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This is the second part of a two-part paper addressing itself to the facial
structure of the symmetric travelling salesman problem. All definitions and
notational conventions of the first paper (“On the symmetric travelling sales-
man I: Inequalities” [3]) apply unchanged. In this paper we prove four lifting
theorems for Q% the convex hull of tours of the n-city travelling salesman
problem, and obtain by application of these theorems the resuit that all subtour-
elimination as well as comb inequalities (including the special Chvital-combs,
see [1]) define facets of QF. As we have demonstrated in Section 1 of the first
paper, the number of linear inequalities that we thereby know are necessary to
linearly describe Q% is incredibly large and by far exceeds previous expectations
based on the exponentially growing number of subtour-elimination constraints.
Yet in at least two recent computational studies [2,5] it has been found
empirically that in order to prove optimality or near-optimality in large-scale
travelling salesman problems a truely small number of inequalities of this type
suffices.

4. Lifting theorem I for the travelling salesman polytope

While in the first paper we have used a *“direct” method to prove that certain
inequalities define facets of Qf, a direct method of proof becomes rather
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impossible as combinatorially more complicated types of inequalities are con.
sidered. Since the complete graph K., differs from K, by “only” one node and
n edges, it is, however, reasonable to ask for conditions under which an
inequality ax < a, which defines a facet for Q7 retains its facetial property if it ig
“somehow™ lifted to a valid inequality a*x* <a¥ for Q3. We prove next
several lifting theorems which spell out sufficient conditions under which such
proceeding is possible. These lifting theorems are not only powerful enough to
prove that all subtour-elimination and comb-inequalities define facets of Q7% but
they also require relatively few assumptions about (a, ay) and allow conclusions
for combinatorially even more complicated types of inequalities. Since the
proofs of these theorems require a number of auxiliary lemmata we first define
several symbols that will be used consistently throughout the rest of the paper in
addition to those defined in the introduction of the first paper [3].

Definition 4.0. (1) ax < a, is an arbitrary, but fixed valid inequality that defines a
facet of Q%, satisfies a, >0 for all e€ E and a, = a > 0 for some e € E. {Note
that x € Q% implies x(E) = n and thus ¢ =0 is not restrictive at all.)

(2) G.=(V,, E,) s the partial (sub-)graph induced by the nonzero components
of a,ie. E,={e€E l a,> 0} and with node set V, = V, i.e. isolated nodes are
permitted.

(3) (W, C) denotes a clique in G,, i.e. 2 maximal complete subgraph of G,
which is not a single node.

4) Z={wEW |au=0ViE V-W}, ie. Z is the subset of nodes of W
whose nodes are not connected by a single edge of G, to nodes in V — W,

() Y={veEV-W|3IweW-2Z such that G =0} If W=2Z we define
Y=V-W

(6) E(a,X)={[i,j1€E, l {i, i} X # @} where X is a subset of W. Note that
by definition and since W is the node-set of a clique in G,, E(X) is a proper
subset of E(a, X).

(7) H(a)={x € Q% | ax=aptand H={T € T, ]axT = ag}. If bx < by is a valid
inequality, then H(b) is defined analogously to H(a).

(8) All symbols with a star * pertain to the higher-dimensional polytope Q%
under consideration where n* > . Thus, for instance for n* = n + 1, A* is the
node-edge incidence matrix of K,,, and has the general form

A I
* n
A (0 ) 1)’
where A is node-edge incidence matrix of K, and I, the n x n identity matrix.
Likewise a € R™ is extended to a* € R™* in the natural way e.g. in the case

n*=n+1 by adding components al for i=1,...,n at the “end” of a. If
n*>n + 1, then we proceed likewise by first adjoining n + 1, then n + 2, etc.

The next lemma is a useful characterization of a facet of Q%. It is probably a
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classical result about polytopes, but we have been unable to locate an ap-
propriate reference.

Lemma 4.1. Let cx =< co be a valid inequality for Q% satisfying H(c) # 9. The
following two statements are equivalent:

(i) H(c) is a facet of Q%.

(ii) For every valid inequality bx =< b, satisfying H(b)2 H(c) and H(b) # Q71,
there exist A € R" and w+# 0 such that AA + mc = b.

Proof. If (i) holds, then AA = ¢ is impossible. Furthermore, H(b)= H(c) holds.
If the statement (ii) is false, then the matrix obtained from A by adjoining the
vectors b and ¢ has row rank n + 2 and hence

dim H(c)=<!in(n - 1)—(n +2)=dim Q7 -2,

is a contradiction to (i). If (i) holds, choose bx =< b, such that H(b) is a facet of
Q%. But then AMA+7wc=b, w#0 and H(c) #§ imply H(c) = H(b).

The following remark which we will refer to as Argument A permits one to
assign to certain components of a valid inequality cx =<cp arbitrarily chosen
numerical values without affecting H(c) and will be used repeatedly in the
theorems to follow.

Remark 4.2 (Argument A). Let u €V, let f€ E— w(u) and define F=
w(u)U{f}. If cx=c, is a valid inequality for Q% and a, for all e€E F are
arbitrary real numbers, then there exist b € R™ and a unique p € R” such that
b =c+ uA and b, = a, for all e € F. Consequently, setting b = Cot 220y it
follows that H(b) = H(c) holds.

Proof. After a reordering of its rows and columns the n X n submatrix B of A
with columns indices in F has the general form

Clearly, |B| = +2 and thus there is a unique 4 satisfying 2B = ar —cr where cx
is the vector with components c, of ¢ with e € F and ar is the vector with
components a,, ¢ € F, (in the same ordering that is implied by B). Thus defining
b = c + A, the assertion follows.

The following remark which we will refer to as Argument B permits one to
“locally” solve the system of equations b = ¢ + AA for certain components of A
and will be used repeatedly in both the following lemmata and theorems.
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Remark 4.3 (Argument B). Given any b € R™ and ¢ €R™, consider a triple u, v
and w of mutually distinct nodes in V. Then the system of equations b =
mc + AA implies

Ayt A, + TCuy = by,
Au + Aw + "cuw = bum
A, +Ap+ ey = byy

and consequently,

A= %(bun + buw - buw - 'N(Cuu + Cuw — Cuw));
- %(buv - buw + buw - W(Cuu —Cuw t+ cvw)):

A, =
A, = %(_buv + buw + buw - 7"(_ Cup + Cuw + cuw))-

In the actual applications of Argument B, one always knows some or all of the
numerical values of the quantities c,, etc. and thus one can compute the vector A

“locally” for the respective components.

The following lemmata and their corollaries concern properties of the tours
that are contained in a particular facet H(a) of Q%. These properties, such as the
containment of a particular edge in a tour T € H, permit us later to carry out the
“inductive” step in the lifting theorems. .
Lemma 4.4, If |[W|=>3,|Z|=2 and a,= a forall e € E(a, Z) hold, then for every
w E Z and for every i € V — Z there exists a tour T € H such that (i, w]E€ T.

Proof. Forany w€ V and i € V there can be at most one edge (w,i]& T for all
T € H, since otherwise H(a) is contained in the intersection of two facets x, = Q
and x =0 of Qf%, contradicting the assumption that H(a) is a facet of Q.
Suppose now that for some weE Z and i€ V — Z, [w,il€ T holds for all T € H.
Define bx = x,,; then H(a) = {x € Q% I bx = 0} holds and it follows from Lemma
4.1 that, for some A €R" and 7n#0, AA+ ma = b.

(a) Suppose that i € V—~ W holds. By assumption there exist v € Z —w and
u € W-{v, w}. Applying Argument B to the triple «, v and w we get A, = A, =
Ay =—ima. From A,+A; =1 it follows that Ai=1+ima. On the other hand,
since v € Z it follows that a,; = 0 and hence A, +A; =0. Consequently, A; = 37a.
Contradiction.

(b) Suppose that i€ W —~ Z holds. By assumption there exists v € Z - w.
Applying Argument B to the triple w, i and v we get A, = A, =1a- wa) and
A, = =31+ 7a). Since W - Z# @, it follows that V — W f.Let j€ V— W, then
a,; = a,; = 0. Consequently, A+ A, =0 implies A; = 3(7a — 1), but Aj+ A, =0im-
plies A; = la+ 7). Contradiction.

Corollary 4.5. If |W|=3, |Z|=2, a,=a for all ec E(a, Z) and a.= a for all
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e € E(W — Z) hold, then for every pair of nodes v, w € Z and for every node
i € V — Z there exists a tour T € H containing the chain [v, ..., w, i}, such that
[v,..., w] is a hamiltonian chain in (Z, E(Z)).

Proof. Let v, weE Z and i€ V —Z. By Lemma 4.4 there exists a tour T'€ H
such that [w,i]€T". Let u€Z—{v,w} and u=v if |Z|=2. If (u,w,il&T
holds, i.e. if T’ has the form (ju - pkwi-- q), we construct a new tour
T =(jkp --- uwi -~ @) by the indicated interchange. Then axT—axT =
Quy + Qi — Gk — a,; = 0 follows from our assumption about the coefficients, since
a. >0 implies k€ Z and a,>0 implies j€ Z. Consequently, ax” = a,, ie.
T € H, and T contains the chain [4, w, i]. We repeat the argument working with
node u and adjoining any node of Z —{», w, u} and finally the node v.

Remark 4.6. With the assumptions of Corollary 4.5 the following propositions
follow from Corollary 4.5:

(i) For every triple u,v, w € Z there exists a tour T € H which contains the
chain [u, v, wl.

(ii) For every pair v, w € Z and for every i € V — Z there exists a tour TEH
which contains the chain [v, w, i].

Lemma 4.7. If W =Z ={v, w}, then for every i€ V—W there exists a tour
T € H which contains the chain [v, w, i].

Proof. Suppose there exists a tour T'€ H such that (v,wl€T'. Let T'=
(jvk --- pw --- q) and construct a new tour T = (jp - kvw -~ q) by the indicated
interchange. By assumption a,=a,, =0 and consequently, ax"—ax" =
Quy + Gjp — Gy — Qup = a. Since « >0 and T'E€ H, we have a contradiction. Con-
sequently, H(a)C{x € Qf | x,. = 1}. Since both H(a) and x,, =1 are facets of
Q%, they are identical. For the facet x,, = 1, the assertion of the lemma is
trivially true.

Lemma 4.8. If W={v,w}, Z={w}, |Y|=2 and a,;=a or a,; = 0 foraljeVv
hold, then for every i € V — W there exists a tour T € H which contains [w, i].

Proof. Suppose that for some i€ V—W, {w,i]&T holds for all T € H. (There
can be at most one such i, see the proof of Lemma 4.4.) Define bx = x,,; then
H(a)={xe€ QT ] bx = 0} and by Lemma 4.1 there exist A ER" and 7# 0 such
that AA + ma = b holds. Since |Y| =2, there exists j € Y, j# i, such that a,; =0,
and since w € Z, a,; = 0 holds. Applying Argument B to the triple v, w and j we
get A, = A, = —ima and A; = i7a. Since A, + A; = 1, it follows that A; = 1+ima. If
a, = 0 holds, then A, + A; = —ima + 1+ l7wa =1 contradicts A, + A, =0. If ay =
holds, i.e. i€ Y, then 0=ma+A, +A; implies 7a = —1 and hence = <0, since
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a>0. Now choose k € Y, k# j, and compute A, from Awt A =0to be A = imae_
Since A, +A; + mwa; =0, it follows that may = 1, contradicting a; =0 and = <0

Corollary 4.9. With the assumptions of Lemma 4.8 the following proposition s
hold:

(i) For every i € V— W there exists a tour T € H which contains the chairp
[v, w,i].

(i) There exist j€E Y and a tour T€ H which contains the chain [w, v, ]].

Proof. (i) Let i€ V- W. By Lemma 4.8 there exists a tour 7'€ H such that
[w,i1ET". Suppose [v,w]Z T’ and let T'= (jwi --- kv - q). Construct a new
tour T = (jk -+« iwv -+ q) by the indicated interchange. Since a,, < a and a;=0it
follows that ax™ - ax™ = a,, + ay — a,; ~ ay = a + 8j —ayx =0 and hence T € H.
(i) Since |Y|=2 holds, there exist JEY and a tour T' € H which contains the
edge [, j], since otherwise H(a) were contained in the intersection of two facets
x.=0 and x, =0, say. Suppose [w, v]€ T’ and let T' = (ivj --- kw - g). Con-
struct a new tour T =ik - jow --- q) by the indicated interchange. Like under
(i) we conclude that T € H.

Lemma 4.10. If |[W|=3, Z = {w}, |Y|=2 and a, = « for allj€ W - Z hold, then
for every i € V — w there exists a tour T € H which contains the edge [w, i].

Proot. Suppose that for some i€ V — W, [w,il& T holds for all T € H, (There
can be at most one such i, see the proof of Lemma 4.4.) Define bx = X.i; then
H(a)={x € Q}| bx = 0} and by Lemma 4.1 there exist A € R" and 70 such
that AA + 7a = b holds.

(a) Suppose that ie V- w holds. Let w,ve W - W, a, =P, and apply
Argument B to the triple u, v and w. It follows that A=A, = —%wﬁ and
Aw =178 — ma. Since u and v are arbitrary nodes in W — w it follows also that
Ay=—inB holds forall u € W ~ w. Furthermore since A, + A; = 1, it follows that
Ai=1+ma-jinrp. Choose now jE Y, j#1i, such that a,;=0 holds for some
vE W —w. Since A, + A, = 0 holds, it follows that Aj= ma - jmB. Consequently,
since A, + A =0, it follows from 7 # 0 that o = B. If i€ Y holds, then A, +A; =0
for some u € W — w, which is impossible for the calculated values of A, and A,
If i€ Y holds, i.e. a >0forallu € W — w, then choose k € Y, k # Jj» and compute
A« =3ma from A, + A, = 0. But then Ac+ A+ may; = 0 implies (a + ay;) = 0 and
hence, 7 # 0 contradicts a > 0 and ay=0.

(b) Suppose i € W — w. Choose JEY and v € W — w such that a;=0.If v#i
holds, apply Argument B to the triple w, v and j. It follows that A=A, =~ira
and A;=ime. If v =i holds, applying Argument B to the triple w, v =i and j
yields A, = A, =3(1 - 7a) and A; = —1(2— ma). In any case, since v& Z holds, it
follows that there exists k € V — W such that a, >0. From A, + A, = 0 it follows
that A, = —A,. But then A, + Ay + may =0 implies ma, =0, contradicting =# 0.
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Corollary 4.11. If |W|=3, Z ={w}, |Y[=2 and a. = a for all e € E(a, W) hold,
then the following propositions hold:
(i) For every node i €'V — w there exist a node v E W — w, v# i, and a tour
T € H which contains the chain [v, w,i].
(i) If for v € W — w there exist a node i € V- W and a tour § € H containing
the chain [v, w, i, then for every node u € W —{w, v} there exists a tour T € H
which contains the chain [v, w, ul.

Proof. (i) By Lemma 4.10 there exists for every iEV-w a tour T'EH
containing [w,i]. If T' contains a chain [k w,i] with k@ W—w, let T'=
(kwi -+ jo ---p) where v E W-w. Then we construct a new tour T =
{kj --- iwv -+~ p) by the indicated interchange. Since a., = a, a4 =0, a, < a and
a,; =0 hold, it follows that ax” — axT'=0and thus T € H.

(i) Let S=(vwi---kuj-p). Then we construct the new tour T =
(vwuk - ij - p) by the indicated interchange. Since a,; =0, a,; < e, ;=0 and
a.. = a hold, it follows that ax” — ax® =0 and thus T € H.

With these preparations we prove now the first lifting theorem for the
a+l

travelling salesman problem which relates facets of Q7 and Q7"

Theorem 4.12. Let ax < a, be a facet of Q% satisfying a =0 and let (W,C) be a
clique in G, =(V,, E;). Suppose that one of the following two conditions is
satisfied:

(i) |Z|=2; a, = a for all e € E(a, Z) and a.zaVe€ E(W-2)or

(i) |Z|=1,|Y|=2, a. = a for all e € E(a, W).
If (a* al) is defined by at=as+a, a¥=a for all e€EE, at=a for all

[ X2

e =[1,n+1] withi € W and a¥ = 0 otherwise, then a*x*<a} is a facet of Q%"

Proof. Let H(a*)={x*€ Q}"|a*x*=af} and H*= {TE Ty | xT € H(a%)}
From the definition of (a*, af) it follows immediately that H(a®) is a proper
face of QF'. Let b*x* = b# be any valid inequality defining a facet of Q%" and
satisfying H(b*) 2 H(a*), where H(b*) is- defined analogously to H(a*). We
want to prove that there exist A*ER""' and 7#0 such that A*A* + "a'.=.b.
holds, where A* is the node-edge incidence matrix of Ka.i. Without restriction
of generality we can assume by Argument A (applied with u=n + 1) that

bt.=aViEW, bha=0 VieV-W and bi.=a
forsome v, w E V.

4.1)

We proceed by calculating further components of b* using the assumptions of

the theorem.
@ ¢ y nodes in Z. By Remark

Suppose that |Z| =2 and let v, w be two arbitrar :
(a) Supp I v—-{vwhatour TEH which

4.6 and Lemma 4.7 there exists for every i€




288 M. Grétschel, M.W. Padberg/ On the symmetric travelling salesman problem I

contains the chain [v, w, {]. Replacing this chain by the chain [», w, n + 1, {] andg
[v,n+1, w, i], respectively, we get two (n+ 1)-tours T* and T** which

construction are both contained in H*. Consequently, 0=b*x" —p*xT>* _
b}, + bYu. — b¥., — b% holds and we obtain from (4.1) that b}, = b} where
i€ V—{v,w} It follows from (4.1) and from the fact that v and w can pbea

interchanged that
bk=0 YieV-W, bYti=a VYieW-w and
bt=0 VieV-W 4.2y

(bl) Suppose Z ={w} and W ={v, w}. By Corollary 4.9(i) there exists for
every i€V~ W atour T € H containing the chain [v, w, {]. Like in case(a) we
conclude that b¥ =0 for all i€ V-~ W. By Corollary 4.9(ii) there exists j & Yy~
and a tour T € H containing the chain [w, v,j]. Since jJEY and vEW - Z j¢
follows that a, = 0. Consequently, the two (n + 1)-tours T* and T** obtained
from T replacing the chain [w, v,j] by the chains [w,v,n+1,j] and [w, nn +
1,v,j], respectively, are contained in H*. Hence, b*x™ =b*x™" =b¥ and
taking the difference we obtain b} = 0. Consequently, we have in this case

b* =0 VieV-W, b,,=a and
3j€EV-W suchthata,;=0 and b%=0. “4.3)

(b2) Suppose Z = {w} and |W|=3. By Corollary 4.11(i) there exists for every
i€ V- Wanode v €EW—w and a tour T € H containing the chain [», w, i]. We
choose first an arbitrary, fixed i€ V- W and let v € W — w be the associated
node given by Corollary 4.11(i). The node v satisfies the assumptions of
Corollary 4.11(ii), and thus for every node u € W —{v, w} there exists a tour
T € H which contains the chain [v, w, u]. Constructing two tours T*, T** &€ H *
and taking differences as previously, it follows from (4.1) that b%, = o for all
u € W—w. Let now i be any node in V — W. Then, by repeated application of
Corollary 4.11(i), there exists a node «u € W — w and a tour T € H containing the
chain [u, w, i]. Since b}, = o, it follows from (4.1) by the usual procedure as in
case (a) that b¥; =0 for all i € V — W. We want to show that a statement similar
to the last part of (4.3) holds in this case as well. Since |Y|=2 holds, there are
least two edges [p, i] # [u,j] with p, uE W—w and i#jE Y such that api =
a,;=0. There exists a tour T € H containing at least one of these two edges »
[u, j], say, since otherwise H (a) is contained in the intersection of the two facets
X, =0 and x,; =0. From T we construct a new tour T* by replacing the edg€
[u, j] by the chain [u, n + 1, j] and, letting g be such that [w, g] € T, a second tourxr
T** by replacing [w, g] by the chain [w, n + 1, q]. By construction, we have T ¥
T**€ H and

0= b*xT._b*xT“= b:ni»l+b[’,‘rH‘-l+b$q_bx,n+l—b:.n+l_b:i= _b:‘l‘]'

(c) In all three cases (a), (b1) and (b2) we have thus proven the following tWw<
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statements:

JweZ suchthatb*=0 VieV—-W and bk =a ViEW-—w.
4.4)

JveW-w and jEV-W suchthata,=0 and b¥%=0. (4.5)

We define a hyperplane bx = byin R™ by b, = b} forall e € Z and by=b§ — a.
Let T be any tour in H. T contains the edge [w, j] where w € Z satisfies (4.4)
and j € V — w is arbitrary. We construct T* € H* by replacing the edge [w, j] by
the chain {w, n + 1, j]. Then by (4.1) and (4.4) we have

T* T _ _ —
b*x" —bx" =b¥a 1t bl —bYi=bln=a

Consequently, H(a) C H(b) and by Lemma 4.1 there exist y € R" and 7% 0 such
that b = yA+ ma, if H(b)# Q7. If H(b)= QF, the same relation holds with
7 =0. In any case, applying Argument B to the triple w, v and j given by (4.4)
and (4.5) we get y,, = v, = 3a(l — 7) and y; = —v,. Consequently, by (4.4) and the
assumptions about a vy, + vy; = 0 holds for all i € V — W and thus y; = —+y, for all
i € V— W. Also, by the same argument, v, + y;+ 7a = « holds forall i€ W ~w
and thus y;= v, foralli € W —w. Defining Af=v; forj=1,...,nand A}, =1y,
it follows that by construction of a* we have A*A*+ wa* = b* and hence, if
m =0, we get H(b*) = Q%"', which is a contradiction. Consequently, 7# 0 and

H(a*)= H(b*) holds.

The assumptions of Theorem 4.12 require a modicum in terms of knowledge
about the coefficients of the facetial inequality ax < a, and thus Theorem 4.12
has a considerably broader spectrum of potential application than, prima facie,
its technical assumptions seem to imply.

5. Lifting Theorems II, III and IV for Q7%

While the first lifting theorem deals with a single clique of the graph G, and
gives two conditions under which it is possible to substitute in an appropriate
way a single node of that clique by two nodes joined by an edge (and thus by
repeated application, by a complete subgraph on an arbitrary number of g =2
nodes), the following lifting theorems deal with the situation where some or all of
the nodes of G, under consideration are contained in exactly two different
cliques of G,. The second and third lifting theorem require this to be the case for
every node in some chosen clique (W, C) of G, and due to Proposition 3.0, the
facets considered in these two lifting theorems are in fact equivalent to certain
comb-inequalities. Several of the lemmata preceeding the theorems, however,
require fewer assumptions and thus the entire development is carried out at a
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more general level, especially as we need some of the lemmata later on. The
fourth lifting theorem, very much like the first one, requires very little in-
formation about the facet to be lifted and shows that certain nodes of G, can bes
replaced by a complete graph in quite a different way than in Theorem 4.12 while
ensuring that the resulting inequality retains its facetial property. We first define
again a few symbols that we will use in addition to those of the Introduction and
Definition 4.0 and prove several auxiliary lemmata.

Definition 5.0. (1) (W', C') denotes a clique in G, different from (W, C). Z', Y’,
E(a, X') for X' C W' are defined exactly like the quantities without a prime (see
Definition 4.0).
(2) WAW'=(W - W)U(W'— W) is the symmetric difference of W and W".
(3) weE W satisfies condition S(w), if w is contained in exactly one additional
2-element clique (W*, E*) of G,, W* ={w, p}, say, and a, =0 holds for all
j € V—w. E*, of course, is the edge [w, p] and a,, >0.

Lemma 5.1. Suppose that w € V is contained in exactly two different cliques W
and W' of G, and that a,=a for all iEWAW', a,=0 for all iE
V—(WUW?) hold. If there exist two distinct u,v € W — W' and two distinct
i j€ V— (WU W) such that a,; = a,, = 0 holds, then there exists for every node
he V-—(WN W' atour T € H which contains [w, h].

Proof. Suppose that there exists h € V— (W N W) such that [w, h]& T for all
T € H. Define bx = x,, and by=0. Then H(a) = H(b) and by Lemma 4.1 there
exist A ER" and 7# 0 such that AA + 7a = b. By assumption there exist u &
W-W, u#h, and jJEV-(WUW), j#h, such that a,=0. Applying
Argument B to the triple u, w and j we find A, = A, = ima and A; = jma. Since
W W' are cliques in G,, there exist v€ W— W' and k€ W'~ W such that
ay =0. If k# h# v holds, then from A, + A, + w7a =0 and A, + A, + Ta =0 we
get A, = A, = —jma, contradicting A,+A,=0. Thus h =k or h=v holds, ie.
hEWAW. Letie V- (WUW?, i#]. Since h#i, A, +A; =0 holds and thus
A; = }ma. But then A; + A; + wa; = 0 yields w(a + a;) = 0, a contradiction to « > o
and a; = 0.

Lemma 5.2. Suppose that |W|=3 holds and that there exist two distinct v, w E
W satisfying condition S(v), S(w) respectively. If a, = a for all e € E(a,{v, w})
holds, then every tour T € H contains an edge [i,j1€ C such that {i,j}M
{v,w}#80.

Proof. f TE&H contains [v,w] we are done. Else, suppose T =
(ivj --- hwku - ty and W* ={w, p}, W’ ={v, q}.

(a) If only one of the four edges [i, v, [v, j1, [h, w] or [w, k] is contained in E.»
say [i,v] € E,, then construct T'=(ivwh --- jku -+ t) by the indicated inter-
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change. Then ax™ — ax” = a,. + ay — a,; — au = a >0, is a contradiction to T €
H.

(b) If at least three of the respective four edges are in E, then by the
assumptions of Lemma 5.2 there must be one of them in C.

(c) Suppose [v, j1, [w, h] € E, and [v, {], {w, k] € E,. If i € W or k € W holds,
we are done. Otherwise, i=¢q and k=p and thus ax =a,=0. Construct
T' = (iowkj -~ hu -+ t). Then ax” —ax” = @+ G — @i — Qe = @ + @, >0, is 2
contradiction to T € H. The case [v, i], [w, k] & E,, [v.]], [w, h] € E, follows by
symmetry.

(d) If either [v,il, [w,h]EE,, [v,]], [w,kl€E, or [v,i], [w, h]1€ E,, [v,]],
[w, k] € E, hold, a construction of T’ like in case (a) yields the desired con-
tradiction to T € H.

Lemma 5.3. Suppose that |W|=3 and a, = « foralle € C. Let T € H contain an
edge [i, j} satisfying a; = 0 for some j € W. Then the following propositions hold:

(i) For every v € W — j, which satisfies condition S(v), the chain [u, v, w] of T
satisfies u€ Wor we& W.

(i) For every v € W — j, which satisfies condition S(v), the chain [u,v,w] of T
satisfies a,, >0 and a,, > 0.

(iii) If j satisfies condition S(j), then letting W' = {j, s} it follows that [j, s]€ T.

Proof. (i) Suppose that for some v € W —j the chain [u, v, w] of T satisfies
u, w € W. Let W® = {v, q}. Consequently, the chain [k, g, h] of T satisfies by
assumption ay, = ag = 0. If u# j# w, let wr.o.g. T = (uvw - ij -+ hgk - t) and
construct T' = (uw --- ih - jugk -+ t) by the indicated interchanges. Then axT —
axT = a,, + a > 0yields a contradiction to T € H. Suppose next w.r.o.g. thatw = j
and let T = (uvwi -~ hgk -+ t) and construct T'= (uwogh --- ik --- t) by the in-
dicated interchanges. Again, ax™ — ax” = a,q + a,; >0 contradicts T € H.

(i) Suppose that for some v € W —j the chain [u, v, w] violates (ii). Let
W = {v, q} and suppose w.r.o.g that T = (ruvw - ij --- t) and that a,, =0. Con-
struct T'={rui - woj -+ 1) by the indicated interchange. Then ax™—ax™ =
a + a, >0 contradicts T € H. Suppose next that a,, =0. If u = g holds, then
a, =0 and construct T’ = (rw --- iuvj --- t). Then ax” —ax" = @ + a, >0 con-
tradicts T € H. If u# q holds, then the chain [k, g, h] of T satisfies a,, = a, =0.
Let W.I.0.8. T = (ruvw - ij --- kqh -+ t) and construct T =
(ruvgk -+ ji -~ wh --- t). Then ax” — ax™ = a,q + a,» >0 contradicts T € H.

(iii) If (iii) is false, then the chain [k, s,h] of T satisfies by assumption
a = as =0. Let T = (ji - ksh -~ ty and T'=(jsk -+ ih -~ t). Then ax" — ax" =
aj; + az > 0 contradicts T € H.

Corollary 5.4. Suppose that |W|=3 and a, = a for all ¢ € E(a, W) hold and that
every node w € W satisfies condition S(w). Then the following propositions hold:
(i) For every node u € W, for every nodei € V—(W U W) and for every pair
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of nodes v, w €E W — u there exists a tour T € H which contains the edges [u, i]
and [v, w].

(ii) For every triple of nodes u,v,w € W there exists a tour T € H which
contains the chain [u, v, w].

Proof. (i) The node u € W satisfies the assumptions of Lemma 5.1. Con-
sequently, there exists a tour T'€ H containing [u, i]. Suppose that [v, w] & T’
for some pair v, w € W — u. It follows from Lemma 5.3 with j = u that the two
chains [Avk] and [rwt] of T’ satisfy w.r.o.g. r€ W, t& W and either h€ W,
k& Wor h& W, ke W. Let T'={ui - hvk --- rwt --- s) and suppose that h € W,
k¢ W hold. Then T =(ui-hr-kvwt-s) satisfies ax” -ax7 =
Apy + Qpo — A, — Gre =0, 1.6. T € H and we are done. If h& W, k € W hold, then
k = r is impossible since otherwise Lemma 5.3(i) is violated for the chain [vkw].
Consequently, T'={ui - hvk .- pgrwtl -+ s). The node p exists, because r is
contained in a 2-element clique W’ = {r, q} and k € W satisfies a, = 0. The node
| exists, because t&W and a,=a,=0 hold. Consequently, T =
{ui - huowtgrk -+~ pl -+~ s) satisfies ax” —axT = @y + Qg + A+ Ayt — Aok — Bpg — Gy
— ay = ay = 0. Consequently, T € H and (i) follows.

(ii) Let u, v, w € W be distinct nodes and i € V — (W U W*). By part (i) there
exists a tour T'€ H containing both [u, ] and [v, w]. If T'=(ui - wop -+ s),
then T = (uvw -+ ip -+ s} satisfies T € H, since ax” —ax" = a,, + ap —aui ~ a,, =
ap,=0. If T'=(ui --- quwpr --- 5), then by Lemma 5.3(i) applied to node w it
follows that P& W. Hence, by Lemma 5.3(ii), p € W* - W and thus a, =0.
Likewise, we get g € W*— W. Consequently, T = (uvwpi --- qr -+~ s) satisfies
T € H, since ax™ —ax™ = au, + Qpi + G — @i — Qg — Ay = Ay + A, = 0.

The next theorem is the second lifting theorem for facets of Q%. Like in the
case of the first theorem it involves an inductive step from Q% to Q%'!. The
lifting procedure adjoins the node n+1 to the clique (W, C) in G, in such a
fashion that W U {n + 1} becomes the node set of clique in G,. and node n + 1 is
joined in G,. only to the nodes in W.

Theorem 5.5. Let ax < aq be a facet of Q% satisfying a =0 and let (W, C) be a
clique in G, =(V,, E,) with |W|=3. Suppose that every node w € W satisfies
condition S(w) and that a, =« for all e € E(a, W). If (a*, a¥) is defined by
af=agta,a¥=a,foralle€ E, a*=a foralle=[i,n+1] withiE W, a*=0
otherwise, then a*x* < a} is a facet of Q3.

Proof. Let H(a*)={x*€ Q%" | a*x*=a¥} and H*={T € T,,, ‘ xT € H(a%)}.
From the definition of (a*, a¥) it follows immediately that H(a*) is a proper
face of Q5. Let b*x <b§ be any valid inequality defining a facet of Q%! and
satisfying H(b*) D H(a*), where H(b*) is defined analogously to H(a*). We
want to prove that there exist A* € R™! and ## 0 such that A*A* + grg* = b*
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holds where A* is the node-edge incidence matrix of K,,,. To simplify the
notation we assume that W={1,...,k} and W ={i,k+i} for i = 1,..., k where
k = 3. Without restriction of generality we can assume further (by applying
Argument A with u =n +1 and f = [1,2]) that

bfm=a VYIEW, bt, =0 VieV-W and bhk=a (5.1)

We compute next further components of b* using the assumptions of the
theorem.

(a) For every w € W —{1,2} there exists by Corollary 5.4(ii) a tour TEH
containing the chain [1,2,w]. Replacing this chain by [1,n+1,2, w] and
[1,2, n+ 1, w], respectively, we get two tours T*, T**€ H*. Consequently by
(5.1) 0=b*xT" —b*x™" = bt + bf,— bh~-b%,., = b}, — a follows and thus
b%, = a. Since nodes 1 and 2 can be interchanged, it follows that bf, = a for all
w € W. For every pair v, w € W —{1, 2} there exists by Corollary 5.4(ii) a tour T
containing the chain [1, v, w]. Replacing this chain by [l,n+1,», w] and
[1, v, n + 1, w], respectively, we get by the same argument and using bf, = a

b¥=a VijeWU{n+1} (5.2)

(b) For every u€ W, i€ V— (WU W*) and v, wE€ W—u there exists by
Corollary 5.4(i) a tour T € H which contains the edges [x, i] and [v, w]. We
construct a first new tour T* € H* by replacing [u, i] by the chain [, n+ 1, ]
and a second tour T** & H* by replacing [v, w} by [v,n +1, w]. With the same
argument used under (a) it follows from (5.1) and (5.2) that

bx=0 YueWandieV-(WUW"). (5.3)

(c) We define a hyperplane bx =bo in R by b,=b¥ for all e€ E and
bo=b¥—a. By Lemma 5.2 every T € H contains an edge [v, w] with o, w € W.
If we construct T* € H* by replacing this edge by [v, n +1, w], then

b*xT._ be‘_‘ b:r.n+l+b::.n+1— b$u= a.

Consequently, H(a)C H(b) and by Lemma 4.1 there exist y € R" and = # 0 such
that yA+mwa =b, if H(b)# Q% If H(b)= QF, the same relation holds with
m=0. In any case, applying Argument B to any triple u,v and w € W we get
Ye = 7o = yw = s&(1 — ) using (5.2) and thus v; = ja(1— =) for all i € W. Since
by our assumptions for every i € V — W there exists a u € W such that i& W*,
we get from (5.3) 7 + v, = 0 and thus v, = —3a(1 — 7) for all i € V — W, Defining
A¥=1y for j=1,..,n and A%, =ja(1 - 7) it follows that by construction of a*
and by (5.1) and (5.2) we have A*A* + ra* = b* and hence, since H(b*) # QF,
x# 0 follows. Consequently, H(a*)= H(b*) holds.

The third lifting theorem shows that under the assumptions of Theorem 5.5 a
facet ax =< a, of Q% can be lifted in a different way to a facet a*x* =< af of Q4

This lifting procedure involves adjoining two nodes n + 1 and n + 2 to the clique
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(W, C) in G, and two additional nodes n+3 and n +4 such that n + 1 and n + >
respectively, satisfy condition S(n + 1), S(n +2) respectively, where W"*1! —

{n+1,n+3} and W2 ={n +2, n+4}. According to our conventions, all Sy

n+v4

bols with a star pertain now to Kn.4 and Q77, respectively.

Lemma 5.6. Suppose that |W|=3 and a. = a for all e € E(a, W) hold and t b ¢,
v, w E W satisfy condition S(v), S(w) respectively. Let W*={v,q} and W™ -
{w, p}. Then there exists a tour T € H which contains {p, q].

Proof. Suppose the assertion is false. Then [p,ql€ T forall TEH and H(a) =
H(b) where bx = x,, and by = 0. Consequently, by Lemma 4.1 there exist A € R
and 7# 0 such that AA + a = b. Applying Argument B to the triple v, p and ¢
we get A, = i+ ma), A= i+ ma) and A = i(1- ma), while apply ing
Argument B to the triple w, p and g we get A, = —(1+ ma), A, = 11— ma) and
Ag= 11 + ma). Consequently, ma =0 is a contradiction to w# 0 and a > 0.

Theorem 5.7. Let ax < a, be a facet of Q% satisfying a =0 and let (W,C) be a
cligue in G, = (V,, E,) with |W|=3. Suppose that every node w € W satisfies
condition S(w) and that a, = c for all e € E(a, W). If (a*, a}) is defined by
a¥=ag+3a, a¥=a, for all e€E, a*=a for all e=[i,j1 with i, j €
Wuln+1,n+2}, a*=a fore€{n+1,n+3], [n+2,n+4]}, a¥ =0 otherwise,
then a*x* < af is a facet of Q7.

Proof. Let H(a*) = {x*€ Q%" | a*x*=af} and H*={TE€ T, l xT € H(a *))}).
From the definition of (a*, a¥) it follows immediately that H(a*) is a proper
face of Q%™ Let b*x* <b¥ be any valid inequality defining a facet of Q¥* and
satisfying H(b*) 2 H(a*), where H(b*) is defined analogously to H(a*). We
want to prove that there exist A* € R and 7# 0 such that A*A*+ ra* = b*
holds where A* is the node-edge incidence matrix of K, (see Definition 4.0,
point 8). To simplify the notation we assume that W ={l,...,k} and wi =
{i, k+i} for i=1,...,k where k=3. Without restriction of generality we <an
assume further (by applying Argument A with u=n+4 and f=[n+1,n + 2)
that

b?“,,+4=0 ViE{l,...,n+1,n+3}, b:+1_,,+4= bf+1_,.+2=a. (5 '4)

We compute next in steps (a)-(d) further components of b* using the assuta TP~
tions of the theorem.

(a) For every i € V— W there exists by assumption a node w € W such that
a,; = 0 holds. Furthermore, w is contained in exactly one additional clique "
and i€ W*. Consequently, since [W|=3 and every node w of W satisfies
condition S(w) Lemma 5.1 applies and there exists a tour S€ H which conta1n$
the edge [w, i].

(al) From S we construct two tours SI and S2, respectively, by replacin & the




1 +2

atl =

sym-

{ that
Ve =

(a)=
er
and q
slying
) and

) bea
tisfies
ed by
i,jE
‘rwise,

(a*)}
>roper
*4 and
). We
o b*
m 4.0,

Wi =
‘e can
n +2))

4
isump-
*h that
ue w~

Atisfies
3nitains

ing the

M. Grétschel, M.W. Padberg/ On the symmetric travelling salesman problem 11 295

edge [w, i] by the chains [w,n+2,n+4,n+1,n+3,il and [w,n+2,n+1,n+
3,n +4,i]. By construction, S1 € H*, S2 € H* and consequently, from (5.4) we
get 0= b*x5' - b*x52 = b¥ 5.

(a2) From S we construct a third tour S3 by replacing the edge [w, i] by the
chain (w,n+2,n+4,n+3,n+1,i]. By construction §3 € H* and consequently,
from (5.4) we get 0 = b*x5>~ b*x52 = b¥,.,.

Summarizing (al) and (a2) we have obtained

b¥n=blha=0 VieV-W (5.5)

(b) For every w € W there exists by assumption a node i € V — W such that
a,; = 0. Applying Lemma 5.1 as before, there exists a tour T € H which contains
[w,i].

(b1) From T we construct two tours T1 € H* and T2 € H* by replacing [w, {]
by the chain [w,n+4,n+2,n+1,n+3,i] and [w,n+3,n+1,n+2;n+4,i],
respectively. Consequently, from (5.4) and (5.5) we get 0=b*x™' —p*x =
—bﬁ.rﬁ-]-

(b2) From T we construct a third tour T3€ H* by replacing [w, i] by the
chain [w,n+2,n+1,n+3,n+4,i]. Consequently, from (5.4) and b¥,.;=0 we
get

0=b*xT*—b*xT =b*,,—a, i€ bi,.1=a.

(b3) From T we construct T4 € H* by replacing [w, i] by the chain {w, n + 1,
n+2, n+4, n+3, il. Setting b*, ,,a=p, then from (5.4), (5.5) and from
b¥..2=a we get

0=b*x“—b*x”= bt'n”_ﬁ, i.e- ba,n-*-l:B-
Summarizing (b1), (b2) and (b3) we have obtained

b¥n.3=0 YweEW, br,a=a VYweEW,
b¥.,a3=pB and b¥..i=B VweW, (5.6)
where B is some scalar.

(a3) We take next the tour S € H found in (a) and construct a tour S4€ H*
by replacing [w, i] € S by the chain [w,n+1,n+ 3, n+4,n+2,i]. Consequently,
from (5.5) and (5.6) we obtain 0=b*x%—-b*xS=b% ,+B~a, ie. bt,=
a-—f.

(a4) From § we construct a further tour S5 € H* by replacing [w, i]E S by
the chain [w,n+ 1, n+3,n+2,n+4,i]. Consequently, from (5.4) and from (a3)
it follows that 0 = b*x™ — b*x% = b*,,, s —a + B, ie. b¥ a=a—B.

Summarizing (a3) and (ad4) we have obtained

bru=a—B VIiEV-W, bl.o=a-f X))

(c) By Corollary 5.4(i) there exists for every u€ W, for every i€
V— (WU W) and for every pair v, wE W—u a tour R €.H containing both
[u,i] and [v, w]. Let w.r.o.g. R = (ui - wo - 5).
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(c1) From R we construct R1 € H* by replacing {4, i] by the chain [u, n +~
n+4, n+3, n+1,i]and a tour R2E H* by R2 = (u(n + N(n + Hw - i(n *
4)(n + 2)v - s). Using (5.4), (5.5), and (5.6) we get 0 = b*x® — p*xR=p*, — e
ie. b% =gB.

(c2) From R we construct R3 € H* by replacing [v, w] by the chain [v, n +~ 2,
n+4, n+3, n+1, wl. Consequently, from (5.5), (5.6) and (cl) we get O
b*x® — b*x®' = p¥.

Summarizing (c1) and (c2) we have obtained

bx, =B VYuyweW, bx=0 VYVueWandi€ V—-(WUW.

(5-8)

(d) Let [i,j] be any edge such that a; =0 and P € H be any tour which
contains [i,jl. By Lemma 5.2, P contains an edge [v, w]€E C. We construct
Ple H* and P2 € H*, respectively, by replacing [i,j] by the chain [i, n + 4,
n+2, n+1,n+3,j] and by replacing [v, w] by the chain [v, n+2, n +4, n+ 3,
n+1, w], respectively. Using (5.4), (5.5), (5.6) and (5.8), we get O =
b*x" - b*x"' = b}, ie.

b5=0 foralli,j€ V suchthat a;=0 and [i, j1E T forsome T € K.
(5.9)

(e) We define a hyperplane bx = by in R™ by b,=b¥ for all e€ E and
bo=b&—2a - B. By Lemma 5.2 every T € H contains an edge [v, w]E C. If we
construct T*& H* by replacing [v, w] by the chain [s,n+2, n+4,n+3, n+ 1,
w], then by (5.4), (5.6) and (5.8) b*x™ - bxT = 2a + B. Consequently, H(a) C
H(b) and by Lemma 4.1 there exist y ER" and 7# 0 such that AMA+ma = &
holds, if H(b) # Q% If H(b) = Q%, the same relation holds, with # =0. In any
case, applying Argument B to any triple u, v, and w € W we get y. = 3B - arx)
for all wE€ W. Since for every i € V— W there exists w € W with a,,=0, it
follows from (5.8) that y;+y, =0, i.e. v, =—3(8—7we) for all iEV-W. BY
Lemma 5.6 there exists a tour T € H containing the edge [k + 1,k +2] and sinn<cé€
Qusrss2= 0 it follows from (5.9) and yys1 + yesa=0 that 8 = ma. Consequently.
v;=0 for all i€ V and b = 7a. Defining A*=0for j=1,...,n+1,n+3, n + 4
and AX,=a — B, it follows by the construction of a* and by (5.4)-(5.7) that
A*A* + ma* = b* holds and hence, since H(b*)# Q%, w#0 follows. CO"
sequently, H(a*)= H(b*) holds.

The fourth lifting theorem, like the first one, shows that under very rl’lild
conditions a facet ax < a, of Q% can be lifted to a facet a*x* <af of Q"'r’m
where m = 1 is an arbitrary integer. (Note that we depart here from the earlier
convention regarding the use of the letter m.) This lifting procedure involves the
substitution of a complete graph on m + 1 nodes into a node that is the uniaAYe

intersection of two different cliques of G,. Furthermore, the coefficients o
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a*x* = ag deserve special attention. According to our conventions, all symbols
with a star pertain now to K,.,, and Q™. We first prove two lemmata.

Lemma 5.8. If (W', (") is a clique in G, satisfying |Z'| =|W'|—1 and a, = « for
all e € C', then every tour T € H contains a hamiltonian chain in W' or in Z'.

Proof. Let [W'[=3 (otherwise there is nothing to be proven) and suppose that
T € H does not have a hamiltonian chain in either W' or Z’. Then T has the
general form T =(pi, - i,q --- uj, =+ jv --- s) where i, € Z' fork =1, ..., 5, j, € 2’
for k=1,...,r, and p,q,t,s€Z'. W.ro.g let p,g u& W’'. Then T' =
(piy -+ iy -+ juu -+ qu -+ 5) satisfies ax" —ax” = a +a,,> 0 since g, = a,, =0.
Consequently, T& H holds, contradicting our assumption.

Lemma 5.9. Let w € V be contained in exactly two different cliques (W, C) and
(W', C") of G. which satisfy [WNW’'|=1 and Z'=W'— w. If there exist two
distinct p, q € W — W' and two distinct i, j€ V — (W U W') such that Qi = Qg =
0 holds and if a, = a holds for all e € E(a, W’), then for every node v € Z' and
every node i € V —{v, w} there exists a tour T € H which contains the chain
[v, w,i].

Proof. Let v € Z'. Then, by Lemma 5.1, for every i € V — {v, w} there exists
T € H such that [w, (1€ T. By Lemma 5.8, T contains a hamiltonian chain in Z'
or W'. If the hamiltonian chain is in W’, i.e. T =(pv, - v;--- v,wi -~ §) where
pZ W' and y,e W’ for j=1,...,k and if v;=v with 1<j<k holds, then
T'=(pvy -+ vj_0; ==~ vywi --- s) satisfies T'€ H and [v, w,i]€ T". If the hamil-
tonian chain is in Z', i.e. T ={pv,--- v; - v,q - iws .-+ t) where p,q& W' and
v,€EW' for j=1,..,k. and if ov;=v holds with 1<j<k, T'=
(pv; - vi_qvi - vywi - g5 -+ t) satisfies T'€ H and [v, w, i] € T", since aq, =0,
Qus S @, Byy | = Ay, s Gg =0 and a,, = a. A similar construction holds in both

ivi-1
cases if v = v,.

Theorem 5.10. Let ax < aq be a facet of Q% satisfying a =0 and let wE V be
contained in exactly two different cliques (W, C) and (W', C") of G, satisfying
(WNW'|=1 and Z'= W'—w. Suppose that there exist two distinct nodes
p.q € W — W', and two distinct nodes i, j € V— (W U W') such that a,; = a,; =0
holds and that a, = a for all e € E(a, W) and a.= « for all e€ C hold. If
(a*, a¥) is defined by a} = ap+2ma, a* = a, forall e € E, a* = a for all e = [i, j]
with ieWAW', jeé{n+1,..,n+m}, a*=2a for all e=[i,j1 with i,jE
{w,n+1,....,n+m} and a* =0 otherwise, then a*x*=<a¥ is a facet of Q%™
where m =1 is any integer.

Proof. Let H(a*)={x*€ Q%" | a*x*=af} and H*={T € T,,, l xT € H(a%)}.
From the definition of (a*, af) it follows immediately that H(a*) is a proper
face of QF'™. Let b*x* < b} be any valid inequality defining a facet of Q%™ and
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satisfying H(b*) 2 H(a*), where H(b*) is defined analogously to H(a*). We
want to show that there exist A* € R"™™ and 7# 0 such that A¥A* + 7a* = b *
holds where A* is the node-edge incidence matrix of K,.. (see Definition 4.0,
point 8). To simplify the notation we assume that w =n and n - le W - W~
Without restriction of generality we can assume further (by applying Argument
A with u=n+m and f = (n — 1, n]) that

br.m=2a ViE{n ...,n+m—1}, bhi.=a VIiEWAW,
b*,m=0 ViEV-(WUW), bi,.=a (510)

We compute next in step (a)-(b) further components of b* using the assump -
tions of the theorem.

(2) By Lemma 5.9 there exists for n—1€ 2’ and every iEV-{n,n—-1} a
tour T € H which contains the chain [r — 1, n, i].

(a0) From T we construct two tours T1€ H* and T2 € H* by replacing the
edge [n, i] by the chain [n,n+1, ..., n+ m, i] and the edge [n — 1, n] by the chain
[n-1,n+m,n+m—1,..,n]. Consequently, from (5.10) we get

0=>b*x""—b*x" = blun— bl
and hence by (5.10)
b=a VIiEWAW', bf=0 ViEV-(WUW). 5.11)
We claim next that
bru=a VYIiEWAW, b¥ =0 VieV-(WUW),
buijnsk=2a for0=sj<k=m (5.12)

holds for all m =1. For m =1 this follows from (5.10). In order to get a
backward induction started if m =2 is an arbitrary integer we have to first carry
out calculations for k=m — 1.

(al) From T we construct a tour T3 € H* by replacing the chain [n—1,n, i ]
by the chain [n—1, n+m—1,...,n+1, n, n+ m, i]. Consequently, from (5.10)
and (5.11) we get 0 = b*x7 — b*x™ = b} | pim-1— .

(a2) From T we construct a tour T4 € H* by replacing the chain [n—1,n, £]
by the chain [n~1, n+m—1,...,n+1, n+m, n, i] and get from (5.10) and
(5.1 0 = b*x™ — b*x™ = 2a — bk,

(a3) From T we construct a tour TS € H* by replacing [n —1,n,il by [n - 1,
n+mnn+1,...,n+m—1,ilandget 0 = b*x™> = b*x"' = b¥, .1 — bk, fOT
alie V-{n—-1,n}

(a4) From T we construct a tour T6 € H* by replacing [n—1,n,i] by the
chain [n—1, n+m, n+1,...,n+m—-1, n, i] and get 0 = b*x™ — p*xT* =
b:',.+m~1 -2(!.

One verifies now that (5.12) is true for j =0 and k= m — 1. Assuming that the
first two statements of (5.12) hold for k = m — 1, we will show that they hold for
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k — 1 as well. Furthermore, assuming that the last statement of (5.12) holds for
j=0, for all h with k <h <m and k <m — 1, we will show that the statement is
true if k is replaced by k — 1.

(a5) From T we construct T1k € H* by replacing [n — 1, n, i] by the chain
[n=1, n+k..,n+m, n+k-1,..,n+1, n, i] and T2k € H* by replacing
[n—=1, n, il by [n—1, n+k-1,...,n+1, n, n+k,..,n+m, i]. Taking the
difference we get that by induction hypothesis, (5.10) and (5.11) 0= a — b¥*_, ...,
holds.

(a6) From T we construct T3k € H* by replacing [n ~ 1, n, i] by the chain
[n-1, n+k,...,n+m, n+1,...,n+k—1, n, i] and using T2k we get that
0=2a — b¥,.x-1 holds by (5.10), (5.11), (a2), (a3) and induction hypothesis.

(a7) From T1k and T2 we obtain 0=2a — b,ix-1 .+« by (5.10) and the in-
duction hypothesis. From T we construct Tkh € H* by replacing [n — 1, n, i] by
[n~1, n+m,....,n+h+1, n+k,...,n+h, n+k—1,..,n+1, n, i] where k<
h=m and calculate by taking the difference with T2 that 0= b¥*,_,,..; —2a
holds by induction hypothesis.

(a8) From T we construct finally T4k € H* by replacing [n—1,n,i] by [n —1,
n+m,..,nt+k, n n+1l,..,n+k—-1, i] and obtain using T2 that 0=
b¥ik-1—b¥ holds forall ie V—{n -1, n}.

Consequently, (5.12) follows.

(b) Since {Y’'|=|V (WU W")|=2 it follows by Lemma 4.4 (Lemma 4.8,
respectively) when applied to W' that for every node v € W— W’ and every
node i € Z' there exists a tour S € H which contains the edge [i, »]. By Lemma
5.8 we know that S contains a hamiltonian chain in W’ or Z'. Since by
assumption n € W N W’ is contained in exactly two cliques and W'—n=2'
holds, we can assume w.r.o.g. that the hamiltonian chain terminates in node n if
W' contains such a chain. If Z' contains the hamiltonian chain, let S =
{jwi - wiiv --- png --- s) and construct a new tour R = {jnw, - wyiv --- pq - )
where [wy, ..., i] is the hamiltonian chain in Z'. Consequently, ax® — ax® = a +
ay, + a,, — a,, — a4, = 0,since a;, = 0and a,, = a,, = a implies a,, = a. Consequently,
in both cases, there exists a tour SEH which contains the chain
[n, wi, ..., Wy i, v] satisfying vE W - W’ and w;€ 2’ for j=1,..., k. We con-
struct now S1€ H* and S2€ H* by replacing this chain by the chains [n,
n+l,..,n+m wy,..,w, i, vl and [n, wy,...,w, i, n+1,..., n+m, v], respec-
tively. Taking differences as usual, we obtain from (5.10), (5.11) and (5.12) that
b¥; =0 holds. Consequently we have proven

bti=0 VIiEW'-W, YVvEW-W. (5.13)

(c) We define a hyperplane bx=b, in R" by b,=b* for all e€ E and
by= b§ —2ma. Every tour T € H contains an edge [i, n] where i € V —n. If we
construct T* € H* by replacing this edge by the chain [n, n + 1, ..., n+m, i],
then m—1

b*xT —bxT =Y b+ bYim— bt =2ma.
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Consequently, H(a) C H(b) and by Lemma 4.1 there exist y ER" and 7 # 0 such
that yA + wa = b holds, if H(b)# Q. If H(b) = Q%, the same relation holds
with 7 =0. In any case, applying Argument B to the triple n—1, n and
wEW-W' we get y,=a—ma and y.= v, =0. For i€ WA W’ we have
¥ + ¥+ ma = a and thus v =0. For i€ V—(W U W') we have v+ v, =0 and
thus y; = ma — @. Defining A¥=y, for i=1,..,n and A}, =a —7ma for i=
1,..,m it follows by the construction of a* and by (5.10) and (5.12) that
A*A* + ra* = b* holds, and hence, since H(b*)# QF, w#0 follows. Con-
sequently, H(a*)= H(b*) holds.

6. Facets of the travelling salesman polytope

We prove next that subtour-elimination as well as comb inequalities define
facets of Q% As it will be seen, the lifting Theorems I-IV apply to these
inequalities and in connection with the facts established in Section 3 of the first
paper [3], the result now follows quite easily. It should be noted, however, that
the lifting theorems, especially Theorem 4.12 and Theorem 5.10, are by no means
limited to the class of inequalities considered here.

Theorem 6.1. For every n =4 and U C V satisfying 2<|U|=<[;n] the subtour-
elimination constraint

x()=|U|-1 6.1)
defines a facet of Q7.

Proof. In Theorem 3.1 (see [3]) we have proven that the assertion is correct for
|U|=2. Hence we can assume that 2<|U|=[3n] holds and that w.ro.g. U =
{1,2,n—k,...,n} where k = |U|—3. Now let W ={1,2}, ax = x; with ao=1 and
consider the graph K,_«_, and its associated travelling salesman polytope Q% *".
W is the node-set of a clique in this graph, by Theorem 3.1 ax =< a, is a facet of
this polytope and Z = W satisfies |Z] = 2. Consequently, Theorem 4.12 part (i)
applies and a*x* <a¥ as defined there is a facet of Q%* But a*x*=
X2+ X1 gk + X20-x and af =2 is again a subtour-elimination constraint which
clearly satisfies again the assumptions of Theorem 4.12 part (i). Consequently,
the assertion follows after k successive applications of Theorem 4.12.

As a subtour-elimination constraint on the node-set U is equivalent to a
sub-tour-elimination constraint on the node set V — U, in fact all subtour-
elimination constraints define facets, though it is only half the number of all
possible constraints that matter in describing Q% linearly. Furthermore, since a
subtour-elimination constraint on the node-set U of V is equivalent to the
cut-set constraint x(U : V — U) =2, these inequalities provide yet another linear
description of the same facet as is defined by (6.1). We prove next that all
comb-inequalities define facets of QF.
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Theorem 6.2. Every comb inequality defines a facet of QF. More precisely, let
n=6 and W,, W, ..., W,CV satisfy (1) [WoNW;|=1 and |W,— Wi=1 for
i=1,...kand (i) W,NW,=0 for 1<i<js<k, where k =3 is an odd integer.
Then the comb inequality

k k
Zo"‘“"‘)s’w"”z, (Wi = 1)~ (k) (6.2)
is a facet of Q7.

Proof. In order to prove the theorem we first “shrink” the comb to a comb
having a 3-element handle and three 2-element teeth so as to be able to use
Theorem 3.4 (see [3]) which states that such combs define facets of Q% for all
n = 6. We start by removing all nodes except one from W,N W, for i=1,... .k
(which gives us a Chvital-comb [1]). Then we remove all but one of the nodes in
W,— W, for i=1,...,k (which gives a 2-matching constraint [3]). Next we
remove all nodes in Wy~ [JX, W; The resulting comb has k nodes in the handle
and k 2-element teeth U, say, for i =1,..., k. We remove all but three of the k
teeth. The resulting comb has the desired form and defines by Theorem 3.4 a
facet of QF where | =n — 3% ,|Wi|+6=6. Furthermore, it satisfies the con-
ditions of Theorem 5.7 and thus by adjoining the teeth U, and Us we get a new
comb defining a facet of Q%* (Note that we added four of the original nodes.)
Furthermore, this new comb satisfies again the assumptions of Theorem 5.7 and
thus by successive application of Theorem 5.7 we retrieve the comb having k
nodes in its handle U,, say, and k 2-element teeth. Furthermore, it defines a
facet for the polytope Q%#* where i counts the number of times Theorem 5.7 was
applied. If [Wo— (UL, Wi|=0and |W,|=2 for i =1, ..., k, we are done. Else, by
Theorem 5.5 we can adjoin any node in Wo— % W; to the current handle U,.
The resulting new handle W, is the node-set of a clique in the associated graph
induced by the non-zero components of the current comb inequality and satisfies
[Zg| =1 (see Definition 4.0, point 4). Furthermore, because of Proposition 1.4(i)
(see [3]) we can assume w.r.o.g. that [Wy<[in). Consequently, if |W,—
UL Wi[=2 it follows that | Y| =2 (see Definition 4.0, point 5) and by Theorem
4.12 part (ii)) we can adjoin a further node to the current handle W{. Call the
resulting handle again Wi If [Wo— Ut Wi[=3, then, since now |Z}=2,
Theorem 4.12(i) applies and can be reapplied to adjoin all remaining such nodes.

The inequality that results defines a facet for Q% where p=
|Wo— K1 Wi|+2k and has k 2-element teeth. For each i with |W; — W,| =2 we
adjoin one node to the corresponding tooth in the current comb using Theorem
4,12 part (ii) as above and the remaining nodes by an application of Theorem
4.12 part (i). The inequality that results defines a facet of the corresponding
polytope. For each i with |W; N W,|=2 we can now apply Theorem 5.10 once
and adjoin the remaining nodes. Theorem 5.10 proves that the resulting in-
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equality is a facet of Q7. That inequality, however, is the comb inequality (6. 2y
that we started out with and thus the theorem is proven.

Theorems 6.1 and 6.2 provide a rather large class of facets for the symmetrj
travelling salesman problem and hence, a “fiarly good” linear approximation ¢
the travelling salesman polytope. For larger n, however, these linear inequalitieS
do not fully describe the polytope; in fact, we do not even know at prese gpy,
whether or not this class of facets does the job for Q%. In fact, Maurras [4lhag
shown that for n = 10 subgraphs isomorphic to the (non-hamiltonian) Peterse
graph give rise to facets of Q%, and the more general question of hypo._
hamiltonian graphs and their relationship to facets of the closely related mong .
tone travelling salesman problem has been investigated by Grétschel [2]. In
brief, his results are that ‘“almost all" hypo-hamiltonian subgraphs of the
complete graph K, give rise to facets of the monotone travelling salesman
polytope.

A complete list of references appears at the end of [3].
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