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Abstract

Combinatorial optimization problems pervade many areas of human problem solving

especially in the fields of business, economics and engineering. Intensive mathematical

research and vast increases in raw computing power have advanced the state of the art

in exact and heuristic problem solving at a pace that is unprecedented in human history.

We survey here in layman’s terms some of the fundamental concepts and principles that

have led this progress. (This article will appear – possibly in modified form – in a popular

science magazine.)



Prologue

Homer’s Odyssey a travel guide? Indeed! Already Heinrich Schliemann(1820-1890) has in-

terpreted the classic epic this way; and with Homer’s detailed description of the Trojan war in his

pocket, he discovered the remains of Troy and Mycenae. So why not view the whole story as a

travel guide of Phoenician times to wonders of the Mediterranean such as the 16 places depicted

in Figure 1a. Among them are contemporary tourist attractions like the rock of Gibraltar(11),

the straits of Messina(13), the volcano of Stromboli(12), the Tunisian island of Djerba(5) and, of

course, the ruins of Troy(2). Figure 1a not only shows sixteen Mediterranean tourist spots but also

the order by which Ulysses presumably traveled some 3,000 years ago. His journey does evidently

not correspond to the image that one has of a well-planned, organized tour – which according to

Homer it was not. In fact, his extended wandering and many adventures have led to the use of

the word “odyssey” as a synonym for a long (and eventful) trip. So what does Ulysses have to

do with modern applied mathematics? Not much; but not long ago one of the authors sat in a

cozy Paris restaurant and explained to his loving companion why mathematics and computers have

fascinated him for the better part of his adult life. Of course, the couple talked about the traveling

salesman problem and here is a one-line description of this notoriously difficult problem: Given n

cities and distances between them, find a roundtrip of minimum length that visits every city exactly

once. “But this is what Ulysses should have done after the Trojan war,” remarked his companion,

drawing an unexpected analogy to the classic epic, “he would have been back to his Penelope so

much earlier.” True. Mankind, however, might have been deprived of a cherished tale – and the

authors would have had the trouble of looking for a different leitmotif for the story they are about

to tell.

Introduction

In this article we report on the theoretical underpinnings of the enormous progress

that has been made in the past 15 years in applying discrete mathematics to a multitude

of economic, industrial and engineering problems. Before going into a finer description of

some of these practical problems we will outline the issues that are involved in bringing a

modern day Ulysses home to his beloved Penelope as quickly as possible.

Suppose that Ulysses is a top manager of our time and call him the modern Ulysses

or Ulysses 2000. This Ulysses wants to visit the 16 tourist spots without wasting any travel

time. Of course, he has a helicopter at his disposal. To plan the trip he needs, first and

foremost, some quantitative data. Table 1 lists the polar coordinates of the 16 locations

on the globe that he wishes to visit. Given the coordinates he can calculate the distance

between any two points along the earth’s great circles which is roughly proportional to the

minimum flying time between two points. The distances, rounded to the nearest kilometer,

are listed in Table 2. On the basis of this information he knows that Homer’s Ulysses must

have traveled more than 9,913 km as he followed the whims of the sea’s currents. Now

comes the manager’s real problem. Just how should he travel? After all, time is money.

Evidently, Homer’s Ulysses wasted much time by crisscrossing the Mediterranean – against

his own will according to Homer. So Ulysses 2000 decides to do like the traveling salesman:

he opts for a roundtrip.
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It is not difficult to come up with “possible” roundtrips; see Figures 5a, 5b, 5c, 5d

below. But how many are there? We show in the box “Counting” how the number of

roundtrips can be computed. It turns out that Ulysses 2000 has exactly 653,837,184,000

distinct choices. We have generated all of these roundtrips and computed their lengths. To

do so took us 92 hours on a powerful 28 MIPS workstation, i.e., almost 4 days. Wow! The

shortest tour has length 6,859 km and is shown in Figure 1b.

The classical mathematical approach to optimization problems involving finitely many

choices or, in technical jargon, to combinatorial optimization problems, has always been the

brute force enumeration technique described above. Indeed, this simplistic approach to

“solving” finite choice problems still lingers on, even in some (dusty) mathematical minds.

However, problems arising in industrial and engineering applications are far too complex for

this kind of an approach because they are much “bigger” than Ulysses’ problem. One of the

reasons why we have chosen Ulysses’ odyssey as an illustration is the fact that 16 cities is

just about the limit to size that existing computers can handle by enumeration. The small

increase to 25 cities puts the problem’s solution out of reach for even more clever forms

of enumeration. Indeed, a supercomputer of the next generation, such as the much talked

about teraflop machine, will never permit us to enumerate all roundtrips in its lifetime.

On the research front of combinatorial optimization, however, practical problems

coming from industry and having over 2,000 cities have reportedly been solved to optimal-

ity, and recently the optimization of a problem having 4,461 cities has been announced!

Problems of this and much larger size arise daily, e.g., in the production of printed circuit

boards (PCBs), in VLSI design, X-ray crystallography and other areas.

In Figure 2a we show a rectangular piece of material into which 2,392 holes must be

drilled (by means of a mechanical drill or a laser gun). The drilling is but one step in a

multistage production process for a mass produced PCB of the kind you see in washing

machines, transistor radios, TVs, computers, etc. Evidently, output per hour is proportional

to the time it takes to complete the drilling of one board. Just like Ulysses 2000, the drill

has to visit every hole (city) exactly once, drilling time per hole is constant, and savings in

the total processing time result from minimizing the travel time of the drill. In Figure 2

we have assumed that the travel time between two points is proportional to the Euclidean

distance of the two points in the plane. Like in Ulysses’ problem, finding some roundtrip

for the drill is easy. Figure 2b shows the solution produced by a professional scheduler

in industry and – taking a closer look at this odyssey – the question that comes to one’s

mind is: can one not produce, by means of a mathematical algorithm, a better or even an

optimal solution to such a problem automatically in reasonable computing time?

Mathematical Modeling

The first step towards solving instances of such large sizes is to find a mathematical

formulation of the combinatorial problem such that every solution of the real problem

corresponds to a solution of the mathematical model, and vice versa. In our case, this is

easy. We describe the traveling salesman problem by means of mathematical structures
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known as graphs. A graph consists of points and lines connecting pairs of points. The

graph associated with a traveling salesman problem is constructed as follows. Each city

(or hole of a PCB etc.) is declared to be a point. We connect a pair of points by a line if

there is a direct link between the associated cities. Let us assume that, as in the case of

Ulysses’ problem, every two points are connected by a line and thus in Ulysses’ problem

there are exactly 120 lines for the 16 points. The resulting graph is called a complete graph.

Moreover, with each line we associate a length which corresponds to the time (or distance)

it takes to travel between the two points that the line connects. Every roundtrip of the

cities corresponds to some subset of the lines. A set of lines corresponding to a roundtrip

is called a tour or a Hamiltonian cycle in graph theory. Every tour has a length which

is nothing but the sum of the lengths of the lines in the roundtrip. In graph theoretical

terms, the traveling salesman problem (TSP) is the task of finding a shortest tour in the
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complete graph. Note that different tours may have the same length; the length of the

shortest tour, however, is a unique value. In combinatorial optimization we want to find

some tour that has this value. A shortest tour of the 2,392 city drilling problem is shown

in Figure 2c. It was computed by Manfred Padberg and Giovanni Rinaldi in December

of 1986 on a CYBER 205 computer in about 27 hours of CPU time. We will outline the

approach they took in this article.

Having a mathematical framework to work with, let us first try to find out why the

TSP is referred to as a problem of notorious difficulty. As we have seen above the TSP

has an enormous number of tours. Does this fact imply that the problem must be difficult?

Surprising as it may seem, this is not the case, i.e., the number of possible solutions is not

an appropriate measure of difficulty of a combinatorial problem.

To prove our point we shall consider the following different combinatorial problem.

We have, like in Ulysses’ case, 16 cities and want to construct a communication network

such that every city can communicate with every other city, possibly via some other cities.

The construction of a direct communication link, which might be a fiber optic cable between

two cities, costs a certain amount that depends on the distance between the two cities. In

principle we can build a direct link between every pair of cities which results in a complete

graph and a costly network. To build a network that costs less we can proceed as follows. We

begin with the graph containing all lines corresponding to all possible direct communication

links, order the lines by decreasing cost and remove, beginning with the most expensive

line, the lines one by one while insisting that the resulting sparser graph remains connected.

We stop to “thin out” the graph when the removal of any one of the remaining lines results

in a disconnected network. The resulting communication network is shown in Figure 3a for

the cities of Ulysses’ problem. It has a length of 4,540 km. As simple as this algorithm is,

it is a mathematical fact that the algorithm finds an optimal, i.e. a cost minimal, solution

to the problem! Note that this algorithm processes at every stage the most expensive line

and it is therefore called a greedy algorithm.

Suppose the initial graph has n points. Then the graph that results from applying the

algorithm has the property that it has n−1 lines and that it contains no cycle. Such graphs

are called spanning trees. A very old result of graph theory found by Arthur Cayley(1821-

1895) in 1889 says that the complete graph on n points contains exactly nn−2 different span-

ning trees. For Ulysses’ problem with 16 cities this number equals 72,057,594,037,927,936

which is finite, but substantially bigger than the number of tours of Ulysses’ roundtrip

problem. In general, the number of tours of the TSP is by many orders of magnitude

smaller than the number of spanning trees. Yet a minimum cost spanning tree for 16 cities,

see Figure 3a, can be found in a matter of milliseconds on a personal computer.

So, what is it that makes the TSP difficult? In truth, the answer is that we do not

know. There is, however, a mathematical “theory of complexity”, that provides a framework
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for distinguishing between “easy” problems like the minimum cost spanning tree problem

and “hard” problems like the TSP. Without going into the details of this theory we remark

simply that besides the TSP a plethora of other combinatorial problems of tremendous

practical interest fall into the class of “hard” problems.

We shall see instantly that a minor variation of a problem – or so it may look on

first sight – can render an “easy” problem a “hard” combinatorial optimization problem.

The greedy algorithm for finding a minimum cost spanning tree provides us with a com-

munication network such that every city is connected to every other city in the network

at minimum cost. Connectivity of networks is, however, but one consideration that com-

munication network designers have to take care of. Consider an adversary, e.g. nature,

that could destroy parts of the network. This may happen due to an earthquake, a fire, an

attack by terrorists or simply because an excavator cuts a cable. If in the spanning tree

shown in Figure 3a the adversary destroys the communication link between Messina and

Corfu, then the six eastern cities can no longer communicate with the ten western cities.

So considerations relating to the “survivability” of the communication network enter. The

obvious possibility of constructing a network of maximum survivability calls for a complete

graph and thus a very costly solution. That means that we are faced with the problem of

trading off survivability and the cost of constructing and maintaining the network. To be

able to do so, we need to set priorities on the communication links between the cities or on

the cities themself. The beauty of combinatorial approaches to problem solving is that such

considerations can be worked into the mathematical model of practical problems — but

this additional feature also makes the resulting new problem just as hard as the traveling

salesman problem in the general case.

From a survivability point of view one would thus like to protect a network against

the failure of a number of links or nodes or both. This is not always done in reality. For

example, during the process of replacing the standard copper wires of the LATA (Local Area

Telecommunication Access) networks in the United States by fiber optic cables, survivability

considerations were given a secondary role compared to cost effectiveness, maybe due to the

high cost of the new technology. As has been reported in major newspapers all around the

United States, this neglect brought about tremendous disasters like the complete breakdown

of the Chicago telephone network in 1988. The aftermath of this event was a truly costly

reconstruction and reconsideration of the network design rules.

At present, communication networks are (roughly) designed as follows. In the begin-

ning a set of locations to be connected is chosen. In a second step all direct links between

pairs of locations are determined that can possibly be constructed and their construction

cost is estimated. Then the locations are grouped by their relative importance. For our

purpose, we assign numbers 0, 1, 2, ... called types to the locations. To be considered

survivable the network to be designed must have the following property: for any two lo-

cations of type i and j, respectively, the network must contain a path connecting the two

locations, even if a number of direct links equal to the minimum of i and j fail. Moreover,

among all networks having this property we wish to find and construct one of minimum

cost. Networks can be protected in a similar manner against the failure of nodes or the
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common failure of nodes and links.

Let us consider the problem of connecting the 16 cities in the Mediterranean from

Ulysses’ problem by a survivable communication network. We declare, for instance for his-

torical reasons, Ithaca (1), Troy (2), Djerba (5), Circeo (10) and Messina (13) “important”

cities and call them type 1 locations, while all other cities are of type 0. The task then is

to find a minimum cost network such that in case any single direct link fails, each of the

important five cities is still connected to all the other important ones by a communication

path. Assuming that the construction cost of a direct link is proportional to the length

of the link we obtain the network of length 5,842 km shown in Figure 3b. In fact, the

optimum solution is such that except for the cities 9, 11 and 12 all other cities are better

connected to each other, although this was only required for the five important cities. By

“playing” with the parameters of the network such as the node types, network designers

nowadays try to find a reasonable balance between additional network construction costs

and increased customer protection against network faults.

Communication networks that are highly vulnerable due to an aggressive environ-

ment, e.g. those of a military vessel, have to provide a much higher degree of survivability.

For instance, if we assign type 3 to each node of our Mediterranean problem we obtain the

network of minimum cost shown in Figure 3c. Its length is 16,112 km. Here, even the fail-

ure of three direct communication links at the same time does not destroy the functioning

of the network. Moreover, if any one of the nodes of the network fails (in practice this

occurs, for instance, due to a fire in a network hub) the remaining nodes are still mutually

connected by a communication path. If, however, the nodes 8 (Zakinthos) and 16 (Corfu)

fail simultaneously, then the communication network will be disconnected.

Figure 4 shows the cost minimal solution of a real LATA network in the eastern part

of the United States, where the nodes of type 0 are depicted by full circles and the nodes

of type 1 by little squares. This communication network connects 116 hubs.

By looking at variations of Ulysses’ problem we have arrived at other problems of

significant practical importance. In fact, we have not told the full story of modeling real-

world network (and other) design problems. Even in the (already quite complicated) design

of survivable networks further technical aspects may have to be considered that lead to

additional side constraints on the design. Besides network design problems, there is a host

of further relevant practical problems in engineering, management, etc. that are treated and

solved by means of combinatorial optimization. Given the state of affairs it is impossible

to comprehensively survey all applications of combinatorial optimization. Problems of this

type arise in the planning of public and private transportation, in operations management,

in the financial planning of large organizations, in the planning and design of logistics and

distribution systems, in the area of network design and operation of all kinds, etc; see the

box “Applications of Combinatorial Optimization”. The interested reader will find many

articles on these and related topics in the Operations Research and Management Science

literature as well as in the Applied Mathematics/Engineering literature.
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Methodology

Let us now address the question: How does one find good or optimum solutions and

how does one provide “quality guarantees” for solutions? Clearly, every specific combinato-

rial problem has its particularities that can and must be exploited in the solution process.

However, the design of solution algorithms follows in general some fundamental principles.

Due to the finite nature of combinatorial problems it is clear that there is an optimum

solution having a certain optimum value. To make matters concise let us assume that we

have a minimization problem and thus the optimum value is a minimum possible value.

Any feasible solution to the combinatorial problem, that is, a solution that satisfies all side

constraints, provides an upper bound for the optimum value. Like in the case of Ulysses

2000, finding feasible solutions is frequently not a difficult task. Algorithms that construct

feasible solutions, and thus upper bounds for the optimum value, are called heuristics.

Heuristic algorithms can broadly be classified into two categories: construction heuristics

attempt to find a “good” feasible solution in a single attempt, while improvement heuristics

are designed to iteratively modify and eventually improve some given starting solution.

The trouble with “heuristic” approaches to combinatorial problem solving – when

used on a standalone basis – is that, there is no quality guarantee about the closeness of

the upper bound to the optimum value when the algorithm stops. Sometimes the upper

bound may very well be equal to the optimum value, but it may also be very far off. One

simply does not know. This is unsatisfactory from a practical point of view. To estimate

the deviation of the upper bound from the optimum value a lower bound on the optimum

value is needed. If the upper and lower bound coincide, a proof of optimality of the solution

giving the upper bound is achieved. If not, a conservative estimate of the true relative error

of the upper bound compared to the optimum value is provided by the difference of the

upper bound and the lower bound divided by the lower bound. When multiplied by 100,

this measure tells us by at most how many percentage points the value of the best known

solution is above the value of an optimum solution.

So the next “real” question is how does one find a lower bound on the optimum

value. The correct answer is that we will have to construct an appropriate mathematical

formulation of the lower bounding problem. Indeed, the upper and the lower bounding

techniques can be combined in an iterative fashion to find provably optimal solutions to

hard combinatorial optimization problems. This combination is the thrust of the recent

developments that have advanced numerical problem solving in combinatorial optimization

so substantially.

To demonstrate these two general principles let us return to the problem of Ulysses

2000 and discuss upper and lower bounding techniques that have been developed for the

traveling salesman problem. The story for other hard problems differs from this one essen-

tially only in technical detail, the mathematics of which can be quite arduous, though.

Upper Bounding Heuristics
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Upper bounding heuristics are best described by adapting the greedy idea. We pick a

starting city and then we apply the following myopic rule: If we are in some city we always

pick the nearest neighboring city that has not yet been visited. If no city is left, then we

return to the starting point. This method is called the nearest neighbor heuristic. If we

start in Ithaca, we first go to Zakinthos, from there to Corfu, to Messina, etc. Finally, we

get the tour of length 9,998 km shown in Figure 5a. Amazingly, this tour has about the

same length as Ulysses’ odyssey. On the other hand, starting in Gibraltar we obtain the

tour of length 8,225 km shown in Figure 5b.

These two figures teach us two lessons. First, the result of the heuristic strongly

depends on the starting point. Second, it is easy to see that a better solution can be

constructed, for instance, by “uncrossing” some of the crossing edges. The first observation

holds true for most of the heuristics that are in use, and it is the second observation that

gives rise to the idea of “improvement” heuristics that manipulate given solutions to obtain

better ones.

Another class of construction heuristics, called insertion heuristics, works as follows.

In an initial step some cycle on a few cities, say 3, is chosen arbitrarily. In a general step,

one has a cycle of length l, say, and some cities not yet in the cycle. One of the cities

outside is chosen, say city k. One tries all l possibilities to remove an edge ij of the present

cycle and replace it by the path from i to k to j. City k is inserted between those two

nodes i and j for which the length of the new cycle is as small as possible. The insertion

heuristic terminates when the cycle contains all cities.

There are various proposals in the literature for the choice of the next node to be

inserted. For instance, if we choose the city farthest away from (nearest to) all the cities

in the present cycle, we obtain the farthest (the nearest) insertion heuristic, respectively.

Practical experiments have revealed that the farthest insertion heuristic provides reasonable

tours, in general much better than the nearest neighbor or nearest insertion heuristic. The

solution obtained by farthest insertion, starting with the cycle formed by the cities 1, 5

and 9 has length 7,023 km and is shown in Figure 5c. A whole host of further construction

heuristics can be found in the relevant technical literature.

Let us now discuss improvement techniques. The basic rule for such procedures is

always similar to the idea of “uncrossing edges” mentioned above. To give an example we

outline the so-called 2-opt method. It works as follows. Given a tour, consider all pairs of

edges hi and jk of the tour, where all four cities h, i, j, k are distinct. Removing the two

edges hi and jk from the tour, there is a unique way of reconnecting the two remaining paths

such that a new tour is obtained. If the new tour is shorter, then it replaces the old tour

and the procedure is repeated until no such improvement can be made. A tour with that

property is called locally optimal (with respect to this 2-exchange). This basic idea is easily

extended in various ways and gives rise to improvement heuristics that exchange various

numbers of lines and nodes. Of course, the more possibilities we consider to choose a line or

a node for either removal or reconnection of the resulting pieces, the longer the running time
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will be. The empirical record of the best of these improvement heuristics is surprisingly

good with a typical relative error of 2% to 5% for the resulting “local optimum”. For large

problems the running time may, however, be excessive unless sophisticated reduction and

data handling techniques are employed. We have applied the 2-opt method to the three

tours shown in Figures 5a, 5b, 5c. In the first case we obtained a tour of length 6,974

km, in the second case one of length 6,890 km and in the third case a tour of length 6,973

km. Thus the 2-opt method considerably improves the nearest neighbor tours, but there

is not much length reduction if we apply it to tours obtained by the farthest insertion

heuristic. The application of the nearest neighbor and the farthest insertion heuristic and

the improvement by the 2-opt method has resulted in the tour of length 6,890 km shown

in Figure 5d. How good is this tour? How can we judge its quality?

To enhance the heuristic techniques described above further one frequently combines

them with random sampling schemes in order to reduce the chance that the method might

get “trapped” in some local optimum too early during the calculation. The basic idea

is to permit the algorithm to select, as the next solution for the improvement heuristic,

a solution that has a worse value than the present one. The choice of selecting a worse

solution is simply made on the basis of a sequence of probabilities that change during the

execution of the algorithm and that tend to zero. Methods that employ these principles go

by the name of Monte Carlo Methods, Simulated Annealing, Genetic Algorithms, Evolution

Methods, etc. The improvement heuristics are computationally expensive already; so these

“randomized” procedures often require excessive computation times and are therefore not

applicable when approximate solutions have to be calculated for large problem instances

within limited computation time. But they can be expected to perform better in terms of

the quality of the solution obtained.

The programming effort for these methods for the heuristic solution of medium sized

traveling salesman problems is rather moderate. As a result, they have become the play-

ground of many amateurs, which – unfortunately – has produced grossly exaggerated claims

as to the goodness and practicality of such methods. On the other hand, limitations of cur-

rent technology make heuristic algorithms the workhorse of practical combinatorial problem

solving and they also help the exact optimization methods in several ways.

Lower Bounding Techniques

Whatever “tricks” you employ to find upper bounds, the question of finding a quality

guarantee remains. For this we need a lower bound on the optimum value. The principal

idea behind all lower bounding techniques is the following. We “embed” the set of all

feasible solutions, in Ulysses’ case this is the set of all tours, into a larger set that contains

all feasible solutions and possibly further elements. The minimum value of the objective

function over all elements of the larger set is clearly a lower bound for the minimum value

over all elements of our original set. The challenge thus is to find an “embedding” such

that we can minimize over the larger set rather easily and such that the gap between the

two respective minima is not too large. If both criteria can be met, good lower bounds can

be computed quickly.
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There are several general modeling techniques that yield suitable lower bounds. We

will discuss two such approaches. One will be called combinatorial relaxation, the other one

linear programming relaxation.

Combinatorial Relaxations

Combinatorial relaxations depend on the availability of easily solvable combinatorial

optimization problems that contain the given hard one. Such easy problems are not always

at hand, but if they are they may be quite useful. In the case of the traveling salesman

problem there are several combinatorial relaxations such as perfect 2-matchings, perfect

assignments, and 1-trees that do the job. Let us discuss the last example here.

We shall assume that the traveling salesman problem is stated on a complete graph

having n nodes with arbitrary lengths on the lines – just like we have discussed it above.

We observe that every tour has the following properties:

1. It contains exactly one cycle.

2. It contains exactly n lines.

3. It is connected.

4. Every node is contained in exactly two lines.

If we want to find a subset of the lines of the graph of minimum weight that satisfies

some subset but not all of these four requirements we arrive at a combinatorial relaxation

since every tour will also satisfy these fewer constraints. Clearly, there may be other

subsets of the lines, which are not tours, that satisfy such a reduced list of requirements.

For instance, if we drop conditions 1 and 3, the feasible solutions are the so-called perfect

2-matchings. If we drop condition 4 we obtain the set of 1-trees. In fact, one can reduce

the size of the set of 1-trees slightly by making the following requirement 5 instead of 4.

5. An arbitrarily chosen specific node is contained in the cycle and in exactly two lines.

Such an 1-tree of minimum weight can be computed easily as follows. Choose the

special node. Delete the special node from the complete graph. Compute a minimum length

spanning tree of the reduced graph (e.g., by the greedy algorithm described above). Add

the two lines of shortest length that contain the special node to the spanning tree. This

set of lines is a shortest 1-tree, and its length is obviously a lower bound for the optimum

value of the TSP. If the modern Ulysses chooses Gibraltar as the special node he obtains

the 1-tree shown in Figure 6 of length 6,044 km.

This value is not really a superb lower bound. The same, unfortunately, holds true for

most other combinatorial relaxations. But there are general techniques such as Lagrangian

relaxation with which these lower bounds can be improved – sometimes – considerably.

These techniques involve methods of nondifferential nonlinear optimization and cannot be

explained here.

At this point we have computed a best upper bound of 6,890 by means of the nearest

neighbor heuristic combined with the 2-opt method and a lower bound of 6,044 using the

1-tree relaxation for the problem of Ulysses 2000. These bounds guarantee that the tour

shown in Figure 5d is at most 14% above the true optimum. Note that the current best
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tour length is in fact only 0.5% above the optimum value 6,859 km. But (disregarding the

result of the enumeration program) we have no proof of this fact yet.

Linear Programming

Linear programming is undoubtedly one of the most important techniques of broad

applicability that post World War II applied mathematics have produced. It is most fre-

quently interpreted as the problem of optimally allocating economic activities to scarce

resources and today it is used daily in the planning activities of airlines, oil refineries,

banks, car manufacturers, etc. Not surprisingly, linear programming is also used to solve

combinatorial optimization problems; indeed, the most successful lower bounding tech-

niques for such problems all utilize linear programming. To explain the underlying idea –

which requires us to think in terms of the geometry of vector spaces – we will again resort

to the problem faced by Ulysses 2000.

Since we have 16 cities there are exactly 120 direct links between all of them. Ulysses

2000 needs to choose 16 links from these possible 120 ones that form a tour. So let us view

a tour as an array or – as we shall say – as a vector of 120 “variables” that can assume the

values zero or one according to whether or not Ulysses chooses to travel a particular route.

Each variable corresponds to a direct link and let us – somehow – index the 120

variables sequentially 1, 2, . . . , 120. Every tour of Ulysses defines a vector of “length” 120

having 16 variables equal to one – namely those corresponding to the links in the tour – and

the remaining 104 variables are equal to zero. On the other hand, not every such vector

with 120 variables corresponds to a tour; so we will have to impose some constraints on

the vector’s variables. Geometrically, every tour of Ulysses can now be viewed as a point

in the vector space of 120 dimensions. The fact that we cannot “picture” more than the

vectors of the three-dimensional space in which we live does not bother us. Ever since René

Descartes (1596-1650) wrote his famous treatise “La Géométrie” in 1637, mathematicians

have worked analytically in spaces of any dimension. Now remember that there are exactly

653,837,184,000 tours for Ulysses 2000. So we have exactly this many points in the 120-

dimensional space. Among these points we wish to find one such that the sum of the lengths

corresponding to the variables that assume the value one is as small as possible. Since the

remaining variables for this point are zero we can express the objective function as a linear

function of the 120 variables. Mathematically, we thus wish to minimize a linear function

over the set of 653,837,184,000 points in the 120-dimensional vector space. Now let us

connect any two of the points by a line of the 120-dimensional space – just like we would

do in the plane or in the 3-dimensional space. Since the objective function is linear it is

clear that one of the two endpoints is “best”. None of the points in the “interior” of the

line can be “best” unless they all are equal in terms of the linear objective function, which

corresponds itself to a “line” in some plane. Extending this operation of connecting points

systematically to all triplets, quadruplets etc. of the 653,837,184,000 points in question we

get a polytope in the 120-dimensional space. Now it is a fact that was known already to

mathematicians of the 19th century that every polytope can be described as the solution

set of finitely many linear equations and inequalities. Inequality is to be understood in

the weak sense of “less-than-or-equal-to” rather than in the sense of strict inequality. The
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problem faced by Ulysses 2000 is thus the problem of optimizing a linear objective function

of 120 variables over some finite set of linear equations and inequalities in the same set of 120

variables. But this is exactly what linear programming is all about and thus Ulysses 2000

can solve his problem – in principle, at least – using the techniques of linear programming;

see the box “Convex Hull”.

To apply the techniques from linear programming one must have – at least in theory

– a complete list of the inequalities that define the associated polytope. For the problem

with 16 cities such a complete list is not known to date. Indeed, complete descriptions may

never be found – which is another way of saying that the traveling salesman problem is

a notoriously difficult problem. Explicit linear programs for traveling salesman problems

are only known for up to 8 cities. More precisely, the polytope associated with the 8-city

traveling salesman problem has 8 equations and 194,187 inequalities in the 28 variables

corresponding to the 28 direct links that are possible between 8 points. The corresponding

numbers for the polytope associated with 7 cities are 7 equations and 3,437 inequalities in

21 variables. Thus there is an enormous growth in the number of inequalities that describe

the polytope when we go from 7 to 8 cities. For Ulysses’ 16 cities the number of inequalities

is astronomically large. Yet far larger traveling salesman problems than Ulysses’ are today

optimized using linear programming techniques. How is this done?

One of the principles that mathematicians concerned with practical calculations have

utilized for centuries is the principle of relaxation. This principle means that one replaces

the “true” problem by a larger one – just like we did when we discussed “combinatorial”

relaxations of our problem. In the linear programming context this means that we are

going to ignore the “integrality” requirement of zero or one and almost all of the astro-

nomically many constraints that are necessary to describe the “true” polytope of Ulysses’

problem. Instead, we will start with only a very small subset of the constraints and permit

the variables to assume any real values between zero and one; see the boxes “Integer Pro-

gramming” and “Geometric Representation”. Since every city must be met by two links

we can start with 16 equations in the 120 variables expressing the fact that the variables

corresponding to the links meeting a city must sum to two. Dropping the requirement of

zero or one and replacing it by the requirement that all 120 variables may assume any value

between zero and one (including zero and one) we get 240 inequalities and 16 equations in

120 “real” variables. Solving the corresponding linear program for Ulysses’ problem we get

a minimum value of 6,113 km for the objective function which is a better lower bound than

the value of 6,044 km that the 1-tree relaxation produced. So we now have a proof that the

length of the currently best tour of Figure 5d is at most 12.7% above the optimum value.

The linear program solver not only provides us with the minimum objective function

value of 6,113 km but also with a solution vector, i.e., with 120 values for the variables that

satisfy the equations and inequalities that were fed into it. If the nonzero components of

the solution vector corresponded to a possible tour for Ulysses 2000, then we could stop

right there because we would have found an optimal solution for Ulysses 2000 and thus

solved his problem. But they do not. Given the fact that an astronomically large number

of additional inequalities was ignored it is not surprising that they do not. By ignoring all
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those constraints we have in fact embedded the “true” polytope into a “larger” polytope in

the same space of 120 dimensions. Since the true polytope for Ulysses’ problem is contained

in this larger one there must be some way to “separate” the solution vector obtained in

the first step from the true polytope. This is done by inequalities of the less-than-or-equal-

to variety. If we require an inequality to hold with equality then we have an equation.

Geometrically, an inequality divides the 120-dimensional space into two halfspaces while

the corresponding equation gives the “hyperplane” that is common to both halfspaces –

just like a line in the ordinary plane which divides the plane into two halves. The separating

inequalities that are of interest to us contain the true polytope in one halfspace whereas

the point given by the solution vector of the linear program lies on the other side, the

wrong side of the hyperplanes given by the corresponding equations. So these separating

inequalities cut off the point given by the linear programming solution from the polytope

and are for that reason called cutting planes; see the boxes “Cutting Plane Algorithm” and

“Separation”. In fact, many such cutting planes exist and among those that do the job

there are “best possible” ones. These are those that intersect with the true polytope as

much as possible and define the facets of the polytope. Much theoretical work has focussed

in the past twenty years on identifying cutting planes that define facets for numerous

combinatorial optimization problems that are of practical importance.

In Figures 7a, 7b, 7c we display the optimal solutions to several linear programs that

we have solved to find an optimal solution to the problem that Ulysses 2000 faces. The

first optimal solution consists of four short cycles or “subtours” such as, e.g., the one from

Troy to Maronia to Malea and back to Troy; see Figure 7a. This is not what Ulysses 2000

wants; he wants a single roundtrip. To this end he can choose at most two of the three

direct links connecting the cities Troy, Malea and Maronia. So mathematically, the sum

of the corresponding three variables out of the total of 120 variables must be less than or

equal to two, while for the first linear programming solution it is three. The corresponding

inequality is one of the huge number of inequalities of the true polytope that we have

left out. All that we have to do is to add it to our linear program as a cutting plane.

Doing likewise for the remaining three subtours we have four inequalities that are added

to the linear program, which gives us a second linear program to be solved. Indeed, all

that needs to be done is to “reoptimize” the first linear program after adding the four new

inequalities that all cut off the first solution vector – which can be done fast and efficiently

with contemporary software packages.

Solving the second linear program we get an optimal objective function value of 6,228

km and a solution vector that still does not correspond to a tour for Ulysses 2000 – see

Figure 7b; but the algorithmic idea is clear now, for all we have to do is to iterate. We

“activate” another very small subset of the astronomically many inequalities that we have

ignored so far. Doing so and solving a third linear program we get an optimal objective

function value of 6813.5 km and a solution vector that still does not correspond to a tour for

Ulysses; see Figure 7c. Indeed, the linear programming solution assumes values of 1/2 for
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some of the 120 variables – which is what we permit for the “intermediate” linear programs

to happen and which are depicted by the “broken” lines of Figure 7c. Iterating again by

adjoining some more inequalities and reoptimizing the corresponding fourth linear program

we obtain an objective function value of 6,859 km, a solution vector that corresponds to

the optimal tour of Ulysses 2000 displayed in Figure 1b and we are done!

The iterative procedure that we have described above is called a cutting plane algo-

rithm. If the possibly astronomically large number of inequalities describing the polytope

is fully known, then it is clear that the cutting plane algorithm will always stop after a

finite number of steps – like in the case of Ulysses’ problem where we iterated four times.

But we know at present all of these necessary inequalities neither for the traveling sales-

man problem nor for most of the other combinatorial optimization problems of practical

interest. Much research activity focuses on accumulating such knowledge about more and

more combinatorial problems – knowledge that permits to push computational limitations

way beyond what most scientists in our field considered attainable only a few years ago.

On the other hand, the “hardness” of the traveling salesman and other combinatorial op-

timization problems may prove to forbid a complete knowledge of the astronomically large

list of necessary inequalities forever – we just do not know – and at present we clearly do

not know them all. So different from the case of the problem of Ulysses 2000, the iterative

cutting plane procedure may come to a halt before an optimal tour is found.

What are the options now? We may stop because we have obtained a reasonable

lower bound for the optimum tour length. We may also enter an enumerative procedure by

branching on some variable x that is positive and not equal to one in the linear programming

solution vector when the iterative procedure stops. Branching simply means that we create

two new problems from the current one where in one of the two problems we force the link

corresponding to such a variable x into the solution by setting it equal to one and in the

other one we force it out of the solution by setting it equal to zero. Both problems are then

again subjected to the cutting plane procedure. This leads to a tree search procedure that

goes by the name of branch and cut and which is related to, but much more powerful than

the branch and bound procedure developed in the 1960s for the solution of combinatorial

problems.

At present, the most successful algorithms that solve large-scale combinatorial opti-

mization problems to optimality or that provide very good quality guarantees are based

on the cutting plane procedure outlined in this article. Of course, they are also enhanced

by various heuristic and enumerative techniques. As should be clear from our descrip-

tion, this modern approach requires a lot of thorough mathematical analysis, knowledge

of several fields related to optimization and computer science, knowledge of efficient data

structures, data handling and computer programming, because to “prove” its value for

numerical problem solving one must necessarily experiment on real computing machinery.

Indeed, members of our research teams and researchers at numerous other institutions have

successfully implemented branch and cut algorithms for many practically relevant combi-

natorial optimization problems – substantially more than the ones discussed in this short

article. The TSP examples illustrated here were solved by the code developed by Padberg,
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and Rinaldi of IASI-CNR in Rome, the survivable network examples by a code developed

by Martin Grötschel, Clyde Monma of Bell Communication Research in Morristown, N.J.,

and Mechthild Stoer of the Konrad-Zuse-Zentrum für Informationstechnik in Berlin. The

solution times for the various problems on 16 cities are a matter of milliseconds on a modern

workstation – including the solution of the problem faced by Ulysses 2000. The latest ver-

sion of the Padberg-Rinaldi code solves the drilling problem for the printed circuit board

(PCB) with 2, 392 cities of Figure 2 in about 1 hour 40 minutes on a time-shared Sun-

Sparc 10 workstation, i.e. on a computing machine that is somewhat less powerful than the

one we used to enumerate all possible tours for the 16-city problem of Ulysses 2000 – which

took 92 hours or about 4 days of uninterrupted computing. Think about that and more im-

portantly, think about what parallel processors, vector processors, teraflop machines, and

beyond, promise to do in terms of exact problem solving by their sheer computing power!

Add sound applied mathematics and clever software engineering into the equation – exact

problem solving will become a reality for problems of substantially larger scale than we all

might consider attainable at present.

To close our story on combinatorial problem solving, let us return to the question

of why the traveling salesman problem is called a notoriously difficult problem. As you

must have noticed, we have repeated several times that there are astronomically many

inequalities needed to describe the associated polytope completely. That much we know to

be a fact today. So the next question is simply: Does this fact explain the difficulty of the

problem? In part this is probably so, but – as astounding as it may be – it does not explain

fully the difficulty of the problem either. Indeed, there are combinatorial problems that

are solved easily – both in theory and in practice – but whose polytopes require far more

inequalities than the one associated with the traveling salesman problem. Of course, we

talk about polytopes in spaces of equal dimension and the polyhedron associated with the

minimum cut problem that we need in order to solve the separation problem for subtour

elimination constraints is one such example. Space limitations forbid us to elaborate on

this point, but then there is a sort of mathematical “dualism” at work. Extreme points

and facets are just the two faces of a coin. So we are back full circle. If it is neither the

number of possible solutions nor the number of inequalities of a complete description for a

combinatorial problem that makes it difficult, what is it that makes it “difficult”, what is

it that makes a problem “easy”? Nobody knows an answer to these questions at present,

but the computational record of combinatorial problem solving is good nevertheless.

Epilogue

We hope that you have enjoyed this journey into the world of combinatorial problem solving.

While researchers around the globe have made enormous progress to tackle such problems, many

open problems persist, the satisfactory solution of which will require many years of hard work.

Practical problems of truly large scale can be solved to optimality already today, but the fundamental

question of tractability of hard combinatorial problems promises to remain a challenge for many

years – perhaps generations – to come. As we have tried to explain, considerable efforts are on

the way to deal with the complexity of such problems. So just like Ulysses who was struggling in

ancient times against misfortunes and bad winds in search of his way home to his beloved Penelope,

dedicated mathematicians and computer scientists are searching today for ways of coping with the
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presumed intractability of hard combinatorial optimization problems of practical relevance.

transportation: airline scheduling: crew and fleet

mix of trucks of a transportation company

routing of trucks and driver assignment

cost-minimal garbage collection

mass transit: timetable optimization

bus and subway circulation scheduling

drivers’ scheduling

VLSI design: placement of components on chips

routing of nets

layer assignment

production: automatized operations: control of CNC-machines,

control of the moves of stacker cranes,

control of driverless vehicle systems, etc

assembly line balancing

job sequencing

location of storage space

assignment of items to storage locations

flexible manufacturing

finance: portfolio selection

arbitrage optimization

capital budgeting

networks: capacity planning of communication networks

database design and management

extension and management of centralized heating networks

power distribution in electrical networks

design of networks that survive catastrophic events

location and logistics: location of distribution or sales centers

and their management

Applications of Combinatorial Optimization are too numerous to be surveyed

here in detail. The above outlines some of the numerous areas where methods from

combinatorial optimization are used today to aid human problem solving. Given the

tremendous growth in exact and heuristic problem solving capabilities – due to both

intensive mathematical research and vastly improved computing machinery – the

areas of application of exact and heuristic methods for combinatorial optimization

are bound to increase substantially in the years to come.
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1 Ithaca 38.24N 20.42E

2 Troy 39.57N 26.15E

3 Maronia 40.56N 25.32E

4 Malea 36.26N 23.12E

5 Djerba 33.48N 10.54E

6 Favignana 37.56N 12.19E

7 Ustica 38.42N 13.11E

8 Zakinthos 37.52N 20.44E

9 Bonifaccio 41.23N 9.10E

10 Circeo 41.17N 13.05E

11 Gibraltar 36.08N 5.21W

12 Stromboli 38.47N 15.13E

13 Messina 38.15N 15.35E

14 Taormina 37.51N 15.17E

15 Birzebbuga 35.49N 14.32E

16 Corfu 39.36N 19.56E

Table 1. Polar coordinates of the 16 locations in the Mediterranean.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 509 501 312 1019 736 656 60 1039 726 2314 479 448 479 619 150

2 126 474 1526 1226 1133 532 1449 1122 2789 958 941 978 1127 542

3 541 1516 1184 1084 536 1371 1045 2728 913 904 946 1115 499

4 1157 980 919 271 1333 1029 2553 751 704 720 783 455

5 478 583 996 858 855 1504 677 651 600 401 1033

6 115 740 470 379 1581 271 289 261 308 687

7 667 455 288 1661 177 216 207 343 592

8 1066 759 2320 493 454 479 598 206

9 328 1387 591 650 656 776 933

10 1697 333 400 427 622 610

11 1838 1868 1841 1789 2248

12 68 105 336 417

13 52 287 406

14 237 449

15 636

Table 2. The distance table for Ulysses 2000.
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