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A subset A of the edge set of a graph G=(V, E) is called a clique partitioning of G is there is
a partition of the node set V into disjoint sets Wy,..., W, such that each W, induces a clique,
ie, a complete (but not necessarily maximal} subgraph of G, and such that A=
U:‘_l {uv|u, ve W, u# v}. Given weights w, €R for all e€ E, the clique partitioning problem is
to find a clique partitioning A of Gsuchthat), ., w, isas small as possible. This problem—known
to be NP-hard, see Wakabayashi (1986)—comes up, for instance, in data analysis, and here, the
underlying graph G is typically a complete graph. In this paper we study the clique partitioning
polytope #, of the complete graph K, ie., @, is the convex hull of the incidence vectors of the
clique partitionings of K. We show that triangles, 2-chorded odd cycles, 2-chorded even wheels
and other subgraphs of K, induce facets of ,. The theoretical results described here have been
used to design an (empirically) efficient cutting plane algorithm with which large (real-world)
instances of the clique partitioning problem could be solved. These computational results can be
found in Grbtschel and Wakabayashi (1989).
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1. Introduction and notation

In this paper we study the facial structure of the clique partitioning polytope 2, of
the complete graph K,. This section contains some introductory material. In Section
2 the clique partitioning problem is described along with some of its applications.
The polytope P, associated with this problem is introduced in Section 3. Facet-
defining inequalities for @, are studied in Sections 4 and 5. Section 6 describes
further issues related to the polytope 2,.

We expect the reader to be familiar with the basic concepts of graph theory. All
definitions not given here can be found in [2]. All graphs we consider are simple.
We denote a graph G with node set V and edge set E by G=(V,E).

We usually denote an edge e with endnodes u and v by uv. If this may cause
confusion we will write e ={u, v}. If an edge is used as a subscript, the braces are
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always omitted and the comma is used only if needed for clarity. Thus if edges
{u, v} or {i, j + 1} are subscripts, say of a vector b, then the notation will be buyorb .

If v is a node of G =(V, E) then the set of edges in G incident to v is denoted
by 8(v). For F< E, V(F) denotes the set of nodes in G consisting of the endnodes
of the edges in F, and if S< V then we denote the set of edges in G with both
endnodes in S by E(S), that is,

E(S)={uve E|u,ve S}

Moreover, if S;,..., S; are subsets of V then

&
E(Slg"')sk):=u E(SI)

i=1
IfS, TcVand S~ T=0 then
[S:T]={uv|ueS, ve T}

denotes the set of edges with one endnode in S and the other in T.

If the graphs H=(W, F) and G=(V, E) are such that W<V and F< E then
H is called a subgraph of G.1In this case we write H < G. If W< V then the subgraph
H=(W, E(W)) is said to be induced by W and is also denoted by G[W]. For
Fc E, H=(V(F), F) is the subgraph of G induced by F.

A matching M in a graph G =(V, E) is a set of edges such that no two edges of
M have a common endnode. If [M|=p then we say that M is a p-matching. This
is not a standard terminology but it will be convenient for our purposes. If a node
v is the endnode of an edge in a matching M, then we say that v is covered by M
or M covers v. A matching M in a graph G =(V, E) is called perfect if every node
in V is covered by M.

A graph is called complete if every pair of its nodes is linked by an edge. A clique
is a subgraph of a graph that is complete (a clique is not necessarily a maximal
complete subgraph). We will frequently have to work with complete subgraphs of
complete graphs. In such cases we will use subscripts to distinguish between these
graphs. In particular, we will often denote the complete graph of order n by
K,=(V,, E,). When we write K, < K, for k<n, then we view the complete graph
on k nodes as a subgraph of K, and we assume that the k nodes of K, are formed
by an arbitrarily chosen subset of V, of cardinality k.

We say that I'={W,,..., Wi} is a partition of V if W,n W;=@for 1<i<j<Kk,
V=W,u---uW,and W,#§ for all i.

A set A of edges in a graph G =(V, E) is called a cligue partitioning of G if there
is a partition I'={W,, ..., Wi} of V such that A= E(W,,..., W;) and such that
the subgraph G[W,] induced by W, is a clique for i=1,..., k. Note that every
clique partitioning A induces a unique partition W,,..., W, of V such that A=
E(W,,..., W,). Incase G is complete, every partition of the node set of G induces
a clique partitioning. If the edges of G have weights then the weight of a clique
partitioning A is the sum of the weights of the edges in A.
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A path of lenjth k-1 is an edge set of the form {v,0;, v,0;, ..., k=1 ¥} Where
y#y for 1si<jsk If P={vvs,..., %4} is 2 path then Pu{v)} is a cycle
of length k. A triangle is a cycle of length three.

We also assume familiarity with the basic concepts of polyhedral theory. We only
define a few terms here. The book [9] by Schrijver contains all the background
material needed.

The vector space we work with is R®, where E is the edge set of a graph G; s0
the components of a vector are indexed by the edges of G. If F< E then x" eR"
denotes the incidence vector of F, that is, xS =1 if e€F, xF=0 otherwise. We
denote the convex hull of a set S<R® by conv(S).

A polytope P is the convex hull of finitely many points, or equivalently, a bounded
set that is the intersection of finitely many halfspaces. An inequality a"x < a is valid
with respect to P if Pc{x|a"x=<a}. If a"x<a is valid with respect to P then
F,={xe P|a"x=a} is the face induced by a"x=<a. A facet of P is a nonempty
face of P that is contained in no other face of P different from P. Equivalently, a
facet F of P is a nonempty face with dim(F)=dim(P)—1, where dim(S) denotes
the dimension of a set S, i.e., the maximum number of affinely independent points
in S minus 1. Note that, if the affine space spanned by § does not contain the zero
vector (for example, if S<{x|a"x=c} where a#0), then a set of points in § is
affinely independent if and only if it is linearlv independent.

If P =RE has dimension | E| then every facet of P is induced by a valid inequality
a™x <o that is unique up to multiplication by a positive constant. If a'x<e is
valid for P and F,=Pn{x|aTx=a} is a facet of P we say that a’x<a is
Sfacet-defining.

For two sets M and N, MAN:=(Mu N)\(M n N) denotes their symmetric
difference.

2. The clique partitioning problem

An instance of the cligue partitioning problem (CPP, for short) can be described as
follows:

(I1) Given acomplete graph K, =(V,, E,) with weights w,eR for all e€ E,, find
a clique partitioning A< E, of minimum weight.

Let us remark that the clique partitioning problem is also meaningful for general
(not necessarily complete) graphs. We will in this paper, however, restrict our
attention to the problem defined in (I1). The reason is that all applications we came
across give rise to clique partitionings of complete graphs. So we developed the
theory to be described here for this special case.

Our motivation to study the CPP came from certain clustering problems in
economics posed to us by O. Opitz (Augsburg). The standard way to handle such
problems is to view them as instances of a problem of aggregating binary relations
into an equivalence relation. This problem is a well-known model in data analysis
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[1, 10] and has a wide range of applications. An instance of it can be formulated
as follows:

(12) Given a family of m binary relations R,, R,,..., R, defined on a set N,
find an equivalence relation R* on N such that F(R*):=Y,_ |R*AR,|is as small
as possible.

It is not difficult to prove that (I2) can be reduced to CPP (see [3] or [11]).
Assuming that N={1,2,...,n} and R,, R, ..., R, are given as an instance of
(12), the corresponding instance of CPP is the following: a complete graph with
node set N and weights w; assigned to each edge ij defined as wy = Wy + Wy, where
wy=m—2{kefl,..., m}: i is related to j in relation R}

In many applications of problem (12) in marketing, zoology, politics, etc., N is
a set of objects (e.g. computers, animals, states, etc.) and each of the m binary
relations R, (1< k=<m), defined on N, describes whether the object pairs in N are
similar or not with respect to a certain characteristic k. In this case, the desired
equivalence relation R* can be interpreted as being the one that determines the
best partition of N into classes (or clusters) of similar objects.

This approach of clustering objects by considering m similarity relations which
are to be aggregated into an equivalence relation R* that best approximates them
has been widely investigated and dates back to (at least) 1965 (see [7]). For the
reader interested in applications and algorithms for problem (12) we refer to [1, 3,
5, 6, 8, 10, 11].

We want to remark here that the clique partitioning problem (on complete graphs)
can be equivalently viewed as a certain “multicut problem” as follows: Given a
complete graph K,=(V,, E,) with edge weights w,, find a partition Ir=
{W,, ..., Wi} of V such that the sum of the weights of the edges not contained in
UL; E,(W,) (these edges form a multicut) is as large as possible. Clearly, if Ais
a minimum weight clique partitioning of K,, then E\A is a maximum weight
multicut, and vice versa. The case where only partitions with a fixed number k of
node sets are allowed is also of combinatorial and practical interest. In particular,
if k is fixed and equal to 2 we obtain the well-known max-cut problem. In our case,
however, the number k is not fixed. All possible partitions of V are feasible.

3. The cligue partitioning polytope

We will now describe the polyhedral approach to the clique partitioning problem,
give an integer linear programming formulation of the CPP, and present some
elementary facts about the associated polyhedron.

Let K, =(V,, E,) be the complete graph of order n. We will assume throughout
the paper that n=3. Let 2, denote the convex hull of the incidence vectors of the
clique partitionings of K,,, i.e.,

@, =conv{x” € RE | A is a clique partitioning of K,}. (3.1)

m——
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@, is called the cligue partitioning polytape (of order n). Its number of vertices is
equal to the number of different partitionings of a set with n objects into subsets.
This number is known to be

pui= >: S(n, k),

where

1 . k—j k n
S(n k=722 (-7 .]J
k!j=o J

is the Stirling number of the second kind. The numbers p, grow quite rapidly. For
instance, for n =158 (this is the size of the largest real world instance of CPP we
know) we have p,sg= 5.82%10?*. (Of course, the number of vertices does not say
much about the “complexity” of a polyhedron.)

The clique partitioning problem can be viewed as a linear program of the form

minimize  w'x
subject to xe P,

since every basic solution of this LP is the incidence vector of a clique partitioning
and vice versa. However, in order to be able to apply linear programming techniques
to solve this problem, we need a description of %, by means of a system of linear
inequalities. As the CPP is an #%-hard problem (see [11]), it is very unlikely that
we can find a good (or “AN'®"-) description of &, (cf. [4]). The aim of this paper
is to present a partial characterization of 2, by exhibiting several classes of facet-
defining inequalities for 2,,.

Let us begin with formulating CPP as an integer linear programming problem.
Since P, is contained in the unit hypercube, the trivial inequalities

0=<x,<1 foralleceE, (3.2)

are clearly valid. Moreover, if A is a clique partitioning and if a=uv and b=ow
are two edges in A with a common endnode v then the edge ¢ =uw must also be
in A. Thus for every triangle {a, b, c} of K,, the triangle inequality

X, tx,—x.=<1 (3.3)

is satisfied by every incidence vector of a clique partitioning, and hence it is valid
for ?,. Note that every triangle {a, b, ¢} induces in fact three triangle inequalities,
namely

X, tx,—-x.<1, X,— Xt x. <1, —x,+xptx.<1.

For ease of notation, we will further on just speak of the triangle inequality
x,+x, —x. <1 induced by a triangle {a b, ¢} and assume that it stands for all the
three possible triangle inequalities assaciated with {a, b, c}.
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Consider now the polytope
g, ={xeR%|0<x.<1forallec E,,
x, +x, - x. <1 for all triangles {a, b, c} of K} (3.4)

It follows from the remarks above that @, < 7,; and it is easy to see that the integral
points in 7, are exactly the incidence vectors of the clique partitionings of K. So
@, =conv{x e J,|x integral} and this implies that

minimize w'x

subjectto 0<x.=<1 forall e€ E,,
(3.5)
x,+x, —x. <1 for all triangles {a, b, c} of K,,,

x integral,

is an integer programming formulation of CPP. As our computational experience
(see [3]) shows, the linear program obtained from (3.5) by dropping the integrality
constraints is a quite reasonable LP-relaxation of CPP. The use of this LP-relaxation
is also theoretically justified since all inequalities but the upper bounds define facets
of @,. To prove this, observe first that #, contains the zero vector and all unit
vectors, so P, is full-dimensional, i.e.,

dim @, =|E,|=3n(n—1). (3.6)

This implies that for each facet of %, there exists a unique (up to scaling by a
positive constant) inequality defining it.

Theorem 3.1. For every clique partitioning polytope ?,,, n =3, the following holds.
(a) Every nonnegativity constraint x, =0 defines a facet of P,,.
(b) Every triangle inequality x, +x, — x. <1 defines a facet of ?,.
(c) No upper bound ineguality x. <1 defines a facet of P,.

Proof. (a) Let e€ E,. Then x, =0 is satisfied by the zero vector and all unit vectors
¥\, feE,, f#e. These |E,| vectors are incidence vectors of clique partitionings
and are affinely independent.

(b) Let {a, b, ¢} be a triangle in K,, say a=uy, b=1vw, c=uw. Then the |E,|
incidence vectors of the following clique partitionings

{a}, {b}, {abc},

{a,e} foralleecE,,e¢8(u)u d(v),
{b, e} foralleeE,,ecd(u)\{a,c},
E({u, v, w, z}) forall ze V\{y, v, w},

satisfy x, +x, — x. <1 with equality and are obviously linearly independent.
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(c) Let ec E, and let ¢, f, g be a triangle. Then 2x,<2 is the sum of the two
facet-defining triangle inequalities x,+x,—Xz =<1 and x,—x;+x, <1, and hence
x,=<1 does not define a facet of #,. O

The following observation summarizes a few “structural” properties of facet-
defining inequalities of 2,.

Corollary 3.2. Let a’x=<a be a nontrivial facet-defining inequality for #, and let
E,={ecE,|a.#0}. Then the following holds.

(a) a>0.

(b) a has positive and negative entries.

(c) the subgraph H =(V,(E,), E;) of K, is 2-connected.

Proof. (a) Clearly a=0, since the empty set is a clique partitioning satisfying
aTy® =0. Assume that @ = 0. If a had a positive coefficient, say a. >0, then aTylt =
a,>0 would contradict the validity of a"x<a. Thus all coefficients of a are
nonpositive. But then a can be represented as a nonnegative linear combination of
the nonnegativity constraints —x, <0, a contradiction.

(b) Assume that the vector a has no negative entries. Since E, is a clique
partitioning it follows that ¥ .., @, <e. But then a'x<a can be obtained by a
nonnegative linear combination of the constraints x, <1, a contradiction. If a has
no positive entries then clearly aTx< o can be obtained by a nonnegative linear
combination of the constraints —x, <0, a contradiction.

(c) We prove that H =(V,(E,), E.) is connected. The proof of the 2-connected-
ness of H follows analogously (assuming that there is cut-vertex). Suppose H is
disconnected. Let W, be the set of nodes of one of the nontrivial connected
components of H, and let W= V,\W,. For i= 1,2 let F;== E,(W,) be the set of
edges in K, with both endnodes in W,, and let a' be a vector defined by (a'), = a.
if e F, and (a"), =0, otherwise. Now let D be a clique partitioning of K, such
that aTy? = @, and let D, == D0 F, and D,'= DN F;. Clearly, D, and D, are clique
partitionings of K,,. Let a,:= a"y™ and a,==a"x". Thus a,+a,= a, and further-
more a'Tx <@, and a?"x < a, are valid inequalities for &,. Since a'x<a is the
sum of these two inequalities, we have a contradiction. U

Finally we would like to prove 2 useful lifting theorem that shows that every
inequality that defines a facet of @ (and satisfies a certain condition) also defines
a facet of #,, n> k.

Theorem 3.3 (Lifting Theorem). Suppose )., g QX <¢ defines a nontrivial facet of
@,. Then this inequality also defines a facet of P, for all n> k, provided the following
condition is satisfied .

(L) There exist a clique partioning A= E (W, ..., W.) of K, and a node ve 'V,
such that ¥, aexe = and {v} =W, for some ie{l,...,s}h
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Proof. We will show that the given inequality defines a facet of ;.. The statement
of the theorem then follows by induction, since condition (L) remains satisfied in
Kk+t'

Set V. i={1,...,k}, Virii= Vou{k+1}. Let ai=(a,)ces,, 4= (@)eer,,,, Where
a,=a, for ee E; and 4,:=0 for e€ Ey.,\E;. The validity of d'x<sa for Py is
obvious.

Since aTx =< a defines a nontrivial facet of ?, we have « >0 and thus there are
|E.| clique partitionings A,, ..., Ajg Whose incidence vectors are linearly indepen-
dent and satisfy a"x < & with equality. Each set A, is also a clique partitioning of
K.+, and satisfies a'xy* = 2. Let M be the nonsingular | Ey| x| Ex| matrix whose
rows are the vectors y”. We may assume that the rows and columns of M are
arranged in such a way that the last k—1 columns of M correspond to the edges
iv (ie V,\{v}), where v is the special node existing by condition (L), and such that
the (k—1) x (k—1) submatrix N of M in the lower right hand corner is nonsingular.

From the k —1 clique partitionings Ayg,~x+2, - - - » A5, Whose incidence vectors
are the last k—1 rows of M, we construct k — 1 new clique partitionings of K., as
follows. For i € {|E|—k+2,...,|E}, let(Y,, E,(Y;)) be the clique of A, with ve Y
since N is nonsingular, | Y;|=2 holds. Set

B;i= A u{{j, k+1}je Y}

Then @"y® = a holds by construction. Finally, let A be the clique partitioning
existing by condition (L); set

B,=Au{{y k+1}}.

Clearly, a"x " =a.

Let M be the |Ej.1| X | Ex+|-matrix whose rows are the incidence vectors (in R )
of the clique partitionings Ay, ..., A, Big -k+2s---» B Bo Then M can be
put into the form shown in Figure 3.1 where M and N are nonsingular. Obviously,
M is nonsingular, and thus there are |E+,| clique partitionings in K, whose
incidence vectors satisfy @'x < & with equality and are linearly independent. This
implies that @'x < a defines a facet of P,.,. [

* N N

0.0 | 0---0 |1

Fig. 3.1. Matrix M.
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Condition (L) in Theorem 3.3 is a sufficient condition for “trivial lifting”. We
believe it is not necessary, but could not prove it. However, all classes of facet-
defining inequalities we have found satisfy it. Maybe all nontrivial facet-defining
inequalities satisfy (L).

4. 2-Partition inequalities

In this section we introduce a class of facet-defining inequalities that generalizes
the class of triangle inequalities. This class of inequalities turns out to be of particular
importance from a computational point of view.

Let K, =(V,, E,) be a complete graph. For every two disjoint nonempty subsets
S and T of V,, the inequality

Z Z Xor — Z Xy — Z xx,Smin{]Sl,lT]} (41)
se8S(eT s1eS s1eT
ser seti

is called a 2-partition inequality. 1f we want to stress that the inequality is the one
corresponding to S and T we say that x({S:T])—x(E,.(S)) -x(E,(T)) =
min{|$|, |T|} is the 2-partition inequality induced by S and T (or short: [S, T]-
inequality). The graph of the support of a 2-partition inequality with = {u, v} and
T ={t,y, z} is shown in Figure 4.1. Note that, if |S|=1 and |T| =2 then the corre-
sponding [ S, T]-inequality is nothing but a triangle inequality.

S - -——

Fig. 4.1. Graph of the supportofa 2-partition inequality with § ={u, v} and T ={4, 31 z}. The correspond-
ing 2-partition inequality is x({ut, uy, uz, vt, vy, vz}) =X, —x({ty, 1z, yz}} = 2.

Theorem 4.1. For every n=3 and every two nonemply disjoint subsets S, T of V,, the
corresponding 2-partition inequality

x([S: T) = x(E,(8)) — x(E(T)) < min{| S|, | T}

is valid for ®,. It defines a facet if and only if |S)# | T|.
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Proof. Assume w.l.o.g. that |S|=|T|. We prove the validity of (4.1) by induction on

|S|+|T]|. Let |S]=1and |T|=1. For | T| <2 the result is immediate. So assume that

|7|=t=3. By induction hypothesis, for every ve T the [, T\{v}]-inequality
x([S: T\{v}]) = x(E,(T\{1})) <1

is valid for 2,. Adding these inequalities up for all ve T we obtain

(1—1)(x([S: T])) - (1 =2)(x(E,(T))) <.

Since —x(E,(T))=<0 is also valid for 2,, adding this inequality to the above one,
we get

(1= 1)(x((S: TD=*(E(TN) <,
and hence
x([S: T)~x(ET) <27,
which implies that
(i T)-=ED)<| | =

is valid for 2,,.

Now let |S|=s=2, |T|=t=2, |§|+|T|=k and suppose that (4.1) is valid for
|S|+|T|=<k—1.

For every ve § consider the [S\{v}: T]-inequality,

x([S\{v}: T]) —x(E,(S\{v})) —x(E,(T))<s—1, (4.2)
and for every ve T consider the [S: T\{v}]-inequality
x([S: T\{v}]) — x(E,(8)) —x(E,(T\{v})) < min{s, t - 1}. (4.3)

By induction hypothesis, all these inequalities are valid for ?,. Adding up the
inequalites (4.2) for every ve S and (4.3) for every ve T we obtain

(s+1—2)(x([8: T]) —x(E,(8)) - x(E,(T)))
< 5(s — 1)+ t(min{s, 1 —1}). (4.4)
If |S| < | T, then (4.4) yields

oy _ | SGste=1
x([S: T —x(E,(S)) x(E,,(T))-L 12 J—ISI-

If | S| =|T], i-e., s=¢, then (4.4) can be written as
(25 —2)(x([S: T]) — x(E,(S)) —x(E.(T))) <s(2s -2},
which implies that

x([S: T1)~x(E,(8)) —x(E,(T))<|S].




M. Gritschel, Y. Wakabayashi | Clique partitioning 7

This completes the proof that the inequality (4.1) is valid for P,. When |S|=|T]| the
proof given above shows that the inequality (4.1) can be obtained by a nonnegative
linear combination of other valid inequalities, and therefore it does not define a
facet of 2,.

Now assume that |S|<|T|. We prove first that (4.1) defines a facet of &, where
k=|S|+|T).

For notational convenience we may assume that §:={1,2,..., s}. Let a'x= a,
denote the inequality (4.1), i.e., a™x=x([S: T]}—x(E,(8)) —x(E,(T))<s= aq,
and let b"x<b, be a facet-defining inequality for %, such that F,=
{xe P, |a"x=ag}c F,:={xe P, |b"x =bg}. Clearly, F, # P,, thus if we can prove
that b = aa for some « €R then since F, #@ we can conclude that (4.1) defines a
facet of #,. We start by establishing the following:

Claim 1. There exists « € R such that b, =a for all ee[S: T].

Proof. To prove Claim 1 consider a subset T'c T with |T'|=s5, and let i be a
node in S. For every node we T, let M;(w) be an s-matching containing iw with
M(w)<[S: T']; and for every pair (w, v) with we T" and ve T\T', let

Mi(w, v) = (M, (wh\{iw}) L {iv}.

It is clear that ™™, yM(*9eF,cF, and therefore 0=by—bo=>b"x""
—bTyM) = p, —b,. Thus, for a (fixed) node ie § and for every we T’ we have
that b,, = b,, for every v € T\T". This implies that for every i€ S there exists o, €R
such that b, =a, forall te T.
To complete the proof of Claim 1 we shall prove that for s =2, o, ="' =2,.
For i, je 8, i+, let M be an (s —2)-matching contained in [S\{;,j}:T]. Ifs=2
take M ={@. Let u, v, w be distinct nodes in T, not covered by the matching M. Let

Ai=Mu{iy, iv, uw}u{jw} and B=Mu{jy ju, uv}u{iw}.

Since y*, x? € F, < F,, it follows that by, + by, + by, = by, + by, + by, which implies
that o; = o;. This completes the proof of Claim 1.

Our next step is to prove the following:

Claim 2. b,=—a for all e€ E,(S)u E,(T).

Proof. Let e=uve E,(T) and let M be an s-matching covering v but not u,
Mc[S:T]. Let i€ S be such that ive M and let

A, =M u {iu, uv}.

Clearly ™, x*€F, < F,, and therefore b, +b,,=0, i.e., b, = by, =—b,=~e.
Now let e:= ij€ E,(S) and let M be an s-matching contained in[S:T]. Let u, v
be nodes of T such that iy, jue M and let

B, =M Uiy, i, ju, uv}.

Since x™, x % € F, € F,, it follows that b, + by+ b, + b, =0. By the previous results,
b, = b;, = a =—b,,. Thus, b, = b;=—a, and this completes the proof of Claim 2.

The two claims imply that b, = aa, for all e € E,, and this proves that (4.1) defines
a facet of ..
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For any node ve T there exists an s-matching M <[5, T] not covering v. M is
a clique partitioning and v a node as required in condition (L). Thus by Theorem
3.3, the [ S, T]-inequality defines a facet of &, for all n=k. O

Remark 4.2. It is easy to see that the polytope 7, (see (3.4)} is equal to &, for
n=2,3. Since the 2-partition inequalities for |S|# |T| define facets of P, we can
conclude that 7, # @, for n=4. In fact, for every two nonempty disjoint subsets
S, T of V, with |S|#|T|, |S|+|T|#3, the point x*ecRE defined by x*:=1 for all
ee[S: T, x¥=0 else, is a vertex of J, (that is not contained in 2,).

5. Facets from 2-chorded cycles, paths and even wheels

We will now introduce three further classes of inequalities valid for 2, and we will
show which of these inequalities define facets of 2,.
Let C be a cycle in K,, say C={e;,..., e} and &=ty (i=1,...,k=1),

e, = v, U, then the set

é = {ului+2€ EH l i= 1: crey k_z} U{Uluk—l ,U;'Dk}
is called the set of 2-chords of C. For every cycle C < E, of length at least 5 and its
associated set C of 2-chords,

x(C)-x(C)=[3C|] (5.1)
is called the 2-chorded cycle inequality (induced by C). Figure 5.1 shows a 7-cycle
and its set of 2-chords. The associated 2-chorded cycle inequality is given by

C ={{1,2},{2, 3}, {3,4}, {4, 5}, {5, 6}, {6, 7}, {7, 1},
C ={{1,3}, {3, 5}, {5, 7}, {7, 2}, {2, 4}, {4, 6}, {6, 1}},
x{C)-x(€)=3.

Fig. 5.1. A 7-cycle.

Theorem 5.1. Let C = E, be a cycle of length at least 5 and let C be the set of 2-chords
of C. Then the 2-chorded cycle inequality induced by C,

x(C)-x(C)=[3C]]
is valid for ®,. It defines a facet of P, if and only if |C| is odd.
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Proof. To establish the validity of (5.1) we proceed as follows. For each edge e€ C,
let e, and e, be the two edges in C such that {e,, e,, e} is a triangle in K,,. Consider
the associated triangle inequality x, +x,,—x.=<1. Adding up, for all ee C, these
triangle inequalities we obtain ¥, x (%, +Xe, —X.) =2x(C)—x(C) < |C|=|C|. Since
—x(C)=01s valid for 2,, adding this inequality to the latter one and then dividing
by 2, we obtain that x(C)—x(C) <3 C]| is valid for @,. Since for every vertex of
@, the left-hand side of this inequality is an integer, we can round the right-hand b

R e T A e e e e

side down to the next integer and obtain the validity of the 2-chorded cycle inequality I
induced by C. L

If |C| is even, the above proof shows that the inequality (5.1) can be obtained éﬁ
by a nonnegative linear combination of other facet-defining inequalities, and there- ’
fore it does not define a facet.

Now assume that |C|= k is odd (and at least 5). We first show that (5.1) defines
afacet of @,. Let ki=2p+1, Vi={1,...,2p+1}, C:={{j,i+1}|i=1,2,...,2p+1},
and consider all the additions of node numbers taken moduio 2p+1. Denote by
aTx < a, the inequality x(C)—x(C)=p and let F,={xe @, |a"x = ao} be the face
defined by it. Note that F, # .. Assume further that b"x < b, is a facet-defining
inequality for @, such that F,  F, = {x € P, |b"x = bo}. We want to show that b= aa
for some « eR.

For ie V, let M, be the unique perfect p-matching contained in C\{{} i+1},
{i, i —1}}, that is,

M,={{i+1,i+2)},{i+3,i+4},...,{i+2p—1, i+2p}}.

Clearly, " e F,c F, for all i € V, and therefore b yM = bpTyMi= . . = bTyMwri=
b,. Note that for every ie V, M;AM,,={{i,i+1}, {i+1, i+2}} holds. This fact

together with bTx™ = b7 y™2 imply that b,;,, = b4y 1+2. Thus we can conclude that ?‘ﬁ;
there exists a € R such that i
b.=a forallecC. (5.2) o

o

Now for every i€ V, consider the clique partitioning
A=Mu{{ii+1}, {i, i+2}}.

Since y*, x™ieF, and F,c F,, it follows that bTy* =b"x™, and therefore
b i+1+ by+2=0. Then using (5.2) we get that b,+2=—a, and since this holds for
every i€ V, we can conclude that

b,=—« foralleeC. (5.3)

Our next step is to prove that b, =0 for all ee E\(Cu €). Since Es=Cu C we
assume from now on that k>7. Set

J=103,5,...,2p-3}.

For every i€ V and je J consider the clique partitioning

Ay=Mu{{j, i+j}, {i, i+j+1}}1

s
e N

e ——
S
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Since y*, ™ € F,< F, we have b"x% =b"y™; and therefore
bf.'+j=—bi.l+j+l for all i€ V,jej. (5.4)

LeticV,jeJ, and r=2p—j Thenrel i+j+1eVand itj+1+r=i+2p+1=
i mod(2p+1). Thus (5.4) yields

bitje1,i = —Drajarirt forallie V,jeJ, (5.5)
and hence by (5.4) and (5.5),
b= =bjrj41= bis1,04j+1 forallie V,jel (5.6)

From (5.6) we conclude that

for every j€ J there exists 8; €R such that )
(5.7
ﬁj = bi,H-j = _bi.i+j+l for a].l l € V.
Note that the edges ee E,\(Cu C) are exactly those of the form {j i+j} or
{i, i+j+1} for ie V and je J. Thus if we can prove that 8;=0 for all jeJ we have
the desired result.
Letje J. By (5.7), Bap—) = —bjis2p—j+1 forall i € V. Hence, in particular, fori=j+1,
it fOl]OWS that ﬁl’l“"j: _Hbj+1.2p+2 = —bj+l.] = -_bl,l+j = _'BJ, i.e.,

In case k=7, we have J ={3} and so j=2p—;=3. Thus (5.8) implies that 8,=0,
and the proof is finished for k =7. Hence from now on we assume k=9. Equation
(5.8) shows that we only have to prove that B, =0 for those j€J with 3<j=<g,
where g=p if p is odd and g=p+1if p is even. For s€ {5,7,...,q}, consider the
clique partitioning

-Bs = M2p+l o {{1: S}z {13 s+ 1}! {2) S}a {23 s +1}}-
Since y%, y"»+ € F, c F,, we conclude that

bl..r+bl.s+l+b2.s+ b2,s+l =0. (5.9)

Taking j=s5s—2 and i =1 (resp. i=2) in (5.7) we obtain B, ,=—b,, (resp. B2 =
by =—b, .+1). Analogously, taking j=s and i=1in (5.7) we get B, = b, +s. These
equations and (5.9) imply that

B,=pB. forallse{57,..., 4}

Thus for p odd (since g =p) we have that B;=Bs="--=4,, and since by (5.8),
B, =—PB,, it follows that B, =0, and therefore ;=0 for all je J. If p is even (since
g=p+1)then B3=Bs="- =B, =By, andsince by (5.8) B,_1 = —B,+, it follows

that 8; =0 for all je J. Thus we have proved that b, =0 for all e E,\Cu C.
Altogether we have shown that there exists @ € R such that
a ifeeC,
b,={-a ifecC,
0 ifeeEN\N(CuC),
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i.e., b, = aa, for all e E,. This completes the proof that x(C)~x(C)=<p defines
a facet of &,.

To prove that it also defines a facet of 2, for all n> k, observe that every node
i together with the clique partitioning M, satisfies the condition (L) of Theorem
3.3, Thus, by Theorem 3.3 the result follows. [1

Given an odd cycle C of length at least 5, then the point x* eRE with x¥*=3 if
ecC and x*=0 if ec E,\C is contained in &, and satisfies all 2-partition
inequalities. But x* violates the 2-chorded cycle inequality x(C) —x(&)=yC|-1).

A further class of inequalities can be derived from paths and a universal node
as follows. Let P={e,,..., e,_5} be a path in K,, n=k, of length at least two and
assume that & = v, i=1,..., k—2, then the set

ﬁ:: {U[U,‘+2|i=1,...,k—3}

is called the set of 2-chords of P. Let z€ V, be a node difterent from vy,..., tk—1
and set

R={vz|ie{l,..., k—1}, ieven},

R:={uvz|ie{l,...,k—1}, iodd}.
We call PuPURU R a 2-chorded path with a universal node (see Figure 5.2) and
the inequality

x(PUR)-x(PUR)=<3(|P|+1)] (5.10)
the 2-chorded path inequality induced by P U PURUR

Note that, when P has length two, the corresponding 2-chorded path inequality
is an [S, T]-inequality with §={v;} and T ={uv, v;, 2}

Fig. 5.2. A 2-chorded path with a universal node; k even.

Theorem 5.2. Let Pu Pu Ru R < E, be a 2-chorded path of length at least two with
a universal node. Then the associated 2-chorded path inequality

x(PUR)—x(PUR) = [3(|P|+1)]
is valid for @,. It defines a facet of P, if and only if |P| is even.
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Proof. For notational convenience let us assume that V= V(PUPURUR)=
{1,2,..., k—1}u{z}, where z is the universal node; so |V|=k=n.
(a) Validity. We prove validity of (5.10) by induction on k.

(a1} k=4. The corresponding 2-chorded path inequality is—as remarked
before—an [S, T]-inequality. Thus the result follows from Theorem 4.1.

(a2) k=345. In this case, consider the partition of V into the sets §={2, 4}
and T={1, 3, z}. Then, by Theorem 4.1 the 2-partition inequality induced by S and
T,

XoyF XpaF Xa, F X0 F Xg3F Xgr = Xp4 = Xy3— Xy, — X3, <2

is valid for 2,,. Adding the inequality —x,, =0 and the above inequality we obtain
the inequality (5.10).
(a3) Assume that k= 6. Let

P = P\{{k—2,k—1}}, P,:= P\{{k—3, k—2}},

R, = R\{z, k—1}, R,:=R\{z, k—2},

R,= R\{z, k—1}, R,=R\{z, k-2}.
Biy induction hypothesis, the 2-chorded path inequality induced by P,u P,u R, u
R,,

x(PyuR)—x(P,UR,))=< 3|P]],
and the 2-chorded path inequality induced by P,u P;u R,u R,,

x(Pyu Ry) —x(P,U R;) < L%(|P| -1)],

are valid for 2,.
Let d"x =< d, be the inequality obtained by adding these two inequalities and the
following three inequalities (which define facets of #, by Theorem 3.1):

Xe-3k-2T Xk—2, k-1~ Xk-3,k—1 51,
— X3 x-1<0,
— Xk—4x—2=<0.
If k is odd, we add to d"x < d, the inequalities
Xg—a k-1t X1~ X—2,S1 and x_,.=<1,
and obtain
2(x(PUR) —x(Fu R))< [P]) + [XIP| - 1)) +3=|P|+2.

This yields that the inequality (5.10) is valid for &,.
If k is even, then we add the inequalities

Xg—2,k—1F X2~ Xk—1. =<1 and —Xp1,2 =0,
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to d"x < d, and obtain
2(x(PuR)—x(PuUR))=< |4P|]+ [3(P|-1)]+2=|P|+1.

Hence we can conclude that (5.10) is valid for #,.

For k odd, it is easy to see that each incidence vector of a clique partitioning
satisfying the 2-chorded path inequality with equality also satisfies the triangle
inequality X,_; -1+ X, k-1 — Xz4—2< 1 with equality. So in this case the 2-chorded
path inequality does not define a facet of 2,,.

(b) Facet. We will now prove that the inequality (5.10) defines a facet of %,
when |P| is even. Assume that |P|=k—2 is even and k= 6. We first show that the
2-chorded path inequality induced by Pu PURUR, let us denote it by a'x < aq,
defines a facet of #,. Let F, denote the face of %, defined by a Tx < a,. Clearly
F, # ®,. Consider a facet-defining inequality bTx < b, and assume that F, < F, =
{x € P,|b"x = by}.

Let V.={1,2,..., k}, so the universal node z is equal to node k Let I, =
{1,3,...,k—1}and I,:={2,4,...,k~2}. For i€ I,u {k} consider the matching

M, ={{j,j—1hjeh,j<i}u{{j,j+1kje L, j=i} (5.11)
Then clearly,

xMeF,cF, forielu{k} (5.12)
Since M; A M,,,={{i, i—1},{i, i+1}}, using (5.12) we obtain

by =b, foriel,. (5.13)

For i€ I,, consider the clique partitionings

A= (M\{, i+1D o {i, z},

B=Mu{{ii~1},{i—1,i+1}},

C,=Mu{{iz}, {i+1,z}},

D= M,,,u{{i, z},{i—1, z}}.

Since x™, x™ x©, " € F,c F,, using (5.12) and (5.13) we conclude that for
every i € I, there exists o; € R such that &, = b1 =bii1=b=—b_ 1= —bi_y .=
—by4, .- This implies that there exists a €R such that

bc={ o forallee PUR, (5.14)

—a forallee Ru{eeP|e={i,i+2},ie L}

Now we want to prove that b, =—a forall ee P,e={i, i+2}, ie L. Lete= {}, i +2}
be such an edge. The following clique partitioning derived from the matching M,
defined in (5.11),

A= (MG, i— 1O {lg i+2) (6 i+ 1) {i zh {i+ 1, 2h {i+2, 2))
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is such that its incidence vector is in F, € F,, and therefore by (5.12) and (5.14), it
follows that b, = —ea.

Our next step is to prove that b, =0 for all e€ E = E,/\(PuPURUR).

Case 1. e€ E is incident to two nodes in I,. We may assume that e == {i, j}, where
i,jel,and j=i+4. For

B:=(M\{i, i—1} {j -1 o {{i, i} {i 24, {4, 21}

we have y" € F, ¢ F,. Using (5.12) and (5.14) we can conclude that b, = 0.
Case 2. e€ E isincident to two nodes in I,. We may assume that e = {j, j}, where
i, je I, and j=i+4. In this case,

C=(M \J-1,jhul{j-1,z}{i i}

is such that y< € F, = F,, and thus by (5.12) and (5.14) it follows that b, =0.
Case 3. ec E is incident to a node in I, and a node in I,. Assume first that
e.={i,j}, where ie I,, je I, and j=i+3. Let

D:: M’+l o {{I’J}! {T"' l,j}}

Then x° € F,c F,. Since yMi"e F,c F, and b,_, ;=0, we get b, =0.
Now assume that e :={i, j}, where ie I,, je I, and j<i—3. Set

Dl = Alj+l w {{171}) {]v '+1}}

Since 7, xM+ e F,< F, and b;,,, =0, then b, =0.

We have shown that b= aa for an o € R, and thus we can conclude that a"x < g,
defines a facet of %,. To prove that it also defines a facet of 2, for n > k, observe
that, for every i€ I, the node i—1 and the clique partitioning M; satisfy condition
(L) of Theorem 3.3. This finishes the proof. [

A wheel consists of the edges of a cycle plus the edges that link a further node
to all the nodes of the cycle. We can derive another class of facet-defining inequalities
from even wheels and the 2-chords of their cycles as follows.

Let Cc E, be a cycle of even length 2p with p=4 and let ze V,\V,(C) be a
further node (the center). Let C be the set of 2-chords of C and let {V, ¥} be a
bipartition of the node set of C (i.e., |V|=|V| and every edge of C has one endnode
in V and the other in V). Set

R:={zv|ve V}, R:={zv|ve V},
then CuC U R UR is called a 2-chorded even wheel and the inequality
x(CuR)-x(CuR)=3C| (5.15)

is called the 2-chorded even wheel inequality (induced by C u Cu R U R). Figure
5.3 shows two 2-chorded even wheels.
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5

Fig. 5.3. Twa 2-chorded even wheels. The edges in C U R are drawn solid, those in & u R dashed.

Theorem 5.3. Let Cu Cu Ru R E, be a 2-chorded even wheel, where C is an even
cycle of length at least 8. Then the 2-chorded even wheel inequality

x(CuUR)-x(CuR)<3|C|
induced by C u Cu R u R defines a facet of P,,.

Proof. For ease of notation, let us assume that V,(C)={1,2,...,2p}, V=
(2,4,...,2p}, V:={1,3,...,2p—1}, ze V,\V(C), C={{j i+1}|i=1,...,2p},
C={{ii+2}{i=1,...,2p}, where (here and in the following) summation of
integers representing nodes is considered modulo 2p.

To establish the validity of (5.15) for @,, consider, for every i€ V, the path

P=C\{{i,i—1},{i,i+1}}

from i+1 to i—1 of length 2(p—1), its set P, of 2-chords, and R, ={zv|ve V},
R; = {zv|ve V\{i}}. By Theorem 5.2, for every i€ V the 2-chorded path inequality
induced by P,u P,u R,UR,,

x(PUR)—x(PUR)=p-1
is valid for @,. The sum of these p inequalities (over all i€ V) is
(p—D(x(C UR)—x(CUR))+(xpqt+ Xag+Xgzt+ -+ X2p2) —x(R)
<p(p-1).

Adding to this inequality the following inequalities:
(a) the p triangle inequalities:

X+ F Xirriva—Xe2<1 forallie V;
(b) the |ip] triangle inequalities:
Xz H+ X~ Xyr2<1 fori=2+4j j=0,..., lzp] —1;
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(c) the trivial inequalities:
~X,+2<0 forallie V and fori=4+4j, j=0,..., 3p] —1;
and if p is odd, also the inequalities x,,, <1 and —x,,,=<0; we obtain
p(x(CUR)—x(CuR)N<p(p-1)+p+[x(p+1)],

which implies that the 2-chorded even wheel inequality (5.15) is valid for &,,.

The proof that x(C U R) —x(€ u R) =< p defines a facet of 2, runs along the same
lines as the two previous proofs of such facts in this section. It is technically not
more complicated and therefore omitted. [

6. Final remarks

There are a number of further questions that could be asked about the clique
partitioning polytope 2, studied in this paper. We briefly mention a few interesting
aspects.

All facet-defining inequalities described in this paper have coefficients that are
either 0 or +1. Moreover, the subgraphs of K, they arise from are quite “‘symmetric”
resp. “regular”. Do all the facet-defining inequalities of 2, have this property? They
do not. We have found some “nonsymmetric”’ facet-defining inequalities with
coefficients in {0, =1, £2}. One of these can be described as follows.

Theorem 6.1. Let V be a subset of seven nodes of V, forn=17, say V={v;, v3,..., t}.
Set

E, = (0,03, 1,04, UaU3, Uals, U3Dy, Dals},

E,={v 03, 0,05, 0304, U305},

Ey= {v,05, Usts, Vst7},

Eyi={0,0;, D20, VsV, Usty}.
Then the inequality

x(E,)—x(E;)+2x(E;)—2x(E;) <4 (6.1)
defines a facet of #,. O

Figure 6.1 shows a picture of the graph (V, E,u E;u E;U E,), wherev={1,..., 7},
that induces the facet-defining inequality (6.1). A proof of Theorem 6.1 as well as
some indications of how further (quite complicated) facets of this type can be
constructed can be found in [11].

Another issue are “lifting” or “glueing™ results. A simple (though useful) lifting
theorem has been stated in Theorem 3.3. There are further procedures with which
edge sets that induce facets can be “glued” together so that the resulting edge set
also induces a facet. These procedures are rather complex and will be investigated
in a forthcoming paper.
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4
Fig. 6.1. The graph (V, E,u E;u E;U E,), where V={1,...,7}

Finally, there is the “applied” aspect of the results presented here. Can one use
the inequalities in the framework of a cutting plane procedure for the clique
partitioning problem? One can, and the algorithm we have implemented works
surprisingly well, although we were not able so far to design fast exact separation
procedures for the classes of inequalities presented in Sections 4 and 5. But efficient
heuristics worked very well. Our computational experiments show that the triangle
inequalities (3.3) and the 2-partition inequalities (4.1) are very often sufficient to
produce optimal clique partitionings. These computational results can be found in
(3] and [11].
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