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Polyhedral Approaches to Network Survivability

M. GROTSCHEL, C. MONMA, AND M. STOER

AnsTRACT. In designing communication networks using fiber optic technol-
ogy, survivability from node and/or link failure has become an important
issue. We present a model that captures the notion of survivability by means
of certain node or edge connectivity requirements. This model includes a
number of network design problems occurring in practice. Furthermore,
it has been accepted as a reasonable abstraction of real world situations by
practitioners and is being used as a basis for generating solutions for the net-
work design problems. This model is analyzed using methods of polyhedral
combinatorics; in particular, we describe classes of valid and facet-defining
inequalities for the associated integer polyhedra. It is then shown how these
results can be utilized in a cutting plane procedure. We also present some
computational results with data from real telecommunication networks.

1. Introduction

The currently prevailing network technology based on copper cables leads
to highly connected communication networks due to the fact that copper ca-
bles have relatively small capacity. In such a case, failure of a single link or
node affects only a small percentage of the traffic. By contrast, fiber optic ca-
bles have extremely high capacity and thus the desire to design cost-effective
networks could lead to very sparse tree-like network designs. In such a case,
the loss of a single link or node would result in a large percentage of traffic be-
ing lost without the capability of rerouting. In fact, a number of catastrophic
failures of this type have occurred due to fire, storm, flooding, or construction
damages; see [NY1], [NY2], [SL1], [SL2], [SL3}, [WSJ] for instance. These
disasters make it clear that fiber-based communication networks have to be
designed in such a way that recovery from node or link failures is possible by
rerouting the traffic around the damage. This implies that the network has to
be supplied with extra connectivity. The level of connectivity will depend on
the needs of -each individual office. Such considerations lead to the concepts
of network survivability introduced in the next section. In fact, the model to
be presented in Section 2 has been accepted by practitioners and is being used
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in the area of telecommunication network design; see e.g., [CMW], [BC].

In Section 3 we will focus on network design problems that have relatively
low connectivity requirements. This model applies in particular to Intra-
LATA fiber network design problems faced by the regional Bell telephone
companies. In particular, we will describe large classes of facet-defining in-
equalities for the associated integer polyhedra, we will discuss separation
routines, outline a cutting plane algorithm, and present some computational
results with real networks. Section 4 treats network design problems with
relatively high levels of required connectivity in a similar way.,

For the low-connectivity case the approach we describe has reached a some-
what mature state and has proven to be very effective in practice. However,
for the high-connectivity case, theory and algorithm design are still in an
early stage of development. Nevertheless, the success of the previous effort
gives hope for similar results in this case.

The results presented in this paper are to a large extent based on our papers
[GM], [GMSI1], [GMS2], and two further papers currently in preparation
[GMSd], [GMSS].

2. The network survivability models

In this section, we formalize the network design problems that are being
considered in this paper. A set ¥ of nodes is given that represents the loca-
tions of the switches (offices) that must be interconnected into a network in
order to provide the desired services. A collection E of edges is also specified
which represents the possible pairs of nodes between which a direct trans-
mission link can be placed. We let G = (V, E) be the (undirected) graph of
possible direct link connections. Each edge e € E has a nonnegative fixed
cost c, of establishing the direct link connection. The graph G may have
parallel edges but contains no loops. (Thus we assume throughout this paper
that all graphs considcre‘d are loopless. But they may have parallel edges.
Graphs without parallel edges are called simple). The cost of establishing a
network consisting of a subset ¥ C E of edges is the sum of the costs of the
individual links contained in F. The goal is to build a minimum-cost net-
work so that the required survivability conditions (which we describe below)
are satisfied. We note that the cost here represents setting up the topology
for the communication network and includes placing conduits in which to
lay the fiber cables, placing the cables into service, and other related costs.
We do not consider costs that depend on how the network is implemented
such_as routing, multiplexing, and repeater costs. Although these costs are
also important, it is usually the case that a topology is first designed and then
these other costs are considered in a second stage of optimization; see e.g.,
[WC], [WKC], [CMW].

For any pair of distinct nodes $,t€V,an [s, t]-path P is a sequence
lf’sfi:gi‘;e:mand_tﬁdghes (Yg, e, U, 8, ..., 1{,_1 » €, v;), where each edge e

with the nodes Viyand v, (i=1,..., [), where Uy = § and
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v, = t, and where no node or edge appears more than once in P. A collection
P, P,,..., P, of [s,]-paths is called edge-disjeint if no edge appears in
more than one path, and is called node-disjoint if no node (except for s and
t) appears in more than one path. (Remark: In order to be consistent with
standard graph theory we do not consider two parallel edges as two node-
disjoint paths.) Two nodes s,t € V are called (locally) k -node connected
or (locally) k -edge connected if G contains k [s, f]-paths that are node-
disjoint or edge-disjoint, respectively. G is called k-edge (resp. k-node)
connected if all node pairs are locally k-edge (resp. k-node) connected. A
graph is called connected if it is 1-node connected. A component of a graph
is a subgraph that is connected and maximal with respect to this property.

Let us fix some further graph notation here. Let G = (¥, E) be a graph.
If F CE then G- F denotes the graph obtained by removing the edges in
F; we write G —e for G—{e}. If W C ¥V then G— W is the subgraph
obtained from G by removing all nodes in W ; G[W]=G—(V \ W) is the
subgraph induced by W . Given disjoint node sets U, W C V, we denote
by (U : W] the set of edges in G with one endnode in U and the other in
W, 6(W):=[W :V\W] is the cut induced by W ; and E(W) is the set
of edges of G with both endnodes in W . Instead of d({v}) we will write
simply 8(v). G/W denotes the graph obtained by contracting node set W
to a single node.

In [GM] we described a rather general notion of survivability. However, it
turned out that the data needed for implementing the model were often not
available in practice. A specialized version, to be described below, proved
to be acceptable from the point of view of data acquisition and was still
considered a reasonable model of reality by practitioners.

To model survivability we introduce the concept of node types. For each
node s € V a nonnegative integer 7, called the type of s, is specified. We
say that the network N = (V, F) to be designed satisfies the node surviv-
ability conditions if, for each pair s, € ¥ of distinct nodes, N contains at
least

r,, i=min{rg, r,}
node disjoint [s, {]-paths. Similarly, we say that N = (V, F) satisfies the
edge survivability conditions if, for each pair s,t€ V of distinct nodes, N
contains r, edge disjoint [s, t]-paths. These conditions ensure that some
communication path between s and ¢ will survive a prespecified level of
node or link failures.

Of course one could combine node and edge survivability conditions into
a single model as we did in [GM]; but in practice, it turned out that the
focus was either on edge or node survivability and mixed models were never
considered. That is why we introduce only one node type here; it will be clear
from the context whether we are dealing with the edge or node survivability

case.
To be able to name the different problem types efficiently we introduce

|
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the following notation and conventions. Given a graph G = (V, E) anda
vector of node types r = (F);cy» W€ assume—without loss of generaht.y—
that there are at least two nodes of the largest type. If we say that we cqnsxder
the k NCON problem (for G and r) then we mean that we are 1c?qk1ng for
a minimum-cost network that satisfies the node survivability conditions and
where k = max{r,|s € V}. Similarly, we speak of the kX ECON Problem
(for G and r). To shorten some notation we extend the type function r to
a function operating on sets by setting
r(W) = max{rJs € W} forall W C ¥ and
con(W) := max{r,|se W, t€ V\W}
= min{r(W), r(V\W)} foral WCV,S#W#V.

Let us now introduce, for each edge e € E, a variable x, and consider
the vector space RE . Every subset F C E induces an incidence vector XF =
(Xep)eezs e RE by setting Xf =1if eeF, xf := 0 otherwise, and vice
versa, each 0/l1-vector x € RE induces a subset F* := {e € E |x, = .1} of
the edge set E of G. (If we speak of the incidence vector of a path in the
sequel we mean the incidence vector of the edges of the path.) For any subset
of edges F C E, we let x(F) stand for the sum X, -x,. We consider the
following integer linear program.

(2.1) minc’ x
subject to
() x(6(W))2con(W) foral WCV,B#W#V,
(i) x(ds_p(W)) 21 forallpairss,teV,s#tand
forall Z C V'\{s, t} with |Z| =r, ~ | and
foral WCV\Zwithse W,t1¢ W,
(i) 0< X <1 forall ij € E,
(iv) x; integral forall ij € E.
It follows from Menger's theorem that the feasible solutions of (2.1) are the
incidence vectors of edge sets F such that N = (V, F) satisfies all node
survivability conditions; i.e., (2.1) is an integer programming formulation
of the kNCON problem. Deleting inequalities (ii) from (2.1) we obtain,
again from Menger’s theorem, an integer programming formulation for the
k ECON problem. The inequalities of type (i) will be called cut inequalities
and those of type (ii) node cut inequalities.

The polyhedral approach to the solution of the s NCON (and similarly the
k ECON) problem consists of studying the polyhedron obtained by taking the
convex hull of the feasible solutions of (2.1). We set

NCON(G; r) := conv{x € RE|x satisfies (2.1), (i), ..., (iv)}
ECON(G; r) := conv{x € R”|x satisfies (2.1)(i), (iii), (iv)},
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whe‘re conv denotes the convex hull operator. It will sometimes be con-
venient to denote these polyhedra by kNCON(G; r) and KECON(G;r),
Whelte k = max{r,|s € V}, since this implicitly provides a notation for the
maximum node type.

VIt follows frf)m 'the deﬁrfitions thaEt given G = (V, E), a type vector r €
Z, ,and an oth':cuve function ¢ € R”, the NCON and the ECON problem
can be solved via the linear programs

minc¢’x or minc’ x

x € NCON(G; r) x € ECON(G; ).
What we need for the application of linear programming technology is a com-
plete description or “good partial” description of the polytopes NCON(G; r)
and ECON(G;r) by means of equations and inequalities. The aim of our
paper is to describe some of the classes of valid and facet-defining inequali-
ties that are known for these polytopes and to outline their use in a cutting
plane framework.

Let us mention at this point some well-studied special cases of the concepts
introduced above.

If r,=1 forall se ¥V then ECON(G; r) = NCON(G; r), and this poly-
tope is nothing but the convex hull of all incidence vectors of edge sets that
contain a spanning tree. This polytope is usually called the connected sub-
graph polytope. A complete and nonredundant description of this polytope
can be easily derived from Edmonds’ [E] results on matroid polytopes. The
details have been worked out in [GM], for instance.

If r, €{0,1} for all s € V then again ECON(G;r) = NCON(G; r).
This polytope is the convex hull of all incidence vectors of edge sets that con-
tain a Steiner tree, where S := {s € V|r, =1} is the set of terminal nodes.
In the general case, where r is any nonnegative integral vector, a complete
linear characterization of NCON(G; r) is unknown. But reasonable partial
descriptions have been found; see, for instance, [GM] for more informa-
tion. A well-solved case arises when IS| =2, ie, exactly two nodes are of
type 1. Here NCON(G; r) is the convex hull of the incidence vectors of all
edge sets containing a [s, ¢]-path, where S = {s, t}. It is known that in this
case, the cut inequalities (2.1) (i) and the trivial constraints 0 < x, <1 for
all e € E suffice to describe NCON(G; r).

As remarked above, the kK NCON (and k ECON) problem has been in-
tensively studied for k=12 rich variety of results on the associated integer
polytopes exists. In the sequel, we will concentrate on the case k > 2. Sec-
tion 3 deals with k = 2, while the case k >3 is treated in Section 4.

3. Low connectivity

In this section we consider the kNCON and k ECON 'problems for th'e
special case where all nodes are of type 0, 1,2. As mentioned before,' this
case arises in the design of fiber optic communication networks. The regional
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Bell telephone companies are using this model for their Intra-LATA network
planning. We will assume throughout this chapter that, for every graph G
with node type vector r, at Jeast two nodes are of type 2.

3.1. The polytopes 2NCON(G; r) and 2ECON(G; r). This section sum-
marizes results of [GM], [GMS1] and [GMS2] for the 2NCON and 2 ECQN
problems. To state the results precisely we need to introduce further notation.

Given agraph G = (V, E), anode type vector r € Z+V ,anodeset W CV
with |W| > 2, we set

Vi={veVr,2i} fori=0,1,2,

A(G, W) := minimum cardinality of a subset of E whose removal from G
disconnects two nodes of W, and

k(G,W):= minimum cardinality of a set S C VUE' whose removal from G’
disconnects two nodes of W in G, where G = (V,E ') is the
simple graph underlying G.

If |[W| <2 then (G, W) and x(G, W) are defined as oo. There are some

cases where W 2 V. Then we write A(G, W) instead of (G, WNnV).

We assume throughout this section that G and r satisfy k(G,V))=>2
and A(G, V;) > 3 when we deal with the 2ECON case, and that G and
r satisfy x(G, V) > 2 and x(G, ¥,) > 3 when we deal with the 2NCON
case. If this is not so then the problem can be decomposed (in polynomial
time) into independent smaller problems that are trivially solvable or satisfy
these conditions. The exact decomposition procedure involves many techni-
cal details and is described in [GMS2] and, to some extent, in Section 3.2.
A side benefit of this assumption is that the polyhedra 2ECON(G; r) and
2NCON(G; r) are full dimensional (see [GM]), i.e., they contain |E| + 1
affinely independent vectors.

An inequality a’x < @ is valid with respect to a polyhedron P if P C
{xla"x < 0} ; the set F :={xePla"x= a} is called the face of P defined
by a’x < a. If the dimension of F, is one less than the dimension of P
and F, # 0 then F, isafacetof P and a’x < a is called facet-defining or
facet-inducing,

We first characterize the trivial inequalities (2.1)(iii) that are facet-defining.

(3.1) TreOREM. Let G = (V, E) be a graphand r € {0, 1, 2}" .

(a)x, < 1 defines a facet of 2 NCON(G;r) and 2ECON(G; r) for all e € E,
(b)x, > 0 defines a facet of 2 NCON(G; r)(resp. 2 ECON(G; r)) if and only
if for every edge f € E\ {e} the polytope 2NCON(G ~ {e, [};r)

(resp. 2ECON(G - {e, f}; r)) is nonempty.

The next theorem describes the facet-defining inequalities among the cut
inequalities (2.1) (i).
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(3.2) TueoreM. Let G =(V, E) beagraph, r€{0,1,2}" and W CV
with @+ W £ V. -

(i) If con(W) = 2 then x(8(W)) 2 2 = con(W) defines a facet of
2ECON(G; r) onlyif (GIW1, V) 22, AGIV\W], V) 2 2, G[W]
and G[V \ W] are connected.

(ii) If con(W) = 1 then x(6(W)) 2 | = con(W) defines a facet of
2ECON(G; r) if and only if G[W] and G[V \ W] are connected,
).L(G[lW%, Vyzi+1 fori=1,2,and AGIV\W], V)2 i+1 for
i=1,2.

(iii) If con(W) =0 then x(6(W)) = 0 = con(W) does not define a facet
of 2ECON(G; r) or 2NCON(G; r.

(iv) If con(W) =2 then x(6(W)) 22 defines a facet of 2NCON(G; r)
only if all conditions of (i) are satisfied and k(G[W1,V,) 2 2 and
K(GLV \ W1, ) 2 2.

(v) If con(W) =1 then x(6(W)) 2 1 defines a facet of 2NCON(G; 1)
only if all conditions of (ii) are satisfied and x(G[V\W]—e, V3) 2 2
forall e E(V\W).

If we look at the uniform case 7, =2 forall v € V then (3.2) (i) implies
that in a 3-edge connected graph a cut inequality x(6(W)) > 2 defines a
facet of 2ECON(G; r) if and only if G[W] and G[V \ W] are both 2-edge
connected. This result was independently obtained by Mahjoub [M]. In fact,
[M] investigates this uniform case in more detail. In particular, Mahjoub
introduces a new class of facet-defining inequalities for 2ECON(G'; r) called
odd wheel inequalities. Furthermore he shows that the convex hull of the
incidence vectors of all spanning 2-edge connected subgraphs of a series-
parallel graph is described completely by the trivial constraints (2.1) (iii) and
the cut constraints (2.1) (i).

Results (iv) and (v) of (3.2) above can be turned into “if and only if state-
ments” by adding further (complicated) technical conditions. (See [GMS1].)
The following necessary coaditions for node cut inequalities (2.1) (i) to de-
fine facets of 2NCON(G; r) can be similarly extended to a full character-
ization. Observe that in the low-connectivity case considered here we have
ry < 2,80 only sets Z with |Z|= 1 are to be considered.

(3.3) TusoreM. Let G=(V, E) beagraph, r€{0,1, 2}, zeV,WC
V\{z},@ # W # V\{z}. with r(W¥) =2 and r(V\(Wu{z}) = 2.
The node cut inequality x(dg_,(W)) 2 1, see (2.1) (ii), defines a facet of
2NCON(G; r) only if

(a) G[W] is connected,

(b) A(GIW U {2}, V)2 2

c) MG[W1, V,) 2 2,an

((dg Cgon[ditt!onsz(a)—(c) also hold for W=V \ (WU {z}) instead of W.

We now introduce a new class of inequalities generalizing the so-called par-
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tition inequalities that suffice (together with the trivial constraints) to describe
the connected subgraph polytope completely. Consider a graph G = (V, E)
together with a requirement vector r € {0, 1, 2}V, and a partition of ¥ into
nodes disjoint nonempty sets W, #,, ..., H; , P =2 2, each containing at
least one node of type > 1. r(W,) is supposed to be 2 for at least two of
these sets W,. The partition inequality (induced by W, ..., W,) is given
by

P
(3:4) 2 L HEW) 2 p.
i=1

(3.5) THEOREM. The partition inequality (3.4) induced by W,, ..., W, is
valid for 2ECON(G; r) (resp. 2NCON(G; r)).

We know necessary and sufficient criteria for a partition inequality to de-
fine a facet only for certain special cases. The next theorem gives some
necessary and some sufficient conditions that are also used in the heuristic
separation routines for the partition inequalities to be described in Section
3.2,

(3.6) THEOREM. Consider apartition inequality (3.4) valid for 2 ECON(G; r)
(resp. 2NCON(G;r)). Let G be the graph G/WI/---/Wp, where, for i =
1, ..., p, the node set W, is shrunk to a node w,; of type F(w;) :=r(W)).

(a) The partition inequality defines a Jacet of 2ECON(G;r) (resp.
2NCON(G; r)) only if the following conditions are satisfied.

¢ Every node of type 2 in G is adjacent to some node of type 1
in G.

o« G hasa cycle containing all nodes of type 2.

* G[W)] isconnected for i=1, ..., p.

s For i =1,...,p, G[W,] does not contain an edge e such
t_hat two nodes of type at least 1 are in different components
of GIW,]-e.

(b) The partition inequality defines a facet of 2ECON(G; r) if the fol-

lowing conditions hold.

o All conditions (a) are satisfied.

o The subgraph of G: induced by the nodes of type 1 is connected.

. T_he subgraph of G induced by the nodes of type 2 is hamilto-
nian.

IL,....,p and for all e € E(W,) either A(GIW)] -

A class of valid inequalities for 2NCON(G; r) that generalizes the node
cut inequalities (2.1) (ii) in a similar manner as partition inequalities (3.4)
generalize cut inequalities (2.1) (i) is the following,

Let G = (V,E) beagraphand r € {0,1,2}". Let z € ¥ and let
W,..., W, be a partition of ¥ \ {2z} into disjoint nonempty sets. We
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assume that r(W,) 2 1 for i=1,...,p, and that r(W¥) = 2 for at least
two sets. Let I, be {ie {1,..., p}r(W)) =k} for k=1, 2. It is obvious

that the following node partition inequality (induced by z, W, ..., Wp)

67 5 (Zx(ac_,(W,-))+2x<a(W,-))+x([{z}: U W,-])) >p-1

iel, i€l i€l

is valid for 2NCON(G; r) (but not for 2ECON(G; r)).

The next theorem gives some necessary and some sufficient conditions for
a node partition inequality to define a facet of 2NCON(G; r). Reasonable
necessary and sufficient conditions are not known.

(3.8) TueoreM. Consider a node partition inequality (3.7) induced by z,
W,,....W, for 2NCON(G; r).

(a) The node partition defines a facet of 2NCON(G; r) only if the fol-
lowing conditions are satisfied
o« G[W] is connected for i=1,...,p.
o MG[W,u{z}], V)22 for all iel,.
o AGIW),V,)22 for all iel.
o AGIW)],V,) 22 for all iel,.
(b) The node partition inequality defines a facet of 2NCON(G; r) if the
following conditions are satisfied.
o Fori€l, andall e€ E(W,U{z}), k(GIW,u{z}]-e, V}) 2 2.
o G[W] is 2-node connected for i € I, ~
o (3.7) defines a facet of 2NCON(G; r) for the graph G obtained
by contracting Wy, ..., W,.
The next class of inequalities is motivated by the 2-matching inequalities
for the 2-matching (resp. the travelling salesman) problem, see [E], [GP].
Consider a subset H C V called the handle and a subset T C 6(H) with |T
odd, |T| > 3. For each e € T, let T, denote the set of the two endnodes
of e. Thesets T,, e € T, are called teeth. Let H,,....H,, p 2 3,
be a partition of H into nonempty disjoint subsets such that r(H,) > 1 for
i=1,...,p,con(H)=2 if HNT,#9 forsome e € T ,and {H,NT,| <1
for i=1,...,p and all teeth T,. We call

- 7|
(3.9)  x(EH)) - Y x(BUEHY) + x(@(H) ~x(T) 22 - Ed

i=1
the lifted 2-cover inequality (induced by H, H,... ' H,, T); here [t| de-
notes the largest integer not larger than ¢. (Note that if r, = 2.for allveV
and |H| =1 for i = l,...,p, then (3.9) can be brought into the fgrm
of a 2-r;1atching inequality for the TSP by subtracting th_e degre_e equan(lms
x(6(v)) =2 forall v € ¥ and multiplying the resulting inequality by —3 )
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(3.10) THEOREM.

(a) Every lifted 2-cover inequality (3.9) is valid for 2ECON(G; r) (and
hence for 2NCON(G; r)).

(b) A lifted 2-cover inequality (3.9) defines a facet of 2 ECON(Q; r) only
if there are node sets H, H,, ..., Hp, and an edge set T inducing it
such that the following conditions are satisfied.

o Let G be the graph obtained from G lly contracting each set
H; to a node h; of type r(H,). Then G[H] is connected and
MGIH], V;) 2 2.

» G[H,] isconnectedfor i=1,...,p.

¢« AGH], V)22 fori=1,...,p.

In a way analogous to the generalization of 2-matching constraints to comb
constraints for the TSP (see [GP]) we will now extend 2-cover constraints to
certain comb constraints for 2NCON(G; r).

Let H,T,,..., T, be subsets of ¥ (H is called the handle, the sets
Ti,..., T, are the teeth) that satisfy the following conditions. The number
t of teeth is at least 3 and odd. Two teeth may have at most one node in
common. Each tooth T; intersects the handle H in exactly one node; we

denote this node by 2 lfor i=1,...,t. In each tooth T, we choose a
node z; € T; \ H and call z, a special node. The choice is restricted if
T,NT; # 3, in this case T, N T, ={z}= {zj.} (i.e., the nodes z; are not
necessarily distinct). Moreover, we assume that ro=2fori=1,...,t and

r,21 foral ve HU (Uf.=1(T,. \ {2;})). Under these assumptions one can

show that the following comb inequality
(3.11)
!

, .
X(E(H) +x(8(H) + ) x(E[T) + Y x([T;\ (HU{z}): V' \ T))
i=1 i=1

! t 3 t
~ QLR T = DX} Ty V) > a1+ 3T -2 - [

i=1 i=1 i=1
is valid for 2NCON(G; r). A sufficient (but rather special) condition for
(3.11) to define a facet can be found in [GMS1]. This paper also describes
a lifting theorem with which a node w can be expanded to a node set W
such that a valid inequality for 2NCON(G; r) is lifted to a valid inequality
for 2NCON(G'; '), where G’ is obtained from G by expanding w to W.
Using this lifting theorem, the condition [T,NH|=1 (i=1,..., t) can be
removed; thus the more general combs as studied in [GP] arise,

The investigation of comb inequalities is not yet complete. A lot of tech-
n_ica]ities creep in. We also have a version of the comb inequalities that
gives inequalities valid for 2ECON(G; r) (note that (3.11) is not valid for

2ECON(G; r) in general), but these inequalities are complicated and not yet
well understood.
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3.2. The cutting plane approach. The main objective of the polyhedral
research described in Section 3.1 was to provide large classes of valid and
facet-defining inequalities for 2NCON(G; r) and 2ECON(G; r) that can
be used in a cutting plane algorithm for the solution of the 2NCON and the
2ECON problems.

We briefly describe here the computational work we have done so far.
More details can be found in [GMS2].

We assume from now on in this section that a graph G = (V, E), node
types r, € {0, 1,2} forall v € V and costs ¢, €R forall e € E are given.
(We assume as in Section 3.1 that there are at least two nodes of type 2, for
otherwise we would just deal with a Steiner tree problem for which other
special purpose algorithmic machinery has been developed.) These data are
the input to our cutting plane algorithm. We input a further parameter that
specifies whether the 2NCON or the 2ECON problem has to be solved.
(We treat the two cases simultaneously below.)

Decomposition. Before starting the cutting plane algorithm we try to re-
duce the size of the problem by decomposing it. In fact, the practical prob-
lems we solved have rather sparse graphs of possible direct links, and the
survivability requirements often force certain edges to be present in every
feasible solution. Such edges can be fixed and removed from the problem
by appropriately changing certain node types. This removal may break the
original problem into several smaller ones that can be solved independently.

There are further ways of decomposing a problem into independent sub-
problems like decomposing on articulation nodes, cut sets of size two, and
articulation sets of size two. In each of these cases one can perform the
decomposition or determine that no such decomposition is possible using
polynomial time methods like depth-first search or connectivity algorithms.
All this is quite easy, though a precise description of the necessary transfor-
mations need some space. Details can be found in [GMS2].

The main purpose of this decomposition step is to speed up the com-
putation by getting rid of some trivial special cases that the cutting plane
algorithm does not need to check any more and by reducing the sizes of the
problems to be solved. At the end of this preprocessing phase we have de-
composed the original problem into a list of subproblems for which we call
the cutting plane algorithm to be described below. The optimal solution of
the original problem can then be composed from the optimal solutions of the
subproblems in a straightforward manner.

An outline of the cutting plane procedure. The input of this procedure is
a graph G = (V, E) with costs ¢, € R for all e € E and node types
r, €{0,1, 2} forall v € V . We want to solve

min ¢’'x or min T x
x € 2NCON(G; r) x € 2ECON(G; ).




132 M. GROTSCHEL, C. MONMA, AND M. STOER

We do this by solving a sequence of linear programming relaxations that af'e
based on the polyhedral results of Section 3.1. The initial linear program (in

both cases) is
minc’ x

(3.12) x(d(w))2r, forallveV,
0<x,21 foralle e E.

Suppose now that we have solved the current LP-relaxation and obtained a
basic optimal solution y. If y is in 2NCON(G; r) (resp. 2ECON(G; r))
then we are done since y is the incidence vector of the edge set of a network
satisfying the survivability conditions and having minimum cost. If y is not,
then we try to generate inequalities {from the classes described in Section 3.1)
violated by y. If we can produce such inequalities, we augment the current
LP with these inequalities, solve the new LP, and repeat this step.

It may happen that y isnotin 2NCON(G; r) (resp. 2ECON(G; r)) and
we are unable to find a valid inequality violated by y. In this case we have
found a (usually very good) lower bound to the 2NCON (resp. 2 ECON)
problem, If we want to produce an optimum solution to these problems we
have to resort to branch and bound (or a similar enumeration technique).
We will see, though, that this occurred in only two practical problems we
encountered.

The main ingredients of this cutting plane procedure are the so-called sep-
aration routines that check whether y satisfies all inequalities of a certain
class or not and, if not, generates a violated inequality. These routines are
discussed below.

Separation routines. At this point we assume that y € QE is feasible for
the current LP (in fact optimum); in particular, y satisfies the constraints of
(3.12). Now we want to check whether y satisfies the cut inequalities (2.1)
(i), node cut inequalities (2.1) (ii), partition inequalities (3.4), node parti-
tion inequalities (3.7), lifted 2-cover inequalities (3.9), or comb inequalities
(3.11), respectively. Observe that each of these classes contains a number
of inequalities that is exponential in |V/|, and thus it is impractical to con-
sider all these inequalities explicitly. Hence we need a practical procedure
for checking feasibility of y.

For a class of inequalities C, the separation problem is, given a vector y,
to determine whether y satisfies all inequalities in C and, if not, to find
an inequality in C violated by y. An algorithm that solves such a separa-
tion problem will be called an (exact) separation procedure. Frequently, it is
difficult to obtain separation procedures that are practically (or even theo-
retically) efficient. In such cases, fast heuristics are used that may generate
int?qualities violated by y but are not guaranteed to find one even if one
exists.

For the class of cut inequalities (2.1) (i), an efficient exact separation pro-
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cedure exis.tsl. It works as follows. We consider the components y, of
y as‘capacmes of the edges ¢ € E and compute—using the Gomory-Hu
algorithm—the Gomory-Hu tree. This tree has the following property. If
u,v isa Palr (?f .d1stmct r}odes then the edge on the unique [u, v]-path in
the tree w1_th minimum weight determines a [¥, v]-cutin G (with capacities
y) of minimum capacity. Using this property of the Gomory-Hu tree, it is
straightfor\.avard to check whether all cut constraints are satisfied, and if not,
to find a violated cut constraint. The Gomory-Hu tree can be computed by
solving # — 1 max-flow problems.

The separation problem for the node cut inequalities (2.1) (ii) can be
solved in a similar manner by first deleting a node, applying the Gomory-Hu
procedure, and repeating this for all nodes z € V. In our implementation
we do not perform this for all nodes z € V' ; rather we heuristically choose a
few “good” candidate nodes to try.

We do not know polynomial time separation procedures for the other
classes of inequalities mentioned above. In fact, finding a violated parti-
tion inequality (3.4), a node partition inequality (3.7), or a lifted 2-cover
inequality (3.9) are /#%-hard [GMS2]. Therefore, we have designed separa-
tion heuristics for these inequalities.

The separation heuristic for the partition inequalities (3.4) we have im-
plemented proceeds as follows. We first perform an (exact) edge contraction
procedure which has the following property. If, for the original graph, there is
a partition inequality that is violated by y, there is also one in the contracted
graph, and vice versa. This contraction procedure reduces the problem size
but also seems to help our heuristic find violated partition inequalities. After
performing all possible contractions we compute the Gomory-Hu tree of the
resulting graph. Removing some edges, say, from the tree, we obtain p com-
ponents. These components induce a partition of the node set, and we can
check whether this yields a partition inequality violated by y . Of course, it
is impractical to test all possible partitions arising this way. We therefore use
a heuristic that is based on the edge weights of the Gomory-Hu tree and the
distribution of the node types to generate some “promising” partitions. The
practical experience with this procedure is quite good, as can be seen from
the computational results below.

For the separation problem for lifted 2-cover constraints (3.9) we con-
sider, as before, G=(V, E) asa graph with edge capacities y,, e€ E. In
a preprocessing step we perform an exact contraction procedure according-
to criteria similar to those used for the separation of partition inequalities.
Then we apply the separation algorithm for 2-matching constraints due to
Padberg and Rao, see [PR], to the resulting graph. The Padberg-Rao pro-
cedure modifies the given graph by replacing certain edge capacities. Y, by
1-y, , labeling some nodes, and computing the Gomory-Hu tree of this mod-
ified labeled graph. If the edge of minimum weight of this Gomory-Hu tree
that separates the tree into two components, each having an odd number of
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labeled nodes, has weight less than one, a 2-matching inequality violated by
y exists. This does not necessarily imply the existence of a lifted 2-c0\(er
inequality (3.9) violated by y, but one can use the Gomory-Hu tree, heuris-
tically to select lifted 2-cover inequalities that are likely to be violated by y.
Details of these separation heuristics ¢an be found in [GMS2].

We have no reasonable separation heuristic for comb inequalities yet. We
did find, though, comb inequalities manually. In fact, in one case we were
able to add one comb inequality to a current LP manually, for which all other
separation routines had failed to produce a violated constraint, such that the
new LP gave the desired integral optimum solution. This investigation of
comb inequalities is still in its infancy; good and fast separation heuristics
need to be invented.

3.3. Computational experience with the cutting plane algorithm. We will
now briefly describe our experience with the cutting plane algorithm outlined
in Section 3.2. We do this by discussing computational results for several real-
world network design problems as shown in Table 1. All of these problems
were obtained from the Bell regional telephone companies and represent real
data for Intra-LATA fiber optic telephone networks.

The first column of Table 1 gives the name of the original problem. These
7 problems have sizes ranging from 36 nodes to 116 nodes and from 65 edges
to 173 edges. These data were analyzed by our preprocessing algorithm. A
substantial number of nodes and edges could be deleted or contracted. In
each case the decomposition algorithms produced a single much smaller graph
with the property that an optimum solution for this graph can be extended
to an optimum solution of the original graph. Table 1 shows the data of
the reduced graph. In column 2 the numbers of nodes and edges and forced
edges is listed, where the forced edges are those that could be proved (by
our preprocessing procedure) to be in every optimum solution. Columns
3 and 4 (with heading PART and 2COV) show the number of partition
inequalities (3.4) and lifted 2-cover inequalities (3.9) that were generated
during the execution of our cutting plane algorithm.

The fifth column shows the number of manually added inequalities. For
LATADL one of the two inequalities added manually was a comb inequality,
the other one a lifted 2-cover inequality. The sixth column shows the objec-
tive function value (lower bound) generated by the linear programming prob-
lem after all cuts were generated by the automatic procedure. The next two
columns show the optimal objective function value and the relative gap be-
tween the automatic solution and the optimal solution (in percent of COPT).

All of the problems are treated as edge-connected problems. For all prob-
lems except LATASL the ,optimal solution is also feasible for the node-
connected case.

The running times in min:sec on a SUN 3/50 are reported in column 9.
Our cutting plane procedure is based on a preliminary version of a branch-
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TABLE 1
Problem nodef{edges/ PART 2COV MAN automatic COPT % GAP TIME
forced edges solution

LATA1 28/49/2 45 1 0 4296 4296 0 0:15
LATASL 29/77/1 55 6 0 4574 4574 0 0:20
LATASS 23/50/0 51 0 0 4739 4739 0 0:12
LATADMA 21/46/4 30 20 0 1489 1489 0 0:13
LATADL 39/86/6 117 68 2 7398.5 7400 002 1:21
LATADS 39/86/3 251 10 32 72873 7320 045 1:47
LATADSF  39/86/25 41 0 0 7647 7647 0 0:28

and-cut framework designed by M. Jiinger and uses the LP-solver CPLEX
of R. Bixby, a very fast and robust linear programming code written in C.
CPLEX is based on the simplex method. All separation routines outlined in
Section 3.2 were also coded in C.

In all cases, the lower bound generated by the automatic solution is very
close to the optimal solution and the addition of a few inequalities manually
results in an optimal solution.

Branch-and-cut was required only for problem LATADL; and there only
two branch-and-cut steps were needed. The partition and lifted 2-cover in-
equalities were enough to optimally solve five of the seven problems. In only
one case was the addition of a single comb inequality necessary in order to
obtain the optimal solution. These computational results show a great deal
of promise for solving these network design problems in very short time. Of
course, in the final version of our procedure the manual parts will have to be
replaced by automatic separation routines.

The attentive reader may have noticed that we did not mention cut in-
equalities or node-cut inequalities above. The reason is that we are treating
these together with the partition inequalities (using the Gomory-Hu tree) and
did not record which of the inequalities found was a cut and which was a
partition inequality. In fact, we often changed a violated cut inequality into
a violated partition inequality since, for some heuristic reasons, it seemed to
be more appropriate.

4. Higher connectivity

The polyhedral investigation of ECON and NCON problems with node
types greater than 2 is stillin a preliminary stage. We do have a few polyhe-
dral results and some computational experience and will describe this below.
This will be documented later in [GMS4], [GMSS]. But there is much more

to be done.
4.1. Polyhedral results. In this section we consider—unless stated

otherwise—graphs G = (¥, E) with node types r, € Z, forall v € V such
that at least two nodes are of maximum type k at least 3. We first study the
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cut inequalities (2.1) (i). The exact separation routine for cut inequalit%es
based on the Gomory-Hu procedure described in Section 3.2 clearly carries
over to the general case. So the separation problem for cut inequalities can

be solved in polynomial time.

Reasonable necessary and sufficient criteria for a cut inequality to define a
facet of k ECON(G; r) or k NCON(G; r) are not known. The only special
case that has been investigated is the uniform case 7, = k forall veV. A
strengthened version of a result in [GM] due to M. Stoer reads as follows.

(4.1) THEOREM. Let G = (V, E) bea (k+1)-edge connected graph and let
W s V be a nonempty node set. Define for each W, C W with @# W, # W
the deficit of W, as

def ;(W,) := max{0, k — |65, (W)} -
Define similarly for U, CV\W with @# U #V\W
def ,(U,) == max{0, k — |dg w(UDI}-
The cut inequality x(6(W)) > k defines a facet of the polytope of k-edge
connected graphs if and only if the following conditions are satisfied.

(a)
<k

Uw:Uo)

i=1 =1

p q
Y defg_ (W) + ) defy_,(U)) -
i=1 i=1
for all edges e e EW)UE(V\ W),
for all pairwise disjoint node sets W,, W,, ..., W, of W, and
for all pairwise disjoint node sets Uy, U,, ..., U, of V\ W that
satisfy the following conditions:
(i) if p=1,then W #W,
() ifg=1,then U #V\W.
(b) GIW] and G[V \ W] are connected.

D. Bienstock (private communication) devised a polynomial time algo-
rithm that determines whether a given cut inequality induces a facet of
k ECON(G; r) or not in the uniform case.

For the NCON problem the following sufficient condition follows from
slightly more general results of [GM].

(4.2) THEOREM. Let k > 2 andlet G=(V, E) be (k+ 1)-node connected
and r,=k forall veV. Let W CV such that GIW] and G[V \ W] are
k-node connected. Then x(6(W)) > k defines a facet of NCON(G; r).

Further, more technical sufficient or necessary conditions of this type can
be found in [GM].

The cut inequalities (2.1) (i) can be generalized to partition inequalities
for kECON(G;7). Let W ,..., W, be a partition of V' into p node
sets W, with (W) > 1. Let I, := {i € {1, ..., p} con(W,) = 1} and
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L= {i e.{l, ..., D} con(W,) > 2} . We assume I, to be nonempty. Then
the partition inequality induced by ¥, ..., Wp is defined as
1 & 1
(43) 3 2 X@(W)) 2 | 5 ) con(W)| +11y].
i=1 lel,

Partition inequalities are valid for ECON(G;r). They define facets of
ECON(G; r) only if Eiel, con(W)) is odd or if I, is nonempty. Note that

H

for r € {0, 1, 2}V , this is the partition inequality (3.4) for 2ECON(G; r)
with right-hand side p.

The node cut inequalities (2.1) (ii) can be generalized to the larger class of
partition inequalities on a subgraph in a straightforward manner as follows.

Let Z C V be some node set |Z| > 1. If we delete Z from G then
the resulting graph must contain an [s, ¢]-path for every pair of nodes s, ¢
of type larger than |Z|. In other words, if W), ..., W, is a partition of
¥\ Z into node sets with (W) > |Z| +1 then the graph G := (G -
z)/w,/ - |W, mustbe connected. This implies that the partition inequality
for the connected subgraph polytope of G' (see [GM] (5.5) and (5.7)) lifted
to G is valid for NCON(G; r). This observation gives the following class
of inequalities valid for NCON(G; r).

P
(4.4) %Ex(éG_Z(W,.)) >p-1 foreverynodeset ZCV,[Z|21 and
i=1

every partition Wl,...,WpofV\Z
such that r(W) 2 |Z|+ 1, i=1,...,P.

That class can be generalized to further, more general, partition inequalities.

We now describe a relaxation for the ECON (and thus NCON) problem
that is based on matching theory. This model applies to the general case
r,€Z, for all v € ¥ and produces lower bounds for the integer program
(2.1) (i), (iii), (iv) that are computable in polynomial time. Moreover, this
model gives rise to further inequalities valid for ECON(G; r) (and thus
NCON(G; r)) that can be used in a cutting plane approach.

The survivability requirements imply that, if v € V is a node of
type r, , then v has degree at least r, for any feasible solution of the ECON
problem. Thus, if we can find an edge set such that each node has degree ?.t
least 7, (we call such a set an r-cover) and that has minimum cost we obtain
a lower bound for the optimum value of the ECON problem. Clearly, such

an edge set can be found by solving the integer linear program
(4.5) minC'x
Q) x(é(w))=r, forallve v,
(iiy 0<x,<1 foralle € E, and
(iii) x, integer foralle € E,
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which is obtained from (2.1) (i), (iii), (iv) by considering in (2.1) (i) only
sets of cardinality one. (4.5) can also be viewed as an integer programming
version of the LP (3.12) which is the initial LP relaxation of our cutting
plane algorithm. This integer program can be turned into a linear program,
i.e., the integrality constraints (iii) are replaced by a system of linear inequal-
ities, using Edmonds’ polyhedral results on b-matching. See [E]. Edmonds
proved that, for any vector b € Zi , the vertices of the polyhedron defined
by

(4.6)

i) y(EH)+y(T) < \\-):”i%ﬂ for all WCV and all T C 6(H),
and

(ii) 0<y, <l foralleeE

are precisely the incidence vectors of all (1-capacitated) b-matchings of G,
i.e., of edge sets M such that no node v € V is contained in more than
b, edges of M. For the case b, := deg(v) —r,, where deg(v) denotes the
degree of v in G, the b-matchings M are nothing but the complements
M =E\F of rcovers F of G. Using the transformation x:=1-y and
T :=J(H)\ T we obtain the system

(4.7)
@ xEE) +xee\ 1 2 [ ancw
and all T C d(H),
and

(ii) 0<x,<1 forallee E.

(4.7) gives a complete description of the convex hull of the incidence vectors
of all r-covers of G. Since every solution of the ECON problem for G and
r is an r-cover, all inequalities (4.7) (i) are valid for ECON(G; r).

It is trivial to see that only those inequalities (4.7) (i) where r(H) — |T|
is odd are needed. From the results of [CP], one can derive which of these
inequalities define facets of the r-cover polytope.

4.2. Computational results. As mentioned before, our computational expe-
rience with network design problems with higher-connectivity requirements
is very limited. We describe here briefly our current state of knowledge.

We have started implementing a cutting plane algorithm in the same way
as outlined in Section 3.2 for the low-connectivity case. The initial LP is
(3.12). The separation routine for cut inequalities also works in this case
(with a few modifications). A primitive heuristic for some of the partition
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TABLE 2

Problem nodes edges K IT PART C COPT CHEUR % GAP TIME
graph 1.40 40 78 5 0 0 190.70 180.70 20092 535 0:32
graph 2.40 40 - 780 5 0 0 186.97 186.97 192.65 3.03 0:29
graph 3.40 40 780 5 O 0 18295 18225 19452 673 0:33
graph 4.40 40 780 5 0 0 186.53 ? 10484 445 0:28
graph 5.40 40 780 5 0 0 152.42 ? 15760 515 0:33
euclid 40.sparse 40 206 5 0 0 760.12 760.12 829.82 917 0:18
euclid 40.dense 40 780 &5 2 4 338.54 ? 36725 848 0:44
ship 404 1096 3 73 1189 1510.0686 ? 2103.08 4523 24:12

inequalities (4.3) is running. But this has to be tested in detail against vari-
ous possible modifications. Separation heuristics for further classes of valid
inequalities and the exact separation procedure for the complemented b-
matching constraints still remain to be implemented.

Nevertheless we have run some experiments with the current version of
the code. Seven of our test problems were random problems to test some
heuristics [KM] for finding minimum-cost k-edge or node connected graphs.
The “graph i.40” problems are 5 ECON problems on a complete graph with
40 nodes and uniformly distributed costs between 0 and 20.

For “euclid i” the costs are euclidean (for randomly generated nodes).
The problem “euclid 40.sparse” has some edges randomly deleted from the
underlying graph while ensuring that the remaining graph is still 5-connected.
All of these problems are 5ECON problems with uniform node types r €
{S}V . The optimal solutions to these 5 ECON problems (if they are known)
are also feasible for the 5NCON problem.

The “ship” problem is a realistic model of the possible direct link connec-
tions of the various communication systems on a ship. The possible links
form a 3-dimensional lattice with a very regular cost structure; only 3 nodes
of the 494 nodes have node type 3 and 30 nodes have node type 1. We treated
this problem as a 3ECON problem.

Table 2 contains some information about the performance of our code
when it was applied to those 8 problems. The first three columns contain
the problem name, the total number of nodes and the number of edges. K
denotes the connectivity type. I7 denotes the number of LP-iterations and
PART the number of partition inequalities (4.3) used to produce the lower
bound C. Note that in the “graph i.40” problems and “euclid 40.sparse”
our separation routines could not find any violated partition inequalities after
solution of the initial LP (3.12). In fact, as can be seen from the column
COPT, in four cases the solution of the initial LP was already optimal.
A “9” in the column COPT says that the optimum solution is not known
at present. CHEUR is the value of the best feasible solution found by the
heuristics of [KM]. GAP =100 x (CHEUR-C)/C is the gap between the
heuristic value (upper bound) and the lower bound generated by our code.
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The total time on a SUN 3/50 in min:sec of our cutting plane procedure is
reported in column TIME.

The code produced a somewhat unexpected outcome. It did very well on
the random problems where all nodes have high connectivity requirements.
But it performed poorly on the real world problem that has many nodes
of type 0 and relatively few nodes of higher connectivity. We believe that
further polyhedral investigations and the design of more structure dependent
heuristic separation procedures will cure this poor behavior.
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