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The symmetric travelling salesman problem (TSP) is the problem of finding the
shortest Hamiltonian cycle (or tour) in a weighted finite undirected graph without
loops. This problem appears to have been formulated some 45 years ago [14] and has
been a subject of {ntensive investigation in combinatorial optimization during the
past 25 years. The interest that this problem has received is well deserved: Many
practical combinatorial problems in scheduling and production management can be formu-
lated as or shown to be equivalent to a symmetric travelling salesman problem. On
the other hand, the travelling salesman problem is of theoretical interest because
it is a '"hard" combinatorial problem, see [10].

In this note, we review some of the recent theoretical and computational results
concerning the TSP. In doing so, we focus on the oldest approach to this problem due
to Dantzig, Fulkerson and Johnson [2] who formulated the problem as a linear program-
ming problem in zero-one variables in 1954 and used a cutting plane approach to prove
the optimality of a heuristically obtained solution to & 49-city problem. We review
first results which concern the facial structure of the convex hull of tours of the
n-city travelling salesman problem where a tour is regarded as a point in R™ with
m = n(n-1)/2, and where n is the number of cities of TSP. The striking result of the
pertinent studies [5], [6], [7] is that the number of inequalities needed to linearly
describe this convex polytope graws far worse with number n of cities than previously
expected [4]. We next discuss part of the experimental results of a computational
study [16] which aims empirically valideting the usefulness of cutting planes for the
actual solution of large-scale combinatorial optimization problems. The cutting planes
used in the computational study are, however, not the cutting planes used commonly in
integer programming, rather they form a subset of those inequalities for which we have
theoretically established that they are required in any non-redundant description of

the travelling salesman polytope by way of linear inequalities. These inequalities
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are in a way 'atrongest" cutting planes in an integer programming sense and can thug
be expected to perform satisfactorily in computa tion. The main conclusion to be drawn
from the computational study is that such (facetial) inequalities are indeed of sub-
stantial computational value in the solution of this difficult combinatorial problen
and, by generalization, for other "hard" combinatorial optimization problems as well,
1. NOTATION

Let Kn = (V,E) be the undirected complete graph with node-set V = {1,...,n} and
edge-set E = {(i,j)‘iev, ieV, i#j}. A tour is either a cyclic permutation of nodes
(11, 12,...,1‘.n) or equivalently, a set of n edges {(il,iz), (12,13),...,(in_1,in),
(in,il)} which form a Hamiltonian cycle (or tour) in Kn. A cyclic permutation of r
nodes with r « n or its associated edge-set is called a subtour. Algebraically a
tour is described by a zero-one vector x with the convention that Xy = 1 if the edge
(1,1) is in the tour and xij = 0 if not. As we are dealing with undirected edges the
vector x has m = n(n-1)/2 components. For any S¢V and HCE we use the following
abbreviations:

N(H) = {i.eV|i is incident with an edge in H}

E(S) = [(LDE|Les, (&)
£lxy;|(L,1) e}

x(8) = x(E(8))

x(H)

For x&, we let <x> = min{zeZ|xsz} and [x] = max{z¢Z x>z}, where Z are all
integer numbers.
2. THEORETICAL RESULTS

Denote by QT“ the travelling salesman polytope, i.e., the convex hull of zero-one
points of " that correspond to tours in the complete graph K, - The best-known
valid inequalities for Q;‘- are the subtour-elimination constraints due to Dantzig et

al,[3]. The subtour-elimination comstraint on a node-set W is given by:

(1.1) x(W) < IWI -1
where W ¢ V satisfies 2 ¢ |w| < n-2. The following proposition summarizes the known
properties of subtour-elimination constraints, see e.g. [473:

Proposition 1.1: (1) Every subtour-elimination constraint (1.1) defines a

proper face of Qn. (ii) The subtour-elimination constraints on W and V-W define
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the same face of Q.. (iii) The number of subtour-elimination constraints defining
X

distinct faces of Qg is equal to
(1.2) Seoy =20l Lol
Since for any pair W,W' ¢ V satisfying W y W' # V one can readily find a tour in Kn
satisfying the subtour-elimination constraint on W with equality and the subtour-
elimination constraint on W' with inequality, it follows that the subtour-elimination
constraints define exactly \§(n) distinct faces of Q;. Furthermore, for n > 5, the
trivial inequalities X, 2 0, eeE, define distinct faces of Q;. Consequently, we have
an-l n(n-3)/2-1 inequalities defining distinct faces of Q;. We discuss next a
class of combinatorial inequalities whose total number apparently grows much faster
with n than 0(2“‘1).

Every vertex of Q; satisfies the system of equations and inequalities
(1.3) Ax = 2e,, 0 <x % en
where A is the node-edge incidence matrix of Kn, m = n({n-1)/2 and e, is the vector
with k entries equal to one. Consequently, the 2-matching congtraints due to J.
Edmonds [3] constitute valid inequalities for Q;. V. Chvdtal [1] has generalized
this class of inequalities to a wider class of inequalities which he called comb in=-
equalities. Both classes of valid inequalities for Q¥ like the subtour-elimination
constraints have coefficients of zeros and ones only (except for the right-hand side

constant) and are special cases of the following general comb inequality, which has

coefficients equal to 0,1 or 2: Let Wy eV for i =0,1,...,k satisfy

(1.4) [Wg nWy| =1 for i = 1,...,k.
(1.5) |wi - W0| =1 fori=1,...,k.
(1.6) [w; N Wj| =0forl sic<] <k,
1.7) k odd.

k
Then we call C = | E(Wi) a comb in Kos WO is called the handle and the Wi for
i=0
i=1,...,k are called the teeth of the comb C. The comb inequality corresponding

to 2 comb C in Kn is given by

k k Kk
(1.8) ¥ x(wi) < Iwol + ¥ (|w.|-1) - <>
i=0 i=1

A comb C with k = 1 and |w0| =1 is a subtour-elimination conatraint. A comb
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tnequality s a 2-matching constraiat [3] if the inequallty in both (1.4) and (1.5)

A comb inequality is a Chvdtal-comb [1] if the requirement

S

holds as an equality.
(1.6) is dropped and the inequality (1.4) is required to hold as an equality,

ChvAtal [1] also permits k in (1.7) to be even, but then the inequality (1.8) does

. o
not involve any integerization and is trivially seen to be inessential for QT In

2,
[6] we prove that requirement (1.6) does not axclude any Chvatal-combs that are

easential for er’ Furthermore, the only undominated combs satisfying k = 1 yield

subtour-elimination constraints and thus, in order to distinguish subtour-eliminat{oeg

constraints from comb inequalities, we assume throughout that (1.7) holds with k 3 3.
The next proposition summarizes the more readily proven property of (generalized)

comb-inequalities:

Proposition 1.2: (i) Every comb inequality (1.8) defines a proper face of Qn.
T
(41) The comb inequalities (1.8) given by Wy, Wj,...,W, and by V-W,, W,....W , res-

pectively, define the same face of g“. (iii) The number of comb inequalities defin- !
ing distinct faces of 9“ 1s equal to

e S ="Pr O CEem Y R LS, '!
=3 j=3 k=3 k o) kI Pk :
where k odd
k
P _ 3k P
Ak z (- (j) (k-1) .

j=0

Subtour-elimination constraints are intuitively readily understood, the logical

implication of a comb inequality is more complicated. To get a better undersatanding,
consider e.g. a comb inequality for n = 8 with Wo = {1,2,3,4}, wl = {1,2,5,6},

Wy = {3,7} and wa = {4,8], i.e.,

(1.10) 2 +x.+x. x. +x_ +x_+x +x +x_ +x_ +x_ +x + .
127131415 16 03 0 05 06 ™00 570 s £
8
Using the relations I %y = 2and x._+ ¥ x_ =2 to eliminate the variable xl2
j=2 j=3

from (1.10) we obtain the equivalent conatraint

(1.11) X, X, _+x + 3+
36378 ™56 7t X1 gty g

This constraint now expresses quite clearly the logical implicat{on of the comb in-
equality (1.10): TIf = = = = ) i

y ) Xy, T Xqg x4a oo 1, i.e., if the travelling salesman
travels on the chain [7,3,4,8] and tncludes the link [5,6] as well, then
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x17+x18+x27+x28 > 1 must hold, i.e. then the travelling salesman must choose one of
the links [1,7], (1,8], [2,7] or [2,8], since otherwise there exists no round trip
for the eight cities. It would, however, be {ncorrect to conclude that subtour-elim-
ination consatraints are all that are needed to linearly describe Q;. Indeed, in the
above example, it 1is not difficult to find those points of IR28 that satisfy all sub-
tour-elimination constraints with inequality while violating inequality (1.10).
Clearly, there can be no such points with zero-one componenta only, but there are
such points e.g. with components equal to 0, % and 1.

While in Propositions 1.1 and 1.2 it is asserted that the respective inequality
(at least) intersect the polytope Q;, so far nothing is said about the dimension of
the face of Q; that is defined by any particular such inequality. (It should be noted
that cutting planes in general integer programming such as the ones commonly encoun-
tered Ln textbooks are not even guaranteed to intersect the convex hull of iateger
solutions, see [15] for a relevant illustration.) In (6], we prove that the dimension
of the face of Q; that is defined by any particular subtour-elimination or comb in-
equality is the largest possible, i.e. equal to the dimension of Q; minus one. As
customary in the literature, we say that the respective inequality defines a facet
(= proper face of maximal dimension) of Q; and with this notation, the following

theorem 1is proven in [5], [6], [7]:

Theorem 1.3: (i) The trivial inequalities xij > 0 define facets of Q; for sall

unordered pairs i, j.

n
(i1) The subtour-elimination constraints (1.1) define facets of QT.

(iii) The comb inequalities (1.8) define facets 0549;.

(lv) Trivial inequalities, comb inequalitjes and subtour-elimination constraints are

pairwise non-equivalent.

In the above theorem, we assume that n > 6 is an arbitrary integer. Having thus
established that the above inequalities really matter in defining the travelling sales-
man polytope, it is of interest to calculate the number of subtour-elimination con-
straints and comb inequalities. In order to get an idea about the comparative growth
of the number \ﬁ(n) of subtour-elimination constraints and of the number \F(n) of

comb constraints we have computed the respective numbers and tabulated them in Figure
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(For n 2 20 we give only the order of magnitude.) As n gets large, v (n) becomes

marginal by comparison to \;c(n) and for n 2 8 the linear syatem ia already astronomi-

cally large - even though 8-city problems can generally be solved by inspection,

To make matters worse, we know that for m 2 10 (and, possibly, even for n > 8) the

n
above set of linear inequalities does not completely describe QT and probably a still

far greater number of linear {nequalities 1s needed to achieve that result. For the

uninitiated, these results will indicate that an algorithmic approach to TSP based
on linear inequalities must fail.

3. COMPUTATIONAL RESULTS

Actual computational experience indicates strongly that a linear-programming
based proceeding works very well for this difficult combinatorial optimization problem.
while it ia of course impossible to work with an explicit in-core or out-of-core rep-
resentation of 2.10179 inequalities during the solution of a 120-city problem, it s
entirely feasible to Wactivate" an increasing aumber of inequalities as the computa-
tion proceeds. The question then becomes how many of the inequalities are eventually
activated during computation and here the computational experience indicates that
very few inequalities are required to golve to optimality or to establish near-opti-

mality in & great number of travelling salesman problems. This gtatement is based on

a recent computational study [16] in which 74 different TSP's were tried (in 44 cases

n @) w(n)

6 25 60

7 56 2100

8 119 41420

9 246 667800
10 501 8841970
15 16368 1993711339620
20 0.5-10° 1.5-10°°
30 0.5-10° 1.510°"

12

40 0.5-10 1.5-10%
50 0.5-1083 1060
59 0.3.10'8 1074
120 0.6-10°° 2:10""°

Figure 1:

C
Comparative Growth of \;s(n) and y (n)
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optimality was established, in the remaining 30 cases excellent lower bounds on the
minimum tour length were obtained).

The algorithmic proceeding is virtually identical to the one of Dantzig et al.
[2] except that the man-machine interactive features have been eliminated. This
means that one starts by finding & possibly optimal tour by way of a heuristic. (The
heuristic used in the study is due to Lin and Kerningham [13].) This solution is
uged to initialize the linear program given by (1.3) and specially written sub-
routines are used to activate new inequalities when they are needed to cut off a
basic feasible solution to the current linear programming problem. The whole proce-
dure works like a primal (rather than dual) cutting plane algorithm. This permits
one to find better tours to the problem, if the heuristically obtained starting
solution was non-optimal even though one may not terminate by actually proving opti-
mality of a tour. This is simply due to the fact that at present no complete linear
description of Q; is known and that in the study it was not considered to permit cut-
ting planes from general integer programming theory. Instead - Lf the sub-routines
do not find a necessary next cutting plane of the types described in Section 2 - the
current linear programming problem {s solved to optimality yielding a lower bound on
the optimum tour length.

In order to evaluate the value of {nequalities (1.l1) and (1.8) towards the goal
of proving optimality, the linear program (1.3) is solved in a first run. Then in a
second run, the same problem {s run using the constraint-activating procedure des-
cribed above. This ylelds two values: VALUE 1 is the objective function value with-
out cuts and VALUE 2 is the objective function value with cuts. If TOUR denotes the
minimum length tour of the problem, then the following ratio {s a goad proxy for
measuring the added value of the additional work: RATIO = (VALUE 2 - VALUE 1)/
(TOUR - VALUE 1). Note that RATIO is zero if no improvement is obtained (e.g. Lf no
constraint was generated), while RATIO is one 1f the constraint-generation procedure
terminates with the optimal tour. RATIO is, of course, always between zero and one
and due to taking both differences and a ratio, the measure is invariant under ascaling
and translating the data. This is of particular importance since a single ratio, e.g.
VALUE 2/TOUR, can be made to '"look arbitrarily good" by a simple translation of the
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data (distances).

The computational results on & number of test problems from the literature are

summarized in Table I. The heading tuithout cuts" refers to the solution of the

(initial) linear program: TIMELl ia the CPU-time in seconds, PIVOTL the pivot count,
VALUE1 the objective function. TOUR refers to the minimum length tour or the value

of the best tour found by the heuristic. The heading 'with cuts' refers to the con-
straint-generation procedure: VALUEZ is the objective function value of the linear
program with cuts, the first column under PIVOT2 refers to the total number of pivota,
the second column under PIVOT2 refers to the number of pivots carried out after the
default in the constraint-generation procedure (i.e. the second column is counted
already in the first)a CUIS specifies the total number of cuts generated in the runm,
its second column the number of cuts that were dropped again after defaulting. TIME2
{s total execution time to termination in CPU-seconds. RATIO is the value discussed
in the introduction to this section. All problems were executed on the IBM 370-168
MVS of the IBM T.J. Watson Research Center in Yorktown Heights.

DAN42 {8 the 42-city version of the 49-city problam due to Dantzig, Fulkerson
and Johnson [2]. The solution was proven to be optimal 1in 3.10 seconds of CPU-time
after adding 9 conatraints. GRO48 {s a 48-city problem due to Grotschel [5] (48 citiea
with distances given in Shell's Roadatlas of Germany). After 9.16 seconds of CPU-
time the progrem terminated with a lower bound of 5032 for the optimum tour; the best
tour found by the heuristic has a length of 5046. HELA8 is the 48-city problem due
to Held and Karp [8]. The solution was proven to be optimal in 4.30 seconds of CPU-
time after adding 10 constraints. TOMS57 {s the 57-city problem due to Thompson and
Karg (9). After 10.40 seconds of CPU-time 2 lower bound of 12940 for the optimm
length tour of 12955 was obtained. (Optimality was proven by Held and Karp [8]).
KROL70 is & 70-city problem due to Krolak [12]. After 31.91 seconds of CPU-time a
Lower bound of 674 on the heuristically obtained best tour of length 675 was obtained.
GRO120 is a 120-city problem due to Gritschel [5], who proved 6942 to be the minimum-
length tour using the same general algorithmic approach as described here. (The pro-

blem has 120 cities with distances given in the Deutscher Generalatlas, Maira Geo-

graphischer Verlag, Stuttgart 1967/8). In the case of this problem, the heuristic
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[13] obtained in 158 CPU-seconds and 20 tries a best tour with length 6351. When
this suboptimal solution was used as a starting solution to the linear programming
code the program obtained after roughly 3 minutes of CPU-time a lower bound of 6929.
When the optimal tour was used as & starting solution to the linear programming code,
the program obtained after roughly 4 minutes a better bound of 6939. KNU121l is a
supersparse 12l-city problem due to Knuth [11]. The code encountered very early an
""unknown' vertex and defaulted to solving the amended linear program. 7.25 seconds
of CPU-time were used to obtain a lower bound of 344 on the optimum tour length of
349 published in the New York Times. LIN318 is a 318-city problem the data of which
are published in [13]. The data come from an actual problem involving the routing of
a numerically controlled drilling-machine through three identical sets of 105 point
each plus three outliers. As the drilling is done by a pulsed laser, drilling time
18 negligible and the problem becomes a standard travelling salesman problem. After
several runs (including runs with the heuristic) the tour of length 41349 was found.
When started with this solution, the program terminated after roughly 30 minutes of
CPU-time with a lower bound of 41237 for the optimum tour. Consequently, the '"gap"
to the best tour found is 112 and thus, this tour is at worst %% off the absolute
optimum. Moreover, units being milliinches, the best tour found is at worst %Binch
off the absolute optimum through the 318 points. From a practical point-of-view,
this solution must be considered more than satisfactory and if the economics of this
particular application demanded a true optimum solution, one would have - in view of
the small remaining gap of 112 - a better than even chance to solve this problem

exactly by any good branch-and-bound code.
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