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ABSTRACT

Prior work on the cycle polytopes P(M) of binary matroids M has almost
exclusively concentrated on regular matroids. Yet almost all binary matroids are
nonregular, and almost nothing is known about their cycle pelytapes. In this paper we
introduce a class of binary matroids Ly, k > 1, the complete binary matroids of order
k. We show that the facets of the cycle polytopes P(Lj) have a rather simple
description which may be used to deduce easily some, and in principle all, facets of
the cycle polytopes of general binary matroids M. For this reason we call the
polytopes P(L,) master polytopes. Specifically, we describe two methods by which
facets of P(M) can be deduced from the facets of certain master polytopes. One
method produces a complete description of P(M) but is not computationally efficient.
The other one produces a subset of the facets of P(M) by an efficient lifting
procedure,
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1. INTRODUCTION

For k > 2, let A* be the 0-1 matrix with k columns that has as rows all
possible distinct 0-1 vectors except for the k unit vectors and the zero vector.
Thus A* has 2% — k — 1 rows. Define the complete binary matroid of order k
to be the matroid specified by the binary standard representation matrix
[I] A*], where I is an identity matrix of order 2¥ — k — 1. Denote this binary
matroid by L,. Let L, be the matroid consisting of just one loop, and declare
it to be the smallest complete binary matroid. Thus for k > 1, L, is the
largest binary matroid of corank k that has no coloops and no coparallel
elements. The complete binary matroids are exactly the duals of the binary
projective spaces.

Let M be a binary matroid on a set E. Denote by P(M) the polytope of
the cycles ( = disjoint unions of circuits) of M, i.e.,

(1.1} P(M) = conv{x® € RE|C is a cycle of M},

where x© denotes the incidence (or characteristic) vector of C. Note that
0 € P(M), since the empty set is considered to be a cycle. Furthermore, each
polytope P(L,) is a simplex with 2% vertices and with easily specified facets;
see Section 2.

In this paper we show that the facets of the polytopes P(L,) may be used
to deduce easily some, and in principle all, facets of the cycle polytopes of
general binary matroids M. For this reason we call the polytopes P(L,)
master polytopes. Specifically, we describe two methods by which facets of
P(M) can be deduced from the facets of certain P(L,).

The first method relies on projection and deduces all facets of a given
binary matroid M with corank k from the facets of P(L,). This result is
elementary, and the procedure is not computationally efficient, except for
certain special cases.

The second method is a lifting procedure which produces a subset of the
facets of P(M) from certain P(L i) J <k. To describe the latter process we
define a minor N of M to be a maximal complete contraction minor if N is
complete and obtainable from M by contractions only, and is maximal with
respect to these two conditions. It is not difficult to determine whether a
given minor N is a maximal complete contraction minor. With similar ease
one can find, for each element ¢ of M, at least one maximal complete
contraction minor containing e. Evidently, the polytope P(N) of any maxi-
mal complete contraction minor N of M is equal to P(L ;) for some j <k,
We show that for every maximal complete contraction minor N of M, every
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facet of P(N) can be lifted to a facet of P(M) by a surprisingly simple
formula. This construction supplies a sufficient number of facets of P(M) to
establish the Hirsch property for P(M). [We note that D. Naddef (personal
communication) recently proved the Hirsch conjecture for all 0-1 polytopes,
and thus in particular for the case at hand ]

We omit a detailed review of prior results, since it may be found in
Barahona and Grotschel (1986) or Grotschel and Truemper (1989). However,
we do include a summarizing list of the connected binary matroids M for
which all facets of P(M) are known, and /or for which the weighted cycle
optimization problem has been solved:

(1) Graphic M [Orlova and Dorfman (1972), Edmonds and Johnson
(1973), Hadlock (1975)].

(2) Cographic M, but without .#(Kz)* minor [Barahona (1983); #(K;)
is the polygon matroid of Kj, the complete graph on five nodes, and the
asterisk denotes the dual].

(3) M has no F*, #(K5)*, R,y minor [Seymour (1981), Barahona and
Grotschel (1986); F, is the Fano matroid, and Ryq is the binary matroid
associated with the 5 by 10 matrix whose columns are the ten 0-1 vectors
with three 1’s and two O's}.

(4) M can be built up by 2sums and Y-sums where each of the initial
building blocks does not have an F, or F;* minor or belongs to an arbitrary
but finite class of binary matroids [Grétschel and Truemper (1989); the terms
9 sum and Y-sum refer to certain rank 1 and rank 2 compositions of binary
matroids).

Note that the class defined under item (4) properly includes those of
items (1)-(3).

By Tutte (1958) and Seymour (1980) no matroid M of the class defined
under item (4) can contain a 3-connected minor N that properly contains Fy;
or F* unless N is a minor of a matroid in the finite class. Thus one may
reasonably claim that to date almost nothing has been published about the
structure of cycle polytopes P(M) where M is nonregular.

A few results of Barahona and Grétschel (1986) will be repeatedly
invoked. The trivial inequalities

(1.2) ‘0gx,<1 foral ec€E
are valid for P(M), as are the equations
x,=0 for all coloops e E E,

(1.3)
x,—x;=0 for all coparallel elements e, f € E.
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Indeed, the latter equations define the affine hull of P(M ), which implies the
following result.

TueEorREM 1.4 [Seymour (1981), Barahona and Gritschel (1986)]. The
dimension of P(M) is equal to the number of coparallel classes of M.

By (1.3) and Theorem 1.4 we only need to investigate cycle polytopes
P(M) where M has no coloops and no coparallel elements. We shall do this
from now on; thus, all polytopes P(M) have (full) dimension |E|. A triad is a
cocircuit with three elements.

TueoreM 1.5 [Barahona and Grétschel (1986)].  The diameter of P(M) 1s
at most equal to the maximum number of disjoint circuits in E.

THEOREM 1.6 [Barahona and Grétschel (1986))].
(a) If e is not contained in a triad of M, then x,20 and x,< 1 define
facets of P(M ).
(b) If M has no F}* minor, then for any triad (e, f, g) the inequalities
X, txpt+x, <2,
x,~x,~x,<0,
(1.7)
—x,tx,—x,50,
—'xe—xf+xg€0,
define facets of P(M).
Tueorem 1.8 [Barahona and Grotschel (1986)]. Let

(1.9) Y ax,<a
jekE

define a facet of P(M), and let C be a cycle of M, Then

(1.10) Y ax;— 3, a;x,<a— 3, a,
JEENC JjEeC jEeC

also defines a facet of P(M).
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Theorem 1.8 is clearly equivalent to the observation that x € P(M)
implies y & P(M), where y is defined by

X, ]'GE\C,

1.11 y,= .
( ) i 1-x, jeC.

To show that indeed y € P(M), let x be the convex combination £ pA px°,
where the summation is over all cycles D of M. Then y =LA px”4€, and
hence y is in P(M). Here A denotes the symmetric difference, i.e.,

DaC=(DUC)\N(DNC).

For a full dimensional polytope P, all inequalities defining a certain facet of P
are positive multiples of each other. To have a unique representation a'z < a
of the facets of P(M) we proceed as follows. We number the elements of M
as 1,2,..., n, then demand that the absolute value of the nonzero coefficient
with Iowest index of a facet defining inequality be equal to 1. This way we
can refer to the inequality of a facet, as we shall do from now on.

We also define a binary relation on the set of facet defining inequalities of
a given cycle polytope P(M) as follows: Two inequalities are related if one is
of the form (1.9) and the other of the form (1.10), for some vector a, some
scalar a, and some cycle C of M. It is easily verified that this relation is an
equivalence relation, and we thus have facet inequality equivalence classes.
Sometimes the cycles needed for derivation of all members of an equivalence
class from a given representative are readily available or easily determined. In
that case we shall implicitly describe the equivalence class by listing just one
representative. For example, instead of the complete listing of the equiva-
lence class of {1.7), one actually need only write down one representative, say
the inequality x, + x,+x, < 2.

Finally, a brief comment about the matroid terminology seems appropri-
ate. We follow Welsh (1976), so in particular the prefix “co” dualizes a term.
However, our use of addition (expansion), which denotes the inverse of
deletion (contraction), is different. Either case is covered by extension.
Relabeling of groundsets of matroids will be of no consequence, so for this
reason we consider two isomorphic matroids to be equal. This convention
does not affect the use of “maximal complete contraction minor,” which
refers to a specific minor produced by a particular sequence of contractions.
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2. THE CYCLE POLYTOPES OF COMPLETE BINARY MATROIDS

Let L,, k> 1, be the complete binary matroids of the Introduction, ie.,
L, is the matroid consisting of just one loop, and L,, k> 2, is the binary
matroid defined by [I| A*], where I is the identity matrix of order 2% — k — 1,
and AF is the matrix with k columns that has as rows all possible distinct 0-1
vectors except for the k unit vectors and the zero vector. In particular,

(2.1) A2=[1 1] and A=

CO b pd
— Y e
o R )

so L, is the matroid consisting of just one triad, while L, is the Fano dual
F2*. In general, we have, for k > 2,

AF 0
(2 2) Ak i Ak 11
1 1

where 1 is a column vector containing only 1's. Every cycle of L, corre-
sponds to an Eulerian column submatrix (i.e., each row of such a matrix has
an even number of 1’s) of [ 1|4, and conversely. A straightforward induction
argument, using (2.2), proves that every nonempty cycle C of L, has
cardinality 2¥~1, This implies that every nonempty cycle C of L, is actually a
circuit, and that the inequality

(2.3) IR ARE
i

is valid for P(L,). Indeed, (2.3) defines a facet of P(L,). This follows from
the fact that P(L,) is full dimensional (see Theorem (1.4)) and that for every
cycle C of L,, except the empty one, the vector x = x© satisfies (2.3) with
equality. Observe that L, has 2* cycles; so P(L;) is a full dimensional
palytope with 2% vertices in R*"~!, which implies that P(L,) is a simplex.
The 2% facet defining inequalities of P(L,) are obtained by viewing (2.3) as
an instance of (1.9), and by deriving 2% —1 instances of (1.10) using the
2% — 1 nonempty cycles of L;. In passing we note that these observations,
which are summarized in the next theorem, also follow from the fact that the
Ly are duals of binary projective spaces.
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TueoreM 2.4. For any k> 1, the complete binary matroid L, has
9k — 1 elements and 2% — 1 nonempty cycles. Each such cycle C is a cirouit,
and |C| = 2¥~ 1, The cycle polytope P(L,) is a full dimensional simplex with
9k pertices. The facet defining inequalities of P(L,) constitute just one
equivalence class, and the inequality

(2.5) Yx, <25t
i

is a representative.

We naow relate the cycle polytopes P(L,) to cycle polytopes P(M), where
M is a binary matroid without coloops and without coparallel elements.

In general, let M be a binary matroid with M as minor, say M = M/X\Y.
Then any cycle of M is of the form C\ X, where C is a cycle of M satisfying
CNY =g, and P(M) is obtained from P(M) by setting x, =0, forall e €Y,
and by projecting out the components x,, ¢ € X. If for some a', o, and J
the inequalities (a')’ < o, i € ], define P{M), then Fourier-Motzkin elimi-
nation of the variables x,, ¢ €X, plus addition of the constraints x,=0,
e € Y, produces a system defining P(M).

We apply these observations as follows. Let M be a given binary matroid
of corank m > 1 without coloops and without coparallel elements. If m=1,
then M =L, since otherwise M has a coloop or coparallel elements, If
m>2, then M contains only loops, or the matrix B of any standard
representation matrix [I|B] of M is a row submatrix of A", where [I]|A"]
defines L. Thus M is a contraction minor of L, i.e., M = L, /X for some
X, and by projecting out the components x,, e € X, we can obtain P(M)
from P(L., ).

Since we have a complete description of the facet defining inequalities for
P(L,) by Theorem 2.4, we can sometimes explicitly compute a complete
description for P(M ) for special cases of m and X. As a demonstration, let us
look at the case |X|=1, say X = (e}. Fourier-Motzkin elimination of the
variable x, from the system

ij < 2m—1l
i

ij— ijéo for all circuits C of L,
je€cC jec

(2.6)
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for P(L, ) results in the system

(2.7.1) Y z, 2" 2 for all circuits C of L with e € C,
jec
(2.7.2)
Y x, = Y x,<0 for all circuits C;, C,; of L,, with
jeCIUG JECNG e€C,and e&C,

for P(L, /e). From (2.7) we can deduce the following result by straightfor-
ward arguments.

TraeoreM 2.8. For m > 2, the system of facet defining inequalities for
P(L, /e) can be divided into 2™ ! equivalence classes, where each class
corresponds to a circuit C of L, with e € C, and where the inequality

2 x1<2m—2
j&c

is a representative.

The fact that P(M) can be derived from P(L,), where k is the corank of
M, is theoretically appealing but computationally of very little use for two
reasons. First, the number of elements of L, may be exponential in the
number of elements of M. Second, no computationally efficient procedure is
known for carrying out the projection in general.

In the following two sections we develop a lifting procedure for construct-
ing facets of P(M) from the facets of certain P(L,), j<k. The method
typically does not produce a complete description of P(M), but it is
computationally simple and efficient, in contrast to the above projection
method.

3. PARALLEL AND COPARALLEL LIFTING

In this section we establish some auxiliary results, which we then use in
Section 4 to prove the main facet lifting theorem. Specifically, we relate
elementary matroidal extension operations to facet lifting as follows.
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TuroreMm 3.1.  Let N be a binary matroid on a groundset E that has no
coloops and no coparallel elements. Suppose that ¥, pa;x;< o defines a
facet of P(N), and let Q= {j|a;#0}. Let R and S be (possible empty)
subsets of the groundset E of N such that

R is independent in N,
(3.2) RNQ=RNS=4g,

O\S=2.

Extend N to a binary matroid M as follows. First expand N by a set T of
coparallel elements where each t €T is coparallel to precisely one s €S and
conversely. Next add an element z such that RUT U {2z} is a circuit of the
resulting matroid M. Then ¥, ga ;x; < a defines a facet of P(M).

Proof. It is helpful to express the assumptions of the theorem in terms of
a standard representation matrix for M. Let ¢ be an arbitrary element of
Q \ S. Pick a basis for M that contains R and T, but not e or z. This is
possible by (3.2) and by the fact that N has no coloops. The nonbasic part of
the representation matrix is then

e .5 z .
52 07
(3.3) e B
R 1,
T D ! 1

where S=15,US,, and where the indexing of the rows corresponds in the
obvious way to the indexing of the unit vectors of the omitted identity matrix.
Furthermore, the submatrix B corresponds to N, since N=M/T\{z}. Each
row of D is parallel to a row of B indexed by S,, or is a unit vectqr with 1 in
a column indexed by S,. The matrix B as well as the entire matrix contain
no zero row or unit vector row, and no two rows are identical, since N has no
coloops and no coparallel elements, and since RNS=@. Thus M has no
coloops and no coparallel elements. We now prove the claim of the theorem.

First we show that we may assume that the right hand side a of the facet
defining inequality for P(N) is nonzero. If a = 0, we produce a facet defining
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inequality b"x < B, B # 0, of the same equivalence class using an appropriate
cycle C of N and the process of (1.9) and (1.10). The assumptions of
the theorem are not affected by this change. Assuming that the new in-
equality defines a facet of P(M), we then transform that inequality back to
Y;c£a;x;<0 using the unique cycle C’ of M for which C'\T =C, and
conclude that &, . pa,x; < a defines a facet of P(M). Thus we may indeed
suppose that a is nonzero.

Since dim(P(N))=|E| and since Licpax;<a with a#0 defines a
facet of P(N), there are |E| cycles of N whose incidence vectors satisfy this
inequality with equality and are linearly independent in RE. Let W be a
(nonsingular) |E|X |E| matrix with such incidence vectors as rows. We may
assume that the elements of E are ordered in such a way that:

e. R S:
(3.4) S
W=[F|G|H].

From any row [f|g|h] of W, partitioned as in (3.4), we can derive two
incidence vectors of cycles of M that satisfy L;e£a;x; < a with equality,

:eEER:S;TEzE
[Flg | hlhio]
e. . R:S:T:z:

[f1g 1k,

(8.5)

where the bar denotes complement, e.g., & =17 — g. The two vectors of (3.5)
clearly do represent cycles of M [just use (3.3) for verification], and they
satisfy ¥ . pa ;x, < @ with equality, since QN R=@ by (3.2). From (3.4)
and (3.5) we obtain the following real matrix W, each of whose rows is the
characteristic vector of a cycle of M satisfying L;e£a%; < a with equality:

‘e 'R:S:T:z

(3.6) . [FlG|H|H|O
W= | e 2O
FlGlul Bl

We now show that the columns of W are linearly independent. Subtract
the column submatrix of W indexed by S from that indexed by 7. Then,
using cofactor expansion via the nonsingular submatrix W = [F |G| H] of the
top left corner of W, the columns of the matrix [H — H|1] are linearly



MASTER POLYTOPES 533

independent if and only if this is so for W. In [H — H|1], subtract the last
column from all others, then divide each column except the last one by — 2.
If the columns of the resulting matrix [H |1] are linearly dependent, then
there exist a vector ¢ and a scalar vy, not both 0, such that He = y1. Indeed,
y # 0, since H is a column submatrix of W and thus its columns are linearly
independent. We may presume y =« due to scaling, so for the equation
system Wy = al we now have the solutions y =a and y =c', where c' is
derived from ¢ by augmentation of 0’'s. But a,#0 and ¢! =0, which
contradicts the nonsingularity of W. Thus the columns of [H |1], and hence
of [H—H|1) and of W, are linearly independent. This implies that
L, < £@;%; < a defines a facet of P(M). [ |

CoROLLARY 3.7. For k=2, let M be a binary matroid with a standard
representation matrix whose nonbasic part is of the form

Yz
X |A*] O
TIip| 1

where D is a proper row submatrix of the matrix

5]

-

Then L,=M/T\{z}, and each facet defining inequality of P(L;) also
defines a facet of P(M).

Proof. Apply Theorem 3.6 with N=L,, Q=XUY, R=¢, and with
k
Sc X UY appropriately selected according to the rows of %._ present

in D,
The next result is a useful observation. We omit its easy proof.
ProposITION 3.8. Let N be a binary matroid on a ground set E. Suppose

that a™x < a defines a nontrivial facet of P(N), and let f be any element of
E. Construct a matroid M on the ground set E’ from N by adding an element
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f’ that is parallel to f. Define @ € RE' by

a,=a, forall e<€E,

Efl = — Iafl.

Then a’ < a defines a facet of P(M).

When Theorem 1.8 is combined with a recursive application of the lifting
results (Theorem 3.1 and Proposition 3.8), quite a number of interesting facet
defining inequalities can be obtained from the known classes of such inequali-
ties.

4. LIFTING FACETS FROM COMPLETE CONTRACTION MINORS

In this section we establish the main result. We prove that for every
maximal complete contraction minor N of a given binary matroid M, every
facet of P(N) can be trivially lifted to become a facet of P(M). In the proof
of this result we invoke the following two lemmas, where for convenience
from now on we consider two matrices to be equal if one of them can be
derived from the other one by a permutation of rows and columns.

We first examine the recognition problem for maximal complete contrac-
tion minors.

For some k> 2, let L, , be a contraction minor of a binary matroid M,
and let some N in turn be a contraction minor of L., (and thus of M).
Assume N is equal to L,. Select disjoint sets X,, X,, and X, such that X, is
a basis of N, X,U X, is a basis of L, and X,U X,U X, is 4 basis of M,
Partition the remaining nonbasic elements of M into sets Yo.{e},Y, so that
Y, contains the nonbasic elements of N, Y, U {e} contains those of L x+1> and
Y, is the set of the remaining nonbasic elements of M. Then the correspond-
ing repi‘gsgntation matrix [I | B] for M has by (2.2) the form

s Yy tel Y
T -
X, | A* 0
. =
(4.1) B= X, 1] o
: I

I
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Consider now any other standard representation matrix for M where X,, is
basic and Y, nonbasic. Any such matrix can be obtained from [I|B] by a
sequence of pivots within the submatrix of B indexed by X,U X, and
{e}UY,. Examine the first pivot of such a sequence. If the pivot element is
in a column indexed by Y;, then in the new representation matrix [I | B] the
matrix B’ has the same structure as B of (4.1) except that the index sets X,
and Y, have been changed. The same conclusion holds if the pivot element is
a 1 of the explicitly shown 1 subvector of the colymn indexed by e. Thus only
one case remains, where an x € X, indexes the pivot row and e indexes the
pivot column. A routine examination of cases reveals that the new B’ is of the
form

X, | 4| o
Ak
(4.2) B‘,= Xl, 1 ’
. 1.d7
flo
X} 0-1
. L u

where X{U{F}=X,U{e}, X;UY/=X,UY,, and where d is nonzero
and is the row subvector of B indexed by x and Y,. Equally simple arguments
prove that the next pivot leads to a new matrix [I|B”] where B” has the
structure of B or B’, so by induction B and B’ are the only two matrices
obtainable in any sequence of pivots, up to relabelling of rows and columns as
described above. We thus have established the following result.

LemMa 4.3. Let N be a contraction minor of a binary matroid M.
Assume that N is equal to some L;, k > 2. Let E, be the groundset of N, X,
be a basis of N, and Y, = E,\ X,. Extend X, to an arbitrary basis X of M.
Then M has L, | as a contraction minor that in tumn has N as a contraction
minor, if and only if B of the standard representation matrix [1|B] defined
from X is equal to B of (4.1) or B’ of .(4.2).

Let M be a binary matroid, and suppose we know of a complete
contraction minor N that is equal to, say, L;. Then we can test in polynomial
time whether or not N is a maximal complete contraction minor as follows.
If k =1, we only need to check whether the single element of N is contained
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in a triad. If k > 2, then we select an arbitrary basis X of M that contains a
basis X, of N, but that does not contain any other element of N. In
polynomial time we can check whether or not B of the standard representa-
tion [I | B] defined by X is a matrix B of type (4.1) or a matrix B’ of type
(4.2), and then may use Lemma 4.3 to answer the question. Indeed, by
repeated application of Lemma 4.3, we obtain a polynomial algorithm that
locates a maximal complete contraction minor L, ,,, I >0, of M that in turn
has N as a minor. In particular, for any element of M, we can find in
polynomial time a maximal complete contraction minor containing it.

The next lemma relies on a particular way of arranging the rows of A*+!
of the complete binary matroid L, ,, when k, I > 2. Suppose we partition the
columns of A**! into a column set Y, of cardinality k, then label the
remaining ! columns by z,, z,,..., ;. Next we sort the rows of A**! so that
any two rows become adjacent whenever the subvector indexed by
2, 3g,.-., Z; of one row is equal to that of the other row. It is not difficult to
see that A**! then has the following form, where

. | A
A=A* and A:=IT],

and where d',d2,...,d" are the rows of A

3 YO E F4) s Zl .
X, | A 0
Z, | A |1 0
(4.4) Zl A 0 1
Zl+1 A T
o 1 (")
311 0
Zl+n A
Ce 1-(d™)"
Zlen 0

We are now ready for the next, rather technical lemma.
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Lemma 4.5. Fora given 1> 2, let d*,d2,...,d" be the rows of A.. For a
given k > 2, define

- k
A=A and A= [AT]

Arrange the matrix A**! of the complete binary matroid L, as depicted in
(4.4), and let E, = X, U Y,. Then the inequality

(4.6) 2 x;<2f!

ieE,

is valid for P(L,, ;). Collect as rows in a matrix W all incidence vectors x of
cycles of Ly, satisfying (4.8) with equality. Correspondingly index the
columns of W by the elements of the groundset of L, in the obvious way.
Then the columns of any column submatrix U of W that contains all columns
of E,, are linearly independent if and only if for each i€ {1,2,...,n +1}, at
least one column of W indexed by some y, € Z, U {z,} does not belong to U.

Proof. The inequality (4.6) is obviously valid for P(L;, ;). Any cycle of
L,.; is uniquely specified by subsets Y,c Y, and ZC {z,,...,7}. By
Theorem 2.4, the incidence vector x of any such cycle satisties (4.6) with
equality if and only if Yo # . Indeed, by (4.4) any such incidence vector has
the form

n+l£ 2

B iZiai iz
[g |h1|Bl| _”|hn+l|ﬁn+l]’

n+l ¢

(4.7)

where for i =1,2,...,n+1, hi=g if Bi =0, and I =g (recall that the bar
denotes complement) if B¢ = 1. The rows (4.7) of W can be grouped so that
all rows with the same B8,..., 87*! values are adjacent. Then W consists of
row blocks of the form

n+l§z

IEO': Z,: z: 1 Z

n+l£

(4.8)
[G| H1| b1| e | Hn+l| bn+t]

where for i=1,2,....,.n+1, H' =G if b*=0, and H'=G if bi=1. By
Theorem 2.4, G is nonsingular, since its rows consist of the characteristic
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vectors of all nonempty cycles of L;. The (2¥*! — 1) — (2! — 1) rows of W are
linearly independent by Theorem 2.4, since L, , is complete. Thus we must
delete at least 2' — 1 of the 2F+! — 1 columns of W to obtain a submatrix U
all whose columns are linearly independent. There exists such a U that
contains all columns of E; and that has exactly (2¥*! — 1) — (2! - 1) columns.
For any i € {1,2,...,n + 1}, consider the column submatrix of W defined by
E,U Z,U{z,}. Deletion of duplicate rows reduces that colamn submatrix to

Ey Z, ! z

r-[e16]0])

lclali]

Clearly the latter matrix has dependent columns. Suppose for an arbitrary
Yy €EZ,U{z,}, we delete the column indexed by y from F. Then we get a
matrix, say F, whose rows are precisely all incidence vectors x of cycles of a
matroid M of Corollary 3.7 satisfying YiepX;= 2k~1 By that corollary the
columns of F are linearly independent. By induction (or better, by a simple
matroid argument about the real matroid represented by W) it is then easily
seen that deletion of at least one arbitrarily selected column y, € Z, U{z,},
i=1,2,...,n + 1, is necessary and sufficient to reduce W to a U all whose
columns are linearly independent, provided no column of E, is deleted. [ ]

Combination of Corollary 3.7 and Lemmas 4.3 and 4.5 produces the main
result of this section, which generalizes Theorem 1.6.

TueoreM 4.9. Let M be a binary matroid that has no coloops and no
coparallel elements. Suppose a matroid N with groundset E, is a complete
contraction minor that is equal to, say, L,. Then the following statements
are equivalent:

(i) N is a maximal complete contraction minor of M.

(i) Every facet defining inequality of P(N) also defines a facet of
P(M).

(iii) At least one facet defining inequality of P(N) defines a facet of
P(M).

(iv) The facet defining inequality

(4.10) 2 x;< 2!
i<k

of P(N) also defines a facet of P(M).
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Proof. The equivalence of (ii), (iii), and (iv) follows from the equivalence
result of Theorem 2.4 and the fact that for any cycle C of N= M /T, there is
a cycle C’ of M such that C= C’\T. Thus we only need to show (i) « (iv).

(i) = (iv): The case k =1 follows immediately from Theorem 1.6, part (a),
but for completeness we include the short proof by Barahona and Grotschel
(1986). Let E,= {e}. By (i), e is not contained in any triad of M, and thus
M\e has no coloops and no coparallel elements. Then by Theorem 1.4
[which, incidently, also has a short proof; see Barahona and Grotschel
(1986)], dim(P(M))—1=dim(P(M\¢)) = dim({x € P(M)|x,=0}). Thus
x, > 0 defines a facet of P(M), and via the construction of (1.9) and (1.10),
x,<1 is also a facet defining inequality of P(M). Thus suppose k > 2. If
corank(M ) < corank(N)+1, then M = N, or M is a matroid of Corollary 3.7.
In either case (iv) holds. If corank(M) — corank(N)=1> 2, then Lemma 4.3
and (i) imply that M is a contraction minor of some Ly, ;/{y1, Yos---> Y110 )
where L, ,, is defined by A**! of (4.4), where y,€ Z,U(z,}, i=12,...,1 +
n, and where the submatrix A of A**! corresponds to N. Lemma 4.5 then
supplies the desired conclusion, since a matrix U of that lemma must be the
matrix where each row is the incidence vector x of a cycle of M for which
Liepkj=25L

" (iv) = (i): If the complete contraction minor N of M is not maximal, then
M has an L, , as a contraction minor which in turn has N as a contraction
minor. If E, is the groundset of L, ,, then E, \ E, is a cycle of L, ,, and
by Theorem 2.4 and the fact that L,,, is a contraction minor, the two
inequalities

2 x;<2k,

fE€E

2 x— Y %<0

j€E  jeENE

define facets of P(L,,,) and are valid inequalities for P(M). We obtain
Lieg®;<2%7! if we multiply the two inequalities by % and add the
resulting inequalities. But then X, g x, < 2%=1 cannot define a facet of the
full dimensional P(M ), which contradicts (iv). [ ]

If a matroid has no coloops and no coparallel elements, then contraction
of all elements save one always produces L,. Thus every element of 2 binary
M without coloops and without coparallel elements is contained in some
maximal contraction minor L, of M, for some k > 1. Indeed, by the observa-
tions following Lemma 4.3, at least one such maximal minor L, can be found
in polynomial time for a given element ¢ of M. Thus by Theorems 2.4 and
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4.9 we can find in polynomial time 2% inequalities: (a')% < o for P(M )

where the supports of the a* are all equal, and where any a' contains exactly
2% — 1 nonzeros, including one nonzero in the position indeged by e. With
these observations one can prove the Hirsch conjecture for the cycle poly-
topes P(M) of arbitrary binary matroids M by straightforward arguments.
That well-known conjecture states that every d-dimensional polyhedron with
f facets has diameter at most equal to f—d. As already stated in the
Introduction, D. Naddef (private communication) recently proved the Hirsch
conjecture for all polytopes with {0,1) extrerne points, and thus in particular
for the case at hand. K
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