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A new class of graphs, called weakly bipartite graphs, is introduced. A graph is called weakly bipartite if its bipartite
subgraph polytope coincides with a certain polyhedron related to odd cycle constraints. The class of weakly bipartite graphs
contains for instance the class df bipartite graphs and the class of planar graphs. It is shown that the max-cut problem can be
solved in polynomial time for weakly biparlite graphs. The polynomial algorithm presented is based on the ellipsoid method
and an algorithm that computes a shortest path of even length.
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1. Introduction and notation

In this paper we introduce a new class of graphs,
calied weakly bipartite graphs, which for instance con-
tains the class of bipartite graphs and the class of planar
graphs. We show that the max-cut problem is solvable
in polynomial time for weakly bipartite graphs. The
polynomial algorithm given is based on the ellipsoid
method and uses the fact that weakly bipartite graphs
have a polyhedral characterization.

The graphs we consider are finite and undirected.
They may have multiple edges. Loops do not play 2 role
in what follows, so we assume that our graphs have no
loops. We denote a graph by G =V, E}, where V is the
node set and E the edge set of G. If ¢ € E is an edge
with endnodes i and j we also write {j to denote the edge
e. If H=[W,F]is a graph with W C V and FC E then
H is called a subgraph of G.

It WCV, @ W+ V, then §(W) is the set of edges
with one endnode in W and the other in ¥\ . The edge
set 8(W) is called a cut. We write 8(v) instead of §({0})
for v € V. For a node v € V the cardinality of 8(v) is
called the degree of ov.
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A path P in G=(V,E] is a sequence of edges
€.25,....e;, such that e, =g¢u,. e;=0v,U5.....6, =
o, - t; and such that ¢, # ¢, for i # j. The nodes v, and
v, arc the endnodes of P and we say that P links c; and
v, or goes from v, to v;. The number & of edges of P is
called the fength of P. If P=e,,e,....,e, is a path
linking v, and v, and e,,, =vye, € E then the se-
quence ¢,,€;,....€,,¢,,, is called a cycle of length
k+ 1. A cycle (path) is called odd if its length is odd,
otherwise it is called even,

Clearly, we can also consider a path as the edge set
of a connected subgraph H of G such that exactly two
nodes of A have degree one while all other nodes of H
have degree two. Similarly, a cycle can be considered as
the edge set of a connected subgraph of G in which all
nodes have degree two. The edge set of a subgraph
H=[W,F}of G in which all nodes have even degree is
called a quasi-cycle. If F+ 8 then F is obviously the
union of cycles any two of which are (edge-} disjoint.

A matching M in G is a set of edges such that every
node of G is contained in at most one edge of M. A
matching M is called perfect if every node is contained
in an edge of M,

A graph is called bipartite if its pode set can be
partitioned into two nonempty, disjoint sets ¥; and ¥,
such that no two nodes in ¥, and no two nodes’ in ¥
are linked by an edge. If G is bipartite and |V, |{=n,
| ¥ |= m and every node in ¥, is linked to every node in
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}. by exactly ane edge, then & s dencted by K, and
called completely hipurtite. Obvioushy if (W) is a cut in
a graph (. then [F7.8(1F )] 1s a bipartite subgraph of G.

2. The max-cut problem

The muax-cur problem can be stated as follows. Given
a graph G=[V,E] with edge weights ¢, >0 for all
e€E, find a cut 8(H') such that (8(H)):=X,. 5.5 €.
is as large as possible. Replacing “as large as possible”
by “as small as possible”, we obtain the min-cut prob-
lem.

It is well known that for rational weights the min-cut
problem can be solved in polynomial time using net-
work flow techniques. The max-cut problem, however,
is NP-complete for the class of all graphs, cf. Garey and
Johnson [6]. Even various restricted max-cut problems
are hard. For instance, if the problem is restricted to the
class of graphs with nodes having degree at most three,
or to the graphs which have a node v whose removal
results in a planar graph in which all nodes have degree
at most six, then the max-cut problem for these graphs
is still NP-complete, cf. Barahona [1}, Yannakakis [10],
Barahona [2]. This even holds when all edge weights are
assumed to equal one.

On the other hand, the max-cut problem is solvable
in polynomial time for planar graphs, cf. Hadlock {8]
and Orlova and Dorfman {9). The algorithm is based on
planar duality. Namely, if G is planar, connected, and
has no cut-edge (i.e. a cut of cardinality one) then every
cut in G corresponds 10 a unique quasi-cycle in the dual
graph G* with the same weight. A maximum weight
quasi-cycle can be computed in polynomial time (in any
graph) using Chinese postman techniques, i.e. shortest
path and matching algorithms.

Recently Barahona [3] has generalized the cardinality
version (ic. all edge weights are equal to one) of the
case above to graphs with fixed genus. A surface of
genus p is a surface obtained from a sphere by attaching
P ‘bandles’. If a graph G can be drawn on a surface of
genus p such that no two edges intersect and if p is
minimum with respect to this property, then G is said to
have genus p. Clearly, planar graphs have genus zero.
The genus of a given graph G can be obtained in
polynomial time with the algorithm of Filotti and Miller
[5}. Using various transformations and matching tech-
niques it was shown in [3] that for a graph G of genus p
a maximum cardinality cut can be found in O(47 | V[*)
time.

Our approach to the max-cut problem is quite differ-
ent from the ones described above. We use polyhedral
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techniques and the ellipsoid method.

If G=[V,E]is a graph and FC E an edge set then
the vector x* €R* with x/=1if e€ Fand xF=0if
e & F is called the incidence vector of F. The polytope

Pu(G):= conv{xF ER|[V,F] is a bipartite
subgraph of G} (2.1)

is called the bipartite subgraph polytope of G. Obviously,
every edge set of a bipartite subgraph of G is contained
in a cut of G. This implies that for positive edge weights
¢,, e € E, every optimum basic solution of the linear
program

max c'x, x€ Py(G) (2.2)

corresponds to a cut. Hence, whenever the LP (2.2) can
be solved in polynomial time, the max-cut problem can
be solved in polynomial time (and vice versa).

3. Weakly bipartite graphs

Problem (2.2) is theoretically a linear program, but
the way Py(G) is given is not suitable for LP-methods.
What we need is a description of Pp(G) in the form of
an inequality system Ax=<b. Such a system always
exists, but it is very unlikely that we can find an explicit
system for all graphs G. Sometimes partial inequality
systems turn out to be quite helpful for solving special
cases.

Clearly, the trivial inequalities
0=<x,<l, e€E (3.1)

are valid with respect to Pg(G). Since Pp(G) contains
the zero vector and all unit vectors, the trivial inequali-
ties even define facets. It is obvious that the inequalities
(3.1) determine P4(G) completely if and only if G is
bipartite.

A well-known theorem states that a graph is bipartite
if and only if it contains no odd cycle. This implies that
every incidence vector of the edge set of a bipartite
subgraph of G satisfies the inequalities
x(C):= 3 x,<|C|—1, Canoddcyclein G. (3.2)

ecC
In fact, it is not hard to see that for every graph G every
inequality (3.2) defines a facet of P,(G), cf. Barahona
[2]. This class of inequalities is a subclass of the so-called
rank inequalities. If F C E, then the rank r(F) of F is
the maximum cardinality of the edge set of a bipartite
graph contained in F. Then for every FC E

x(F)<r(F) (3.3)
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is clearly valid with respect to Py(G). For general F, the
rank r( F) is hard to compute (in fact, this is a max-cut
problem). Thus from a computational point of view,
only those rank inequalities are of interest where r( F)
can be computed easily, as in the case (3.2). There are
further edge sets where the rank can be given explicitly,
e.g. the edge sets of complete subgraphs. But none of
these (as far as we know at present) has such interesting
properties as (3.2). We therefore

3.4, Definition. A graph G =[V, E] which satisfies

P5(G) = {x € R¥|x satisfies all inequalities
(3.1) and (3.2) }

is called weakly bipartite. A graph which is not weakly
bipartite is called strongly nonbipartite. If G=[V,E} is
strongly nonbipartite and every subgraph of G obtained
by removing one edge is weakly bipartite then G is
called minimally strongly nonbipartite.

Every bipartite graph is of course weakly bipartite.
Morcover, Barahona [2] has shown that all planar graphs
are weakly bipartite. Thus, the polynomial algorithm for
the max-cut problem in weakly bipartite graphs that we
are going to present includes the planar max-cut prob-
lem as a special case.

It is easy to see that a graph is weakly bipartite if
and only if its blocks (2-connected components) are
weakly bipartite. Thus every graph whose blocks are
planar or bipartite is weakly bipartite. So there are
weakly bipartite graphs which are neither planar nor
bipartite.

We know further graphs which are weakly bipartite
and do not belong to one of the classes discussed
before. One such example is the graph obtained from
K, by adding one (nonmultiple) edge. This graph is a
block and is neither bipartite nor planar, However, we
do not know of any further ‘nice’ class of weakly
bipartite graphs like the class of planar graphs.

Another open problem is the characterization of
minimally strongly nonbipartite graphs, or even less, the
determination of a large class of such graphs, We ini-
tially thought that graphs which are minimally nonbi-
panitc-nonplanar'are minimally strongly nonbipartite.
But this is not the case. The graph K ; plus an edge is
minimally nonbipartite-nonplanar, but it is weakly bi-
partite.

On the other hand the minimally nonplanar graph
K =|[V,E] (complete graph on five nodes) is minimally
strongly nonbipartite. We can show that for K the
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polyhedron dctermined by the trivial inequalities (3.1)
and the odd cycle constraints (3.2) has exactly one
fractional vertex, namely x, = for all e € E. It may be
that all minimally strong nonbipartite graphs have the
property that the polyhedron given by (3.1) and (3.2)
has exactly one fractional vertex. The rank of the edge
set E of K is clearly six. We can show that by adding
the rank inequality x(E£)<6 to the system (3.1) and
(3.2) we get an integral polyhedron, i.e. this inequality
system determines Pg( K's) completely.

4, Computing shartest paths of even length

Our algorithm for the max-cut problem needs a
subroutine to compute shortest paths of even length.
We do not claim originality for this method, rather we
attribute it to ‘Waterloo-folklore'. Since we do not know
of any existing reference we give a short description of
this algorithm here.

Suppose a graph G =[V,E] with nonnegative edge
weights ¢,, e € E, and two nodes i, j € V are given, and
we want to find a shortest path from i to j with an even
number of edges.

Let G, (G;) be the graph obtained from G by remov-
ing node i (node j). Let H,; be the graph consisting of
the node-disjoint union of G, and G, where in addition
every node in G, (except j) is linked to its copy in G, by
an edge. The edges in G, respectively G, keep their
original weight, the weights of the new edges are set to
zcr0. The new graph H,, has an even number of nodes.
We claim that the even length shortest path problem in
G can be solved by calculating a minimum perfect
matching in H,,.

Suppose P is an even length path from j to j in G.
We start with the edge e, of P incident with i and label
the edge in G, corresponding to e;. Then we take the
edge e, of P following e, and label the edge in G,
corresponding to e,. We continue this way by alter-
nately labeling edges in G, and G,. For every node v of
G not on the path P we label the (new) edge in H,,
linking the two copies of v. It is obvious from the
construction that the labeled edges in H,, form a perfect
matching with the same weight as P. On the other hand,
from every perfect matching M in H,, we can obtain an
even length path in G from i to j having the same weight
by simply skipping all ‘new’ edges contained in M (and
possibly removing even cycles of weight zero).

It follows from the discussion above that G contains
an even length path from i to j if and only if H,
contains a perfect matching, and that a shortest path
between i and j with an even number of edges can be
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computed in polynomial time using any of the existng
polynomial matching algorithms, ¢ g. Edmonds [4].

Moreover, we would like to mention that shortest
paths of odd length can be computed similarly. We
construct a new graph M, from ¢ by taking the node
disjoint union of G and the graph G, obtained from G
by removing ¢ and j, and add ‘new’ edges having weight
zero linking the copies of the nodes different from i and
j. Then we apply the perfect matching algorithm as
before. By applying this procedure to every pair of
different nodes we obtain:

4.1. Theorem. Giten a graph G =V, E] with nonnegative
edge weights, then there is a polynomial algorithm which
checks whether G contains a path of even (or odd) length
and computes the shortest path of even {or odd) length
between ecery pair of nodes, if such a puth exists.

5. The polynomial algorithm for the max-cut problem in
weakly bipartite graphs

To solve the max-cut problem for weakly bipartite
graphs we use the ellipsoid method as described in
Gratschel, Lovasz and Schrijver [7]. For any graph
G=[V,E] we sct

P-(G) = {x € R¥|x satisfies inequalities

(3.1) and (3.2)}. (5.1)

We shall show that for any c €Q¥ the linear program
max c'x, x € P.(G) (5.2)

can be solved in polynomial time. Since the ellipsoid
method presented in [7] delivers an optimum vertex and
since for weakly bipartite graphs P(G) = P»(G) holds
by definition, we obtain a polynomial algorithm for the
max-cul problem in weakly bipartite graphs.

Note that even if G is not weakly bipartite, a solution
of (5.2) may be an optimum sclution of the max-cut
problem, But this cannot be guaranteed. In any case, it
seems that the program (5.2) can be used as a reasona-
ble relaxation of the max-cut problem within a branch-
and-bound algorithm. It was shown in [7] that the
ellipsoid method runs in polynomial time if (with re-
spect to F-(G)) the following problem can be solved in
polynomial time,

5.3. Separation Problem for P(G). Let y €QF. De-
termine whether y € P(G), and if y is not in P.(G)
find a vector 7€ Q* such that dTy>dTx for all x &
P(G).
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We shall now demonstrate how the separation prob-
lem for P.(G) can be solved in polynomial time.

Suppose a vector y €QF is given. It is trivial to
check whether y satisfies the inequalities (3.1). If not, we
have found a violated inequality. Thus, we may assume
in the sequel that y satisfies 0 <y, <1 forall e€ E.

For every edge e € E define a ‘weight' w.:=1—y_ If
C is an odd cycle in G, then clearly y(C)=>|C|—1 if
and only if w(C)<1. This implies that we can check
whether an odd cycle constraint (3.2) is violated by
computing an odd cycle C* of minimum weight w(C*).
Namely, if w(C*)=1 then y satisfies all constraints
(3.2); if w(C*) <1 then x{C*)=<|C*| —1 is the desired
cutting plane.

To compute a minimum weight odd cycle we pro-
ceed as follows. We pick any edge ij € E with w;; <1
and compute the shortest (with respect to the weights
w,) path from 7 to j of even length with the method
described in Section 4. If the weight of this path plus
the weight w, , is less than one, an odd cycle C* is found
with w(C*) < 1. If the sum of the path weight and w,;is
at least one, we pick another edge and continue untill
all edges with w, ; <1 have been considered. Thus, after
at most | E| applications of the algorithm of Section 4
we have determined whether y is in P~(G) and in case y
is not we obtained a violated inequality of the form
(3.2). Clearly, the overall running time of the separation
algorithm for P-(&) is polynomial in the data, thus we
have shown '

5.4. Theorem. There is an algorithm which for any graph
G=[V,E) and any ¢ € QF* solves the linear program
(5.2) max ¢"x, x € P(G) in polynomial time. This algo-
rithm in particular solves the max-cut problem for weakly
bipartite graphs in polynomial time.

We do not claim that the algerithm for problem (5.2)
above is fast in practice. It remains a challenging prob-
lem to find a practically efficient method for the max-cut
problem in weakly bipartite graphs which is of a combi-
natorial nature and does net suffer from the drawbacks
of the ellipsoid method.

We do not know how hard the problem of recogniz-
ing weakly bipartite graphs is. The only result we have
is that the decision problem “Is a given graph weakly
bipartite?” is in ¢o-NP. To prove this we have to show
that “Is a graph G strongly nonbipartite?” is in NP,

This goes as follows. Suppose | E| of the inequalities
of the form (3.1) or (3.2) are given to us. Using Gaus-
sian elimination we can check whether they are linearly
independent or not. if yes, then the unique solution, say
x, of the corrsponding |E| equations gives a basic
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solution of the system (3.1) and (3.2). By running the
separation algorithm for P-(G) described above we can
then determine in polynomial time whether x is in
P~(G) or not. If x is in P(G), then x is a vertex of
P-(G).

If G is strongly nonbipartite, then P.(G) has a
fractional vertex, say x. Since every vertex of P(G) is
determined by | E| of the inequalities (3.1} or (3.2) we
can guess | E| such inequalities determining x and show
in polynomial time as described above that these in-
equalities indeed determine a fractional vertex. This
proves that strongly nonbipartite graphs can be recog:
nized in nondeterministic polynomial time.

In closing, we observe that although a minimum
weight odd cycle can be computed in polynomial time,
we do not know whether it is possible to find an odd
hole (cycle without chord) in polynomial time. This
would be of interest for checking whether a graph is.
perfect or not. ’
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