant of a rational matrix,

(d) determining the inverse of a nonsingular rational matrix,

(e) testing whether m given rational vectors are linearly independent. a

Gram-Schmidt Orthogonalization

The forward step of the Gaussian elimination method transforms a given non-
singular matrix into an upper triangular matrix, using only row operations. We
briefly mention another very useful algorithm, the Gram-Schmidt orthogonaliza-
tion procedure, which transforms any nonsingular matrix into one whose column
vectors are orthogonal, using only column operations.

If (by, ..., b,) is an ordered basis of R" then its Gram-Schmidt orthogonal-

ization (b, ..., b;) is another ordered basis of R" defined by the recurrence
=1 pTpe
- J i . .
b =b, ;ub;ulbf forj=1,...,n.
This formula implies that, for every j € {1, ..., n}, the vectors by, ..., b, and

b}, ..., b, span the same subspace of R" and that be +1 is the “component” of b;
orthogonal to this subspace. For orthogonal vectors, the Hadamard inequality
(0.1.28) holds with equality, and thus

1671 - ...~ Ib]Il = |det(by, ..., by)| = |det(by, ..., ba)l,
where the last equation follows from the fact that bj, ..., b, is obtained from
by, ..., by by column operations. In fact, observe that, to obtain (b], ..., b})
from (by, ..., by), a multiple of a column is only added to a column with larger
index. Moreover, it is also trivial from the definition that each vector b; can be
expressed as a linear combination of the vectors bj, ..., bj' as follows:

i
b; = Zﬂjib; ;
i=1
and that in this formula p;; = 1.
The running time analysis of the Gram-Schmidt orthogonalization procedure
is similar to that of the Gaussian elimination method and is omitted here.
Gram-Schmidt orthogonalization will be used in Section 5.3.

1.4 Pivoting and Related Procedures 41
The Simplex Method

The simplex method for solving linear programs, due to DANTZIG (1951), is one
of the backbones of mathematical programming. It is usually described for linear
programs in so-called standard form: max ¢’ x, Ax = b, x > 0. We will outline it
for linear programs of the form

(1.4.10) maxc’ x
Ax <b.

Let us assume first that A has full column rank. In this case the polyhedron P =
{x | Ax < b} has a vertex. Now, roughly speaking, the simplex method starts at
a vertex of P and checks whether there is an edge containing this vertex along
which the objective function can be increased. If this is not so, the current vertex
is an optimum solution of (1.4.10). If there are such edges, we go in the direction
of one of these edges. Either we find a new vertex, in which case we repeat
the procedure, or the edge is infinite, in which case (1.4.10) is unbounded. The
technical problem is to identify edges along which the objective function can be
increased. We describe how this can be done.

Let us call every row index set I of cardinality n for which A;. is a basis
of A and A;'b; satisfies Ax < b a basic feasible index set. We know that for
every vertex v of P there is at least one basic feasible index set I such that
v = A;'b;. Instead of creating a sequence of vertices as described above, the
simplex method constructs a sequence Iy, I,... of basic feasible index sets. In
the corresponding sequence A,_‘fbh,A,_szh,... of vertices of P two consecutive
vertices of this sequence need not be different.

We now describe one iteration of the simplex method. Suppose we have a
basic feasible index set I with corresponding vertex v = A;'b;. Calculate

1.4.11) ul =cTA7L.
(I

Note that u is an n-vector indexed by I. We distinguish two cases.

Case 1. u > 0. Then v is an optimum solution of (1.4.10) because for each x
satisfying Ax < b we have

Ix=u"Ajx<u"by =uTA1v=c"v.

Case 2. u # 0. Choose i €I such that u; < 0. Define the following “direction”
(14.12) d = —A7'e;,
where e; is the unit basis vector in R’ with 1 in coordinate i. Let A* be the largest

real number A so that
A(v+ Ad) <b.

42 Chapter 1. Complexity, Oracles, and Numerical Computation

Case 2a. A* is finite. This is equivalent to: Ad £ 0. Clearly, A can be computed
as follows:

bj —_ Aj.U

Ad |1 mvith 4.4 >0}

(1.4.13) " = min{

Let this minimum be attained at index k. Note that k ¢ I because 4;.d = —¢; < 0.
As new basic feasible index set we choose ' := (I \ {i}) U {k}, which corresponds
to the vertex v’ := v + A°d. We replace I by I’ and repeat the iteration.

Case 2b. 1" is infinite. This is equivalent to: Ad < 0. So d belongs to the recession
cone of P and, moreover,

CTd = —CTA}—_lei = —uTe,- = —u; > 0.

Thus the objective function can be increased along d to infinity which shows that
(1.4.10) is unbounded.

It can be proved that by appropriately choosing indices i and k (such choices
are called pivoting rules) this method terminates. For instance, BLAND (1977)
proved that the pivoting rule “always choose the smaliest i such that u; < 0 and
the smallest k attaining the minimum in (1.4.13)” guarantees finite termination.
This finishes the description of the simplex method.

Unfortunately, for almost all known pivoting rules, sequences of examples
have been constructed — see for instance KLEE and MINTY (1972) — such that the
number of iterations is exponential in n+m. No pivoting rule is known — to date
— to yield a polynomial time method. In practice, however, the simplex method
turns out to be very fast. Moreover, BORGWARDT (1982) proved that in a certain
natural probabilistic model and with the so-called “Schattenecken” pivoting rule,
the expected running time of the simplex method is polynomial — see also SMALE
(1983).

The observed practical success of the simplex method is based on skillful
pivoting rules which empirically lead to small numbers of iterations and on the
fact that each iteration can be performed efficiently. Note that the total work of
one iteration is dominated by the determination of the inverse matrix A;'. This
inverse, however, does not have to be computed from scratch in each iteration.
The inverse A;;' needed in the next iteration can be computed from the inverse
A7} of the previous iteration with a simple pivoting operation, namely we have

-1 _ 1 —1
(1414) (AII.)_[/\{k} - (I - mdAk') (AI-).I\{i} ’

1
—1 _
(A7) = 744

These updates can be executed in practice very efficiently.
We still have to show how the assumptions we made for describing the
simplex method can be achieved. To check whether the matrix A in (1.4.10) has

full column rank, we use Gaussian elimination. If rank(4) < n we check whether
c is a linear combination of the rows of A by solving the equation system A7 1 = c.

1.4 Pivoting and Related Procedures 43

If this system has no solution then (1.4.10) has no optimal solution. Otherwise we
can delete some columns of A and the corresponding components of ¢ to obtain
an equivalent linear program with a constraint matrix of full column rank. So
this preprocessing can be done with methods based on Gaussian elimination.

If we do not have an initial basic feasible index set, we proceed as follows.
We add one new variable 1 and consider the following linear program

(1.4.15) max 4
Ax—bl <0
—-41<0
A<

An initial basic feasible index set for this program is easily found: take an
arbitrary basis Ax. of A4 and set I := K U {m+ 1}. The basic feasible solution
corresponding to I is the zero vector. Next solve (1.4.15) with the simplex method.
If the optimum value of (1.4.15) is 0, (1.4.10) has no solution. Otherwise the
optimum value is 1. Let, in this case, I be the final basic feasible index set, and
let (7, 1)T be the corresponding optimum solution. Set K := I \ {m+ 2}; then
Ag. is a basis of A. Clearly, Ax.v = bx and Av < b; hence K is a basic feasible
index set that can be used as the initial basic feasible index set for solving (1.4.10)
with the simplex method.

Computation of the Hermite Normal Form

We shall now describe some results and a pivoting algorithm from elementary
number theory that are useful in integer linear programming.

A rational mxn-matrix of rank m (i. e, of full row rank) is said to be in
Hermite normal form if it has the form (B 0) where B is a nonsingular, lower
triangular, nonnegative matrix in which each row has a unique maximum entry,
and this entry is on the main diagonal of B. Usually, the Hermite normal form
is only defined for integral matrices, but for our purposes it is more appropriate
to work with this more general definition.

We shall now discuss whether and, if so, how matrices of full rank can be
brought into Hermite normal form and what properties this normal form has.
Let us call the following operations on a matrix elementary column operations :

(1.4.16) (i) exchanging two columns,
(1) multiplying a column by —1,
(i) adding an integral multiple of one column to another column .

The next result is due to HERMITE (1851).

(1.4.17) Theorem. (a) Every rational matrix A of full row rank, can be brought
into Hermite normal form by a series of elementary column operations (1.4.16).
(b) This Hermite normal form of A is uniquely determined by A. O

44 Chapter 1. Complexity, Oracles, and Numerical Computation

We shall describe an algorithm that proves (a) of Theorem (1.4.17). So
suppose that A is a rational mxn-matrix of full row rank. We construct a
sequence Ag, Ay, ..., An of mxn-matrices such that A4,, is lower triangular. We
start with Ag := A. In the general step we assume that the matrix Ay, kK > 0, has
been constructed from A by elementary column operations such that

B 0
Ax = (C D) ;
where B is lower triangular of order kxk (for k = 0, this means B is empty). Now
apply the following procedure.

(1.4.18) Triangularization Step. Use elementary column operations to transform
D in such a way that the first row Dy. = (dyy, ..., dy,—) of D has the following

properties:
@) dy>dp>...> dl,n—k >0 and
(b) diy +di2+... +dynk Is as small as possible. O

It should be clear that the result required in (1.4.18) can be obtained by the
operations (1.4.16) and that the number of times elementary column operations
must be applied to achieve this is bounded by a polynomial in n — k. So each
step (1.4.18) can be executed using a number of elementary arithmetic operations
bounded by a polynomial in n.

Now note that, since A has full row rank, d;; must be positive. Moreover,
do=...=dipk =0, for if d;; > 0, then we can subtract the second column
of D from the first column obtaining a new matrix D for which the sum of
the entries of the first row is smaller, contradicting (b). So the output of the
Triangularization Step (1.4.18) is a matrix with a larger lower triangular matrix
B in the upper left hand corner than 4. Call this new matrix 4;,; and repeat.

After m applications of (1.4.18) we end up with a matrix A4, = (B 0) with
B = (b;) a lower triangular m x m-matrix with positive entries on the main
diagonal. Now we apply the following procedure to A4, resp. B:

(1.4.19) Row Reduction.
For i=2, ..., m do the following:
For j=1,...,i—1 do the following:
Add an integer multiple of the i-th column of B to the j-th column of B such
that the (i,j)-th entry b; of B is nonnegative and smaller than b;. O

It is straightforward to see that after termination of (1.4.19) the resulting
matrix is in Hermite normal form. Moreover, it is also clear that the number of
elementary arithmetic operations necessary to execute (1.4.19) is bounded by a
polynomial in n.

So altogether we have shown the correctness of part (a) of Theorem (1.4.17) by
designing an algorithm whose total number of elementary arithmetic operations
is bounded by a polynomial in n. Moreover, as in the proof of Theorem

1.4 Pivoting and Related Procedures 45

(1.4.8) (showing that the entries d; of D are small) we can conclude that all
entries on the main diagonal of the Hermite normal form of A are quotients of
subdeterminants of A4, and thus the encoding length of each of these entries is
bounded by a polynomial in (4). From this and the fact that the largest element
of the Hermite normal form is on the main diagonal we can conclude :

(1.4.20) Proposition. The encoding length of the Hermite normal form (B 0) of
a rational matrix A of full row rank is bounded by a polynomial in (A). O

Can we now conclude that the algorithm described above for the construction
of the Hermite normal form has polynomial running time? We cannot! The
reason is that although we have a polynomial bound on the size of the final
output of the algorithm through (1.4.20) and a polynomial bound on the number
of elementary arithmetic operations we cannot guarantee that the sizes of the
intermediate numbers do not grow too large. In fact, by performing this algorithm
in practice on rather small, say integral 10x10-matrices, one can observe frequently
that the intermediate numbers calculated during the execution of the algorithm
will grow enormously large. Quite a number of schemes for the order of
performing the elementary column operations have been suggested. The first
polynomial time algorithm for finding the Hermite normal form was found by
FRUMKIN (1976c)) — see also KANNAN and BACHEM (1979) and DoMicH, KANNAN
and TROTTER (1987) for more efficient methods.

We will not elaborate on these methods since our results on basis reduction
in lattices, to be described in Chapter S, will yield a polynomial time algorithm
for the computation of the Hermite normal form — see (5.4.13). However, we
would like to mention a consequence proved by FRUMKIN (1976a,b) and vON ZUR
GATHEN and SIEVEKING (1976).

(1.4.21) Theorem. For any matrix A € Q™" and any vector b € Q™, one can
decide whether Ax = b has an integral solution and, if so, find one in time
polynomial in (A) + (b). a

This shows that the linear diophantine equations problem (0.1.31) can be
solved in polynomial time for rational data.

One may wonder whether the Hermite normal form can be computed in
strongly polynomial time. However, the problem of finding the greatest common
divisor of two integers is a special case, and one can show that, within our model
of strongly polynomial time computation, the greatest common divisor of two
integers cannot be computed in strongly polynomial time, that is, in a bounded
number of elementary arithmetic operations, where the bound is independent of
the two integers.

Chapter 2

Algorithmic Aspects of Convex Sets:
Formulation of the Problems

Convex sets and convex functions are typical objects of study in mathematical
programming, convex analysis, and related areas. Here are some key questions
one encounters frequently:

- Given a point y and a set K, is y a member of K, i. e, is y contained in K ?

— Ify is not a member of K, find a hyperplane separating y from K.

— Given a linear inequality, is it valid for each vector in K ?

— Given a linear function, find a point maximizing (or minimizing) the function
on K.

~ Given a convex function, find its minimum.

Membership, separation, validity, and optimization problems are fundamental
problems in these theories. Optimization problems have been intensively studied,
in particular from an algorithmic point of view, because of their relevance
for practical applications. Research on membership, separation, and validity
problems concentrated much less on algorithmic aspects; existence theorems,
characterizations by necessary and/or sufficient conditions and the like were the
main lines of investigation. The proof techniques here are often very elegant but
nonconstructive.

The basic difference between optimization and separation, membership, and
validity is typically that optimization results (theorems or algorithms) are the
ultimate goals (from an applied point of view) while separation results etc. are
used as important tools for the derivation of such results. Clearly, optimization
algorithms are what mathematical programming is looking for, but even so, it
is surprising how little attempt has been made to devise efficient separation,
membership, or validity algorithms.

We only know of a few examples of good separation algorithms that have
been designed (but not published) before the ellipsoid method occured. These are
the separation algorithm for the subtour elimination constraints of the traveling
salesman problem — see CROWDER and PADBERG (1980) — and the separation
algorithm for capacitated (perfect) b-matchings described in PADBERG and Rao
(1982). These polynomial time methods came up in attempts to design practically
fast cutting plane algorithms for the traveling salesman problem. On the other
hand, let us mention that, while optimization over matroid polytopes has been a
very extensively studied problem since the pioneering work of EDMONDSs (1970,
1971), the first combinatorial algorithm to solve the separation problem for these
polytopes was only recently found by CUNNINGHAM (1984) and was prompted by
more general results derived from the ellipsoid method.

2.1 Basic Algorithmic Problems for Convex Sets 47

In Chapter 3 we shall show that there is a strong relation between the poly-
nomial time solvability of the optimization problem and that of the separation
problem. In fact, they are equivalent if one is a little careful in defining the
concepts to be considered. The precise definition of the problems we want to
treat is the purpose of this chapter.

2.1 Basic Algorithmic Problems for Convex Sets

In this section we will introduce a number of notions and problems which will
be used throughout the book. The problems we will define are the basic objects
of our investigations. One of the main goals of this book is the determination of
the algorithmic relations between these problems.

Let K be a convex and compact set in R". Then we can formulate the
following five algorithmic problems (2.1.1),...,(2.1.5) in connection with K.

(2.1.1) The Strong Optimization Problem (SOPT).

Given a vector c € R", find a vector y € K that maximizes ¢ x on
K, or assert that K is empty.

A closely related but slightly weaker question is the following.

(2.1.2) The Strong Violation Problem (SVIOL).

Given a vector c € R" and a numbery € R, decide whether ¢"x <y
holds for all x € K, and if not, find a vector y € K with cTy > y.

Note that taking ¢ = 0 and y = —1, the strong violation problem reduces to
the problem of checking whether K is empty, and if not, finding a point in K.
This problem will be called strong nonemptiness problem (SNEMPT).

(2.1.3) The Strong Validity Problem (SVAL).

Given a vector ¢ € R" and a numbery € R, decide whether c7x <y
holds for all x € K.

48 Chapter 2. Algorithmic Aspects of Convex Sets

The following two problems are — in a sense to be made precise later — polar
to the ones above.

(2.1.4) The Strong Separation Problem (SSEP).

Given a vector y € R", decide whether y € K, and if not, find a
hyperplane that separates y from K ; more exactly, find a vector
c e R" such that ¢y > max{c’x|xe K }.

(2.1.5) The Strong Membership Problem (SMEM).

Given a vector y € R", decide whether y € K.

Clearly, if we can solve (2.1.1) we can also solve (2.1.2), and if we can solve
(2.1.2) we can solve (2.1.3). Similarly, (2.1.5) can be solved if (2.1.4) is solvable.
So there are some obvious algorithmic relations between these five problems. In
Figure 2.1 we have graphically displayed these trivial relations between SOPT,
SVIOL, SVAL, SSEP, and SMEM (and SNEMPT in addition). An arrow here
means that the problem at the head of the arrow can be solved in oracle-
polynomial time given an oracle for the problem at the tail of the arrow. (The
relation is transitive, but arrows following from transitivity are not shown.)

SOPT
SNEMPT SVIOL SSEP
—
SVAL SMEM
Figure 2.1

These problem formulations immediately give rise to a number of questions.
For instance: Is our requirement to provide “exact” solutions of the problems
(2.1.1),...,(2.1.5) too restrictive? Are the assumptions that K should be convex

2.1 Basic Algorithmic Problems for Convex Sets 49

and compact too general or too strong? Are these problems algorithmically
solvable at all? Moreover, are there other implications between SOPT,...,
SMEM different from those depicted in Figure 2.1? As mentioned before, this
last question is among the central topics of this book. But before discussing all
these matters let us look at some typical examples.

(2.1.6) Example. Let K < R" be a polyhedron defined by a given system of
linear inequalities a,.T x<b;, i=1,...,m For any vector y € R", the separation
problem (2.1.4) and the membership problem (2.1.5) are trivial to solve. We
simply substitute y for x in the inequalities. If y satisfies them all, then y is a
member of K, otherwise y is not; and any violated inequality yields a separating
hyperplane. The strong optimization problem (2.1.1) for K is nothing but a linear
program. Linear programs can be solved by several algorithms but not as easily
as the separation problem above. O

(2.1.7) Example. Let K = IR" be a polytope defined as the convex hull of a given
finite set of vectors, i. e, K = conv({vy,..., %}). Here the strong optimization
problem (2.1.1) (and similarly problems (2.1.2), (2.1.3)) for K can be solved easily
by evaluating the function ¢”x at all points v; and selecting the one with the
largest value ¢’ v;. To solve the strong membership problem (2.1.5) for a vector
y € R", one has to check whether y is a convex combination of the v; or not.
So this problem requires deciding whether a system of linear equations and
inequalities has a feasible solution. To solve the strong separation problem (2.1.4)
requires, in addition, finding a vector c e R" with ¢’y > c¢Tv; (i=1, ..., k) if the
system has no solution. O

(2.1.8) Example. Let f:IR" — R be a convex function and G, := {(x7,)7 e R*"! |
f(x) <t} be the “epigraph” of f. If f(x) can be computed, then the membership
problem (2.1.5) for Gy is trivial to solve; if in addition a subgradient of f at x
can be computed, then the separation problem (2.1.4) for Gy can be solved easily.
Namely, suppose (y7,s)” ¢ G;. Then, by definition, = € R" is a subgradient of f
at y if f(x) = f(y) + 77 (x —y) for all x e R". So ¢ = (n7,—1)T e R""! satisfies
T, s)c=aTy—s>naTy—fly) = nTx— f(x) = (xT,t)c for all (x7,t)T € G/. So
c yields a separating hyperplane. (]

(2.1.9) Example. In classical geometry, convex sets K are often described in
terms of the support function — see BONNESEN and FENCHEL (1934) for instance.
For every vector v € R" with ||v]] = 1, consider the supporting hyperplane
H of K with outer normal v, and let p(v) be the signed distance of H from
zero; i. e, p(v) = max{v'x | x e K}, H={x | v'x = p()}, HNK # 0,
{x|vTx > p(v)} N K = Q. If the function p is given, then the validity problem
(2.1.3) is solvable trivially, since c¢¥ x < ¢ is valid if and only if p(c/|cll) < co/llcll
(if ¢ # 0; the case ¢ = O is solved trivially, as K # 0). O

The examples above show that the way a set K is given makes an essential
difference. The strong separation problem is trivial for a polytope given as in

50 Chapter 2. Algorithmic Aspects of Convex Sets

(2.1.6), whereas it turns out to be nontrivial for a polytope given as in (2.1.7).
For the strong optimization problem it is just the other way around!

It is well known that a polytope K given in the form (2.1.6) also has a rep-
resentation in the form (2.1.7) (and vice versa). Moreover, such a representation
can be found in finite time. This fact is of little use in designing polynomial
time algorithms, since, to describe the convex hull K of k points, one may need
a number of inequalities that is exponential in k. (Consider, for instance, the
convex hull of the 2n vectors (0,...,0,+1,0,...,0)7.) Similarly, the solution
set of m inequalities may have a number of vertices that is exponential in m.
(Consider the n-cube.) So the size of the description may grow exponentially if
one goes from one representation of a polytope to another. This illustrates that
the polynomial time solvability aspects of the strong optimization (separation
etc.) problem depend on the way K is given and not only on K.

Our approach is to describe a set K by certain parameters and algorithms
(oracles) that define the set K uniquely. So K is not necessarily given by any of
the usual representations. For instance, K can be given by the dimension of the
space together with a “membership ailgorithm” that, for any given point, decides
whether it is in K or not. This will allow us to take also nonpolyhedral convex
sets into consideration.

But clearly, we have to pay for such a generality. Namely, if we allow arbitrary
convex sets, it may well be that K contains only one vector maximizing ¢’ x on
K and that this vector has irrational coordinates. To make the formulation of
our problems correct in such cases we recall the discussion of computability
of numbers in Section 1.3. In the spirit of this, we introduce the following
five problems which come from their strong versions by allowing margins in all
inequalities and around the surface of the given set K. It may help to understand
the following if we recall that x € S(K,¢) means “x is almost in K”, and that
x € S(K,—¢) means “x is deep in K”. In the following definitions K denotes a
compact and convex set in R".

For easy reference the five basic problems are also listed on the inner side of
the back cover.

(2.1.10) The Weak Optimization Problem (WOPT).

Given a vector c € Q" and a rational number ¢ > 0, either

(i) find a vector y € Q" such that y € S(K,¢) and c"x < cTy +¢
for all x e S(K,—¢)
(i. e, y is almost in K and almost maximizes c
points deep in K), or

(i) assert that S(K,—¢) is empty.

Tx over the

2.1 Basic Algorithmic Problems for Convex Sets

51

(2.1.11) The Weak Violation Problem (WVIOL).

Given a vector c € Q", a rational number y, and a rational number
e > 0, either

(i) assert that cTx <y +e¢ for all x e S(K,—¢)
(i. e., cTx < y is almost valid), or

(ii) find a vector y € S(K,e) withcTy >y —e¢
(a vector almost violating ¢”x < y).

(2.1.12) The Weak Validity Problem (WVAL).

Given a vector ¢ € Q", a rational number y, and a rational number
e > 0, either

(i) assert that c"x <y +e¢ for all x e S(K,—¢), or
(i) assert that cTx >y — ¢ for some x € S(K ,¢)
(i. e., cTx < y is almost nonvalid).

(2.1.13) The Weak Separation Problem (WSEP).

Given a vector y € Q" and a rational number § > 0, either

(i) assert thaty e S(K,9J), or

(ii) find a vector ¢ € Q" with ||c|lo = 1 such that cTx < cTy+6
for every x € S(K,—9)
(i. e., find an almost separating hyperplane).

(2.1.14) The Weak Membership Problem (WMEM).

Given a vector y € Q" and a rational number 6 > 0, either

(i) assert thaty e S(K,J), or
(1) assert that y ¢ S(K,—9).

Similarly as in the strong version SVIOL (2.1.2), the special case of (2.1.11)
where ¢ = 0 and y = —1 is of particular importance. Note, however, that (for
¢ < 1) output (i) of WVIOL only means that §(K,—¢) is empty (K might still
be nonempty) and output (ii) means finding a point almost in K. We call this

special case of WVIOL the weak nonemptiness problem (WNEMPT).

52 Chapter 2. Algorithmic Aspects of Convex Sets

(2.1.15) Remark. (a) All the strict inequalities appearing in the strong versions
(2.1.1), ..., (2.1.5) have been turned into weak inequalities in problems (2.1.10),
.«+» (2.1.14). Clearly, this makes no difference here, since little errors are allowed
everywhere. Strict inequalities, if needed, may be obtained by decreasing the
¢’s and d’s. Moreover, the reader may have noticed that in some of the weak
problems above several ¢’s and 6’s are redundant. For example, solving the weak
validity problem (2.1.12) with input ¢, ' =y +¢/2 and ¢ = ¢/2 gives a solution
to a stronger version of (2.1.12) where we require that ¢’ x > y in (ii). The use
of our weaker versions has the advantage of uniformity and will also make the
application of polarity easier.

(b) There is one additional, purely technical change in the separation problem.
By introducing the é-error in (ii) of (2.1.13) we have to normalize the vector c,
because otherwise every small enough vector ¢ would satisfy (ii). We could
not require the Euclidean norm to be 1 since this might lead to scaling by an
irrational factor.

(c) Note also that the weak problems above have been modelled so that
the output is “continuous” in the input. As an illustration consider the weak
optimization problem (2.1.10). Given a vector ¢ € Q", a rational number ¢ > 0
and in addition a vector y € QQ", we can compute a rational number é > 0 in
polynomial time such that if ¢/, y e Q", ||c' —c¢|| < d, ||y —y|| < and if y' is a
valid output for the weak optimization problem with input ¢’ and 6 then y is a
valid output for the weak optimization problem with input ¢ and &. We shall not
elaborate on this point further, but we feel that this property is essential for the
correct posing of the problems. O

Just as in the strong versions of our problems, there are immediate im-
plications between our weak versions. Most of these directly follow from the
definitions. For instance, if WVIOL can be solved for K in polynomial time
then, obviously, WVAL is polynomially solvable. A little less direct, but still
trivial is the implication from WSEP to WMEM. If we have an algorithm for
the weak separation problem for K and we want to solve the weak membership
problem for K, we proceed as follows. Given y € @" and § € Q, § > 0, we solve
WSEP for the input y,é. If our algorithm concludes that y € S(K,d) we can
assert (i) of (2.1.14). If the weak separation algorithm finds an almost separating
hyperplane we call it again, but now with input y and /3. If the algorithm
asserts that y € S(K, 4 /3) then we know that y € S(K,). If the weak separation
algorithm finds a vector ¢ € @" with |c[lo = 1 and ¢"x < ¢y +6/3 for all
x € S(K,—4d/3), we can conclude that y ¢ S(K,—3J). Namely, suppose this is not
so. Then consider the vector y’' := y + (6 /(2| c||))c, which has distance § /2 from
y. Since y € S(K,—0) we see that y' € S(K,—J/3). But on the other hand we
have

Ty =Ty 2el > Ty + 3 > Ty+ 2
2 - 2 3’
which contradicts the assertion of the weak separation algorithm.

The trivial relations between the weak problems introduced above are dis-
played in Figure 2.2 (the arrows have the same interpretations as those of Figure
2.1 — arrows following from transitivity are not drawn.)

2.1 Basic Algorithmic Problems for Convex Sets 53

WOPT
WNEMPT WVIOL WSEP
‘_
WVAL WMEM
Figure 2.2

We will show in Chapter 4 that there are several more arrows in Figure
2.2, in some cases by making further assumptions on the convex set K under
consideration. We shall discuss later to what extent these requirements are
necessary.

(2.1.16) Definition. A convex set K Is called circumscribed if the following
information about K is given explicitly:
(a) the integer n = n(K) sucht that K < R",
(b) a positive rational number R = R(K) such that K < S(0, R).
So a circumscribed convex set is a triple (K ;n, R).
A circumscribed convex set (K ;n,R) is called well-bounded if, moreover, the
following is given:
(c) a positive rational number r = r(K) for which K contains a ball of radius r.
(The center of the ball need not be known explicitly.)
Thus, a well-bounded convex set is a quadruple (K ;n,R,r).
A well-bounded convex set (K ;n,R,r) is called ag-centered (or just centered
if; moreover, the following is given:
(d) a vector ag = ag(K) € Q" such that S(ag,r) < K.
Thus, an ag-centered convex set is a quintuple (K ;n,R,r,ay) with the above
properties. O

A centered convex set is always well-bounded, and a well-bounded convex
set is always circumscribed. Most of the convex sets we will encounter in our
applications are compact and full-dimensional. Convex sets with these two
properties are called convex bodies. We will speak in such cases of circumscribed,
or well-bounded, or centered convex bodies. If K is a convex set containing some
ball of radius r we call r an inner radius of K. If K < S(0,R) then R is called an
outer radius of K.

54 Chapter 2. Algorithmic Aspects of Convex Sets

Before continuing, we would like to mention that assumption (c) of (2.1.16)
provides a lower bound on the volume of K. In fact, it follows from the proofs
of the results shown later that we could have required equivalently that a lower
bound on the volume of K is given. Explicit knowledge of r(K) is not necessary,
but more convenient.

In formulating some of our results we shall have to restrict ourselves to
convex sets K for which some mathematical description is given, called the name
of K and denoted by Name(K). The same convex set may of course be given by
different definitions and therefore may have different names.

(2.1.17) Definition. A convex set (or body) K together with its encoded name
Name(K) will be called a named convex set (or body). The length of the encoding
of the name of K will be denoted by (Name(K)). O

To give an example, consider the polytope P defined in the following two ways.

(2.1.18) The set of vectors (x,x;)” € IR? satisfying x; >0, xo > 0, x; + x» < 1.

(2.1.19) The convex hull of the vectors (g), (é), ((1))

Either one of these two definitions could be used to name P. The encoding
length of the name of P would be either the length of the encoding of the
inequality system in (2.1.18) or the length of the encoding of the three vectors in
(2.1.19).

More interesting examples of names will come up in combinatorial applica-
tions. For instance, if we study the matching polytope P of a graph G, P may
be named by the graph G, and moreover, the name may be used to compute the
parameters n, R, r, or ay.

We still have to specify how we measure the encoding length of a convex set
K.

(2.1.20) Definition. Let K be a convex set. Then we denote the encoding length

of K by (K). For the various kinds of convex sets defined above, (K) shall

have the following meaning (recall the definition of encoding length for vectors

in Section 1.3):

(a) If K is circumscribed, then {(K) := n(K) + (R(K)).

(b) If K is well-bounded, then (K) = n(K) + (R(K)) + (r(K)).

(c) IfK is centered, then {K) := n(K) + (R(K)) + (r(K)) + {(ao(K)).

(d) If K is named and circumscribed, then (K) = n(K) + (R(K)) + (Name(K)).

(e) If K is named and well-bounded, then (K) := n(K) + (R(K)) + (r(K)) +
(Name(K)).

(f) IfK is named and centered, then (K) := n(K) + (R(K)) + (r(K)) + {ao(K)) +
(Name(K)). O

In most cases treated in the following, the convex sets considered are not
given by a name but by an oracle (or in practice: by a computer subroutine). An
oracle for instance may tell us whether a given point is (almost) contained in K
or not. Such an oracle would be called a (weak) membership oracle. Similarly, we

2.1 Basic Algorithmic Problems for Convex Sets 55

will consider separation, optimization, violation, or validity oracles in the weak as
well as in strong sense. If oracles are used then of course we have to consider the
running times of the oracle algorithms for our complexity calculations. This will
make it necessary to utilize the concept of oracle Turing machines introduced in
Section 1.2.

In the following we shall speak of a polynomial time or oracle-polynomial time
algorithm for a certain problem defined on a class of convex sets if the running
time of the algorithm is bounded by a polynomial in (K) and in the encoding
length of the possibly existing further input (objective functions, error parameters
etc.), for every convex set K in the given class.

We shall now briefly discuss the reasons for restricting our attention to convex
sets as defined in (2.1.16).

First, convexity seems basic for our method. The requirement (a) simply
states that we have to know the number of variables involved.

The outer radius R tells us about in which portion of R" our set K is located.
It gives us a rough estimate of the space we have to search for K. Requiring
(b) rules out the treatment of unbounded sets; it can be viewed as a strong
explicit boundedness condition. (We will show later that — under some extra
conditions — unbounded convex sets can also be handled by our methods. This,
however, involves several technicalities.) Similarly, condition (c) is an explicit
full-dimensionality condition. The roles of (b) and (c), in particular the necessity
of knowing r and R, will be discussed in detail in Chapter 4.

In some applications, requirements (a), (b), and (c) of (2.1.16) for a convex
set are sufficient to calculate an interior point in polynomial time. This, however,
is not always the case, and we may need the explicit a priori knowledge of an
interior point ag(K) with the properties described in (2.1.16).

We shall also show that by strengthening the assumption “K is convex” to
“K is a polytope” or “K is given by an inequality system” the requirements (a),
(b), and (c) of (2.1.16) can either be removed or be replaced by much simpler and
more natural ones. Such investigations will be the subject matter of Chapter 6.

In most cases treated in the sequel we will restrict ourselves to well-bounded
convex bodies (K;n, R,r), since they are the relevant objects for our appli-
cations. A short look at our definitions shows that, for the weak versions
(2.1.10),..., (2.1.14) of our five problems, closedness is a completely irrelevant
assumption. Since we allow errors, it does not make any (essential) difference
whether we optimize (or separate etc.) over a full-dimensional set K, or its
closure, or its interior. In some of the strong versions closedness is however
needed, otherwise no solutions of the problems may exist and the problems could
not even theoretically be solved. For reasons of uniformity, we have therefore
decided to state and prove our results for closed convex sets only.

To close this section, let us formulate one more problem (in its strong and
weak version), which is fundamental in mathematical programming.

(2.1.21) The Strong Unconstrained Convex Function Minimization Problem. Gi-
ven a convex function f:R" - R, find a vector y € R" such that f(y) < f(x) for
all x e R".

56 Chapter 2. Algorithmic Aspects of Convex Sets

The algorithmic solution of (2.1.21) clearly depends on the way the function
f is given to us. It may be given by an oracle that gives us the value of f(x)
for any given x € R". In addition, we have to know a radius R such that the
minimum in (2.1.21), if it exists, is contained in the ball S(0,R). Otherwise no
algorithm can be guaranteed to find the minimum.

(2.1.22) The Weak Constrained Convex Function Minimization Problem. Given
a compact convex set K < R", a convex function f:R" — R, and a rational
number ¢ > 0, find a vector y € Q" N S(K,¢) such that f(y) < f(x) +¢ for all
x € S(K, —¢).

Problem (2.1.22) is a special case of the weak optimization problem (2.1.10),
which can be seen as follows. Following example (2.1.8), we set

G(f.K) ={(’:) eR™ |xeK, f(x) gsz},

where B is any upper bound on the minimum value of f on K. It is obvious
that G(f, K) is a compact convex set in IR™"!, and that (2.1.22) can be solved by
maximizing the objective function —x,;.

If subgradients of f — cf. (2.1.8) — can be computed, then (2.1.22) can also be
reduced to (2.1.10) without adding an additional variable by using “subgradient
cuts”. This leads back to one of the sources of the subject of our book.
Namely, the ellipsoid method arose from the work of SHOR (1977) on minimizing
nondifferentiable convex functions with subgradient techniques.

%2.2 Nondeterministic Decision Problems for Convex Sets

Before discussing polynomial time algorithms for the problems introduced above,
we deal with their membership in 42 and co-A42. The results of this section are
rather technical and will not be needed in what follows; but we believe that an
investigation of these problems helps to understand the subtleties of the subject
that come up when complexity theory is applied to geometric questions.

The problems that are usually discussed in the £-AP-framework have
the property that exactly one of two possible decisions is a legal answer (a
graph is either Hamiltonian or not, but never both). In our weak problems
(2.1.10),..., (2.1.14) there may be instances for which either of the two possible
conclusions is a correct answer. Our definitions of these problems being in A2
or in co- 47 have to take those “fuzzy” instances into account, and we will
therefore require a positive answer to have a polynomial length proof only if the
other alternative does not hold. Thus our definitions are the following.

Let ¢ be a class of named well-bounded convex bodies. The weak membership
problem for ¥ is in 4% means that for any (K ; n, R, r) €), any rational number
0 >0, and any y € Q" such that y € S(K,—d) (i. e., y is deep in K), there exists a
certificate of the fact that y € S(K,9d) (i. e, y is almost in K), not longer than a
polynomial in the encoding length, that is, in n+(R)+(r)+(Name(K))+(y)+(d).

2.2 Nondeterministic Decision Problems for Convex Sets 57

The weak membership problem for J¢" is in co-4% means that for any
(K;n,R,r) € X, any rational number § > 0 and any y € @”" such that y ¢ S(K, 9),
there exists a certificate of the fact that y ¢ S(K,—d) not longer than a polynomial
in the encoding length.

Similarly, we say that the weak validity problem for . is in 42 if, for any
(K;n,R,r) € A", any rational number ¢ > 0, any ¢ € Q", and any y € @Q such that
cTx < y—eforall x e S(K,¢), there exists a certificate of the fact that ¢c”x < y+¢
for all x € S(K,—¢), not longer than a polynomial in the encoding length.

We say that the weak validity problem for ¢ is in co- 42, if for any (K ;n,R,)
€ J, any rational number ¢ > 0, any ¢ e Q" and y € Q such that ¢7x > y + ¢ for
some x € S(K,—e¢), there exists a certificate of the fact that ¢7 x > y —¢ for some
x € S(K,¢) not longer than a polynomial in the encoding length.

The violation and separation problems are not decision problems, and there-
fore they do not fit in the #/Z-framework. Motivated by the definitions above,
however, we can formulate two further complexity properties of the class . If
the membership problem is in co- A2, it is often the case that the infeasibility
of a point is proved by exhibiting a separating hyperplane. This motivates the
following definitions.

We say that the weak separation problem for " is in A2 if, for any (K ;n, R, r)
€ A", any rational number § > 0, and any y € Q" such that y ¢ S(K,), there
exists a ¢ € @Q", |lc|]lo = 1 for which the fact that ¢c’x < ¢’y + & for all
x € S(K,—38) has a certificate whose encoding length is polynomial in n + (R) +
(ry+ (Name(K)) +(y) +(d). This in particular includes that {c) is also bounded
by such a polynomial.

Finally, we say that the weak violation problem for " is in A2 if, for any
(K;n,R,r) € A", any rational number ¢ > 0, any ¢ € Q" and y € Q such that
c¢Tx > y+¢ for some x € S(K,—¢), there exists a y € S(K, ¢) for which ¢”y > y—e¢
and the fact that y € S(K,¢) has a certificate whose length is polynomial in
n+(R)+ (r)+ (Name(K)) + {c) + {y) + (e).

It is natural to define the weak violation problem for J to be in co-A4Z if
the weak validity problem for X is in A#ZP. Similarly, weak separation for)¢
is in co- A2 if weak membership is in A#Z. Some implications between these
complexity properties of ¥~ are immediate.

(2.2.1) Proposition. Let A" be a class of named well-bounded convex bodies.

(a) If the weak membership problem for X" is in /P, then also the weak violation
problem for A~ is in NP.

(b) If the weak validity problem for A is in /P, then also the weak separation
problem for X" is in /P.

(c) If the weak violation problem for A" is in /%P, then the weak validity problem
for X is in co-NP.

(d) If the weak separation problem for X" is in /P, then the weak membership
problem for X" is in co-NVP. O

The geometrical contents of these statements is trivial, but arithmetic details
require some care. For example, when proving (b), one should check that there

58 Chapter 2. Algorithmic Aspects of Convex Sets

exists indeed a vector ¢ with the required properties such that (c) is bounded by
a polynomial in the encoding length.

WSEP € /2

T JJ (2.2.10

WVAL € 42) (WMEM € co- N2
(2.2.11)
R —
WVAL € co- NP WMEM e /2
l n (2.2.9)
WVIOL € 4P
Figure 2.3

The relations between the various complexity properties of) are depicted
in Figure 2.3. An arrow in this diagram means “implication”; e. g., Proposition
(2.2.1) (a) is schematically shown by the arrow from the box containing WMEM e
NP to the box WVIOL € #2. Arrows drawn with one straight line correspond
to the trivial implications of Proposition (2.2.1). The other relations between
memberships in A% and co- A2 respectively are more complicated to prove.
The corresponding arrows in Figure 2.3 are drawn with double lines. These
relations are proved in the remaining part of this section.

We start with some lemmas. The first of them is an analogue of the well-
known Krein-Milman characterization of convex hulls.

Let F be a compact subset of R", t and R be positive real numbers with F <
S(O,R) and t > R. Let the t-hull of F (denoted by hull,(F)) be defined as the
intersection of all balls of radius ¢ containing F. Clearly,

conv(F) < hull,(F) ,
and in fact,
(2.2.2) conv(F) = () hull(F) .
t>R

A point x € F is called r-extremal if there exists a ball S(a,t) of radius ¢t around
some point a € R" such that F < S(a,t) and x lies on the boundary of S(a,?).
We denote by ex,(F) the set of all t-extremal points in F.

2.2 Nondeterministic Decision Problems for Convex Sets 59

(2.2.3) Lemma.
hull;(F) = hull,(ex,(F)).

Proof. Since ex,(F) < F, it is trivial that hull, (ex,(F)) < hull,(F).

To prove the reverse inclusion, we show that every ball S(a,t) containing
ex;(F) also contains F.

Suppose there is a ball S(a,t) =2 ex,(F) with S(a,t) 2 F. Since F = §(0,t), as
t > R, the value 4o :=max{1|0<A1<1, F < S(4a,t) } exists and is less than 1
by assumption. Clearly, F must contain a point z from the hemisphere

{xeR"||x—ial =t, (x—Ia)Ta<0)}

(i. e., from the hemisphere of S(4yq,t) visible from infinity in the direction a). But
then z e ex,(F) and z ¢ S(a,?), a contradiction. O

(2.2.4) Lemma.
hull,(F) = S (conv(ex,(F)), RT2)

Proof. Let H = ex,(F). By Lemma (2.2.3) it suffices to prove

R2
hull,(H) < S (conv(H), —t—) :

Let a € hull,(H). If a € conv(H), we have nothing to prove. So suppose
a ¢ conv(H). Let a; be the point of conv(H) nearest to a and set

1

= ——(a; —a)
llai — al| ’

M :={erR"lde2dTa1}.

The halfspace M contains conv(H) and thus H by construction, and therefore,
H is contained in M N S(0, R). We now include this intersection in a ball S(b,t)
with as small a piece outside M as possible. By elementary computations we
obtain that the center of this ball is

b= (V2 —R*+ (d"a;)? +d" ay)d,

and the height of the section S(b,t) \ M is at most t — vt2 — RZ < R%/t. Since
a € hull,(H), we have a € S(b,t), and so by the definition of M, ae S(b,t) \ M.
But then the distance of a from M, and hence from ay, is less than R?/t. Thus
ae S(conv(H),R?/t). O

60 Chapter 2. Algorithmic Aspects of Convex Sets

(2.25) Lemma. Letz €ex,(F) and ¢ > 0. Then there exists a simplex £ < R"
such that S(z,¢) < X, diam(Z) < 4nv/2te, and all but one of the facet defining
inequalities of X are valid for F. Moreover, the facet defining inequalities of
have encoding length bounded by a polynomial of n + (&) + (t).

Proof. We may assume that ¢ < 1/2. Note that ¢t > R. By the definition of
ex,(F), there exists a vector a € R" such that |a—z|| =t and F < S(a,t). Then
we may assume that F = S(a,t).

Let Hy be the hyperplane perpendicular to the vector z — a and tangent to
the ball S(z,¢) at point u separating z from a. Then Hj intersects F in an
(n — 1)-dimensional ball F’. Let vy, ..., v, be the vertices of any regular simplex
inscribed in F’ and let Hy, ..., H, be the hyperplanes tangent to F at vy, ..., v,,
respectively. It follows by elementary geometry that H;, ..., H, are also tangent
to S(z,g). So if ¥ is the simplex bounded by Hy, ..., H,, then S(z,¢) < Z.
Moreover, n of the facet defining inequalities for ¥ are valid for F.

The diameter of £ can be estimated by computing the distances of its
vertices from the point u: they turn out to be (n — 1)4/e(2t — &) (n times) and
(2t —¢)/(t —). Hence diam(Z) < 2nv/2te.

To obtain a rational simplex with such properties and with small encoding
length, round z to a rational vector Z with small encoding length, such that
lz — Z|| < ¢/2. Then we can write the facet defining inequalities of X in the form

cdx—2<1 (i=0,...,n).

Since % + Z_II'EQ-HC" € S(z,e) € X, we know | ¢;|] < 2/e.
Round each vector (1 + ¢/(8t))c; to a rational vector ¢; with small encoding
length such that
Ve

<7
32nt\/t

We claim that the following inequalities define a simplex X’ with the right
properties:

“ (1+ gt—)c,» -

Tx-2)<2 (i=0,...,n).

It is straightforward to see that £’ contains the ball S(z,), and that all but one of
these constraints are valid for S(a,t). To see that diam(Z') < 4nv/2te, we consider
the simplex X" obtained by blowing up X from Z by a factor of 2. If ' & ¥”
there exists a vector v in £’ N X" so that ¢/ (v —%) = 2 for some i€ {0, ..., n} (as
NI # ¢, since Ze X' NZX"). Thus

=2 =(1+)l =2+ @ - (1+2)e) ©-2)
ST ENell - o — 3
> (1+2) 2= gl — (1+ el - o~ 2]
2(1+§_t)-2_£ 4nv/2te

3nt/i
>2

2.2 Nondeterministic Decision Problems for Convex Sets 61

(here we use that ||v — Z|| < diam(X”) = 2diam(Z) < 4nv/2te), contradicting the
fact that v € X'. So X’ < X", and hence

diam(Z’) < diam(Z") = 2diam(Z) < 4nv/2te.

(2.2.6) Lemma. Let X be a class of named well-bounded convex bodies.
Suppose that for any (K ;n,R,r) € A", any rational numbers ¢ > 0 and t > R,
and any y € Q" such that y € S(ex,(K),¢), there exists a certificate of the fact
that y € S(K, 2¢) not longer than a polynomial of the encoding length. Then the
weak membership problem for X" is in N/ P.

Proof. Given any (K;n,R,r) € X, a rational number 6 > 0 and y € Q" such
that y € S(K,—J), we have to find a proof of the fact that y € S(K,d) not longer
than a polynomial in the encoding length n+ (R) + (r) + (Name(K)) + (y) + (5)
using the assumption of the lemma. To do this we will prove the existence of
points ug, uy, ..., u, € Q" such that:

(2.2.7) ug, ..., u, € S(K,0/2) and this fact can be shown in
time polynomial in the encoding length,
(2.2.8) y € S(conv({uo, ..., us}),5/2).

Clearly, if (2.2.7) and (2.2.8) hold, then y € S(K,d). For given vectors
Y, uo, ..., Uy € Q", (2.2.8) can be verified in time polynomial in {y) + (ug) + ...+
(un) + () (this is left as an exercise). Note that (2.2.7) in particular implies
that the numbers (u;) are bounded by a polynomial in the encoding length. So
if points ug, ..., u, € Q" satisfying (2.2.7) and (2.2.8) exist, y € S(K,d) has a
polynomial length proof. The existence of such points can be shown as follows.
Let t = R?/6. Then it follows from Lemma (2.2.4) that

K < hull,(K) < S(conv(ex,(K)),)

and hence by (0.1.12),
S(K,—d) < conv(ex,(K)).

In particular, y € conv(ex;(K)). By Carathéodory’s theorem, there exist points
2o, ..., zn € €x,(K) such that y e conv{zy, ..., z,}.

Now guess points u; € S (z;, /4) such that u; € Q" and (4;) < (R)+n+(5)+3
(such u;’s clearly exist). Then, by hypothesis, there is a polynomial length
proof of the fact that u; € S(K,6/2) (i =0, ..., n). Moreover, trivially y €
S(conv{ug, ..., u,},6/2). So (2.2.7) and (2.2.8) hold. O

(2.2.9) Theorem. Let X be a class of named well-bounded convex bodies. If
the weak violation problem for X" is in &/ then the weak membership problem
for X" is also in NP.

Proof. We prove that the condition of Lemma (2.2.6) is satisfied. Let y € S (ex,(K),
€); we describe a polynomial length certificate of the fact that y € S(K, 2¢). There

62 Chapter 2. Algorithmic Aspects of Convex Sets

exists a vector z € ex,(K) such that ||z — y|| <& By Lemma (2.2.5), there exists a
simplex £ < IR" such that diam(X) < ¢/3, S(z,8) < X, where § := £2/(96tn?), all
but one facet-inequalities are valid for K, and X is described by inequalities of
polynomial encoding length. Suppose that all facet-inequalities except possibly
c¢’x < y are valid for K; we may assume that ||c|l, = 1. Then consider the
inequality ¢”x > y — &||c||/2. This inequality is not valid for S(K,—ér/(8R)),
since, if it were, then by (0.1.14) the inequality ¢” x > y — 35 |c||/4 would be valid
for K. But it is in fact violated by z.

Hence by the hypothesis that the weak violation problem is in A%, there
is a rational vector u € S(K,8) such that cTu < y + d|/c|| and there exists a
polynomial length certificate of the fact that u € S(K,d). Let X’ be the simplex
obtained by blowing up X from z by a factor of 2. Then u € X’ and hence
|lu—z| < diam(X’) < 2¢/3. Hence |y — u]| < 5¢/3.

So if we present the vector u, together with the (direct) computation showing
that ||y — u| < 5¢/3, and the above mentioned certificate for u € S(K,J) <
S(K,¢&/3), we have certified that y € S(K, 2¢). O

The following result is in a sense dual to Theorem (2.2.9).

(2.2.10) Theorem. Let A ba a class of named well-bounded convex bodies. If
the weak separation problem for X is in /P, then the weak validity problem
for X is also in /'P. O

The proof of this fact is analogous to the proof of Theorem (2.2.9) and is
omitted. We prove one more result of this type.

(2.2.11) Theorem. Let X" be a class of named well-bounded convex bodies. The
weak membership problem for X is in /P N co- AP if and only if the weak
validity problem for X" 1s in /P N co-NP.

Proof. We only give the proof of the “if” part, the reverse direction is analogous.
So suppose that the weak validity problem for " is in AZ?Nco-AZ. It is obvious
that the weak membership problem for ¥ is in co- 4. To show that it is in
AP, we use Lemma (2.2.6). So we have to show that for every y € S(ex,(K),¢)
there exists a concise certificate of the fact that y € S(K,2¢). This is done
quite analogously to the previous proof. Let z € ex,(K) be a vector such that
ly —z]| < e By Lemma (2.2.5), there exists a simplex X such that diam(X) < ¢/3
and S(z,8) < X, where 6 = ¢2/(200tn?). Moreover, I is described by inequalities

cIx<y, (i=0,...,n)

of polynomial encoding length for which ¢/ x < y; is valid for K ifi=1, ..., n.
Since, just as in the previous proof, the inequality c¢Ix > yo — &[coll/2 is

not valid for S(K,—dr/(8R)), it follows by the hypothesis that the weak validity

problem is in co- A%, that there exists a polynomial length certificate “Cy” of

the fact that the inequality cJ x > yo + & [coll/2 is not valid for S(K,5/2). Hence
cX'x = yo + 6llcoll is not valid for K. Furthermore, ¢/ x < y; (1 <i < n) is valid

2.2 Nondeterministic Decision Problems for Convex Sets 63

for K and so ¢/ x < y;+3d||ci||/4 is valid for all x € S(K,3/4). Hence, as the weak
validity problem for) is in 42, there exists a polynomial length certificate
“C;” of the fact that ¢/ x < y; + & |lcil|/2 is valid for S(K,—dr/(8R)). This also
certifies, by (0.1.14), that ¢] x < y; + ||ci|| is valid for K.

Let X’ be the solution set of

ol x <yp+dlal (=0, ..., n).

The certificates Cy, ..., C, imply that K contains a point from X'. Moreover,
diam(X’) < ¢ since X' is contained in the simplex obtained by blowing up X by a
factor of 2 from z. Hence X' = S(y,2¢). So the certificates Cy, ..., C,, together
with a (direct) computation showing that X' < S(y, 2¢), give a certificate of the
fact that y € S(K, 2¢). O

Chapter 3
The Ellipsoid Method

In 1979 a note of L. G. Khachiyan indicated how an algorithm, the so-called
ellipsoid method, originally devised for nonlinear nondifferentiable optimization,
can be modified in order to check the feasibility of a system of linear inequalities
in polynomial time. This result caused great excitement in the world of math-
ematical programming since it implies the polynomial time solvability of linear
programming problems.

This excitement had several causes. First of all, many researchers all over the
world had worked hard on the problem of finding a polynomial time algorithm
for linear programming for a long time without success. So a really major open
problem had been solved.

Secondly, many people believe that 2 = 4/ N co-AP — cf. Section 1.1 —
and the linear programming problem was one of the few problems known to
belong to /2 N co- A2 but that had not been shown to be in 2. Thus, a further
indication for the correctness of this conjecture was obtained.

Thirdly, the ellipsoid method together with the additional number theoret-
ical “tricks” was so different from all the algorithms for linear programming
considered so far that the method itself and the correctness proof were a real
surprise.

Fourthly, the ellipsoid method, although “theoretically efficient”, did not prove
to be “practically efficient”. Therefore, controversies in complexity theory about
the value of polynomiality of algorithms and about how to measure encoding
lengths and running times — cf. Chapter 1 — were put into focus.

For almost all presently known versions of the simplex method, there exist a
few (artificial) examples for which this algorithm has exponential running time.
The first examples of this type have been discovered by KLEE and MINTY (1972).
Such bad examples do not exist for the ellipsoid method. But the ellipsoid
method has been observed to be much slower than the simplex algorithm on the
average in practical computation. In fact, BORGWARDT (1982) has shown that
the expected running time of a version of the simplex method is polynomial and
much better than the running time of the ellipsoid method. Although the ellipsoid
method does not seem to be a breakthrough in applied linear programming, it
is of value in nonlinear (in particular nondifferentiable) optimization — see for
instance ECKER and KUPFERSCHMID (1983).

As mentioned, nonlinear optimization is one of the roots of the ellipsoid
method. The method grew out of work in convex nondifferential optimization
(relaxation, subgradient, space dilatation methods, methods of central sections)
as well as of studies on computational complexity of convex programming

Chapter 3. The Ellipsoid Method 65

problems. The history of the ellipsoid method and its antecedents has been
covered extensively by BLAND, GOLDFARB and TopD (1981) and SCHRADER (1982).
Briefly, the development was as follows.

Based on his earlier work, SHOR (1970a,b) described a new gradient projection
algorithm with space dilatation for convex nondifferential programming. YUDIN
and NEMIROVSKIH (1976a,b) observed that Shor’s algorithm provides an answer
to a problem discussed by LEVIN (1965) and — in a somewhat cryptical way
— gave an outline of the ellipsoid method. The first explicit statement of the
ellipsoid method, as we know it today, is due to SHOR (1977). In the language of
nonlinear programming, it can be viewed as a rank-one update algorithm and is
quite analogous to a variable metric quasi-Newton method — see GOFFIN (1984)
for such interpretations of the ellipsoid method. This method was adapted by
KHACHIYAN (1979) to state the polynomial time solvability of linear programming.
The proofs appeared in KHACHIYAN (1980). Khachiyan’s 1979-paper stimulated
a flood of research aiming at accelerating the method and making it more stable
for numerical purposes — cf. BLAND, GOLDFARB and TopD (1981) and SCHRADER
(1982) for surveys. We will not go into the numerical details of these modifications.
Our aim is to give more general versions of this algorithm which will enable us
to show that the problems discussed in Chapter 2 are equivalent with respect
to polynomial time solvability and, by applying these results, to unify various
algorithmic approaches to combinatorial optimization. The applicability of the
ellipsoid method to combinatorial optimization was discovered independently by
KArP and PapaDIMITRIOU (1980), PADBERG and Rao (1981), and GROTSCHEL,
LovAsz and SCHRUVER (1981).

We do not believe that the ellipsoid method will become a true competitor of
the simplex algorithm for practical calculations. We do, however, believe that the
ellipsoid method has fundamental theoretical power since it is an elegant tool for
proving the polynomial time solvability of many geometric and combinatorial
optimization problems.

YamniTskI and LEVIN (1982) gave an algorithm — in the spirit of the ellipsoid
method and also based on the research in the Soviet Union mentioned above —
in which ellipsoids are replaced by simplices. This algorithm is somewhat slower
than the ellipsoid method, but it seems to have the same theoretical applicability.

Khachiyan’s achievement received an attention in the nonscientific press that
is — to our knowledge — unpreceded in mathematics. Newspapers and journals
like The Guardian, Der Spiegel, Nieuwe Rotterdamsche Courant, Népszabadsag,
The Daily Yomiuri wrote about the “major breakthrough in the solution of
real-world problems”. The ellipsoid method even jumped on the front page
of The New York Times: “A Soviet Discovery Rocks World of Mathematics”
(November 7, 1979). Much of the excitement of the journalists was, however, due
to exaggerations and misinterpretations — see LAWLER (1980) for an account of
the treatment of the implications of the ellipsoid method in the public press.

Similar attention has recently been given to the new method of KARMARKAR
(1984) for linear programming. Karmarkar’s algorithm uses an approach different
from the ellipsoid method and from the simplex method. Karmarkar’s algorithm
has a better worst-case running time than the ellipsoid method, and it seems that
this method runs as fast or even faster than the simplex algorithm in practice.

66 Chapter 3. The Ellipsoid Method

But Karmarkar’s algorithm requires — like the simplex method — the complete
knowledge of the constraint system for the linear programmming problem. And
thus — as far as we can see — it cannot be used to derive the consequences to be
discussed in this book.

The unexpected theoretical and practical developments in linear programming
in the recent years have prompted a revival of research in this area. The nonlinear
approach to linear programming — using techniques like the Newton method and
related descent procedures — receives particular attention. A number of further
polynomial time methods for the solution of linear programming problems have
been suggested — see for instance IRl and IMAI (1986), DE GHELLINCK and
ViaL (1986), BETKE and GRITZMANN (1986), and SONNEVEND (1986) — and are
under investigation with respect to their theoretical and practical behaviour.
It is conceivable that careful implementations of these methods and, possibly,
combinations of these methods with the simplex algorithm will lead to good codes
for linear programming problems. Such codes may become serious competitors
for the simplex codes that presently dominate the “LP-market”. A thorough
computational and theoretical study of such prospects is the recent paper GILL,
MURRAY, SAUNDERS, TOMLIN and WRIGHT (1986), where variants of Karmarkar’s
algorithm are discussed in a general framework of projected Newton barrier
methods and where these are compared with several versions of the simplex
method with respect to practical efficiency for various classes of LP-problems.

3.1 Geometric Background and an Informal Description

The purpose of this section is to explain the geometric idea behind the ellip-
soid method, to give an informal description of it, to demonstrate some proof
techniques, and to discuss various modifications. We begin by summarizing well-
known geometric facts about ellipsoids. Then we describe the ellipsoid method
for the special case of finding a point in a polytope that is explicitly given by
linear inequalities and known to be empty or full-dimensional. We also present
proofs of a few basic lemmas, and finally, computational aspects of the ellipsoid
method are discussed, in particular questions of “rounding” and quicker “shrink-
ing”. Proofs of more general results than described in this section can be found
in Sections 3.2 and 3.3.

The problems we address are trivial for the case of one variable. So we
assume in the proofs throughout Chapter 3 that n > 2.

Properties of Ellipsoids

A set E < R" is an ellipsoid if there exists a vector a € R"” and a positive definite
nxn-matrix A such that

(3.1.1) E=E(4,a) ={xeR"|(x—a) A7 '(x—a) < 1}.

(It will become clear soon that using A~! here, which is also a positive definite
matrix, is more convenient than using 4.) Employing the ellipsoidal norm || |4

3.1 Geometric Background and an Informal Description 67

defined in Section 0.1 we can write equivalently
(3.1.2) E(A,a) ={xeR" | |x—al4 <1},

that is, the ellipsoid E(A,a) is the unit ball around a in the vector space IR"
endowed with the norm | |l 4. So in particular, the unit ball S(0,1) around zero
(in the Euclidean norm) is the ellipsoid E(/,0). Note that E determines 4 and a
uniquely. The vector a is called the center of E, and we say that E(A4,aq) is the
ellipsoid associated with 4 and a.

For every positive definite matrix 4 there exists a unique positive definite
matrix, denoted by 4'/2, such that 4 = 4'/24'/2, It follows by a simple calculation
that

(3.1.3) E(A,a) = AY25(0,1) + a.

Thus every ellipsoid is the image of the unit ball under a bijective affine trans-
formation.

There are some interesting connections between geometric properties of the
ellipsoid E = E(A, a) and algebraic properties of the matrix A which we want to
point out here. Recall from (0.1.3) that all eigenvalues of A4 are positive reals.
The diameter of E is the length of a longest axis and is equal to 2v/A, where A is
the largest eigenvalue of A. The longest axes of E correspond to the eigenvectors
belonging to A. The width of E is the length of a shortest axis which is 2v/4,
where A is the smallest eigenvalue of A. These observations imply that the ball
S(a,/7) is the largest ball contained in E(4,a) and that S(a, V/A) is the smallest
ball containing E(A4, a). In fact, this is the geometric contents of inequality (0.1.9).
Moreover, the axes of symmetry of E correspond to the eigenvectors of A.

Figure 3.1 shows an ellipsoid graphically. It is the ellipsoid E(4,0) < R? with
A = diag((16,4)7). The eigenvalues of 4 are A = 16 and 1 = 4 with corresponding
eigenvectors e; = (1,0)” and e, = (0,1)7. So the diameter of E(4,0) is 2vV/A = 8,
while the width is 2v1 = 4.

v

1N

} b
length /A

Figure 3.1

The volume of an ellipsoid E = E(4,a), denoted by vol(E), depends only on
the determinant of 4 and on the dimension of the space. More exactly, we have

(3.1.4) vOl(E(A,a)) = VdetA4 - V),

68 Chapter 3. The Ellipsoid Method

where ¥V, is the volume of the unit ball §(0,1) in IR". It is well known that

n"? 1 (2en)"/2,

(3.1.5) Vo= Fzs)~ U

n

where
ac

I'(x) := f e 't dt, forx>0
0
is the gamma-function. The gamma-function satisfies

I'(h) =(n—1)! for all ne N.

We will frequently need bounds on V. It turns out that for our purposes it will
be enough to use the very rough estimates

(3.1.6) <V, < 2",

which are derived from the facts that S(0, 1) contains {x e R" |0 < x; < 1/n,i =
1, ..., n} and that S(0, 1) is contained in {x e R" | || x|, < 1}.

If x— Dx + d is a bijective affine transformation 7' then vol(T'(E(A,a))) =
det Dv/det A - V,,. This in particular shows that

vol(E(A,a)) _ vol(T(E(A,a)))
vol(E(B,b)) vol(T(E(B,b)))’

that is, the quotient of the volumes of two ellipsoids is invariant under bijective
affine transformations.

It will be necessary for us to optimize linear objective functions over ellipsoids.
This is easy and can be derived from the obvious fact that, for ¢ # 0, max c’x,
x € S(a, 1) is achieved at the vector a+c¢/|c|. Namely, suppose that E(4,a) < R"
is an ellipsoid and let ¢ € R"\ {0}. Set Q := A'/2. Recall from (3.1.3) that
0 'E(4,a) =5(0,1) + Q0 'a=S(Q'a,1) and thus

max{c"x | x e E(A,a)} =max{c'QQ 'x | 0"'x e Q'E(4,a)}
=max{c'Qy | yeS(Q'a,1)}

_ 1 L T Ay
=c Q”QC”Qc-i-c QQ 'a

1
=cT Ac+cTa

VT Ac
=cTa+ VeT Ac.

By setting
1
Vel Ac

Zmax ‘= a-+Db,

(3.1.7) b= Ac,

Zmin = a—Db,

3.1 Geometric Background and an Informal Description 69

we therefore obtain

(3.1.8) ¢Tzmax = max{c"x|xe E(4,a)} =cTa+VcTAc =cTa+ ||c| 4,

¢ Zmin = min{ch | x e E(4,a)} = cTa—VeTAe =cTa—||c| 41

This means that zy,x maximizes and zy;, minimizes ¢’ x over E(A,a). The line
connecting zZma, and zni, goes through the center a of E(A, a) and has direction b.
In Figure 3.2 we show the ellipsoid E(4,a) with A = diag((16,4)T), a” = (1,0.5)
and objective function ¢’ = (-2, —3). From (3.1.7) we obtain b7 = (—3.2,—1.2),
2l = (1,0.5) 4+ (=3.2,—-1.2) = (=2.2,—-0.7) and zI. = (1,0.5) — (=3.2,—1.2) =
4.2,1.7).

Figure 3.2

It is a well-known fact that every convex body is contained in a unique
ellipsoid of minimal volume and contains a unique ellipsoid of maximal volume.
Apparently, these two results have been discovered independently by several
mathematicians — see for instance DANZER, GRUNBAUM and KLEE (1963, p. 139).
In particular, these authors attribute the first result to K. Lowner. JoHN (1948)
proved the following more general theorem, the “moreover” part of which will
be of interest later.

(3.1.9) Theorem. For every convex body K < R" there exists a unique ellipsoid
E of minimal volume containing K. Moreover, K contains the ellipsoid obtained
from E by shrinking it from its center by a factor of n. a

Let us call the minimum volume ellipsoid containing a convex body K the
Lowner-John ellipsoid of K. In formulas, the second part of Theorem (3.1.9)
states that, if E(A,a) is the Lowner-John ellipsoid of K, then K contains the
ellipsoid E(n24, a).

For a regular simplex S, the Lowner-John ellipsoid is a ball E (R%I,a) with
an appropriate radius R around the center of gravity a of S. The concentrical
ball E(n~2R?I,a) is the largest ellipsoid contained in S. This shows that the
parameter n in Theorem (3.1.9) is best possible.

70 Chapter 3. The Ellipsoid Method

(b)
Figure 3.3

In general, the Lowner-John ellipsoid of a convex body K is hard to compute.
We will, however, show in Section 4.6 that, under certain assumptions on K, good
approximations of it can be computed in polynomial time. In the ellipsoid method
and its variants, Lowner-John ellipsoids of certain ellipsoidal sections are used;
and for these Lowner-John ellipsoids, explicit formulas are known. We will
describe some of them.

Suppose E(A4,a) is an ellipsoid and ¢ e R" \ {0}. Set

(3.1.10) E'(4,a,c) =E(4,a)N{xeR" | c"x <c"a)}.

So E'(A,a,c) is one half of the ellipsoid E(A,a) obtained by cutting E(A4, a)
through the center a using the hyperplane {x € R" | ¢"x = cTa}. The Lowner-
John ellipsoid of E’(A, a, c) is the ellipsoid E(A4’,d’) given by the following formu-
las:

' 1
(3.1.11) a:=a "y 1b,
! n2 2 T

where b is the vector defined in (3.1.7). In Figure 3.3 we show the Lowner-
John ellipsoids E(A’,d) of two halfellipsoids E’(4,a,c), where in (a), A =
diag((1,25/9)7), a = 0, ¢ = (25,—4) and in (b), A = diag((16,4)7), a = 0,
¢ = (—2,—3)7. The halfellipsoids E’(4,a,c) are the dotted regions.

Note that the center a’ of the Lowner-John ellipsoid E(4’, d’) of E'(A, a, c) lies
on the line through the vectors zpmax and zpmin — see (3.1.7). More exactly, one can

3.1 Geometric Background and an Informal Description 71

get from a to a’' by making a step from a towards zpi, of length ﬁ | Zmin — all.
Moreover, the boundary of E(A’,d’) touches E'(4,a,c) in the point z,;, and in
the set {x | [x—al4 = 1} N {x | c"x = cTa}. In R? the last set consists of two
points only — see Figure 3.3 — while in IR® this is an ellipse.

We will see later that the algorithm described by Khachiyan makes use of
the Lowner-John ellipsoid of E’(A4,a,c). There are modifications of this method
using Lowner-John ellipsoids of other ellipsoidal sections. Here we will describe
those that we use later — see BLAND, GOLDFARB and Topp (1981) for further
details. So suppose E(A4,a) is an ellipsoid and ¢ e R"\ {0}, y e R. It follows from
(3.1.8) that the hyperplane

H:={xeR"|c"x =y}
has a nonempty intersection with E(A4,a) if and only if ¢7 zmin < 9 < ¢7 Zmay, that

1s, if and only if
lcTa—y| < VT Ac.

For notational convenience, let us set

(3.1.13) o =

Then H intersects E(A,a) if and only if
(3.1.14) —-1<a<l.

The number a can be interpreted as the signed distance of the center a from the
boundary of the halfspace {x | ¢’ x <y} in the space R" endowed with the norm
|l Il 4~1. (The distance is nonpositive if a is contained in the halfspace.)

We want to cut E(A, a) into two pieces using H and to compute the Lowner-
John ellipsoid of the piece contained in {x | ¢’ x < y}. For

(3.1.15) E'(A,a,c,y) == E(A, @) N{xeR" | c"x <y},

the Lowner-John ellipsoid E(A4’,d’) can be determined as follows.

If—1 <a<—1/n then E(4',d) = E(4, a).
If -1/n < a < 1 then E(A',d) is given by

1 + na
3.1, '=a-— ,
(3.1.16) a a 1
n? 2(1 + no)
3.1. "= — o) (A— ———" ppT),
(.1.17) A= =) n+ (1 +2))

where b is the vector defined in (3.1.7). Note that if y = cTa then E’(4,a,c,y) =
E'(A,a,c) and formulas (3.1.16) and (3.1.17) reduce to formulas (3.1.11) and

72 Chapter 3. The Ellipsoid Method

(3.1.12). So in formulas (3.1.11) and (3.1.12) we compute the Lowner-John
ellipsoid of the section E(A,a,c) of E(A,a) that is obtained by cutting with H
through the center a. We call this a central cut. If 0 < « < 1 then E'(4,4q,c,7)
is strictly contained in E’(A4,a,c). This means that we cut off a larger piece of
E(A,a), and therefore ¢’ x < 7y is called a deep cut. If —1/n < « < 0 then we leave
more of E(A4,a) than the “half” E’(A4,a,c), and we call ¢cTx <y a shallow cut;
but in this case the Lowner-John ellipsoid of E’(A4,a,c,y) is still strictly smaller
than E(A,a), in the sense that it has a smaller volume. (We shall see later that
a volume reduction argument will prove the polynomial time termination of the
ellipsoid method.)

It is also possible to compute explicit formulas for the Lowner-John ellipsoid
of E(4,a) N{x |y < c"x < v}, i. e, for an ellipsoidal section determined by
parallel cuts. However, the formulas are quite horrible — see BLAND, GOLDFARB
and Topp (1981). We will need a special case of this, namely the Lowner-John
ellipsoid of an ellipsoidal section determined by centrally symmetric parallel cuts,
1. €., of

(3.1.18) E"(A,a,c,y) = EA,a)N{xeR"|cTa—y<c"x<cTa+y)},

where y > 0. Similarly as in (3.1.13), let « = —y/vcT Ac. It turns out that the
Lowner-John ellipsoid of E”(A4, a,c,y) is the ellipsoid E(A’,a’) defined as follows.

Ifa < —1/+/n then E(A',d) = E(A, a).
If —1/\/n < a <0 then E(4,d) is given by

(3.1.19) ad .= a,

(3.1.20) A =

-
N

(@) (b (©) @
Figure 3.4a—d

Figure 3.4 shows the four types of cuts used in various versions of the ellipsoid
method. In all cases we assume that E(A4,qa) is the unit ball S(0,1). Let ¢ :=

3.1 Geometric Background and an Informal Description 73

(—1,0)7 be the vector used to cut through E(4, a). Picture (b) shows the Lowner-
John ellipsoid of the dotted area E'(A4,a,c) = S(0,1) N {x | x; > 0}, a central cut.
Picture (a) shows the Lowner-John ellipsoid of the dotted set E'(4,qa,¢,—1/2) =
SO, 1)N{x | x; = 1/2}, a deep cut. Picture (c) shows the Lowner-John ellipsoid of
E'(A,a,c,1/3) = S(0,1) N {x | x; > —1/3}, a shallow cut; while the Léwner-John
ellipsoid of E"(A4,a,c,1/4) = S(0,1) N {x | —1/4 < x; < 1/4} is displayed in
picture (d). This set is determined by a centrally symmetric parallel cut.

Description of the Basic Ellipsoid Method

To show the basic idea behind the ellipsoid method, we describe it now as a
method to solve the strong nonemptiness problem for explicitly given polytopes
that are either empty or full-dimensional. The input for our algorithm is a system
of inequalities c,.T x <7y, i=1,..., m with n variables in integral coefficients. We
would like to determine whether

(3.1.21) P:={xeR"|cIx<y,i=1,...,m}={x|Cx <d}

is empty or not, and if it is nonempty, we would like to find a point in P. In
order to get a correct answer the input must be accompanied by the following
guarantees:

(3.1.22) P is bounded.
(3.1.23) If P is nonempty, then P is full-dimensional.

It will turn out later that the certificates (3.1.22) and (3.1.23) are not necessary. The
(appropriately modified) method also works for possibly unbounded polyhedra
that are not full-dimensional. Moreover, we can handle polyhedra defined by
inequalities that are provided by a separation oracle, that is, the inequalities need
not be given in advance. To treat all these additional possibilities now would
only obscure the lines of thought. Thus, in order to explain the ideas underlying
the ellipsoid method, we restrict ourselves to the special case described above.

Recall the well-known method of catching a lion in the Sahara. It works as
follows. Fence in the Sahara, and split it into two parts; check which part does
not contain the lion, fence the other part in, and continue. After a finite number
of steps we will have caught the lion — if there was any — because the fenced-in
zone will be so small that the lion cannot move anymore. Or we realize that the
fenced-in zone is so small that it cannot contain any lion, i. e., there was no lion
at all. In order to illustrate the ellipsoid method by this old hunter’s story we
have to describe what our Sahara is, how we split it into two parts, how we fence
these in, and when we can declare the lion caught or nonexistent.

For the Sahara we choose a ball around the origin, say S (0, R), that contains
our polytope P, the lion. If the system of inequalities (3.1.21) contains explicit
upper and lower bounds on the variables, say I; < x; <u;, i=1, ...,n then a
radius R with P < §(0, R) is easily found. Take for instance

(3.1.24) R =/ ¥ max{u},I}}.

If bounds on the variables are not given explicitly we can use the information
that C and d are integral and that P is a polytope to compute such a radius R,
namely we have:

74 Chapter 3. The Ellipsoid Method

(3.1.25) Lemma. P < S(0,R), where R := \/n 2(Cd—"", O

Recall that (C,d) denotes the encoding length of C and d - see Section 1.3.
(Since we do not want to interrupt the flow of thought, the proofs of all lemmas
stated in this subsection are postponed to the next subsection.)

Now we have the starting point for the ellipsoid method. We know that P is
in S(0, R) with R given by (3.1.24) or (3.1.25). This ball around the origin will
be our first ellipsoid E(Ag,a) (which is clearly given by setting A := R?I and
ap = 0).

Let us now describe the k-th step, k > 0, of the procedure. By construction,
the current ellipsoid

(3.1.26) Ey == E(Ax, ax)

contains P. The ellipsoid E; has one distinguished point, its center ax, and we
have it explicitly at hand. So we can substitute a; into the inequality system
(3.1.21) and check whether all inequalities are satisfied. If this is the case, we can
stop, having found a feasible solution. If the center is not feasible, then at least
one inequality of the system (3.1.21) must be violated, let us say ¢’ x < y. So we
have cTa, > y. The hyperplane {x | cTx = cTa;} through the center a; of E,
cuts E; into two “halves”, and we know from the construction that the polytope
P is contained in the half

(3.1.27) E'(Ak,ar,c) = {x € E(Ar,a) | ¢Tx < cTar}.

Therefore we choose, as the next ellipsoid E in our sequence, the Lowner-John
ellipsoid of E’(Ay, ax, ¢), which is given by formulas (3.1.11) and (3.1.12). And we
continue this way by successively including P into smaller and smaller ellipsoids.

The question to be answered now is: When can we stop? Clearly, if we find
a point in P, we terminate. But how long do we have to continue the iterations
if no feasible point is obtained? The stopping criterion comes from a volume
argument. Namely, we know the initial ellipsoid S(0, R) and therefore we can
estimate its volume, e. g., through (3.1.6). In each step k we construct a new
ellipsoid Ey,; whose volume is strictly smaller than that of E,. More precisely,
one can show:

(3.1.28) Lemma.

V\(I)(l)(]f:gz)l) - ((n: 1)n+1 (n_'i 1)"“1)1/2 < e 1/Cm 1.

a

By our guarantees (3.1.22) and (3.1.23) we are sure that our polytope P has
a positive volume, unless it is empty. One can use the integrality of the data and
the fact that P is a polytope to prove

3.1 Geometric Background and an Informal Description 75

(3.1.29) Lemma. If the polytope P is full-dimensional, then
VOI(P) > 27O+’

(]

Now we can finish our analysis. We can estimate the volume of the initial
ellipsoid from above, and the volume of P, if P is nonempty, from below; and
we know the shrinking rate of the volumes. Therefore, we iterate until the present
ellipsoid has a volume that is smaller than the lower bound (3.1.29) on the volume
of P. If we have reached this situation, in step N say, we can stop since we know
that

(3.1.30) P < Ey,
vol(Ex) < vol(P).

This is clearly impossible, and we can conclude that P is empty. The number N
of iterations that have to be done in the worst case can be estimated as follows.
If we choose

(3.1.31) N = 2n((2n + 1){C) + n{d) — n’)

then it is easy to see that vol(Ey) < 2-HXCH+7 (for an elaboration, see Lemma
(3.1.36)). Combining this with (3.1.29) we see that (3.1.30) holds for this N.
Our description of the ellipsoid method (except for implementational details) is
complete and we can summarize the procedure.

(3.1.32) The Basic Ellipsoid Method (for the strong nonemptiness problem for
full-dimensional or empty polytopes).

Input: An mxn-inequality system Cx < d with integral coefficients. We assume
that the data are accompanied by a guarantee that P = {x e R" | Cx < d} 1s
bounded and either empty or full-dimensional.

Initialization: Set

@ k:=0,
(b) N :=2n(2n+ 1){C)+n(d) —n’),
(©) Ao := R2I with R := \/n2{¢4-"" (or use any valid smaller R
as, for example, given in (3.1.24)),
ap =0 (so Eg := E(Ap, ap) is the initial ellipsoid).

General Step:

(d) Ifk =N, STOP! (Declare P empty.)

(€ Ifa, e P, STOP! (A feasible solution is found.)

(f) Ifa, & P, then choose an inequality, say ¢"x <y,
of the system Cx < d that is violated by ay.

76 Chapter 3. The Ellipsoid Method

Set
(g) b= ! Agc (see (3.1.7))
g '— m k oL 5

1

(h) agy1 ‘= ag — ;l:—lb (See (311 1)),
. n? 2 .-
Q) A = —5— (Ak - b) (see (3.1.12)),
and go to (d). O

We call algorithm (3.1.32) the basic ellipsoid method since it contains all the
fundamental ideas of the procedure. To make it a polynomial time algorithm or
to make it more efficient certain technical details have to be added. For instance,
we have to specify how the vector ax,; in (h) is to be calculated. Qur formula on
the right hand side of (h) leads to irrational numbers in general since a square
root is computed in the formula for b in (g). Nevertheless, the lemmas stated
before prove that the basic ellipsoid method works — provided that the single
steps of algorithm (3.1.32) can be implemented correctly (and efficiently). We will
discuss this issue in the subsection after the next one.

Proofs of Some Lemmas

We now give the proofs of the lemmas stated above. We begin with a slight
generalization of Lemma (3.1.25).

(3.1.33) Lemma. IfP = {x € R" | Cx < d} is a polyhedron and C, d are
integral, then all vertices of P are contained in the ball around 0 with radius
R = /n2¢4~" [particular, if P is a polytope then P < S(0, R).

Proof. In order to show that the vertices of P are in S(0, R) with the R given
above, we estimate the largest (in absolute value) component of a vertex of P.
Clearly, if we can find a number ¢ > 0 such that no vertex of P has a component
which (in absolute value) is larger than ¢, then the vertices of P are contained
in{x|—-t<x;<ti=1,...,n}, and thus in S(0,/nt). From polyhedral theory
we know that for each vertex v of P there is a nonsingular subsystem of Cx < d
containing n inequalities, say Bx < b, such that v is the unique solution of
Bx = b. By Cramer’s rule, each component v; of v is given by

- det B,‘
"7 detB
where we obtain B; from B by replacing the i-th column of B by the vector b. Since

B is integral and nonsingular, we have that |det B| > 1, and so |v;| < | det B;|. By
(1.3.3) (¢)

|det B;| < 2¢B)—n" _ 1,

3.1 Geometric Background and an Informal Description 77
And thus, since (B;) < (C,d),
| det B;| < 2(¢4—",

Therefore, setting R = /n 29" we can conclude that all vertices of P are
contained in S (0, R). O

The reader is invited to find better estimates for R, for instance by using the
Hadamard inequality (0.1.28) directly and not only via (1.3.3).

Next we prove (3.1.28) and estimate how much the volume of the Lowner-
John ellipsoid of the halfellipsoid E’(Ag, ax,c) shrinks compared with the volume
of E (Ak, ak).

(3.1.34) Lemma. Let E < R" be an ellipsoid and E' be the ellipsoid obtained
from E using formulas (3.1.7), (3.1.11), (3.1.12) for some vector c € R"\ {0}. Then

‘\//(())11((12,)) - ((n.r:_ 1)n+l (nf 1)"_1)1/2 < e_l/(2n) < 1.

Proof. To estimate the volume quotient, let us assume first, that the tnitial
ellipsoid is F := E(I,0) i. e., the unit ball around zero, and that the update vector
c used to compute b in (3.1.7) is the vector (—1,0, ..., 0)7. In this case we obtain
from (3.1.7), (3.1.11), and (3.1.12):

b=(-1,0, ...,0)7,

1 1 T
'—a— b=(——.0..,0),
a=a n+1 (n+1’)
n? 2 T
' _ ~1,0, ..., 07 (=1,0, ...,0
A n2_1(1 (10, O))

2 2 2
=diag(((nj-1)2’n2n_l’ ey nz”_l)T).

From this and (3.1.4) we conclude for the volumes of F and F’ := E(4',d'):

2n

VOl(F/)_VdCtA' Vnz\/m:(n n—l)l/l
vol(F) — vdetd V, (n+1"n—1" n+1

-(G3) " G2

Hence, by taking the natural logarithm In, we obtain:

VO](F ,) —1/(2n) 1/n n+ 1 ntl rp— 1\ n-1
vol(F)<e ¢ <(n) (n)

! cm+nma+ L= pma — L
n n n

78 Chapter 3. The Ellipsoid Method

Using the power series expansion Inx = Y 5o (—1)¥!(x — 1)*/k for 0 < x < 2,
we obtain

(+1)In(+)+ m—1in(1— 1) =
n n

=i(_1)k+1n+1 _yon-—1
“~ knk knk

k=1

& 2 = 2(n—1)
_ —1 k+1_< it

,;() knk Z‘ 2knk

= 2 S 2 = 1 =1
= —_—— —_—— —_— 4 _—

2k— 2k 2k— k
kz___; 2k — Dn 1 I; 2kn kZl kn2k—1 ; kn?
1 1

o

2k — 1)k nZk-1

=~
i

\
S |-

and thus the claim is proved for our special choice of the initial ellipsoid and c.

Now let E = E(A,a) be any ellipsoid and E' = E(A’,d’) be an ellipsoid
constructed from E using the formulas (3.1.7), (3.1.11), and (3.1.12) for some
vector ¢ € R"\ {0}. By (3.1.3), E = AY2E(1,0) + a = A?F + a. Clearly, there
is an orthogonal matrix, say Q, which rotates A'/?c into a positive multiple of
(—1,0, ..., 0), that is, there is an orthogonal matrix Q such that

1

_ 1/2
= oA e

(-1,0, ..., 07

Then
T(x) :==A"?QTx +a

is a bijective affine transformation with 7-'(x) = Q4~'/2(x — a). Now

T(F)={T(y|y"y<1}
={x | (T'x)T(T"'x) < 1}
={x|(x—a)TA4712QTQ4 V3 (x —a) < 1}
={x|(x—a)TA (x—a) <1}
=E,
and similarly for the ellipsoid F’ defined above, we obtain T(F’) = E’. In the
subsection about properties of ellipsoids we have seen that the quotient of the

volumes of two ellipsoids is invariant under bijective transformations. Thus we
have

vol(E') vol(T(F')) _ vol(F') _ no\mle ono N2
vol(E) ~ vol(T(F)) ~ vol(F) _ ((n+1) (n—l)) <€

which completes the proof. O

3.1 Geometric Background and an Informal Description 79

The following lemma proves (3.1.29) and shows the interesting fact that the
volume of a full-dimensional polytope cannot be “extremely small”, that is, a
lower bound on vol(P) can be computed in polynomial time.

(3.1.35) Lemma. IfP = {x e R" | Cx < d} is a full-dimensional polytope and
the matrix C and the vector d are integral then

VO](P) > 2—(n+1)(C>+n3.

Proof. From polyhedral theory we know that every full-dimensional polytope P
in R" contains n+ 1 vertices vo, vy, ..., Uy, say, that are affinely independent. The
convex hull of these vertices forms a simplex S that is contained in P. Thus,
the volume of P is bounded from below by the volume of S. The volume of a
simplex can be determined by a well-known formula, namely we have

1 11 .1
vol(S)=m|det(vo o v")|.

det Bj,’

et Bj
Cramers rule, where B; is a submatrix of C and Bj; a submatrix of (C,d). So we
obtain

1 ... 1 1
Idet (Uo v,,)|=|detBo-...-detB,,

where uy, ..., u, are integral vectors in R". Since the last 2determinant above is
a nonzero integer, and since by (1.3.3) (c), |det B;| < 2(C)-"" holds, we get

1 1 1 2
> > (2O —(n+1)
‘det<vo v,,)'_|detBo|-...-|detB,,|_()

Now recall that, for every vertex vj, its i-th component is of the form by

det(detBO detB,,),
Up Un

Therefore, using n! < 2"2, we obtain
1 2 3
{C)—n*\—(n+1) —(n+1){C)+n
vol(P) = vol(S) > ——n!(?.) >2 .
O

The last lemma in this sequence justifies the choice (3.1.31) of the number N
of iterations of the general step in the basic ellipsoid method.

(3.1.36) Lemma. Suppose P = {x e R" | Cx < d} is a full-dimensional polytope
and Cx < d is an integral inequality system. If Ey = E(Ao,a0) with ag = 0,
Ay = R*I andR = \/n 2ACA-n* jo the initial ellipsoid, and if the general step of
the basic ellipsoid method (3.1.32) is applied N := 2n((2n + 1){C) + n{d) — n*)
times then

vol(Ey) < 2-+IXO+7 < yol(P).

80 Chapter 3. The Ellipsoid Method

Proof. Since Eg < {x e R" | |x||x < R}, we have

vol(Ep) < MR — n"/2 2n(C,d)—n3+n - 2n((C,d)—n2+1+log(n)/2) < 2n(C,d) .

By (3.1.34), in each step of the basic ellipsoid method the volume of the next
ellipsoid shrinks at least with the factor e='/?"_ Thus after N steps we get

Vol(Ey) < e N/ yol(Eq) < 27N/@mn(Cd) _ »—mtINCHn’ o yo1(p),

where the last inequality follows from (3.1.35). The equality above is, in fact, the
defining equality for N. This proves our claim. O

The reader will have noticed that most of the estimates in the proofs above
are quite generous. By a somewhat more careful analysis one can improve all
crucial parameters slightly to obtain a smaller upper bound N on the number of
iterations of the ellipsoid method. Since our main point is that the upper bound
is polynomial we have chosen a short way to achieve this. As far as we can see,
however, the order of magnitude of N, which is O(n*{C, d)), cannot be improved.

Implementation Problems and Polynomiality

To estimate the running time of the basic ellipsoid method (3.1.32) in the worst
case, let us count each arithmetic operation as one elementary step of the
algorithm. The initialization (a), (b), (c) can obviously be done in O(m - n)
elementary steps. In each execution of the general step (d), ..., (i) of (3.1.32) we
have to substitute a; into the system Cx < d which requires O(m - n) elementary
steps, and we have to update ax and A, in (h), (i). Clearly (h) needs O(n)
elementary steps while (i) requires Q(n?) elementary steps. The maximum number
of times the general step of (3.1.32) is executed is bounded from above by
N =2n((2n + 1){C) + n{d) — n’) = O(n*(C,d)). Since P is a polytope we have
m > n, and thus the total number of elementary steps of the basic ellipsoid
method is O(mn*{C,d)). So we have found a polynomial upper bound on the
number of elementary steps of the basic ellipsoid method.

However, there are certain problems concerning the implementation of some
of the elementary steps. We take a square root in step (c) to calculate R, so we
may obtain an irrational number. One can take care of this by rounding R up
to the next integer. But, in fact, we only need the rational number R? in the
initialization of Ay, so we do not have to compute R at all. A more serious
problem comes up in the general step. The vector b calculated in (g) is in general
irrational, and so is ax4. Since irrational numbers have no finite representation in
binary encoding, we are not able to calculate the center ay,; exactly. Thus, in any
implementation of the ellipsoid method we have to round the coefficients of the
entries of the center of the next ellipsoid. This causes difficulties in our analysis.
Namely, by rounding a;,; to some vector dx,; € Q", say, we will translate the
ellipsoid Ex, slightly to the ellipsoid Eyyy := E(Ai1,d41). Recalling that E;y
is the ellipsoid of minimum volume containing the halfellipsoid E’(Ax,ax,c) —

3.1 Geometric Background and an Informal Description 81

cf. (3.1.27) — we see that E,,; does not contain E’'(Ay,ax,c) any more. So it
may happen that the polytope P < E’(Ay, ax,c) is not contained in E,,, either.
And therefore, our central proof idea of constructing a sequence of shrinking
ellipsoids each containing P is not valid any more.

There is a further issue. Observe that the new matrix Ay, ; calculated in (i)
is rational, provided Ay and c are. But it is not clear a priori that the entries of
Ar41 do not grow too fast.

All these difficulties can be overcome with some effort. We will describe
here the geometric ideas behind this. The concrete mathematical analysis of the
correctness and implementability of these ideas will be given in Section 3.2.

We have seen that rounding is unavoidable in the calculation of the center
ary1. We will do this as follows. We write each entry of a,; in its binary
representation and cut off after p digits behind the binary point, where p is to
be specified. In other words, we fix a denominator 2? and approximate each
number by a rational number with this denominator. To keep the growth of the
encoding lengths of the matrices Ax,; under control, we apply the same rounding
method to the entries of 4;,;. As remarked before, rounding of the entries of the
center results in a translation of the ellipsoid. By rounding the entries of Ay,
we induce a change of the shape of the ellipsoid in addition. The two roundings
may produce a new ellipsoid which does not contain P. Moreover, by rounding
a positive definite matrix too roughly positive definiteness may be lost. So we
also have to take care that the rounded matrix is still positive definite. It follows
that we should make p large enough, subject to the condition that all numbers
coming up during the execution of the algorithm are of polynomial encoding
length.

We still have to find a way to keep P inside the newly calculated ellipsoid.
Since we cannot move P, we have to do something with the new ellipsoid. One
idea that works is to maintain the (rounded) center and to blow up the ellipsoid
obtained by rounding the entries of Ay, in such a way that the blow-up will
compensate the translation and the change of shape of the Lowner-John ellipsoid
induced by rounding. The blow-up factor must be so large that the enlarged
ellipsoid contains P. Clearly, we have to blow up carefully. We know from
(3.1.28) that the shrinking rate is below 1; but it is very close to 1. In order to
keep polynomial time termination, we have to choose a blow-up factor that on
the one hand gives a sufficient shrinking rate and on the other, guarantees that
P is contained in the blown-up ellipsoid. This shows that the blow-up factor and
the number p determining the precision of the arithmetic influence each other,
and they have to be chosen simultaneously to achieve all the goals at the same
time.

It turns out that appropriate choices of N, p, and the blow-up factor ¢ can
be made, namely if we choose

(3.1.37) N =50(n+ 1)*C,d),
p =8N
¢ =

HPTTES A

82 Chapter 3. The Ellipsoid Method

we can make all the desired conclusions. These modifications turn the basic
ellipsoid method (3.1.32) into an algorithm that runs in polynomial time.

From the practical point of view these considerations and modifications
seem quite irrelevant. Note that the ellipsoid method requires problem-specific
precision. But usually, our computers have fixed precision. Even software that
allows the use of variable precision would not help, since the precision demands of
the ellipsoid method in this version are so gigantic that they are hardly satisfiable
in practice. Thus, in a computer implementation of the ellipsoid method with
fixed precision it will be possible to conclude that one of the calculated centers is
contained in P, but by stopping after N steps we cannot surely declare P empty.
To prove emptiness, additional tests have to be added, based for instance on the
Farkas lemma.

By looking at the formulas we have stated for Lowner-John ellipsoids of
various ellipsoidal sections — see (3.1.11), (3.1.12); (3.1.16), (3.1.17); (3.1.19),
(3.1.20) — one can immediately see that a speed-up of the shrinking can be
obtained by using deep or other cuts. There are many possibilities to “play” with
the parameters of the ellipsoid method. To describe some of them let us write
the basic iteration of the ellipsoid method in the following form

1
3.1.38 a = ay — Ay,
() k+1 k p\/CT—Ak—C k
(3.1.39) Ay =& & a(Ay — T ——ArccT Ay),
(4 kC

where “~” means cutting off after the p-th digit behind the point in the binary
representation of the number on the right hand side. Following BLAND, GOLDFARB
and TobpD (1981) we call p the step parameter (it determines the length of the
step from qy in the direction of —b to obtain ai,), o the dilatation parameter,
7 the expamsion parameter and ¢ the blow-up parameter (this is the factor used
to blow up the ellipsoid to compensate for the rounding errors). The ellipsoid
method in perfect arithmetic (no rounding) as stated in (3.1.32) is thus given by

1 . n? . 2
n+1’ -1 R

E=1.

(3.1.40) p =

It is a so-called central-cut method since it always uses cuts through the center
of the current ellipsoid. The ellipsoid method with rounding and blow-up, i. €.,
the polynomial time version of (3.1.32) is thus defined by

1 n2 2 1

= = — =14+ —.
vl T o T axr T amyye

(3.141) p:=

If ¢cTx <y is the violated inequality found in (f) of (3.1.32), then defining « :=
(cTar —y)/VcT Ayc as in (3.1.13) and setting

p = 1 + na _nP(1—dod) 21 +nw)

SO TR s TR e
it T o T T mrndta °

(3.1.42)

3.1 Geometric Background and an Informal Description 83

we obtain the deep-cut ellipsoid method (in perfect arithmetic). Note that since
cTay > v, the hyperplane {x | ¢ x =y} is indeed a deep cut, and so the Léwner-
John ellipsoid of E’(Ag, ak,c,7) — see (3.1.15) — which is given through formulas
(3.1.38), (3.1.39) (without rounding), and (3.1.42) has indeed a smaller volume
than that of E’(Ay, ay,c) used in (3.1.32).

The use of deep cuts will — due to faster shrinking — in general speed up the
convergence of the ellipsoid method. But one can also easily construct examples
where the standard method finds a feasible solution more quickly. However,
the use of deep cuts does not seem to change the order of magnitude of the
number N of iterations of the general step necessary to correctly conclude that
P is empty. So from a theoretical point of view, deep cuts do not improve the
worst-case running time of the algorithm.

Using a number « in (3.1.42) with —1/n < a < 0 we obtain a shallow-cut
ellipsoid method. Although — from a practical point of view — it seems ridiculous
to use a shallow-cut method, since we do not shrink as much as we can, it will
turn out that this version of the ellipsoid method is of particular theoretical
power. Using this method we will be able to prove results which — as far as we
can see — cannot be derived from the central-cut or deep-cut ellipsoid method.

Some Examples

The following examples have been made up to illustrate the iterations of the
ellipsoid method geometrically. Let us first consider the polytope P < IR?
defined by the inequalities

(1) — x;— x3<—2
Q2 3x;, < 4
() —2x14+2x:< 3.

This polytope is contained in the ball of radius 7 around zero. To find a point in
P, we start the basic ellipsoid method (3.1.32) with E (Ao, a0) where

49 0 0
A":(o 49)’ “0“(0)’

see Figure 3.5. The center ag violates inequality (1). One iteration of the algorithm
yields the ellipsoid E(A;,a;) also shown in Figure 3.5. The new center a; violates
(2). We update and continue this way. The fifth iteration produces the ellipsoid
E(As,as) displayed in Figure 3.6. In the 7-th iteration the ellipsoid E(A7,a7)
shown in Figure 3.7 is found. Its center a; = (1.2661,2.3217)7 is contained in
P. The whole sequence of ellipsoids E(Ag,ap), ..., E(A7,a7) produced in this
example is shown in Figure 3.8.

84

Chapter 3. The Ellipsoid Method

Figure 3.5

Figure 3.6

3.1 Geometric Background and An Informal Description 85

3

Figure 3.7

86 Chapter 3. The Ellipsoid Method

The pictures of the iterations of the ellipsoid method show clearly that in
an update the ellipsoid is squeezed in the direction of ¢ while it is expanded
in the direction orthogonal to c¢. If many updates are done with one and the
same vector c the ellipsoids become “needles”. To demonstrate this effect, let us
consider the polytope P < R? defined by

LY.
20 =1
1

_._sz
5

IA

IA
i 13|

Starting the basic ellipsoid method with E(Ag,a9) = S(0,1), we make five it-
erations until the center as = (211/243,0)7 of the fifth ellipsoid E(As,as) is
contained in P. The six ellipsoids E(Ag,ao), ..., E(As,as) of this sequence are
displayed in Figure 3.9 (a). If the ellipsoid method receives “flat” polytopes as
its input, it is likely that the algorithm produces extremely flat ellipsoids, say of
several kilometers length and a few millimeters width. This inevitably leads to
numerical difficulties in practice. In such cases, some variants of the ellipsoid
method frequently perform better empirically. For instance, the deep-cut ellipsoid
method finds a feasible point of the polytope P defined above in one iteration.
This iteration is shown in Figure 3.9 (b). But there is no general result quantifying
this improvement in performance.

N

-+

——

==

@) Figure 3.9 (b)

*3.2 The Central-Cut Ellipsoid Method
We shall now give a description and analysis of the version of the basic ellipsoid

method (3.1.32) where arithmetic operations are performed in finite precision
and the errors induced by rounding are compensated for by blowing up the

3.2 The Central-Cut Ellipsoid Method 87

“rounded” Lowner-John ellipsoid. This section provides proofs of the claims
about this method made in the previous section. In particular, the polynomial
running time is established. Moreover, we do not restrict ourselves to the case
of an explicitly given polytope, but we treat the general case of a circumscribed
closed convex set given by a certain separation oracle. Our main result of this
section can be stated as follows.

(3.2.1) Theorem. There exists an oracle-polynomial time algorithm, called the
central-cut ellipsoid method, that solves the following problem :

Input: A rational number ¢ > 0 and a circumscribed closed convex set (K ;n, R)
given by an oracle SEPg that, for any y € Q" and any rational number é > 0,
either asserts that y € S(K,8) or finds a vector ¢ € Q)" with |c||l = 1 such that
c"x<cTy+6 foreveryxeK.

Output: One of the following:

(i) a vectorae S(K,¢),
(i) a positive definite matrix A € Q™" and a point a € Q" such that K = E(A,a)
and vol(E(A4, a)) < «.

Whenever we speak of the ellipsoid method without referring to a special
version we will mean the central-cut ellipsoid method, to be described in the proof
of Theorem (3.2.1). This method specifies a sequence of ellipsoids Eg, Eq, ..., Ey
(i. e,, a sequence of positive definite matrices Ag, A;, ..., An, and a sequence of
centers ag,ay, ..., ay, with Ey = E(Ag,ac), k =0, ..., N), that contain the given
set K, such that either at least one of the centers a, satisfies a; € S(K,¢) (so
alternative (i) of (3.2.1) is achieved), or the last ellipsoid Ey has volume at most
&

Proof of Theorem (3.2.1). The proof will be given in several steps. We first
describe the method, then prove its correctness assuming that several lemmas
hold. Finally the truth of the lemmas will be established.

So let numbers n, R, ¢ and an oracle SEPk be given as required in the theorem.
Without loss of generality ¢ < 1.

I. For the precise description of the algorithm we need the following parameters:

(3.2.2) N := [5n|logé| + 5n*|log(2R)|],
(3.2.3) p =8N,
(3.2.4) 6 =277

The integer N is the maximum number of iterations of the central-cut ellipsoid
method, the rational number § is the error we allow the oracle SEPx to make, and
the integer p is the precision parameter for representation of numbers. We assume
throughout the algorithm that all numbers occurring are represented in binary
form and are rounded to p digits behind the point. Clearly, for every rational
number given by a numerator and denominator, this binary approximation can
be easily computed.

88 Chapter 3. The Ellipsoid Method

We initialize the procedure by setting:

(3.2.9) ap =0,
Ag = R*I,

so that Ey = S(0, R) and hence K < E,.

Assume gy, A, are found for some k > 0. If kK = N, then the ellipsoid Ey =
E(An,ay) has the property required in (ii) of (3.2.1) (we shall prove this later),
and we stop.

If k < N, we call the oracle SEPx with y = g, and the error parameter &
defined in (3.2.4).

If SEPg concludes that a; € S(K,d), then by the choice of d, a;, € S(K,¢),
and we stop having achieved (i) of (3.2.1).

If SEPx gives a vector ¢ € Q" with |c|le, = 1 and ¢”x < cTa, + 6 for all
x € K, then we do the following computations:

1 Akc

3.2.6 a R ay — R
(3.2.6) k+1 S S
2n* +3 2 AxceT Ay
3.2.7 A ® —
(327) o 70 2 (k 2 CTAkc)

where the sign “x” in (3.2.6), (3.2.7) means that the left hand side is obtained by
cutting the binary expansions of the numbers on right hand side after p digits
behind the binary point. This finishes the description of the central-cut ellipsoid
method.

II. To prove the correctness of the algorithm, we establish the following facts.
(Recall that for a vector x, || x|| denotes the Euclidean norm, and for a matrix A4,
|A|l denotes the spectral norm (0.1.16).)

(3.2.8) Lemma. The matrices Ao, A1,... are positive definite. Moreover,

lacll < R2*, ||Acl < R?2*, and |A;'| < R4~

(3.29) Lemma. K < E, fork=0,1,...

(3.2.10) Lemma. vol(Er,)/ vol(Ey) < e V6" fork =0,1,...

We shall prove these lemmas in II1, IV, and V below.

It follows from Lemma (3.2.8) that all the formulas on the right hand sides
of (3.2.6), (3.2.7) are meaningful (no division by 0) and that the intermediate
numbers (entries of a, and A;) do not grow too large, i. e., have polynomial
encoding lengths. This shows that all the arithmetic operations can be carried
out in polynomial time.

If the algorithm stops with a; € S(K,¢), then of course we have nothing to
prove. If it stops with k = N, then by Lemma (3.2.9), Ey indeed contains K.
Moreover, by Lemma (3.2.10) the volume of Ex satisfies

vol(En) < e™N/5" vol(Ey).

3.2 The Central-Cut Ellipsoid Method 89

Ey is the ball around zero with radius R, so Ej is contained in the hypercube
Q={xeR"|-R<x; <R, i=1,...,n}. From the very rough estimate
vol(Eg) < vol(Q) = (2R)" we get

(3.2.11) vol(Ex) < e N/BM@QRY < 27N/GWR)" < ¢.

The last inequality in (3.2.11) in fact is the inequality from which the value of
N is derived. So the truth of this inequality directly follows from the choice of
N. This finishes the proof of Theorem (3.2.1) subject to the correctness of (3.2.8),
(3.2.9), (3.2.10), which we show now. O

III. Proof of Lemma (3.2.8). We prove the lemma by induction on k. Since
ao = 0 and since the largest eigenvalue of Ay is R?, all the statements of (3.2.8)
are clearly true for k = 0. Assume that they are true for k > 0. Let a; |, A;,, be
the right hand sides of (3.2.6) and (3.2.7) without rounding, i. e.,

. 1 Aic
2.12 = Ok — ’
(3.2.12) Yt = T I T Are
. 2n2 + 3 2 AkccTAk
- . A := T2 A -
(3.2.13) k+1 2 (KT U1 cTAe)

Then note first that

2 2 et
- -1 _ -1 -
(3.2.14))™ = 5573 (Ak A cTAkc> ’

which is easy to verify by computation. Thus, (4;,,)~" is the sum of a positive
definite and a positive semidefinite matrix, and so it is positive definite. Hence
also A4, _, is positive definite.

Equation (0.1.17) immediately implies that for positive semidefinite matrices
A and B, ||A|| < ||A+ B| holds. Using this, the fact that 4, is positive definite,
and the induction hypothesis, we have:

(3.2.15) ||A,;+ln=%3”/1k_ 2 AgecT 4 “

n+1 cTAc
2n2 +3 11 5.k
< ——||Ag || <€ —R“2%.

Further, since each entry of Ay differs from the corresponding entry of 4, , by
at most 277 (due to our rounding procedure) we have from (0.1.23)

(3.2.16) ket = Ap | < Akt — Aj g lonax < m27

So (3.2.15), (3.2.16), and the choice of p give

. . 5, 1
B217) il < i — A+ 144 | < n277 + £ RP2 < RV

90 Chapter 3. The Ellipsoid Method

This proves the second claim of Lemma (3.2.8).
Moreover, setting Q := A}(/ 2 using formula (3.2.12) and the definition of the
spectral norm (0.1.16) we obtain

. 1 Akl [T Ajc (cTQT)Ak(Qo)
3.2.18 —a | = =
() N8y = ol n+1vcTAwe n+ 1 cTAkc n-+ 1 cTQTQc

1
< — < L Rott
< VI < —
Our rounding procedure and (0.1.7) give
(3.2.19) laks — Gy Il < Vallages — ajy oo < VA2?;

and therefore, by the induction hypothesis, the choice of p, and the inequalities
(3.2.18) and (3.2.19) derived above we get

(3.2.20) ksl < a1 — @l + oy — arll + llax
<Vn27?P+ —1—R2"'1 + R2*
n+1
< R2k+l)
This proves the first claim of (3.2.8). Finally, we observe that
2n? 2 JlecT
N
(3.2.21) 1Al = 55773 ("Ak n—1 TAkc)
2n? o |
< m(n R Pal)
n+1
IlAk |
< 3R‘24".

(The first inequality above follows from (3.2. 14) To get the second inequality,
note that (0.1.16) immediately yields |cc” || = ¢Tc. Setting Q = Al/ 2 , by (0.1.18)

we have T T
lee | _ € o2 = 4.

TAee cTQ% ~
The last inequality in (3.2.21) follows from n > 2 and our induction hypothesis.)

Let Ay denote the least eigenvalue of Ay, and let v be a corresponding
eigenvector with |lv|| = 1. Then by (3.2.16), (3.2.21), and (0.1.17), (0.1.23), and the

choice of p:

(3.2.22) Ao =0T Ao = T A v+ 0T (Akpr — Ap,)0
> (g)7 I = 1Ak — Ay
> ;—R24"" —n27?
> R¥4+D

From Ay > 0 we can conclude that A, is positive definite. Moreover, by (0.1.18)

and (3.2.22),
AL I = 25" < R724%+1,

This proves the third assertion of (3.2.8). a

3.2 The Central-Cut Ellipsoid Method 91

IV. Proof of Lemma (3.2.9). By induction on k. The claim holds by construction
for k = 0. Suppose the claim is true for &, and let a;,, and A4;,, be the vector
resp. matrix defined in (3.2.12) and (3.2.13) in the proof of the previous lemma.
Take any x € K. We have to prove that

(3.2.23) (= @) AR (x —aggr) < 1.

We shall estimate the left-hand side of (3.2.23) in several steps. Using (3.2.14) we
get

(32.24) (x —ap,) (Apy) " (x — apyy) =

2 (x o 1 Agc)T
212+ 3 Tt veT Aice
2 et 1 Age
A7 — LK
(k +n—lcTAkc)(x ak+n+lm)
2n? _
= m ((X - ak)TAkl(x— ak)+
1 2 cf(x—a 2 (T (x —ap)?
+— 4 (k)+ ((T k)))_
n“—1 n-1 clAc n—1 clTAge

By induction hypothesis, we know that K < E;. So x belongs to E;, and thus
the first term in the last formula of (3.2.24) above is at most 1. Setting

e (x — ax)
3.2.25 t =
() \/CTAkC
we therefore obtain
2n? n? 2
. * —1 *
(3226 (x—ai) () (- i) < 57— (n2 — ot 1)) .

To estimate t(t+1), we proceed as follows. Using the fact that A, can be written as
0Q, where Q = A,lc/ 2, we can bound t from above employing the Cauchy-Schwarz

inequality (0.1.26):
le” (x — a)| = 1T Q(Q ™" (x — aw))|
< e QIQ™" (x — ax)ll
=vcTQ0c vV (x —a)TQ 10~ (x — ay)

= VT die 1/ (x — a)T A5 (x — ap),

and hence, since x € Ej

T (x — ay)

(3.2.27) It] = lﬁé_

| < Vx-a0T4 (x—ag < 1.

92 Chapter 3. The Ellipsoid Method

The oracle SEPk guarantees that ¢’ (x —ay) < &, and so

T(y _
f=C—a) 0 <o/ 14 < SR712%,

VeTAe el /14t

Using this estimate and (3.2.27), we can conclude

tt+1) <26R 12V,

Substituting this upper bound for t(t + 1) in (3.2.26), we get

2n? n?

(3228) (x—al,) (4,) (x—al,,) < (n2 — 4 R12V)

2n? +3
2n*
< ————— +45R712V.
T 2t +4n?-3 + 2
The rest of the proof is standard error estimation:
A = |(x —ar) Al (x— aren) — (x— ap) T (A) T (e —ag)]

T 4—1 * * —1 =
< |(x — agq1) Ak+1(ak+1 — arq1)| + I(ak+1 - ak+l)Ak+1(x - ak+1)l

+ [(x — a/‘c+1)T(AI:i1 - (Al:+l)_l)(x —)l

< lx = @l 14 1 akgy = @t |+ gy — @il 141 X — aiy |
+ I = a1 AR) T ARy — Ak -

To continue the estimation, we observe that by Lemma (3.2.8), by the choice of
p, and by the facts that x e S(O,R) and k <N —1:

1% — @t | < %I + llake I} < R+ R2H < RV,

Ix — apyy | < l1x = @t | + lakss — apy | < R+ R2M 4 /n27? < RV
So again by (3.2.8) and by (3.2.21), we conclude:
(3229) A < (R2¥V*H(R24N)(vn27P) + (Vn27P)(R24N)(R2V)
+ (R222N+2)(R——24N)(R—24N)(n2—p)
< nR—-123N+2*p + nR—226N+2~p.

Now we can put the estimates (3.2.28) and (3.2.29) together to get (3.2.23):

(x — ax41)” Al (x — akr) <
< (¢ — ara1) T AR (6 — @sr) — (x — ap) (Ary) 7 O — ap)]
+(x - aI:+1)T(Al:+1)_l(x ~yyy)
< 2n?
T2t +n?-3
<1,

+40R7'2Y 4 nRTIN TP 4 pR2PON A

where the last inequality follows from the choice of p. ad

3.2 The Central-Cut Ellipsoid Method 93

V. Proof of Lemma (3.2.10). As mentioned in (3.1.4), the volume of an ellipsoid
E(A,a) < R" is known to be y/det(4) vol(S(0, 1)). Hence we obtain

(32.30) vol(Ek+1 det(AkH det(AkH) det(Ak41)
o “vol(Ex) det(Ay) det(Ay) det(A;,,)’
where A, is the matrix defined in (3.2.13). To estimate the first factor on the

right hand side of (3.2.30), write A, = QQ where Q = A,lc/ ? and use the definition
of Ap ,:

det(4;,,)
det(4y)

o ~ 2 2+3 n 2 T
= det(Q 1AH;Q N :(n2n2) det(l_n-{—l?TCCCZQQC).

Since QccT Q/cT QQc has rank one and trace one, the matrix in the last determi-
nant has eigenvalues 1, ..., 1,1 —2/(n+1). So

det(A4;,) _ (2n2 + 3)"n —1 3/(2m) g=2/n _ p=1/(2n)

(3.2.31) det () - <e

n+1"—

To obtain the last estlmate we have used the well-known facts that 1 + x < ¢*
for all xe R and (1+ 1)” > €2, for n > 2 — cf. POLYA and SzeGO (1978), 1. 172.

To estimate the second factor of (3.2.30) write it as follows (and recall
inequality (3.2.21) and the fact that det B < ||B||"):

det A,

(3.2.32) = det(I + (A;,)" (Ak+1 — Apyy)

< M+ A5,) Ak — A5)1

< (M1 + 1A)7 I Akr — Ap D
< (1 + (R4 Hm2ry)"

S en222N—pR—2

< ¢!/11on),

where the last inequality follows from the choice of N and p. Thus, from the
estimates (3.2.31) and (3.2.32) we get

VOl(Eg41) < det4,,, [detAy < o~ 1/@m+1/Q0) _ —1/(5m)
vol(Ex) — V detAy \/detd;,, ~ '

This finishes the proof of Lemma (3.2.10). O

Thus the proof of Theorem (3.2.1) is complete.

94 Chapter 3. The Ellipsoid Method

(3.2.33) Remark. Suppose that, instead of the oracle SEPk in the input of
Theorem (3.2.1), we have an oracle SEPk g, (for some fixed subset K; < K),
which is weaker than SEPk in the following sense: for any y € Q" and any
rational 6 > 0, SEPk g, either asserts that y € S(K,d) or finds a vector ¢ € Q"
with ||cll = 1 such that ¢c”x < cTy+6 for every x € K;. Then we obtain the same
conclusion as in (3.2.1) except that we can only guarantee that K; is contained
in E(4, a). O

(3.2.34) Remark. For technical reasons, the “separation” oracle used in Theorem
(3.2.1) is slightly stronger than a weak separation oracle. However, for well-
bounded convex bodies (where we know an inner radius for the convex set), any
weak separation oracle can be turned into one necessary for Theorem (3.2.1).
This is immediate from the following lemma.]

(3.2.35) Lemma. Let (K;n,R,r) be a well-bounded convex body, c € R" with
iclo = 1, and y,6 € R with r > & > 0. Suppose that ¢cT"x < y is valid for
S(K,—9). Then

R
chS):-f-zr—&\/ﬁ forall x e K.

Proof. Let xo be a point in K maximizing c” x over K. By definition (2.1.16), there
is a point gy € R" with S (ag,r) = K. Consider the function f(x) = %x-&—(l ——%)xo.
Set a := f(ag), then f(S(ap,r)) = S(a,d), and moreover, S(a,d) is contained in
conv({xo} U S(ao,r)). Since xo € K, and S(ap,r) < K, S(a,d) is contained in K
by convexity. Hence a € S(K,—6), and so we know that ¢c’a < 7. Now note
that xg = a + %(xo — ap). Thus in order to estimate ¢’ xy, we have to find a
bound on ¢ (xg — ag). Since xp, a9 € K and K < S(0,R), we can conclude that
lxo — ap)l < 2R, and since |c|lo = 1, we know that |c| < y/n. Putting this
together and using the Cauchy-Schwarz inequality (0.1.26) we get:

0)) 0
c"xo<cT(a+ -r"(xo—ao)) <7y+ ;CT(Xo—ao) <7+ ;‘NC" [xo—aoll < v+ 7\/E2R,

and the claim is proved. O

*3.3 The Shallow-Cut Ellipsoid Method

We have already mentioned before that the central-cut ellipsoid method as
described in the previous section does not make full use of the geometric idea
behind it. It has been observed by many authors that, for instance, using deep
cuts can speed up the method (see SHOR and GERSHOVICH (1979), and BLAND,
GoLDFARB and TopD (1981) for a survey). A deeper idea due to YUDIN and
NEMIROVSKIT (1976b) is the use of shallow cuts. These provide slower (though
still polynomial time) termination but work for substantially weaker separation
oracles. This method will allow us to derive (among other results) the polynomial

3.3 The Shallow-Cut Ellipsoid Method 95

time equivalence of the weak membership (2.1.14) and weak separation problems
(2.1.13) for centered convex bodies.

To formulate this method precisely, we have to define a shallow separation
oracle for a convex set K. Before giving an exact definition, we describe the
geometric idea on which the shallow-cut method is based. In the central-cut
ellipsoid method we stop as soon as we have found a point almost in the convex
set K. Now we want to find a point deep in K - even more, we are looking for an
ellipsoid E(4, a) containing K such that the concentrical ellipsoid E((n+1)"2A4, a)
is contained in K. The method stops as soon as such an ellipsoid E (A4, a) is found.
If an ellipsoid E(A4,a) does not have this property, then E((n + 1)724,a) \ K is
nonempty, and we look for a halfspace ¢’ x < y which contains K but does not
completely contain E((n+ 1)724, a). Such a halfspace will be called a shallow cut
since it may contain the center a of E(A4,a) in its interior — see Figure 3.10.

1
Figure 3.10

The method proceeds by determining the minimum volume ellipsoid containing

3.3.1) E(A,aN{x|cTx<cTa+

! 1\/cTAc}

n+

and continues this way. Of course, since irrational numbers may come up, it will
be necessary to round, and therefore the Lowner-John-ellipsoid has to be blown
up a little bit as in the central-cut ellipsoid method.

Note that, by (3.1.8), the right hand side c” a+(n+1)"'VcT Ac = cTa+(n+1)!
|l 4= in (3.3.1) is the maximum value the linear function ¢’ x assumes on the
ellipsoid E((n+1)~24, a). So the halfspace {x e R" | cTx < cTa+(n+1)"'VcT Ac}
contains this ellipsoid and supports it at the point a + ((n+ 1)vcT Ac) ' Ac.

(3.3.2) Definition. A shallow separation oracle for a convex set K =< R" is an
oracle whose input is an ellipsoid E(A,a) described by a positive definite matrix
A e Q" and a vector a € Q". A shallow separation oracle for K can write one
of the following two possible answers on its output tape:

96 Chapter 3. The Ellipsoid Method

(i) a vector ¢c € Q", ¢ # 0, so that the halfspace H := {x e R" | ¢"x <
cTa+ (n+ 1)"'VcT Ac} contains K N E(A,a) (a vector ¢ with this property is
called a shallow cut for K and E(A,a)),

(1) the assertion that E(A,a) is tough.
O

At least two remarks are necessary to explain this definition. In answer
(i), the inequality ¢’x <y with y = cTa + ﬁ VvcT Ac defining the halfspace H
containing K N E(4,a) has an irrational right hand side in general. But note
that this right hand side y is not written on the output tape. The oracle only
confirms that H contains K N E(A4,a). In answer (ii) we have used the yet
undefined word “tough”. Loosely speaking, the word “tough” stands for “cutting
is impossible”. “Toughness” is a parameter left open, and in every instance of a
shallow separation oracle the particular meaning of “tough” has to be specified.
For instance, in the example described above a tough ellipsoid would be an
ellipsoid E(A,a) such that E((n + 1)724, a) is contained in K. But there are other
meaningful and interesting definitions of toughness possible.

We assume, as usual, that with each shallow separation oracle a polynomial
function @ is associated such that for every input to the oracle of encoding length
at most L the encoding length of its output is at most ®(L).

The aim of this section is to prove the following.

(3.3.3) Theorem. There exists an oracle-polynomial time algorithm, called the
shallow-cut ellipsoid method, that, for any rational number ¢ > 0 and for any
circumscribed closed convex set (K ;n,R) given by a shallow separation oracle,
finds a positive definite matrix A € Q™" and a point a € Q" such that one of the
following holds:

(1) E(A,a) has been declared tough by the oracle,

(i) K < E(A4,a) and vol(E(A,q)) < e.
O

Before giving a proof of a slightly more general version of this theorem, we
want to illustrate it by three special cases.

(3.3.4) Example. Suppose that K < R", n > 2, is a full-dimensional polytope
given as the solution set of a system of linear inequalities

a,-TxSai, i=1,...,m,

where g, e @", o, e Q for i =1, ..., m. We design a shallow separation oracle as
follows. Let E(A,a) be an ellipsoid given by 4 and a. Fori =1, ..., m, determine
whether all points in the ellipsoid E ((n+1)"2A4, a) satisfy al x < «. It follows from
(3.1.8) that this can be done by checking whether (n+ 1)~%a] Aa; < (a; — aT a)?
holds. If an index i is found for which this inequality does not hold, then the
oracle gives the shallow cut a; as answer. If all inequalities of the given system
are satisfied by all points in E((n + 1)724,a), then the oracle declares E(4,a)
tough.

3.3 The Shallow-Cut Ellipsoid Method 97

If L denotes the encoding length of the inequality system a’x < o, i =

1, ..., m, then we know from Lemma (3.1.33) that K < S(0, R(K)) with R(K) :=
V2" and from Lemma (3.1.35) that vol(K) > e(K) := 2-(+DL+n’ gq
by running the shallow-cut ellipsoid method of Theorem (3.3.3) with input
(K;n,R(K)) and ¢ = ¢(K) and with the shallow separation oracle defined above,
we will obtain an ellipsoid E(4,a) containing K such that the concentrical
ellipsoid E((n + 1)724, a) is contained in K. O

Example (3.3.4) applies to more general situations. Namely, if for a circum-
scribed convex set K we have a shallow separation oracle where toughness of
an ellipsoid E(A4,a) means that E((n+ 1)724,a) < K, then the shallow-cut ellip-
soid method solves the weak nonemptiness problem for K with the additional
advantage that it gives a point deep inside K.

(3.3.5) Example. The central-cut ellipsoid method can be simulated by the
shallow-cut ellipsoid method, and Theorem (3.2.1) is a consequence of Theorem
(3.3.3). In fact, suppose that we have an oracle SEPx as in (3.2.1) for a
circumscribed closed convex set (K;n,R) and that a positive rational number
¢ > 0 is given. Then we can design a shallow separation oracle for K as follows.
Let an ellipsoid E(A,a) be given by A and a. Compute a positive strict lower
bound ¢; for the square root of the least eigenvalue 1 of A. Let 6’ := min{e, &}
and 6 := (n+ 1)7'8’. Call the oracle SEPx for K with input y := a and error
parameter 6. If the oracle SEPk asserts that y € S(K,d), then we declare the
ellipsoid E(A4,a) tough. If SEPk finds a vector ¢ € Q" with |c]lo = 1 and
cTx <cTy+6 for all x e K, then we take the vector ¢ as output of the shallow
separation oracle. By the choice of J, the vector c is indeed a shallow cut for K
and E(A,a), namely, for all x e K we have

(3.3.6) "x<cla+d <cTa+(n+1)'ey <cla+@m+1)"'Va
=cTa+(n+1)""Vilelo < cTa+ (n+)7 Vijc|
<cla+(n+ 1D cl g,

where the last inequality follows from (0.1.9). In this case, toughness implies that
the center of the tough ellipsoid is in S(K,d) and hence in S(K,¢). a

(3.3.7) Example. We can also turn a weak separation oracle into a shallow
separation oracle provided an inner radius r for K is known. This follows
directly by combining Remark (3.2.33) with Example (3.3.5). O

By definition (3.3.2), a shallow cut for K and E(4,a) is a vector ¢ € Q" such
that ¢Tx < cTa+(n+1)~! vcT Ac for all x € K N E(A, a). The parameter (n+ 1)~}
used in the right hand side of this inequality is just a convenient choice out of an
interval of possible parameters with which a shallow-cut method can be defined
and for which it works. For our applications, greater generality is not necessary.
But we will state and prove a slightly more general theorem to show what can
be done.

98 Chapter 3. The Ellipsoid Method

(3.3.8) Definition. For any rational number B with 0 < f < 1/n a shallow
f-separation oracle for a convex set K < IR" is an oracle which, for an input a,
A, where a € Q" and A is a rational positive definite nxn-matrix, writes one of
the following two answers on its output tape:

(i) a vector c € Q", ¢ # 0, such that the halfspace {x | ¢c"x < cTa+ BvVcT Ac}
contains K N E(A,a) (such a vector c is called a shallow f-cut for K and
E(4,q)),

(ii) the assertion that E(A,a) is tough. a

Observe that the halfspace {x € R" | ¢x < cTa+ BV cTAc} contains and
supports the ellipsoid E(B24,a). Clearly a shallow separation oracle as defined
in (3.3.2) is a shallow ———oracle as defined above.

(3.3.9) Theorem. There exists an algorithm, called the shallow-fi-cut ellipsoid
method, that, for any f € Q, 0 < B < 1/n, and for any circumscribed closed
convex set (K ;n, R) given by a shallow p-separation oracle, and for any rational
¢ > 0, finds, in time oracle-polynomial in n+ (R) + (&) + [(1 —nB)~!], a positive
definite matrix A € Q™" and a vector a € Q" such that one of the following
holds:

(1) E(A,a) has been declared tough by the oracle;
(i) K < E(A,a) and vol(E(A,a)) <.

Note that the algorithm we are going to design is not polynomial in the
encoding length (B) of B. But if we choose f such that the encoding length
of the number (1 —np)~! is bounded by a polynomial in the encoding length
n+(R)+ (&) of the other input (e. g., if we set f := (n+ 1)7!), then the algorithm
is truely oracle-polynomial. So Theorem (3.3.3) directly follows from Theorem
(3.3.9).

Proof of Theorem (3.3.9). As in the proof of Theorem (3.2.1) we are going
to describe a sequence of ellipsoids Eo, E;,... ,i. €., we are going to construct a
sequence of positive definite matrices Ao, A1,... and a sequence of centers ay, ay, . ..
such that E; = E(Ay, a;). The algorithm we describe is the shallow-f-cut ellipsoid
method. Set

(33.10) N := |' Ty 08 el + T 8RR + [Hog(l —nﬁ)l]

3.3.11) p:=8N.

5n
np) (- 13)2

We initialize the procedure by setting

ao =0

3.3.12
() A() = RZI.

Assume ay, Ay are defined for some k > 0. If k = N, we stop. In this case the
ellipsoid Ex contains K and has volume at most ¢, so alternative (ii) of (3.3.9)
is achieved. If k < N, we call the shallow f-separation oracle with a = g, and
A = A;.

3.3 The Shallow-Cut Ellipsoid Method 99

If the oracle concludes that E(A, a) is tough, then E; has the desired property.
If the oracle gives a shallow f-cut ¢, then we perform the following compu-
tations.

AkC
3.3.13 iyl I~ Qg — ,
() k+1 k pm
. » . . AkccTAk
(3.3.14) Ayt R AL, =L a(Ak—'c A)
where
1—np
. .1 =
(3:3.15) n+l’
n*(1— p?)
2(1 —np)
3.3.17 =— 7
G317 + DA —)
2
(33.18) (=14 000"
2n

Again “~x” means that the left hand side is obtained by rounding the right hand
side to p digits behind the point. (Note that without rounding and without
blowing-up (i. e., with setting { := 1) the update formulas above determine the
Lowner-John-ellipsoid of Ej(4,a,c,y) with y := cTay + Bv/cT Aic — cf. (3.1.15),
(3.1.16), (3.1.17).)

Similarly as in the case of the central-cut ellipsoid method, to establish the
correctness of the algorithm we need the following lemmas.

(3.3.19) Lemma. The matrices Ag, A1,... are positive definite. Moreover,

lael < R2%, || Akl < R?2%,and||4;"|| < R7%4*,

(3.3.20) Lemma. K < E; fork=0,1,....

(3.3.21) Lemma. vol(Ex.{)/ vol(Ex) < e =m1/5n for k =0, 1,....

The first two of these lemmas can be proved along the same lines as Lemmas
(3.2.8) and (3.2.9). We will prove Lemma (3.3.21), where the crucial condition
B < 1/n plays a role.

Proof of Lemma (3.3.21). As in the proof of Lemma (3.2.10) we write

vOol(Ex+1) _ det(AZH) det(Ar41)
(33.22) vol(Ey) - V det(A4x) V det(A,:_H),

100 Chapter 3. The Ellipsoid Method

where Ay, is defined in (3.3.14), and we obtain for the first factor in (3.3.22)

(3.3.23) det(di) = ({o)"(1=1) =26 V2 /6(1 — 1)

det(Ax)
3 (1 —np)>\"2 /n*(1 — %)\ -1/2n(1 +)
_(1+ 2n2) (n? —1) n+1 ~

The first of the three factors in (3.3.23) can be easily estimated as follows:

—nB)?\ n/2
(3.3.24) (1+(L_.L'!l)" < QM- dn)

2n?

To derive an upper bound for the last two factors in (3.3.23) take the natural
logarithm In (and recall the power series expansion of In(1 4+ x) and In(1 — x)):

(33.25) 1n((————"2$:f2))(""”/ ’ "(nl: lﬁ)) _

_ "_l(ln(l——ﬂ?‘)—ln(l iz)) +In(1+ B) — (1+%)
-G S G
="(i§%(n7k_ﬂ2k)) g (nzk B 1)

= —1
—((2k — (nP)* — 2k(nf)* " +1
; 2k(2k — 1)n2-1

(1 —)2
_—(1=np)
2n
The last inequality follows from the observation that each term of the series on
the left hand side is negative as nf < 1. Hence the first term —(1 —nf)?/(2n) of

this last sum is an upper bound for it.
Thus, from (3.3.24) and (3.3.25) we get

(3.3.26) det(Ay,,) < oUU=nB)? /@) ;—(1-nf)?/2n) _ ,—(1—nB)*/(4n)
det(4;) —

The second factor in (3.3.22) can be estimated just like in the proof of Lemma
(3.2.10), and we obtain

(3.3.27) det(der1) _ o1—nB)?/(20m)
det(4;,) ~

Combining inequalities (3.3.26) and (3.3.27) gives the desired result. This com-
pletes the proof of Lemma (3.3.21) and, by the same argument as in the proof of
Theorem (3.2.1), also the proof of Theorem (3.3.9). O

3.3 The Shallow-Cut Ellipsoid Method 101

As mentioned above, we will only use the shallow f-cut ellipsoid method for
p= ’h+1 in the sequel, and that is what we call the shallow-cut ellipsoid method.
Similarly, if f§ = ;ﬁ, a shallow f-separation oracle is called just a shallow
separation oracle. The parameters used in the shallow-cut ellipsoid method are
the following (compare with (3.3.10), ..., (3.3.18) and (3.2.2), ..., (3.2.7)):

N : [5n(n + 1)*|loge| + 5n*(n + 1)%|log(2R)| + log(n + 1)],

p =8N,
- 1

SN E,

.o n3(n+2)
T o+ 1D3(n—-1y
) 2

tE nn+1)’°

{ =

el
Rt 1)

So, in particular one can see that the number N of iterations of the shallow-cut
ellipsoid method is about (n + 1)? times as large as the number of iterations of
the central-cut ellipsoid method. This, of course, matters for practical purposes,
but is of no significance if one is only interested in polynomial time solvability.

Chapter 4

Algorithms for Convex Bodies

We shall now exploit the ellipsoid method (the central-cut and the shallow-cut
version) described in Chapter 3. In Sections 4.2, 4.3, and 4.4 we study the
algorithmic relations between problems (2.1.10),..., (2.1.14), and we will prove
that — under certain assumptions — these problems are equivalent with respect to
polynomial time solvability. Section 4.5 serves to show that these assumptions
cannot be weakened. In Section 4.6 we investigate various other basic questions
of convex geometry from an algorithmic point of view and prove algorithmic
analogues of some well-known theorems. Finally, in Section 4.7 we discuss to
what extent algorithmic properties of convex bodies are preserved when they are
subjected to operations like sum, intersection etc.

As in Chapter 3, we will assume in the proofs that n > 2, if the one-variable
case is trivial.

4.1 Summary of Results

In Chapter 2 we have introduced five fundamental problems concerning con-
vex sets: the weak optimization problem (WOPT) (2.1.10), the weak violation
problem (WVIOL) (2.1.11), the weak valdity problem (WVAL) (2.1.12), the
weak separation problem (WSEP) (2.1.13), and the weak membership problem
(WMEM) (2.1.14). Moreover, as a special case of WVIOL, we have mentioned
the weak nonemptiness problem (WNEMPT).

In Sections 4.2, 4.3, and 4.4 we study the algorithmic relations between these
problems using the oracle concept. The idea behind this is the following. Suppose,
for instance, that we have a convex set K for which we have an algorithm that
solves the weak separation problem for K. We now want to see whether we can
solve the weak optimization problem for K using the separation algorithm as a
subroutine (oracle). Of course, what we are looking for is an algorithm solving
WOPT for K that calls the separation subroutine only a polynomial number of
times and whose further computations can be performed in a number of steps
that is bounded by a polynomial function in the encoding length (K) + {c) + (&)
of the weak optimization problem. If we can achieve this, we say that WOPT for
K can be solved in oracle-polynomial time using a separation oracle for K.

Such an algorithm for the weak optimization problem for K is not necessarily
polynomial in (K) + (¢) + (&), since we did not make any assumptions on the
running time of the weak separation algorithm for K. But — and this is the

4.1 Summary of Results 103

most interesting application of such a result — if the algorithm solving the weak
separation problem for K runs in time polynomial in the encoding length of
K, then “oracle-polynomial” implies that the weak optimization problem can be
solved in time polynomial in {(K) + {c) + (&) as well.

In Figure 2.2 we indicated the trivial relations between the five problems
in question. For instance, if WOPT can be solved for some convex set K in
polynomial time it is immediately clear from the definition that WVIOL can also
be solved in polynomial time. We displayed this in Figure 2.2 by an arrow from
WOPT to WVIOL. In Sections 4.2, 4.3, and 4.4 we show that many more arrows
can be added to Figure 2.2 (not only those following from transitivity). From a
weak optimization oracle for K we can derive oracle-polynomial time algorithms
for all other problems. Some more implications follow if we assume that K is
circumscribed, and in some cases additionally, that K is centered. Let us first
remark that for uniformity reasons we restrict ourselves to considering convex
bodies K only. (Most of the results also hold for bounded convex sets, as the
proofs show.)

Figure 4.1 summarizes the results of Sections 4.2, 4.3, and 4.4. Unbroken lines
correspond to the trivial implications already contained in Figure 2.2. Broken
lines represent new implications derived in this chapter.

R

WVIOL |¢------G2AR WSEP

- _-Y
\\(\4;3_2) -
l ’/‘>~\)\ri\a l

—"A:’.)R Rk PO

WVAL WMEM

Figure 4.1

The implications represented in Figure 4.1 by unbroken lines are valid for
any convex body K. To derive the implications represented by broken lines we
assume that we know a radius R so that K < S(0,R) (lines labeled with R),
and, in some cases, that we know an inner radius r and a center ay (lines labeled
with R,r, ag). The only exception is the broken line from WOPT to WSEP. We
can derive this implication for any convex body. Moreover, the arrows carry the
additional information where a proof of the corresponding implication can be
found. It is clear that, from the implications given in Figure 4.1, many more
implications can be derived by transitivity.

104 Chapter 4. Algorithms for Convex Bodies

For instance, if a convex body K is given by a weak violation oracle and
an outer radius R then the weak optimization problem for K can be solved
in oracle-polynomial time. The information along the arrow from WVIOL to
WOPT states that this result can be found in Remark (4.2.5). If a circumscribed
convex body K is given by a weak separation oracle and an outer radius R then
we show in Theorem (4.2.2) that the weak violation problem for K is solvable
in oracle-polynomial time. The proof uses the central-cut ellipsoid method.
By transitivity it follows that if for a circumscribed convex body K the weak
separation problem can be solved in polynomial time, the weak optimization
problem can be solved in polynomial time. (We consider this as one of the most
important results in this book.) Similarly, if a convex body K is given by a
weak optimization oracle then the weak separation problem for K is solvable in
oracle-polynomial time. This result is shown in Theorem (4.4.7).

The arrows from WMEM to WVIOL and further to WOPT show that for
centered convex bodies given by a weak membership oracle the weak optimiza-
tion problem can be solved in oracle-polynomial time (see Theorem (4.3.2) and
Corollary (4.2.5)). This result, due to Yudin and Nemirovskii, is surprising, be-
cause — at first sight — it does not seem apparent that a point almost optimizing
a linear function over K can be found just by testing weak membership in K
a polynomial number of times. For the derivation of this result the use of the
shallow-cut ellipsoid method was necessary.

We do - of course — not claim that the (nontrivial) results shown in Figure
4.1 can only be derived from the ellipsoid method. For instance, Theorem (4.2.2),
i. e., the arrow from WSEP to WVIOL can also be shown using the new “simplex
method” due to YaAMNITSKI and LEVIN (1982). We were not able to prove Theorem
(4.3.2), i. e., the arrow from WMEM to WVIOL, using the central-cut ellipsoid
method only. Our proof method only worked with the shallow-cut ellipsoid
method, and probably, with a shallow-cut version of the new “simplex method”
the same result can be obtained. Maybe there is a smart way to get Theorem
(4.3.2) from the central-cut ellipsoid method or something even simpler. But we
were not able to find such a proof.

In Section 4.5 we give some negative results showing that the assumptions
made in the results of Sections 4.2, 4.3, and 4.4 cannot be weakened further. To
illustrate the proof ideas we present here an example of this type. We show that
we cannot derive an oracle-polynomial time weak optimization algorithm from a
weak membership oracle, even if we know an outer radius R and an inner radius
r (but not a center ag).

Suppose that somebody claims he has such an algorithm. We volunteer to
play the role of the oracle for a well-bounded convex body (K;1,R,1) and
challenge him to maximize the linear objective function 1 - x over K in the weak
sense with ¢ = 1. To the first R queries, we answer “no x is not in K. Note that
this is a valid weak (even strong) membership oracle for some K, since after R
questions there will be still a subinterval K < [—R, R] of length 2 not containing
any point asked for so far. So to solve the weak optimization problem he has
to ask more than R questions. Since R is exponential in the encoding length of
(K;1,R,1) and ¢ = 1, his algorithm has to take exponential time.

In Section 4.6 we show that some other algorithmic problems on a well-

4.2 Optimization from Separation 105

bounded convex body can be solved in oracle-polynomial time, if we have a
weak separation oracle for this convex body. Among these problems are those
of finding an approximation of the Lowner-John ellipsoid — cf. Theorem (3.1.9)
— and of approximating the diameter and width of a convex body. The results
use again the shallow-cut ellipsoid method.

Finally, in Section 4.7, we study how algorithmic properties of convex bodies
K; and K, behave under operations like the sum K; + K,, the convex hull
conv(K; U K3) of the union, and the intersection K; N K,, and under taking
polars, blockers and anti-blockers. Basically, the polynomial time solvability of,
say, the optimization problem is preserved by these operations, but the exact side
conditions sometimes need a careful study.

*4.2 Optimization from Separation

We shall now show that, under reasonable assumptions, the fundamental prob-
lems concerning convex bodies introduced in Chapter 2 are equivalent with
respect to polynomial time solvability. A main result of this book is that, for
circumscribed convex bodies, we can derive a good weak optimization algorithm
from a weak separation oracle. Our basic tool will be the central-cut ellipsoid
method described in Chapter 3. The theorem to be described, can be stated in
short-hand notation by:

(4.2.1) WSEP,R | — | WVIOL

Here R means that if we know a radius R such that the convex body is contained
in S(0, R), then we can derive an oracle-polynomial time weak violation algorithm
from a weak separation oracle. To state the result formally:

(4.2.2) Theorem. There exists an oracle-polynomial time algorithm that solves
the weak violation problem for every circumscribed convex body (K ;n,R) given
by a weak separation oracle.

Proof. We describe the algorithm. An instance of the weak violation problem is
given by the following input: a circumscribed convex body (K ;n, R) given by a
weak separation oracle SEPk, a vector ¢ € @Q", and rational numbers y, ¢ with
¢ > 0. Without loss of generality we may assume |[lc||, = 1. Set

K =Kn{xeR"|c x>y},
o=
o’
We design an oracle SEPk s(x’—¢) in the sense of Remark (3.2.33) as follows.

Suppose y € Q" and a rational number § > 0 are given. We first check
whether

(4.2.3) cTy>y+94

106 Chapter 4. Algorithms for Convex Bodies

holds. If the answer is no, then we let SEPk: 5k) give —c as its output. If the
answer is yes, call SEPk with the input y and §; := min{¢’,d /n}. If SEPk gives a
vector d with ||d|o =1 and d"x <d"y+ ¢ for x € S(K,—81), then SEPk/ sk’)
can give the same output (since S(K',—¢') = S(K,—d1)). If SEPk asserts that
y € S(K, 1), then SEPg: 5(x'—¢) can assert that y e S(K’, d) (since, if y € S(K,)
satisfies (4.2.3), then y € S(K’,6)). This describes SEPk' gk’ —¢)-

We now run the central-cut ellipsoid method with input oracle SEPk' sk’ —¢),
¢ = min{¢, (¢'/n)"}, and R.

The output will be either a point y € S(K’,&1) or an ellipsoid E containing
S(K’,—¢) of volume at most ¢;. In the first case, y € S(K,¢) and ¢’y > 7 — | clle;
> y —¢&. Thus y satisfies (2.1.11) (i1).

In the second case, we show that ¢”x <y +¢ for all x € S (K, —¢). Suppose to
the contrary that x € S(K,—¢) and ¢”x > y + ¢ Then S(x,e/n) < K’, and hence
S(x,¢) = S(K',—¢) = E. However,

vol(E) < & < vol(S(x,¢)),
which is a contradiction. O

Using binary search one can easily see the following implication:

4.2.4) WVIOL,R | — | WOPT

That is:

(4.2.5) Remark. There exists an oracle-polynomial time algorithm that solves
the weak optimization problem for every circumscribed convex body (K ;n, R)
given by a weak violation oracle. a

Combining Theorem (4.2.2) and Remark (4.2.5) we get the following impli-
cation, which, from the optimization point of view, has a number of significant
consequences:

(4.2.6) WSEP,R | — | WOPT

That is:

(4.2.7) Corollary. There exists an oracle-polynomial time algorithm that solves
the weak optimization problem for every circumscribed convex body (K ;n, R)
given by a weak separation oracle. |

By looking into the details of the ellipsoid method, a more direct algorithm
can be obtained to maximize a linear objective function ¢ over a circumscribed
convex body (K ;n, R) given by a weak separation oracle. Informally, this method
does the following.

4.3 Optimization from Membership 107

Given some ¢ > 0, it constructs a sequence of ellipsoids that do not necessarily
contain S(K,¢) but do include the set of optimal points. If the center of the
current ellipsoid is not in S(K,¢) we cut like in the central-cut ellipsoid method.

Whenever the center of the current ellipsoid is in S(K,¢), then we use the
objective function as a cut. Consider those ellipsoid centers among the first ¢ that
are in S(K,¢) and let ¢, be the maximum of their objective function values. If
Copt denotes the optimum value of the optimization problem over K, then

4nR2 e_t/(5"2)

Ict - Coptl <
gllcll

This method is called the sliding objective function technique — see BLAND, GoLD-
FARB and TopD (1981) or GROTSCHEL, LovAsz and SCHRIJVER (1981) for details.

*4.3 Optimization from Membership

We prove now an important theorem due to YUDIN and NEMIROVSKIT (1976b). It
states that one can derive an oracle-polynomial time weak violation algorithm
from a weak membership oracle for a convex body K, if one knows ag,r, R such
that S(ap,r) = K = S(0,R). In our notation:

(4.3.1) WMEM, R,r,ay | — | WVIOL
That is:

(4.3.2) Theorem. There exists an oracle-polynomial time algorithm that solves
the weak violation problem for every centered convex body (K ;n,R,r,ay) given
by a weak membership oracle.

The natural approach to derive such an algorithm would be to derive a
weak separation algorithm from the weak membership oracle and then to apply
Theorem (4.2.2). There is, however, no direct way known at present to solve the
weak separation problem in oracle-polynomial time using a weak membership
oracle. As we shall see, Theorem (4.3.2) combined with a polarity argument
implies that for a centered convex body given by a weak membership oracle,
the weak separation problem can be solved in oracle-polynomial time. But this
algorithm would involve the ellipsoid method for solving the weak violation
problem and again the ellipsoid method to solve the weak separation problem.
It is surprising that this back-and-forth argument has to be used, and it may
be that a better understanding of the connection between membership and
separation will lead to an algorithm that solves the weak separation problem in
oracle-polynomial time using a weak membership oracle but not the ellipsoid
method.

We shall, however, derive in Lemma (4.3.4) a “very weak” separation algo-
rithm from a membership oracle (not using the ellipsoid method) which turns out
to be the key to applying the shallow cut ellipsoid method to this problem. As a
preparation we prove a simple lemma which shows that any weak membership
algorithm can be used to strengthen itself.

108 Chapter 4. Algorithms for Convex Bodies

(4.3.3) Lemma. There exists an oracle-polynomial time algorithm that, for any
centered convex body (K ;n,R,r,a) given by a weak membership oracle, for any
vector y € Q" and any positive rational number é, either

(1) asserts thatye S(K,?d), or
(ii) asserts thaty ¢ K.

Proof. Let (K;n,R,r,a), y e Q", and 6 e Q, & > 0 be given as above. If |y—al >
2R, then y ¢ K. So we may assume that ||y —a|| < 2R. Call the weak membership
oracle for K with

' 0 0 , .10
y.-—(l—4—§)y+4—§a and 6.—-&—.

If it answers that)’ belongs to S(K,d’) then, since
,))
ly =yl = iR ly—all < ok

we know y € S(K,d' +6/2) < S(K,).

If the weak membership oracle answers that y' ¢ S(K,—d'), then we assert
that y ¢ K. For, suppose by way of contradiction that y € K. Then, since K is
convex and S(a,r) is contained in K, we know that S()’,0r/(4R)) < K. But this
contradicts the conclusion of the membership oracle. O

The next lemma establishes a further (non-ellipsoidal) separation algorithm.

(4.3.4) Lemma. There exists an algorithm that, for a point y € Q", for any two
rational numbers 0 < 8, p < 1, and for any centered convex body (K ;n,R,r,a)
given by a weak membership oracle, either

(1) asserts that y € S(K,d), or
(ii) finds a vector ¢ € Q" such that ¢ # 0 and for every x e K,

cTx<cTy+ (6 +Blx—yl)lcl.

The running time of the algorithm is oracle-polynomial in [1/8], (K), {(y), and
().

Note that an oracle-polynomial time weak separation algorithm for K could
be obtained if the running time of the algorithm of (4.3.4) could be improved to
be oracle-polynomial in () rather than in [1/8].

Proof. Let (K;n,R,r,a), y, 6, B, be given as above. If ||y —al] > 2R then
¢ == (y—a)/|ly—al satisfies ¢’ x < cTy for all x € K and therefore (ii) is satisfied.

So we may suppose in the following that ||y —a| < 2R.
Call the algorithm of Lemma (4.3.3) with input K, y, and 4. If the algorithm
concludes that y € S(K, d), then we are done.

4.3 Optimization from Membership 109

Assume the algorithm concludes y ¢ K. Set

o= arctg(zlr%),
ro

" R+r
o r51
ry .= m,
,_ ﬂ2r1

T 16n4

512

€1

(To facilitate understanding the idea, we shall do real calculations and ignore the
problems arising from rounding. We believe that the reader is convinced by the
calculations of Chapter 3 that these roundings can be made precise, but also that
he has enough from this.)

By binary search we find two points v and v, say, on the line segment ay
between a and y such that v is between a and v, v — V|| < §;/(2n), v ¢ K, but
v' € S(K, ;). Then for the point

o' = (r+ &) ((r —)V + (r1 + e1)a)

we have S(v”,r1) < K (since otherwise there exist d € R” and y € R such that

|d| =1, dTx <y for all x € K, and d”v” > y —ry; but then d”v < y + ¢ and

dTa <y —r, implying d7v" = (r + &) W ((r —r)d"v' + (ri + &1)d7a) <y —ry).
Note that (using elementary geometry again)

)) r +e)
4.3.5) lo—v"| <L pf—o" = L B g < 2L
2n 2n r—rg n

Without loss of generality we may assume that v” = Q.

Let H be the hyperplane perpendicular to v and going through the point
(cos® ®)v. Let vy, ..., v, be the vertices of a regular simplex in H with center in
(cos? @)v such that the angle between v and v; equals a, for i = 1, ..., n. (Note
that in real arithmetic such points are easy to construct. The rounding (which
we do not consider here) has to be done with some care so that the subsequent
estimates still hold.) Thus

loill = (cos a)l|v].

For each of the points v;, run the algorithm of Lemma (4.3.3) with error parameter
1. Assume first that the algorithm concludes that one of the vectors vy, ..., v,
is not in K, say v; ¢ K. Then perform the construction of the regular simplex
described above again, now using v; as the point v, and repeat the calls of the
algorithm of Lemma (4.3.3). Suppose we have iterated this step p times. Since
log]| = (cosa)||v| it follows that after the p-th iteration we have a vector v ¢ K
with ||7]| < (cosa)?|v|| < (cos®)’?R. But since S(0,r;) < K, this can only happen
as long as
(cosa)’R >ry, 1. e,

110 Chapter 4. Algorithms for Convex Bodies

Incosa|’

where In denotes the natural logarithm. Using the inequality In(1 + x) < x for all

x, we get

2

In cosa = }In cos

o

{

n(1 —sin®)
—1sin’«
_(B/Und))?

2(1 + (B/(4n?))?)
_.ﬁ?-
34n*
It follows that after a number of iterations that is polynomial in n, (r), (R) and
[1/B] we find that the algorithm of Lemma (4.3.3) concludes with 7y, ..., 7, €
S(K,é¢1), where the vectors 7y, ..., 7, have been constructed from a vector 7 ¢ K.
We claim now that

IA

IA

__ 7]
17|
satisfies (ii)) of Lemma (4.3.4).
First we show that for all x e K
(4.3.6) cTx < Bllx|| + 6.
Consider any x € K. Set
v = N v;,, i=1,...,n and
&1 +n

1 n
W= —Zv,f.
ni

Note that, by construction, w = y7 for

y = (cos’ a)r1 /(e + r1) = cos*a.

Similarly as before, since S(0,r;) < K, it follows that v e K fori=1, ..., n. Let
us represent x in the following form

4.3.7 xX=AU+u
where u77 = 0.

Case 1. A < 1. Then by (4.3.5)

=12
_ v -
Tx = 1cT5 < ™5 = LU i) < nllol < 61 < Blix| + 6

17lleo

which gives (4.3.6).

4.3 Optimization from Membership 111
Case 2. 1 > 1. Then we transform (4.3.7) into the following form

oy y—1 Ay _
(4.3.8) yv+ﬂ__1u—l_1x+i_lv.

Let z denote the point determined by either side of (4.3.8). Looking at the right
hand side of (4.3.8) we see that v is a convex combination of z and x,i.e,7is a
point on the line segment connecting z to x, and since x € K and 7 ¢ K it follows
that z ¢ K. On the other hand, the left hand side of (4.3.8) tells us that z is on
the hyperplane through v, ..., v}. Since z ¢ K and hence z ¢ conv{v, ..., v,} it
follows that

1, 1
lz —wll = = |lvy —w| = - tga|wl,
n n

where the last equation follows from the fact that the angle between w and v] is
o. Hence

A—1 A—1y
= | — —_ >————--—t —_
Jul = Z=g 1z —wl = T— - tgal7]

Using (4.3.7) again we obtain

A—1 A—1)|Bl yt
”x”==Vq£§51;7;2”“”Z'T:;'Etgﬂwu==(ol ytga _

n 11—y

_(A=D|7] costa-tga (A—1|T| cos‘a-tga
- n 1 —cos*a n sin? a(1 + cos2a)
A—=D|v]| cos*a (A—1D]|D| 16n*+ g2 _.n
> ()l _)il - B > (- 152
2n tg o 2n 8n2p B

Hence
lsmﬁﬁ—l.
Z] n

Again from (4.3.7) we get

5Tx = 52 < g 1wlxl + 912

So, by (4.3.5)
=T - =12
x= L g B o
1Pl 77l lvlleo
< Blx|l + nllv]l
< BlixIl + 1.

This completes the proof of inequality (4.3.6) for all x € K.
Finally, to show that (ii) holds for all x € K, consider

,
R+r

x' =

(x—y).

112 Chapter 4. Algorithms for Convex Bodies

Then x’ € K, since x’ is the following convex combination

xl:Rr+rx+RI—{+—r(:I—;ry)’

where x is in K by assumption and (—r/R)y is in K as this is a point on the
segment connecting 0 € K and a — (/|yl])y € K.
Substituting x’ into (4.3.6) we obtain

r r

T o) =Ty < _
R1:¢ (x—y)=c'x _ﬁR+r||x vl + 61,
and hence R+
r
cTx—y) < Blx—yl +6 =3+ Blx—yl.
Since ||c|| > 1 the proof is finished. O

Now we are prepared to prove Theorem (4.3.2).

Proof of Theorem (4.3.2). Let (K;n,R,r,ap) be a centered convex body given
by a weak membership oracle. We design a weak violation algorithm for K. To
this end let further a vector ¢ € Q" and rational numbers y, ¢ with ¢ > 0 be given.

Let
K'=KN{xeR"|c'x>1y}

We define a shallow separation oracle for K'. Let E(A4, a) be any ellipsoid. First
check if ¢c7a < y. If so, then the vector —c and the number —y are a valid output
for the shallow separation oracle for K'. Suppose now

4.3.9) cTa>y.

Let Q be the positive definite matrix such that (n + 1)24~! = QQ and consider
the well-bounded convex body (QK;n, |Q7'||~!r, |QIR, Qag). From the weak
membership oracle for K we easily get a weak membership oracle for QK. Now
we apply the algorithm of Lemma (4.3.4) for QK to the input y = Qa € @Q",
6 :==min{(n+2)2,¢/|Q7"|} and § := (n+2)"..

If the algorithm concludes that Qa € S(QK,d) then the shallow separation
oracle for K’ should declare the ellipsoid E(4,a) tough. Note that in this case
acS(KK,5|07|) cS(K,e).

If the algorithm of Lemma (4.3.4) finds a vector d € Q" such that d # 0 and

d'x <d"Qa+ (0 + Blx— Qal)ld|
holds for all x € QK, then this is equivalent to saying that
d"Qz <d"Qa+ (6 + 10 —a)l)lidIl

holds for all z € K. If z € E(A, a) then

10z—a)ll =vV(Ez-aTQ0Fz—a)=n+1)V(z—a)T4 ' z—a) <n+1

4.3 Optimization from Membership 113

by the definition of E(4,a). Hence if z € K N E(A,a) then

(4.3.10) d'Qz <d"Qa+ ((n +2)72 + ::;) 4]l

1
<d"a+(1- Y 2)2) Idl.

So the halfspace d7Qz < d"Qa+ (1 —1/(n+2)?)|/d|| =: y includes K N E(A, a).
On the other hand, this halfspace does not completely include E((n+ 1)"%4, a) as
the vector

Q'd

Id|

belongs to E((n+ 1)724, a) but violates d7 Qz < y. Hence the vector d’ := Qd and
the number y are a valid output of the shallow separation oracle.

To the convex set K’ given by the shallow separation algorithm defined
above, the rational numbers g := ((re¢/(2Rn))" and (the given) R we now apply
the shallow-cut ellipsoid method (Theorem (3.3.3)). If the shallow-cut ellipsoid
method concludes with a tough ellipsoid E(4, a), then by the remark made above,
a € S(K,¢), and so the vector a is a solution of the weak violation problem for
K by (4.3.9).

If the shallow-cut ellipsoid method concludes with an ellipsoid E(4,a) con-
taining K and volume at most ¢, then just as in the proof of Theorem (4.2.1) we
can assert that ¢’ x < y +¢ for all x e S(K,—¢). O

a-+

This proves the Yudin-Nemirovskii theorem. Combining this with Remark
(4.2.5) we obtain:

(4.3.11) WMEM, R,r,ay | — | WOPT

That is:

(4.3.12) Corollary. There exists an oracle-polynomial time algorithm that solves
the weak optimization problem for every centered convex body (K ;n,R,r,ap)
given by a weak membership oracle. I

As an important application of this result we show that the weak constrained
convex function minimization problem (2.1.22) can be solved in oracle-polynomial
time.

(4.3.13) Theorem. There exists an oracle-polynomial time algorithm that solves

the following problem:

Input: A rational number ¢ > 0, a centered convex body (K ;n,R,r,ag)
given by a weak membership oracle, and a convex function f :
IR" — R given by an oracle that, for every x € Q" and 6 > 0,
returns a rational number t such that |f(x) —t| < 4.

114 Chapter 4. Algorithms for Convex Bodies

Output: A vector y € S(K, €) such that f(y) < f(x) + ¢ for all x € S(K,—¢).

Proof. Consider the following set
G(f,K) ={(x",)T e R"™! | x e K, f(x) <t < B},
where B is computed as follows:
B = r +max{| f(ao),|flao L re)li=1, ..., n)}.

A simple geometric argument shows that —6RBn/r is a lower bound on the
values of f in K. Hence

) 7RBn r ap
(om0 ()

is a centered convex body. By the definition of G(f, K), one easily derives a weak
membership algorithm for this centered convex body from the oracles given in
the theorem. So by Theorem (4.3.2), we can solve the weak optimization problem
for G(f,K) with input ¢ = (07,—1)7. The solution to this problem yields a
solution for the weak constrained convex function minimization problem. O

* 4.4 Equivalence of the Basic Problems

Now we combine the results of the previous two sections with a polarity argument
to prove two further implications indicated in Figure 4.1.
Recall that the polar K* of a set K is defined as follows:

K':={yeR"|yTx <1 forall xeK}.

Note that, if (K;n,R,r,0) is a O-centered, convex body, then so is (K*;n,
1/r,1/R,0); and moreover, (K*)* = K. In addition, a weak membership or-
acle for K* is essentially equivalent to a weak validity oracle for K. More
precisely,

(4.4.1) Lemma. There exists an oracle-polynomial time algorithm that solves
the weak membership problem for K*, where K is a O-centered convex body
given by a weak validity oracle.

Proof. Let (K ;n,R,r,0) be a O-centered convex body given by a weak validity
oracle. We are going to describe a weak membership algorithm for K*. Let
ye@Q"and 6 e @, § > 0 be given. If ||y|| < 1/R, then y € K*. So we may assume
y # 0. Call the weak validity oracle for K with input ¢ :=y, y :== 1 and

. < ro
Iyl +rliyll +rd°

4.4 Equivalence of the Basic Problems 115

(i) Suppose the weak violation oracle for K asserts that ¢c”’x < 1+ ¢ for all
x € S(K,—¢). We claim that this implies y € S(K, d). Namely, for every x € K,

L:—(Ex e S(K,—¢)
r
holds by a simple geometric argument. Hence for every x € K
——r:eyrx <l+e

Therefore,
1 r—e¢

e K"
1+¢ r Y

V=

By the choice of ¢, ||y, —y| < é and hence y € S(K*, J).

(i) Suppose the weak validity oracle for K asserts that y’x > 1 —¢ for
some x € S(K,¢). We claim that this implies that y ¢ S(K*,—0). Assume to the
contrary that y € S(K*,—4). Then

0 .
(1+”y—”)yeK .

Moreover, by a simple geometric argument, we have

-—L—x e K.
r+e¢
However,
0 r 0 r
1+ —)yT—x> 1+ — 1—¢) > 1.
() = () st -9
This contradicts the definition of polarity. O

By a similar argument, we obtain the following lemma.

(4.4.2) Lemma. There exists an oracle-polynomial time algorithm that solves
the weak separation problem for K*, where K is a O-centered convex body given
by a weak violation oracle. O

The theorem we are going to prove is

(4.4.3) WVAL,R | — | WSEP

That is:

116 Chapter 4. Algorithms for Convex Bodies

(4.4.4) Theorem. There exists an oracle-polynomial time algorithm that solves
the weak separation problem for every circumscribed convex body (K ;n, R) given
by a weak validity oracle.

Proof. 1. First we prove the correctness of the theorem for centered convex
bodies. So let (K ;n, R,r,ay) be a centered convex body. Set K := K — ao. Then
(K;n,2R,r,0) is a O-centered convex body, and it is trivial to obtain a weak
validity oracle for K from one for K. By Lemma (4.4.1), the weak membership
problem for the polar K~ can be solved in oracle-polynomial time. Now we apply
Theorem (4.3.2) and derive that the weak violation problem for K can be solved
in oracle-polynomial time, and therefore by Lemma (4.4.2) the weak separation
problem for K = (_K—')‘ can be solved in oracle-polynomial time. Now we only
have to translate K back to K and adjust the weak separation algorithm for K
to get one for K.

I1. If a circumscribed convex body (K ;n, R) is given, we extend K to a convex
body K < R™! by appending an (n + 1)-st coordinate and setting

K = conv({(x",0)7 e R*! | x e K} U S(ens1,1/2)),

where e,.; denotes the (n+ 1)-st unit vector in R™!. Clearly, (K, n+ 1, R + 1,
1/2, en41) is a centered convex body in R™!, and it is trivial to design a weak
validity oracle for K given such an oracle for K. By Part I, we can solve the
weak separation problem for K in oracle-polynomial time. Now we show that
we can derive from this a weak separation algorithm for K.

Namely, let y € " and a rational § > 0 be given. Set § := (y7,1)7, where
t == 90/(10([lyll: + R)). Call the weak separation Aalgorithm for K with input y
and 6 := t/(4Rn). If this concludes that y € S(K,d), then a simple geometric
argument shows that y € S(K,d). Suppose that the separation algorithm finds
a vector ¢ = (c¢7,y)7 € @' such that ¢ =1 and ¢"% < &"y + 6 for each
% e S(K,—4). Then by Lemma (3.2.35),

(4.4.5) ¢Tx <eT)+06 +4Rbn
forall xe K. In particular, this holds for all X = (x7,0)” where xe K, i. e,
cTx<cly+yt + 8 +4Rén.

Inequality (4.4.5) also holds for X = e,,(, and hence y < ¢’y + yt + 6 + 4Rén.
This implies that

. 1
el > mm{l, m}

Set d := c¢/||c||w. Then for every x € K we obtain

yt+3 +4Rén

<dTy+3.
Il Y

dTx <d"y +

So d is a valid output of the weak separation algorithm for K. O

4.4 Equivalence of the Basic Problems 117

The above theorem implies that for a circumscribed convex body, given by a
weak optimization oracle, the weak separation problem can be solved in oracle
polynomial time. Our next result shows that we do not even need the outer
radius for this implication:

(4.4.6) WOPT | — | WSEP

That is:

(4.4.7) Theorem. There exists an oracle-polynomial time algorithm that solves
the weak separation problem for every convex body given by a weak optimization
oracle.

Proof. Let K < IR"” be a convex body given by a weak optimization oracle
WOPT, and let the input y € Q" and § > O for the weak separation problem for
K be given.

We first call WOPT 2n times with input ¢ :==d/2 and ¢ :==+e;, i=1, ..., n
If WOPT ever answers that S(K,—e¢) is empty, then any vector with maximum
norm 1 will be a valid answer for the weak separation problem. Otherwise we
obtain a box that contains S(K,—0/2), and z € S(K, ¢), and hence we obtain an
R’ > 0 such that S(K,—d/2) < S(0O,R’) and S(0,R’) N K # (. By the General
Assumption (1.2.1), the encoding length of R’ is bounded by a polynomial in n
and (J). Let R := 3R’. By a simple geometric argument one can prove:

Claim. Either S(K,—¢) 1s empty or K < S(0,R). (However, we do not know
which case occurs!)

We set K’ := KN S(0,R). (K’;n,R) is a circumscribed convex body. Now we
design a weak optimization subroutine for K’. For any input ¢ e Q" and ¢ > 0
we call WOPT with input ¢ := ¢’ and ¢ := min{J,¢'/10}. We may assume that
WOPT does not give the answer S (K, —¢) is empty, nor does it give a y' € S(K, ¢)
such that ||y’|| > R +¢, because in both cases we can conclude that S(K,—d) = 0,
and thus the answer to the weak separation problem for K is trivial. So WOPT
returns y' € S(K,&) N S(0,R + ¢) such that ¢c"x < ¢7y’ +¢ for all x € S(K,—¢).
Since S(K,e) N S(O,R +¢) = S(K’,10¢) and S(K’,—¢) = S(K,—¢), y' is a valid
output for the weak optimization problem for K'.

By the remark above we can solve the weak separation problem for (K’;n, R)
and the given input y,d in oracle-polynomial time. Note that S(K’,é) < S(K,)
and by the claim S(K’,—J) = S(K,—d), and hence the output for the weak
separation problem for K’ is also valid for K. O

We close this section by proving an implication showing that it is justified to
assume the knowledge of a center ao in Theorem (4.3.2), because such a center
can be derived from a weak optimization oracle and an inner radius r:

(4.4.8) WOPT,r | — | r,ag

That is:

118 Chapter 4. Algorithms for Convex Bodies

(4.49) Theorem. There exists an oracle-polynomial time algorithm that, for
any given convex body K, specified by a weak optimization oracle, and for any
given inner radius r, constructs a vector ag and a rational number v’ > 0 so that
S(ao, ') = K.

Proof. Let K < R" be a convex body given by a weak optimization oracle and
an inner radius r. In the proof of (4.4.7) we saw that we can derive an outer
radius R from this. To determine a ball S(ag,r’) contained in K, let

e=(gz)

First give the input ¢ := 0, ¢ to the oracle, yielding a vector yy € S(K,¢).

Next determine yy, ..., y, inductively as follows. If yp, ..., yj_1 have been
found (1 <j < n), choose any nonzero vector ¢ with ¢’ yg =cTy; =... =cTy;_4
and | c|lo» = 1. Give the inputs c,& and —c, ¢ to the oracle. It gives us vectors y’
and y” in S(K,¢) so that ¢Ty" —e < c"x < ¢’y +¢ for all x in S(K,—e). Let
yi =y if Ty —cTyo = cTyo—cTy”; let y; == y” otherwise. Since K contains a
ball of radius r, S(K, —¢) contains a ball of radius r —¢. So

d(y;,aff{yo, ..., yj—1}) =r—2e

Therefore, the induction hypothesis implies that the j-dimensional volume of
conv{yo, ..., y;} is at least (r —¢)/ /j !.

On the other hand, for each j = 0, ..., n, the (n — 1)-dimensional volume
of conv{yo, ..., ¥j—1,Vj+1, ---» ¥n} is at most (2(R +r))", since ||yoll, ..., |lynl <
R + ¢ < R +r. Hence taking

1
= »), and
do n+1(}’0+ + yn), an
1 r—2e \n
, — e —— —
ro: n!(Z(R-f-r)) >0,

we have S(ag,r’ +¢) = S(K,¢), and hence S(ap, 1) = K. O

*4.5 Some Negative Results

In this section we give some negative results showing that there are no reductions
between the basic algorithmic problems other than, and no reductions under
weaker hypotheses than, those following from Figure 4.1.

One negative result was shown already in Section 4.1, namely that one cannot
derive an oracle-polynomial time weak optimization algorithm from a weak
membership oracle, even if one knows an outer radius R and an inner radius r.

In our notation:

(4.5.1) WMEM,R,r | 4> | WOPT

file:///8nRJ

4.5 Some Negative Results 119

Most of the other negative results in this section show that knowledge of an
outer radius R is quite essential.

Next we show that one cannot derive an oracle-polynomial time weak vio-
lation algorithm from a weak validity oracle, even if one knows a ball S(ao,r)
contained in the convex body. In short-hand notation:

(4.5.2) WVAL,r,a0 | - | WVIOL

Proof. Suppose, to the contrary, that one can derive such an algorithm. Let
n=2, ay= (0,07, r =1. We give the input ¢ = (0,1)7, y = 3, ¢ = 0.2 to the
algorithm. In executing the algorithm, the weak validity oracle turns out to give
the following answers, for input ¢ = (¢,&)7, 9, &:

@) if ||| = 7, or if & > 0, or if & = 0 and 5&; > 7, it asserts that ¢7x > 5 —&
for all x in S(K,%);
(ii) otherwise, it asserts that ¢’ x < 7 + % for all x in S(K,3).

Note that these answers are consistent with
K = conv(S(ao,r) U {(15"})

for arbitrary large A. It follows that any output for WVIOL derived from this is
unfounded. O

Next we show that one cannot derive an oracle-polynomial time algorithm for
the weak optimization problem from an oracle for the weak violation problem,
even if one knows a ball S(ag,7) contained in the convex body. In short-hand
notation:

(4.5.3) WVIOL,r,q9 | <> | WOPT

Proof. Suppose, to the contrary, that one can derive such an algorithm. Let
n=1,ay =0, r =1 We give the input ¢ = 1, ¢ = 1 to the weak optimization
algorithm. In executing the algorithm, the weak violation oracle turns out to give
the following answers to the input ¢, 7, &:

(i) if ¢ # 0, it asserts that x := 7/¢ belongs to S(K,#) (it satisfies " x > § —¥);
(ii) if 2 =0, > 0 it asserts that &"x <7 + & for all x in S(K,—%8);
(ili) if @ =0, § < 0, it asserts that x := 0 belongs to S(K,?) (with ¢'x > 7 —¥).

It is clear that no conclusion can be drawn with respect to the weak optimization
problem. -

One cannot derive an oracle-polynomial time weak membership algorithm
from a weak violation oracle, even if one knows a ball S(ag,r) contained in the
convex body:

(4.5.4) WVIOL,7,a9 | + | WMEM

120 Chapter 4. Algorithms for Convex Bodies

Proof. Suppose, to the contrary, that one can derive such an algorithm. Let
n=2 ay= (0,07, r =1. We give the input y = (8,0)7, § = 1 to the weak
membership algorithm. In executing the algorithm, the weak violation oracle
turns out to give, for any input ¢ = (c1,¢2)7, y € @, ¢ > 0, answer (ii), with ' a
vector satisfying: y' € Z2, cTy > 9, ||y’ —z|l < 1, where

£ ;4-—1575(?\))/5)

(Note that the encoding length of y' is bounded by a polynomial in the encoding
lengths of ¢, y, and ¢, since if ¢ = %d with d € Z2, q € Z, then

ly|vV2 _1 Iy 1v2ler — eav2| _
e + e2v'2| lc} — 2]
1+ '42')’\/2(01 —c2v2)
&2 —2d3

1Y oo < 1T+ lzlleo =1+

| < 14|¢*9V2(c; — caV2)})

Observe that ¢”z =y and that z € C := {(x1,x2)7 | x2 = x1v2}. It is clear that
no conclusion can be drawn with respect to (8,0)7. O

One cannot derive an oracle-polynomial time weak separation algorithm from
a weak membership oracle, even if one knows a ball S(ap,r) contained in the
convex body:

(4.5.5) WMEM, r,a0 | - | WSEP

Proof. Suppose, to the contrary, that one can derive such an algorithm. Let
n=2ay= (0,007, r = 1. We give the input y = (0,3)7, § = 0.2 to the algorithm.
In executing the algorithm, the weak membership oracle turns out to give the
following answers for input j = (jfl,jzz)T,S:

(i) if y2 < 1, then it asserts that § € S(K,5);
(1) if $, > 1, then it asserts that y ¢ S(K, —9).

Clearly, the conclusion that y belongs to S(K, J) cannot be drawn. The algorithm
neither can give a vector ¢ € Q" with |c|lo, = 1 and ¢"x < cTy + 6 for all x
in S(K,-4). Indeed, since the oracle has been asked only a finite number of
times, there exists a vector d so that d”§ < 1 for all ¥ asked to the algorithm
with , < 1, and d”y > 1 for all y asked to the oracle with J, > 1, and so that
|dl =1 and d # c. Hence it can be the case that K = {x | d7x < 1} N S(0, R),
for arbitrary large R. If R is large enough, there exists an x in S(K,—4) with
cTx > cTy + 6, contradicting the output of the algorithm. 0O

One cannot derive an oracle-polynomial time weak validity algorithm from a
weak separation oracle, even if one knows a ball §(ap,r) contained in the convex
body:

(4.5.6) WSEP,r,a9 | > | WVAL

file:///y/V2

4.5 Some Negative Results 121

Proof. Suppose, to the contrary, that one can derive such an algorithm. Let
n=2 a = (0,07, r = 1. We give the input ¢ = (0,1)7, y =3, ¢ = 1 to the
algorithm. In executing the algorithm, the weak separation oracle turns out to
give the following answers, for input y = (y,y2)7:

@) if [yl < 1, orif [y2] <1, y; <0, it asserts that y € S(K,9);
(ii) otherwise, it gives some & = (&;,&,)7 separating y from S((0,0)7,1) with
¢ > 0.

It is clear that from these answers no conclusion with respect to the validity of
¢Tx <y + ¢ can be drawn, since K could be equal to {x e R? | &Tx < || for
each ¢ that has been given as answer by the oracle } N S(0,R) for some large
R, or equal to conv{y € R? | y has been asked to the oracle leading to output

@} O

One cannot derive, in oracle-polynomial time, a vector ap and a rational
r’ > 0 such that the convex body K contains S(ag,r’), from a weak separation
oracle for K, even if one knows some inner radius r for K in advance:

(4.5.7) WSEP,r | - | r,a9

Proof. Let n = 1, r = 1, and suppose the weak separation oracle answers, for
any y e Q, 6 > 0, that x < y for all x in K. We cannot conclude with any aq
belonging to K. O

Similarly for a weak violation oracle:

(4.5.8) WVIOL,r | 4 | r,a0

Proof. Let n =2, r = 1, and suppose the weak violation oracle gives, for input
c=(c,c2)T e @ ye® ¢>0,a vector y in S(K,&) with cTy > y + ¢, where
y is some rational vector in S(z,¢), z being the point of intersection of the lines
{x|c"x =y +2 and {x = (x1,x2)7 | x2 = x;v2}. Even if one knows that
K contains a ball of radius r, one cannot determine, from a finite number of
answers, a ball S (ag,r’) contained in K. O

Note that (4.5.7) and (4.5.8) imply

(4.5.9) WSEP,r | | WOPT
and
4.5.10) WVIOL,r | -+ | WOPT

because of (4.4.8).

122 Chapter 4. Algorithms for Convex Bodies

Finally, we show that one cannot derive, in oracle polynomial time, a rational
number r > 0 such that the convex body K contains a ball of radius r, from a
weak separation oracle for K, even if one knows a radius R with K < S(0, R):

(45.11) WSEP,R | > [r].

Proof. Let n = 1, R = 2, and suppose the oracle turns out to answer, for any
input ye @, 6 > 0:

(i) if y < V2, that x > y — 6 for all x in K,
(ii) if y > v/2, that x < y + ¢ for all x in K.

It is clear that one cannot make any conclusion about the inner radius of K. d

%4.6 Further Algorithmic Problems for Convex Bodies

We shall now investigate some further basic questions of convex geometry from
an algorithmic point of view. Our main tool will be an algorithmic version of
the Lowner-John theorem (3.1.9). Results of this type have also been obtained
by GOFFIN (1984).

(4.6.1) Theorem. There exists an oracle-polynomial time algorithm that, for any
well-bounded convex body (K ;n,R,r) given by a weak separation oracle, finds
an ellipsoid E(A,a) such that

E(mA,a) c K < E(4, a).

Proof. We shall only describe the underlying simple geometric idea of the al-
gorithm, supposing that all calculations with real numbers can be carried out
exactly. One could take the necessary rounding into account just like in the
shallow-cut ellipsoid method and this would not lead to substantial additional
difficulties.

We derive a shallow separation oracle from the given weak separation oracle
as follows. Let E = E(A,a) be any ellipsoid. Determine the axes of E; more
precisely, compute a system of orthonormal eigenvectors vy, ..., v, with corre-
sponding eigenvalues 4,, ..., 4,. Then a+ A, i = 1, ..., n are the endpoints
of the axes. Run the separation oracle for each of the points a + ;%\/Z e;. If we
obtain a separating hyperplane for one of these points, this yields a shallow cut
for E. If all these points turn out to belong to K then we declare E tough.

Let us remark that for a tough ellipsoid E(A,a), the ellipsoid E ((—nfl-)fA,a)
is not necessarily contained in K. However, the smaller concentrical ellipsoid
E(W}r—l-);A,a) is contained in the convex hull of the points a + v, i =
1, ..., n, and therefore in K.

Using this shallow separation oracle we run a shallow-cut ellipsoid algorithm
with g = ;}q, ¢ = (;)" and the given R. This gives us an ellipsoid E(4,a) 2 K.
Since & < vol(K), the second possibility of Theorem (3.3.3) is ruled out, and hence
E(A, a) is tough. By the remark above, this implies that E (;&—J‘FT)?A, a) < K. O

4.6 Further Algorithmic Problems for Convex Bodies 123

(4.6.2) Remark. In the proof above we called the weak separation oracle for
2n points on the surface of the ellipsoid E((n + 1)7%4, a). By calling it for more
than 2n but still polynomially many points, we could find in polynomial time an
ellipsoid E(A,a) such that

E(ecn3A,a) € K < E(A, q)

for every fixed positive ¢ and n large enough. However the degree of the
polynomial will depend on c.

By the Lowner-John theorem there exists an ellipsoid E (A4, a) with E(n2A4, a)
c K < E(A,a). We do not know how much the factor n~3 obtained above can
be improved algorithmically if the convex body is given by a weak separation
oracle. O

For special classes of convex bodies Theorem (4.6.1) can be improved. A set
K < R" is called centrally symmetric with respect to a € R” if x ¢ K implies
2a—x € K. K is called just centrally symmetric if K is centrally symmetric with
respect to the origin.

(4.6.3) Theorem. There exists an oracle-polynomial time algorithm that, for
any well-bounded, convex body (K ;n,R,r) centrally symmetric with respect to
a € Q)" that is given by a weak separation oracle, finds an ellipsoid E(A,a) with

1
E(mA,a) < K < E(4,a).

(4.6.4) Theorem. There exists a polynomial time algorithm that, for any well-
bounded convex body (P ;n,R,r) given as the solution set of a system of linear
inequalities Bx < b, where B € Q™" and b € Q", finds an ellipsoid E(A, a) with

E((—,,—;WA,a) < P < E(4,a).

(4.6.5) Theorem. There exists a polynomial time algorithm that, for any well-
bounded, centrally symmetric, convex body (P ;n,R,r) given as the solution set
of a system of linear inequalities —b < Bx < b, B € Q™*", b € Q, finds an ellipsoid
E(A4,0) with

E(LA,O) S P < E(4,0).

n+l

124 Chapter 4. Algorithms for Convex Bodies

(4.6.6) Remark. Jordan proved — cf. JOHN (1948) — that for a convex body K,
centrally symmetric with respect to a, there exists an ellipsoid E(A4, a) such that

E(14,a) < K < E(4,0).

Again we do not know whether the factor (n(n + 1))~ obtained in Theorem
(4.6.3) can be improved algorithmically to a factor closer to the theoretically best
possible factor 1/n in Jordan’s theorem.

However, if our convex body is a polytope given as the solution set of a system
of linear inequalities, then asymptotically the factors given in the Lowner-John
theorem and in Jordan’s theorem can be achieved algorithmically, as the last two
theorems show. .

We sketch the proof of Theorem (4.6.5) which contains the essential ideas
needed in the proofs of Theorems (4.6.3) and (4.6.4).

Proof of Theorem (4.6.5). The idea of the proof is to use parallel cuts instead
of shallow cuts. We construct a sequence of ellipsoids E; := E(Ag,0), including
P, as follows. Let Ey be equal to S(0,R). Suppose in the k-th iteration we
have constructed E;. Then we check whether E(\/—r%:—lAk,O) is contained in P

— cf. Remark (3.3.4). If not, let y € E(\/-;lﬁAk,O) \ P, and let a”x < a be an

inequality in the system defining P violated by y. Then a’x > —u is also a valid
inequality for P. Choose as the next ellipsoid E,; the Lowner-John ellipsoid of
ExN{xeR"|—a<a’x <a} - see (3.1.18) - (3.1.20). Then we have

VOl(Ey+1) < o 1/6M)
vol(Ex) — '

This inequality guarantees that the algorithm terminates in polynomial time.
O

(4.6.7) Remark. In Theorems (4.6.4) and (4.6.5) we could — alternatively —
consider polytopes given as the convex hull of finitely many points and reach the
same conclusions. In the case of Theorem (4.6.5) this follows easily by polarity. In
the case of Theorem (4.6.4) an algorithm by LENSTRA (1983) can be used. O

The algorithms above can be viewed as methods to make a convex body
round in the following sense.

(4.6.8) Corollary. (a) There exists an oracle-polynomial time algorithm that, for
any well-bounded, convex body (K ;n,R,r) given by a weak separation oracle,
finds an affine transformation Q : x— Tx +t (T € Q™" t € Q") such that

s(o, 7(—1;“) < Q(K) = 5(0,1).

If; in addition, K is centrally symmetric then the algorithm achieves

S(o, \/T'n:l_)) < Q(K) < S(0,1).

4.6 Further Algorithmic Problems for Convex Bodies 125

(b) There exists a polynomial time algorithm that, for any well-bounded, convex
body (P ;n,R,r) given as the solution set of a system of linear inequalities, finds
an affine transformation Q such that

S (0, ﬁ) < Q(K) = S0, 1).

If; in addition, P is a centrally symmetric polytope, the algorithm obtains

s (0, J—l_ﬁ) < Q(K) < 5(0,1).

O

These results have a further interpretation for normed linear spaces. If we
speak about a given norm on R", we shall assume that there is a weak norm
oracle (i. e., an oracle that, for every x € @" and every rational ¢ > 0, produces
a rational number n such that [N(x) —n| < ¢) and that two rational numbers
c1,¢3 > 0 are given such that for all x e R",

cifxll < N(x) < caf x|l

The next corollary asserts that for every given norm N on R" an ellipsoidal norm
can be computed in polynomial time that is “close” to N.

(4.6.9) Corollary. There exists an oracle-polynomial time algorithm that, for
any given norm N on R", computes a linear transformation Q of R" such that
for all x e R",

Qx| < N(x) < v/n(n+ 1)[|Qx].

Proof. Let K = {x e R" | N(x) < 1}. Then K is a centrally symmetric convex
body and
S(0,L)y s K =5(0,1).
(%) C1

Further, we have a trivial weak membership algorithm for K. Hence by The-
orems (4.3.2) and (4.4.4) we can design a weak separation algorithm for K.
So by Theorem (4.6.8) (a), we can compute in oracle-polynomial time a linear
transformation Q of IR" such that

s(o, \/Tlfn) < Q(K) = S(0,1).

Then, if x € K, then Ox € Q(K) and so [|Qx]| < 1. Since for any nonzero x € R",
ﬁx)x € K, we have 1 > HQ(ﬁx)II = NﬁHQ(x) I, and so [|Qx|| < N(x). Similarly

we obtain that N (x) < v/n(n+ 1) |Q(x)]. .

126 Chapter 4. Algorithms for Convex Bodies

(4.6.10) Remarks.

(a) As described above, the algorithm to compute the ellipsoidal norm ||Qx]||
involves three ellipsoid algorithms inside each other {two to obtain separation
from membership and one more to calculate Q). With a little care one could
combine these into a single shallow-cut ellipsoid method.

(b) The upper bound ¢; for N (x)/| x| need not be given in advance. One can
easily compute it from the norm oracle. In fact,

c2 = [(N(e))+...+ Nen)?]

is a suitable choice. On the other hand, if n > 3 then no lower bound at all can
be computed for N (x)/||x|| from an oracle to evaluate N (x). For n = 2,

€y = 2maX{N(el-*_W_%?’—l) N(e2+N—£(e_%)}

is a suitable choice. We shall not, however, go into the details of this rather
special technical question here. O

Instead of finding the Lowner-John ellipsoid of a convex body K it may be
more natural to look for the smallest ball including K and for a largest ball
contained in K. These problems are related to two further problems, namely, to
determining the width and the diameter of K.

For a set K = IR" we denote by R(K) and T(K) the radii of the smallest
circumscribed ball and a largest inscribed ball, respectively. The following two
inequalities are well known from classical geometry.

(4.6.11) Theorem. For every convex body K < R”,

1 diam(K) < R(K) < diam(K),

1

and
L width(K) < £(K) < | width(K).

Algorithmically the following can be achieved.
(4.6.12) Theorem. There exists an oracle-polynomial time algorithm that, for

any well-bounded, convex body (K ;n,R,r) given by a weak separation oracle,
finds two points x,y € K and a ball S (a, p) including K such that

< Walx =yl

(Note that obviously p > 1[lx — y|)

4.6 Further Algorithmic Problems for Convex Bodies 127

Proof. For each 1 <i < n, maximize the objective functions el x and —e! x over
K. Let x; and x; be the optimum solutions respectively, and suppose, €. g., that
llxi —xill = llxi — x| (1 <i<n).Setx:=x; and y = x|. Let

a=Yer (2,

p =tV lxi — x|
Then K = S(a, p), which is easy to check. O

(4.6.13) Theorem. There exists an oracle-polynomial time algorithm that, for
any well-bounded, convex body (K ;n,R,r) given by a weak separation oracle,
finds two parallel hyperplanes cTx =y, ¢"x =y, and a ball S(a,p’) contained
in K such that for all xe K, y; < c"x <y, and

r_ Y2—71
2(n+ Dv/nllc|l’

i)

Proof. By Theorem (4.6.1), we can find in oracle-polynomial time an ellipsoid
E(A, a) such that

E(n—("}r—l)—fA,a) < K < E(4,4).

Let ¢ be an eigenvector of A belonging to its smallest eigenvalue A. (Note that
¢ and A can be computed in polynomial time using well-known techniques from
numerical analysis.) Let
A
/.

SRRNCESIV
Then S(a, p’) < K. Furthermore, let

v =cla—Ac|

y2 =cla+2cl.

Then obviously the requirements of the theorem are satisfied. O

There are many other geometric parameters of convex bodies that are not
well studied from an algorithmic point of view. For example, from Theorem
(4.6.1) we get an estimate for the volume of a convex body K with relative error
approximately n3", This error is not as bad as it looks in the sense that one
can prove that no oracle-polynomial time algorithm can compute the volume of
every well-bounded, convex body given by (say) a separation oracle with relative
error less than (cn)™? where ¢ is some constant — see ELEKES (1986) and BARANY
and FUReDI (1986). But it is not known, for example, whether the volume of a
polytope given as the convex hull of a set of vectors is computable in polynomial
time. Further open algorithmic problems are the determination of the center of
gravity and the surface area etc. of a convex body.

128 Chapter 4. Algorithms for Convex Bodies
*4.7 Operations on Convex Bodies

There are many operations that make new convex bodies from others (intersec-
tion, sum, projection, convex hull, polar etc.). In this section we shall study the
preservation of algorithmic properties by some of these operations. We restrict
our investigation here to well-bounded convex bodies.

The Sum
The sum of two convex sets K1, K, < R" is defined as
Ki+K; :={x;+xeR" | x; € Ki,x3 € Kz}.

The difference K; — K3 is defined analogously. If (Ky;n, Ry, ry) and (K;;n, Ry, ;)
are well-bounded convex bodies then

(K1 + K2;n,Ry + Ry, ry +12)

is also a well-bounded convex body. Moreover, if we have weak optimization
oracles for K; and K, then the weak optimization problem for K; + K, can be
solved easily. In fact, given ¢ € Q" and a rational ¢ > O (we may assume that
lcllo = 1), then set &; = min{r;, er;/(8nR;)}, i = 1,2. We call the weak optimization
oracles for K; with input ¢ and ¢. This gives us vectors y; and y; such that
yi € S(K;, &) and for all x; € S(K;, —&;) we have ¢ x; < ¢Ty;+¢;. Hence by Lemma
(3.2.25) we have that for all x; € K;, c7x; < cTyi + & + 2Riei/n/r; < cTy; +¢/2.
We claim that y := y; +y, solves the weak optimization problem for K, + K, and
the given input. For, trivially y € S(Ky, &) + S(K2,€1) € S(K,¢), and moreover,
letting x € K; + K>, then there are x; € K; and x; € K; with x = x; + x5 and so

Ix=c"xi+c"xo<cTy +e/24+cTys+e/2=cTy +e

In view of the results of the previous section, this implies that if we have a
weak violation (separation) oracle for K; and K>, then the weak violation (weak
separation) problem for K; + K, can be solved in oracle-polynomial time.

It is not difficult to show that weak validity oracles for K; and K, yield an
oracle-polynomial weak validity algorithm for K; + K;,. Namely, given a rational
inequality ¢ x < y and a rational ¢ > 0, we can use binary search to find rational
71 and y, such that ¢Tx; < y; is valid for all x; € K; but there exist y; € S(K;, &/2)
such that cTy; > 9; —&/2. Now if y > y; + 7, then ¢/ x <y is valid for all x € K.
If y <y, +7; then y; +y2 € S(K; + Ky,) satisfies ¢ (y1 +y2) > y1+172—e > y—=.

It is impossible to derive an oracle-polynomial algorithm for the weak mem-
bership problem for K| + K>, given weak membership oracles for well-bounded
convex bodies K; and K;. This follows by the same arguments as given in Section
4.1. For centered convex bodies, however, such a derivation can be made using

Yudin and Nemirovskil’s theorem.

4.7 Operations on Convex Bodies 129

The Convex Hull of the Union

Now we study conv(K; U K3). The results will be very similar to the results
concerning K; + K;. Let (K;;n,R;,ry), i = 1,2, be two well-bounded convex
bodies. Then

(conv(K U K3;n,max{Ry, Ry}, max{r,r,})

is a well-bounded convex body. If we have weak optimization (validity) oracles
for K; and K, then we can solve the weak optimization (validity) problem for
conv(K; U Kj) trivially. Hence by the results of the previous sections the same
holds for weak separation and violation oracles. To solve the weak membership
problem for conv(K; U K3) using weak (or even strong) membership oracles for
K, and K3 is again impossible in oracle-polynomial time.

The Intersection

The problem with the intersection of two convex bodies K; and K, is that
KN K, need not be a convex body at all, and even if it is, we may not be able to
compute a radius of a ball inside K; N K3 in polynomial time. So let us assume
that we also know a rational number r; such that K; N K, contains a ball with
radius r;. Set R3 = min{R,, R,}. Then

(K1 N K3z;n,R3,13)

is a well-bounded convex body.

First we show that given weak membership oracles for K; and K, we can
solve the weak membership problem for K; N K in oracle-polynomial time quite
simply. Let ye Q" and 6 € Q, § > 0 be given. Let §’ := dr3/(2R3). Call the weak
membership oracles for K; and K, with input y and d’. If they conclude that
y ¢ S(K;,—d") for i = 1 or 2 then clearly y ¢ S(K; N K3,—0). Suppose the oracles
conclude that y € S(K;,8’) for i = 1,2. Then we claim that y € S(K; N K3,9).
For, let S(ag,r;) = K| N K,. We are going to show that

!

r3
= e Ki N K.
z r3+6’a0+r3+6’y 1 2

We first prove that z € K. Since y € S(K;,d’) there exists a point y; € K such
that ||y — y;|| < é'. Then

r
ao + 537 (y — y1) € S(ao,r3) < Ki.

And so by the convexity of K;

r

(5' rs 3
(a0+ 5 (y-)h)) + Y Y1

r3+5’

Z ==

is in K;. Similarly z € K>. So z € K; N K3. Since [z -yl = &'z —aoll/r3 <
20'R3/r3 = §, this implies that y € S(K; N K3,9).

130 Chapter 4. Algorithms for Convex Bodies

The same argument shows that if we have weak separation oracles for K; and
K, we can solve the weak separation problem for Ky N K; in oracle-polynomial
time. By the results of the previous sections this implies that the same holds for
weak optimization, violation and validity.

The somewhat disturbing hypothesis that K; N K; contains a ball with radius
r3 can be checked in the following sense.

(4.7.1) Theorem. There exists an oracle-polynomial time algorithm that, for any
two well-bounded, convex bodies (K;;n,R;,r;), i = 1,2, given by weak separation
oracles and for any given rational number ry > 0, either

(i) asserts that K\ N K, contains a ball with radius r3, or

(ii) finds a vector ¢ € Q" with |cllo = 1 and a number y € Q such that
c’'x <y for all x e S(K{,—¢) and ¢c"x > y for all x € S(K,,—¢) where
e =9nr3(Ry/ri + Ry /r3).

(I. e, we find a hyperplane almost separating K; from K5.)

Proof. Let us consider the convex body (K; — K3;n, Ry + Ry, r; +r3). We can
solve the weak separation problem for K; — K> in oracle-polynomial time by the
first part of this section. Solve the weak separation problem for K; — K; 2n times
with inputs y = +Ze¢; and 6 =r3, fori=1, ..., n

Case 1. We find that for all i = 1, ..., n and for all choices of the sign the vector
+ee;/4 belongs to S(K; — K3, r3).

Thus S(0,¢/(4v/n)) = S(K;—K3,r3). We claim that S(K;, —r3)NS (K3, —r3) # 0.
This is clearly equivalent to the conclusion that K; N K, contains a ball with
radius r3.

Suppose by contradiction that S(K;,—r3) N S(K3,—r3) = 0. Then S(K,—r3)
and S(K,,—r3) can be separated by a hyperplane cOT x = y9 where ||collo = 1. By
Lemma (3.2.35) ¢l x < yo+2Ryr3y/n/r; for all x € Ky and ¢J x > yo—2Rar3v/n/r2
for all x € K,. But we know that ¢/(4+/n|/co||)co € K1 —K> and so ¢/(4/n||col)co =
y1—2 for certain y; € K;, i = 1,2. Hence &/(4y/nl|co)cd co = c{ y1—c y2 < 2r3\/n
(Ry/r1 + Ry/r3) < &/(4+/n). On the other hand:

4f ol = avs 1ol > g7

which is a contradiction.

Case 2. For at least one of i € {1, ..., n} and at least one choice of the sign we
obtain an almost separating hyperplane, i. e., we obtain a vector ¢ € Q", |lcllo =1
such that (say) c” (ee;/4) > ¢T x—r; for all x € S(K|—K3,—r3). Compute a number
y such that |y —max{cTx | x € K;}| < ¢/4. Then trivially ¢”x < y +¢&/4 — ¢ for
all x € S(K|,—¢). On the other hand, ¢"x < c’(cer/4) +r;3 < ¢/2 for all
x € S(K1 — K,,—r3) and hence by Lemma (3.2.35)

+R; 3

r3_2+2n(——+~—)3<—8

cIx< = +2\/_ 2

2 1+r2
for all x e K| — K.

4.7 Operations on Convex Bodies 131

Let x, € K, be arbitrary and let x; be a vector in K| maximizing ¢’ x over
K;. Then x; — x; € K; — K; and so

3
cT(xi—x) < e

4
Hence
el x >ch—§e> S
2 = 1 4 27 4 3 =7 .

Thus for all x; € S(K;,—¢) we have
chz =y —&+e=.
O

By combining Theorem (4.7.1) with the observations made before, we can
conclude that we can either weakly optimize over K; N K, or weakly separate
K, and K.

(4.7.2) Corollary. There exists an oracle-polynomial time algorithm that, for any
two well-bounded convex bodies (K;;n, R, 1)), i = 1,2, given by weak separation
oracles, for any vector ¢ € Q", and any rational number ¢ > 0, either

(i) finds a vector y € Q" such that y € S(K; N Kj,¢e) and c"x < cTy +¢ for all
X € S(Kl N K>, —8), or
(i) finds a vector d € Q", ||d|l» = 1, and a number y € Q such that

dTx <y forallxeS(K,—e¢)

and
dTx >y forall x e S(Kj,—¢).

Polars, Blockers, Antiblockers

Recall that in Section 0.1 we have defined the polar, blocker and antiblocker of
a set K < IR" as follows:

K ={yeR"|y"x<1 forall xeK},
bl(K) :=={yeR"” |y"x>1 forall xeK},
abl(K) = K* NRY.
Also recall the notions “up-monotone” and “down-monotone” in R.
We have seen in Section 4.4 that, if K is a 0O-centered convex body, then
K" is also a O-centered convex body. Furthermore, the separation, optimization

etc. problem for such K and K* are equivalent. We are going to derive similar
results for the blocker and antiblocker.

132 Chapter 4. Algorithms for Convex Bodies

It is easy to see that if (K;n,R,r) is a well-bounded convex body down-
monotone in R} then (abl(K);n,1/r,1/nR) is a well-bounded convex body
down-monotone in R’}. Furthermore, along the lines of the proof of Lemma
(4.4.1) one can show that if K is given by a weak violation oracle, then the weak
separation problem for abl(K) can be solved in oracle-polynomial time. From
this we can conclude that the separation, optimization etc. problem for K and
abl(K) are polynomially equivalent.

It is clear that similar results can be worked out for the blocker of a set
up-monotone in R. Of course, the machinery developed so far does not work
directly, since nonempty up-monotone sets are not bounded. One could get
around this difficulty by intersecting the set and its blocker with large balls. We
do not go into the details here. For polyhedra the results are elaborated in
Chapter 6.

Chapter 5

Diophantine Approximation and Basis Reduction

As mentioned in Chapter 1, combinatorial optimization problems can usually
be formulated as linear programs with integrality constraints. The geometric
notion reflecting the main issues in linear programming is convexity, and we have
discussed the main algorithmic problems on convex sets in the previous chapters.
It turns out that it is also useful to formulate integrality constraints in a geometric
way. This leads us to “lattices of points”. Such lattices have been studied (mostly
from a nonalgorithmic point of view) in the “geometry of numbers”; their main
application has been the theory of simultaneous diophantine approximation, i. €.,
the problem of approximating a set of real numbers by rational numbers with
a common small denominator. We offer an algorithmic study of lattices and
diophantine approximation.

The main result derived here is an algorithm to approximate a set of numbers
by rational numbers with a common small denominator. We have seen previously
that the ellipsoid method gives only approximate solutions in various applica-
tions; often the exact solutions can be obtained by appropriate “rounding”. Thus,
the problem of “rounding”, that is, of approximating real numbers by rational
numbers with small denominator, arises naturally. It is still somewhat surprising
that often a straightforward rounding is not sufficient, and quite involved tech-
niques of simultaneous diophantine approximation are needed. Applications of
this sort will occur in Chapter 6.

In the first section of this chapter we give a quick survey of the classical
algorithm of expanding a number into a continued fraction. This can be used to
find, for a given real number, the best rational approximation with a denominator
bounded by a prescribed integer (this algorithm was referred to in Section 1.3). In
Section 5.2 we consider the problem of simultaneous diophantine approximation.
Existence theorems for such rationals and good estimates on their denominators
are well known in number theory; the important new point here is that there
exists a polynomial time algorithm to solve this problem — at least in a sense
(LENSTRA, LENSTRA and Lovasz (1982)).

In Section 5.3 we describe the algorithm of Lenstra, Lenstra, and Lovasz. Since
Minkowski, a main tool in the study of diophantine approximation problems is
the geometry of numbers, the theory that investigates the intersections of point
lattices with convex sets. The algorithm described here is based on finding a
“reduced basis” in an appropriate lattice.

In Section 5.4 we discuss some algorithmic problems concerning lattices. It
seems that the algorithmic theory of lattices is less developed than the algorithmic

134 Chapter 5. Diophantine Approximation and Basis Reduction

theory of convex sets, even though some features are quite analogous. This section
is only a first step in this direction. It will not be needed in the rest of the book.

Let us conclude this introduction with a general remark. There are two
branches of mathematics dealing with lattice points in various convex bodies:
integer linear programming and the geometry of numbers. There is, however,
surprisingly little connection between these two fields. It seems that the methods
of either one of them have little use for the problems in the other ficld. We
certainly cannot claim to have established a connection; but possibly Lenstra’s
work and the other algorithms in this book lay the first planks to build a bridge
between these two flourishing branches of mathematics.

5.1 Continued Fractions

It may be instructional to survey first what may be considered as a 1- or 2-
dimensional version of the basis reduction algorithm to be discussed later — the
technique of continued fractions. The classical books on continued fractions are
PERRON (1913) and KHINTCHINE (1956) but this method is treated also in many
books on number theory (e. g., NIVEN and ZUCKERMAN (1980)) or approximation
theory (e. g., NONWEILER (1984)). Its main algorithmic application will be the
solution of the following problem.

\
(5.1.1) Best Approximation Problem. Given a rational number a and a positive
integer N, find a rational number «/ with denominator at most N such that
lo — o| is minimum.

This problem can be formulated as a decision problem as follows.

(5.1.2) Diophantine Approximation Problem. Given a rational number o, a
positive integer N and a positive rational number ¢, decide whether there exists
a rational number o« with denominator at most N such that |o —o/| < e.

The following classical result of DIRICHLET (1842) gives a sufficient condition
for the solvability of (5.1.2).

(5.1.3) Theorem. Given a real number a and 0 < ¢ < 1, there exist integers p
and q such that 1 < q < 1/¢ and |a —p/q| < ¢/q.

Proof. Consider a circle with circumference 1. Let k := [1/¢]. Starting from
a point ap on the circle move clockwise distances «,2a, ..., ka on the circle
to get points ag,ay,a, ..., ax. Since we have k + 1 points, two of these, say
a; and q;, i < j, have distance d < 1/(k +1) (measured on the circle). This
means that ja + d — ia is an integer, say p. Thus for g = j —i we have
lge—pl=d<1/(k+1)<eand g <k < 1/e O

5.1 Continued Fractions 135

This application of the pigeon hole principle is “constructive”, but it does
not yield a polynomial algorithm to find p and g. In fact, the running time is
polynomial in 1/¢ but not in (&), i. e., the pigeon hole principle gives a fully
polynomial approximation scheme. Continued fractions, which we describe now,
give an algorithm polynomial in the encoding length.

Let ag,a1,as, ..., a; be integers, all positive, except perhaps ag. An expression
of the following type

(5.1.4) ao +

a +
a +

. + :
a.A R
j—1 aj

is called a (finite) continued fraction. It is usual to abbreviate the expression (5.1.4)
by (ao,ai, ..., a;) or ag+ 1{a; + 1{ay +... + 1]a;. Since (-) denotes the encoding
length in our book we will use the second notation. Clearly, r = ap+1|a;+1]|ax+. ..
+ 1]a; is a rational number. (The notation ao + 1a; + Lla; +... + 1]a; is also
meaningful if @y € R and qy, ..., q; are positive real numbers. We shall use
this, however, only in one proof.) Conversely, every rational number can be
represented by a continued fraction. This can be constructed by the following
algorithm:

Let a = ap € Q be given. Set ap := 9] and oy = 1/(0p — ap). Going on
similarly, set fori=1,2,...

a; = o).

If a; = a; we stop; otherwise, we let

1
oz,-———a,-'

Kip1 =

The sequence (ag,ai,as,...) defined this way is called the continued fraction
expansion of the number «.

It follows immediately from the definition that a; < o; < a; + 1 and so
a1 = 1/(0; —a;) > 1. Thus aiyy > 0 for i > 0. By induction, o = ag + 1la; +
...+ 1]a;_; + 1. Hence, if the procedure terminates after the i-th step then
@ = ag+ 1{a; +...+ 1[a;. Conversely, if, say, « = p/q with p and g coprime, g > 0,
then o, as,... are also rationals, and it follows trivially from the algorithm that
if &; = pi/g; > 0 and a; # O then p; + ¢i > pi+1 + giv1 > 0. So in this case the
algorithm must terminate with a,, = a,, for some m 2_0. N

Let « be an arbitrary rational number and ag + 1]a, + ...+ 1]ap its continued
fraction expansion. The rational numbers S :=dao+1la; +...+ ar O <k <m)
are called the convergents of o.

In practice, when determining the continued fraction expansion of a number «,
it is convenient to compute the numerators and denominators of its convergents

136 Chapter 5. Diophantine Approximation and Basis Reduction

fr along with a, and a;. In fact, we can compute, along with the a;’s, two
auxiliary sequences gx and A, by the recurrence

(5.1.5) g2:=0,g4:=1,hy=1h,=0,
gi=ag-1+g-2 (i=01,...,m,
hi =ah_1+h_ (i=0,1,...,m).

It is obvious from the definition of h; that 1 = hy < hy < h < ... < hp, and
also that h, > Fy, where F) is the k-th Fibonacci number (i. €., Fy :=0, F| :=1,
Fi = Fy_1+ Fr_2,k > 2). So h; grows exponentially.

The following identities are easily proved by induction on k:

(5.1.6) Lemma.
@ Be=F
k
(®) gkrthk — gehisr = (=¥ . a

A consequence of Lemma (5.1.6) is that the integers gx and hy defined in
(5.1.5) are coprime. So for « = p/q, p and g coprime, we have o = f3,, for some
m, which implies p = g,, and g = hy,. From q = hy > F,,, = %((”2—‘[5)’” — (i Bymy
we can derive m = O(log q). These considerations yield:

(5.1.7) Theorem. The continued fraction expansion of a rational number can
be found in polynomial time. O

Next we discuss how well the convergents B of a rational number a ap-
proximate «. First we show that they are alternately smaller and larger than
a.

(5.1.8) Lemma. Let0 <k <m. Then B < a ifk is even and B, > a if k is odd.

Proof. Consider f(x) := ag + l{a; + ... + l{at_; + 1[x. Then f is a monotone
function of x for x > 0 (increasing if k is even and decreasing if k is odd).
By definition, f(ax) = fx and f(ax) = a Since 0 < a, < oy, the assertion
follows. O

We are now able to show how continued fractions can be used to find p and
q in Dirichlet’s theorem (5.1.3). Let k be the largest index such that hy < 1/e.
From Lemmas (5.1.6) and (5.1.8) we get:

_ gkt — gkhia| 1 £
loo — Brl < 1Br+1 — Bkl = Bt = < .

We need a little more work to find a best aproximation. This algorithm is due to
KHINTCHINE (1956).

5.1 Continued Fractions 137

(5.1.9) Theorem. The Best Approximation Problem (5.1.1) is solvable in time
polynomial in (N) and {a).

Proof. Let us compute the continued fraction expansion ag+ 1[a; +. ..+ 1]a,, of a.
Consider the largest subscript i with h; < N. Since h; > F;, we have i = O(log N).
Next, let j = |[(N — hi_1)/h,]; so

(5.1.10) hioi+jh <N <h_y+ G + Dh,.

Clearly, j < ajy1, as h_{ +ai; 1hi = hizy > N.
We claim that .
o= 8 or _ 8i-1 18

h 7T b+ ik

is the solution of the Best Approximation Problem (5.1.1).

Suppose i is even. Then by Lemma (5.1.8) r{ < a and, moreover, it follows
from the definition that a;,, is the biggest integer ¢ such that (tg; + gi_1)/(th; +
hi_1) > a. Since j < a;+1 we have a < ry, thus

H<a<r.

(Note that in case i is odd we similarly have r, < « < ry.) Let p/q be any rational
number with r; < p/q < ry. Then

_ phi — giq >

P_. 1
q qghi gk

and similarly

r P —_‘”1——
2T q T qhi +jh)
Hence
1 1 1 hi—l + (] + l)h!
5.1.11 —nz-|r - '
(5.1.11) R (h.- T +J'hf) qhithii + jh)

On the other hand, we have by Lemma (5.1.6),

gi-lhi —gihi-l 1
5.1.1 —r= N '
(5.1.12) P e 17k by + Ry

From (5.1.11), (5.1.12) and (5.1.10) we obtain that
q2hf_1 +(]+l)h, > N.

The result follows similarly for i odd. So indeed any rational number closer to «
than r, and r, has denominator larger than N. O

138 Chapter 5. Diophantine Approximation and Basis Reduction

5.2 Simultaneous Diophantine Approximation:
Formulation of the Problems

In some applications, we shall have to approximate certain numbers ay, ..., o,
by rationals with a common denominator q. Note that this is trivial if we allow
an error of 1/(2q) in each approximation; but one can do better if only an upper
bound on q is prescribed.

The following classical theorem of DIRICHLET (1842) guarantees that the
simultaneous approximation problem has a solution in which g, and hence
pi, --., Pn, are not too large.

(5.2.1) Theorem. Given any real numbers oy, ..., a, and 0 < ¢ < 1, there exist
integers py, ..., Pn,q such that |a; —p;/q| <e/q fori=1, ...,nand 1 <g <&

Proof. Let a := (ay, ..., a,)7 and m := [¢™"]. Consider the set S of all points in
R" of the form

ka+z,zeZ'", 0<k <m.

Draw about each point v € S the open cube
{xeR"| |x—vlo < &/2}.

If these cubes were disjoint then the density of their union would be (m+1)¢™ > 1,
which is impossible. So there are two such cubes which intersect, i. €., there are two
different points in S, say kja+2z; and k,a+2z;, such that ||kja+2z; —kya—z3]l < &
As ¢ < 1, we have k; # k,, say k; < k3. Then q ==k, —ky and p :=2z, — 2z, =
(pt, ..., pn)T satisfy the requirements of the theorem. O

Unfortunately, no polynomial time algorithm is known to find such py, ..., p,
and g with denominator g < ¢™" (even though we know by Dirichlet’s theorem
that such solutions do exist). In the next section we shall describe an algorithm
which does find a simultaneous approximation in polynomial time, but the upper
bound on the denominator is 2" 1/4g™,

Similarly as in the case of n = 1, we can ask for the best possible approxima-
tion of several given numbers by rationals with a common small denominator.
Formulated as a decision problem, we can state this as follows.

(5.2.2) Simultaneous Diophantine Approximation Problem. Given rationals
®y, ..., 0n, € > 0, and an integer N > 0, decide if there exist integers py, ..., Pn
and an integer q > 0 such that ¢ < N and |qu; —pil < e fori=1, ..., n.

This problem is #/?-complete (LAGARIAS (1982)). However, a weaker problem
will be solved in the next section. (Note that Dirichlet’s theorem says that the
answer to this problem is “yes” if N > &¢™").

A closely related number theoretical problem is the following.

5.3 Basis Reduction in Lattices 139

(5.2.3) Small Linear Form Problem. Given rationals oy, ..., o, ¢ > 0, and
an integer N > 0, find integers py, ..., ps, not all 0, such that |p;] < N for
i=1,...,nand |apy +...+ axpsl <&

(It would be easy to formulate a common generalization of problems (5.2.2)
and (5.2.3) by asking for several linear forms to be simultaneously small, but
we postpone this to the next section, where point lattices provide a convenient
framework for these algorithmic problems.)

Again we may want to find p,, ..., p, here that are not too large. DIRICHLET
(1842) proved the following analogue of Theorem (5.2.1):

(5.2.4) Theorem. Given any real numbers oy, ...,o,, and 0 < ¢ < 1, there
exist integers po,pi, ..., Pn, DOt all 0, such that |p;| < e V/" fori=1, ...,n and
[po+a1p1 + ...+ aupul <e. O

However, problem (5.2.3) is #/Z2-complete (even if we restrict (5.2.3) to N =1,
¢ = 1/2 and o; integer, as the so-called subset sum problem can be reduced to
this — see Section 7.6). But in the next section we formulate an algorithm which
solves a somewhat weaker problem which is, however, still sufficient for most
number-theoretic applications. (Again, note that by Theorem (5.2.4) the answer
to (5.2.3) is always yes if N is large enough.)

Let us conclude with the remark that in problems (5.2.2) and (5.2.3) we
could replace the hypothesis that oy, ..., o, are rational by the hypothesis that
(a1, ..., a7 is a polynomially computable vector. This observation brings these
problems closer to the number-theoretic applications (where the a; are algebraic
numbers or numbers like e, n, etc.), but it does not add to the algorithmic
aspects. Namely, if «, ..., o, are irrational then we compute a rational approx-
imation first (not necessarily with the same denominator), and then compute a
simultaneous approximation or small linear form of this approximation.

5.3 Basis Reduction in Lattices

A lattice in R" is any set of the form

(5.3.1) L=L(by, ..., by = {Zzib,- | heZ,i=1, n}

i=1

where {by, ..., b,} is a basis of R". We say that {b,, ..., b,} is a basis of L.

In this book we do not go into the detailed study of lattices; we shall only
address the problem of finding a “decent” basis in this section, and discuss a few
other elementary problems in the next. For more information on lattice geometry,
consult CASSELS (1959) or LEKKERKERKER (1969).

Clearly, a lattice L may have several bases. If {by, ..., by} is a basis of L
and if 4 = (ay)];_, is any integral matrix with determinant +1 then {b}, ..., b},}

file:///ol/P/

140 Chapter 5. Diophantine Approximation and Basis Reduction

defined by

n

(5.32) b = Za,-,-b,- (i=1,...,n)
j=1

is another basis of L. It is well known that all bases of the lattice (5.3.1) arise
by such a transformation. Hence |det(by, ..., by)| is independent of the choice of
the basis {by, ..., b,} for the lattice L. We set

det L :=|det(by, ..., by)|.

Geometrically speaking, det L 1s the (common) volume of each parallelepiped
that has its vertices in L but no other point in common with L.

Of the many possible bases of a lattice, one would like to select one that is
in some sense nice or simple, or “reduced”, which is the term used in this area.
There are many different notions of “reduced” bases in the literature. One of
them consists of requiring that all of its vectors be short in the following sense.

(5.3.3) Minimum Basis Problem. Given linearly independent vectors ay, ..., a,
€ Q", find a basis {b, ..., by} of the lattice L(ay, ..., a,) such that |by| ... ||b,]|
is minimal.

This problem is A?-hard (LovAsz, unpublished).

One may ask why do we consider the product, and not, say, the sum of the
norms of basis vectors. An explanation is that the product is closely related to
the determinant of the lattice. In fact, it follows from Hadamard’s inequality
(0.1.27) that for any basis by, ..., b,

Iby]l ... |ball = det L.
On the other hand, HERMITE (1850) proved the following.

(5.3.4) Theorem. Every lattice L in R" has a basis {by, ..., by} such that
b1l - ... liball < cndet L,

where ¢, is a constant that depends only on n. O

The best known value of ¢, for large enough n, is about 1.43(0.97n)"n!/4,

One might try to find short linearly independent vectors one after one. This
leads to the theory of successive minima, developed by Minkowski. We do not
want to go into the details of this, but we formulate the first problem suggested

by this approach:
(5.3.5) Shortest Lattice Vector Problem. Given linearly independent vectors
ai, ..., a, € Q" find a nonzero vector v € L(ay, ..., a,) with |[v]| minimal.

The following classical theorem of Minkowski gives essential information
about the shortest vector in different norms.

5.3 Basis Reduction in Lattices 141

(5.3.6) Minkowski’s Theorem. If K < IR”" is a convex body centrally symmetric
with respect to the origin, and L =< R" is a lattice such that

vol(K) > 2" det L,

then K contains a lattice point different from the origin. O

In other words, the shortest nonzero lattice vector in any vector norm N is
not larger than 2(det L/ vol(S))'/", where § = {x e R" | N(x) < 1} is the “unit
ball” of the norm N.

(5.3.7) Exercise. Derive Dirichlet’s theorems (5.2.1) and (5.2.4) from Minkowski’s
theorem. O

Applying Minkowski’s theorem to the Euclidean norm we obtain:
(5.3.8) Corollary. In every lattice L in R", there exists a vector v # 0 such that

lo|l < cv/nvdet L,

where c¢ Is a constant. d

The best value of ¢ known is about 0.3196, for large enough n.

It is not known whether the Shortest Lattice Vector Problem (5.3.5) is A42-
hard or not; quite probably it is. It is known to be A#Z-hard if the Euclidean
norm is replaced by the maximum norm (VAN EMDE Boas (1981)).

There is a related, but essentially different problem:

(5.3.9) Nearest Lattice Vector Problem. Given n linearly independent vectors
ai,...,a, € Q", and a further vector b € Q", find a vector v e L(ay, ..., a,) with
b —v|| minimal,

This problem is known to be #Z-hard for any norm (vaN EMDE Boas (1981)).

Unfortunately, none of the known proofs of the above mentioned results
(5.3.4), (5.3.6), (5.3.8) is constructive in the sense of a polynomial time algorithm.
We shall develop an algorithm which will construct short vectors in polynomial
time — but the bounds we obtain will be worse. It is an outstanding open problem
to find a polynomial time algorithm to construct a basis with the property in
Theorem (5.3.4) and a vector v with the property in Corollary (5.3.8), with the
best possible values of ¢, and c¢. However, if we allow larger values (depending
on n) instead of ¢, and c/n, then these problems are polynomially solvable. This
result, due to A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovasz is the main topic
of this section.

We shall define a rather technical notion of “reducedness” and then show
that a reduced basis in this sense, on the one hand, is polynomially constructible
and at the same time, satisfies Theorem (5.3.4) (with a somewhat poor c,).

142 Chapter 5. Diophantine Approximation and Basis Reduction

Recall from Section 1.4 that the Gram-Schmidt orthogonalization (b], ..., b;)
of an ordered basis (by, ..., b,) of R" satisfies

J
(5.3.10) b= wib] G=1,....n),
i=1

and that in this formula g; = 1. A connection between the Gram-Schmidt
orthogonalization and our problems is shown by the following lemma.

(5.3.11) Lemma. Let L be a lattice in R", (by, ..., b,) an ordered basis of L,
and (b}, ..., b;) the Gram-Schmidt orthogonalization of (by, ..., b,). Then for
any non-zero vector b in L,

16 = min{||b7ll, ..., lball}.

Proof. By definition,

b= 5: Aibi,
i=1

where A; € Z. Let k be the last subscript with i, # 0. Substituting for b; by
(5.3.10) we obtain
k
b= ib;,
i=1

where A; = A is a nonzero integer. Thus
k
1612 = Y D216} 12 = 21612 = 16712
i=1
which proves the Lemma. O

The key of our algorithmic approach is the following technical definition. Let
L be a lattice, (b, ..., b,) an ordered basis of L, and (b, ..., b;) its Gram-
Schmidt orthogonalization; let the number p;; be defined by (5.3.10). We say that
the basis (by, ..., by) is reduced, if the following two conditions hold:

1
(5.3.12) 1 gl < 3 forevery l <i<j<n;

ex) - - 3 - .
() |1b],, + #4102 = anj I? forj=1,...,n—1.

The first of these conditions is rather natural — it means that the basis is
reasonably “almost orthogonal”. The mysterious looking second condition can
be illuminated as follows. Since the Gram-Schmidt orthogonalization depends on
the order of the basis elements, its vectors change if b; and b;,, are interchanged;
in fact b; and b/, will change. Now the new b; is the vector b, + pj11,b;,
so (5.3.12) (i) says that by interchanging b; and b;,, the length of b; does not
drop too much. The choice of 3/4 as the allowed factor of decrease is arbitrary:
any number between 1/4 and 1 would do just as well. The most natural choice
(giving the best values in Theorem (5.3.13) below) would be 1 instead of 3/4; but

we could not guarantee the polynomiality of the resulting algorithm.

5.3 Basis Reduction in Lattices 143

(5.3.13) Theorem. Let L be a Iattice in R" and (b, ..., b,) a reduced basis of
L. Then the following are true:

(@) |Iby]] <2D/4/det L ;
(b) by} <2V 2min{||b|l :be L,b# 0} ;
© Iball - ... Iball <202 det L.

Proof. By property (ii) of (5.3.12) in the definition of a reduced basis, we have
06712 < 18]y + i1y 12 = 107, 12 + 24, 18] 1.
By property (i), we have p?,, . < 1/4, and thus
16 12 = 3167 1> (1 <j<n—1).
Hence it follows by induction that
(5.3.14) 16} 17 = 277 161> (1 <i<j <n).

In particular, . _
1B 17 = 2" 7B)17 = 27 |1 by |12

Multiplying this inequality for i = 1, ..., n, we obtain
16312 ... B2 = 27O by .

But the left hand side is just (det L)%, from which (a) follows.
To prove (b), notice that (5.3.14) implies

min ||b; || > 27"V 2|, |
I<gj<n

and since by Lemma (5.3.11) the left hand side is a lower bound on any |b|
(beL,b+#0), (b) follows.
Finally, using property (5.3.12) (i) of reduced bases,

b j—1
1612 =) w167 12 < 1B} 12+) 4 1B} 11
i=1 i=1

So by (5.3.14),

j—1
(5.3.15) 1By 1% < (1+) 4 - 27718 12 < 271 1bj 1.
i=1

Multiplying this for j = 1,2, ..., n, we obtain
B2 ... Iball? < 2@ B3 12 - ... 1b5)1% = 20) (det L),

from where (c) follows. O

144 Chapter 5. Diophantine Approximation and Basis Reduction

(5.3.16) Theorem. There is a polynomial time algorithm that, for any given
linearly independent vectors ay, ..., a, in Q", finds a reduced basis of the lattice
L(ay, ..., a,).

Let us remark that, in contrast to the ellipsoid method, the algorithm given
below is reasonably efficient in practice.

Proof. Without loss of generality, assume that qy, ..., a, are integral. We shall
transform the given basis until both conditions in the definition of reduced bases
are satisfied. So start with an ordered basis (by, ..., b,) = (ai, ..., a,). Let
(b}, ..., by) be the Gram-Schmidt orthogonalization of this basis, and let the

coefficients y;; be defined by (5.3.10).

Step (I): Forj =12, ...,n and givenj, fori= 1,2, ...,j — 1, replace b; by
bj — [u;ilbi, where [p;;] is the integer nearest to y;.

It is clear that this procedure does not change the Gram-Schmidt orthogo-
nalization (b], ..., b;) of the basis. Hence, after executing step (I) for a certain j,
the new p;; will satisfy |u;;| < 1/2foralli=1, ...,j — 1, and executing the step
for higher j will not spoil this property. If all pairs (j, i) are treated, (i) of (5.3.12)
is achieved and we go to Step (II).

Step (II): If there is a subscript j violating (i) of (5.3.12) then interchange b;
and b;,y and return to Step (I).

To analyse this step, let (cj, ..., c;) be the Gram-Schmidt orthogonalization
of the resulting basis. As remarked before, ¢; = b; unless i = j or j + 1. Further,
¢; = b}, + ui+1,;b; and the fact that (ii) fails for j means just that

lei 1 < Z1167 112

The formula for ¢;,; is somewhat more complicated and we do not need it
explicitly. But from

sl oo lepl> = B30 - ... - [ByII? = (det L)?

it follows that [c]|1% - llcf,, 1> = 16717 - b}, 1% So |icjIIP"T*Vjc;, |2+ <
%Ilbfllz("‘””llb;“||2("‘f". To estimate how many steps have to be carried out
before a reduced basis is obtained (if at all), let us study the quantity

D = ||by ¥ Ib3 |2 - 1By

By the remarks above, Step (I) does not change the value of D, while Step
(IT) decreases it by a factor < 3/4. We get by elementary linear algebra that

1b3I2 ... 1B} 12 = det((®Tb,Y, ,_,)

and hence

(5.3.17) D= Hdet((bvr buY, ,1)-
j=1

file:///iiji/bi

5.3 Basis Reduction in Lattices 145

Since the vectors by, ..., b, clearly remain integral during the procedure, D is an
integer and hence D > 1.
At the beginning, we have

. =2 2(n—1 2 2(n—1 2
Do : = llagI*lla; 1™~ - .. llall < llag P a7V - ... - f|aa]

< (lall - - llaal)™.

So the number of times Step (II) has to be carried out is at most

log Dy 2n
< 1 st all)s
ogd = Togd —iog3 (0@l + .- +log o))

which is polynomial in the encoding length of the input. Between two executions
of Steps (II) there is only one execution of Step (I), with O(r®) arithmetic
operations, so we obtain that the total number of arithmetic operations in this
algorithm is polynomial.

We shall have to show that the numerators and denominators of the numbers
occuring do not grow too large, i. €., their encoding lengths remain polynomial.
First, it follows by (5.3.17) and by the definition of b; that Db; is an integral
vector. In Step (II),

max{|c/|| | 1 <i<n} <max{|b}||1<i<n}

since ¢; = bj' if i #j.j+1, llgfll < [Ibj]| by the condition on this step and
lejll < I || since ¢;,; is the “component” of b; perpendicular to ¢;. Hence in
any step,

max{||b;|| | 1 <j <n} <max{lq]|| |1 <j <n}

< max{|lg| | 1 <j < n} =: Ao

So every entry of bj' is a rational number whose denominator is a divisor of D

and whose numerator is at most AgD. Thus the vectors bj' remain “decent”.
We still need to estimate the vectors b;. These are integral. After one execution
of Step (I) is finished, we have

J J
(5.3.18) 16,12 =Y (1B} 12 < D UB; 12 < m- A3,
i=1 i=1

Step (II) does not change the vectors b; (only permutes them). Finally, if during
Step (I) b; is replaced by b; — [u;i]b;, then we have

BB by
LAy L1y YT
il = Tpre = ey = P17

il < 2wl < 2D| bl

146 Chapter 5. Diophantine Approximation and Basis Reduction

and so
Ib; — [l bill < Wb 1l + [psid) Nbill < 1b; 1 + 2D ||bsl) 11; |-

Now by the time we are changing b;, the vector b; is “settled” (i. e., it will not
be changed until the end of this step (I)), so we already have ||b;|| < /ndq from
(5.3.18). Hence

Ibj — [wjilbill < 116 1I(1 +2v/nDAg) < 2nD Ao | b,
and since b; is changed at most j —1 < n times, it follows that ||b;|| never exceeds
(anA())n : ﬁ - A().

This proves that no entry of any b; ever exceeds this bound, and so the number
of its digits remains polynomial.
This completes the proof of Theorem (5.3.16). 0

If we replace the “technical factor” 3/4 in the definition of reduced basis
(5.3.12) (i1) by a number close to 1, we could improve the exponential factors
20=1)/4 etc. in Theorem (5.3.13) to (4/3 + &)"*~1/4 etc. Moreover, a reduced basis
could still be found in time polynomial in {(a,) + ... + {a,) + 1/e. So this is
still polynomial for every fixed e. A more substantial improvement was found
by SCHNORR (1985). He showed, using a technically quite a bit more involved
refinement of the above method, that the exponential factors 2"~V/# etc. can be
replaced by (1 + &)®1/4 for every fixed ¢ > 0.

We give some applications of Theorems (5.3.13) and (5.3.16) to diophantine
approximation problems.

(5.3.19) Theorem. There exists a polynomial time algorithm that, given rational
numbers oy, ..., a,, and 0 < ¢ < 1, computes integers pi, ..., pn, and an integer

q such that
1 < q < 2n(n+1)/48—n

and
leig —pil <e (i=1,...,n).

In view of Dirichlet’s theorem (5.2.1), this result is quite unsatisfactory because
of the large factor 2""+1/4 in the upper bound for q. Note, however, that for
n fixed and ¢ — 0 the order of magnitude of g is best possible — see SCHMIDT
(1980). Also, this result will suffice for the applications in this book.

Proof of (5.3.19). Let ¢; = (0, ...,0,1,0, ...,0)T e R™! (i=1, ...,n) and a =
@1, ..., O, 27 "0 D/4 T et I < R™! be the lattice generated by {e, ...,

én, a}. Then trivially
detL = 2—n(n+l)/48n+l.

By Theorem (5.3.16), we can find a reduced basis in L in polynomial time, and
by Theorem (5.3.13) (a), the first vector b; of this basis satisfies

(5.3.20) byl < 2M4"Vdet L =e.

5.3 Basis Reduction in Lattices 147

Let us write by = prey + ...+ pyen —ga with py, ..., ps, g€ Z. Since e < 1, q is
nonzero, so we may assume that g > 0. Then the i-th coordinate of by is p; — qa;
fori=1,...,nand is 27"®*V/4 g for i = n + 1. Thus we have from (5.3.20)

pi—qu| <e (i=1,...,n)

and
2‘n(n+1)/48n+lq <e ie, q<2nnth/dgn

a

It may be worthwhile to specialize property (5.3.13) (b) of reduced bases as
well:

(5.3.21) Theorem. There exists a polynomial time algorithm that, for any given
rational numbers a4, ..., a,, € > 0, and any given integer N > 0, either

(a) asserts that the Simultaneous Diophantine Approximation Problem (5.2.2)
has no solution for the given input, or
(b) finds integers py, ..., pn and an integer q such that

lotiq — pil <2ev/n+1,i=1,...,n and 0<q<2*NvVn+1.

Proof. Let ey, ..., e, € R™! be as in the proof of Theorem (5.3.19), and let a :=
(% ..., %, &/N)7T. Let L be the lattice generated by {ey, ..., es,a}. If p, ..., P q’
is a solution of the simultaneous diophantine approximation problem, then
pie1 + ...+ p,en — q'a is a nonzero vector in L of length less than evn+ 1.
So with the basis reduction algorithm we can find in L a vector by ¥ 0 with
Iby|| < 2"%ev/n+ 1. Write by = pie; + ...+ pnen —qa with py, ..., pn,q € Z. If
q # 0, then py, ..., ps,q is a valid output for (b). If g = 0, then we must have
2"2gv/n+1>1andsoq=1and p; = o], i =1, ..., nis a valid output for
(b). O

In a similar way we obtain the following results.

(5.3.22) Theorem. There exists a polynomial time algorithm that, for any given
rational numbers oy, ..., o,, and 0 < ¢ < 1, computes integers py, ..., pn, not all
0, such that |oypy + ... + oup| < & and |p;| < 20+D/4g=1/n, O

(5.3.23) Theorem. There exists a polynomial time algorithm that, for any given
rational numbers a4, ..., o, ¢ > 0, and any given integer N > 0, either

(a) asserts that the Small Linear Form Problem (5.2.3) has no solution for the
given input, or
(b) finds integers py, ..., pn, not all 0, such that

lzaip.-l <2e\/n+ 1, |pil <2V°Nvn+1(G=1,...,n).

148 Chapter 5. Diophantine Approximation and Basis Reduction

It is easy to modify the basis reduction algorithm described above, replacing
the Euclidean norm || - || by any other ellipsoidal norm |/ x| 4 = v xTA-!x defined
by a positive definite matrix A. But in fact the algorithm can be extended to an
arbitrary norm with the help of the results in Section 4.6.

(5.3.24) Theorem. There exists an oracle-polynomial time algorithm that, for
any given set of n linearly independent vectors {ay, ..., a,} < Q" and for any
given norm N on R" (specified as usual by a weak norm oracle and two rational
numbers r,R > 0 such that r||x|] < N(x) < R||x|| for all x e R"), finds a basis
by, ..., b, of the Iattice L = L(ay, ..., a,) with the following properties:

@ N(by) <204C) " (n + 1)Vdet L,
(b) N(b) <20V2.(n+1) - min{N(b) | beLb+#0},
© N(by):...-N(by) < (n+1)"2"0=D/4Cy, det L.

(Here Cy is the ratio of the volumes of the unit balls with respect to the
Euclidean norm and the norm N.)

Proof. By Corollary (4.6.9) we can construct a linear transformation @ in oracle-
polynomial time such that

|Ox]| < N(x) < (n+ 1)||Dx]|.

Applying Theorems (5.3.13) and (5.3.16) to the lattice L' = ®L we obtain, in
oracle-polynomial time, a basis {b}, ..., b,} of ®L such that

(a/) "bll “ < 2(n~1)/4 "/det L = 2(}1—1)/4{/' det(D| . \'/det L,
) by < 20D 2min{||b'| | b’ e L', b # 0},
©) Bl 1B < 2072 det @] - det L.

Write b; := ®!b/. Then {by, ..., b,} is a basis of L and has the following
properties:

@) N(b) < (n+D)|®by| = (n+)b}]| <2 V4n+ 1){/| det®d| - v/det L,
(b") N (b)) < (n+ Dby <2072+) min{||b'|| | ¥ € L',b' # 0}

< 20-D2(n 4 1)min{N (b) | be L,b # 0},
(c”) N(b1)-...-N(bn) < (n+1D)"[|by]l.... byl

< (n+1)"20/2| det @| - det L.

To conclude, we only have to estimate det ®. From the definition of ® we know
that the unit ball K of N satisfies ®(K) = §(0,1) and hence |det ®| < Cy. This
proves the theorem. O

The fact that a vector b; with property (5.3.24) (a) can be found may be
viewed as a polynomially constructive form of Minkowski’s theorem (5.3.6):

5.3 Basis Reduction in Lattices 149

(5.3.25) Corollary. There exists an oracle-polynomial time algorithm that, for
any lattice L, specified by n linearly independent vectors ay, ..., a, € Q", and
for any well-bounded convex body (K ;n,R,r), specified by a weak membership
oracle, such that K is centraily symmetric with respect to 0 and

2n(n—l)/4nn/2

vol(K) > m(n + 1)"det L,

finds a non-zero lattice point in K.

Proof. Consider K as the unit ball of a vector norm N. The lattice vector b,
found in Theorem (5.3.24) satisfies N (b;) < 1 by (5.3.24) (a). J

Basis reduction, in particular in the form of the diophantine approximation
procedure, has other applications in number theory. For instance, it can be used
to obtain the factorization of a polynomial f € @Q[x] into irreducible factors
(LENSTRA, LENSTRA and Lovasz (1982)). OpbrLyzko and TE RIELE (1985) used
the basis reduction algorithm to disprove a long-standing conjecture in number
theory, the so-called Mertens conjecture. Their approach involved basis reduction
in a 70-dimensional space. The basis reduction algorithm was also successfully
used for breaking certain encryption schemes in cryptology — cf. Section 7.6. The
next section contains further applications of this algorithm, mostly in conjunction
with the ellipsoid method.

The basis reduction algorithm described above can also be used to find an
“approximately nearest” lattice point (cf. problem (5.3.9)). The following result
is due to BaBAI (1986):

(5.3.26) Theorem. There exists a polynomial time algorithm that, for any n

given linearly independent vectors ay, ..., a, € Q" and for any given further
vector b € Q)", finds w € L(ay, ..., a,) such that
Ib—wl <22 min{||b—v|| | ve L(ay, ..., an)}.

Proof. We start with finding a reduced basis (by, ..., by) In L(ay, ..., a,), by
Theorem (5.3.16). Let (b, ..., b;) be the Gram-Schmidt orthogonalization of
(b1, ..., b,). Next we find a lattice vector w € L(ay, ..., an) such that we have

- . |
(5.3.27) b—w=;libi, <5 (=1 ...
This can be achieved by working “down” on the indices n,n — 1,... : First, we
write

b= iz?b;.
i=1

Then we subtract [A2]b, to get a representation

b—[4)bs =Y Alb]
i=1

150 Chapter S. Diophantine Approximation and Basis Reduction

where |4l < 1/2. Next we subtract [A] | |b,; etc. (The procedure is essentially
the same as Step (I) of the proof of Theorem (5.3.16).)

Now we claim that if w satisfies (5.3.27) then it is an “approximately nearest”
lattice vector in the sense formulated in the theorem. For, let v be any other

lattice vector and write .
b—v= z wib; .
i=1

Let k be the largest index such that u; # A;. Then
k
p—w=) (h—mbjeL
i=1

and hence it follows that Ay — p is a nonzero integer, in particular |4y — ux] > 1
and hence |ux| > 1/2. So

n 1 n 1
—p|? 20p* 12 + - b |* = 21b7 |1 + = b1
o~ bl Zi;lu, 15717 + 7 1B | i;“& 16717 + 7 1B

and so
n

1k
—b)? < ZIBTI12+ =) 16702
lw — b < > P16 1 +4,-_§1“ N

i=k+1
n 1 k

< BTN+ —|bt)I? ki

‘,-;ﬂ AL }:1

< 22|v—b|? < 2" v — b2

% 5.4 More on Lattice Algorithms

It appears that the algorithmic theory of lattices in Q" is less developed and
understood than the algorithmic theory of convex bodies. We discuss a few
questions that can be answered by the methods developed above. The questions
are lattice analogues of the oracle results for convex sets in Chapter 4.

Let L be a lattice in R". Its dual lattice L* is defined as follows:

(5.4.1) L'={xeR"|x"yeZ forall yelL}.

It is easy to see that L® is a lattice. Furthermore, if (by, ..., b,) is any basis of L
then the vectors ¢y, ..., ¢, defined by

r, _ (1 ifi=j
(54.2) ¢ by 0 otherwise

5.4 More on Lattice Algorithms 151

form a basis of L*. We shall call (cy, ..., ¢,) the dual basis of (by, ..., b,). It
follows that L** = L and det L -det L* = 1.

A lattice may be viewed as “nicely described” if a basis of it is known. Often,
however, we have other descriptions. A general form of a definition of a lattice
L is an oracle which checks, for any b € Q", whether or not b € L, and if not,
gives a vector ¢ € Q" such that c € L* and b7 ¢ ¢ Z. Such an oracle will be called
a separation oracle for L.

One may also want to define an analogue of a violation oracle for lattices;
this is, however, just a separation oracle for the dual lattice.

Similarly as in the case of convex bodies, we need a technical hypothesis
about the lattices we consider. A well-described lattice is a triple (L;n, T') where
L is a lattice in Q", and T € N is an upper bound for all denominators of entries
of vectors in L and L*. If L is given by n linearly independent vectors, then
an integer T can be easily computed in polynomial time such that (L;n,T) is a
well-described lattice. But if the lattice is given by a separation oracle, then it
is necessary to make some assumption on its arithmetical nature. The encoding
length of (L;n, T)is n+(T).

(5.4.3) Theorem. A basis of a well-described lattice (L;n, T) given by a separa-
tion oracle can be found in oracle-polynomial time.

Proof. We use the following notation. Let ay, ..., a, € R". Then we set
(5.4.4) Alay, ..., a) == (det((a] a))};_1)' %

Geometrically, A(ay, ..., a;) is the k-dimensional Lebesque measure of the par-
allelepiped spanned by ay, ..., a;. Note that in the case when k = n, we have

(5.4.5) Aay, ..., an) = |det(ai, ..., a)l.

In the algorithm that follows, many of the complications arise from the fact
that we have to control the encoding lengths of the numbers that occur. A similar
situation comes up in the related algorithm of KANNAN and BACHEM (1979).

We shall maintain a list C = {cy, ..., ck} of linearly independent vectors in
L*. At each “step” we either increase |C| or keep |C| invariant but decrease
A(cy, ..., ck). There is some difference between the cases k < n and k = n, and

accordingly, we distinguish two phases.

Phase 1. k < n. Compute a vector b = (B1, ..., Bn)7 € Q" such thatb’¢c; = ... =
bTc, = 0 but b # 0. We may assume without loss of generality that the largest
denominator M of the entries By, ..., fi, satisfies T < M < 2T (find first an
integral vector b with the desired properties and then divide by an appropriate
power of 2).

Let Q be a common denominator of the entries of ¢y, ..., ¢k, and define §; :=
Bi—Q|Bi/Q], and d == (1, ..., 5,)". Then we have

dTCj = ch]- — i Oc;i [%J eZ,
i=1

152 Chapter 5. Diophantine Approximation and Basis Reduction

denoting ¢; =: (cyj, ..., csj)". Furthermore, since the largest denominator in d
(which is the same as the largest denominator in b) is larger than 7', we have
that d ¢ L. So if we call the separation oracle with input d, it gives us a vector
ce L* such that d7c ¢ Z.

We now check whether c is linearly independent from ¢y, ..., ck.

Case 1. The vector c is linearly independent from cy, ..., ck. Then we add
cky1 = c to the list C. This step is called an extension step.

Case 2. The vector c is linearly dependent from cy, ..., cx. Then we can write
k
c= Z/l,-ci, lie@.
i=1

Consider

k k
¢ = Z(ii —[AiD)ei=c— ZU»iJCi-
i-1 -1

Then ¢’ € L* and furthermore,

k
dTc—d"d =Y [1]d"cie Z

i=1

and so d” ¢’ ¢ Z. Hence it follows that for at least one i (1 <i < k), 4; — [4i] #
0. Consider the largest such i. Then ¢y, ..., ¢i_1,¢,¢it1, ..., Cx are linearly
independent and for all i <j <k

A(C], ooy Ci_l,C,,C,'_H, ey Cj) = M, - [/1,']|A(C|, ey Cj)

1
< 380 s).

Now replace ¢; by ¢. This step is called an exchange step.

Thus in the case k < n, we could either extend C to a system of k + 1
linearly independent vectors in L* or else exchange a vector so that A(cy, ..., cx)
decreases by a factor < 1/2.

Phase 2. Suppose that k = n. Then consider the vectors b; defined by b/ ¢; = J;;
(i. e., the basis of @" dual to {cy, ..., cs}). Check whether b;e Lfori=1, ..., n.

Case 1. Suppose that b;e Lfori=1, ..., n Then by, ..., b, is a basis of L. To
show this, let a € L and write

n
a=Za,—b,- (witho; €@, i=1, ..., n).
i=1

Then o; = a’c; € Z and so indeed every vector of L is an integer linear
combination of by, ..., b,. So in this case we stop.

5.4 More on Lattice Algorithms 153

Case 2. Suppose that b; ¢ L for some i. Then the separation oracle gives a
vector ¢ € L* such that b/ ¢ ¢ Z. From here, we go on like in phase 1 and obtain
a new list C such that A(cy, ..., ¢,) decreases by a factor < 1/2. We call this
operation a phase 2 exchange step.

This completes the description of the algorithm.

We have to prove that it terminates in a polynomial number of steps and also
that the encoding lengths of the numbers occurring are bounded by a polynomial
in n and (7). The proofs of these two facts are somewhat intertwined.

We know by the General Assumption (1.2.1) about oracles that there exists a
polynomial ® such that for any vector b € Q" with b ¢ L the separation oracle
gives a vector ¢ € L* such that ¢’b ¢ Z and (c) < ®({b)). Without loss of
generality, ®(x) > x for all x > 0.

First we estimate the vectors d used in phase 1. The numbers J; satisfy |J;] <
0< T" and the denominator of §; is at most 27. Hence

(8)) < QT)+ (2T - T™) < 2nX(T),

and so
(d) < 2n(T).

Note that this bound holds uniformly for all vectors d that occur. Hence by the
definition of ®, we have for any output ¢ of the separation oracle

(¢) < D(d) < D2n*(T)) =: ¥,

and so
el < 2.
Thus at an extension step, we get
(ck+1) < ¥
and so
lexs || < 2.

Next we show by induction on k that, at any stage of the algorithm,
(5.4.6) Alcy, ..., cx) < 2¢¥,

Suppose first that ¢, was just added. Then ¢, is an output of the separation
oracle and so |cx| < 2¥. Thus by induction,

Alcy, ..y ck) < Alcy, oovs k1) - ekl
< 2(k~l)‘P . 2‘1’ — 2k‘¥‘.

Further extension steps or exchange steps of either phase cannot increase
A(Cl, ey Ck).

154 Chapter 5. Diophantine Approximation and Basis Reduction
We have, from the definition of Q, that A(Qcy, ..., Qck) € Z and hence
Q" Alcy, ...,) = AQc, ..., Qck) = 1.
Therefore
(5.4.7) Alcy, ..., c) > Q% > Tk,

It follows from inequalities (5.4.6) and (5.4.7) that between two extension steps,
the number of exchange steps is at most

log,(2*¥ /T7""%) = kW + n’klog, T < 2k'¥ < 2n'P.

A similar bound holds for the number of exchange steps in phase 2. Hence it
follows that the total number of steps is at most 2n?'P.

Finally, we have to show that the encoding length for the vectors in C remains
bounded by a polynomial in n and (T'). This is clear for those vectors which are
included in C as the result of an extension step. To handle exchange steps, note
the following: at an exchange step, the value max{|c| | ¢ € C} increases by a
factor < n. In fact, the new vector ¢’ to be included in C can be written as

k
¢ =) (i~
i=1
and thus)
EHEDNIE VAR EY
i=1
<k -max{|¢|| |1 <i<k}
<n-max{|e| |1 <i<k}.

Hence it follows by induction that any vector ¢’ inserted in C after ¢ steps satisfies
'} < n'2¥ < n?¥2¥,
Since ¢’ € L*, the denominators of the entries of ¢’ are bounded by T, and hence
() < n((T)+(T - ¥2%))
<2n(T) + 4n’¥.

O

(5.4.8) Corollary. For any given ay, ...,a, € Q", a basis of the lattice
L(ay, ..., am) can be found in polynomial time.

Proof. We may assume without loss of generality that L = L(ay, ..., an) is a
full-dimensional lattice. Then a separation algorithm for the dual lattice L* can
be designed easily. In fact, to check whether b € L* it suffices to evaluate the

5.4 More on Lattice Algorithms 155

numbers bTay, ..., b7 a,. If all these numbers are integral, then b e L*. If b7 g,
is not integral for some i € {1, ..., m} then a; € L is a valid output for the
separation algorithm.

Moreover, if Q is the least common denominator of the entries of ay, ..., an
then the denominator of any entry of any vector in L is a divisor of Q. Moreover,
if a1, ..., a, are linearly independent (say) then the denominator of any entry of
any vector in L” is a divisor of Q" det(ay, ..., a,). So if we take

T :=max{Q,Q"det(ay, ..., an)}

then (L*;n, T) is a well-described lattice.
Hence Theorem (5.4.3) implies that bases of L and L* can be constructed in
polynomial time. W

As an application of this, we obtain that a system of linear diophantine
equations can be solved in polynomial time (VON ZUR GATHEN and SIEVEKING
(1976), FRUMKIN (1976a,b)).

(5.4.9) Corollary. There exists a polynomial time algorithm that, for any given
vectors ai, ..., am, ¢ € Q", decides whether ¢ € L(ay, ..., an), 1. e, whether the
system of linear diophantine equations

xXiar+...+xXmaym =¢

is solvable in integers, and that finds a solution of this equation if one exists. O

(5.4.10) Corollary. For any matrix A € Q™", a basis for the integral solutions
of the system Ax =0 can be found in polynomial time. U

As an application of the basis reduction algorithm, we give an algorithm
to transform a matrix into Hermite normal form. The first polynomial time
algorithm to achieve this has been designed by FRUMKIN (1976c).

Let 4 be a nonsingular mxm-matrix. Recall from Section 1.4 that the Hermite
normal form of 4 is an mxm-matrix H = (h;) obtained from A by elementary
column operations (i. €., by adding a column to another, or multiplying a column
by —1) with the following properties:

(5.4.11) hy =0 if j>i
(5.4.12) 0<hy <h; 1if j<i

and that the Hermite normal form of A4 is unique.

156 Chapter 5. Diophantine Approximation and Basis Reduction

(5.4.13) Theorem. The Hermite normal form of a nonsingular rational matrix
A can be obtained in polynomial time.

Proof. Without loss of generality assume that A is integral. Let
M =20 det 4.

Let us multiply the i-th row of A by M", i=1, ..., n, to get a matrix A’. Let
L be the lattice generated by the columns of A’
Construct a basis {by, ..., b,} of L such that

(5.4.14) bull ... 1Ba] < 230 det L = 22O M O det 4

using the algorithm of Theorem (5.3.16). We claim that {by, ..., b,} can be
reordered so that we get a lower triangular matrix.

Since
|det(by, ..., by)| =det L # 0,

there exists a reordering of this basis so that b; # 0, for i = 1, ..., n. We claim
that if 1 <i <j < n then b; = 0. Suppose there are i,j with 1 <i <j < n such
that b; # 0; then

1Bul . bl = 160 | | 0ill > 1byl - | | 1buacl = M= [[
k] kj k#j

zMI:]]M""‘

= MO+

This contradicts (5.4.14).
So we have transformed A’, and of course also A4, into a lower triangular

form. Condition (5.4.12) can be easily achieved fori=n,n—1, ..., 1. O

Chapter 6
Rational Polyhedra

In most combinatorial (and real world) applications the convex sets one encoun-
ters are polyhedra. Often these polyhedra have “simple” vertices and facets. It
turns out that the knowledge of such additional information on the convex sets
in question extends the power of the ellipsoid method considerably. In particular,
optimum solutions can be calculated exactly, boundedness and full-dimensionality
assumptions can be dropped, and dual solutions can be obtained. In the case of
explicitly given linear programs this was the main contribution of Khachiyan to
the ellipsoid method. If the linear programs are given by some oracle — which
is often the case in combinatorial optimization — then these additional goals can
still be achieved, albeit with more involved techniques. In particular, we have to
make use of the simultaneous diophantine approximation algorithm described in
Chapter 5.

As we did before, in the proofs we assume that n > 2, if the one-variable case
is trivial.

6.1 Optimization over Polyhedra: A Preview

In Chapters 3 and 4 we have seen how the ellipsoid method can be used to solve
various algorithmic problems concerning convex sets. These results, however,
had some limitations. First, we could only solve the problems in an approximate
sense, that is, we could only treat the weak versions of the problems. Second, we
had to make various restrictions on the convex sets in question: they had to be
bounded and, for many results, also full-dimensional in a very explicit sense. We
showed that these restrictions cannot be removed in general.

Most (although not all) applications of the ellipsoid method in combinatorial
optimization concern, however, polyhedra which have integral or half-integral
vertices, or at least vertices whose entries are rational numbers with relatively
small encoding length. On the other hand, boundedness and full-dimensionality
are not always natural conditions (although often they can be guaranteed by
ad hoc methods). The aim of this chapter is to discuss versions of the previous
results which show that if we know an upper bound on the encoding lengths of
the vertices or facets of a polyhedron then the solvability of the weak problems
implies the solvability of the strong problems in polynomial time. We shall also
see that the conditions on boundedness and full-dimensionality can be dropped.

Let us preview some of the results of this chapter concerning optimization
problems. The most important one is:

158 Chapter 6. Rational Polyhedra

— Linear programs can be solved in polynomial time.

This theorem, due to KHACHIYAN (1979), is stated in (6.4.12). In fact, an
optimum vertex solution can be found in polynomial time, if such a solution
exists, as is shown in Remark (6.5.2). These results will be strengthened in various
ways. One of them was developed by TARDOS (1986) who showed (see (6.6.3)):

— Any linear program max{c” x | Ax < b} can be solved by a polynomial time
algorithm, which only performs a number of elementary arithmetic operations
bounded by a polynomial in (A).

This result sharpens Khachiyan’s since here the number of elementary arith-
metic operations is independent of the encoding lengths of b and c¢. Tardos’
result, for instance, implies that network flow problems can be solved in strongly
polynomial time.

Most of the effort in this chapter is spent on extending Khachiyan’s result in
another direction. Roughly speaking, one of the main outcomes is the following:

— There exists a polynomial time algorithm that, for any polyhedron P < R"
and for any ¢ € Q", solves max{c’x | x € P}, provided the following two
conditions are satisfied:

(i) the strong separation problem for P can be solved in polynomial time;
(1) a number ¢ € N is given such that P can be defined by linear inequalities
each having encoding length at most .

(Again, this result can be sharpened in the way Tardos’ result sharpens Khachi-
yan’s — see (6.6.5).) This result follows from Theorem (6.4.9), one of the central
theorems of this book, which reads as follows:

— Any one of the following three problems:

— strong separation,
— strong violation,
— strong optimization,

can be solved in oracle-polynomial time for any “well-described” polyhedron
given by an oracle for any of the other two problems.

The term “well-described” will be defined in (6.2.2) — it amounts to knowing
an upper bound ¢ as in (ii) above.

Moreover, we will show that for a linear program max{c’ x | x € P} optimum
dual solutions can be found in oracle-polynomial time if conditions (i) and (ii)
above are satisfied. For precise statements see (6.5.14), (6.5.17), and (6.6.5).

In the remaining part of this first section we illustrate how the results men-
tioned above can be achieved by combining the methods of Chapter 5 with the
general results on the ellipsoid method. The subsequent sections contain the
details which are often quite elaborate. So let us make some remarks about the
additional goals and difficulties one by one.

6.1 Optimization over Polyhedra: A Preview 159

(6.1.1) How can we solve the strong problems if we know how to solve the weak
ones, 1. e, how can we obtain exact solutions from approximations?

If we know how to solve, say, the weak optimization problem over a polyhedron
P, i. e, if we know how to find a vector “almost in P” that “almost” maximizes
a given linear objective function over P, then it is a natural idea to obtain the
maximizing vertex by rounding. This is indeed the approach we shall take; in
fact, this is the path Khachiyan took when he applied the ellipsoid method to
linear programming. The rounding has to be carried out with some care though.
Namely, if there is a vertex that is not optimal, but nearly optimal, then the
solution to the weak optimization problem found by the ellipsoid method may be
very close to this “near-optimal” vertex and rounding may not take us to the true
optimum. This difficulty could be overcome by perturbing the objective function,
and this method was used, e. g., in GROTSCHEL, LovAsz and SCHRIJVER (1981).
But a more elegant way is the use of simultaneous diophantine approximation
for the rounding. Since this method is also used in the handling of non-full-
dimensionality, where it seems to be vital, we shall discuss it in connection with
the next question:

(6.1.2) How can we handle polyhedra that are not full-dimensional?

This question is harder than passing from weak to strong solutions, and no
“elementary” trick is known to solve it. The method which we follow depends
on how the polytope is given. For the purposes of this introduction, we shall
consider just two oracles: separation and violation.

Assume first that P is a polytope in IR" given by a strong separation oracle
and assume that we know that all the vertices of P are {0,1}-vectors. Let us
consider the first “bad” case, i. €., when P is (n — 1)-dimensional. Then P is
contained in a unique hyperplane H. It can easily happen that the separation
oracle returns separating hyperplanes parallel to H unless a vector in H is fed to
it. So we must determine this hyperplane along the lines in order to make sure
that we get nontrivial information concerning P.

Conversely, if we can determine H in polynomial time then the problem
is reduced to a full-dimensional instance and we can use the methods of the
previous chapters. Thus our goal is to find the hyperplane H in polynomial
time. (More generally if we do not make any assumption on the dimension of
P, then our goal is to determine the affine hull of P. But to give the idea of our
approach, we will stick to the case of (n — 1)-dimensional polyhedra.)

The algorithm which achieves this was described in GROTSCHEL, LovAsz and
SCHRIJVER (1984a). It consists of a combination of the ellipsoid method with
diophantine approximation. First, let us run the ellipsoid method as if we were
trying to find a vector in P. So we obtain a sequence of ellipsoids including
the polytope whose volume decreases by a fixed factor at each step. If P is
full-dimensional then this sequence is finite. In fact it is not too difficult to show
that vol(P) > 1/n!, and from this, one can see that the procedure terminates in
polynomial time. But if P is not full-dimensional, the centers of the ellipsoids
will never belong to P unless by “accident”, and so the sequence generally will

160 Chapter 6. Rational Polyhedra

not terminate. (If this “accident” happens then we perturb the center a little to
move it out of P.)

Now the sequence of ellipsoids whose volumes tend to O but which all include
P must become very “flat” in the direction perpendicular to H; that is, for
any of these cllipsoids, the symmetry hyperplane belonging to the shortest axis
must be very close to H. So we could try to find H by rounding the equation
of this symmetry hyperplane. It turns out that just straightforward rounding
would not be enough, but if we apply the more involved techniques of Chapter
5 (simultaneous diophantine approximation), then we can indeed recover H.

The argument runs as follows. Assume that the hyperplane H is described by
the equation a’ x = «. We want to determine « and a. One thing we do know a
priori is that the vertices of P span H and these vertices are {0, 1}-vectors.

Now we compute an ellipsoid E of volume less than 27" (3n)~%" including P
by the ellipsoid method and determine its shortest axis. Let v be the center of
E and let w be the unit vector parallel to the shortest axis of E. The length of
this shortest axis is less than & := 27"~!(3n)™"! by a simple computation. The
hyperplane H' defined by the equation w” x = w” v will be a good approximation
of H. More exactly, if u is any vector in E (in particular, if u is any vector in P)
then we have

T

wlu—wio=wTu—r)| <e

To recover H from this hyperplane, let us approximate the vector (w”,w”v)7 us-
ing simultaneous diophantine approximation, and find an integral vector (p7,)"
(p e R",n € R) and a positive integer q such that

1 1
lgw — Pl < =, lgw v —1n| < —
3n 3n

and ,
0<gq<2"(3n)".

We claim that the hyperplane defined by the equation p”x = n contains the
polytope P. For, let z be any vertex of P. Then z is a {0, 1}-vector and so

1
IpTz—n| < |gwTz —qw o] + :,,-n—(HZIh +1)
1
< r, . T - 1
<gw'z—w v|+3n(n+)
—n?—1 —n—1 1
< q2 (3n) + 3—n(n +1)<1

Since the left hand side is an integer, this proves the assertion. So we have found
the hyperplane containing P.

The case when P is given by a strong violation oracle can be reduced to
the case when it is given by a strong separation oracle by a certain polarity
construction. But in this section we describe another way to get around non-full-
dimensionality in this case, which is much easier.

Again, it suffices to show how to find the affine hull of a polyhedron P given
by a strong violation oracle. The algorithm to achieve this was described (in a
somewhat different context) by EDMONDS, LovAsz and PULLEYBLANK (1982).

6.1 Optimization over Polyhedra: A Preview 161

At any stage of the algorithm, we shall have a list of affinely independent
vectors ay, ..., a and a list of linearly independent hyperplanes Hy, ..., H; such
that ay, ..., ax € P and Hy, ..., H, 2 P. First, suppose that k + [< n. Then
we compute a hyperplane H = {x € R" | ¢/ x = y} that contains all the vectors
ai, ..., a, and is linearly independent of the hyperplanes H,, ..., H,. (This is
elementary linear algebra.) Next, we call the strong violation oracle for both
inequalities

c’'x<y and Tx>7y.

If both are satisfied for all x € P, then we have H 2 P and so we can append
H to our list of hyperplanes as H;,y. If, on the other hand, the oracle returns
a vector a € P that violates one of these inequalities, then this vector can be
appended to the list of vectors in P as ay,;. So in each case we were able to
increase k + [by 1.

Eventually we reach k + ! = n+ 1. Then we have the affine hull of P (in fact,
we have both a spanning set and a system of equations describing it).

(6.1.3) How can we handle unbounded polyhedra?

This 1s usually easy: since we know an upper bound on the encoding length
of the vertices, all the vertices lie inside a cube which we can calculate. In the
“combinatorial” case, when all vertices are {0, 1}-vectors, this could be the cube
Q={xeR"|-1<x;<2,i=1, ..., n}. Then we replace the polyhedron P by
its intersection with this cube, and this reduces the problem to the bounded case.

There is a technical point here: the polyhedron in R", n > 2, defined by, say
x; > 10'% has {0, 1}-vertices (since it has no vertices at all), but by intersecting
it with the cube Q we get the empty set; and we loose all information about the
polyhedron itself. So, if we say that a polyhedron has {0, 1}-vertices, we tacitly
assume that it intersects the unit cube (this is for the purposes of this preview;
the precise definition of vertex-complexity, to be given in the next section, takes
care of this difficulty).

To be more specific, assume that P is a polyhedron with {0, 1}-vertices given
by a strong separation oracle and that we want to maximize a linear objective
function ¢? x over P. Let P’ be the intersection of P with the cube Q. Then it is
trivial to design a strong separation algorithm for P’. Now let us optimize c’ x
over P’. By perturbing c a little, if necessary, we may assume that the optimum
is attained at a unique vertex v of P’. Now if v is a vertex of P then it also
maximizes our objective function over P. If, on the other hand, v is not a vertex
of P, then it lies on the boundary of Q and from this it follows that ¢ x is
unbounded on P.

(6.1.4) Can we solve other problems with these methods?

The remarks above indicate the methods that are used to exploit our two
fundamental geometric algorithms, the ellipsoid method and diophantine ap-
proximation, for the solution of some basic questions concerning polyhedra. We
employ these techniques in Sections 6.2, ..., 6.7 to solve a number of further
interesting algorithmic problems concerning polyhedra. To mention a few, we

162 Chapter 6. Rational Polyhedra

prove that the affine hull and the lineality space of a polyhedron can be computed
in polynomial time, and we design a strong separation algorithm for the recession
cone. We can find a vertex of a polyhedron P, if there is any, and decide whether
or not two vertices are adjacent, in polynomial time. One can do Carathéodory’s
theorem algorithmically: given a polytope P by a strong separation oracle, a
bound on its vertex-complexity, and a vector y € P, we can find a representation
of y as a convex combination of at most dim P + 1 vertices of P.

The polar of this last result is of particularly great importance in combinatorial
optimization. Suppose that the polyhedron P is given by a strong separation
oracle. Then we may view this as a system of linear inequalities (all valid
inequalities ever returned by the separation oracle), which is, however, not
explicitly given. So optimizing a linear objective function over P is a linear
program with this implicit constraint set. From the above we know that we
can find an optimal primal solution for this problem in polynomial time. But
using the above-mentioned algorithmic version of Carathéodory’s theorem and
polarity, we obtain a polynomial-time procedure to find an optimal dual solution
as well. This result can be strengthened as follows. Suppose that y ;= max{c” x |
x € P} is finite. Then we can find inequalities al x < ay, ..., af x < o and
positive rationals 1;, ..., 4, in polynomial time such that ¢ = A1a; + ... + Axayg,
¥ = Ajoq + ...+ Axa, and the inequalities a/ x < «; are either implicit equations
or define facets of P.

In Section 6.6 we show that a combination of simultaneous diophantine
approximation and the ellipsoid method runs in strongly polynomial time for
a number of interesting linear programs. In particular, the results of Section
6.6 yield that these techniques can be used to design strongly polynomial time
algorithms for almost all of the combinatorial optimization problems discussed
in Chapters 7 — 10. Finally, in Section 6.7 we derive from our two basic geometric
algorithms the result of H. W. Lenstra, Jr., that, for any fixed number of variables,
integer linear programs can be solved in polynomial time.

*6.2 Complexity of Rational Polyhedra

In Chapter 3 we restricted ourselves to bounded sets. This assumption will be
removed in the case of polyhedra. (We could remove the boundedness assumption
also for general convex sets but too many pathologies and technical difficulties
would creep in; for instance a linear objective function could have a finite
supremum but no optimum.) To cover the unbounded case we have to modify
the definition of the strong optimization problem.

(6.2.1) The Strong Optimization Problem for Polyhedra. Given a polyhedron
P = R" and a vector c € Q", either

(i) assert that P is empty, or
(ii) find a vector y € P maximizing cT x over P, or
(iii) find a vector z € rec(P) such that ¢cTz > 1 (i. e., a direction in which ¢ x is
unbounded over P).

6.2 Complexity of Rational Polyhedra 163

The strong versions of the other problems do not need any modification for
the unbounded case. The weak versions will be discussed later.

Analogous to our definitions of various convex bodies (2.1.16) we now intro-
duce the notion of “well-describedness™ of polyhedra.

(6.2.2) Definition. Let P < R" be a polyhedron and let ¢ and v be positive
integers.

(a) We say that P has facet-complexity at most ¢ if there exists a system of
inequalities with rational coefficients that has solution set P and such that
the encoding length of each inequality of the system is at most ¢. In case
P =1R" we require ¢ > n+ 1.

(b) We say that P has vertex-complexity at most v if there exist finite sets V , E
of rational vectors such that P = conv(V') + cone(E) and such that each of
the vectors in V and E has encoding length at most v. In case P = Q) we
require v > n.

(c) A well-described polyhedron is a triple (P ;n, ¢) where P < R" is a polyhedron
with facet-complexity at most ¢. The encoding length (P) of a well-described
polyhedron (P ;n, @) is ¢ + n. O

It is obvious that if a polyhedron P < IR" has facet-complexity at most ¢
and vertex-complexity at most v then

p=>n+1 and v>n

In the sequel we will frequently encounter polyhedra P for which we know an
upper bound ¢ on the facet-complexity but for which we do not have explicitly a
system Ax < b defining P. Even if we know a system defining P, its inequalities
may not necessarily have encoding length at most ¢. But if we turn this system
into a standard representation of P — as defined in Section 0.1 — we obtain a
system with small encoding length of each inequality resp. equation.

(6.2.3) Lemma. Let P < R" be a polyhedron with facet-complexity at most .
Then each inequality in any standard description of P has encoding length at
most 35n%g.

Proof. We may assume that P = {x e R" | Cx = d, Ax < b} is a representation of
P such that each equation and inequality has encoding length at most ¢. We may
also assume that aff(P) = {x | Cx = d}, C has full row rank m, the submatrix F
of C consisting of the first m columns is nonsingular and each inequality in the
system Ax < b defines a facet of P.

Let P ={xeR"|(I,C')x =d,A'x < b’} be any standard representation of
P. Then

(I,CY=F7'C,d =Fd,
A =A—ACTccTy'c, ¥ =b—acT(ccT) 4.

Using the formulas for the encoding length in (1.3.5) the result follows. O

164 Chapter 6. Rational Polyhedra

The reader may wonder why we do not use vertex-complexity in the definition
of well-described polyhedra. The next lemma shows that from the point of view
of polynomial algorithms both measures of complexity are equivalent.

(6.24) Lemma. Let P < R" be a polyhedron.

(@) If P has facet-complexity at most ¢, then P has vertex-complexity at most
4n’ep.

(b) If P has vertex-complexity at most v, then P has facet-complexity at most
3n?v.

Proof. (a) Suppose that P has facet-complexity at most ¢, i. e., there are
inequalities a,.T x<b (ae@Q bje@Q, i=1, ..., m defining P such that each
inequality has encoding length at most ¢.

It is well known that there exist finite sets V', E < Q" with P = conv(V) +
cone(E) such that every nonzero entry of every vector in I U E is the quotient
of two subdeterminants, of order at most n, of the matrix

a[Tabl
C = :
ay’lr;: bm
d
Let D= | : | be a square submatrix of C, k < n. Then by Lemma (1.3.4) (b)
d

{(det D) < 2(D) < 2ne.

Thus every entry of every vector in ¥ U E has encoding length at most 4n¢ and
hence every vector in ¥ U E has encoding length at most 4n%¢.

(b) Suppose that P has vertex-complexity at most v. If P = @ or P = {0}
the assertion is trivial. In any other case v > n+ 1. Let us assume first
that P is full-dimensional. Choose finite sets of vectors V,E < @Q" such that
P = conv(V') + cone(E) and every vector in ¥ U E has encoding length at most
v. Every facet of P determines a hyperplane given by a linear equation of the
form

1 1 ... 1 0 ... O
X1
det . =0,
: vy ... U €1 ... €pn_k
Xn
where vy, ..., vy € V and ey, ..., e, € E. Expanding the determinant by the

first column, we get

Z(—l)" det(D;)x; = —det Dy
i=1

where D; is the matrix obtained by deleting the (i + 1)-st row from the matrix

D=(1 .. 1L 0 .. 0>.
vy ... Uy e ... €pk

6.2 Complexity of Rational Polyhedra 165

Using Lemma (1.3.4), we estimate the encoding length of this equation as follows:

En:<det D;) < 5:(2<Di> —n?)
1=0

i=0
< 2n(D) — (n + 1)n?
< 2n(nv + 2n) — (n +)n?
=2n*v —n*((n+ 1) — 4).

The last expression is clearly at most 3n’v.

Second, if P is not full dimensional, then consider the polyhedra P + S;
where Sy, ..., S»» are the 2" simplices of R" spanned by the zero vector and n
linearly independent vectors of the vectors (0, ..., + 1, ..., 0)7. Obviously for
every i, P + S; is a full-dimensional polyhedron with vertex-complexity at most
v + 1. By the previous part of the proof, P + S; has facet-complexity at most
2n2(v + 1) —n?((n+ 1) —4) = 2n*>v —n®((n+ 1) —6) and as v > n+ 1 > 3, this is
at most 3n?v. Since

2'1
P =) +5)
i=1
it follows that P has facet-complexity at most 3n?v. a

The following two lemmas show that bounded full-dimensional well-described
polyhedra may be viewed as well-bounded convex bodies.

(6.2.5) Lemma. Let P be a polyhedron with vertex-complexity at most v.
Then all vertices of P are contained in the ball §(0,2"). If P is bounded then
P < 5(0,2").

Proof. Trivial. n

(6.2.6) Lemma. Let P < R" be a full-dimensional polyhedron with facet-
complexity at most . Then P contains a ball with radius 2-"'e Moreover, this
ball is contained in S (0,25%?).

Proof. By Lemma (6.2.4) (a), P has vertex-complexity at most v := 4n’¢p. So
there are (minimal) sets V,E < @Q" such that P = conv(V') + cone(E) and each
vector in V' U E has encoding length at most v.

By the full-dimensionality of P there exist an affinely independent subset

{v1, ..., vx} of ¥ and a linearly independent subset {ej, ..., e} of E such that
k+t =n+1 and the vectors vy, ..., Uk, U1 +e€1, ..., U1 + €, span an n-dimensional
simplex.

Consider the barycenter ¢ of this simplex, 1. €.,

k t
c = nj—l (Zvi+;(vl +ej)))

i=1

166 Chapter 6. Rational Polyhedra

Clearly, c is an interior point of P. We claim that the ball S (c, 2‘7"3"’) is contained
in P. To prove this we show that the distance of ¢ from every facet of P is at
least 2-"¢. So, let @’ x < b define a facet of P which we may assume to have
encoding length at most ¢. Multiplying this inequality with the product of the
denominators of the coefficients of @ and b gives an inequality a’ x < b with
integral coefficients and encoding length at most n¢. The distance of ¢ from this
facet is
b—a’c

lal

Here b —a”c is a positive rational number whose denominator is at most the
least common denominator of the coefficients of ¢ (as b and a are integral), which
in turn is at most (n + 1) times the least common denominator of the entries of
U1, --.s Uk, €1, ..., €. This denominator is at most 2*+1*_ Therefore,

b—a'c>2"0+0" /(n 4 1).

Since furthermore
lal| <29 < 2™,

we get that the distance of ¢ from the facet defined by a’x < b is at least
2—(n+1)v—mp/(n + 1) — 2—4(n+1)n2(p—mp/(n + l) > 2"7"3(p_
To prove the second assertion of the Lemma, observe that

lelf < 2max{|lvill, llgll |l <i<k1<j<t}<2-2"

So, S(c,27™9) is contained in §(0,2"*! +2-7"?) < §(0,257%). 0

The above estimates can be improved considerably, but we have chosen a
quick and rather straightforward way to derive polynomial bounds. The main
trick to make use of the rationality hypothesis is summarized in the following
lemma.

(6.2.7) Lemma. Let P < R" be a polyhedron with facet-complexity at most ¢
and let y € Q" be a vector whose entries have common denominator at most q.
Suppose that

ye S(P,;-z—w).

ThenyeP.

Proof. Let a” x < b be any valid inequality for P with encoding length at most
@. Then the hypothesis that y € S(P,272?/q) and Lemma (1.3.3) imply

a’y—b< 12—2<P|;a|| < Ly
q q

But a’y — b is a rational number with denominator at most g2°. Hence
aly < b. O

6.2 Complexity of Rational Polyhedra 167
The following polar form of Lemma (6.2.7) is proved in the same way.

(6.2.8) Lemma. Let P be a polyhedron with vertex-complexity at most v and
let a” x < b be an integral inequality such that

alx<b+27!

is valid for P. Then a*x < b is also valid for P. O

Lemma (6.2.7) says that if a point close to a polyhedron has small enough
encoding length, then it is in fact contained in the polyhedron. What we describe
next is that, if a point is close to a polyhedron, then we try to round it to a nearby
point with sufficiently small encoding length, which would therefore belong to the
polyhedron. This can be achieved with the method of simultaneous diophantine
approximation derived in Chapter 5.

It is interesting to notice that this rounding procedure is independent of the
polyhedron (it only depends on the complexity of the polyhedron). Similarly,
almost valid inequalities can be rounded to valid ones.

(6.2.9) Lemma.
(a) Let veR" and ¢ be a positive integer. Suppose q € Z and w € Z" satisty

lgv —wl|| <273 and

0<gq <2

Then éw is contained in every polyhedron P of facet-complexity at most ¢
for which v e S(P,27%).
(b) LetaeR", be R and let v be a positive integer. Suppose that q e Z, c € Z"

and d € Z satisfy
lga—cli +1gb—d| <27%

and
0<gq <2

Then the inequality ¢”x < d is valid for every polyhedron P of vertex-
complexity at most v for which a”x < b+27%" is a valid inequality.

Proof. (a) By Lemma (6.2.7) it suffices to show that éw e S(P, éZ*Z‘P). This is
clear since

1
dtw, Py < 11w — o] +d(v, P)
q q

< 12_34’ + 2"‘6"(0

—

< -27%,

L~

(b) Follows similarly from Lemma (6.2.8). O

168 Chapter 6. Rational Polyhedra

(6.2.10) Remark. In part (a) of Lemma (6.2.9), for every rational vector v and
every positive integer ¢, the number g and the vector w can be found in time
polynomial in ¢ and (v) by the algorithm of Theorem (5.3.19). A similar remark
applies to (b) of (6.2.9). O

The previous lemma gives a “rounding” procedure that assigns to each vector

v a “rounded” vector éw, w € Z", with “small” denominator g such that, if v

lies in, or near, any polyhedron with low facet complexity, then the vector éw

belongs to the polyhedron.

Sometimes it is more desirable to round so that points outside the polyhedron
should stay outside. Such a procedure was given by FRANK and TArDOs (1987).
It solves the following two problems.

(6.2.11) Given a vector y € Q" and a natural number ¢, find a vector z € Q"

with the following properties:

(i) for each inequality ¢ x <y, with encoding length at most ¢, we havec”y <y
if and only if ¢z <y, and

(i) the encoding length of z is at most 44n(n + 1)2¢.

(6.2.12) Given a rational inequality ¢’x < y In n variables, and a natural
number v, find a rational inequality a” x < «, in n variables, with the following
properties:
(i) for each y in Q" with encoding length at most v, we have ¢’y < y if and
only ifa’y < a;
(ii) the encoding length of a” x < « is at most 22(n+ 1) (v + 4).

Frank and Tardos showed that these two problems are polynomially solvable.

(6.2.13) Theorem. There exist polynomial time algorithms to solve problems
(6.2.11) and (6.2.12). Moreover, the number of elementary arithmetic operations
performed by these algorithms is polynomial in ¢ (v, respectively).

Proof. 1. We first consider problem (6.2.11) for the case where we restrict (i) to
inequalities ¢/ x <y with y = 0. Let a vector y € @" and ¢ € N be given. Define

K =2,
Determine vectors zy,z;,... successively as follows. First set z; := y. Suppose
zy, ..., zi have been found. If z; # 0, let

1
(6.2.14) D= - - l_—lc——z,-‘l .

K Llizillo

(Here | | means the componentwise round-down. Note that v can be determined
by 14n%¢ comparisons through binary search.)

6.2 Complexity of Rational Polyhedra 169

By the algorithm of Theorem (5.3.19) we can find u; € Z", q; € Z so that

(6.2.15) o — i il < L2

i i

1 <gq; < 2%,

(Note that u;, g; can be found in time polynomially bounded by (v) and ¢, and
that (v) is polynomially bounded by ¢.)
Set

I2ill oo

(6.2.16) Ziyl =2z — U

i

If z; = 0, stop. Otherwise repeat with i :=i+ 1.
Since z;;; has at least one more O-component than z; has, as one easily derives
from (6.2.14), (6.2.15), and (6.2.16), the algorithm stops after k < n iterations. Let

71, ..., zx be the sequence generated. Note that by (6.2.16),
(62.17) BTN PO - E L1 P
qi q> gk

We claim that

(6.2.18) z =278y, 4 2760y 4 2Bk,

is a vector as required.

To show this, choose ¢ € Q" with encoding length at most @, so that ¢’y < 0.
If c"uy =...=c"u =0, then (6.2.18) implies ¢’z < 0.

If ¢Tu; #+ 0 for some i, choose the smallest such i. We show that ¢Tu; < 0.
Indeed, since by (6.2.16)

1] o 122l zi-1 oo
Zi=y— up — U —...— i—1 5
q q92 qi-1
and since ¢"y <0, ¢Tu; =... = cTu;_ =0, we know ¢’z; < 0. Then

cTup=cT(ui—qiv) + qicT (v —z) + qic’z; <

n -
< llell - lur = gioll + g - llel - o =zl <2727 2% 27 = < 27,

Since u; is integral and (c) < ¢, it follows that ¢Tu; < 0. As ¢’ u; # 0 we know

c¢Tu; < 0. Hence even
cTu,- < -27°

Therefore, by (6.2.18),
CTZ — 2—8in<chui + 2~8(i+1)n(pCTui+l +...+ 2—8kn(pCTuk

< __2——8in(,02—q0 +n- 2—-8(i+1)n(p25n(p <0

(using c7w| < flells - lujllo < 2¢ - ¢ < 27 -2 < 279).

170 Chapter 6. Rational Polyhedra

So, if ¢y < 0 then ¢"z < 0; and if ¢’y < O then ¢”z < 0. Similarly, if
cTy >0then ¢’z > 0. Hence ¢y < 0iff ¢z < 0.

One easily checks that each component of z has encoding length at most
22n2¢.

II. We next consider problem (6.2.11) for general y. Let y e Q" and ¢ € N be
given. With 1. applied to (y7,1)7 € @"*!, we can find a vector (£7,4)7 € Q! so
that for each linear inequality ¢” x < 7 of encoding length at most ¢ we have:
cTy—y <0iff cT2—Jy <0, and so that each component of (7, 1)7 has encoding
length at most 22(n+ 1)%¢. Since 07 y — 1 < 0, this implies 07% — 4 < 0, and thus
4> 0. Then z := 27'% has the following property: for each inequality ¢c”x <y of
encoding length at most ¢, ¢’y < y holds if and only if ¢7z < y holds.

Moreover, for each component of z the encoding length is at most 44(n+1)2¢.
Hence z has encoding length at most 44n(n + 1)%¢.

III. Finally we consider problem (6.2.12). Let be given an inequality ¢/ x < y
in n variables and v € N. We apply I. to the vector (c”,7)” e @™ and ¢ = v+4.
We obtain (a”,a)” € @™ such that

(i) for each vector (z7,4)7 € Q™! of encoding length at most v + 4 we have
¢’z <Ay if and only if a’z < Aa;
(ii) each component of (a”,a)” has encoding length at most 22(n + 1)?(v + 4).

Property (i) gives that for each vector z € Q" with encoding length at most v,
we have ¢’z < y if and only if a”z < a. Property (ii) gives that the inequality
a’ x < a has encoding length at most 22(n + 1)*(v + 4). O

One of the main applications of the technique described above is the following
consequence of the algorithm for problem (6.2.12).

(6.2.19) Corollary. There exists a polynomial time algorithm that, given a vector
¢ € Q" and a natural number v, computes a vector a € Q" with the following
properties:
(i) for each polyhedron P < R" with vertex-complexity at most v, the objective
functions ¢’ x and a” x are optimized by the same vectors in P, and
(ii) (a) < 88(n+1)*(v+1).
Moreover, the number of elementary arithmetic operations the algorithm
performs is bounded by a polynomial in v. Ul

#6.3 Weak and Strong Problems

We shall now show that for bounded, full-dimensional, well-described polyhedra
the weak and strong versions of the five basic problems introduced in Section 2.1
are polynomially equivalent — with the exception of the membership problem,
where some additional information is needed. Remark (6.2.10) gives the following
direct corollary.

6.3 Weak and Strong Problems 171

(6.3.1) Corollary. There exists an oracle-polynomial time algorithm that, for any
well-described, full-dimensional polyhedron (P ;n,) given by a weak nonempti-
ness oracle, solves the strong nonemptiness problem, i. e., for every such polyhe-
dron P a point in P can be found in oracle-polynomial time. g

The next theorem is a major result. It shows that, for well-described, full-
dimensional polytopes, oracle-polynomial time algorithms for the strong problems
(2.1.1),..., (2.1.5) can be derived from oracles for the weak problems (2.1.10), ...,
(2.1.14).

(6.3.2) Theorem.

(@) There exists an oracle-polynomial time algorithm that, for any bounded,
full-dimensional, well-described polyhedron (P ;n, @) given by a weak opti-
mization (violation, validity, separation) oracle, solves the strong optimization
(violation, validity, separation) problem.

(b) There exists an oracle-polynomial time algorithm that, given any bounded,
full-dimensional, well-described polyhedron (P ;n,¢) specified by a weak
membership oracle, and given any interior point ay € P, solves the strong
membership problem.

Proof. (a) 1. First we prove that weak optimization yields strong optimization.
Let ¢ e Q" with ¢ # 0 be given. Call the weak optimization oracle for P with

input ¢ and ¢, where
2-18n(c)*24n4(p
£ = ——————
llclloo

By the choice of ¢, S(P,—¢) # 0, and so the oracle gives an “almost optimal”
point v. Using the simultaneous diophantine approximation algorithm described
in Chapter 5, find an integer g and an integer vector w such that

”qv _ W“ < 2-9((‘)—24n2(p

0<q< 29n(c)+24n3¢)+n2.

Then v, q, w and P satisfy the hypothesis of Lemma (6.2.9) (a), and hence -(liw is

in P. Moreover, let M := max{c”x | x € P}. Then v, g, w and the hyperplane
cTx = M also satisfy the hypothesis of this lemma and hence cT(éw) =M,i e,

éw is a solution of the strong optimization problem.

2. Second, we show that weak validity yields strong validity. Let ¢ € Q" and
y € Q be given. Call the weak validity oracle with ¢ and

Y =y +e+ el
g 1= 2703 e 24 9)
If it concludes that ¢7x > 7' — ¢ for some x € S(P,¢) then there exists an x' € P

such that |x—x|| <& So ¢Tx' > cTx—|cllie =y —e—lcfie >y. Hence c'x < y
is invalid for P.

172 Chapter 6. Rational Polyhedra

If the oracle concludes that ¢”x < ' +¢ for all x € S(P,—¢), thS:n consider
any vertex v of P. By Lemma (6.2.6), P contains a ball S(ag,27'"¢), and by
Lemma (6.2.5), |lag — v|| < 257¢*+!, Let

X =v+ 827"3“’(110 —).
Then S(x,¢) is contained in P, and hence x is in S(P, —¢). Therefore
cTo—y=c"0—x)+("x=y)+ ' -7
<llell lv —x[l + e+ &2+ llcl)
= llele2™*®llag — o]l + &(3 + llc])

< e e + 3+ |cly)

< 2~e=tn—).

Since the left hand side is a rational number with denominator at most
AH+r’e it follows that ¢Tv < 7. As the vertex v is arbitrarily chosen,
the inequality ¢ x < y is valid for P.

3. It follows by similar arguments that weak violation yields strong violation.

4. To show that weak separation yields strong separation turns out to be
more difficult in the sense that we have to use a more complex tool. Let y € @"
be given. First we use Corollary (4.2.7) and Theorem (4.4.9) to find a point gy in
the interior of P. Without loss of generality assume that ag = 0. Let P* be the
polar polyhedron of P. The weak separation oracle for P yields a weak violation
oracle for P*. By part 2 of this proof this yields a strong violation algorithm for
P* which in turn yields a strong separation algorithm for P.

(b) The proof could be done analogous to part 4 above. A more direct proof is
the following.
Let y € Q" be given. We may assume y # ag. Define

g =272,

Choose any rational point y' # y on the line segment connecting ag and y such
that ||y — y’|| <¢&/2. Set
¢ = min{ %, 2~V

Call the weak membership oracle for P with input y’ and ¢. If the oracle
concludes that y’ € S(P,¢) then y € S(P,¢) and so by Lemma (6.2.7) y € P.
Suppose the oracle concludes that y' ¢ S(P,—¢). Then there exists an inequality
a’x < b valid for P with encoding length at most ¢ such that y’ has distance
at most ¢ from the halfspace H = {x | a’x > b}. Since H has facet-complexity
at most ¢, by Lemma (6.2.7), y' € H. Hence y’ is not in the interior of P which
implies that y ¢ P. O

(6.3.3) Remark. The hypothesis that P be full-dimensional is essential. It is
easy to verify that if P is not full-dimensional then for any of the weak problems
(2.1.10),...,(2.1.14) we can design an oracle that does not distinguish P from the
empty set, since S(P,—¢) is empty. O

6.3 Weak and Strong Problems 173

(6.3.4) Remark. The hypothesis that P be bounded is, on the other hand, not
always essential if we extend the definition of the weak versions of our problems
appropriately. We illustrate this by the example of the optimization problem.

The weak optimization problem for a (not necessarily bounded) polyhedron P
is as follows. Given a vector ¢ € Q" and a rational number ¢ > 0, either

(6.3.5) (1) assert that S(P,—¢) is empty, or
(i) find a vector y € S(P,¢) such that
c"x<cTy+eforall xeS(P,—€) NS(0,1/¢), or
(111) find a vector z such that
Wzt-z € S(rec(P),¢) and ¢z > 1.

To motivate the occurence of the ball S(0,1/¢) in (ii) of (6.3.5) let us point
out that the condition x € S(P,—¢) N S(0,1/¢) can be interpreted as “x is deep
in P” in the sense that x is also separated from infinity. It may be instructive to
verify that the use of the ball S(0,1/¢) is necessary to maintain the “continuity”
of the output as sketched in Chapter 2.

One can now show similarly as in Theorem (6.3.2) that for full-dimensional,
well-described polyhedra weak and strong optimization are polynomially equiv-
alent. One can modify the definitions of weak violation, weak validity, and weak
separation in a similar spirit and obtain analogous results.

Dropping the boundedness assumption for the membership problem with
given interior point no modification is needed in the definition, nor in the
statement and the proof of part (b) of Theorem (6.3.2). O

(6.3.6) Remark. The hypothesis in part (b) of (6.3.2) that an interior point of
P is given cannot be dropped. Suppose we have a weak membership oracle
for a polyhedron P = R" (which we do not know) and we know that P has
vertex-complexity 2n. We wish to decide whether 0 € P. Suppose the oracle gives
a negative answer whatever we ask. If we ask less than 2" questions, then there
exists a unit cube H with {0,+1,—1}-vertices containing zero as a vertex whose
interior has never been hit by our questions and therefore all the answers given
by the oracle have been legitimate for P = H. But they were also legitimate
for P = conv{x € H | x a vertex of H,x # 0}. Thus it is impossible to decide
whether 0 € P in less than 2" calls on the oracle.

A similar construction can be given to show that even in dimension two it
may be necessary to call the oracle a number of times exponential in the given
vertex-complexity of the polyhedron. O

(6.3.7) Remark. In part 4 of the proof of Theorem (6.3.2) showing the equiv-
alence of weak and strong separation the ellipsoid method was used. One may
wonder whether a proof with a more elementary rounding trick could be given
(as in the other parts of the proof). We will now show that it is just as difficult to
derive strong separation from weak separation as it is to derive strong nonempti-
ness from weak separation. (Note that the latter includes solving a set of linear
inequalities and so also linear programming.)

174 Chapter 6. Rational Polyhedra

More precisely, we shall show by an elementary construction that if we
have an oracle-polynomial algorithm to solve the strong separation problem for
full-dimensional well-described polytopes given by some weak separation oracle,
then this can be used to solve the strong nonemptiness problem for such convex
bodies.

Let a full-dimensional well-described polytope (P ;n, @) be given by a weak
separation oracle. By hypothesis we may as well assume that we have a strong
separation oracle for P. Consider the polytope P’ = R™*! defined by

P ={xT,)"eR" |0<i<lxeP)
Then the weak separation problem for P’ can be solved in oracle-polynomial
time as follows.
Let a point (y7,u)7 € Q"' and a rational number § > 0 be given. If
u < 0 then x,,; > 0 is valid for P’ and weakly separates y from P’. If y > 1
then the same holds for the inequality x,;y < 1. If 0 < u < 1 then we call
the strong separation oracle for P with input i y. If the oracle concludes that

ﬁ y € P then we conclude that (y7,u)” € S(P’,8). If the oracle gives a vector
¢ € Q" such that |clo, = 1 and c¢"x < cT:—ly for all x € P then the vector
(cT,—icTy)/max{l,licTyl} =: ¢’ is a valid output for the weak separation
problem for P’.

Apply now the hypothesized strong separation algorithm to test whether the
origin is in P’. Tt of course concludes with “yes” since P # (. Consider those
points for which the weak separation oracle for P’ has been called. We claim
that for at least one of these points the oracle must have concluded that it was
“near to P’”. For, otherwise all answers of the oracle would have been legitimate
also for the polyhedron

1
P" .= {(AxT,)T e R™! | 3 S A< l,xeP}
which however does not contain zero. But, if the answer is that (y7,u)7 is “near

to P’ then ﬁ y € P and so the strong nonemptiness problem for P can be
solved. O

*6.4 Equivalence of Strong Optimization and Separation

In this section we shall prove one of the fundamental results of this book, namely
that for well-described polyhedra (boundedness and full-dimensionality are not
assumed) the strong optimization problem and the strong separation problem are
equivalent with respect to polynomial time solvability. As a first step, we show
that, for well-described polyhedra, strong separation yields strong nonemptiness.

(6.4.1) Theorem. The strong nonemptiness problem for well-described polyhedra
given by a strong separation oracle, can be solved in oracle-polynomial time.

Proof. 1. We first show the existence of a subroutine.

6.4 Equivalence of Strong Optimization and Separation 175

(6.4.2) There exists an oracle-polynomial time algorithm ELL" that, for any
well-described bounded polyhedron (P ;n, @) given by a strong separation oracle,
either

(i) gives a nonzero vector p € Z" and a natural number d such that
Pci{xe@Q"|p'x=d}, or
(i) gives a vector x in P.

Indeed, let (P;n,¢) be a well-described bounded polyhedron, given by the
strong separation oracle SEP. Let v := 4n*¢p, which is an upper bound on the
vertex-complexity of P. Apply the central-cut ellipsoid method (3.2.1) to P, with

R =12,

1943
£ =2 12nv’

and the given strong separation oracle SEP. If the central-cut ellipsoid method
concludes with a vector y such that y € S(P,¢), then we next obtain a vector x
in P by applying the simultaneous diophantine approximation algorithm to y.
With this algorithm we find an integer vector p € Z" and an integer g such that

y — é pll < %2—7n2v, and 1 <g < ot +ndy.

The vector x := é - p belongs to P by Lemma (6.2.7). (In fact, if the central-
cut ellipsoid method concludes that y € S(P,¢), then y itself is in P, since the
separation oracle is strong.)

The other possible outcome is an ellipsoid E = E(4, a), with volume at most
&, and containing P. Hence

vol E \? 2n,2 ~22n2y
(6.4.3) detA-——(%) <nef <2 ,
where V, denotes the volume of the n-dimensional unit ball. (Recall that
Veo=>n™")

Now we can find a vector u with u”Au < 272, |lu|l, = 1 as follows.
(Comment: we could find such a vector by computing an eigenvector belonging
to the smallest eigenvalue of 4. However, to avoid discussions on polynomiality
and rounding, we describe a different method.) By (6.4.3),

det(47!) > 227

and hence the largest eigenvalue of A~! is at least 222", Therefore, tr(4™!) > 22"
(as A7! is positive definite). We may assume without loss of generality that the
maximum element of the main diagonal of 47! is in position (1,1). Then

A= (A_l)“ > n——l . tr(A—-l) > n—l _222nv > 220nv'

Let v be the first column of A~!, and let u := } - v. Then

1
(6.4.4) uT A= — - o7 dp =

7 :ﬁ . (A—l)ll — /1—1 < 2—20nv.

176 Chapter 6. Rational Polyhedra
Moreover, u; = (A7!)1;/A = 1, and hence |ul, = 1 (as A~} is positive definite).
Thus we have found the desired u, with, without loss of generality, u; = 1.

Let B := uTa. Then for each x in P (using the Cauchy-Schwarz inequality
(6.4.4), and the fact that P < E):

64.5) Ju'x—Bl=|u"(x—a)| < @ A (x—a)T A (x —a)'/? <2710

With the simultaneous diophantine approximation algorithm (5.3.19) applied to

Ui, ..., U, B we can find an integral vector p = (py, ..., p,)’ and integers d and q
such that

Ilp—qull <27%,

|d—qB| <27%,

1<g< QH)(+2)/4 dntly o ATy,

Then p # 0, as p; > 1, since
p1 = qui —|pr—qui| = ¢ —27" >0,
as u; = 1. For each vertex x in P (cf. (6.4.5)), we have

P x—dl < |(p—qu) x| +lq@” x—)| + g8 — d|
< p—qul - lIxll+lq@”x—B)l + g8 — d|
< 2~4v LY + 27nv . 2—10nv + 2—4v

<27,

However, as p and d are integer, and x has encoding length at most v, pTx —d is
a rational number with denominator at most 2°. Hence p’ x = d for all vertices
x of P, and hence for all vectors x in P.

It is easily checked that the above procedure is an oracle-polynomial time

algorithm.

II. The algorithm ELL” is a subroutine for the following algorithm, which
is almost as required by the theorem, except for the restriction to bounded

polyhedra.

(6.4.6) There exists an oracle-polynomial time algorithm ELL' that solves the
strong nonemptiness problem for well-described polyhedra given by a strong
separation oracle.

Indeed, let (P ;n, @) be a well-described polyhedron, given by a strong separa-
tion oracle SEP. Let v := 4n’¢. We apply the following iteration step repeatedly,
starting with k = 0. Suppose we have found linearly independent integer vectors
c1, ..., cx and integers d, ..., di such that

(6.4.7) Pcix|clx=dy, ..., clx=d}.

6.4 Equivalence of Strong Optimization and Separation 177

Without loss of generality, assume that we can write

T
¢

L =(CL Gy,
&

where C; is a nonsingular matrix of order k. Let
dy
d:=| .
dy
If k = n, then C;'d is the only possible vector in P. By giving this vector to the
separation oracle, we see whether P is empty. So let k < n.

Let the polyhedron P, be the projection of P arising by forgetting the first k
coordinates, i. €.,

Pi={ye@*| (f}) € P for some j € Q).

By (6.4.7), y € Py if and only if ((C;'d — C;'Coy)7,y7)" € P. Moreover, all
vertices of P, have encoding length at most v.

We describe a strong separation oracle SEP; for Px. If w e Q" is given,
apply SEP to the vector

z = ((C{'d—C7'Cow)T,wT)T.

If SEP answers that z is in P, then w belongs to P,. If SEP gives a vector a such
that a”x < a’z for all x in P, decompose a’ = (al,al), with a, and a, vectors
of length k and n — k, respectively. Then

(@l —al C7'Cy)y < (@) —af 7' Cyw

for all y in Py, and SEP; gives the vector a; — (al C;'Cy)7 as answer.

Now apply the algorithm ELL” of Part I to the well-described polytope
(Px;n—k,3n%v), with the strong separation oracle SEP;. Then ELL" will produce
one of the following two answers (i), (ii).

(i) ELL" gives a nonzero integral vector %4y € Z"* and an integer di,; such
that P, < {y e Q" * | &l |y = dks1}-
(Defining ¢/, , = (0, ..., 0,¢],;) € Z", we have P = {x € Q" | ¢{,;X = dy+1},
and therefore we can start the iteration anew, with k replaced by k + 1.)

(ii) ELL" gives a vector y in Py.
(Then the algorithm ELL’ will give the vector ((C;'d — C{'Cay)7,y7)7 as
an element of P.)

This describes the algorithm ELL’.

178 Chapter 6. Rational Polyhedra

Note that throughout the iterations the vertex-complexities of the polyhedra
P; remain uniformly bounded by v, and thus, the encoding lengths of the ¢; and
d; are uniformly bounded by a polynomial in v. This implies that the running
time of the whole algorithm is oracle-polynomially bounded.

III. Finally, the unbounded case is easily reduced to the bounded case. If a
well-described polyhedron (P ;n, @) is given let

P =PN{xe@Q"|-2""<x; <2"%fori=1, ..., n.

Then P # @ if and only if P’ # @, by Lemma (6.2.4). Moreover, a separation
oracle for P’ is easily derived from a separation oracle for P. So applying
ELL’ to the well-described bounded polyhedron (P’;n, 5n>¢) gives the required
result. g

(6.4.8) Lemma. The strong separation problem for rec(P), where (P ;n, @) is a
well-described polyhedron given by a strong separation oracle, can be solved in
oracle-polynomial time.

Proof. By Theorem (6.4.1) we can solve the strong nonemptiness problem for
P in oracle-polynomial time. If P is empty, then rec(P) = {0} and the strong
separation problem for rec(P) is trivial.

Suppose that we find a point xo € P. Then let y € Q" be a given point. Define

N = 2+2(P+<y>+(xo)

and call the strong separation oracle for P with input xo + Ny.

First, if the separation oracle for P gives a vector ¢ € @" such that ¢"x <
cT(xo+ Ny) for all x € P, then for all z € rec(P), ¢” (xo +Nz) < ¢’ (xg+Ny) and
so ¢’z < ¢Ty. Thus c is a valid strong separation for rec(P) and y.

Second, suppose that the separation oracle for P confirms that xo + Ny is in
P. We show that y is in rec(P). To this end, let a” x < « be a valid inequality for
P of encoding length at most ¢. Then in particular we have

al(xo +Ny) <«

or

1
aly < ﬁ(oc —a’ xp).

Here a”'y is a rational number with denominator at most 2?+ while the right
hand side is at most

! 1
]_V—(Ial + "a” “JC()”) < —N—(Z"’_l + 2(0—12(x0)) < 2—(,0—(}:).
Hence a” y < 0 which shows that y € rec(P). .

We are now prepared to prove one of the main theorems of this book.

6.4 Equivalence of Strong Optimization and Separation 179

(6.4.9) Theorem. Any one of the following three problems:

— strong separation,

— strong violation,

— strong optimization,
can be solved in oracle-polynomial time for any well-described polyhedron given
by an oracle for any of the other two problems.

Proof. I. Suppose first that (P ;n, @) is given by a strong separation oracle. To
show that the strong optimization problem is solvable in oracle-polynomial time,
let c € Q" be a vector.

Run the algorithm of Theorem (6.4.1). If it concludes that P is empty, then
we are done. Suppose it finds a point xq € P.

Next we run the strong nonemptiness algorithm of Theorem (6.4.1) for rec(P)N
{x| c’'x = 1} using the strong separation algorithm for rec(P) given by Lemma
(6.4.8). If it gives a vector z € rec(P) N {x | ¢'x = 1} then the optimization
algorithm asserts that z € rec(P) and ¢z > 1. Otherwise we know that ¢’ x is
bounded on P from above — in fact ¢Tx < N, where

N =20,

Define {

=N
For every rational y we can decide in oracle-polynomial time whether the poly-

hedron
P,=PN{x|y<c’x<N}

is empty by Theorem (6.4.1). So by binary search we can find a rational number
y € [¢Txp,N] such that P, is nonempty but P, is empty. By the method of
continued fractions find a rational number r = p/q such that

p 1
-z —— 0O0<g<2N.

We claim that
max{c'x|xeP}=r.

In fact, the left hand side is a rational number s/t with 0 < ¢t < N and with

s|< < 1
—-|l<eL .
Iy t ~ 2Ng
Hence
p s 1 1
- —-l< — < —.
q t Ng gqt

Thus p/q = s/t. '
Now the strong nonemptiness algorithm applied to P, gives a vector y € P
maximizing ¢’ x on P.

180 Chapter 6. Rational Polyhedra

II. Obviously, a strong optimization oracle for P yields an oracle-polynomial
strong violation algorithm for P.

II1. Suppose we have a strong violation oracle for (P ;n,¢). We are going to
design a strong separation algorithm for P. Consider (the so-called y-polar of P)

Q:={",)T eR™ |2z"x <] forall xe P}.

Then (Q;n + 1,4n’¢p + 3) is a well-described rational polyhedron. Moreover, the
strong violation oracle for P yields a strong separation algorithm for Q. By parts
I and II this yields a strong violation algorithm for Q which in turn yields a
strong separation algorithm for P.

We leave it to the reader to check that all the above algorithms are oracle-
polynomial. O

(6.4.10) Remark. (a) It is clear that if the polyhedron is not full-dimensional
then a strong membership oracle is not sufficient to solve any of the three
equivalent problems mentioned in Theorem (6.4.9) in oracle-polynomial time.
Similarly, for unbounded polyhedra a strong validity oracle does not yield oracle-
polynomial algorithms for these other problems.

(b) In the special case where P is a cone, the strong violation problem for P
is obviously the same as a strong separation problem for the polar cone P*.

So a strong separation algorithm for P yields a strong separation algorithm for
P*. O

(6.4.11) Remark. In case we know in advance that the well-described polyhedron
(P ;n,) is nonempty, the algorithm described in the proof of Theorem (6.4.1)
works even if we replace the strong separation oracle for P by the following
weaker separation oracle: Given y € @Q", the oracle may conclude that y € P,
or it may provide a vector ¢ € Q" such that ¢”y > ¢”x for all x € P, and such
that in case y ¢ P, ¢’y > ¢Tx holds for all x € P. So the oracle may provide us
with a “separating hyperplane” even if y € P. This implies that for nonempty
well-described polyhedra we can relax the strong separation oracle in Theorem
(6.4.9) similarly. This technical variation will play an important role in Chapter
10. O

At this point we want to remark that Theorem (6.4.9) yields Khachiyan’s
result on the polynomial time solvability of linear programming problems. We
should not go on without mentioning that this result, in fact, was the starting
point of most of the research presented in this book.

(6.4.12) Theorem. For any Ae Q™", be Q", and ¢ € Q", the linear program

max ¢’ x
Ax < b

can be solved in polynomial time.

6.5 Further Problems for Polyhedra 181

Proof. The strong separation problem for P := {x | Ax < b} can be solved
trivially in polynomial time by checking whether a given vector y € Q" satisfies
Ax < b or not. So the strong optimization for P can be solved in polynomial
time by Theorem (6.4.9). O

This result was extended to convex quadratic programming by KHACHIYAN,
Kozrov and Tarazov (1980).

+#6.5 Further Problems for Polyhedra

There are many other algorithmic problems concerning polyhedra which one
often encounters. In this section we show that many of these problems (finding
the dimension, the affine hull, a vertex, dual solutions to linear programs etc.)
can be solved in oracle-polynomial time given an oracle for one of the three
equivalent basic problems discussed in Theorem (6.4.9). First we settle some of
these problems for polytopes.

(6.5.1) Lemma. There exists an oracle-polynomial time algorithm that, for
any nonempty, well-described polytope (P ;n, @) given by a strong optimization
oracle, finds a vertex of P.

Proof. Find successively

¢y :=max{x; | xeP},
c; =max{x; | xeP,x; =ci},

¢n =max{x, | x€P,x; =cy, ..., Xn_i = Cn_1}.
Then (cy, ..., c,)7 is a vertex of P. O

(6.5.2) Remark. If we want to find an optimum vertex solution of the optimiza-
tion problem max{c’x | x € P}, where P is a polytope, then we can find first
the optimum value y and then find a vertex of the polytope P N {x | ¢’ x = y}.
A more direct way is to “perturb” the objective function, i. e., replace ¢ by
¢i=c+(cé, ..., "7 where ¢ is small enough, such that the optimum of ¢’ x
over x € P is attained at a single vertex of P that also maximizes ¢’ x over P.
Another application of the perturbation idea is the following one solving
a multiobjective linear programming problem. Suppose we have a strong op-
timization oracle for P and let c,c € @". Let F be the face of points of P
maximizing ¢7x over P. Then we can maximize the objective function ¢’ x over
F by maximizing the objective function (c + &¢)”x over P for an appropriately
small ¢ > 0. 0

The following lemma is due to EDMONDs, LovAsz and PULLEYBLANK (1982):

182 Chapter 6. Rational Polyhedra

(6.5.3) Lemma. There exists an oracle-polynomial time algorithm that, for
any nonempty, well-described polytope (P ;n, @) given by a strong optimization
oracle, determines the affine hull of P. Specifically, the algorithm finds affinely
independent vertices vg, v, ..., vx of P and linearly independent equations c{ x =
V1o «ves €8 X = yn_y valid for P.

Note that such vertices and equations necessarily satisfy
aff(P) = aff({vg,v1, ..., 0 }) = {xeR" |/ x=y,i=1, ..., n—k}.

Proof. First find any vertex vy of P with the algorithm of Lemma (6.5.1).
Suppose we have found affinely independent vertices vy, ..., v; (i > 0) of P
and linearly independent equations ¢! x =y, ..., chx =y; (j = 0) valid for P.
In the beginning we have i =0, j = 0. If i+j < n then we find a basis of
the subspace orthogonal to aff({vo, ..., v;}) and pick any element c of it linearly

independent from c;, ..., ¢j. Determine a vertex v’ maximizing ¢Tx over P and
a vertex v” minimizing ¢’ x over P. If ¢Tv' = ¢Tv” then we set ¢j1; := ¢ and
V41 = cT v/ If cTv/ > ¢Tv" then at least one of v’ and v” is not in aff ({vo, ..., v;})
and we can choose this vertex as viyy.

As soon as i +j = n we are finished. O

(6.5.4) Remark. (a) Note that the encoding length of the equations ¢! x = y;
found in (6.5.3) is bounded by a polynomial in ¢ and n.
(b) Lemma (6.5.3) also immediately yields the dimension of P. Moreover,

(vo+ ...+ wy)

T kT

is a point in the relative interior of P. O

It is now easy to extend the results above to the case of general polyhedra.

(6.5.5) Theorem. There exists an oracle-polynomial time algorithm that, for any
nonempty, well-described polyhedron (P ; n, @) given by a strong optimization ora-
cle, determines a system of linearly independent equations clTx =Y ... ClX =y
such that

aff(P)={xeR"|c]x =171, ..., ¢t x=yn}

and a system of affinely independent points vy, vy, ..., Uy—m Such that
aff(P) = aff({vo, ..., Vn-m})-

Moreover, the algorithm constructs a point in the relative interior of P.

Proof. Find such a system (resp. point) for
P 0 x| f1xllo < 2°7)

using the algorithm of Lemma (6.5.3) (resp. Remark (6.5.4) (b)). O

6.5 Further Problems for Polyhedra 183

(6.5.6) Theorem. There exists an oracle-polynomial time algorithm that, for
any nonempty well-described polyhedron (P ;n, @) given by a strong separation
oracle, finds linearly independent vectors spanning the lineality space of P.

Proof. By Lemma (6.4.8) we can solve the strong separation problem for rec(P)
and hence also for lineal(P) = rec(P) N (—rec(P)) in oracle-polynomial time. The
result then follows from Theorem (6.5.5). O

(6.5.7) Theorem. There exists an oracle-polynomial time algorithm that, for any
nonempty well-described polyhedron (P ;n,@) given by a strong optimization
oracle, finds a vector contained in some minimal face of P. In particular, if P is
pointed the algorithm obtains a vertex.

Proof. Without loss of generality we may assume that P is pointed; for otherwise
we can replace P by P N (lineal(P))t. By Lemma (6.4.8), Remark (6.4.10) (b)
and Theorem (6.5.5) we find a vector ¢ in the interior of (rec(P))’. Then the face
of P maximizing ¢’ x over P is a polytope, and we can find a vertex of it by
Lemma (6.5.1). 0

(6.5.8) Theorem. There exists an oracle-polynomial time algorithm that, for any
given well-described polyhedron (P ;n, @), specified by a strong separation oracle,
and for any given vector xy € P, solves the strong separation problem for the
smallest face of P containing x.

Proof. Let
Q ={z",)TeR™ |zTx <A forall xe P,z xo = 4}.

Then the strong separation problem for Q can be solved in oracle-polynomial
time, since the strong violation problem for P can be solved in oracle-polynomial
time by Theorem (6.4.9). Thus we can find a point (c’,7)” in the relative interior
of Q. Then the minimal face containing xo is

PNi{x|c'x=19}
for which the strong separation problem is trivially solvable. O

(6.5.9) Corollary. There exists an oracle-polynomial time algorithm that, for

any well-described polyhedron (P ;n, @) given by a strong separation oracle, and

for any c € Q", either

(i) finds a system Cx = d such that {x e R" | Cx = d} is a minimal face of the
face of optimum solutions of maxc”x, x € P, or

(ii) asserts that P is empty or that ¢" x is unbounded over P. O

(6.5.10) Corollary. There exists an oracle-polynomial time algorithm that, for
any well-described polyhedron (P ;n, @) given by a strong separation oracle, and
for any two rational vectors x,,x, € P, decides whether x, and x, are vertices of
P, and if this is so, whether x| and x, are adjacent on P. O

184 Chapter 6. Rational Polyhedra

Next we prove an algorithmic version of Carathéodory’s theorem.

(6.5.11) Theorem. There exists an oracle-polynomial time algorithm that, for
any well-described polyhedron (P ;n,@) given by a strong optimization oracle
and for any rational vector yg € P, finds affinely independent vertices xg, ..., X
of P and positive rational numbers Aq, ..., Ay with Jg + A1 + ... + Ax = 1 such
that yg = Aoxo + ... + Ak Xk.

Proof. By the algorithms described in Theorems (6.5.8) and (6.5.7) we first find
a vertex xg of the smallest face Fy of P containing y. If yy = xo we are done.

If yo # xo then draw a semiline starting at xo through yo and let y; be the
last point on this semiline contained in P. Similarly as above we find a vertex
x; of the smallest face F; of P containing y;, and so on. If y;, F;, x; are found
and y; # x;, we draw the semiline starting in x; through y; and determine the
last point, say y;y1 of this semiline contained in P. Let x;,) be any vertex of the
smallest face F;;y of P containing y;,,. The procedure stops if x; = y;.

Since for all i > O, y; ¢ Fiyy and so x; ¢ Fiyy but x;,1,%i42,... € Fiyq, the
vectors Xo, X1,... are affinely independent. Hence the procedure stops in k < n
steps. Clearly, yo € conv{xg, X1, ..., Xx}. Since xq, ..., xi are affinely independent,
the 4; can be found by elementary linear algebra.

Since each vector y; is the unique point of intersection of affine subspaces
spanned by yo and vertices of P the encoding length of y; can be bounded by a
polynomial of n and ¢. O

(6.5.12) Corollary. There exists an oracle-polynomial time algorithm that, for
any well-described, pointed, convex polyhedral cone (P ;n, @) given by a strong
optimization oracle and for any rational vector yo € P, finds linearly independent
vectors xi, ..., X, contained in extremal rays of P such that yy = xi + ...+ Xt.

Proof. We may assume that yy # 0. By Remark (6.4.10) and Theorem (6.5.5) we
can find in oracle-polynomial time a vector c¢ in the interior of the polar cone
P*. Then

P':=PN{x|c"x=c"yp)

is a polytope containing yo. By Theorem (6.5.11) we can find affinely independent
vertices vy, ..., vy and positive rationals 4;, ..., 4, such that A; +... + 44 =1
and yo = Aiv1 +... + Akvr. Take x; =4, i=1, ..., k. O

(6.5.13) Corollary. There exists an oracle-polynomial time algorithm that, for
any well-described, pointed polyhedron (P ;n, @) given by a strong optimization
oracle and for any rational vector yo € P finds the following:

(1) vertices xg, ..., X, t >0, of P,
(i) positive rationals Ag, A1, ..., A with o+ ...+ 4, =1,
(iii) vectors y1, ..., ¥s, s = 0, in extremal rays of rec(P) such that xy — xq, ...,
X; — X0, Y1, --., ys are linearly independent and

yo=4Aoxo+...+Axe+y1 +...+ ys.

6.5 Further Problems for Polyhedra 185

Proof. Consider the set
C={(Gx",)T eR" |xe P}U{(x",0)7 e R™" | x € rec(P)}.

Then it is well-known that C is a pointed polyhedral cone (sometimes called
the 1-homogenization of P) whose extremal rays are generated by the vectors
(v7, 1) where v is a vertex of P and by (e”,0)” where ¢ is a nonzero vector in
an extremal ray of rec(P). The optimization problem for C is easily reduced to
the optimization problem for P.

Thus we can apply Corollary (6.5.12) to (yd,1)” e C, which gives the required
decomposition. O

The case of nonpointed polyhedra P can be reduced to the pointed case by
intersecting P with an affine subspace that contains yy and is orthogonal to the
lineality space of P. The results are somewhat tedious to formulate and therefore
omitted.

Now we turn to the problem of finding “dual” solutions to the “linear
program” max{c’x | x € P}, where P is a nonempty polyhedron given by
a strong separation oracle and where the maximum exists. Since no system
defining P is given explicitly, the set of dual variables is not well-defined. To
begin with, let us consider every inequality valid for P as a constraint and
define accordingly an optimum dual solution as an assignment of positive scalars
A1, ..., A to a finite number of valid inequalities a x < ay, ..., a] < a such
that Aja; +... + Agax = c and Ajay + ...+ oy = max{c’ x| xe P}. Ifay, ..., a
are linearly independent we call the optimum dual solution basic. An optimum
dual solution in this general sense can be found trivially by setting A; = 1,
a; := ¢, and o; = max{c’x | x € P}. To get nontrivial results we shall restrict
the family of valid inequalities to be considered.

Two ways of doing this seem meaningful for our purposes: We restrict the
valid inequalities @] x < a; to such inequalities where a; is an output of the
strong separation oracle, or to inequalities in a standard representation of P —
see Section 0.1 — where each equation is considered as a pair of inequalities. In
the first case we shall say that the dual solution is an optimum dual solution with
oracle inequalities, in the second that it is an optimum standard dual solution.

(6.5.14) Theorem. There exists an oracle-polynomial time algorithm that, for
any well-described polyhedron (P ;n, @) given by a strong separation oracle and
for any c € Q", either

(i) finds a basic optimum standard dual solution, or

(ii) asserts that the dual problem is unbounded or has no solution.

Proof. First we run the algorithm of Corollary (6.5.9) with input P and c. If
it asserts that P is empty or ¢’ x is unbounded over P we can assert that
the dual problem is unbounded or has no solution. So we may assume that
max{cTx | x € P} exists. We set y := max{c’x | x € P} and assume, to begin
with, that P is full-dimensional. Consider the polyhedral cone

0 ={",)T eR"™ |zTx < Aforall xeP}.

186 Chapter 6. Rational Polyhedra

Since P is full-dimensional, Q is pointed. Moreover, (c’,7)7 € Q. Thus by
Corollary (6.5.12) we can find linearly independent vectors (al,o;)7, ..., (al,)7
contained in extremal rays of Q such that @; +...+ar =cand oy +... + oy = y.
[t is easy to see that every extremal ray of Q either determines a facet of P or is
generated by (0,0, ..., 0,1)7. Because of the definition of y this latter ray does
not occur.

Assume now that P is not full-dimensional. Choose a vector p € P. We
first determine the affine hull of P via Theorem (6.5.5). Then we can find cg
and ap such that ¢ = ¢o + ag, ¢o is in the linear space L = aff(P) — {p}, and
ap is orthogonal to L. P — {p} is a full-dimensional polyhedron in L. Using
the method described above we find a basic optimum standard dual solution for
max{cl x | x € P — {p}}. This basic optimum dual solution together with the
equations from (6.5.5) yield the desired dual solution. O

Now we want to find dual solutions with inequalities that are outputs of the
separation oracle. However, such a dual solution does not always exist, not even
in the full-dimensional case. For instance, if ¢/ x < y defines a facet of P, then
the existence of a dual solution as above would imply that a positive multiple of
¢ would occur as an output of the separation oracle. This cannot be expected
in general, as for any input y ¢ P to the separation oracle there is enough play
in it to give as output a separating hyperplane not parallel to any facet. But if
we know in advance an upper bound ¢ on the encoding length of the vectors
returned by the separation oracle (which is the usual case in our combinatorial
applications) we can find a dual solution in the above sense, even if P is not
full-dimensional.

(6.5.15) Lemma. There exists an oracle-polynomial time algorithm that, for any
vector ¢ € Q" and for any well-described polyhedron (P ;n,) given by a strong
separation oracle where every output has encoding length at most ¢, either

(i) finds a basic optimum dual solution with oracle inequalities, or
(i) asserts that the dual problem is unbounded or has no solution.

Proof. We first check whether P is empty or ¢’ x is unbounded over P with the
algorithm of Corollary (6.5.9). If one of these cases occurs we assert (ii).

Otherwise, let ¢’ := 6n2¢. We apply the ellipsoid method of Theorem (6.4.9)
to (P;n,¢’) with the given separation oracle to find y := max{c’x | x € P}.
Let by, ..., by be the outputs of the separation oracle that occured during the
execution of the ellipsoid method. Now we can find, again with the ellipsoid
method, rational numbers By, ..., By such that B; = max{b7x | x € P}. Let
P ={xeR"|bTx <P, ..., bl x < By} Then P’ has facet-complexity at most
¢'. Let y = max{c"x | x € P'}. We claim that y = 7.

Since P < P’ we know that y < y’. On the other hand, if the ellipsoid
method concludes that y = max{c”x | x € P} only using the inequalities b7 x <
Bi, ..., bIx < By and the fact that P has facet-complexity at most ¢’, it
necessarily has to conclude that y = max{c” x | x € P’} when applied to (P’;n, ¢').
Soy=7.

6.5 Further Problems for Polyhedra 187

Now
max ¢’ x

blTX < ﬂl

bﬁx < Bn

is an explicitly given linear program for which we can find a basic optimum
solution of the (explicitly given) dual program

min{mﬁl +...4+ayBy |7y, ..., iy 2> 0,1by +...+ by =C}

with the ellipsoid method. This is a basic optimum dual solution with oracle
inequalities for the original problem as required. O

Now we show that any strong separation oracle for (P ;n, ¢) can be modified to
a strong separation oracle that always gives facet defining inequalities or implicit
equalities as output. More precisely, we can derive a strong facet-separation
oracle in the following way.

(6.5.16) Theorem. The following problem can be solved in oracle-polynomial
time for any well-described polyhedron (P ;n,) given by a strong separation
oracle:
Given y €)", decide whether y is in P. If'y is not in P, find a valid inequality
a”x < o such that a”y > a and P N {x | a’ x = a} is a facet of P or is equal
to P itself
Moreover, if the outputs of the strong separation oracle have encoding length at
most @, we can require that the output vector a is an output of the oracle itself.

Proof. We may assume that P is nonempty. Call the separation oracle with the
given y € @QQ". If it concludes that y is in P we are done.

Suppose it returns a vector ¢ € Q" such that ¢"x < ¢’y for all x € P.
Determine y := max{c’ x| x € P}. Then ¢"x <7 is a valid inequality and so by
Theorem (6.5.14) we can find valid inequalities al x < ay, ..., a] x < o such that
P N{x | al x = o;} is either P itself or a facet of P and such thata; +...+ax =c¢
and oy +...+ ¢ <7 < c’y. Hence for at least one i € {l, ..., k} we have
o; < al'y and hence for every x € P, al x < o; < aly.

Suppose now that the outputs of the separation oracle have encoding length
at most ¢. Then by the above we can find a valid inequality a” x < a violated by
y such that P N{x | a”x = a} is equal to P or is a facet of P. Then with Lemma
(6.5.15) we can find valid inequalities b7 x < B, ..., bJx < P and positive
rationals 7, ..., m; such that by +...+ by =a and 7 1 +...+ m fr = « and
such that each b; occured as output of the separation oracle. Clearly, as a”y > «,
there exists an i € {1, ..., k} with b7y > f;. Now again, P N {x | bl x = Bi} is
equal to P or is a facet of P, since P N{x|a"x=a} € PN{x|b]x =B} a

Using Theorem (6.5.16) we can strengthen Lemma (6.5.15) so that the positive
dual variables correspond to facet-defining inequalities and implicit equalities
only.

188 Chapter 6. Rational Polyhedra

(6.5.17) Theorem. There exists an oracle-polynomial time algorithm that, for

any vector ¢ € Q" and for any well-described polyhedron (P ;n,) given by a

strong separation oracle where every output has encoding length at most ¢, either

(1) finds a basic optimum dual solution with oracle inequalities such that each
inequality defines either a facet or an implicit equation of P, or

(i) asserts that the dual problem is unbounded or has no solution.

Proof. Combine Lemma (6.5.15) and Theorem (6.5.16). O

Analogously to the results in Section 4.7, various operations on polyhedra
preserve the existence of polynomial time algorithms:

(6.5.18) Exercise. Let (P ;n,¢) and (Q;n,y) be well-described polyhedra given
by strong separation oracles. Prove that the strong separation (optimization,
violation) problem is solvable in oracle-polynomial time for each of the following
well-described polyhedra:

@ (P NQ;n,max{p,yp}),

(b) (P +Q;n,24n* (0 +v)),

(¢) (conv(P U Q);n, 12n* max{e,y}),

(d) (P";n,4n’gp),

() (bl(P);n,4n’p),

(f) (abl(P);n,4n*g). O

Finally let us turn to a special nonlinear optimization problem. The problem
of minimizing a convex function can also be solved in a strong version for
rational polyhedra. A polyhedral (or piecewise linear) function is a function which
is the maximum of a finite number of linear functions. We say that the encoding
length of a polyhedral function is at most ‘¥ if each of these linear functions has
encoding length at most V.

(6.5.19) Theorem. The following problem can be solved in oracle-polynomial
time:

Input: A well-described polyhedron (P ;n, @) given by a strong separation oracle
and a polyhedral function f : Q" — Q of encoding length at most \¥ given by an
oracle that for any x € Q" returns f(x).

Output: A vector x* € P minimizing f over P.

Proof. Exercise. O

%6.6 Strongly Polynomial Algorithms

The ellipsoid method solves linear programs in polynomial time. This means that
it solves any given LP-problem

max{c’x | Ax < b}
in at most p({A4,b,c)) binary operations, for some polynomial p. Although
such an algorithm is by definition “efficient”, it can have some drawbacks. In the

6.6 Strongly Polynomial Algorithms 189

ellipsoid method the encoding lengths of the input numbers influence the number
of arithmetic steps to be performed. This does not conflict with the definition of
polynomiality, but it would be nicer, if the encoding lengths of the input numbers
only influenced the numbers to which these arithmetic operations are applied
and if the number of arithmetic operations could be bounded polynomially by
the problem dimensions (i. e., by the number of rationals in the input). An
algorithm with these properties is called strongly polynomial (see Section 1.3).
More precisely, an algorithm is strongly polynomial if:

(a) it consists of the (elementary) arithmetic operations:
addition, subtraction, comparison, multiplication and division;

(b) the number of times such operations are performed is polynomially bounded
in the dimension of the input;

(c) the encoding lengths of the numbers occurring during the algorithm are
polynomially bounded in the encoding length of the input.

MEGIDDO (1983) showed that any linear program with n variables and m con-
straints, such that each of the constraints, and the objective function, has at most
two nonzero coefficients, can be solved in O(mn’log n) arithmetic operations.
Another interesting result was obtained by TArRDOs (1985, 1986), who showed
that any linear program max{c’x | Ax < b} can be solved in at most p({A4))
arithmetic operations on numbers of size polynomially bounded by (A4,b,c),
where p is a polynomial. Thus the encoding length of b and ¢ do not contribute
to the number of arithmetic steps. In particular, there is a strongly polynomial
algorithm for the class of LP-problems where A is a {0,+1}-matrix. This class
includes network flow problems — see Section 7.1 — and also multicommodity flow
problems — see Section 8.6. Therefore, Tardos’ result answers a long-standing
open question asked by EDMONDS and KaArp (1972).

FraNK and TArDOs (1987) extended this result to “nonexplicit” linear pro-
grams, and showed thereby the strongly polynomial time solvability of most
polynomially solvable combinatorial optimization problems.

First we will prove Tardos’ results, using simultaneous diophantine approxi-
mation, in particular the Frank-Tardos rounding procedures (6.2.13). We remark
that Tardos’ algorithm avoids the use of diophantine approximation — of course
at the expense of more subtle considerations. The heart of the procedure is the
following lemma.

(6.6.1) Lemma. Let A e Q™" b,be Q™ and ¢,¢ € Q" be given. Assume that
for each linear inequality p"y < n (p € Q", n € Q) with encoding length at most
12m2(n + m)*((A> +m + 2) we have pTb < n if and only if p'b < n. Similarly
assume that for each linear inequality r"x < p (r € Q", p € Q) with encoding
length at most 12n*(n + m)2((A) + n+2) we haverTc < p if and only if r"¢ < p.
(a) For each optimum solution X of the program max{¢Tx | Ax < b} there exists
an optimum solution X of the program max{c’x | Ax < b} such that for all
ISiSmAi.XZEiiﬁAi.f=b;. .
(b) For each optimum solution § of the dual program min{bTy | ATy =&y > 0}
there exists an optimum solution § of min{b”y | ATy =c,y > 0} such that y
and y have the same support.

190 Chapter 6. Rational Polyhedra

Proof. We prove (a) and (b) simultaneously. We may assume that the matrix

A - b . .
A has the form 4 = (Al) and that b = (5') such that 41X = by, 42X < b,.
2 2

Consider the polyhedron

P :

{(xT,zlr,zzr)T e R"™™ | Ajx —z; =0, Ayx —z; < 0}.

Then (%7,57)7 € P, and moreover, since (X7,b7)7 satisfies each inequality in the
definition of P with strict inequality, (X7,b7)7 is in the relative interior of P. It
also follows that the definition of P contains no implicit equations. Let

P’ :={zeR™|3x e R" such that (x7,z")T e P}.

It follows from the definition that b is in the relative interior of P’. Since the
vertex-complexity of P’ is not larger than the vertex-complexity of P we obtain
from Lemma (6.2.4) that the facet-complexity of P’ is at most 12m?(n+m)*({A)+
m + 2). By the hypothesis of the lemma, b is also in the relative interior of P’.
Hence there is a vector X € R” such that (x7,b7)T is in the relative interior
of P, i. e, A;x = by and AyX < b, where b = (b7,b])7 corresponds to the
partition of b. By the same projection argument we can find a vector y € R™
such that A7y =, ¥ > 0, and 7 has the same support as . It follows from the
Complementary Slackness Theorem (0.1.50) that X and y form a pair of optimum
primal and dual solutions for max{c”x | Ax < b}. O

(6.6.2) Remark. Note that Lemma (6.6.1) implies that if one of the two linear
programs max{c’x | Ax < b} and max{z”x | Ax < b} has an optimum solution
so does the other. By considering the objective function ¢ = ¢ = 0, we see that if
one of these linear programs is infeasible so is the other. Hence if one of them is
unbounded so is the other. O

Now we can prove a result due to TARDOS (1986).

(6.6.3) Theorem. There exists a polynomial time algorithm that, for any given
Ae Q™" be Q" ce Q" solves the linear program max{c’x | Ax < b}. The
number of elementary arithmetic operations used by the algorithm is bounded
by a polynomial in {A). The algorithm finds an optimum vertex solution if one
exists.

Proof. Using the algorithm of Frank and Tardos — see Theorem (6.2.13) — for
Problem (6.2.11), we find vectors ¢ and b with the properties required in Lemma
(6.6.1) such that

(b) < 528m*(m + 1)*(n + m)*({(A) + m + 2),
(@) < 528n(n+ 1)’(n+m)>((A) +n+2).

6.6 Strongly Polynomial Algorithms 191

So the encoding lengths of b and ¢ are bounded by a polynomial in {A4). Thus
we can solve the linear program

max{¢” x | Ax < b}

in time polynomial in (A) by the ellipsoid method.

If this linear program is infeasible or unbounded, we are done by Remark
(6.6.2). Otherwise we use the algorithm of Theorem (6.5.7) to find a vector X that
is on a minimal face of the optimum face. This can be done in time polynomial
in (A,I;,?:) and hence in {(A4). We partition 4 and b such that A4;% = b, and
Asx < by. Let b= (b],b])T be the corresponding partition of b.

Claim. Every solution of A;x = by is an optimum solution of max{c”x | Ax < b}.

Proof. By Lemma (6.6.1) (a) there is an optimum solution X of this LP such
that A4;X = b; and 4;X < b;. By complementary slackness, it suffices to show
that every solution of A;x = b; satisfies Ax < b. Suppose not. Then there is a
vector y satisfying Ay < b, Ay = b; and at least one of the inequalities 4,y < b,
with equation. Using Lemma (6.6.1) (a} again, there is an optimum solution x*
of max{¢Tx | Ax < b} satisfying 4,x" = b, and satisfying at least one of the
inequalities A,x* < b, with equation. So x* is contained in a smaller face than ¥,
which contradicts the choice of X. This proves the claim.

Using Gaussian elimination, we find a solution of the equation system 4;x =
by. This is an optimum solution of max{c’x | Ax < b} which lies on the minimal
face. In particular, if the set of feasible solutions is pointed, it is a vertex
solution. a

(6.6.4) Corollary. There exists a strongly polynomial time algorithm for rational
LP-problems with {0, +1}-constraint matrix. O

In this section we have so far considered explicitly given linear programs only.
We shall now give a general result about optimization problems for polyhedra
and their dual problems in “strongly polynomial” time. More exactly, we show
that the number of elementary arithmetic operations to solve an optimization
problem over a well-described polyhedron and to solve its dual problem does not
depend on the encoding length of the objective function.

(6.6.5) Theorem. There exist algorithms that, for any well-described polyhedron
(P ;n, @) specified by a strong separation oracle, and for any given vector c € Q",

(a) solve the strong optimization problem max{c”x | x € P}, and .
(b) find an optimum vertex solution of max{c”x | c € P} if one exists, and
(¢) find a basic optimum standard dual solution if one exists.
The number of calls on the separation oracle, and the number of elementary

arithmetic operations executed by the algorithms are bounded by a pq]ynomia]
in . All arithmetic operations are performed on numbers whose encoding length

is bounded by a polynomial in ¢ + (c).

192 Chapter 6. Rational Polyhedra

Proof. Using the algorithm of Lemma (6.2.19) we can find a vector ¢ € @" such
that
(t) < 88(n+ 1)>(@n’p + 1) < 400¢°

and the obijective functions ¢’ x and ¢7 x are maximized by the same vectors in
P. Now we solve max{¢”x | x € P} using the algorithm of Theorem (6.4.9). The
size of the input to this algorithm is bounded by a polynomial in ¢, and hence
so is its running time. The output of this algorithm is also a valid output for
max{cTx | x € P}. This solves (a). By Remark (6.5.2) we can find a vertex solution
of max{¢Tx | x € P}, if any. This is also a vertex solution of max{c"x |x e P}.

To get an optimum dual solution (if there is any), we have to round c a little
more carefully. Using the algorithm of Theorem (6.2.13) for Problem (6.2.12), we
find a vector ¢ € @" such that

(i) for each y € @" with encoding length at most 105n*¢p, we have ¢’y < 0 if
and only if &7y <0,
(ii) (¥) < 4620n°(n + 1)%¢.

Now we find a basic optimum standard dual solution for max{¢'x | xe P},
say A;, ..., >0and alx < oy, ...,alx <. S0 T = Aay +...+ ha €
cone{ay, ..., ar}. Since by Lemma (6.2.3) cone{ay, ..., ax} has vertex-complexity
at most 35n’¢, by Lemma (6.2.4) it has facet-complexity at most 105n*@. Hence
by (i), the vector c is in this cone. Since the vectors a; are linearly independent,
we can use Gaussian elimination to determine scalars uy, ..., g > 0 such that
¢ = 1 a,+...+ wa,. By complementary slackness, yuy, ..., ux and the inequalities
alx < oy, ...,al x < o form a basic optimum standard dual solution. It is
obvious that the running times are as claimed. U

An important application of this theorem will be that one can turn many
polynomial time combinatorial optimization algorithms into strongly polynomial
algorithms. For, consider a class of polyhedra defined, e. g, by graphs. If we
can solve the optimization problem max{c”x | x € P} for each polyhedron P in
this class in time polynomial in {(c¢) and in the encoding length of the associated
graph, then we can also solve the optimization problem in strongly polynomial
time, i. €., with an algorithm in which the number of arithmetic operations does

not depend on (¢).

6.7 Integer Programming in Bounded Dimension

Recall from Section 0.1 that the linear diophantine inequalities problem is as
follows:

(6.7.1) Linear Diophantine Inequalities Problem. Given a system of linear
inequalities

6.7.2) a’x<b; (i=1,...,m),

6.7 Integer Programming in Bounded Dimension 193

where a; € Q", b; € Q, either find an integral solution or conclude that no integral
solution exists.

In this section we show that this problem is solvable in polynomial time for
every fixed n, a celebrated result due to LENSTRA (1983). The approach given
here is described in GROTSCHEL, LovAsz and SCHRIJVER (1984a).

First we solve the following problem.

(6.7.3) Given a system of linear inequalities (6.7.2), either

(i) find an integral solution x of (6.7.2), or

(i) find a vector c e Z" \ {0} such that " (x — x') < n(n + 1)2%@“ for any two
(not necessarily integral) solutions x, x' of (6.7.2).

Roughly speaking, by solving this auxiliary problem (6.7.3) we either find a
solution of the integer programming problem or find a direction in which the
solution set is “flat”. The important thing about (6.7.3) is that it can be solved
in polynomial time even for varying n.

(6.7.4) Theorem. Problem (6.7.3) can be solved in polynomial time.

Proof. I. First we show that the problem can be reduced to the case when the

solution set P of (6.7.2) is bounded. Let ¢ be the maximum encoding length for

the inequalities in (6.7.2). Then the vertex-complexity of P is at most v = 4n’¢p.
Consider the inequality system

(6.7.5) alx<b; (i=1,...,m),
Xl < 22+ n(n + 1)220).
Suppose we can solve problem (6.7.3) for this system of linear inequalities. If the

output is an integral solution, then we are done. Suppose that the output is an

integral vector ¢ # 0 such that y < c’x <y +n(n+ 1)2:G*! for some y € @ and
for all solutions x of (6.7.5). Then we claim the same is true for all solutions of
(6.7.2). In fact, every solution of (6.7.2) can be written in the form

b
X = zk:,l,-v,- + Zﬂ]‘uj,
i=1 j=1

where A,p; > 0, Y4 = 1, and v; € P, u; € rec(P) and (u;),(v;) < v. Then
lvill < 2' and hence

is a solution of (6.7.5). So

y<cTx <y+nn+)20

194 Chapter 6. Rational Polyhedra

Furthermore, we claim that ¢’w; = 0. Suppose not; then |cTu;| > 27, say
c¢Tu; > 27V, Consider the vector

X" = x4 2'n(n + 1)2: O+,
Then o
cTx" >y +n(n+ 1)2:0+

which is a contradiction since x” is a solution of (6.7.5). This contradiction proves
that ¢"u; = O for all i and hence

v <cTx <y+nmn+ 1)2: 0+
as claimed.

II. So we may assume that P < S§(0,2"), where v := 4n’¢. Let us define a
shallow separation oracle for P as follows. Given an ellipsoid E(A4,a), check
whether P contains the concentrical ellipsoid E((n + 1)"24, a). This can be done
by checking, for i = 1, ..., m, whether (n+ 1)~2a’ Aa; < (b; — a! a)? holds. If so,
declare E(A,a) “tough”. If not, then for any index i violating it, the inequality
al'x < b; is a shallow cut.

Apply the shallow-cut ellipsoid method with this shallow separation oracle,
with R =2" and ¢ = 1.

Case 1. The output is an ellipsoid E(4,a) containing P, of volume at most 1.
Then consider the norm N (x) := vx”Ax. By Theorems (5.3.16) and (5.3.13),

we find a vector ¢ € Z" such that N (c) < 2=1/4 . (det A)1/@W < 20-D/dp~1n <
n-20—1)/4

Hence for any vector x € P, we have ¢” (x—a) < (cTAc)((x—a)T A7 (x—a)) <
n220-0/2 < i 4 1) - 2072, S0 ¢ is a vector satisfying (b) of (6.7.3).

Case 2. Suppose the shallow-cut ellipsoid method ends up with a tough ellipsoid
E(A, a). Consider the norm N (x) := vxTA-1x. By Theorems (5.3.16) and (5.3.13),
we find a basis {by, ..., b,} of Z" such that

N(by)-...-N(bs) <2:0) (det 472
Write

a= i }.,'b,'
i=1

and consider the vector

X

a' = l_Z.,J b,‘ eZ".
1

If a € P we are done, so suppose that a’ ¢ P. Then d’ is not contained in the
concentrical ellipsoid E((n + 1)724, a), and hence N (@' —a) > (n+ 1)~'. But

n

N@—a)=N (Z(Ai ~ uiJ)b,-) <Y NG
i=1

i=1

6.7 Integer Programming in Bounded Dimension 195

Hence there is an index i, | < i < n, so that N (b;) > (n(n+ 1))~!. Without loss of
generality, assume that i = n.
Define an integral vector ¢ by

Tx= det(by, ..., by_1, x).
Then for any x € P, we can estimate ¢’ (x — a) as follows. Write A~! = BT B.
Then ‘
le” (x — a)| = | det(Bby, ..., Bb,_{, B(x — a))|(det A):
< N(b1)...N(But)N (x — a)(det A)?
n 1 1
<240 (et 471 —
< 240 deta ! s det4)?
< n(n+ 1)2:0).
So ¢ is a vector satisfying (b) of (6.7.3). O

Let us mention that, with the methods of Bapal (1986) and Lovasz (1986)

the factor 2:() could be improved to ¢", where ¢ is some positive contstant —

cf. also Theorem (5.3.26).
We are now able to derive the main result of this section, the theorem of

LENSTRA (1983).
(6.7.6) Theorem. For each fixed integer n > 1, the linear diophantine inequalities
problem (6.7.1) for n variables can be solved in polynomial time.

Proof. By induction on n. Let us run the algorithm of Theorem (6.7.4) first, with
the given system of inequalities as input. If its output is an integral solution, we
are done. Suppose that its output is an integer vector ¢ # 0 such that ¢’ (x;—x;) <
n(n + 1)2%(3)“ for any two solutions x; and x; of (6.7.2). Let

y1 = min{c’ x | x satisfies (6.7.2)}

and
2 = max{c’ x | x satisfies (6.7.2)}.

For every integer k with y; < k < y,, consider the diophantine inequalities
problem for the system of linear inequalities (6.7.2) joined with

(6.7.7) Tx =k

We can transform the system (6.7.2), (6.7.7) by eliminating one of the variables
to a form

(6.7.8) Arx < by

where 4, € Q" V*" and b, € Q™. Now it is clear that (6.7.2) has an integral
solution if and only if (6.7.8) has an integral solution for at least one k, y; <

196 Chapter 6. Rational Polyhedra

k < y,. Thus to solve (6.7.2) it suffices to solve at most [y, —] +1 <

2n(n+ 1)2%(5)+1 + 1 diophantine inequalities problems with n—1 variables. By the
induction hypothesis, these can be solved in polynomial time. Since n (and thus

2n(n + 1)2%(;)“) is a constant, it follows that (6.7.2) can be solved in integers in
polynomial time.

We have to point out that we omitted an important detail: one must show
that the encoding length for (6.7.8) is bounded by a polynomial of the encoding
length of (6.7.2), uniformly for all k¥ with y; < k < y,. This is, however, easily
checked. O

By the same method one can prove the following theorems.

(6.7.9) Theorem. There exists an oracle-polynomial time algorithm that, for any .
well-bounded convex body (K ;n,R,r) given by a weak separation oracle, either

(1) finds an integral point x € K, or

(ii) finds a nonzero integral vector ¢ € Z" such that |cTx — ¢Tx'| < 32t for

any two vectors x,x' € K.
O

(6.7.10) Theorem. For any fixed integer n > 1, there exists an oracle-polynomial
time algorithm that, for any well-bounded convex body (K ;n,R,r) given by a
weak separation oracle, and for any rational number ¢ > 0, cither finds an
integral point in S (K, ¢), or concludes that K contains no integral point. (]

Finally, Lenstra’s theorem (6.7.6) immediately yields — via binary search — the
following important corollary for integer programming.

(6.7.11) Corollary. For any fixed integer n > 1, the integer linear programming
problem max{c” x | Ax < b,x integral} in n variables can be solved in polynomial
time. 0

A similar corollary for the integer linear programming problem over well-
described polyhedra (P ;n, ¢) can be derived from Theorem (6.7.10).

One may wonder whether the polynomial time algorithms for the integer
programming problems discussed above may be modified to run in strongly
polynomial time. However, in our model of strongly polynomial computation
even such a simple problem as “Given an integer a, find an integral solution of
2x = a” cannot be solved in strongly polynomial time, i. e., the parity of an integer
a cannot be decided in a fixed number of elementary arithmetic operations.

Chapter 7

Combinatorial Optimization:
Some Basic Examples

In the remaining part of this book we apply the methods developed in the
first part to combinatorial optimization. In this chapter we give some illumi-
nating examples to explain the basic techniques of deriving polynomial time
algorithms for combinatorial optimization problems. These techniques are based
on combining the ellipsoid method and basis reduction with results from the field
called “polyhedral combinatorics”, where combinatorial optimization problems
are formulated as linear programs. Chapter 8 contains a comprehensive survey
of combinatorial problems to which these methods apply. Finally, in the last two
chapters we discuss some more advanced examples in greater detail.

7.1 Flows and Cuts

A well-known problem, with many real-world applications, is the maximum flow
problem. An instance of this is given by a directed graph D = (V, A), a “source”
reV,a“sink” se V \ {r}, and a “capacity function” ¢ : 4 - Q,. We want to
send through this “capacitated network” a maximum amount of “flow” from r
to s such that, for any arc, the flow going through it does not exceed its capacity.
Here a flow should satisfy the conservation law, i.e,, in any node v #.r, s the total
flow entering v is equal to the total flow leaving v. The value (or amount) of flow
means the “net flow” leaving the source r, that is the total flow leaving r minus
the total flow entering r. Because of the conservation law this is equal to the net
flow entering the sink s.

Recall that, for a set W of nodes, we denote the set of arcs of D entering
W by 6 (W) and leaving W by (W), while we write 6~ (v) and 6*(v) instead
of 6=({v}) and 8*({v}). Moreover, if x e R* and A’ = A4 is a set of arcs, then
x(A') = Y .4 X, Using this notation we can formulate the maximum flow
problem as a linear programming problem as follows.

(7.L.1) max x(87(r)) — x(6”(r))
x(0~ () —x(6*T() =0 forallve V \{rs},
0<x,<c¢, forallaceA.
Every vector x € R* satisfying the constraints of (7.1.1) is called an (r, s)-flow
subject to c or just a flow (from r to s), and its value is x(61(r)) — x(6~(r)). ForD
and FULKERSON (1957) devised an algorithm to solve this max-flow problem,

198 Chapter 7. Combinatorial Optimization: Some Basic Examples

which DiNiTs (1970) showed to be implementable as a strongly polynomial time
algorithm. The polynomial time solvability also follows directly from Khachiyan’s
version of the ellipsoid method for linear programming, since the linear program
(7.1.1) can be set up in time polynomial in the encoding length of the input data
V, A, ¢, r, s. (Khachiyan’s method does not directly give strong polynomiality,
but indirectly it follows with Tardos’ method - see Corollary (6.6.4).)

If the capacities ¢, are integral, it turns out that Ford and Fulkerson’s
algorithm gives an integer valued optimum flow x. So the Ford and Fulkerson
algorithm solves at the same time the integer linear programming problem
obtained from (7.1.1) by adding the condition

(7.1.2) xoeZforallae A.

It also follows that, if the capacities are integers, adding (7.1.2) to (7.1.1) does not
make the maximum value smaller. This is a prime example of an integer linear
program in which the integrality conditions turn out to be superfluous. In fact,
Ford and Fulkerson showed that the feasible region of (7.1.1) is a polytope with
integral vertices if the capacities are integral. Since we can find a vertex solution
with the ellipsoid method we can therefore also find an integer solution to (7.1.1)
with the ellipsoid method.

Let us now consider the dual program of (7.1.1). By introducing variables y,
for all ae 4 and z, for all v € V' we can write the dual as follows:

(7.1.3) min Y cYa
acA
Zw—Zy+ Yy, = 0 foralla=(v,w)eA,
z, = 1,
Zs = Oa
ya= 0 forallae A.

We want to show that this dual program has a combinatorial interpretation
which yields one of the central min-max relations in combinatorial optimization,
the max-flow min-cut theorem.

If W is a node set with r € W and s ¢ W, then it is common to call the arc
set 0 (W) (= 6~ (V \ W)) a cut separating r from s, or just an (r,s)-cut. The
name derives from the fact that if the arc set 6 * (W) is removed from D, then all
the links from r to s are cut and there is no way to send flow of positive value
from r to s. Since every (r,s)-flow x satisfies the capacity constraints, we have
x(6T(W)) < c(6(W)) for all cuts 6T (W) separating r from s. For all (r, s)-cuts
we have x(6t(W)) — x(6~(W)) = x(61(r)) — x(d ~(r)) from the conservation law,
thus the maximum flow value through the capacitated network is not larger
than the minimum capacity of a cut separating r from s. To see that these two
quantities are equal, we construct an (r,s)-cut whose capacity is equal to the
maximum value of a flow as follows.

Let y,, a€ A4, and z,, v € V', be an optimum solution (possibly fractional) to
(7.1.3) and let x be an optimum solution to (7.1.1), i. e, an optimum flow. Next
let V' ={veV |z, >0} Ifa=(vyw) e d"(V’) then y, > z, — z, > 0, and

7.1 Flows and Cuts 199

hence by the Complementary Slackness Theorem (0.1.50) we have x, = c,. If
a=(v,w) e~ (V'), then z,—z,+y, > z,~2z, > 0, and so again by complementary
slackness x, = 0. Therefore

c(6T(V)) =x@ (V) = x(8~ (V") = x(67 (r)) — x(6~(r)),

which is the net amount of flow leaving r. So * (V') is a cut separating r from
s with capacity equal to the maximum value of a flow from r to s. Thus we
have the following famous result due to FORD and FULKERSON (1956) and ELIAsS,
FEINSTEIN and SHANNON (1956).

(7.1.4) Max-Flow Min-Cut Theorem. The maximum value of a flow from r to
s subject to the capacities is equal to the minimum capacity of a cut separating
r from s. O

The (constructive) argument above shows that if we have an optimum solution
to (7.1.3) we can find a minimum capacity cut separating r from s in polynomial
time. As we can find an optimum solution to (7.1.3) with the ellipsoid method, it
follows that we can find a minimum capacity cut in polynomial time. Actually,
also the maximum flow algorithm of Ford and Fulkerson yields, as a by-product,
a minimum cut.

Note that every cut separating r from s defines a feasible {0, 1}-solution of
(7.1.3), and a minimum cut defines an optimum solution. Thus (7.1.3) always
has an integral optimum solution. So, similarly to (7.1.1), adding integrality
conditions to (7.1.3) does not change the optimum value.

The example of flows and cuts discussed above is an instance of a more
general phenomenon: total unimodularity of matrices. A matrix M is called
totally unimodular if every square submatrix of it has determinant 0, +1, or —1.
In particular, each entry of M is 0, +1, or —1. There are quite a number of
useful characterizations of totally unimodular matrices — see SCHRIIVER (1986)
for a survey. For our purposes, the following observation — due to HOFFMAN and
KRuUSKAL (1956) — is of special interest.

(7.1.5) Theorem. IfM is a totally unimodular matrix and b is an integral vector,
then for each objective function ¢ the linear programming problem

max{c’ x | Mx < b}

has an integral optimum solution (provided the maximum is finite).

Proof. If the maximum is finite, M has a submatrix M’ with full row rank so that
each solution of M'x = b’ is an optimum solution of the linear program (here
b denotes the subvector of b corresponding to M’). Without loss of generality
M’ = (M;,M,) with M nonsingular. Then

. Ml—-lbl
X = 0

is an optimum solution, which is integral, since M ! is an integer matrix by the
total unimodularity of M. O

200 Chapter 7. Combinatorial Optimization: Some Basic Examples

If M is totally unimodular then the matrices M7, —M, (M,—M), (I,M),
(I,—1,M,—M), and M~ (if M is nonsingular) and all submatrices of M are also
totally unimodular. Theorem (7.1.5) thus yields that each of the following linear
programs has integral optimum solutions (for integral vectors /, u, b, b’, and ¢)

(7.1.6) max{c’x | Mx <b,x >0} = min{y"b | y"M =",y > 0},
max{c’x | Mx =b,x > 0} =min{y"b | y"M = "},
max{c’x | b <Mx<b, I <x<u}.

This implies that the constraint systems of all linear programs in (7.1.6) are
totally dual integral and thus totally primal integral — see Section 0.1. Note
also that Theorem (7.1.5) implies that each face of P := {x | Mx < b} contains
integral vectors. (Polyhedra with this property are called integral) So if P
has vertices, all vertices are integral. Therefore, if the linear program stated in
Theorem (7.1.5) has a finite optimum solution and the polyhedron P has vertices
(this is equivalent to: M has full column rank) then we can find an integral
optimum solution with the ellipsoid method. (If P has no vertices we can also
find an optimum solution by adding appropriate upper and lower bounds on
the variables. More generally, for any integral polyhedron P we can proceed in
polynomial time, as follows. We find a system of equations Cx = d determining a
minimal face of the optimum face with the algorithm of Corollary (6.5.9). Then
we can find an integral vector in this minimal face with the algorithm of (1.4.21).)

Totally unimodular matrices come up in some combinatorial problems. A
prime example is the incidence matrix M of a digraph D = (V, 4). M is a matrix
whose rows are indexed by the nodes and whose columns are indexed by the
arcs of D. An entry M,, of M is equal to 1 if v is the head of a, is equal to
—1, if v is the tail of a, and is 0 otherwise. Note that the matrix of the equation
system in (7.1.1) is obtained from the incidence matrix of D by deleting the rows
corresponding to the source r and the sink s. Then Theorem (7.1.5) gives that, if
the capacities are integral, the optimum flow can be chosen to be integral.

For an undirected graph G = (V, E), the incidence matrix M has |E| columns
and |V | rows, and an entry M,, is equal to 1 if node v is an endnode of edge
e, and is 0 otherwise. If G contains an odd cycle, then the incidence matrix of
this cycle is a nonsingular square submatrix of the incidence matrix of G with
determinant +2 or —2. In fact, it is easy to see by induction that the incidence
matrix M of a graph G is totally unimodular if and only if G contains no odd
cycle, i. e, if and only if G is bipartite. This observation goes back to EGERVARY
(1931).

Another interesting class of totally unimodular matrices consists of those
matrices that have the consecutive-ones-property. These are matrices A in which
every row A; looks like 4, = (0, ...,0,1, ..., 1,0, ..., 0), i. e, there are at
most three strings of equal numbers, the first string is a string of zeros which is
followed by a string of ones which is followed by a string of zeros. (Some of the
strings can be empty.)

SEYMOUR (1980a) gave a characterization of totally unimodular matrices
showing that all totally unimodular matrices arise by applying certain operations

7.2 Arborescences 201

to incidence matrices of digraphs and to two special 5x S5-matrices. This char-
acterization can be used to determine in polynomial time whether a matrix is
totally unimodular or not. Thus, totally unimodular matrices are algorithmically
“well under control”. The fastest method for testing total unimodularity known
at present is the algorithm of TRUEMPER (1987).

7.2 Arborescences

The example of maximum flows and minimum cuts (or more generally, of
totally unimodular matrices) is not typical for the combinatorial applications
of the ellipsoid method. These problems can be formulated as explicit linear
programs and therefore their polynomial time solvability follows already from
the polynomial time solvability of explicitly given linear programs. So in these
cases the power of the ellipsoid method as described in the foregoing chapters
is not fully exploited. In this and the next sections we shall see some more
illustrative examples.

Let D = (V, A) be a digraph, let r € V' be a fixed node, called the root. A set
A’ of arcs is called an arborescence rooted at r or an r-arborescence if the arcs
in A’ form a spanning tree of D and every node different from r is the head of
exactly one arc in A’. So for every node s € V', A’ contains a unique directed path
from r to s. A set C < A is called a cut rooted at r, or an r-cut, if C =6 (V’) for
some nonempty subset V' of V \ {r}. Note that an r-cut may contain another
one as a subset, and sometimes we will consider (inclusionwise) minimal r-cuts.

The arborescences and minimal cuts rooted at r are related by the following
so-called blocking relation. The r-arborescences are exactly the (inclusionwise)
minimal sets intersecting all r-cuts, and conversely: the minimal r-cuts are
exactly the minimal sets intersecting all r-arborescences. We shall elaborate on
this relation in a general setting in Section 8.1.

Let a digraph D = (V, A) with root r € V and a “length” ¢, > 0, for every
arc a, be given. The shortest r-arborescence problem is to find an arborescence
A’ rooted at r such that c¢(4') = Y 4 ca is as small as possible. Polynomial
time algorithms for this problem have been designed by CHU and Liu (1965),
EDMONDS (1967a) and others. To apply the ellipsoid method to this problem, we
have to find a linear programming formulation of it.

To this end, we associate with every arc a € A a variable x,. Let R” be the
vector space of mappings from A into R. As usual, we view the elements of R
as vectors whose components are indexed by the elements of A. For each subset
B < A, we define its incidence vector yZ = (x5)scq € R by

B _ 1 if aeB
Xa =10 if a¢B.

The length function ¢ : A — @, is also an element of R4, and for every
r-arborescence B, ¢(B) = ¢ 2.

First we formulate our problem as an integer linear program. So we are
looking for a set of inequalities whose integral solutions are exactly the incidence

202 Chapter 7. Combinatorial Optimization: Some Basic Examples

vectors of r-arborescences. The observation that each r-arborescence intersects
each r-cut suggests the following integer linear programming formulation:

(7.2.1) min ¢’ x
x@~(W) =1 forall Q#FW <V \{r}
0<x,<1 forall aeA,
xq integer for all ae A.

Since every r-arborescence intersects every r-cut, the incidence vector of any
r-arborescence is a feasible solution for (7.2.1). Conversely, if x* is an optimum
solution for (7.2.1) then the set {a € 4 | x, = 1} contains an r-arborescence,
since it is a set intersecting all r-cuts. Hence x* > x® for some r-arborescence B.
In fact, x* must be equal to y? since otherwise ¢c”x* > ¢’ ¥® (as c is positive)
contradicting the fact that x* attains the minimum of (7.2.1). Therefore, the
minimum of (7.2.1) is achieved by the incidence vector of an r-arborescence, and
thus, (7.2.1) is equivalent to the shortest r-arborescence problem.

EDMONDS (1967a) showed that one may skip the integrality condition in
(7.2.1) without changing the minimum. That is, (7.2.1) has the same optimum
value as the following linear programming problem

(7.2.2) min ¢’ x
x@~(W))=1 forall @+#W <V \{r},
0<x,<1 forall aeA.

In other words, Edmonds showed that the feasible region of (7.2.2) is exactly the
polytope

ARB(D) := conv{y® e R? | B contains an r-arborescence }.

So we could try to solve (7.2.2) (and hence (7.2.1)) with LP-techniques.
However, just to write down the linear program (7.2.2) takes exponential time
and space. Yet the ellipsoid method applies, since we can solve the strong
separation problem for the polytopes ARB(D) in polynomial time.

To see this, let y be a vector in Q4. We first test whether 0 < y, < 1 for
all a e A. This clearly can be done in polynomial time, and if one of these
inequalities is violated we have a hyperplane separating y from ARB(D). If y
satisfies 0 < y, < 1 then we continue as follows. Consider y as a capacity function
on the arcs of D. For every node s # r we determine an (r, s)-cut Cs of minimum
capacity. In Section 7.1 we saw that this can be done in polynomial time, e. g.,
with the Ford-Fulkerson algorithm or the ellipsoid method. Now it is easy to see
that

min{y(C) | s€ V' \ {r}} = min{y(~(W)) |0 # W < ¥ \ {r}}.

So by calculating |V | — 1 minimum capacity (r,s)-cuts, we can find a minimum
capacity r-cut, say 6~ (W"). If y(6~(W")) = 1, all r-cut constraints of (7.2.2)
are satisfied, and hence we conclude that y belongs to ARB(D). Otherwise, the

7.3 Matching 203

inequality x(6 (W) > 1 is violated by y and a separating hyperplane is found.
As the vertices of ARB(D) are {0, 1}-vectors, by Theorem (6.4.9) we know that
the class of problems (7.2.2) can be solved in polynomial time, and since we can
find an optimum vertex solution of (7.2.2) by Lemma (6.5.1) we thus can find the
incidence vector of an optimum r-arborescence in polynomial time.

The above shows that from the polynomial time solvability of the minimum
capacity r-cut problem we can derive the polynomial time solvability of the min-
imum length r-arborescence problem, using the ellipsoid method and polyhedral
combinatorics. In Chapter 8 we shall see that this derivation can also be made
the other way around: From the polynomial time solvability of the minimum
length r-arborescence problem the polynomial time solvability of the minimum
capacity r-cut problem follows. This is essentially due to the equivalence of the
strong optimization problem and the strong separation problem for polyhedra
— see Chapter 6. It is a special case of a more general duality relation between
certain combinatorial optimization problems where the polynomial solvability
of one class of combinatorial optimization problems follows from that of the
class of dual problems, and conversely. This duality phenomenon is often based
on the theory of blocking and antiblocking polyhedra — see Section 8.1 and
Chapter 9. Other examples are the duality of the shortest (r,s)-path problem and
the minimum capacity (r,s)-cut problem, of the shortest directed cut covering
problem and the minimum capacitated directed cut problem, and of the weighted
matching problem and the minimum capacitated odd cut problem. The last pair
of problems is considered in the following section.

7.3 Matching

In the foregoing section we demonstrated one major approach to handle a com-
binatorial optimization problem. The problem was formulated as an integer
linear program in which the integrality stipulations turned out superfluous. How-
ever, most combinatorial optimization problems have a “natural” integer linear
programming formulation where skipping the integrality conditions does change
the optimum value. This can always be repaired by adding some additional
inequalities, called “cutting planes”. But in many cases these extra constraints
are difficult to describe explicitly. What is even worse for our purposes, it is
usually hard to check whether a given point satisfies them. This prohibits the
use of the ellipsoid method for deriving the polynomial time solvability of many
combinatorial optimization problem. (We will make some further comments on
this matter in Section 7.7.) In this section, however, we shall give an example
where this approach does work.

Let G = (V,E) be an undirected graph with an even number of nodes. An
edge set M < E is called a perfect matching if every node of G is contained in
exactly one edge in M. The problem whether a given graph contains a perfect
matching is a classical problem in graph theory. For the bipartite case it has been
solved by FroBENTIUS (1917).

204 Chapter 7. Combinatorial Optimization: Some Basic Examples

(7.3.1) Frobenius’ Marriage Theorem. A bipartite graph G with bipartition A,
B of the node set V' has a perfect matching if and only if |A| = |B| and each
X < A has at least |X| neighbours in B. O

It is not difficult to derive this result from the Max-Flow Min-Cut Theorem
(7.1.4). The general case was characterized by TUuTTE (1947).

(7.3.2) Tutte’s Perfect Matching Theorem. A graph G has a perfect matching if
and only if for each X < V the graph G — X has at most |X | components with
an odd number of nodes. O

In combinatorial optimization, besides the existence of perfect matchings one
is interested in finding an optimum perfect matching.

Given, in addition to G, a weight function ¢ : E — @, the minimum weighted
perfect matching problem is to find a perfect matching M in G of minimum
weight c¢(M). EDMONDS (1965b) designed a polynomial time algorithm for this
problem. We show here that the polynomial time solvability also follows from
the ellipsoid method.

The perfect matching problem is easily seen to be equivalent to the integer
linear programming problem

(73.3) min)" cx,
ecE

x(0(@) =1 forall veV,
x, >0 forall ecE,
x.€Z forall eeE.

Here 6 (v) denotes the set of edges incident to v.

Note that the matrix of the equation system of (7.3.3) is the incidence matrix
of G. We have mentioned in Section 7.1 that this matrix is totally unimodular if
and only if G is bipartite, thus:

(7.3.4) IfG is bipartite, then we can drop the integrality conditions from (7.3.3).

In general, however, we cannot simply drop the integrality constraints without
changing the optimum value. E. g, if G is the graph shown in Figure 7.1 with
weights as indicated, then (7.3.3) has optimum value 4 while its “LP-relaxation”
(i. e., the program (7.3.3) without integrality stipulations) has optimum value 3.

Figure 7.1

7.3 Matching 205

To apply LP-techniques to the solution of the perfect matching problem, we
have to study the so-called perfect matching polytope PM(G) of G, which is the
convex hull of the incidence vectors of perfect matchings in G, i. e.,

PM(G) :=conv{y” e R | M perfect matching in G}.

So PM(G) is equal to the convex hull of the feasible solutions of (7.3.3). It is
clear that min{c"x | x € PM(G)} is equal to the minimum weight of a perfect
matching in G. To write (7.3.3) as a linear program, we need to describe PM(G)
by a system of linear inequalities. This was done by EDMONDS (1965b):

(7.3.5) Edmonds’ Perfect Matching Polytope Theorem. The perfect matching
polytope PM(G) of a graph G = (V , E) is determined by the following inequalities
and equations:

(1) x(0(v))=1 forall veV,
(i) x(o(W))= 1 forall W <V with|W| odd,
(111) x> 0 forall e€E.

(The sets 6(W) ={ije E|ie W,j e V \ W} are called cuts, and the sets
o (W) with |W| odd are called odd cuts; therefore, the inequalities (ii) are called
odd cut constraints.)

Proof. Let P be the polytope defined by the constraints (i), (i1), and (ii1). It is
clear that the incidence vectors of the perfect matchings of G satisfy (i), (i1), and
(ii1), hence PM(G) < P.

To show P = PM(G), suppose to the contrary that G = (V,E) 1s a graph
such that P ¢ PM(G), and moreover, that |V |+ |E| is as small as possible. Then
P must have a vertex x, say, that is not in PM(G).

Our assumption implies that 0 < x, < 1 for all e € E, since otherwise we
could delete from G the edge e, and, if x, = 1, also the two endnodes of e
and obtain a smaller counterexample. Moreover, G has no isolated nodes, as
they could be removed; also G has no node of degree 1, since then the edge e
containing this node would have x, = 1 by (i). Finally, not all nodes of G have
degree 2 as this would imply that G is the disjoint union of cycles for which the
theorem obviously holds. It follows that |[E| > [V].

As x is a vertex, there are |E| linearly independent constraints among (i), (i1)
which are satisfied by x with equality. Hence there is a subset W < V' of odd
size such that x(6(W)) =1, |W| =3, and |V \ W| > 3. Now we contract V' /\ w
to a single new node, say u, to obtain G’ = (W U {u},E'). Define x’ € QF by
X, = x, for all e € E(W), and x},,, = 3 c)\w woer Xwo for all w e W. (We call x’
the projection of x on G') It is easy to see that x’ satisfies (i), (ii), and (iii) with
respect to G'. As G is a smallest counterexample, we know that x" e PM(G') and
thus x’ is a convex combination of incidence vectors of perfect matchings M’ in
G, say x' =3, AmxM.

Similarly, by contracting W to a single new node, say t, we obtain a graph
G" = ((V \ W) U {t},E") and a vector x" € QF", which by the same reasoning is

206 Chapter 7. Combinatorial Optimization: Some Basic Examples

contained in PM(G”). Let x”" = >, up¥M", where M" ranges over all perfect
matchings in G”.

Now for each perfect matching M in G with |[M Né(W)| =1, let M’ and M”
denote the associated perfect matchings in G' and G” obtained by contraction.

Then
-y 3 een

eed (W) M perfect matching

with M N8 (W)={e}
We leave it to the reader to show that this equality holds and that it represents
x as a convex combination of incidence vectors of perfect matchings in G. This
contradicts our assumption that x is not in PM(G).]

This theorem can be used to obtain a good characterization of those graphs
having a perfect matching. Namely, a graph G has no perfect matching if and
only if its perfect matching polyhedron PM(G) is empty. By the Farkas lemma
(0.1.41) this is equivalent to the existence of real numbers (“multipliers”) 4,
(veV)and uy =0 (W < V and |W| odd) such that for each edge e € E

(7.3.6) Y okt Y uw<o,
wev

velV c
eed(v) eed (W), |W)odd

but

(1.3.7) Yt Y, ww >0

veV wecV ,[W|lodd

How does this condition relate to Tutte’s, given in (7.3.2)? If Tutte’s condition is
violated then such multipliers are easily obtained as follows. Suppose there exists
a Tutte-set, 1. €., a set X < V' such that G — X has odd components Wy, ..., W,
with t > |X|. Then we set

Ay = —1 if velX,
pw, = 1 for i=1,...,¢t,

and set all other multipliers equal to zero. Then the conditions (7.3.6) and (7.3.7)
are satisfied. Conversely, from any solution of (7.3.6) and (7.3.7) we can obtain a
Tutte-set. However, the argument is quite complicated and we omit it.

Edmonds’ perfect matching polyhedron theorem (7.3.5) immediately implies
that the minimum perfect matching problem (and thus also the integer linear
program (7.3.3)) is equivalent to the linear programming problem

(7.3.8) minc’ x
(1) x(0(w) =1 forall veV,
(i1) x(0(W)>1 forall W<V, |W|odd,
(111) x> 0 forall eeE.

7.3 Matching 207

So the odd cut constraints give us the cutting planes to be added to (7.3.3) to
transform (7.3.3) to a linear program. As in the previous section, we cannot view
this as an explicit linear program since there are exponentially many constraints.
But again the ellipsoid method can be applied if we have a polynomial time
algorithm to test the constraints. Such an algorithm indeed exists.

For a given point y € QF, we can check (i) and (iii) in polynomial time by
substitution. So we may assume that y satisfies (i) and (iii). Then the problem
to check (ii) can be formulated as follows. Consider the values y,, ¢ € E, as
capacities on the edges of G. The task is to decide whether there is an odd cut
O(W) of capacity y(6(W)) less than 1. This is clearly equivalent to finding a
minimum capacity odd cut. A polynomial time algorithm to solve this problem
was first designed by PADBERG and Rao (1982). It is convenient to describe an
algorithm which solves a more general problem.

Let a graph G = (V,E) be given and aset @ # T < V' with |T| even. A T-cut
is a set of edges of the form 6 (W) with |T N W| odd. Thus odd cuts are just
V -cuts (if | V| is even, what we have assumed for the perfect matching problem).
Now the more general problem, called minimum weighted 7 -cut problem, is:
“Given a capacity function y : E —» Q, on the edges of G, find a minimum
capacity 7'-cut”.

First we remark that one can find in polynomial time a minimum capacity
cut S(U) with UNT # @and T\ U # 0, i. e, a cut separating 7. To see this, we
transform G into a digraph D replacing each edge ij € E with capacity y; by two
arcs (i,j) and (j,i) both with capacity y;. Then we run the algorithm to find a
minimum (r, s)-cut in D for all pairs r,s € T, r # s, described in Section 7.1. This
way we get a minimum capacity cut in D separating 7', which by construction
yields a minimum capacity cut in G separating 7', say 6(U).

If [T NU| is odd, we are done. So let us suppose that |7 N U| is even.

(7.3.9) Lemma. There exists a minimum capacity T-cut (W) in G withU = W
orW < U.

Proof. Let &(W’) determine any minimum capacity T-cut. As |[W' N T| =
W' NTNU|+ W NTNW \U)| is odd, we may assume that [W' N T NU|
is even (otherwise replace U by its complement and note that the statement of
the lemma is invariant under taking the complement of U). Furthermore, since
UNT|=|UNTNW|+|UNTN(¥ \ W)| is nonzero we may assume that
[U NT N W’|is nonzero (otherwise replace W' by its complement). Note that

(UUW)NT|=|\UNT|+|W NT|-|U NW NT|
is odd. The following inequality is easy to verify:
(7.3.10) Y@ U UW) +y@(U NW)) < y@(U))+yE (W)

But
y(@ (U UW)) zy@(W)),

since 6 (W’) is a minimum capacity T-cut, and

y(@(U NWY) 2 y@6(U)),

208 Chapter 7. Combinatorial Optimization: Some Basic Examples

since 6 (U) is a minimum capacity cut separating 7. Hence we must have equality
in (7.3.10) and the two subsequent inequalities. In particular, this shows that
W = U U W' determines a minimum capacity 7 -cut. O

This lemma shows that, if |7 N U| is even, then the problem of finding a
minimum capacity 7T-cut in G can be reduced to two smaller problems. Namely,
let G' and G” be the graphs obtained from G by contracting U and V \ U,
respectively, let 7/ := T\ U, T” := TNU, and let y’ and y” be the corresponding
projections of y on G’ and G”. Find a minimum capacity 7’-cut in G’ and a
minimum capacity T”-cut in G”. By Lemma (7.3.9) the smaller of these two cuts
will correspond to a minimum capacity 7-cut in G.

This defines a polynomial time algorithm inductively. In fact, let p({y),|V|)
be a polynomial upper bound on the time needed to find a minimum capacity cut
0 (U) separating T together with the time needed to carry out the contractions.
We showed above that such a polynomial exists. Then it follows by induction on
|T| that the whole algorithm needs at most (|| — 1)p({y), |V'|) time.

This completes the description of the algorithm for finding a minimum
capacity T-cut. It shows in particular that we can find a minimum capacity odd
cut in polynomial time. Therefore, we can solve the separation problem for the
perfect matching polyhedron in polynomial time. And hence, by the ellipsoid
method, the weighted perfect matching problem can be solved in polynomial
time.

Moreover, we can also decide in polynomial time whether a given graph has
a perfect matching. If the answer is yes, we can actually find a perfect matching,
i. e, a vertex of PM(G). If the answer is no, then the methods of Chapter 6 yield
a solution of (7.3.6), (7.3.7). (One can use this solution to obtain a Tutte-set in
polynomial time, but this procedure is rather involved.)

7.4 Edge Coloring

There are some combinatorial optimization problems that do not have a natural
formulation as an optimization problem over nice polytopes. One class of
examples consists of coloring problems. As an illustration, we consider the edge
coloring problem for graphs.

Let G = (V,E) be a graph. An edge coloring of G is a coloring of the edges
of G so that no two adjacent edges have the same color. Equivalently, an edge
coloring is a partition of the edge set into matchings (since clearly all edges with
the same color form a matching). The edge coloring number (or chromatic index)
7(G) is the minimum number of colors in any edge coloring of G.

It i1s again a classical problem of graph theory to determine y(G). HOLYER
(1981) proved that this problem is #?-complete. Clearly, the following inequality
holds between the maximum degree A(G) and the chromatic index y(G) of any
graph:

(7.4.1) A(G) < y(G),

7.4 Edge Coloring 209

and the triangle K3 shows that strict inequality may occur. On the other hand
VIZING (1964) proved that for every simple graph G:

(14.2) 7(G) < A(G) + 1.

So, for a simple graph G, y(G) is either equal to A(G) or equal to A(G) + 1 (this
makes Holyer’s result surprising). KONIG (1916) showed that for bipartite graphs
equality holds in (7.4.1).

(7.4.3) Konig’s Edge Coloring Theorem. If G is a bipartite graph then the
maximum degree A(G) 1s equal to the edge coloring number y(G). O

Since the maximum degree A(G) of a graph can be computed trivially, the edge
coloring number y(G) of a bipartite graph G can be determined in polynomial
time. Konig’s original proof of (7.4.3) (using alternating path techniques) also
provides a polynomial time algorithm to find an explicit optimum edge coloring.

To formulate the edge coloring problem for bipartite graphs as a linear
program over a polyhedron is not immediate. In order to explain the difficulty let
us first formulate the maximum degree problem as a linear program (even though
this problem is trivial). The problem is to find a maximum cardinality star in
a graph G = (V,E). (A star is an edge set in which all edges have a common
endnode.) It is easy to see that for a bipartite graph the incidence vectors of stars
are just the integral solutions of the following system of linear inequalities:

Z x., <1 for all matchings M < E.
eeM

x, >0 foralleekE,

So the maximum degree in a bipartite graph G is the optimum value of the
integral solutions of the following linear program

(74.4) max 17 x

Z x, <1 for all matchings M < E,
eeM

x, >0 foralleeE.
The dual of (7.4.4) is

(7.4.5) miny’1
ZyM >1 foralleekE,

ym >0 for all matchings M < E.

Note that every edge coloring of G yields an integral solution of (7.4.5). So if we
denote the common optimum value of (7.4.4) and (7.4.5) by y, then we have

A(G) < u < 7(G).

210 Chapter 7. Combinatorial Optimization: Some Basic Examples

Konig’s edge coloring theorem (7.4.3) implies that for bipartite graphs we
have equality above. Equivalently, for bipartite graphs, (7.4.4) and (7.4.5) both
have optimum solutions which are integral. By a similar argument we can show
that for bipartite graphs, the feasible region of (7.4.4) has only integral vertices.
This is not true for the feasible region of (7.4.5). Consider the bipartite graph G
of Figure 7.2. The four matchings {a,c,e}, {a,d, f}, {b,c, f}, {b,d,e} of G taken
with coefficient % and all other matchings of G with coefficient O form a vertex
of the feasible region of (7.4.5) for G.

Figure 7.2

Let us see what the general results obtained by the ellipsoid method give us in
this situation.

Suppose G is a bipartite graph. First of all, we can maximize any linear
objective function ¢’ x over the feasible region of (7.4.4) by inspecting the sets
0(v), v € V(G). Hence, by the general methods developed in Chapter 6 we can
find a basic optimum solution of the dual problem (7.4.5). Unfortunately, this
basic optimum solution need not be integral. Even though we do know that
there is a basic integer optimum solution for (7.4.5), we do not know a general
method to find it.

But in this special case (and some other cases that we will describe later) we
can find additional properties of the linear programs which enable us to construct
an optimum integral solution from an optimum solution. Here is one such trick:

Let y be any optimum solution of (7.4.5), and let M be a matching of G
with ypy > 0. Then by complementary slackness — see (0.1.50) — M intersects
each maximum size star, as each such star gives an optimum solution for the
primal problem (7.4.4). So A(G — M) = A(G) — 1. Deleting M and repeating this
procedure we obtain a collection of A(G) matchings partitioning the edges of G,
i. €., we obtain in polynomial time a minimum edge coloring of the bipartite
graph G.

7.5 Matroids

Matroids are combinatorial abstractions of linear dependence in vector spaces
and of certain aspects of graphs. They appear to become more and more
central objects in combinatorics, especially in combinatorial optimization and
combinatorial geometry. For an introduction to the subject we recommend

7.5 Matroids 211

WELSH (1976), and for applications, see Bixsy (1982), Ir1 (1983), and REcsKi
(1988). Here we discuss only some polyhedral and optimization aspects of
matroids.

A matroid is a pair (E,.#) where E is a finite set and .# is a set of subsets of
E satisfying

(7.5.1) De s,
(7.5.2) IfTe S andS < T then S € 4,

(7.5.3) IfS,T € # and |T| > |S| then there exists an element t € T \ S such
that SU {t} e 4.

The elements of .# are called the independent sets of the matroid. Three standard
examples of matroids are the following.

(7.5.4) Linear Matroids. E is a finite set of vectors in a linear space and .# is
the collection of linearly independent subsets of E. In this case axiom (7.5.3) is
equivalent to the Steinitz exchange property. W]

(7.5.5) Graphic Matroids. F is the set of edges of an undirected graph G and ¥
is the collection of all forests in G. O

(7.5.6) Transversal Matroids. Lect G = (V,E) be a bipartite graph with biparti-
tion {U, W}. Let £ be the collection of subsets of U covered by some matching
in G. Then (U, .#) is a matroid.

A simple special case is obtained when all degrees in U are 1. Then the

components of the bipartite graph are stars which induce a partition {Uy, ..., Uk}
of U, and U’ < U is independent if and only if |[U'NU;| < 1fori=1, ...,k
These matroids are called partition matroids. O

If (E,.#) is a matroid and F < E, then all maximal independent subsets of F
have the same cardinality, by (7.5.3). These maximal independent subsets of F
are called the bases of F, and their cardinality is called the rank of F, denoted
by r(F). The rank function has the following properties.

(7.5.7) r(@) = 0,

(7.5.8) S = T implies r(S) < r(T),

(7.5.9) r(S) <|S| forall S < E,

(7.5.10) r(SUT)+r(SNT)<r(S)+r(T) forall §,T < E.

Note that S € .# if and only if r(S) = |S|, so a matroid is uniquely determined
by its rank function. Property (7.5.8) is called monotonicity, property (7.5.9)
subcardinality, and property (7.5.10) submodularity. One can show that every
integer valued function r : 2 — Z that satisfies (7.5.7) - (7.5.10) is the rank
function of a (unique) matroid. (An example of a submodular function that

212 Chapter 7. Combinatorial Optimization: Some Basic Examples

does not satisfy (7.5.8) and (7.5.9) is the function f : 2¥ — R that associates
with every node set W < V' of a graph G = (V,E) with edge capacities c,,
e € E, the capacity f(W) = c(6(W)) of its cut.) Generalizing the well-known
techniques of deleting and contracting edges of a graph we define deletion and
contraction of an element e € E in a matroid (E,.#) as follows. Deletion of e
results in the matroid (E \ {e},.# N 2F\¢). Contraction of e results in the matroid
(E\{e},{S\{e} | ee S € #}) if {e} € #, and in the matroid (E \ {e},#) if
{e} ¢ .#. Deletion leaves the rank function on subsets of E \ {e} unchanged, while
contraction of e yields the following rank function:

r'(F) =r(F U{e}) —r({e}), F < E\ {e}.

These operations are very helpful in inductive proofs.

Matroids are important for combinatorial optimization, since a maximum
weighted independent set can be found by a very elementary algorithm, called
the greedy algorithm. Let (E,.#) be a matroid and ¢ : E — @, be a weight
function. The problem is to find an independent set of maximum weight. The
following method works.

(7.5.11) Greedy Algorithm.

(i) Choose an element e, € E such that {e|} € .# and c(e;) is maximal,
(i) Assuming thate,, ..., e; are chosen, choose e;,| in E\ {ey, ..., e;} such that
{e1, ..., eix1} € F and c(ei1) is maximal.
(ii1)) Repeat (i1) until no such e;,, exists.
O

(7.5.12) Theorem. The greedy algorithm ends up with a set {e,, ..., e,} € # of
maximum weight.

Proof. By axiom (7.5.3) it is clear that the greedy algorithm produces a basis of E.
So r = r(E). Suppose that the greedy algorithm does not work, i. e, that there is
aset {f,..., fi} € # with larger weight than the greedy solution. As r = r(E) we
have ¢t < r. Without loss of generality let c(f1) > ... > c(f;). As c({/1,-.., fi}) >

c({ei, ..., e}) there is an index j, 1 < j <t with ¢(fj) > c(ej). By axiom (7.5.3)
applied to {fi,..., f;} and {ey, ..., e;_;} there is an index i with 1 <i < j such
that f; ¢ {e1,..., ej-1} and {ey, ..., ej_1, fi} € £. But c(f}) = c(f;) > c(e;), which
contradicts the choice of e;. O

It can be shown that matroids are exactly those structures (E,.#) satisfying
(7.5.1) and (7.5.2) for which the greedy algorithm gives a maximum independent
set in .# for every weight function ¢ : E — @,.

To discuss the running time of the greedy algorithm we should first understand
how a matroid is given. Clearly, if it is given by listing all its independent
sets, it is trivial to find an optimum independent set by scanning through this
list. This trivial algorithm is polynomial (even linear) in the encoding length.
In our examples (7.54), (7.5.5), (7.5.6), however, the matroids are given in a

7.5 Matroids 213

much more compact form, viz. by a matrix, a graph, and a bipartite graph,
respectively. Then enumerating all independent sets would of course require
running time exponential in the encoding length of this compact input. The
greedy algorithm, however, works in polynomial time, given that any set can be
tested for independence in polynomial time.

This is indeed the case in our examples. For linear matroids (7.5.4) we need
to check whether a set of vectors is linearly independent, and this can be done by
Gaussian elimination. For graphic matroids (7.5.5) we can decide by depth-first
search whether a set contains no cycle (i. e., is a forest), and for transversal
matroids (7.5.6) we can test whether a subset of U is covered by some matching
with the help of the maximum flow algorithm of Section 7.1 or the matching
algorithm of Section 7.3.

One might think that to describe a matroid by listing all its independent sets
is an uneconomical way to do. But in general one cannot do much better. It
is known that there are at least 2%”° matroids on n elements, and so for any
encoding there would be n-element matroids with code length at least 2"/2,

So, to get nontrivial algorithmic results about matroids we define the encoding
length of a matroid as the number of the elements of E. In the running time of
a matroid algorithm we count an independence testing as one step. That is, we
assume that the matroid is given by some oracle that can be asked if a given set
is independent or not. In this model the greedy algorithm is oracle-polynomial.

As in the previous sections we can formulate the matroid optimization prob-
lem in terms of polyhedra. For any matroid M = (E,.#) let IND(M) be the
convex hull of the incidence vectors of independent sets of M, i. e.,

IND(M) = conv{y' e RF | I € .#}.

IND(M) is called the matroid polytope of M. Then the matroid optimization
problem is equivalent to finding max{c"x | x e IND(M)}. Of course, we
know how to solve this (by the greedy algorithm), but yet it will be interesting
to formulate this problem as a linear programming problem. The following
inequalities, for vectors x € RE, are trivially satisfied by the incidence vectors of
the independent sets of M :

(7.5.13) x>0 forall e€kE,

(7.5.14) x(F)<r(F) forall F cE.
EDpMONDS (1970, 1971) proved that these inequalities suffice:

(7.5.15) Theorem. For every matroid M = (E,#), IND(M) is the set of all
vectors x € RE satisfying (7.5.13) and (7.5.14).

Proof. Without loss of generality we may assume that each singleton {e} is
independent in M. Then IND(M) contains all unit vectors and the zero vector —
hence IND(M) has full dimension |E|.

Let a”x < b be an inequality defining a facet of IND(M). We want to show
that a”x < b is a positive multiple of one of the inqualities (7.5.13) or (7.5.14).

214 Chapter 7. Combinatorial Optimization: Some Basic Examples

Suppose first that a, < 0 for some e € E. If there is a set [€ .# with e e I
and a”y! = b, then J ;=1\ {e} € # and a” y/ > b which contradicts the validity
of a”’x < b. Hence x, = 0 holds for all points of the facet IND(M) N {x € RF |
a’x = b}. Thus, this is the same facet as IND(M) N {x | x, = 0}, which implies
that a” x < b is a positive multiple of —x, < 0.

Suppose now that a, > 0 for all e € E, and set F := {e € E | a, > 0}. We
claim that a” x < b is a positive multiple of x(F) < r(F). To prove this we show
that if I € # and a’y! = b then ¥!(F) = r(F), 1. e., INF is a basis of F. For,
suppose there is an element f € F \ I such that I’ := (I N F)U {f} € #. Then
aTy!" = aTy' +a; > a"y! = b, contradicting that a”x < b is a valid inequality
for IND(M). O

Now that we have a description of IND(M) by linear inequalities we could
try to replace the greedy algorithm by the ellipsoid method. But there is no
obvious way known to check whether a vector y € QF satisfies the inequalities
(7.5.13) and (7.5.14).

We can, however, use the ellipsoid method the other way around: since we
can solve the strong optimization problem for IND(M) in polynomial time by the
greedy algorithm, we can also solve the strong separation problem for IND(M)
in polynomial time — see Theorem (6.4.9). That is, we can test in polynomial time
whether a given nonnegative vector y € QF satisfies y(F) < r(F) for all F < E.
This algorithm for testing membership in IND(M), resulting from the ellipsoid
method, is far from being practical — it shows just the polynomial solvability
of this problem. CUNNINGHAM (1984) designed a direct combinatorial algorithm
for the separation problem for matroid polytopes based on augmenting path
techniques.

The above can be extended considerably by considering intersections of ma-
troids. Many combinatorial structures can be viewed as the common independent
sets (or common bases) of two matroids. For instance, the set of r-arborescences
in a digraph D = (V, A) is the set of common bases of the graphic matroid of the
underlying undirected graph of (V',A4 \ 6 (r)) and the partition matroid coming
from the partition {6 (v) |v e V \ {r}} of A\ 6~ (r). Furthermore, matchings in
a bipartite graph are the common independent sets of two partition matroids.

If M, = (E,#,) and M, = (E, #,) are two matroids on the same ground set E,
their intersection is the pair M; N M, := (E, #, N .#,). In general this intersection
is not a matroid; nevertheless, as was detected by Edmonds, two nice properties
are maintained: the polynomial time solvability of the optimization problem over
£1 N #, and the linear description of the associated polytope. Let us consider
the polytope associated with the intersection of two matroids, defined as follows:

IND(M| N M3) := conv{y' | I € £ N .#,}.
EpMONDS (1970) proved the following theorem.
(7.5.16) Theorem. Let M|,M;, be two matroids on the same ground set E. Then

IND(M N M,) = IND(M,;) N IND(M,),

7.5 Matroids 215
L e, IND(M,; N M,) is determined by the inequality system

(1 x, > 0 forall ee€kE,
(i1) x(F) < min{ri(F),r2(F)} forall F cE,

where r; is the rank function of M;, i = 1,2.

Proof. Clearly IND(M, N M,;) < IND(M,) N IND(M,). To show the reverse
inclusion, we use induction on |E|. For E = @, the theorem is trivial. So let E # @
and let y be a vertex of the polytope IND(M;) N IND(M,). We prove that y is
integral, which clearly implies that y e IND(M; 0 M3).

We first show that y has at least one integral component. We may assume
y>0.Let 7, :={S < E|y(S)=ri(S)}, i=1,2. Then note that F; and , are
closed under union and intersection, since, if S, T € 7 ;, then by (7.5.10):

rS)+r(T) =2 rnSNT)+rSUT) > ySNT)+ySUT)

= y(8) + y(T) = ri(S) +r(T)

and so we must have equality throughout. We define two equivalence relations
~; (i=1,2) on E as follows:

e ~; [if either e = f, or there is no subset S < E with § € 7; and

ISN{e f} =1

Let Ay, ..., A be the equivalence classes of ~; and let By, ..., B; be the
equivalence classes of ~,. If S € 77|, then S is the union of classes A;. Similarly,
if S € 7,, then S is the union of classes B;.

Since y is a vertex of the polytope defined by the inequalities (i) and (ii)
having no O-component, it is the unique solution of equations of the form
x(F) = min{r|(F),r,(F)}. By our definitions, y is therefore the unique solution
of the equations

x(S)=nr(8), SeTy,
x(S) = rz(S), Se 9_2.

It follows that the normal vectors of these equations, i. €., the incidence vectors
x5, 8 € 71 UT,, span RE; and since x5, S € 71 UJ >, is the sum of vectors A
or % by the remark above, the vectors {y* |i=1, ..., k}U{f% |j=1,...,1}
also span RE. This implies that k + ! > |E|, and in fact, strict inequality must
hold as y*' +...+ % = ¥B + ... + B

Without loss of generality we may assume that k > %IE |. Then one of the
classes A; must be a singleton, say A; = {f}. Let

U:=U{SeJ|f¢S} and
V=n{SeT | feS}

Since 7, is closed under union and intersection, U and V are also in 7.
Moreover, ¥ \ U = {f}. Namely, e € ¥ \ U implies that for every set S € 77,
e e S if and only if f € S, and this means, e ~ f. But since 4; = {f} there is no

216 Chapter 7. Combinatorial Optimization: Some Basic Examples

no element e # f with e ~, f. Therefore, we get U U {f} = U UV, and since U
and V arein 9, U U{f} € 7. Hence

yr=yUUuV)y—yU)=r(UUV)—r(U);

and thus y, is an integer. Therefore, y has at least one integral component, say
¥y, which clearly is either 0 or 1.

If y; = 0 then delete f from M; and M, to obtain M| and M;. The vector)’
obtained from y by projecting y onto RE\! is a vertex of INDM) NIND(M3).
So, by the induction hypothesis, y’ is integral. Thus y is also integral.

If y, = 1 we conclude similarly by contracting f in the matroids M; and
M,. O

From this theorem one can derive the following important formula.

(7.5.17) Corollary. Let M| = (E,.#) and M, = (E,.#,) be two matroids, with
rank functions ry and r,, respectively. Then

max{|l||I € £ NS} =min{r|(S)+r(E\S)|S € E}.
]

Polynomial time algorithms to find a maximum weight common independent
set of two matroids were given by EDMONDS (1979), FRANK (1981a), and LAWLER
(1975). These algorithms are much more involved than the greedy algorithm.
Here we show that polynomial solvability of this problem also follows from the
ellipsoid method and the greedy algorithm.

In fact, we mentioned before that the strong separation problem for matroid
polytopes is solvable in polynomial time using the greedy algorithm and the
ellipsoid method. Therefore, we can solve the strong separation problem for the
intersection of two matroid polytopes. So by the ellipsoid method again we can
solve the optimization problem for the intersection of two matroid polytopes in
polynomial time — see Exercise (6.5.18). As we have shown in Theorem (7.5.16),
the convex hull of the incidence vectors of the common independent sets of two
matroids is equal to the intersection of two matroid polytopes, we can find a
maximum weight common independent set of two matroids in polynomial time
(as we can find an optimum vertex of IND(M; N M3)).

By the same procedure, we can optimize over the intersection of three or more
matroid polytopes. Alas, the vertices of such an intersection are generally not
integral, i. e., there is no extension of Theorem (7.5.16) to three or more matroids.
Actually, the problem of finding a maximum cardinality common independent
set of three matroids (even of three matroids as simple as partition matroids) is
N P-complete. One such example is the asymmetric traveling salesman problem
which can be represented as the intersection of two partition matroids and a
graphic matroid.

We now give some examples of matroid polyhedra. First, consider the

graphic matroid (7.5.5) of a graph G = (V, E). By Theorem (7.5.15), the convex
hull of the incidence vectors of all forests of G, called the forest polytope of G,

7.5 Matroids 217

is the polytope defined by the nonnegativity constraints (7.5.13) and the rank
inequalities (7.5.14). In the graphic matroid on E, the rank of a set F < E is the
maximum number of edges of a forest contained in F, i. .,

r(F) = |V | — number of components of (V,F).
We show that the system

(7.5.18) Xe >0 forall e€kE,
x(E(W)) < |W|—1 forall Q#WcV

is a complete linear description of the forest polytope. First of all, each of
the inequalities (7.5.18) is implied by the system given in Theorem (7.5.15),
as r(E(W)) < |W]|—1. Conversely, given a rank inequality x(F) < r(F), let
V1, F1), ..., (Vk, F) be the components of (V,F). Then

x(F)=x(F1)+...+ x(Fy) < xX(E(Vy) + ...+ x(E(Vy))
<(Vi|l—D+...+(Ve]| = 1) =|V|—k =r(F)

holds for each vector x satisfying (7.5.18). So x(F) < r(F) is implied by (7.5.18).
Since we can optimize over (7.5.18) in polynomial time with the greedy algorithm
we can solve the strong separation problem for (7.5.18) in polynomial time. (A
combinatorial algorithm for this problem based on flow techniques has been
designed by PADBERG and WOLSEY (1984).)

Second, let D = (V,A) be a digraph and, for every node v € V, let a
nonnegative integer b, be given. Call a set B < A independent if |[BNJ~(v)| < b,
for all v € V. These independent sets form a partition matroid on 4 — cf. (7.5.6).
It is easy to see that for a complete description of the convex hull of all incidence
vectors of this partition matroid on A, the following inequalities suffice

(7.5.19) 0<x, <1 forall aeA,
x(0 (v) < b, forall veVl.

So the separation problem for the polytope associated with the partition matroid
defined above and a given vector y can be solved by substituting y into the
inequalities (7.5.19).

We shall now intersect these two matroid polyhedra. Let D = (V,A) be a
digraph and let r € V be a vertex, called the root. We may assume that r is
not entered by any arc. Let b, = 1 for all v € V. Consider the forest matroid
on A (induced by the underlying graph of D) and the partition matroid defined
by the vector b € RY. Theorem (7.5.16) then implies that the convex hull of the
incidence vectors of the sets independent in both matroids is given by

forall ae€A,
forall velV \({r},

(7.5.20) Q) Xg> 0
1
IW|—1 forall Q@+Wc/V.

>
(i1) x(67(v) <
(i) x(A(W)) <

file:///W/~/

218 Chapter 7. Combinatorial Optimization: Some Basic Examples

The vertices of this polytope are the incidence vectors of all branchings in
D. To obtain the convex hull of the r-arborescences we may simply set the
constraints (i1) of (7.5.20) to equality; namely, by this we obtain a face of the
polytope defined by (7.5.20) whose vertices are integral (since the polytope is
integral) and which are incidence vectors of branchings in which every node
except r is entered by exactly one arc. These arc sets are the r-arborescences
in D. Now we observe that the inequalities x(A(W)) < |[W|—1 with r e W
are superfluous, namely in this case x(4(W)) < Zuew,v%,x(é_(v)) = |W|-1.
Moreover, if # W < V \ {r} then we can transform inequality (iii) as follows:

X(AW)) < W] =1 <= x(AW)) — Y x(0"(v)) < —1 <= x(0"(W)) > L.

veW

Therefore, we can conclude that the convex hull of the incidence vectors of all
r-arborescences in D is given by

(7.5.21) x> 0 forall aeA,
x(@0 (w)=1 forall veV\{r}
x@~ (W)= 1 forall @#WcV\{r

Again, we can optimize over this polytope in polynomial time, and we can solve
the strong separation problem for (7.5.21) in polynomial time.

We leave it to the reader to explore the relation of the polytope (7.5.21) to
the polytope (7.2.2), in particular to derive from the integrality of (7.5.21) the
integrality of (7.2.2).

7.6 Subset Sums

Most of the polynomial time combinatorial optimization algorithms we have
treated in this chapter were obtained using just the ellipsoid method. In Chapter 6,
the main role of basis reduction was in handling non-full-dimensional polyhedra.
Typically, the polyhedra occurring in combinatorial optimization are, however,
either full-dimensional or can easily be transformed into such polyhedra. In
fact, in GROTSCHEL, LovAsz and SCHRUJVER (1981) a number of combinatorial
applications were derived using rounding procedures not more sophisticated than
continued fractions. (To obtain strongly polynomial algorithms, however, the use
of basis reduction seems much more essential.) In this section we illustrate that
basis reduction can sometimes be used directly in designing polynomial time
algorithms in combinatorial optimization. This application is due to LAGARIAS
and ODpLYZKO (1983).

Let us start with a story. Assume that a small company sends out bills for
amounts ai,ay, ..., a,, respectively. After a month, they get a report from their
bank that a total amount of b has been transferred to their account. Since this
is less than the total outstanding amount, they want to write letters to those

7.6 Subset Sums 219

costumers who have not paid. But the bank does not tell which of the amounts
a; have arrived, and the company tries to figure this out by trying to find a subset
of the numbers g; that adds up to b.

Of course, there may be several solutions (the most trivial way in that this
can happen is when two of the a;’s are equal), and then finding this subset does
not definitely indicate whom the company should urge. But if the numbers a;
are large compared with n and sufficiently random then — as we shall see — it is
unlikely that two subsets of them would sum up to exactly the same amount.

Mathematically, the problem is the following:

(7.6.1) Subset Sum Problem. Given n positive integers ay, ..., a,, and a positive
integer b, find a subset {iy, ..., ik} of {1, ..., n} such that

a, +...+a, =b.

Another way to put this is that we are looking for a nontrivial {0, 1}-solution
to the following equation:

(7.6.2) aix; +...+apx, — by =0.

Problem (7.6.1) is known to be 4 Z2-complete — see GAREY and JOHNSON (1979).
This seems to be of little help to the company. But the company can try to make
use of some special features of the problem. First of all, we know:

(7.6.3) Equation (7.6.2) has a nonzero {0, 1}-solution.

To locate the customers who have paid it is essential to be sure that (7.6.2)
has a unique nontrivial {0, 1}-solution. In fact, if the a; are large and random
the subsequent Lemma (7.6.5) shows that the company may even expect the
following stronger condition to hold:

(7.6.4) Equation (7.6.2) has a unique nonzero {0, 1}-solution, and every nonzero
integral solution of (7.6.2) that is not a multiple of this unique solution
has at least one component whose absolute value is at least 2".

(7.6.5) Lemma. Let {if, ..., ik} {1, ..., n} be nonempty and let N be a posi-
tive integer. Suppose that the integers a; (i =1, ..., n) are chosen independently
and uniformly from {1, ..., N} and let b := a; +...+a;,. Then (7.6.4) Is satisfied
with probability larger than 1 — 202" /N

Proof. By the choice of b, (7.6.2) has a nonzero {0, 1}-solution (x1, X2, ..., Xn, T,
say. Suppose (7.6.2) has a solution violating (7.6.4), i. €., there is a nonzero integral
vector (X, ..., %, §)7 satisfying (7.6.2) and |%;| < 2" (i=1, ..., n), [§| < 2" that
is not a multiple of (xi, ..., Xn,y)". Then

- Xi—y ifie{il,...,ik},
b Xi otherwise

220 Chapter 7. Combinatorial Optimization: Some Basic Examples

gives a nonzero vector (Xi, ..., X,)7 satisfying

(7.6.6) ax +...+a,x, =0

and

(7.6.7) Ml o < 2T

Consider now any fixed nonzero integral vector X = (X, ..., X,)”. Since the g;
are chosen uniformly and independently from {1, ..., N}, trivially the probability

that the a; satisfy (7.6.6) is not larger than 1/N. Since the number of integral
vectors satisfying (7.6.7) is smaller than 2¢*2" it follows that the probability that
(7.6.6) has a solution satisfying (7.6.7) is smaller than 2(**2" /N . This implies the
statement of the lemma. O

The significance of assumption (7.6.4) is not only that it is satisfied with high
probability (if N is large enough) but also that, if it is satisfied, the subset sum
problem can be solved in polynomial time, using basis reduction:

(7.6.8) Lemma. There exists a polynomial time algorithm that, for given positive

integers ay, ..., a,, and b, either

(i) supplies a nonzero integral solution of (7.6.2) where all components have
absolute value less than 2", or

(i1) proves that the subset sum problem has no solution.

In particular, if (7.6.4) is satisfied the algorithm solves the subset sum problem.

Proof. For n = 1 the problem is trivial. So assume n > 2. First, consider the
integral vectors (x, ..., X5, y)7 that satisfy equation (7.6.2). These form a lattice
L. Using the polynomial time algorithm of Corollary (5.4.10) we can construct
a basis of L. Next we run the algorithm of Theorem (5.3.16) to find a reduced
basis (by, ..., bu,byy1) of the lattice L.

We consider 2 cases.
Case 1: ||by]l < 2". So we can conclude with (i).
Case 2: ||b; || = 2". By Theorem (5.3.13) (b), ||by]| < 2™? min{|b|| | be L,b #0}.
Hence min{||b}| | b € L,b # 0} > 2% > \/n+ 1. This shows that L contains no
nonzero {0, 1}-vector, and thus we can conclude with (ii).

In particular, if (7.6.4) is satisfied, the vector b; yields a solution for the subset
sum problem. O

Combining these two lemmas, we immediately have the following theorem
due to LAGARIAS and ODLYZKO (1983).

(7.6.9) Theorem. There exists a polynomial time algorithm that finds a solution
of the subset sum problem (7.6.1) with probability at least 12" /N | if the given
integers ai, ..., a, are chosen independently and uniformly from {1, ..., N}
and if the given integer b is chosen such that the subset sum problem has a
solution. O

7.7 Concluding Remarks 221

The condition (7.6.4), which guarantees the success of the algorithm of Lemma
(7.6.8), seems, even in the case of the introductory example, rather strong and
somewhat artificial. But exactly this condition is satisfied if one tries to break
so-called knapsack-based cryptosystems with high redundancy rate. The methods
sketched in this section imply that most such cryptosystems are insecure in some
sense.

For instance, the basis reduction method was employed by ADLEMAN (1983)
to break the single iteration Graham-Shamir scheme, by AbDLEMAN (1983) and
LAGARIAS (1984) to attack doubly iterated Merkle-Hellman schemes, by LAGARIAS
and ODLYZKO (1983) to cryptoanalyse Merkle-Hellman und Graham-Shamir
schemes with low information rate and by BRICKELL (1985) to show the insecurity
of the iterated Merkle-Hellman, iterated Graham-Shamir schemes and Shamir’s
ultimate knapsack scheme.

7.7 Concluding Remarks

In this chapter we have discussed several problems that illustrate some of the
standard techniques that are used to apply the ellipsoid method and diophantine
approximation to combinatorial optimization problems. The framework of this
approach can be described as follows. Most combinatorial optimization problems
can be transformed into the following form:

Given a finite set S of vectors in R" and a linear objective function c, find
a vector x € S maximizing ¢’ x over S.

There is of course a trivial finite algorithm to solve this problem: Scan all
elements of S. To do better we have to assume that S is structured, 1. e., that
S is encoded in much less space than the encoding length of S. For instance, S
may be the set of incidence vectors of r-arborescences, r-cuts, perfect matchings,
odd cuts etc. in a digraph or graph; so in these cases S is given by specifying
this digraph or graph (plus an expression (name) of bounded length like “perfect
matchings in”, “odd cuts in” ...).

Our starting point for investigating these problems from a polyhedral point

of view and for applying the ellipsoid method is the observation that
max{c’x | x € S} = max{c”x | x e conv(S)}.

The set conv(S) is a polytope, and hence it can be described by a finite system
of linear inequalities

(7.7.1) alx<b,i=1,...,m

So our combinatorial optimization problem is equivalent to the linear program

(7.7.2) max ¢’ x

a,-szb,-, i=1...,m

222 Chapter 7. Combinatorial Optimization: Some Basic Examples

It may happen in some very fortunate cases that such inequalities can be easily
found and listed as in the case of perfect matchings of bipartite graphs — cf. (7.3.4).

In other cases, m is exponentially large but the system still has a nice
characterization in the sense that there is a polynomial time algorithm to test
whether a given point satisfies all inequalities, and if not, to find a violated
inequality. Then the ellipsoid method can be applied to solve the combinatorial
optimization problem in polynomial time. In this approach the combinatorial
difficulties are concentrated on finding the set of inequalities describing conv(S).
Historically, such systems of inequalities were frequently derived as by-products
of polynomial time algorithms. As we saw before, often there are fairly short
direct proofs of such polyhedral characterizations. The ellipsoid method shows
that the implication can be turned around and that a polyhedral characterization
can directly give the polynomial solvability of a problem.

Sometimes, dual solutions of (7.7.2) are of combinatorial interest, €. g., they
may give a Tutte-set as in Section 7.3. We have also seen an example where
certain integral dual solutions are of primary interest, namely the edge colorings
of bipartite graphs in Section 7.4. If the primal problem can be solved in
polynomial time, the general methods of Chapter 6 enable us to find basic
optimum dual solutions in polynomial time. However, these basic dual solutions
may not be integral, even if integral optimal dual solutions exist. So they
may not correspond to the desired combinatorial structures (like Tutte-sets or
edge colorings). No general method is known to obtain integral optimum dual
solutions, but in many cases special properties of the problem may be used to
construct such solutions from any optimal dual solution.

In most cases the original linear program (7.7.2) is also beyond control in
various respects:

— There is (usually) no (nontrivial) characterization of a linear system known
describing conv(S).

— The problem of deciding whether an inequality belongs to such a system is
often at least as hard as the original optimization problem.

— Sometimes, even if such a system of inequalities is known, deciding whether a
point satisfies all these inequalities is not the least bit easier than the original
problem.

But even in such cases the methodology described before might be quite
helpful — even for practical purposes, a matter we were not concerned too much
about yet. The idea behind this approach is the following.

Quite frequently it is possible to determine some large classes of inequalities
that define facets of conv(S) and for which one can check in polynomial time
whether a given point satisfies them or not. Thus, using the ellipsoid method,
one can optimize over these inequalities in polynomial time — theoretically.

It is known that the ellipsoid method is not the most efficient algorithm in
practice. So one simply replaces the ellipsoid method by the simplex method
(or whatever linear programming algorithm one prefers) and proceeds in the
same manner by iteratively adding cutting planes. That is, one chooses some
classes of valid inequalities for conv(S), all facet defining if possible, for which
the separation problem is solvable in polynomial time. If no polynomial time

7.7 Concluding Remarks 223

separation algorithms exist (or if they are too time consuming), well-designed
and fast separation heuristics may also do. Then one chooses an initial linear
programming relaxation, finds an optimum vertex solution, and checks whether
the optimum solution is in S. If not, one searches the chosen classes for
inequalities violated by the present optimum, adds them to the linear program
and continues until a point is found that optimizes the given objective function
over the inequalities considered. If the point is in S the problem is solved. If
it is not in §, usually a very good bound on the optimum value of the original
problem is obtained.

There are a number of hard combinatorial optimization problems where
the known classes of facet defining inequalities are rather good approximations
of conv(S), so that in practical computations optimum solutions over these
inequalities often turn out to be in S. Even if the solutions obtained this way
are not in conv(S) they may be very helpful in a branch-and-bound framework
— see GROTSCHEL (1982), PADBERG and GROTSCHEL (1985). These methods are
not polynomial, but they work reasonably well in practice.

Inspired by this practical experience one may even go back to the starting
point and use these ideas to solve problems known to be in 2 with nonpolyno-
mial cutting plane techniques. This has for instance been done in GROTSCHEL and
HoLLAND (1985) for the perfect matching problem. The simplex method is used
to solve the linear program (7.3.3) (without integrality conditions). If the solution
is integral, one terminates. Otherwise separation heuristics and, if these fail, the
separation algorithm of PADBERG and Rao (1982) for this problem — cf. Section
7.3 —is used to find violated odd cut constraints. These are added to the present
LP, and the simplex method is called again, etc. This method is guaranteed to
terminate in finite (but not in polynomial) time. Practical computational experi-
ence has shown that for large problems, say at least 300 nodes, this cutting plane
method is compatible with the best known combinatorial algorithms. Whether
for other combinatorial optimization problems such cutting plane algorithms are
also competitive with the best combinatorial methods remains to be explored.

The significance of the ellipsoid method in combinatorics is not in suggesting
alternative techniques to efficient algorithms. Rather, one can prove the existence
of a polynomial time algorithm for many problems by the techniques described
above quite easily. This points out those problems for which the search for
practically efficient (combinatorial and not ellipsoidal) polynomial time methods
should start. We shall give a number of examples in subsequent chapters
where the only polynomial time algorithms known to date use the ellipsoid
method (minimization of submodular functions, finding maximum stable sets
and minimum colorings of perfect graphs). Here a field of research is opened,
namely, finding “really good” combinatorial algorithms for these problems.

One way to view the techniques described in this chapter is that the ellipsoid
method reduces one combinatorial problem to another one. Examples, already
mentioned, are the reduction of the minimum r-arborescence problem to the
minimum r-cut problem, the reduction of the minimum perfect matching problem
to the minimum odd cut problem, etc. The ellipsoid method can again be applied
to reduce the minimum r-cut problem to the minimum r-arborescence problem,
and the minimum odd cut problem to the minimum perfect matching problem,

224 Chapter 7. Combinatorial Optimization: Some Basic Examples

etc. It is thus a matter of taste for which of these problems one wants to
design a polynomial time algorithm. The ellipsoid method automatically yields a
polynomial time algorithm for the other.

To go further, one might think of using the ellipsoid method as a unifying
procedure that — supplemented with trivial transformations — reduces any poly-
nomially solvable combinatorial optimization problem to a “basic problem” for
which a very simple polynomial time algorithm is known. As we shall see in
Chapter 10, one such “almost basic problem” is the polymatroid optimization
problem, which can be easily solved with the greedy algorithm. We shall show
that quite a large number of combinatorial optimization problems can be reduced
to this problem using the ellipsoid method and simple transformations.

* Chapter 8

Combinatorial Optimization: A Tour d’Horizon

In Chapter 7 we have introduced several basic combinatorial optimization prob-
lems, and we have shown in detail how the ellipsoid method and basis reduction
together with polyhedral information about these problems can be used to design
polynomial time algorithms. In this chapter we give an overview about combi-
natorial optimization problems that are solvable in polynomial time. We also
survey important theorems that provide polyhedral descriptions of the polytopes
associated with these problems. We indicate how these results can be employed
to derive polynomial time algorithms based on the ellipsoid method and basis
reduction. The results of this chapter are presented in a condensed form, to cover
as much material as possible.

For most of the problems considered, the strongly polynomial time solvability
of the problems follows directly from Theorem (6.6.5). This holds for all “primal”
problems in particular. Among the “dual” problems we treat, there are a few
exceptions. Sometimes the standard procedure does not work but there are ad
hoc methods with which strong polynomiality can be derived. For instance, the
algorithm given for the arborescence packing problem (8.4.11) is not strongly
polynomial, but using a method of MADER (1983) it can be made strongly
polynomial. In a few cases our polynomial time procedures do not translate
into strongly polynomial ones, e. g., the algorithm given for the halfintegral
multicommodity cut packing problem (8.6.4) for certain types of graphs does not
seem to be modifyable into a strongly polynomial one. If we allow the operation
of rounding a number to the nearest integer among the elementary arithmetic
operations, all these algorithms can, however, be made strongly polynomial.

*8.1 Blocking Hypergraphs and Polyhedra

Many combinatorial optimization problems can be nicely treated in the following
framework, due to FULKERSON (1968, 1971) and LEHMAN (1965).

A hypergraph H is a finite set of finite sets. The elements of UH are called
the nodes of H, and the elements of H are called the edges of H. A clutter is a
hypergraph in which no edge contains another.

The blocker BL(H) of a hypergraph H is the set of all inclusion-minimal
sets intersecting all edges of H. So BL(H) is a clutter. For example, given a
strongly connected digraph D = (V,A) and r € V, the set H of all r-cuts of D
forms a hypergraph with node set A\ 87 (r); its blocker BL(H) is the set of all
r-arborescences of D — see Section 7.2.

226 Chapter 8. Combinatorial Optimization: A Tour d’Horizon
The following result is elementary. If H is a clutter, then
(8.1.1) BL(BL(H)) = H.

We shall be interested in finding an edge with minimum weight in a hy-
pergraph with nonnegative weights on its nodes. To formulate this problem
polyhedrally, we consider the dominant of the incidence vectors of the edges of
H, denoted by dmt(H), i. e.:

(8.1.2) dmt(H) = conv{y® e RY | Ee H} + R}".

We can use the blocker BL(H) of H to obtain valid inequalities for the dominant
of H:

(8.1.3) (a) x, >0 forall veUH,
(b) x(F)>=1 forall F eBL(H),

where x(F) :=) .r Xe. A hypergraph H has the max-flow min-cut property
(or Q,-max-flow min-cut property, or @,-MFMC property) if (8.1.3) is sufficient
to describe dmt(H). Clearly this is equivalent to saying that the polyhedron
described by (8.1.3) has integral vertices only, i. e., the system (8.1.3) is TPI. To
digest the name, the reader may work out that the hypergraph of (r,s)-cuts in
a digraph has the max-flow min-cut property. This definition is due to LEHMAN
(1965). The significance of it is that H has the max-flow min-cut property if and
only if for every weight function w : UH —» Z,,

(8.14) min{w(E) |Ec H} =max{ Y Ar| 4 >0 forall F € BL(H),
FeBL(H)

ZAF <w, for all ve UH}.
Fav

This is an immediate consequence of the duality theorem of linear program-
ming. Lehman proved the following interesting fact.

(8.1.5) Theorem. A hypergraph has the max-flow min-cut property if and only
if its blocker has.

Proof. Recall the definition of the blocker bi(S) of a set S < R} given in Section
0.1, and observe that the max-flow min-cut property is equivalent to the equation

(8.1.6) dmt(H) = bl(dmt(BL(H))).
Using (8.1.1) and applying the operator bl to (8.1.6), we get

bl(dmt(BL(BL(H)))) = bl(dmt(H)) = bl(bl(dmt(BL(H))))
— dmt(BL(H)).

8.1 Blocking Hypergraphs and Polyhedra 2217

It will be interesting to see in the examples that follow how this simple result
implies the equivalence of rather different min-max results.

The right hand side of equation (8.1.4) is of additional combinatorial interest
if there is an integral optimal system of the A’s. In this case, the maximum can
be interpreted as a maximum packing of edges of the blocker. If this happens for
each w : UH — Z,, the hypergraph BL(H) is said to have the Z,-max-flow min-
cut property (Z,.-MFMC property). In other words, BL(H) has the Z,-MFMC
property if the system (8.1.3) is TDI. Lehman’s theorem (8.1.5), however, does
not extend to the Z,-max-flow min-cut property — consider, e. g., the hypergraph
of triangles in Kj.

Even if it does not have the max-flow min-cut property, the blocker of a
hypergraph H provides an integer programming formulation of the problem of
finding a minimum weight member of a hypergraph, namely, for every weight
function w : UH —» @Q,,

(8.1.7) min{w(E) | Ee H} = min{w”x | x(F) =1 for all F e BL(H),
x. >0 for all e e UH, x integral}.

Then we may consider the LP-relaxation, its dual, and the associated integer
linear program, which are related as follows:

8.18) min{w(E) |EcH} =
=min{w’x | x(F) >1 forall F e BL(H),

x >0,
x integral}

> min{w”x | x(F) >1 forall F e BL(H),
x >0}

= max{Y ppra) AF | LrenL) AF F<w,
Ar >0 for all F € BL(H)}

> max{d p. A | ZpepLim A1 < W,
FeBL(H) (H) Ap >0 for all F € BL(H),

Ar integral for all F € BL(H)}.

Similarly for the blocker BL(H) of H we have:

(8.19) min{w(F) | F e BLH)} =

= min{w7x | x(E) >1forall E€H,
x >0,
x integral}

> min{w’x | x(E) >1forall E€H,
x >0}

228 Chapter 8. Combinatorial Optimization: A Tour d’Horizon

=max{d pey AE | Xgeny Asx® < w,
A >0 forall Ee H}

2 max{ZEeH AE I ZEEH AEXE <w,
Ap >0forall Ee H,

Ag integral for all E € H}.

The first and last programs in (8.1.8) and (8.1.9) have combinatorial contents.
The first lines express the problem of finding a minimum weight edge of a clutter
or, equivalently, finding a minimum weight node cover for its blocker. The last
lines are problems of packing edges of a clutier. The two middle lines may be
viewed as fractional versions of these problems.

We know by Lehman’s theorem that, if the first inequality in (8.1.8) holds
with equality for all w > 0O, then so does the first inequality in (8.1.9), and vice
versa. We also know from Theorem (0.1.53) that, if the second inequality in
(8.1.8) holds with equality for all w > 0 then so does the first inequality in (8.1.8).
So in this case, BL(H) has the Z,-MFMC property. Similar results hold with H
and BL(H) interchanged.

The results described above can be exploited algorithmically in the following
way. Whenever H has the max-flow min-cut property, equality holds in the first
inequality of (8.1.8), and thus, we have a linear programming formulation of the
problem of finding a minimum weight edge of a hypergraph. By the results of
Chapter 6, this linear program can be solved in polynomial time if and only if the
separation problem for the inequality system (8.1.3) can be solved in polynomial
time. Given y € RYY | the nonnegativity constraints here are easy to check. The
separation problem for the blocking constraints (b) of (8.1.3) is equivalent to
finding an edge F* € BL(H) of minimum weight y(F*). If y(F%) < 1, then
x(F*) > 1 1s a violated inequality, otherwise y satisfies (8.1.3). Summing up these
considerations and using Theorems (6.4.9) and (6.5.14) we obtain the following
result.

(8.1.10) Theorem. There exist oracle-polynomial time algorithms that, for any
hypergraph H with the Q,-MFMC property given by its underlying set V = | H
and by an oracle that, for every weight function ¢ : V — Q,, returns a minimum
weight edge of H, solve the following problems:

(a) given any weight function w : V — Q,, find a minimum weight edge of
BL(H),

(b) given any weight function w : V — Q,, find edges Ey, ..., E, of H and
positive rationals 1y, ..., A such that A x*' +...+ AyF < w and such that
Ay + ...+ A, 1s as large as possible;

(c) the problem in (b) with H replaced by BL(H). O

If a hypergraph H has the Z, -max-flow min-cut property then (8.1.4) provides
a linear programming formulation of the problem of finding a maximum w-
packing of the edges of H. However, though the existence of an integral
optimum solution of this LP is guaranteed, the ellipsoid method may fail to find

8.2 Problems on Bipartite Graphs 229

it, and we do not know any general procedure to calculate an integral optimum
solution from a fractional one that works for all hypergraphs with the Z,-max-
flow min-cut property. Nevertheless, in all cases we know of, special techniques
like “uncrossing” (to be described later in this chapter — see, e. g., (8.4.5)) yield
such integral optimum solutions.

As described above for hypergraphs with the max-flow min-cut property,
there is an oracle-polynomial time algorithm to find a minimum weight edge
of a hypergraph H if and only if there is such an algorithm for the same
problem for the blocker of H. For all hypergraphs with the max-flow min-cut
property we know, the minimum weight edge problem is in fact solvable in
oracle-polynomial time. An outstanding open problem is the following: Is there
an oracle-polynomial time algorithm that, for any hypergraph H (given by an
oracle telling whether a given set belongs to H or not) with the max-flow min-cut
property and for any w : UH — (), finds a minimum weight edge?

In Section 0.1 we have not only introduced blocking polyhedra but also
antiblocking polyhedra. Analogously, one can define the antiblocker of a hyper-
graph. This notion gives rise, at least partially, to similar results as above, but is
best treated in the framework of perfect graphs, and is therefore postponed to
Section 9.2.

*8.2 Problems on Bipartite Graphs

In this section we discuss a number of optimization problems defined on bipartite
graphs that will turn out to be basic to many other combinatorial optimization
problems. They are basic in the sense that a wide range of combinatorial
optimization problems and almost all combinatorial min-max relations contain
a bipartite graph problem as a — generally nontrivial — special case. For instance,
the matching problem for bipartite graphs can be considered as a special case of
the max-flow problem, of the matching problem for general graphs, of the stable
set problem for perfect graphs, and of the matroid intersection problem.

First let us recall some definitions and notation. Let G = (V, E) be a graph.
A matching is a collection of pairwise disjoint edges. The matching number of
G, denoted by v(G), is the maximum size of a matching. A stable set (clique,
respectively) is a subset S of the node set ¥ such that each two nodes in § are
nonadjacent (adjacent, respectively). The stability number resp. the clique number
is the maximum cardinality of a stable set resp. clique in G, and is denoted by
«(G) resp. w(G). A node covering (edge covering, respectively) is a subset W < V
(F < E, respectively) such that every edge contains at least one node in W
(every node is contained in at least one edge in F, respectively). The minimum
cardinality of a node covering resp. edge covering is called the node covering
number resp. the edge covering number, and is denoted by ©(G) resp. p(G). A
partition of ¥V into stable sets (cliques, respectively) is called a coloring (clique
covering, respectively) of G. The coloring number resp. the clique covgring num!)er
is the smallest number of stable sets in a coloring resp. cliques in a cllqug_coverlng
of G, and is denoted by y(G) resp. %(G). An edge coloring is a partition of E

230 Chapter 8. Combinatorial Optimization: A Tour d’Horizon

into matchings. The edge coloring number is the smallest number of matchings
in an edge coloring of G, and is denoted by y(G). The maximum degree in G is
denoted by A(G), and the minimum degree by 6 (G).

We will see that for a bipartite graph G, various relations exist between the
v(G), T(G), 2(G), w(G), p(G), x(G), ¥(G), y(G), A(G), 6(G), and that each of these
numbers can be computed in polynomial time (the last two trivially, of course).

First of all, for each graph G = (V, E) without isolated nodes, one has the
following obvious relations:

(8.2.1) v(G) < t(G),
(G) < p(G).

In addition, we have the following identities — see GALLAI (1959):

(8.2.2) «G) +1(G) = |V,
v(G) + p(G) = |V |,

where the last equation only holds if G has no isolated nodes.

The triangle K; shows that strict inequalities can occur in (8.2.1). By Gallai’s
identities (8.2.2), equality in one of the inequalities (8.2.1) implies equality in the
other (provided G has no isolated nodes).

Konig was one of the first to study optimization problems for graphs. The
following theorem was presented in KONIG (1931), but finds its roots in earlier
papers by FROBENIUS (1912, 1917) — see Theorem (7.3.1) — and KonNIG (1915,
1916) (for an account of the history of these and related results, and for proofs
see LovAasz and PLUMMER (1986)).

(8.2.3) Konig’s Matching Theorem. If G is a bipartite graph, then the matching
number v(G) is equal to the node covering number 1(G).]

This theorem combined with Gallai’s identities gives another result of KONIG
(1933).

(8.2.4) Konig’s Edge Covering Theorem. [If G is a bipartite graph without
isolated nodes, then the edge covering number p(G) is equal to the stability
number a(G). O

These two theorems of Konig are among the first in a row of useful min-max
relations. Konig’s matching theorem (8.2.3) gives a good characterization of both
the matching problem and the node covering problem for bipartite graphs. That
is, these problems belong to A2 N co-A42. A similar conclusion follows from
Konig’s edge covering theorem (8.2.4). This is typical for most of the min-max
relations to be dealt with in this chapter: they all yield good characterizations
for the corresponding optimization problems.

In fact, each of the optimization problems corresponding to the Konig’s
theorems is in 2. Polynomial algorithms to find explicitly a matching of maximum

8.2 Problems on Bipartite Graphs 231

size and a node covering of minimum size in a bipartite graph have been designed
by ForD and FULKERSON (1957) and HALL (1956) (running time O(|V |)), and
by Hopcrort and Kare (1973) (O(|V|>?)). In fact, the running time of the
Hopcroft-Karp algorithm is O(|E||V'|'/?), as was shown by GALIL (1983). Using
the fact that also Gallai’s identities are polynomially constructive, one easily
transforms these algorithms to solving the stable set and edge covering problems
for bipartite graphs.

Since cliques in bipartite graphs have size one or two, Konig’s edge covering
theorem, equivalently states that, for bipartite graphs G, the stability number
a(G) is equal to the clique covering number ¥(G). Similarly, the clique covering
problem for bipartite graphs is polynomially solvable.

These methods and results can be extended to the weighted case. If G = (V , E)
is a graph and w : E - @Q is a weight function on the edges then we denote
the maximum weight w(M) =), w. of a matching M in G by v,(G). If
w : V — @Q is a weight function on the nodes, then we denote the maximum
weight w(S) =) ¢ w, of a stable set S in G by a,(G).

In general, if w is some weight function and ¢(G) is some graph parameter
(like 7(G), ®(G) etc. as defined above) we denote the weighted version of this
parameter by ¢, (G) (like 7, (G), w,(G) etc.), or — if the indices become too clumsy
— we write @(G,w) etc..

Konig’s theorems have the following weighted versions.

(8.2.5) Theorem. For any bipartite graph G = (V ,E) and any weight function
w : E - Z, on the edges, the maximum weight v,,(G) of a matching is equal to
the minimum value of Y, y,, where, for each node v € V, y, is a nonnegative
integer such that y, + y, > w,, for each edge uv € E. O

(8.2.6) Theorem. For any bipartite graph G = (V ,E) and any weight function
w : V — Z, on the nodes, the minimum weight t,,(G) of a node covering is equal
to the maximum value of Y, x., where, for each edge e € E, x, Is a nonnegative
integer such that x(6 (v)) < w, for each nodeve V. O

(8.2.7) Theorem. For any bipartite graph G = (V,E) without isolated nodes
and any weight function w : E — Z, on the edges, the minimum weight p,(G)
of an edge covering is equal to the maximum value of } .., y», where, for each
node v € V, y, is a nonnegative integer such that y, +y, < wy, for each ed%
uv e E.

(8.2.8) Theorem. For any bipartite graph G = (V , E) without isolated nodes and
any weight function w : V — Z, on the nodes, the maximum weight a,,(G) of a
stable set is equal to the minimum value of Y, X., where, for each edge e € E,
X Is a nonnegative integer such that x(d(v)) > w, for each nodeve V. O

These results contain Konig’s theorems by taking all weig_hts equz?.l to one.
Result (8.2.5) was first stated by EGERVARY (1931). The assertions easily follow

232 Chapter 8. Combinatorial Optimization: A Tour d’Horizon

from the total unimodularity of the node-edge incidence matrix M of the bipartite
graph G — see Section 7.1. Indeed, the four theorems above correspond to the
following four linear programming duality equations:

(8.2.9) max{w'x | x> 0,Mx <1} =min{17y|y>0,y"M > wT},
min{y"w |y > 0,y"M > 1"} =max{1’x|x>0,Mx < w},
min{w”x | x> 0,Mx>1} =max{1’y|y=>0,y'M <wT},
max{yTw |y 2= 0,y"M <17} = min{1"x | x > 0,Mx > w},

where in the last two cases the underlying bipartite graph G is assumed to have
no isolated nodes.

The total unimodularity of M yields that each of these linear programming
problems has integer optimum solutions, which implies the results (8.2.5) up to
(8.2.8). (Alternatively, results (8.2.6) and (8.2.8) can be derived directly from
Konig’s theorems (8.2.3) and (8.2.4) by splitting each node v into w, mutually
nonadjacent new nodes.)

So each of the numbers a,(G), 1,(G), vw(G), pw(G) can be defined as the
optimum value of a linear program whose constraints can be trivially constructed
from the given bipartite graph. Hence it follows that they can be computed in
polynomial time using the ellipsoid method. Note that this is a direct application
of Khachiyan’s original version of the ellipsoid method. By finding vertex
solutions we can also determine maximum stable sets, minimum node coverings,
maximum matchings, and minimum edge coverings in polynomial time.

Result (8.2.8) implies that «,(G) = ¥,,(G) for all bipartite graphs. It is trivial
to see that also the (complementary) relation . (G) = yw(G) holds for bipartite
graphs (EGERVARY (1931)).

There are many closely related optimization problems which are important
in practical applications and which can be handled along similar lines, €. g.:

(8.2.10) Optimal Assignment Problem. Given an integral nxn-matrix (w;;), find
a permutation ¢ of {1, ..., n} such that Y | wi Is as large as possible.

(8.2.11) The (Hitchcock-Koopmans) Transportation Problem. Given an integral
m x n-cost matrix (c;), an integral “supply” vector b = (by,..., b,)T, and an
integral “demand” vector d = (d, ..., d,)7, find nonnegative integers xij (i =
1,...,m;j =1,...,n), such that Z;f:lx,-j <b (i=1...,m and Y x; > d;
(=1,...,n), and such that) cijx; is as small as possible.

(8.2.12) The Capacitated (Hitchcock-Koopmans) Transportation Problem.
This is problem (8.2.11) where in addition integral upper bounds are given for
the Xij -

Again, good characterizations may be derived from the total unimodularity of
the corresponding matrices. A common generalization of many of these problems
is the following.

(8.2.13) Given a bipartite graph G = (V,E) and functions by;,by, : V — Z,
ci,¢,w : E > Z, find a vector x € ZE satisfying ci(e) < x(e) < cae) for each

8.3 Flows, Paths, Chains, and Cuts 233

edge e and by(v) < x(6(v)) < by(v) for each node v, such that ¥
small as possible.

g W(e)x(e) is as

By the total unimodularity of the corresponding matrix, the optimum value
of problem (8.2.13) is equal to the maximum value of

(82.14) Y 010) - bi®) = 120) - b)) + Y (21(0) - c1(6) — z2(e) - cafe)),

veV ecE

where y;,y, are nonnegative integral vectors in R and z;,z, are nonnegative
integral vectors in R such that z(e) — z»(e) + D e V1 () — y2(v)) is equal to wie),
for each edge e€ E.

Therefore, problem (8.2.13) and its dual include the problems given by (8.2.3)
up to (8.2.12). Note that in (8.2.13) we may have negative values, and that
problem (8.2.13) can be reduced easily to the case where ¢; = 0 and b; > 0.

As a special case of the previous min-max result we obtain:

(8.2.15) Supply-Demand Theorem. Let G = (V,E) be a bipartite graph with
color classes S and T. Letb : T - R, be a “supply function”, andd : S - R,
a “demand function”. Then this demand is “satisfiable from the supply”, i. e.,
there exists a function y : E — IR such that

ZJ’(e) =d(s) forallseS,
€3s

S ye) <b) forallteT,

et

if and only if
diU) <b(I'(U)) forallU < S.

O

Here I'(U) denotes the set of nodes in T adjacent to at least one node in U.

KuUHN (1955, 1956) developed a polynomial time algorithm to solve the
assignment problem. This algorithm, called the “Hungarian method”, at the
same time also solves the dual of the assignment problem and has a running time
of order |V |? (see also MUNKRES (1957) and BaLINskI and GOMORY (1964)). With
some adaptations, this method also solves the problems (8.2.6) up to (8.2.12). In
fact, also the general problem (8.2.13) can be solved in polynomial time, viz. by
the minimum cost flow algorithm — cf. Section 8.3. In the same way as described
above these problems can be solved with the ellipsoid method in polynomial
time.

* 8.3 Flows, Paths, Chains, and Cuts

We next discuss a first type of generalization of the problems on bipar?ite graphs
dealt with in Section 8.2, namely problems on flows, dipaths and cuts in directed

234 Chapter 8. Combinatorial Optimization: A Tour d’Horizon

graphs, and on chains and antichains in partially ordered sets. The problems
and results treated below are in terms of directed graphs. The corresponding
problems and methods for undirected graphs mostly follow straightforwardly by
replacing undirected edges uv by two (directed) arcs (u,v) and (v, u).

One of the most important classes of combinatorial optimization problems is
formed by the so-called network flow problems. The first breakthroughs in the
theory and the applications of combinatorial optimization were obtained in this
field, and they initiated various areas of research like “polyhedral combinatorics”
and “good algorithms”. The classical monograph on flow theory is FOrRD and
FULKERSON (1962).

We start with some easy problems and results.

Let D = (V,A) be a digraph. A potential is a function ¢ : V' — @Q. Consider
the following problem.

(8.3.1) Maximum Potential Problem. Given a digraph D = (V' , A), two different
nodes r,s € V, and a length functionl : A — Q,, find a potential ¢ such that
¢(v) —@d(u) < l(a) for each arc a = (u,v) € A and such that the potential difference
¢(s) — @(r) is as large as possible.

It is trivial to show that the optimum value of this problem is equal to the
optimum value of the following problem.

(8.3.2) Shortest Dipath Problem. Given a digraph D = (V,A), two different
nodes r,s € V', and a length function | : A — Q,, find an (r,s)-dipath in D of
minimum length.

The following (easy) theorem will turn out to be analogous to the Max-Flow
Min-Cut Theorem (7.1.4).

(8.3.3) Max-Potential Min-Work Theorem. For any digraph D = (V , A), any
two different nodes r,s € V, and any length function | : A — Q,, the maximum
potential difference ¢(s) — ¢(r) subject to ¢p(v) — ¢p(u) < l(a) for each arc a =
(u,v) € A is equal to the minimum length of an (r,s)-dipath in D. Moreover, if
all lengths are integral, there exists an integral optimum potential.

Proof. To see that both optimum values are equal, first observe that the optimum
value of (8.3.1) cannot be more than the optimum value of (8.3.2), and second
that defining ¢(v) := the minimum length of an (r,v)-dipath, for v in V', yields a
potential for which equality holds. O

These results can also be derived from the total unimodularity of the corre-
sponding matrices.

If ¢ is an integer potential on D = (V, A) with ¢(s) —¢(r) = t, then there exist
(r,s)-cuts Cy, ..., C, such that for each arc a = (u,v) the number of those i for
which arc a belongs to C; is at most ¢(v) — ¢(u). This then implies the following
combinatorial version of the max-potential min-work theorem, which seems to
have been first observed by FULKERSON (1968).

8.3 Flows, Paths, Chains, and Cuts 235

(8.3.4) Theorem. For any digraph D = (V,A) and any two different nodes
r,s € V, the maximum number of pairwise disjoint (r,s)-cuts is equal to the
minimum number of arcs in an (r,s)-dipath. a

Both problems (8.3.1) and (8.3.2) can be solved in polynomial time by simple
algorithms, €. g., the ones by DIIKSTRA (1959), PRiM (1957), MOORE (1959), FLOYD
(1962), WARSHALL (1962).

The maximum potential problem (8.3.1) is an explicit linear program and can
hence be solved in polynomial time by Khachiyan’s method as well. The shortest
(r,s)-dipath problem (8.3.2) is the dual of this linear program, namely (8.3.2) can
be written as:

0 ifr#v+#s,
(8.3.5) minz lxe —x(0T (W) +x(6"(v)) = { —-1 fv=r
aeA 1 ifv=s,

x, >0 forall ae A

The incidence vector of any (r,s)-dipath is obviously a feasible solution of
(8.3.5). Suppose we have any optimum solution x* of (8.3.5). We can construct
from x* an integral solution as follows. By depth-first search we can easily
find an (r,s)-dipath in D = (V,A4") where A* = {a € A | x, > 0}. This dipath
vo, V1,02, ..., Uy, say, with vy = r, v, = s, 1s a shortest (r,s)-dipath, since for the
optimal potential ¢* we have by complementary slackness — see (0.1.50) —~

d)‘(vi) - ¢'(vi~l) = lU,,]U,a l: 19 sy ka

and hence by adding these equations, ¢*(s) — ¢*(r) = Ly, + loyo, + -+ + by 0,
Another way to obtain a shortest (r,s)-dipath is to find an optimum vertex
solution of (8.3.5). From the total unimodularity of (8.3.5) it follows that this is
the incidence vector of a shortest (r, s)-dipath.

Some of the algorithms mentioned above allow negative lengths, provided
that no directed cycle of negative total length occurs. If we did not pose any
condition like this the problem would become A4Z-complete.

When negative lengths occur we should be careful in deriving similar results
for undirected graphs: replacing an undirected edge of negative length by two
oppositely oriented arcs would create a directed cycle of negative length. Yet
the shortest path problem for undirected graphs is polynomially solvable also
if negative lengths occur, provided that no (undirected) circuit of negative total
length occurs. This however is more difficult — see the remarks after (8.5.17).

Shortest dipath algorithms can be applied to solve several other combinatorial
optimization problems. The problems of finding a shortest directed cycle in a
digraph or a shortest circuit in a graph can be trivially reduced to the shortest
dipath problem. As a less trivial example, consider the following problem:

(8.3.6) Shortest Odd Cycle Problem. Given a digraph D = (V,A) and a length
function | : A — Q,, find an odd directed cycle of minimum length.

236 Chapter 8. Combinatorial Optimization: A Tour d’Horizon

Problem (8.3.6) can be solved by at most |V | applications of a shortest dipath
algorithm as follows. Split each node v € V' into two nodes v; and v,. For each
arc (v,w) € A make new arcs (v, w;) and (v, w;), both of length I,,. Let D’ be
the digraph constructed this way. For each v € V, find a shortest (vy, v2)-dipath
in D’. The shortest among these dipaths will give us the shortest odd directed
cycle in D.

This algorithm also gives us a method to find a shortest odd circuit in an
undirected graph. The problem of finding a shortest even circuit in an undirected
graph with nonnegative edge lengths is also polynomially solvable. Namely,
this problem can be reduced trivially to |E| shortest odd path problems. This
latter problem can be reduced to a minimum weight perfect matching problem
by taking two copies of the graph and joining corresponding nodes by edges of
weight 0.

Because of the polynomial solvability of (8.3.6) one might expect similarly
that the even version of (8.3.6) is also easy. But at present it is not known
whether the problem of deciding whether a digraph contains an even directed
cycle is hard or easy. In fact, THOMASSEN (1985) showed that the problem of
deciding whether a digraph D = (V', A) contains an even resp. odd directed cycle
containing a prescribed arc a € 4 is #P-complete. This also implies that it is
AP-complete to find a shortest dipath of even resp. odd length in a digraph.

As a side remark we mention that there are some open polyhedral questions
with respect to odd and even cycles, circuits and paths. Since — for nonnegative
weight functions — we can solve the shortest cycle and odd cycle problem
in digraphs and the shortest circuit, odd circuit, even circuit, odd path, and
even path problem in undirected graphs, we can minimize nonnegative weight
functions over the dominant of the convex hull of the incidence vectors of cycles,
odd cycles, circuits, odd circuits etc.. Hence by the ellipsoid method, for every
inequality ¢T x > 7, ¢ > 0 valid for one of these dominants we can find inequalities
al x > ay, ..., al x > o defining facets of the dominant such that ¢ = a; +...+ax
and y < oy +...+ o in polynomial time. But for none of these dominants is an
explicit description by a system of linear inequalities (let alone a list of facets)
known.

We now relate the results stated above to flow problems. Recall the following
fundamental problem of flow theory from Section 7.1.

(8.3.7) Maximum (7, s)-Flow Problem. Given a digraph D = (V' , A), two different
nodesr,s € V and a capacity function ¢ : A - Q,, find an (r,s)-flow subject to c
of maximum value.

There are numerous good algorithms to solve the maximum flow problem
with which instances of tremendous sizes can be solved very quickly in practice.
As mentioned in Section 7.1, the most prominent algorithm among these is the
Ford-Fulkerson method. A polynomial implementation of this method was found
by DiniTs (1970). Surveys of the state-of-the-art on theoretical efficiency can be
found in GALIL (1981) and PapaDIMITRIOU and STEIGLITZ (1982), and on practical
efficiency in GLOVER, KLINGMAN, MOTE and WHITMAN (1979), CHEUNG (1980),

8.3 Flows, Paths, Chains, and Cuts 237

TArJAN (1986). An interesting new method was recently discovered by GOLDBERG
and TARJAN (1986).

We have discussed that Ford and Fulkerson’s algorithm directly also solves
the following problem:

(8.3.8) Minimum (r,s)-Cut Problem. Given a digraph D = (V' , A), two different
nodesr,s € V, and a capacity function ¢ : A — Q,, find an (r,s)-cut of minimum
capacity.

The famous max-flow min-cut theorem has already been stated in (7.1.4).
There is an alternative way of formulating this theorem. Notice that if D = (V, A)
is a digraph, r,s € V', and x is an integer (r,s)-flow of value t, then there exist
(r,s)-dipaths Py, ..., P, in D such that for each arc a, the number of those i for
which arc a belongs to P; is at most x,. This implies:

(8.3.9) Max-Flow Min-Cut Theorem (second version). For any digraph D =
(V,A), any two different nodes r,s € V and any capacity function ¢ : A - Z,,
the minimum capacity of an (r,s)-cut is equal to the maximum number of (not
necessarily distinct) (r,s)-dipaths such that each arc a is contained in at most c,
of these dipaths. O

This version of the max-flow min-cut theorem may be less appealing than
the original one, but there is an interesting point to make here. We have seen
that the problem of finding a minimum (r,s)-cut is equivalent to solving the
linear programming dual of the max-flow problem — cf. (7.1.1) and (7.1.3). Let
us try to treat the minimum cut problem more directly. Let S be the set of all
incidence vectors of (r,s)-cuts and consider the polyhedron conv(S) +]Rj‘;, i e,
the dominant of conv(S). The Max-Flow Min-Cut Theorem (8.3.9) implies that
this polyhedron is determined by the inequalities

(8.3.10) x(P)>1 for all (r,s)-dipaths P < A,
x, >0 forallae A.

And so, for ¢ > 0, the minimum (r,s)-cut problem (8.3.8) is equivalent to the
linear program:

(8.3.1 1) minc? x
x(P)>1 for all (r,s)-dipaths P < A,
x(a) >0 forallaeA.

Now the second version (8.3.9) of the max-flow min-cut theorem states that
if ¢ is nonnegative and integral, problem (8.3.11) and its LP-dual have integral
optimum solutions.

These observations also show that the minimum cut problem can be reduced
to the shortest (r, s)-dipath problem using the ellipsoid method in a way diﬂ”er_ent
from the treatment in Section 7.1. In fact, the shortest dipath problem is just

238 Chapter 8. Combinatorial Optimization: A Tour d’Horizon

the separation problem for the polyhedron (8.3.10). So we can solve (8.3.11) in
polynomial time using a shortest dipath algorithm as separation subroutine.

Moreover, we can determine an optimum dual solution of (8.3.11) which
yields a maximum (r,s)-flow. Thus, also in this manner the ellipsoid method
gives us a (quite inefficient) polynomial time max-flow algorithm.

The second version of the max-flow min-cut theorem (8.3.9) implies a classical
theorem of MENGER (1927). Namely, if we take all capacities equal to 1 in (8.3.9)
we obtain:

(8.3.12) Menger’s Theorem. For any digraph D = (V' , A) and any two different
nodes r,s € V, the maximum number of pairwise arc-disjoint (r, s)-paths is equal
to the minimum cardinality of an (r, s)-cut. O

In turn, one can derive (8.3.9) from (8.3.12) by replacing each arc a by c(a)
parallel arcs.

Ko6nig’s matching theorem (8.2.3) is a special case of Menger’s theorem. To
see this, let G = (V, E) be a bipartite graph, say with color classes V; and V.
Then orient the edges of G from V; to V>, add two new nodes r and s, and
add arcs (r,v) for each v in Vy, and arcs (v,s) for each v in V,. Then Menger’s
theorem for this directed graph gives Konig’s matching theorem. Also Theorem
(8.2.6) can be derived in a similar way from the max-flow min-cut theorem. In
fact, ORDEN (1956) and HorrMmaN (1960) showed that by a direct construction
also the converse implication holds.

The pairs of problems described above (shortest path and maximum flow) are
contained in one problem, the minimum cost flow problem:

(8.3.13) Minimum-Cost Flow Problem. Given a digraph D = (V,A), two
different nodes r,s € V and a capacity function d : A — Q,, a cost function
¢ : A—> Q,, and a rational number t, find an (r, s)-flow x, subject to the capacity
function d, of value t, and with minimum cost)_,_, C4X,.

The minimum-cost flow problem (8.3.13) can be solved with the famous
“out-of-kilter” method developed independently by YAkOVLEva (1959), MINTY
(1960), and FULKERSON (1961). This algorithm works very fast in practice; for
a polynomially bounded version see EDMONDS and KaArp (1972). TArRDOS (1985)
found a strongly polynomial time algorithm for the minimum cost flow problem;
another such algorithm was given by ORLIN (1987).

The minimum-cost flow problem can be conceived of as a linear programming
problem, with a totally unimodular constraint matrix. This yields a min-max
relation for the minimum cost (and a good characterization) and gives that, if ¢
and d are integer, there is an integer minimum-cost flow. This also shows that
(8.3.13) can be solved by the ellipsoid method in polynomial time. By taking t = 1
and d = oo (or very large), problem (8.3.13) is equivalent to the shortest dipath
problem (8.3.2). By taking ¢ = 0, the problem is equivalent to the maximum
(r,s)-flow problem (for instance, by binary search over t).

Note that, e. g, also the transportation problems (8.2.11) and (8.2.12) are
special cases of the minimum-cost flow problem. But, as ORDEN (1956) and

8.3 Flows, Paths, Chains, and Cuts 239

HOFFMAN (1960) observed, also the converse is true! (See FORD and FULKERSON
(1962) and PAPADIMITRIOU and STEIGLITZ (1982).)

A similar analysis can be made when studying flows satisfying lower bounds
instead of upper bounds. This will lead to results analogous to the above. First
consider the following problem.

(8.3.14) Minimum (r,s)-Flow Problem. Given an acyclic digraph D = (V , A),
two different nodes r,s € V such that each arc of D is contained in some (r,s)-
dipath, and a “requirement” function d : A - @Q,, find an (r,s)-flow x satistying
x > d with minimum value.

(The restrictions on D and r and s made here and below seem necessary,
as otherwise the problems may become meaningless (by unboundedness or in-
feasibility), and since arcs contained in directed cycles or not contained in any
(r,s)-dipath may be contracted or deleted.)

It is not difficult to derive from any max-flow algorithm an algorithm for
problem (8.3.14). Indeed, let xo be an integer (r,s)-flow such that xo > d (which
exists by the assumptions), and let M be a large number. Then the minimum (r, s)-
flow problem is equivalent to the maximum (r, s)-flow problem for the capacity
function M xy —d. Moreover, this construction yields that the optimum value
for (8.3.14) is equal to the optimum value of the following problem, where an
(r,s)-dicut is an (r, s)-cut of the form 6t (V'), withre V', s¢ V' and 6~ (V') = §.

(8.3.15) Maximum (r, s)-Dicut Problem. Given D, r, s, d as in (8.3.14), find an
(r,s)-dicut of maximum requirement.

Note that the following related problem is A4#Z-complete, as was shown by
Karpe (1972).

(8.3.16) Maximum (r,s)-Cut Problem. Given a digraph (or graph) and two
nodes r and s, find an (r,s)-cut (or [r,s]-cut) of maximum cardinality.

By the construction described above, the Max-Flow Min-Cut Theorem (7.1.4)
gives:

(8.3.17) Min-Flow Max-Cut Theorem. For D, r, s, d as in (8.3.14), the minimum
value of an (r,s)-flow x with x > d is equal to the maximum requirement of
an (r,s)-dicut. Moreover, if d is integer there exists an integer flow of minimum
value. O

This result can be derived alternatively from the total unimod}llarity of the
corresponding matrix. Since an integer (r,s)-flow in an acyclic dlrec_ted graph
can always be decomposed into a sum of incidence vectors of (r,s)-dipaths, the

following theorem is equivalent to (8.3.17):

(8.3.18) Theorem. For any acyclic digraph D = (V,A), and any r, s inV
such that each arc of D is contained in some (r,5) -d1path,. the minimum number
of (r,s)-dipaths needed to cover A is equal to the maximum size of an (r,s)-

dicut.]

240 Chapter 8. Combinatorial Optimization: A Tour d’Horizon

It is not difficult to see that Theorem (8.3.18) is equivalent to a classical
theorem of DiLwoRrTH (1950). Recall that a chain (antichain) in a partially
ordered set is a set of pairwise comparable (incomparable) elements.

(8.3.19) Dilworth’s Theorem. If (X,<) is a partially ordered set, then the
minimum number of chains needed to cover X is equal to the maximum size of
an antichain.]

One easily derives Konig’s edge covering Theorem (8.2.4) and Theorem (8.2.7)
as special cases of each of the last three theorems above.

Polynomial algorithms to find maximum antichains and minimum coverings
by chains can be derived from any maximum flow algorithm.

Again, there are easier parallel problems to these results, in terms of potentials.
Consider the following problems.

(8.3.20) Minimum Potential Problem. Given an acyclic digraph D = (V , A),
r,s €V, and a length function |l : A — Q,, find a potential ¢ : V — Q) such that
¢(v) — ¢(u) > l(a) for each arc a = (u,v), and such that ¢(s) — ¢(r) is as small as
possible.

(8.3.21) Longest Dipath Problem. Given a directed graph D = (V,A), r,se V,
and a length function |l : A - Q,, find an (r,s)-dipath of maximum length.

In general, this second problem is AZ-complete. (The first is just a linear
program.) However, for acyclic digraphs there is an easy, straightforward way to
solve the problems (8.3.20) and (8.3.21) in polynomial time. This method is the
basis of widely used project scheduling methods like PERT and CPM. In fact,
the optimum values of (8.3.20) and (8.3.21) for acyclic digraphs are the same:

(8.3.22) Min-Potential Max-Work Theorem. For any acyclic digraph D = (V , A),
two different nodes r,s € V, and any length function | : A — Q_, the minimum
value of ¢(s) — ¢(r), where ¢ is a potential such that ¢(v) — ¢(u) = l(a) for each
arc a = (u,v), is equal to the maximum length of an (r,s)-dipath. If | is integer
then there is an optimum potential that is integer. O

Interpretation: I, is the time needed for the job represented by arc a, and
¢(s) — ¢(r) is the time needed for the total project. So by (8.3.22), the minimum
time to finish the whole project (min-potential) equals the maximum time spent
on a series of jobs (max-work).

Again, one easily derives the following equivalent theorems.

(8.3.23) Theorem. If D = (V,A) is an acyclic digraph and r, s are different
nodes of D such that each arc of D is contained in some (r,s)-dipath, then the
maximum number of arcs in an (r,s)-dipath is equal to the minimum number of
(r, s)-dicuts needed to cover A. O

8.3 Flows, Paths, Chains, and Cuts 241

(8.3.24) Theorem. If (X, <) is a partially ordered set, then the maximum size of
a chain is equal to the minimum number of antichains needed to cover X. O

Similarly to the combination of the max-flow and the shortest path problems
to the minimum-cost flow problem, the problems above can be combined to a
“maximum-gain” flow problem.

(8.3.25) Maximum-Gain Flow Problem. Given an acyclic digraph D = (V , A),
different nodes r, s of D such that each arc of D is contained in some (r,s)-dipath,
a requirement functiond : A - Q,, a gain function ¢ : A - Q,, and a rational
number t, find an (r,s)-flow x of value t satisfying x > d of maximum gain

Y en c@)x(a).

By the total unimodularity of the corresponding matrix one easily derives a
good characterization (a min-max relation) for (8.3.25). It also yields that if d
and t are integral, there is an integer optimum flow. It is not difficult to derive
the minimum (r, s)-flow problem (8.3.14) and the longest path problem (8.3.21)
for acyclic digraphs as special cases. Moreover, the maximum-gain flow problem
can be reduced to the minimum-cost flow problem (8.3.13) in the same way as
we reduced the minimum (r,s)-flow problem (8.3.14) to the maximum (r, s)-flow
problem (8.3.7). Hence, also problem (8.3.25) is polynomially solvable.

Finally, we consider the combined case of flows satisfying upper and lower
bounds, or, rather, we consider circulations. Given a directed graph D = (V, A),
a circulation is a function x : 4 —» @, such that for each node v of D one has

(8.3.26) x(6~(v)) = x(6* (v)).

Now the following problem contains both the minimum-cost flow problem and
the maximum-gain flow problem.

(8.3.27) Minimum-Cost Circulation Problem. Given a digraph D = (V,A),
functions d;,d» : A - Q, and a cost function ¢ : A —» Q, find a circulation x
satisfying d, < x < d, such that ¥ ,_, c(a)x(a) is as small as possible.

This problem reduces to the minimum-cost (r,s)-flow problem (8.3.13) in case
¢ > 0 and d; has only one nonzero component. Similarly the max-gain flow
problem (8.3.25) is contained in (8.3.27).

Again a min-max relation follows from the total unimodularity of the inci-
dence matrix of D. Moreover, if d; and d, are integral such that (8.3.27) has
an optimum solution then there is an integer optimum circulation. Note that if
¢ = 0, (8.3.27) reduces to the existence problem for circulations — see HOFFMAN
(1960).

The minimum-cost circulation problem can be solved in polynomial time by
adapting the out-of-kilter method of Yakovleva, Minty and Fulkerson for .the
minimum-cost flow problem. In fact, this algorithm also solves the following,

even more general problem.

242 Chapter 8. Combinatorial Optimization: A Tour d’Horizon

(8.3.28) Problem. Given a digraph D = (V,A), and functions ri,ry : V - Q
and dy,dy,c : A - Q, find a function x : A - R such that d; < x < d, and
ri(v) < x(6~(v)) — x(d*(v)) < ra(v) for each vertex v, and such that 'y _, c(a)x(a)
is as small as possible.

Clearly, problem (8.3.28) contains many of the problems treated in this section
and in the previous section on bipartite graphs as special cases.

The total unimodularity of the incidence matrix of D gives a good charac-
terization for problem (8.3.28) and the integrality of an optimum solution, if rq,
ry, di, and d, are integer. Thus, problem (8.3.28) (and therefore all its special
cases) can be viewed as explicit linear programs, and hence they can be solved
with Khachiyan’s version of the ellipsoid method in polynomial time. Integral
optimum solutions (given integral constraints) can be obtained by calculating
optimum vertex solutions.

*8.4 Trees, Branchings, and Rooted and Directed Cuts

In Section 8.3 we studied problems on connecting one specified pair of nodes
in a digraph by dipaths or flows. We now look at problems in which we wish
to connect several pairs of nodes at the same time. That is, instead of (r,s)-
dipaths we consider sets of arcs which connect all given pairs (ry,s;), ..., (71, 5)-
(This type of problems differs from the one to be treated in Section 8.6 on
multicommodity flows, where we consider sets of arcs which connect at least one
of the given pairs (ry,sy), ..., (r:, ;). As dual combinatorial objects we obtain in
this section cuts that separate at least one pair among the given pairs, whereas
in Section 8.6 on multicommodity flows, cuts are studied that separate all given
pairs of nodes.)

Arborescences and Rooted Cuts

We first study arborescences and rooted cuts, a subject to which we gave an
introduction in Section 7.2. Recall that an arborescence in a digraph D = (V, A)
is a set A’ of arcs making up a spanning tree such that each node of D is entered
by at most one arc in A’. It follows that there is exactly one node r that is not
entered by any arc of A’. This node is called the root of A’, and A’ is called
rooted in r, or an r-arborescence.

So an r-arborescence has exactly |V | — 1 arcs, and contains a unique (r,v)-
dipath, for each node v of D. In fact, r-arborescences can be considered as the
inclusionwise minimal sets of arcs that contain (r, v)-dipaths for all v in V.

Now consider the following analogue of the shortest dipath problem (8.3.2):

(8.4.1) Shortest r-Arborescence Problem. Given a digraph D = (V, A), a node
reV, and a length functionl : A — @, find an r-arborescence of shortest length.

Note that / may have negative values, so that the problem of finding a longest
r-arborescence is included. CHU and Liu (1965), EDMONDSs (1967a), Bock (1971),
and TARIAN (1977) designed polynomial algorithms to solve this problem. The

8.4 Trees, Branchings, and Rooted and Directed Cuts 243

fastest method to solve (8.4.1) known at present is described in GaBOw, GALIL,
SPENCER and TARJAN (1986). It turned out that the the algorithms for the shortest
r-arborescence problem also solve the following dual problem:

Given a digraph D = (V' ,A), a noder € V, and a length function | : A — Z,,
find a maximum family of (not necessarily distinct) r-cuts such that no arc a
is contained in more than l(a) of these r-cuts.

There is a difficulty with the posing of this problem since the output may
take exponential space. For example, if all lengths I/(a) are equal to the same
value L then the solution contains at least L r-cuts while the input has size
O(|V |*log L). Therefore, we have to encode the output more compactly by listing
only the distinct cuts together with their multiplicity. This leads to the following
formulation of the problem.

(8.4.2) Rooted Cut Packing Problem. Given a directed graph D = (V ,A),re V,
and a length functionl : A - Z,, findr-cuts Cy, ..., C, and nonnegative integers
Aty ..., Ak such that for each arc a of D the sum). A; 1s not more than l(a)
and such that 1, + ...+ A is as large as possible.

i,aeC,

It follows from the results below that there is always an optimum solution of
(8.4.2) with at most 2|} | — 1 distinct r-cuts. The solution of (8.4.2) can therefore
be described in space polynomial in the input length of the problem. In fact,
FULKERSON (1974) showed that for nonnegative integral /, the optimum values of
(8.4.1) and (8.4.2) are equal, and hence the following theorem follows.

(8.4.3) Fulkerson’s Optimum Arborescence Theorem. For any digraph D =
(V,A), any node r in V, and any length function | : A - Z,, the minimum
length of an r-arborescence is equal to the maximum number of (not necessarily
distinct) r-cuts such that each arc a of D is contained in at most l(a) of them. O

(Note that the cardinality version (! = 1) is trivial) Fulkerson’s theorem
(8.4.3) can be equivalently stated as: the clutter of r-cuts has the Z,-MFMC
property. In other words, both sides of the linear programming duality relation

(8.4.4) minz lax, = max Z Ac
aeA C r—cut
x(C) > 1 for all r-cuts C < 4, Z Je <1, forall ae A,
Carga:ut
x, >0 forallae A4, Ac =0 for all r-cuts C,

have integer optimum solutions, if [€ Z{. This in particular implies that the
solution set of the minimization problem in (8.4.4) is the' polyhedron conv{y? e
R* | Br-arborescence in D}+]Rﬁ, i. e., is equal to the dominant of the convex hgll
of incidence vectors of r-arborescences (see also Section 7.2). We have shown in
Section 7.2 that the minimization problem in (8.4.4) can be solved in polynomial
time using the ellipsoid method with a minimum capacity r-cut algorithm as

244 Chapter 8. Combinatorial Optimization: A Tour d’Horizon

separation subroutine. As we can find an optimum vertex with the ellipsoid
method, we can find an integer optimum solution, and thus we can solve the
shortest r-arborescence problem (8.4.1) in polynomial time.

With the ellipsoid method, we can also find an optimum dual solution, but
we do not know a direct way to find an integer optimum solution, although
we know that integral optimum solutions to the minimization problem in (8.4.4)
exist. There is, however, an ad-hoc trick to construct an integral optimum
solution from a fractional one. The method goes as follows.

Suppose we have found an optimum fractional solution Ac,, ..., i¢c, to the
maximization problem in (8.4.4). Without loss of generality ic, > 0 for i =
1, ..., k. We can trivially find nonempty subsets S;, ..., Sx = V \ {r} such that
Ci=067(S),i=1, ...,k From the system Sy, ..., S; of node sets we want to
construct a new system Sy, ..., S, & V \ {r} such that no two sets cross, i. e,
such that S/ NS/ # @ implies S| = S or §; < S;. We proceed by the following
uncrossing technique. If S, NS; # @, S; & S;, and S; &€ S; then we set

(8.4.5) ¢ = min{As-(s), As-(s,}, and we reset
As=(s) = As=(5) — &
As=(s)) = As-(5) — &
As-(s,Us;) = As-(s,us,) + &
As-(s,ns;) = As-(s,ns,) + &

This means, we replace the two sets S; and S; in the system {Sj, ..., Sk} by
S;US;, SiNS; and one of the sets S;, S;, and adjust the s such that the new A’s
form an optimum dual solution. It is easy to see that after a finite number of
steps a cross-free collection Sy, ..., S;, € V is obtained with associated values
A, ..., A,. In fact, one can prove that O(|V|?) uncrossing steps (8.4.5) suffice
to get such a collection — cf. the proof of Theorem (10.3.28). Now consider the
following linear programming problem (restricted dual):

k!
(8.4.6) max) ps~s)
i=1

Z Hs~(s) < l, forallaeA,
aed=(S))

[15—(51_')20 i=1, ...,kl.

Since the values 4, ..., A, constructed above form a feasible solution of
(8.4.6) we know that the optimum value of (8.4.6) is the same as the optimum
value of the minimization problem in (8.4.4). Moreover, since the node sets

{s --.» S are crossfree, the constraint matrix in (8.4.6) is totally unimodular —
see EDMONDS and GILES (1977). This shows that (8.4.6) has an integer optimum
solution, which we can compute in polynomial time with the ellipsoid method.
This solution is of course also an integral optimum solution to the maximization
problem in (8.4.4) and therefore an optimum solution to the rooted cut packing
problem (8.4.2).

8.4 Trees, Branchings, and Rooted and Directed Cuts 245

The Shortest Dipath Problem (8.3.2) and Theorem (8.3.4) are special cases of
(8.4.1) and (8.4.3): to find a shortest (r,s)-dipath, add arcs (s,v) for all v in V,
with length 0, and solve the shortest r-arborescence problem.

Furthermore, the shortest r-arborescence problem is easily seen to be equiva-
lent to the following problems.

(8.4.7) Shortest Arborescence Problem. Given a digraph D = (V , A) and a length
function | : A — Q, find an arborescence of minimum length.

A branching in a directed graph D = (V, A) is a set A’ of arcs not containing
circuits such that each node of D is entered by at most one arc in A’ (so the arcs
in A" make up a forest).

(8.4.8) Longest Branching Problem. Given a digraph D = (V' , A) and a function
| : A — Q, find a branching of maximum length.

EDMONDS (1967a) not only designed a polynomial time algorithm to solve
(8.4.8), but also gave a complete linear characterization of the branching polytope.
He proved

(8.4.9) conv{y® e R?| B < A branching } =
={xeR*| (1) x(6~(v) <1 forallveV,
(2) x(AW)) <|W|—1 forall 0+ W <V,
3) Xq >0 for all a € A}.

This relates to the theory discussed in Section 7.5. The polytope defined by the
system of inequalities (2) and (3) is a matroid polytope, the vertices of which are
the incidence vectors of the forests in D. Since the strong separation problem for
matroid polytopes is solvable in polynomial time, and since the inequalities (1)
in (8.4.9) are easy to check by substitution, we have a polynomial time algorithm
to solve the separation problem for the inequality system (1), (2), (3). Hence,
the polynomial time solvability of the longest branching problem (8.3.8) follows
from the ellipsoid method. In fact, as we saw in Section 7.5, there is another
matroid hidden in this problem. Inequalities (1) and (3) define a polytope whose
vertices are the incidence vectors of the partition matroid on A defined by the
partition 6 (v), v € ¥V — cf. (7.5.19). So the branching polytope (8.4.9) can be
viewed as the intersection of two matroid polytopes and therefore our analysis
of the 2-matroid intersection problem in Section 7.5 applies for this case.

We have seen a linear description of the convex hull of incidence vectors of
r-arborescences (Section 7.2). It is easy to derive from (8.4.9) a linear description
of the convex hull of the incidence vectors of all arborescences of a digraph D.
One can simply add the equation x(4) = n—1 to the system (1), (2), 3) 1n (8.4.9)
to obtain such a characterization. This gives another possible line of attack on
the shortest arborescence problem (8.4.7) via the ellipsoid method.

Again, as we did with flows, these problems and results can be “dualized”.

(8.4.10) Minimum Rooted Cut Problem. Given a digraph D.=_ (V,A), a npde r
of D, and a capacity function ¢ : A > Q., find an r-cut of minimum capacity.

246 Chapter 8. Combinatorial Optimization: A Tour d’Horizon

(8.4.11) Arborescence Packing Problem. Given a digraph D = (V , A), a node r
of D, and a capacity function c : A — Z,, find nonnegative integers Ay, ..., A
and r-arborescences By, ..., Bx such that, for each arc a of D, the sum Y, , .p 4;
Is at most c(a), and such that 4, + ...+ A is as large as possible.

EDpMONDs (1973) showed that both problems (8.4.10) and (8.4.11) have the
same optimum value:

(8.4.12) Edmonds’ Disjoint Arborescence Theorem. For any digraph D = (V, A)
and any node r of D, the minimum cardinality of an r-cut is equal to the
maximum number of pairwise disjoint r-arborescences. O

Edmonds’ theorem (8.4.12) is equivalent to the fact that the clutter of r-
arborescences has the Z,-MFMC property. In other words, both sides of the
linear progr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>