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Abstract—We show that, given a wheel with nonnegative edge lengths and pairs of terminals
located on the wheel's outer cycle such that the terminal pairs are in consecutive order, then a
path packing, i.e., & collection of edge disjoint paths connecting the given terminal pairs, of minimum
length can be found in strongly polynomial time. Moreover, we exhibit for this case a systemn of linear
inequalities that provides a complete and nonredundant description of the path packing polytope,
which is the convex hull of all incidence vectors of path packings end their supersets.

1. INTRODUCTION

The topic of packing paths, trees, Steiner trees, etc., into graphs has received considerable and
strongly growing attention in the last fifteen years. Two sources nourish the development; one is
the increasing demand from VLSI design for routing elgorithms, and the other is the discovery
of beautiful results such as the Okamura-Seymour theorem [1] that provide new insights and are
the basis of many modifications and generalizations. Excellent surveys of these developments can
be found, for instance, in [2,3].

Most of these results are of the following type. Given a graph (with some additional properties)
and a collection of sets of terminals, then a packing of paths (or trees or Steiner trees, ete.) exists
provided that some conditions (typicelly conditions on certain cuts in the graph) hold. Frequently,
the proofs yield polynomial time algorithma for finding such a packing. Unfortunately, the graph
properties needed for the existence of such results are very restrictive and only occasionally helpful
for solving problems in VLSI design. Questions of this type are A’P-hard not only in general but
even for classes of graphs that seem rather special.

VLSI designers are usually happy to find some routing of the given terminal sets; however,
they would be much more interested in determining routings that are minimal with respect to
certain criteria such as the total wire length. This problem turns out to be NP-hexd for basically
all practically relevant cases. Nevertheless, currently the first steps are being made to attack
the optimum packing problem by means of branch and cut algorithms (and the like) that have
the potential to produce optimum or provably good solutions; see [4,5]. To our knowledge, there
are only very few special cases known for which optimum packing problems can be solved in
polynomial time (see, for instance, [6]). We present another such case here. We show that if a
wheel with nonnegative edge lengths is given and if the terminal pairs are consecutively located
on the wheel’s outer cycle, then a list of pairwise edge disjoint paths connecting the terminal’s
pairs (short: a path packing) thet has minimum total length can be found in polynomial time.
Moreover, we are able to give a complete linear description of the path packing polytope, i.e., the
convex hull of all incidence vectors of path packings and supersets of path packings. This seems
to be the first result ofthis type.

Typeset by AmS-TEX
23




24 M. GROTSCHEL et al.

The polyhedral description of the path packing polytope in this case requires technical effort
and is rather surprising. If there is an even number of terminal pairs polynomially, many in-
equalities suffice, while for an odd number of terminal pairs, exponentially many inequalities are
needed.

2. A POLYNOMIAL TIME ALGORITHM

In this section, we present a polynomial time algorithm that solves the problem of packing
edge disjoint paths on a wheel, provided that the terminals [;, r; are consecutively located on the
outer cycle of the wheel (i = 1,...,k). Before explaining the algorithm, let us introduce some
notation that we use throughout this paper.

‘We assume that the reader is familiar with basic graph theoretic terms. For our purposes,
it is appropriate to consider a path P or a cycle C, respectively, as a subset of the edge set of
some graph G. A wheel consists of a cycle and a center connected to all nodes of the cycle by
an edge, more formally: a wheel with n spokes and center z is a graph G = (V| E) consisting of
n nodes numbered {1,...,n} and a special node 2, ie.,, V:= {1,...,n} U {2}, and an edge set
E:=CUSwith C:={[i,i+1]|i=1,...,n}end S:={[2,4] | i =1,...,n}. The edges in S are
called spokes, and we assume that the nodes of C' are numbered in clockwise order around 2. (To
make index computations notationally easier, we identify an index ¢ > n with (( — 1) modulo
n) + 1). We call a list of node sets 77,...,Tk, k > 2 of the outer cycle C in consecutive order, if
all nodes l;,7; € T3, I; < 4, i = 1,..., k, appear in the sequence l1,71,12,79,. .., % by walking
along C. We denote the cut {uv € E | u € X, v € X} induced by some node set X C V by the
symbol §(X). For c € R® and F C E, we define ¢(F) := Y, . Ce.

Finally, to facilitate technical arguments when dealing with a wheel with n spokes and center z,
we introduce, for ¢ € {1,...,n} and j € {0,...,n — 1}, the following symbols.

— Nodes on the interval along C from i toi+7: [i:i+j]:={i+r|r=0,...,5}.

— Spokes connecting the interval [i : i+j] to the center: S(i : i+j) := {[z,3+7] |r =0,...,5}.

— Edges of the interval [i: i+ j]: C(i:i+7) :={[rr+1]|r=1,...,i+7—1},ifj >0,
and C(i:i+7):=0,ifj=0.

— Closed fan of the interval [i : i + j], i.e, all edges of the interval and the corresponding
spokes: Fli:i+j]:=Cli:i+5)USE:i+7).

— Open fan of the interval [i : 4 4 ], i.e., closed fan without outer spokes: F(i i+ j) :=
Cli:i+)USGE+1:i+5—1),if7>2 Fli:i+7):=Cli:i+7), ifj=1, and
Fli:i+j):=0,ifj=0.

— Right open fan of the interval [¢ : ¢ + j], l.e., closed fan without right outer spoke: F[i :
i+7)=Ci+7)US@E:i+7~1),if7>0, Fli:i+3):=0,ifj=0.

Using this notation, the path packing problem can be formulated as follows.

PROBLEM 2.1 (PACKING PATHS WITH CONSECUTIVE SETS OF TERMINALS ON A WHEEL).
Instance:
A wheel G = (V, E) with nonnegative edge lengths w, € R, e € E.
A number k € N and a list of node pairs T = {{l1,m1},...,{lk,7&}} with l; <7 < I3 <
Ty < or & g < 1.
Problem.
Find edge sets Py,...,P, C E such that
(i) P, contains a path in G from l; tor; fori=1,...,k;
(ii) the sets Py,..., Py are mutually edge disjoint;
(iif) Zf=1 Y ecp, We is minimal.
Each node in {l1,71,12,72,...,lk, 7k} is called a terminal, and each pair of nodes {l;,m;} (¢ =
1,...,k) is called a terminal pair. We call an edge set P a packing of paths or a path packing if
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Figure 1.

P can be partitioned into edge sets Pi, ..., Py that satisfy (i) and (ii) of Problem 2.1. A path
packing P is called edge-minimal if, for every e € P, the set P\ {e} is not a packing of paths.
These definitions slightly deviate from the literature standard since what we term edge-minimal
path packing is usually called path packing.

For arbitrary graphs, the problem of finding an optimal packing of paths is, of course, N/P-
hard. Even for several special cases, this problem remains MNP-hard, e.g., if G is a grid graph [7].
However, if we restrict G to be a wheel and if we require that the terminal pairs are consecutively
located on the outer cycle of G, an optimal packing of paths can be determined in polynomial
time.

The idea of this algorithm is based on two observations which we briefly describe now.

Tt is easy to see that, for every instance of Problem 2.1, there always exists an optimal path
packing that is edge-minimal and that has the property that, for every i € {1,...,k}, the path
that connects the two terminals J; and 7; uses edges only from the set F[r;—1 : li+1]. Hence, such
a path from [; to r; may only be in “conflict” with such a path from l;,_; to rj_; or with such
a path from ;41 to iy, Further, the number of different paths from I; to r; in the subgraph
([riz1 : lix1) U {2}, Flri-a = Lia]) of the wheel is polynomial in n.

Let Pl,...,P}* denote the different paths from I; to 7; in the subgraph ([ri—1 : Ly1] U {2},
Flri—1 : li+1]). We define a digraph H as follows. With every path P# (i =1,...,k,u=1,...,81),
we associate a node that we denote by p¥. We set X := {p} | i = 1,...,k,u=1,...,8} For
every pair p},p} of nodes in X, we introduce the arc (pf,p¥) if and only if j =i + 1 and the
paths P¥ and P} do not share a common edge. Such an arc receives the length of the path Py.
Let Y denote this set of arcs. In the digraph H = (X,Y), we now look for a shortest directed
cycle which, as we will see, corresponds to an optimal packing of paths on the given wheel.
Consequently, Problem 2.1 can be solved in (strongly) polynomial time.

In the following, we discuss this procedure in more detail. We always assume that G = (V, E)
is & wheel with nonnegative edge lengths we € R, e € E. Moreover, T ={{li,r1}- - {ITk}}
is the list of consecutive terminal pairs and we assume that [ <7 <la<re <+ <l <Tk.

Note that every edge-minimal path packing P can be partitioned into k edge disjoint paths
Pi,..., Py linking {; and ry, i = 1,..., k. We call paths Py,..., P with this property a path
partition of P. Path partitions are not necessarily unique.

LEMMA 2.2. Let P be an edge-minimal packing of paths. Then, P can be partitioned into paths
Pi,..., P such that for every i € {1,...,k} the following conditions are satisfied.
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(a) F(ls)NP,=0Q for all t € {1,...,k}\ {i}.
(b) Flri:lipa]lnPyo=0 forall t € {1,...,k} \ {i,i+1}.

Proor. We prove (a). We assume that an edge-minimal path packing P exists that cennot
be partitioned into % paths satisfying (a). If Py,..., P is any path partition of P, we set
T(Py,...,P):={(,t) |4, €{1,...,k}, i #t and F(l; : »)N P, # 0}. Among all path partitions
of P, we choose a partition Py,..., P such that [T(Py,...,P)| is minimum. To contradict the
assumption, we construct a path partition Pj,..., P{ with [T'(P],...,P})| < [T(Py,...,Py)|-

By assumption, there are indices i,t € {1,...k}, i # t, such that F(l; : n;) N P, # 0. Since
P, does not contain a cycle, one of the edges [l;,l; + 1] or [r; — 1, 7;] must belong to P, say
{lz,1; + 1], and moreover, the center z must belong to V(F;). Let us denote the subpath of P
linking I; to z by P, and the subpath of P, linking r; to z by P,; i.e.,, P = P, U P,,. Clearly,
P, N F(l; : ;) = 0. We distinguish the following two cases.

If [ — 1,7 € P, then obviously P, N F(l; : r;) = 0. We set P} := P, N F(ly,r;) and
P{ := (P, \ F(l; : ;;)) U P;. Otherwise ([r; — 1,15 ¢ P}), z € V(B,). Let Q denote the subpath
of P, from I; to z. We set P/ := P, UQ and P} := (B, \ F(l; : m;)) U P,,.

Since P is edge-minimal, in both cases, the edge sets P/ and P are paths linking I; to
and l; to ry, respectively. Setting P} := P;, j =1,...,k, i # j #t, we have constructed a path
partition of P with |T(P},..., P{)| < |T(Py,...,P:)| contradicting the minimality assumption.
This implies that P must have a path partition satisfying (a). (ii) follows directly from (i). 1

Let P be an edge-minimal packing of paths. Due to Lemma 2.2, we know that P can be
partitioned into & edge disjoint paths that satisfy the conditions (i) and (ii). Moreover, it is easy
to see that these paths are unique. For the remainder of this paper, we denote, for a given edge-
minimal packing of paths P, by P; the (unique) path from I; to r; that satisfies F[l; : ;] NP, = @
forallt € {1,...,k}\ {3} and Flr;: i NP =@ forall t € {1,...,k}\ {t,i+ 1}. Instead of P,
we also write (Py,...,Pg). The following statement is easily derived.

LEmMMA 2.3. For agiveni € {1,...,k}, let P; denote the set of edge-minimal paths from l; to
in the subgraph ([ri-1 : li+1] U {2}, Fri_1 : liy1]). The value |P;| is bounded by O(n?).

For i € {1,...,k}, let P!,..., P/ denote the different paths from I; to r; in the subgraph
([rim1 : lipa] U {2}, Flri—y : li11]). We now define the digraph H := (X,Y) with arc costs ¢ as
follows. With every path P¥ (i =1,...,k, u=1,...,5;), we associate a node which we denote
by pi. We define X as the corresponding set of nodes. For every pair pi,pj of nodes in X,
we introduce the arc (pY,pj) if and only if § = i + 1 and the paths P} and P} do not share a
common edge. We denote this set of arcs by Y. Finally, we define the cost c(p¥, p¥ '11) of some
arc (p},pYy,) €Y as the length w(P}) of the path P¥.

Figure 2 illustrates this construction. A wheel G with the terminal set 7 = {{l1,m1}, {l2,72},
{l3, 73}, {l4,74}} is shown. For every 1 < i < 4, there exist exactly five paths P},..., P8 in the
subgraph ([ri—1 : lis1], Flric1 @ lita]), namely P} = [l;, 7], P? = [li, 2] U [ri,2], PP = [l;,2] U
[T‘.,-, lH_l]U[l.i.}.l,Z], Pi4 = [T,;,Z]U[T.,;_l, l,;]U[’r','_1, z]. and Pis = [l,‘,+1,Z]U[li.{..l,’r‘,']U[T‘,;_h l.;]U[‘l‘,-_]_, z].
Every such path is represented by a node in H. An arc (p¥,p},,) in H is introduced if the two
peths P and PP, ; do not intersect.

Due to Lemma 2.3, the size of H is polynomial in n. Moreover, if P = (Py,...,P) is
a path packing in G, then every such path P;, i = 1,...,k, corresponds to a node pyt for
some u; € {l,...,%}. Since P; and P; for i # j do not share a common edge, the ercs
(1", P3%), (P27, P5%),. .., (D%, PY*) in Y define & directed cycle in H. The cost ¢(T) of the di-
rected cycle T is equal to the length w(P) of the path packing P by definition. Conversely, every
directed cycle T = {(p1*,p3?), (p2*,Pa*) ..., (D*,p}*)} in H corresponds to paths P* from Iy
to r¢ in the subgraph ([ri-1 : liy1] U {2}, Flri—1 ¢ lisa]) (1 = 1,...,k). By construction, P
and P;” » J # 1, do not intersect in some edge. Hence, P := (P},..., P¢*) is a packing of paths
in G and the length w(P) is the same as the cost (T) of the cycle T.
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Figure 2.

By applying shortest path or max flow techniques, a directed cycle in H of minimal cost can
be computed in time and space complexity that is polynomial in the encoding length of the data.
Consequently, an optimal path packing in G can be determined in polynomiel time. In fact,
strongly polynomial algorithms can be derived; see [8] for a survey.

3. THE PATH PACKING POLYTOPE

Let W = (V,E) be a wheel end let 7 = Hmh o {lomdh ri€V,i=1,...,kbea
list of consecutive terminal pairs. The path packing polytope PP (W, T) is the convex hull of all
incidence vectors of path packings P; i.e.,

PP (W, T) := conv {xP | P is a solution of Problem 2.1}.

Here, xF € RE denotes the incidence vector of the set P C E, i.e., x¥ :=1ife € P and xP =0
ifegP.
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In this section, we start the investigation of the path packing polytope PP (W, T). In particular,
we introduce the class of cut and the class of windmill inequalities. We will show in the subsequent '
section that, for a wheel, the trivial inequalities and these three classes of inequalities completely |

describe the path packing polytope.
If ¢Tz > v is a valid inequality for the polytope PP (W, T), every path packing P such that

cTxP = v is celled a root (of the inequality cTz > ). If, in addition, the path packing P is l

edge-minimal, we say that P is an edge-minimal roat.
Obviously, the whole edge set E and, for every e € E, the set E \ {e} are path packings

in W. The incidence vectors of these edge sets are affinely independent. Hence, PP (W, T) is full
dimensional. It is easy to see that the trivial inequalities . > 0 and z, < 1, e € E, define facets
for PP (W T)
Let U be a node set that is an interval on the cycle C and t(U) be the number of terminal l
pairs with exactly one endpoint in U. If £(U) > 0, the inequality
z(6(U)) 2.t(U),

iscaled cut inequdity. It is valid for PP(W,T). Since U is an interval on the cycle C, all possible
values for {(U) are 1 and 2. To distinguish these cases, we speak of 1-cut and 2-cut inequalities.

All cut inequalities define facets of PP (W, 7). The proofs of these facts are straightforward.
The number of different cut inequalities is at most O(n?) .Let us now turn to the windmill

inequalities .
DEFINITION 3.1. Fori=1,...,k, choose an edge set F; C C(l; : ;) with 1 < |F;| <2 and some

node uf € [r; : liy1]. We define a vector a := a(Fy,..., Fy, uJ,...,ul) € RE by

(2 if {e} = Fj for some i € {1,...,k},
2, ife=zv withv € [ry: liy1]\ {ul} for somei € {1,...,k},
2, fe=zvwithvell ¢r\{lir} forsomeie{1,...k}
and C(l;: v)NFy =0 or Clv:m) NF; =0,
0, ife=zuf for somei€ {1,...,k} or
ifee C\ U, F;,
\1, aherwise.

The inequality a(F,..., Fe,u4,...,u) 2> 2[k/2] is called windmill inequality.
For an illustration of a windmill inequality, see Figure 3 The coefficients of a windmill inequak
ity are determined by the following principles .For every interval whose endnodes form a terminal
pair, we choose one or two special edges contained in this interval. If we choose one edge the
corresponding component of a is set to 2 if we choose two edges the corresponding components
of a are set to 1 the components of a corresponding to the other edges of the interval are set
to 0. Moreover, for every edge of the outer cycle C that does not belong to such an interval the
corresponding component of a is also set to 0. The coefficients corresponding to spokes can be
determined as follows From every interval [ry.: l;41] (we say that [5-. |-41] forms a consecutive
mixed interval), we choose a node u]. The coefficient of a corresponding to the spoke zuf is set
to0 Ifudy; =4?+1 then there are no spokes between 3 and 43,. Otherwise the coefficients
of the spokes S(u%+1 - 4%, —1) of the open fan F(u® 4°,) are compt d mnth ef & owing
way. For every v € [ul +1:ul,; — 1), let Q; and @, denote the path from v to i, and from v
to 7441, respectively, using edges only of C(u : 'u.?+1). Then a,, = max{}", €q Qe D Q G ¥
Note that, if in Definitlon 3.1 all edge sets Fj (i = 1,..., k) have cardinality 1, the windmill
inequality coefficients are zero or two ,so it can be divided b ytw ot o bt Am an'inequel't y'in
standard coprime f orm. I nth'1s case, we spek 6th el -ind mil “wnequbit y, oh erwise 6 the

Qe =

L-windmill inequality.
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Figure 3.

LEMMA 3.2. The windmill inequalities are valid for PP(W,T).
PROOF. We start with the 1-windmill inequalities. For i = 1,...,k, let F; := {[ts,t;+1]} C C(L: :
r;) and u; € [r; : li41] be given. Then, by summing up the 2-cut inequalities z(8([t;+1 : ti41])) = 2
and the trivial inequalities —z,y, > —1, for i = 1,...,k, dividing the resulting inequality by 2
and rounding the right-hand side and the coefficients of the left-hand side up, we obtein the
1-windmill inequality (1/2)a(F},...,Fk,u1,. .. Jue) Tz > [k/2].

Now consider a 2-windmill inequality. For i =1,...,k, let F; = {[t}, ¢ +1], e+ col::
r;) and u; € [r; : li+1] be given, where, in case |Fi| =1, the nodes t] and ¢7 coincide. We sum up
the following inequalities:

%a({[tl,t& 10}, {[thth + 1]} urye o ) @ 2 [gi‘ ,
1 k
50 ({[t¥1t¥+11}1"'!{[ti)ti+1]}1u1:'-'|uk)T$2 [5.‘ )
z (6 ([t2+1:t541])) 22, fori=1,...,k
—Zay = —1, fori=1,...,k

Dividing the resulting inequality by 2 and rounding the right-hand side and the coefficients of the
left-hand side up results in the 2-windmill inequality a(Fy, ..., Fi,u1,- .-, uwe)Tz > 2[k/2]. 1

The proof of Lemma 3.2 shows that windmill inequalities do not define facets of PP (W,T), if
k is even. However, in case k is odd, they do. The proof follows by standard arguments.

4. A COMPLETE DESCRIPTION OF PP (W, T)

In this section, we show that the inequalities introduced in the last section, i.e., the trivial
inequalities, the cut inequalities, and the windmill inequalities, completely describe the poly-
tope PP (W, T), if W is a wheel and T a list of consecutive terminal pairs. We prove this in
two steps. First, one can show that every facet-defining inequality that is not & trivial or & cut
inequality has the following properties.

THEOREM 4.1. Let W = (V,E) be a wheel and T = {{l1,m1}-. . {Ix,7x}} 8 list of consecutive
terminal pairs. Let cTz > v be a facet-defining inequality of PP(W,T), that is, neither trivial
nor a cut inequality. Then ¢’z > v satisfies the following:
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(2) ¢>0andy>0.
(b) ce=0foralle€ C(ry: li41),1=1,... k. :
(c) Foreveryi=1,...,k, there exists exactly one node u € [r; : Li1] with ¢,y0 = 0.
(d) czu = max{c(C(li : w)), c(C(u:m))}, forallu€ [l : ]\ {li,ri}, i=1,..., k.
(€) eou =c(Cli: 1)), for all w € [uf_y : L]\ {ud_,} andallu € [r;: uf]\ {uf}, i=1,...,k.
() c(Clli:ma))=¢(Cly : 7)), forall 4,5 = 1,..., k.
(g) v=1[k/2]-e(C(ly : 11))-
The proof of Theorem 4.2 is technical and lengthy. It can be found in [9]. Next we show that
every inequality that satisfies the properties of Theorem 4.1 is a nonnegative linear combination
of windmill inequalities.

THEOREM 4.2. LetcTz > v, c € ZF, be an inequality satisfying Theorem 4.1. Then, there exists
a set of windmill inequalities aTz > oy (6 = 1,...,1) such that \Y ' a;=cand AY\_ a; =7,
where A =1/2, if ¢(C(ly : 1)) is odd, and A = 1, otherwise.

PRrOOF. Let ¢cTz > v be an inequality satisfying Theorem 4.1. By appropriate scaling of ¢, we
can assume that ¢(C(l; : r;)) is even. It is thus sufficient to prove Theorem 4.2 for all integral
inequalities ¢z > v with ¢(C(ly : 1)) even. We show this by induction on 75 := ¢(C(ly : r1)).
n is positive because of Theorem 4.1 (a) and (g). If n = 2, cfz > « is obviously a windmill
inequality; see Definition 3.1 and the explanation thereafter.

Now let 5 > 4. We suppose that Theorem 4.2 is true for all inequalities b7z > A that satisfy
Theorem 4.1, and for which 5{C(l; : r1)) < n and even. In the following, we construct a windmill
inequality. Fori =1,...,k, let U; := {uv € C(l; : 1i) | cuy > 0}. Suppose U; = {e1,...€:},5 2 1,
where €y, ...,€e, are numbered in clockwise order by walking from [; to r;. If s = 1, set F; := Uj;
otherwise set F; .= {e1,e,}. Then,

G(Fl, ...,Fk,'u.g,...,ug)T T>2- ’V’%-‘

is 8 windmill inequality. Let ao := a(Fy, ..., Fk,u,...,ul) and aq := 2-[k/2], and set b := c—aq
and 8 :=y—ag. We show that b7z > [ satisfies Theorem 4.1 (a)~(g). Theorem 4.1 (a)—(c) hold
by construction (note that 8 > 0, since n > 4). Moreover, b(C(l; : 1)) = ¢(C(l; : 7)) — 2, for
all i =1,...,k and, for all € [u_; +1 : uf — 1], we have that
[ Cou—2 ifud y#Landue [wfy +1:1],

Cou—2, iful #randuer:ul, 1),

Cw—2, fli#ri—lLuve[l;+1:r,—1 and

c(C(lstu))=00r ¢(Clu: 7)) =0,

C — 1, otherwise.
This obviously shows Theorem 4.1 (d)—(f). Finally, 8 =y -2 [k/2] = [k/2] - ¢(C(l1 : 1)) —
2 [k/2] = (e(C(ly : 7)) — 2) - [k/2] = b(C(ly : 7)) - [k/2], which yields Theorem 4.1 (g).
Since b(C(ly -.7)) < 7 and even ,there exists ,by induction hypothesis ,a set of windmills
a?:z: > t=1,...,1 such that E=1 a; = b and Zé=1 a; = f. Summing up, we obtain that
c=b+ao=25,=0a,- and Zid,ai=ao+z!,=1a¢=ao+ﬂ=7. 1

Theorems 4.1 and 4.2 show indeed that the trivial inequalities, the cut inequslities, and the
windmill inequalities describe PP (W, T).
THEOREM 4.3. Let W = (V,E) be a wheel with nonnegative edge lengths w, € R, e € E,
and let T = {{l3,m1},...,{lk:7k}} be & list of consecutive terminal pairs. Then, for k even, a
complete and nonredundant linear description of the path packing polytope PP(W,T) is given
by the following system of inequalities:

TRIVIAL INEQUALITIES: 0 <z, <1 frallee E

CUT INEQUALITIES: z(8(U)) > t(U) for all intervals U of the outer cycle C with t(U) > 0.

bzu -
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If k is odd, the following inequalities are needed in addition.

WINDMILL INEQUALITIES: a(Fi,...,Fe, ud,...,u)Tz > 2[k/2], for all edge sets F; C
C(l : ) with 1 < |F| < 2 and all nodes u{ € [r; : liy1] (i = 1,...,k) and with
a(Fy,...,Fy, ud,...,u}) € RF as in Definition 3.1.

We remark that Theorem 4.3 can be generalized slightly. Namely, we can also describe the
path packing polytope (given a set of consecutive terminal pairs on the outer cycle) if, in the
underlying wheel, every edge is replaced by a path (of arbitrary length). The system is a minor
modification of the inequalities of Theorem 4.3. The polynomial time algorithm of Section 2 can
trivially be adapted.

5. FINAL REMARKS

To our knowledge, the algorithm presented in this paper for the minimum length path packing
problem on wheels with consecutive terminal sets is one of very few (strongly) polynomial time
algorithms for the optimization version of & path packing problem. It would be interesting to
find extensions to more general or different cases. For instance, can one replace wheels by planar
graphs or some class of planar graphs more general than wheels? Can one allow crossing terminal
pairs on the outer face? Certainly, not in general, since even the existence of path packings cannot
be shown in polynomial time unless additional evenness or other additional conditions such as in
the Okamura-Seymour theorem are added. What about shortest tree or Steiner tree packings?

Our complete (and nonredundant) description of the path packing polytope for wheels with
consecutive terminal pairs is a first step towards establishing a closer link between path packing
theory and polyhedral combinatorics. We do not know any other result of this type and ask,
similarly, for possible generalizations of the class of wheels and the properties of terminal pairs
that allow explicit complete descriptions of the associated packing polytope. We were quite
surprised when we discovered that in the case of an even number of terminal pairs the trivial
and the cut (and thus a polynomial number of inequalities) suffice but that for an odd number
of terminal pairs a new class of inequalities, which we call windmill inequalities and that grows
exponentially with the number of terminal pairs, is necessary in addition. Maybe more surprises
and large classes of computationally useful inequalities are waiting for their discovery.

APPENDIX
THE PROOF OF THEOREM 4.1

The subsequent Lemmas 1 through 10 collectively prove Theorem 4.1.

We suppose that ¢7z > v is & facet-defining inequality that is not a trivial or a cut inequality.
Set Fe := {z € PP (W,T) | ¢Tz = 4}. Recall that, for each edge-minimal path packing P, there
is & unique path partition Pi,..., P, of P satisfying the properties of Lemma 2.2. Then, the
following lemmas hold.

LEMMA 1, Theorem 4.1 (a) is true.

PROOF. For each e € E, there exists a root P with e ¢ P; otherwise F would be contained in
the face induced by the trivial inequality z, < 1. Then, P! ;= PU/{e} is also a path packing with
¢ (xP') > «, and we obtain 0 < " (xF "Y—cT(xP) = c,. Moreover, since ¢Tz > 7 is facet-defining
and not one of the trivial inequalities z. > 0, e € E, we conclude that y > 0. 1

LEMMA 2. Theorem 4.1 (b) is true.

PRrOOF. Suppose Theorem 4.1 (b) does not hold. Then, there exist indices 4 € {1,...,k} and
7 € [y : lig1—1] such that ¢f. 1) > 0. We pick one such ¢ and select 7 as follows. If ¢p, 41y > 0,
we choose r := r4; otherwise we choose r such that cjss+1) = 0, for all 8 € [ry : 7 —1]. Set
e = [r,r +1]. Since ¢Tz > « is a nontrivial facet-defining inequality, there exists an edge-
minimal root P with e € P. W.l.0.g., we assume that e € P; (the other case e € P4y can be
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shown anslogously). From Lemma 2.2 (b), we know that there exists a node to € [r + 1 : li11]
with ztg € P;. Thus,
Cat 2 Ce + Cztq > 0, forall t =ri,...,7. (%)

Moreover, there exists & node p € [l; : 73 — 1] with ¢jp p11) > 0, since ¢ > 0. Among all such
nodes, we choose the right-most node, i.e., we choose p := r; — 1, if ¢{p,_1,r,| > 0; otherwise we
choose p such that cpy pry1) = 0 for all p’ € [p+1: r;—1]. Furthermore, the choice of p and ¢, > 0
imply in case p # r; — 1 that

Cat 2 Ce + Cztq > 0, forallt=p+1,...,m;— L

Summing up, we conclude that ¢y > 0, for all f € §([p+1 : 7]). Since cTz > 7 is a facet-
defining inequality that is not a l-cut inequality, there exists an edge-minimal root P* with
xF ¢ {z e PP(W,T) | z(6([p+1:7])) = 1}, ie., |[P*N&([p+1:7])| > 2. The facts that P* is
an edge-minimal root and that ¢Tz > 1 is valid imply that e € P},,. Lemma 2.2 (b) implies that
there exists a node t; € [r; : 7] with z¢; € Pfy;. Thus,

Czt 2 Co + Czpy >0, forallt =r+1,..., L+

Together with (%), we obtain that cz4, > Ce+Czt; = 2¢e +Cz4,- This relation and Theorem 4.1 (a)
imply ¢, = 0, a contradiction. 1

LEMMA 3. Foralli=1,...,k, there exists a node u € [r; : l;4+1) with ¢, = 0.

PROOF. Suppose there exists an index i € {1,...,k} such that ¢,, > 0, for all u € [r; : l;41]. We
prove that, in this case, ¢Tx > + is a multiple of a 2-cut inequality. First, we show that there is a
positive edge on the path C(l; : ;). Since ¢Tz > vy is a nontrivial facet-defining inequality, there
exists a root P with [r;—-1,7;] ¢ P. Therefore, ¢(F;) > 0. Obviously, P! := P\P,UC(l; : ;) is also
a packing of paths where 0 < c¢Tx® —cTxP = ¢(C(l; : ;) —¢(P;). Thus, c(C(l; : 13)) 2 ¢(P;) > 0.
Analogously, we obtain that ¢(C(l;41 : 7i+1)) > 0. Among all nodes p; in [l; : r; — 1] such that
Clpupi+1] > 0, we choose the right-most node, i.e., if ¢jr_1,n) > 0, we choose p; == 73 — 1
otherwise we choose p; such that cpy g = 0 for all p’ € [pi+1: 7 —1]. Similarly, among
all nodes p;41 in [liy1 : ri41 — 1] such that cpp,,, p,,,+1] > 0, We choose the left-most node, i.e.,
if eyy1iip1+1) > 0, we choose pit1 := lj41; otherwise we choose piy1 such that cppryg) = 0
for all ' € [li+1 : pi41 — 1]. We now show that all edges in §([p; + 1 : pit1]) are positive.
If p; # ri — 1, consider a node u € [p; +1: r; —1] and let f € S(r; : l41) N P. Obviously,
P := P\ {f}U(C(u : r;) U{zu}) is also a path packing. Due to Theorem 4.1 (b) and the
choice of p;, we obtain that 0 < ¢Tx* — c¢Tx” = ¢,y — ¢s. Hence, 5, > ¢ > 0. Analogously,
if piy1 # li+1, we get that ¢z > 0, for all uw € [li41 + 1 : piy1]. Summing up, we conclude
that ¢, > 0, for all e € 6([p; + 1 : Pi41])-

Now, consider any root P*. It is easy to check that |P# N&([p; + 1 : pi+1])] = 1 and that
[Pfq N 6([pi +1: pig1])| = 1. From Lemma 2.2, we know that [P N &([p; + 1 : piy1])| = 0
for all t € {1,...,k} \ {4,5 + 1}. Therefore, ¢z > ~ is a multiple of the 2-cut inequality
z(6([ps +1: pi41])) 2 2, a contradiction. |

In the following we denote, for i =1,...,k, by Pi, C F(l;:r;) a path from ; to 7; such that
c(Ph) = min{c(H) | H is a path from I; to r; with H C F(l; : ;) }.

LEMMA 4. Consider an indexi € {1,...,k}. If¢(Pi,.) > 0, then

e ¢,y =0, for at most one u € [ri—1 : L]
® ¢,y =0, for at most one u € [ry ! Li+1].

Proor. Let U;_; = {'U. € [7‘1_1 B li] 1 Coy = 0} and U; = {u € [1'4 H l'H-l] | Cry = 0}
Since ¢(F%,) > 0 and because of Theorem 4.1 (b), it is easy to check that it is impossible
that both |Uj_;| > 2 and |U;| = 2 hold. Suppose w.l.o.g. that [U;—1| > 2 and |U;| = 1, say
Ui—1,V € Uj—y with v € [u;—y + 1 : ;] and U; = {u;}. We use this assumption to construct from
aroot P of ¢’z > v a path packing P with c¢TxP < 4, which contradicts the validity of cTz > 1.
Since ¢(FLy,) > 0, there exists a node p € [l; : r; ~ 1] with ¢jpp41) > 0. We consider two cases:

in
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CASE A: p = ry—1. Since ¢z > v is a nontrivial facet-defining inequality, there exists a minimal
root P with zu; ¢ P. Then, we know that c¢(P;) > 0 and that Py N C(r; : uy) = §. Moreover,
PN C(v:ly) =0 and zv & Py, since czy,-1 =0 and v € [ui—1 + 1 : I;]. This mesns that
P := P\P,U(C(r; : us)U{zuy, z}UC(v : ;) s also & path packing with ¢(P) = ¢(P)—c(P)) <
a contradiction.

CASE B: p# r;—1. Let H* C Flp+1: ;) be a path from 7; to 2 such that ¢(H*) = min{c(H) |
H C Flp+1:1), H is a path from r; to z}. In case c(H*) > 0, we obtain a contradiction by the
same construction as in Case A. Suppase ¢(H*) = 0. Since cTz > v is a nontrivial facet-defining
inequality, there exists an edge-minimal root P* with [p,p+1] € P*. Thus, c(F}") > 0 and we can
assume w.l.o.g. that P}y NC(v: L) =0 and 2v ¢ Py, since czy,—1 =0 and v € [ug—1 +1: L)
Then, P := P*\ P*U(H*U{zv}UC(v : ;) is also a path packing with e(P) = e(P*)—c(P}) <7,
a contradiction.

Summing up, both cases lead to a contradiction, and we conclude that {Us—y| = [Ui| =1. 11

LEMMA 5. Consider an index i € {1,...,k}. If e(S(r: : Li+1)) > O, then e(PL,) > 0 and
e(PiY) > 0.
PROOF. Let v € [ : liy1] with czy > 0. From Lemma 3, we know that there exists & node
u € [y lit1] with ¢zu = 0. W.lo.g., we assume that v € [u: li+1] (the other case u € [u: lit1]
can analogously be shown). Since ¢Tz > v is a nontrivial facet-defining inequality, there exists
an edge-minimal root P with zv € P. If zv € P;, we get that Pl = P\ {zw} U {zu} is also a
path packing with ¢(P') < ¢(P) =7, & contradiction. Thus, we know that zv € Pit1. Since
P':= P\ Piy; U PiE) is also a path packing with 0 < e(P)—e(P) = e(PH1Y — c(Piy1), we get
that c(Pit1) > ¢(Piy1) > 0, since 2v € Piyy. Now, suppose ¢(P%;,) = 0. In this case, we can
assume w.l.0.g. that P; = P&, Then, P':= P\ {zv} U (C(u:v) U{uz}) is also a path packing
with ¢(P’) < ¢(P) = 7, & contradiction. ]

Theorem 4.1 (c) can now be derived from Lemmas 4 and 5: Since v > 0, there exists an
index i with ¢(P¥,_) > 0. Applying Lemma 4, we conclude that e(S(ri, : lig+1)) > 0, since
I[P : Lig+1]| = 2. From Lemma 5, we obtain that c(P%}1) > 0 as well. Continuing this way,
we get that c(Pi, ) > 0, for all i = 1,...,k. This, together with Lemmas 4 and 5, implies
Theorem 4.1 (c).

In the following, we denote by u¢ € [r; : li+1] the unique node with ¢,,0 =0, fori=1,..., k.
In order to prove Theorem 4.1 (d), we need the following lemma.

LEMMA 6. Consider an Indexi € {1,...,k}. Let P bean edge-minimal root such that F; contains
at most one of the edges zul_; and zul. Then, c(P;) = ¢(C(li : 73)).

PROOF. First of all, note that, for all edge-minimal roots P, o(B;) < e(C(l; : 73)), since P\ P U
C(l; : ;) is also a path packing. Now suppose there exists an edge-minimal path packing P with
[{zud_,, zud}NPi| < 1 such that e(P;) < ¢(Cli ! r;)). Obviously, z € V(P;). Let u,v € [uf_; : uf]
with zu,2v € P;. W.lo.g., we can sssume that v € [ul_, : u] and u # u). Since ¢z > v is
a nontrivial facet-defining inequality, there exists an edge-minimal root P withzl ,¢P. I
P, = C(l; : r4), we have that P* := P'\ P/ UP; is also a path packing (note that u # uf)
with ¢(P*) = ¢(P") —c(P) +c(P) < 1, & contradiction. We conclude that z € V(F/). Now,
consider the unique path Hj; in P/ from l; to z. Since 2, ¢ P', we get that ¢(H,) = 0.
This fact, however, means that there cannot exist a root P that contains the edge zw, for any
w € [ri—y : ki) \ {ud_;}. Thus, "z 2> 7 is not & facet-defining inequality, a contradiction. 1

LEMMA 7. Theorem 4.1 (d) is true.
ProOF. Let i € {1,...,k} be an index with I; +1 #riand u € [l; +1: r —1] be given.
Since cTz > « is a nontrivial facet-defining inequality, there exists an edge-minimal root P with
20 ¢ P. Due to Lemma 6, we can assume that Fy = C(l : r;). Then, P*:= P\ B U(C(:
u) U {zu, zul} U C(r; : uf)) is also a path packing with 0 < e(P*) — ¢(P) = ezu —c(Clu: 7))
Thus,

Caw 2 c(Clu:ry)). (1)
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Analogously, there exists an edge-minimal root P with zul_; ¢ P, and we conclude
Cau 2.C (O (ll : u)) . (2)
Since ¢(C(l; : 14)) > e(Priy) > 0, it follows from (1) and (2) that ¢;, > 0. Hence, there

exists an edge—mlmmal root P with zu € B;. Since P is edge-minimal, either C(l; : v) C B; or
C(u: ;) C P;. In the first case, we conclude that ¢(C(u : 75)) > ¢z, since P\ {zu} U C(u: y)
is also a path packing. This together with (1) implies ¢;, = ¢(C(u : 7;)), and, because of (2),

e(Clu : 7)) > e(C(l : uw)). In other words, c;y = max{c(C(u : ry)),e(C(l; : u))}. In the latter
case (i.e., C(u: ;) C B;), we get that c(C(l : u)) > €4, since P\ {zu} UC(l; : u) is also a path
pecking. By the same arguments as in the first case, we obtain ¢,y = max{e(C(u : r;)),c(C(l; :
u))} in this case as well.

LEMMA 8 . Theorem4 1 (e) istrue.

PROOF. Let i € {1,...,k} be an index with r; # ul and u € [r; : u? — 1]. Since ¢’z > yisa
nontrivial facet-defining inequality and c,,, > 0 by Theorem 4.1 (c), there exists an edge-minimal

root P with zu € P. Moreover, zu € B, because uf € [u+1: l;41]. Then, P* := P\ {zu}UC(L :

r;) is also a path packing with 0 < ¢(P*) —¢(P) = ¢(C(l; : 1) \ Bi) — czu. Thus, we have that
(G(l :)) > ¢(C(li : 73) \ Pi) > cpy. Furthermore, there exists an edge-minimal root P’ with
1 ¢ P'. Dueto Lernma 6, we can assume w.l.0.g. that P/ = C(l; : r;). Since u? € [u+1 : litq],
we know that zu ¢ P/, and thus zu ¢ P'. This implies that P* := P'\ P{ U (C(u., :
L) U {zul_;, 2u} U C(r; : u)) is also a path packing with 0 < ¢(P*) — ¢(P') = czu — c(C(li : 7).
Thus, we also have that c,, > ¢(C(l; : r;)), and we conclude that equality must hold. In an
analogous way, it can be shown that ¢,, = c(C(l; :ry)) forallue [ud_, +1: 4], ifud ; #£4. 1
LEMMA 9. Theorem 4.1 (f) is true.
Proor. Consider an index i € {1,...,k}. We know that there exists an edge-minimal root P
with zu? , ¢ P. Lemma 6 implies that we can assume w.l.o.g. that P; = C(I; : r;). This means
that 2ul € Piy, since otherwise P’ := P\ P;UQ, where Q := C(u_, : L;)U{zuf_,, zu“}UC(r. :
u?), is a path packing with ¢Tx" " < 4. Moreover, we conclude from Lemma 6 that 2ul,, € P
and, thus, ¢(Pi1) = 0. Hence, P* := P\ (P;UP;41)U(QUC(l;41 : Ti41)) is also a packing of paths
with 0 < ¢(P*) — ¢(P) = e{C(li+1 : ri+1)) — ¢(C(li : 73)). Thus, e(Cli41 : rig1)) > e(Ck : m3)).
Iterating this argument proves Theorem 4.1 (f). ]
LEMMA 10. Theorem 4.1 § )is true.
PROOF. First, we construct a packing of paths P whose value c¢(P) is equal to [k/2]-¢(C(ly : 1))-
For i=1,..., k, we define

. {C’(l,':n), if 4 is odd,
Pl o (W8 ) U {2l z2u8} U C (rinal) , ifdis even.

It is easy to check that P-,is a path from [4tor, (i =1,... k) and that P, ,... P are mutually
disjoint .Thus ,P *=U¥,_P; is a packing of paths .By applying Lemma 9 we obtain that

e(P) =Z c(P;) +Z

i odd 1 aven
=3 e(Caw)
iodd

[ dotnin.

Thimpuds t dt v < [k/2]c (C{l:r ))

Now, consider any root P. Let m; := |B;N{#4;_,, 24, } fori =1,..., k. From Lemmas 6 and 9,

we know that ¢(P;) = ¢(C(ly : 1)) = ¢(C(ly : 1)), if 7 <1. On the other hand, the number
of indices ¢ € {1,...,k} with m; = 2 is at most |k/2|. Thus, v = ¢(P ) > Z{‘It <y c(P) =
1

2o i £(Cl Tl))>ﬂ€/21 e(Cl 1))
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