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Chapter 1

Introduction

Set partitioning is one of the fundamental models in the field of combinatorial
optimization. A partial list of applications includes truck deliveries (see Balin-
ski and Quandt [1964], Cullen, Jarvis, and Ratliff [1981]), tanker routing (see
Fisher and Rosenwein [1985]), vehicle scheduling (see Borndörfer [1998]), airline
crew scheduling, and bus driver scheduling (see Desrosiers, Dumas, Solomon, and
Soumis [1993]).

First, we will give a combinatorial description of this problem. Let M be a non-
empty and finite set. Let F be a family of acceptable or feasible subsets of M.
Associated with each family j of F is a cost cj. The problem is to find a collection
of members of F, which is a partition of M, where the cost sum of these members
is minimal.

An integer programming formulation of this problem reads

(SPP) min ctx
Ax = 1

x≤ 1
x ∈ Nn,

(1.1)

where x is a solution vector, 0 ≤ c ∈ Rn a cost vector, and A ∈ [0, 1]m×n a
zero-one matrix. M corresponds to the m rows of matrix A and the subsets of M
correspond to the columns of this matrix in such a way that aij = 1 if i ∈ j and
aij = 0 if i 6∈ j. The stipulation that each member of M has to be covered once
corresponds to the constraint set of (1.1), which defines F.

It is well-known that SPP is NP-hard (see Garey and Johnson [1979]), but we
do not discuss further complexity issues here and refer the reader to Emden-
Weinert, Hougardy, Kreuter, Proemel, and Steger [1996] for more detailed infor-
mation.

The most widespread application of the set partitioning model seems to be the
airline crew scheduling problem. In order to describe this application we need to
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2 Introduction

explain two technical terms. A flight leg defines a flight from a city A to city B
at a time t and a rotation defines a sequence of flight legs with the same initial
and terminal point. Note that rotations must satisfy many regulations in order
to be acceptable. Now we can formulate the airline crew scheduling problem,
namely, partitioning flight legs by acceptable rotations during a planning period
at minimal cost. In this case M corresponds to the set of flight legs, while each
subset of M stands for a possible rotation. To set up the problem, we generate
the set of all acceptable rotations with their respective costs. This produces a
matrix A and a cost vector c, after which we attempt to solve the set partitioning
model. If the attempt is successful, the solution yields a collection of acceptable
rotations, whose cost sum is minimized and which cover each flight leg exactly
once.

Duty scheduling in public transport can be formulated similarly to the airline
crew scheduling. Given a bus schedule, the duty scheduling of bus drivers con-
sists of covering tasks by duties, where a duty forms a set of such tasks that
corresponds to a legal day of work for an individual driver. M corresponds to the
set of tasks and F is the family of all feasible duties. Again we get a matrix A and
a cost vector c of a set partitioning problem. If this problem is solvable, then a
collection of acceptable duties exists, whose cost sum is minimal and where each
task is included in exactly one duty of the collection.

Some of the largest SPP instances, which can be solved by state-of-the-art algo-
rithms, are vehicle scheduling problems reported in Borndörfer [1998], where the
corresponding problem matrices A have up to 1771 rows and 146715 columns.
Further large instances, which result from an airline crew scheduling application,
have been tested by Bixby, Gregory, Lustig, Marsten, and Shanno [1992]. The
corresponding problem matrices consist of up to 837 rows and 13 million columns.

The instances of our test bed, which originate from duty scheduling applications
of some European public transport companies, are made of up to 3570 rows and
82422 columns. I.e., we double the state-of-the-art number of rows. We focus on
determining quickly good lower bounds. This is of interest in a column genera-
tion context because this technique needs to calculate among other things a large
number of such lower bounds in order to proceed. For more detailed information
on column generation the reader is referred to Desrosiers, Dumas, Solomon, and
Soumis [1993].

This work is structured as follows. We start in Chapter 2 with a literature survey,
which introduces background material; then we discuss different approaches and
algorithms for determining lower bounds for SPP. In Chapter 3 we will develop
new algorithms for this task, and Chapter 4 describes the implementation details
and the computational results for all algorithms. Finally, we will summarize in
Chapter 5 the findings and give an outlook.
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There is no explanation of notation or basic concepts of combinatorial optimiza-
tion. Instead we have tried to resort to standards and in particular to the book
Grötschel, Lovász and Schrijver, Alexander (1988), Geometric Algorithms and
Combinatorial Optimization, Springer Verlag, Berlin.
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Chapter 2

Literature Survey

In the literature there exist two main approaches for determining lower bounds
for SPP. They are called combinatorial bounds and linear programming
bounds. In Figure 2.1 we have listed a classification, which we are going to
discuss in this chapter.

Lower Bounds
for SPP

�
��	
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Linear Programming
Bounds

Combinatorial
Bounds

�
��	 ? ?
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@
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Simplex
Methods

Interior
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Bounding
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Ascent
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Minimum
Norm

Bundle
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Coordinate
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Figure 2.1: Lower bounds for SPP

2.1 Combinatorial Bounds

Many network problems can be modeled as SPP or have SPP relaxations. In this
case a lower bound for SPP would be a lower bound for the network problem

5



6 Literature Survey

at the same time. I.e., among other things set partitioning models can provide
lower bounds for certain network problems. The converse implication does, of
course, not hold in general. We will mention one general technique that can often
be applied in such situations though this technique does not make any essential
contribution to lower bounds for SPP in general. We added this technique to the
list for the sake of completeness.

2.1.1 Additive Lower Bounding

Let us consider the problem

(P) min ctx
x ∈ F ⊆ Nn, (2.1)

where x and c ≤ 0 are a solution vector and a cost vector, respectively. For the
sake of simplicity, we assume that all the problems considered in this section are
feasible and bounded, i.e., F 6= ∅ and F is finite.

In many situations, several different lower bounding procedures for P are avail-
able; each exploits a different substructure of the problem. Clearly a lower bound
for P could be obtained by applying each single bounding procedure and taking
the maximum of the values computed. In this way, however, only one substruc-
ture is fully exploited, while all the others are lost completely. The additive
approach tries to partially overcome this disadvantage.

Let L(1), . . . ,L(r) be the lower bound procedures available for problem P. Also
suppose for k = 1, . . . , r that procedure L(k)(ĉ)—when applied to the instance
of problem P with cost vector ĉ—returns a lower bound value δ(k) as well as a
residual cost vector c(k) ∈ Rn such that c(k) ≥ 0 and

δ(k) + c(k) tx ≤ ĉ tx ∀x ∈ F. (2.2)

The additive approach generates a sequence of instances of problem P, each ob-
tained from the previous one by considering the corresponding residual costs and
applying a different lower bounding procedure.

Initially, procedure L(1)(c) is applied to obtain a value δ(1) and the corresponding
residual cost vector c(1). We consider the problem

(P(1)) δ(1) + min
x∈F

c(1) tx. (2.3)

It can be seen easily that P(1) is a relaxation of P, since the two problems have
the same feasible set F and their objective functions are such that

δ(1) + c(1) tx ≤ ctx ∀x ∈ F. (2.4)

Note that in problem P(1) a residual instance

(R(1)) min
x∈F

c(1) tx (2.5)
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of P has been introduced.

Due to our hypothesis, the objective value of R(1) is non-negative, so any lower
bound on its value can be added to δ(1) to obtain a tighter bound for P. To this
end, we apply procedure L(2)(c(1)), which yields a value δ(2) and the corresponding
residual cost c(2). Now, a new relaxation

(P(2)) δ(1) + δ(2) + min
x∈F

c(2) tx (2.6)

of problem P is available. In fact, it can be verified easily that

δ(1) + δ(2) + c(2) tx ≤ δ(1) + c(1) tx ≤ ctx ∀x ∈ F. (2.7)

As before, the current lower bound for P, given by δ(1) + δ(2), can be further
strengthened by applying procedure L(3)(c(2)). The procedure can be iterated by
applying the remaining bounding procedures in sequence. In this way, it is pos-
sible to take into account the different substructures of problem P exploited by
the available bounding procedures. Consequently, the gap between the objective
value of P and

∑r
k=1 δ(k) + minx∈F c(k) tx of the current relaxation can decrease

after each iteration. Whenever one of the residual problems has the form of an
SPP, bounding procedures for set partitioning can contribute in an additive lower
bounding procedure.

For more examples and detailed information the reader is referred to Fischetti and
Toth [1992], Carpaneto, Fischetti, and Toth [1987], and Carpaneto, Dell’Amico,
Fischetti, and Toth [1989], who have applied the additive approach to the sym-
metric and asymmetric traveling salesman problem and to the multiple depot
vehicle scheduling problem.

2.2 Linear Programming Bounds

Another approach for determining lower bounds for SPP is called linear pro-
gramming bounds. The idea of this method is to solve the linear program-
ming relaxation of a given IP, which has the form

(IP) min ctx
Ax = b
Bx≤ d

x ∈ Nn,

(2.8)

where c ∈ Rn and A ∈ Rm×n, and B ∈ Rmo×n. The relaxation can be obtained by
omitting the integrality constraint, i.e. the linear programming relaxation of IP
has the form

(LP) min ctx
Ax = b
Bx≤ d

x≥ 0.

(2.9)
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IP has the following relationship to LP:

min
Ax=b
Bx≤d
x∈Nn

ctx

{x|x∈Nn}
⊆ {x|x≥0}

≥ min
Ax=b
Bx≤d
x≥0

ctx. (2.10)

This technique can be also applied to SPP. By this we get the following formula-
tion for the linear programming relaxation of SPP:

(SPPLP) min ctx
Ax = 1

x≤ 1
x≥ 0.

(2.11)

As for the general case there exists the following relationship between SPP and
its linear programming relaxation SPPLP:

min
Ax=1
x≤1
x∈Nn

ctx

{x|x∈Nn}
⊆ {x|x≥0}

≥ min
Ax=1
x≤1
x≥0

ctx. (2.12)

We assume in the remainder of this work that the matrix A contains no zero
columns and SPP is feasible. Under this assumption we can make the following
observations.

Remark 2.1. SPPLP is feasible because of the feasibility of SPP.

Remark 2.2. SPPLP is bounded because of the constraints 0 ≤ x ≤ 1.

Remark 2.3. The constraint x ≤ 1 in SPPLP is redundant because the zero-one
matrix A does not contain any zero columns, but we will maintain this constraint
for simplicity reasons.

There exist at least three approaches, which could determine the optimal objective
function value of LP and SPPLP: simplex, interior point and Lagrangian
relaxation methods.

2.2.1 Simplex Methods

The simplex method, due to Danzig [1951], is a fundamental tool in mathematical
programming. It is usually described for linear programs in the form

min ctx
Hx = h

x≥ 0.
(2.13)
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In the case of LP the constraint Bx ≤ d can be transformed to an equation by
introducing slack variables x′ ≥ 0, i.e., Bx ≤ d can be transformed to Bx+x′ = d,
x′ ≥ 0. Therefore, a reformulation of LP could be

(LP′) min ctx
Ax = b
Bx +Ix′ = d

x, x′ ≥ 0,

(2.14)

where I is an identity matrix. Note that LP′ describes the same optimization
problem as LP and therefore fits with the formulation needed by the simplex
method in order to be solved.

Geometrically, this method proceeds monotonely with respect to the objective
function along vertices of the solution polyhedron. Its complexity is exponential
(see Schrijver [1989]). A more detailed description of this method is outlined in
Schrijver [1989] and Graham, Grötschel, and Lovász [1995].

Here are three computational properties of the simplex method that are important
for our purposes:

• Strong degeneracy can slow down the running time of the simplex method.

• For the performance of this method the number of rows are more important
than the number of columns.

• SPPs from real-world duty scheduling applications with more than 1000
rows are computationally difficult (see Borndörfer [1998], Löbel [1998], and
Marsten and Shepardson [1981])

A well-known implementation of the simplex method is part of CPLEX (see
Bixby [1992]), which has been used by Bixby, Gregory, Lustig, Marsten, and
Shanno [1992] for solving large-scale linear programming relaxations of airline
set partitioning instances, which we have already mentioned in the introduction.
From this work the exact sizes and the computation time of these instances can be
obtained. For our purpose of determining good lower bounds for SPPLP instances
we will use the dual simplex method, which is also implemented in CPLEX. A
description of this method can be obtained from Schrijver [1989].

The dual simplex method implemented in CPLEX is dualopt, which is an exact
method. It provides optimal lower bounds for SPPLP, but usually it needs too
much computation time (see Table 4.13 and Table 4.15). Our aim in this work is
to develop faster alternatives.

2.2.2 Interior Point Methods

Linear programs can also be solved by interior point methods. The idea of
these methods is as follows. Choose an inner point of a solution polyhedron,
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assign to this point a vector, which is increasing with respect to the objective
function of the linear program, and move along this vector to a new point. Con-
struct a sequence of interior points iteratively, which converges to an optimal
solution.

In contrast to the simplex method interior point methods make no use of the ver-
tices of the solution polyhedron, which allows to devise methods of polynomial
complexity (see Karmarkar [1984]). Another crucial difference to the simplex
method is that the simplex method determines an optimal vertex of the solution
polyhedron, whereas interior point methods determine an inner element of the
optimal face.

A well-known class of interior point methods are barrier function methods.
These methods treat inequality constraints by creating a barrier function,
which is a combination of the original objective function and a weighted sum
of functions with a positive singularity at the constraint boundary. I.e., the fea-
sible but non-optimal points at constraint boundaries are associated with higher
costs, which increase the nearer these points get to the boundaries. Many barrier
functions have been proposed like for example the logarithmic barrier func-
tion, first suggested by Frisch [1955]. As the weight assigned to the singularities
approaches zero, the minimum of the barrier function approaches the minimum
of the original constrained problem. For a more detailed discussion of barrier
function methods see Fiacco [1979] and for a brief overview see Gill, Murray, and
Wright [1981].

The basic idea of another class of interior point methods called penalty meth-
ods is to eliminate some or all of the constraints and add to the cost function
a penalty term that prescribes a high cost to infeasible points. Associated with
these methods is a penalty parameter that determines the severity of the penalty
and, as a consequence, the extent to which the resulting unconstrained problem
approximates the original constrained problem. As the penalty parameter takes
higher values, the approximation becomes increasingly accurate.

Degeneracy is not a practical problem, but as for the simplex method SPPs from
real-world applications with more than 1000 rows are typically hard to solve.
An implementation of an interior point method by Lustig, Marsten, and Shanno
[1990] called OB1 was also used by Bixby, Gregory, Lustig, Marsten, and Shanno
[1992] for testing the same large-scale airline linear programs mentioned above.
Beside the dual simplex method we will use the barrier function method baropt
implemented in CPLEX as a further reference.

2.2.3 Lagrangian Relaxation Methods

In contrast to the simplex method, which solves linear programs directly, the
Lagrangian relaxation method creates a sequence of relaxations from the
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original program, whose optima converge to the optimum of the original prob-
lem. This sequence can be used to construct a good approximate solution quickly.
For a more detailed description of Lagrangian relaxation the reader is referred to
Nemhauser and Wolsey [1988] and Schrijver [1989]. In the following we will show
how to create such a sequence of programs out of an LP.

We consider LP as defined in (2.9)

min ctx
Ax = b (complicating constraints)
Bx≤ d (nice constraints)

x≥ 0.

(2.15)

Suppose that Bx ≤ d is a set of ’nice constraints’, say those of a network problem.
We transfer the complicating constraints to the objective function and get

L(y) := min ctx + yt(b− Ax)
Bx≤ d

x≥ 0,
(2.16)

where y ∈ Rm. Function L is called Lagrangian function of LP and the entries
of y are called Lagrangian multipliers.

Note that L can be rewritten as follows

L(y) = min
Bx≤d
x≥0

ctx + yt(b− Ax) = min
Bx≤d
x≥0

(ct − ytA)x + bty = min
Bx≤d
x≥0

c tx + bty, (2.17)

where c t := (ct− ytA) defines the reduced cost vector. The following relation-
ship holds for LP and L.

Lemma 2.1. Let z be the optimal objective value of LP

z := min ctx
Ax = b
Bx≤ d

x≥ 0

(2.18)

and consider L: Rm 7→ R

L(y) = min ctx + yt(b− Ax)
Bx≤ d

x≥ 0.
(2.19)

Then it holds
z ≥ L(y) ∀y ∈ Rm. (2.20)
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Proof. Let y ∈ Rm be fixed. It holds

z = min
Ax=b
Bx≤d
x≥0

ctx
(a)
= min

Ax=b
Bx≤d
x≥0

ctx + yt(b− Ax)
(b)
≥ min

Bx≤d
x≥0

ctx + yt(b− Ax) = L(y). (2.21)

Equality (a) holds because (b − Ax) equals zero for all feasible x of LP and
inequality (b) is valid since

{x|Ax = b ∧ Bx ≤ d ∧ x ≥ 0} ⊆ {x|Bx ≤ d ∧ x ≥ 0}.

By this lemma we know that for each y the Lagrangian function yields a mini-
mization problem with respect to x, whose corresponding objective value implies
a lower bound for LP. In order to obtain the best bound we have to maximize L
with respect to y. By this we get the problem

max
y

L(y) = max
y

min
Bx≤d
x≥0

ctx + yt(b− Ax), (2.22)

which is called the Lagrangian relaxation of LP. Note that under certain as-
sumptions the Lagrangian function is bounded from above, concave, and piecewise
linear. We show this in the next theorem.

Theorem 2.1. Let {x|Bx ≤ d∧x ≥ 0} be non-empty and finite. The Lagrangian
function

L(y) = min
Bx≤d
x≥0

ctx + yt(b− Ax)

is bounded from above, concave, and piecewise linear.

Proof. {x|Bx ≤ d∧x ≥ 0} forms the solution polyhedron, which is by assumption
non-empty and bounded. From the theory of linear optimization it is well-known
that the optimum of L(y) is attained at a vertex of this polyhedron and that the
number of vertices is finite. Let Q be the set of these vertices. For each x ∈ Q
we can define an affine map gx in y by

gx(y) := ctx + yt(b− Ax). (2.23)

Due to the fact that Q is finite L can be described as a minimum of a finite
number of affine maps, i.e.,

L(y) = min
x∈Q

gx(y). (2.24)

1. L is concave:
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We have to show L(α y +(1−α) ỹ) ≥ α L(y)+ (1−α)L(ỹ) for all α ∈ [0, 1]
and y, ỹ ∈ Rm:

L(α y + (1− α) ỹ) = min
x∈Q

gx( α y + (1− α) ỹ )

= min
x∈Q

gx(α y) + gx( (1− α) ỹ )

≥ α min
x∈Q

gx(y) + (1− α) min
x∈Q

gx(ỹ)

= α L(y) + (1− α)L(ỹ).

(2.25)

2. L is piecewise linear:

Let Yx := {y ∈ Rm|L(y) = gx(y)} for all x ∈ Q. Note that
⋃

x∈Q Yx = Rm.
If we were able to show that Yx is a convex set then L would be linear over
Yx, i.e., L would be piecewise linear over Rm. It holds: Yx is convex ⇔
(α y + (1−α) ỹ) ∈ Yx for all α ∈ [0, 1] and y, ỹ ∈ Yx. We will show that the
right hand side of this statement holds. Let y, ỹ ∈ Yx:

L( α y + (1− α) ỹ ) ≥ α L(y) + (1− α) L(ỹ)

= α gx(y) + (1− α) gx(ỹ)

= gx( α y + (1− α) ỹ ).

(2.26)

3. L is bounded from above:

We have already shown this in Lemma 2.1.

Remark 2.4. The theory of Lagrangian relaxation also holds for IP. Assume that
for IP as defined in (2.8) has ’nice and complicating constraints’, i.e.,

min ctx
Ax = b (complicating constraints)
Bx≤ d (nice constraints)

x ∈ Nn,

(2.27)

then the corresponding Lagrangian relaxation reads the form

L̂(y) := min ctx + yt(b− Ax)
Bx≤ d

x ∈ Nn.
(2.28)

Remark 2.5. L and L̂ are in general not differentiable.
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Lagrangian Relaxation of SPPLP In the following part we will apply the
idea of the Lagrangian relaxation method to set partitioning problems. Consider
therefore SPP

min ctx
Ax = 1

x≤ 1
x ∈ Nn

as defined in (1.1) and its linear programming relaxation SPPLP

min ctx
Ax = 1

x≤ 1
x≥ 0

(2.29)

as defined in (2.11). Note that SPP in (1.1) is a specialization of IP in (2.8).
The constraint Ax = 1 is considered to be complicating, therefore we relax both
problems with respect to this constraint. By this we get a set of integer programs

L̂(y) = min
x∈{0,1}n

ctx + yt(1− Ax) ∀y ∈ Rm

= min
x∈{0,1}n

(ct − ytA)x + yt1 ∀y ∈ Rm
(2.30)

and a set of linear programs

L(y) = min
0≤x≤1

ctx + yt(1− Ax) ∀y ∈ Rm

= min
0≤x≤1

(ct − ytA)x + yt1 ∀y ∈ Rm,
(2.31)

i.e., the Lagrangian relaxation of SPP is maxy L̂(y) and for SPPLP maxy L(y),
where for each y an optimal solution x(y) of both Lagrangian functions can be
easily obtained using the reduced cost c t = (ct − ytA) as follows:

x(y)
j :=











0 if cj > 0
0 or 1 if cj = 0
1 if cj < 0.

∀j (2.32)

SPPLP, maxy L(y), and maxy L̂(y) have the following relationship.

Theorem 2.2.

min
Ax=1
x≤1
x≥0

ctx = max
y

L(y) = max
y

L̂(y) (2.33)
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Proof. The first equation uses the duality theorem of linear programming, which
is for example stated in Löbel [1998].

max
y

L(y) = max
y

[

yt1 +
{

min
0≤x≤1

(ct − ytA)x
}]

duality thm

= max
y



yt1 +







max
vt≤ct−ytA

v≤0

vt1











z := −v= max
ytA−zt≤ct

z≥0

yt1− zt1

duality thm

= min
Ax=1
−x≥−1

x≥0

ctx

= min
Ax=1
x≤1
x≥0

ctx

(2.34)

The second equation holds since for each y

L̂(y) = min
x∈{0,1}n

(ct − ytA)x + yt1

conv({0,1}n)

={x|0≤x≤1}

= min
0≤x≤1

(ct − ytA)x + yt1

= L(y).

(2.35)

This theorem and Lemma 2.1 imply that the three optimization problems SPPLP,
maxy L(y), and maxy L̂(y) yield lower bounds for SPP of equal quality. Due to
the fact that L and L̂ are describing the same optimization problem (see proof of
Theorem 2.2) we will consider just one of them, say L. Consequently, we have two
optimization problems of different types, namely, SPPLP and maxy L(y), which
yield the same optimal objective value. We solve SPPLP by the dual simplex
method and an interior point method of CPLEX as state-of-the-art references.

In the case of maxy L(y) we wish to maximize a bounded, concave, and piece-
wise linear function, which is not differentiable. Therefore, we have to fall back
on general non-differential optimization methods like subgradient methods or
ascent methods. In the following sections we will discuss both approaches.

2.2.3.1 Subgradient Bundle Method--SBM

The subgradient method is a generalization of the well-known Gauss al-
gorithm for convex and differentiable optimization (see Bertsekas [1995]) to a
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more general non-differentiable setting. Like the Gauss method, the subgradient
method approaches the global optimum in a sequence of line searches along ap-
propriate descent directions. The main difference is the choice of these directions.
The gradient, which is used by the Gauss method, does in general not exist in
a non-differential setting, i.e., this method can not go further, but the subgra-
dient method can. It resorts to the analogous concept for convex optimization
and descends in the direction of a so-called subgradient, which exist in a convex
(concave) setting. Surveys on subgradient optimization can be found in Bertsekas
[1995]. We will describe in this section the idea of this method for the concave
case, which means that we aim to find ascent directions instead of descending
ones.

Definition 2.1. Let f : Rm 7→ R be some concave function. A vector g ∈ Rm

defines a subgradient of f at yo ∈ Rm if

f(y) ≤ gt(y − yo) + f(yo) ∀y ∈ Rm. (2.36)

The set
δf(yo) := {g ∈ Rm|g is a subgradient of f at yo} (2.37)

is called subdifferential of f at yo.

In Figure 2.2 and 2.3 we illustrate these concepts. In the first figure f is a

yo
y

h

f

Figure 2.2: A differentiable function

concave and differentiable function in y, whereas in the second figure f is con-
cave but non-differentiable. In the beginning of this section we have mentioned
that the subgradient method is a generalization of the gradient method. In the
differentiable case in Figure 2.2 we can see this relationship by the fact that the
gradient at yo coincides with the subgradient at yo. We indicate this subgradient
g at yo by a single function h(y) := gt(y − yo) + f(yo).
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yo
y

f

Figure 2.3: A non-differentiable function

In the non-differentiable case (see Figure 2.3) a gradient at yo does not exists, but
instead it is possible to obtain a continuum of subgradients, which is represented
by the gray area. It arises the question how the subdifferential of the Lagrangian
function L can be determined for each y. We show this in the following theorem.

Theorem 2.3. Let X := {Ax = b ∧ Bx ≤ d ∧ x ≥ 0} and L the Lagrangian
relaxation of LP. For a given yo ∈ Rm let X(yo) be defined as X(yo) := {x ∈
X|L(yo) = ctx + y t

o (b− Ax)}. It holds

δL(yo) = conv{b− Ax| ∀ x ∈ X(yo)}. (2.38)

Proof. We have to show two cases.

1. δL(yo) ⊇ conv{b− Ax| ∀ x ∈ X(yo)}:

It holds for all y ∈ Rm and all x̃ ∈ X(yo)

L(y)− L(yo) = min
0≤x≤1

ctx + yt(b− Ax) − min
0≤x≤1

ctx + y t
o (b− Ax)

= min
0≤x≤1

ctx + yt(b− Ax) −
(

ctx̃ + y t
o (b− Ax̃)

)

≤ ctx̃ + yt(b− Ax̃) −
(

ctx̃ + y t
o (b− Ax̃)

)

= (b− Ax̃) t (y − yo),
(2.39)

which implies that for all y, yo ∈ Rm, and x ∈ X(yo) the subgradient inequal-
ity (2.36) holds.

2. δL(yo) ⊆ conv{b− Ax| ∀ x ∈ X(yo)}:

We will present an indirect proof by assuming u ∈ δL(yo), but u 6∈ conv{b−
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Ax| ∀x ∈ X(yo)}. The sets {u} and conv{b−Ax| ∀x ∈ X(yo)} are convex and
closed. From the theory of convex sets (see Hiriart-Urruty and Lemaréchal
[1993a]) we know that a hyper-plane exists, which separates both sets, i.e.,
there exists a vector ỹ with ỹ tu < ỹ tv for all v ∈ conv{b−Ax| ∀x ∈ X(yo)}.
Set y := yo + α ỹ with α ∈ R and consider

L(y) = min
x∈X

ctx + yt(b− Ax)

= min
x∈X

ctx + (yo + α ỹ)t(b− Ax)

= min
x∈X

(ct − y t
o A− α ỹ tA)x + (yo + α ỹ)tb

(2.40)

and

L(yo) = min
x∈X

ctx + y t
o (b− Ax)

= min
x∈X

(ct − y t
o A)x + yt

ob.
(2.41)

The reduced costs of both programs differ by the term −α ỹ tA. Let J ⊆
{1, . . . , n}, such that j ∈ J if and only if (ct − y t

o A)j 6= 0. Furthermore
let p := minj∈J |(ct − y t

o A)j|. If we choose α such that | − α ỹ tA| < p
then the term −α ỹ tA does not change the sign of the reduced costs, which
are non-zero. If all reduced costs were non-zero this would imply that
X(y) = X(yo). But in general there exist reduced costs, which are zero,
therefore the conclusion is X(y) ⊆ X(yo). In this case it holds

L(y) = min
x∈X

ctx + (yo + α ỹ) t(b− Ax)

X(y)⊆X(yo)= min
x∈X(yo)

ctx + (yo + α ỹ) t(b− Ax)

x∗opt.
= ctx∗ + y t

o (b− Ax∗) + α ỹ t(b− Ax∗)

x∗∈X(yo)

> ctx∗ + y t
o (b− Ax∗) + α ỹ tu

=

[

min
x∈X

ctx + y t
o (b− Ax)

]

+ (y − yo) tu

= L(yo) + (y − yo) tu,

(2.42)

which implies L(y) > L(yo) + (y − yo) tu in a small enough neighborhood
of yo, which contradicts the assumption u ∈ δL(yo). Therefore, it holds
δL(yo) ⊆ conv({b− Ax| ∀ x ∈ X(yo)}).
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Remark 2.6. In the case of SPP the subdifferential is defined as δL(yo) = conv({1−
Ax| ∀ x ∈ X(yo)}).
It is a well-known fact that the gradient for differentiable functions yields an as-
cent direction, but a subgradient is not necessarily an ascent direction. In Figure
2.4 we show such a case, where the contours of a concave function are illustrated.
Note that this function is non-differentiable. At the left corner we indicate three
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Figure 2.4: Non-ascent subgradient directions

elements of the corresponding subdifferential by three vectors. The middle vector
represents an ascent subgradient, whereas both outer vectors represents subgradi-
ents, which are non-ascending. Nevertheless, subgradients have a nice property.
Subgradients are in an acute angle with the direction toward the optimal set.
That means if we take appropriate small step-sizes along these subgradients in
Euclidean space then the distance between the current point and the optimal ones
can be decreased step by step (see Bazaraa, Sherali, and Shetty [1993]). This im-
plies that methods, which use arbitrary subgradients and appropriate step-sizes,
approach optimal points monotonely with respect to the Euclidean distance.

The next theorem shows how the subdifferential indicates optimality in the non-
differentiable case. It is a generalization of the well-known fact that a point y∗

maximizes a concave differentiable function f , if the first order derivative of f at
y∗ is zero.

Theorem 2.4. Let f be a concave function then it holds

0 ∈ δf(y∗) if and only if f reaches its maximum in y∗.

Proof. If 0 is a subgradient of f at y∗ then it holds

f(y) ≤ f(y∗) + 0t(y − y∗) = f(y∗) ∀y ∈ Rm, (2.43)
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which is equivalent to
max

y
f(y) = f(y∗) (2.44)

Now, we have described all ingredients to formulate a generic version of the basic
subgradient method.

INPUT: 1. Concave function f : Rm 7→ R
2. Start vector y(0)

3. p ∈ N
4. 0 < ε ∈ R

OUTPUT: An optimal or ’nearly’ optimal vector y∗ and its function value f(y∗)

1: Obtain subgradient g(0) ∈ δf(y(0)).
2: k := 0
3: while 0 6∈ δf(yk) and the last p improvements of the function value are not smaller

than ε do

4: y(k+1) := y(k) + s(k) g(k)

‖g(k)‖
5: k := k + 1
6: Obtain subgradient g(k) ∈ δf(y(k)).
7: end while
8: Return y(k) and f(y(k)).

Algorithm 1: Subgradient Method

The progression of the basic subgradient method depends on the choice of the
step-sizes s(k). Polyak [1967] has shown that for the following step-size criteria
this method using only the stop criterion 0 6∈ δf(yk) converges to an optimal
solution. Note that in this case the subgradient method could take infinitely
many steps.

Theorem 2.5. Let f : Rm 7→ R be bounded from above and concave. Further-
more, let g(k) be a subgradient of f at y(k) ∈ Rm. If the sequence {s(k)}k∈N meets
the properties

1. s(k) > 0 s(k) ∈ R ∀k ∈ N

2. lim
k→∞

s(k) = 0

3.
∞
∑

k=0
s(k) = ∞ ,

then the basic subgradient method as described in Algorithm 1 produces a sequence
{y(k)}k∈N such that

lim
k→∞

f(y(k)) = max
y

f(y).
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f(yk)

k

Figure 2.5: Practical behavior of the basic subgradient method

Practically these step-size criteria do not lead to a satisfying convergence rate.
In Figure 2.5 a typical progress of the basic subgradient method using such step-
sizes is illustrated. In the beginning the improvement rate of the objective value
of f is satisfying, but in the long run the improvements begin to fluctuate. This
means that theoretical convergence takes seldomly place. Therefore, many meth-
ods use heuristical step-sizes in order to get at least faster improvements. These
heuristical step-sizes do not necessarily fulfill every criterion proposed by Polyak
[1967] (see for example Caprara, Fischetti, and Toth [1996] or Kokott and Löbel
[1996]), but they lead to satisfying results.

In addition to the choice of step-sizes, there exist further possibilities to reach
fast improvements. We will present two main ideas.

Minimum Norm We could choose a subgradient with the lowest Euclidean
norm. Bazaraa, Sherali, and Shetty [1993] have shown that this particular sub-
gradient forms the steepest ascent direction. In combination with a suitable
step-size s(k) ∈ R+ the update formula y(k+1) := y(k) + s(k)/‖g(k)‖ g(k) leads to a
strict improvement of the objective value, i.e., f(y(k)) < f(y(k+1)).

Bundle Methods In some cases it is too time-consuming to calculate the whole
subdifferential in order to determine a minimum norm subgradient. Moreover,
the basic subgradient method often produces a sequence of y(k), which proceeds
in a ’zig-zag’ course to the optimal point. A technique called bundling tries to
overcome both problems as follows. Instead of using a single subgradient at each
iteration, we use a weighted combination of several elements of the subdifferential
or several subgradients, which were used in previous iterations. By this we try to
approximate a minimum norm subgradient and hope to avoid ’zig-zag’ courses.
Note that bundling is only a heuristic, but in practice this idea is worth trying
(see Crowder [1976] and Kokott and Löbel [1996]). For more information the
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reader is referred to Hiriart-Urruty and Lemaréchal [1993b].

We apply the bundle technique to improve the basic subgradient method. In our
implementation we use

g̃ (k) := 0.6 g(k) + 0.2 g(k−1) + 0.1 g(k−2) + 0.1 g(k−3), (2.45)

as the new step direction, where the initial subgradients g(−1), g(−2), and g(−3)

are set to the first calculated subgradient g(0). In this case, the bundling effect
starts with the second iteration. It turns out that this setting of weights seems
to be robust. Using these thoughts, we get the following algorithm that we call
subgradient bundle method SBM.

INPUT: 1. f : Rm 7→ R
2. Start vector y(0)

3. p ∈ N
4. 0 < ε ∈ R

OUTPUT: An optimal or ’nearly’ optimal vector y∗ and its function value f(y∗)

1: Obtain subgradient g(0) ∈ δf(y(0)).
2: g(−3) := g(−2) := g(−1) := g(0)

3: k := 0
4: while 0 6∈ δf(yk) and the last p improvements of the function value are not smaller

than ε do
5: g̃ (k) := 0.6 g(k) + 0.2 g(k−1) + 0.1 g(k−2) + 0.1 g(k−3)

6: y(k+1) := y(k) + s(k) g̃(k)

‖g̃(k)‖
7: k := k + 1
8: Obtain subgradient g(k) ∈ δf(y(0)).
9: end while

10: Return y(k) and f(y(k)).

Algorithm 2: SBM Algorithm

As for the basic case heuristical step-sizes lead empirically to better results than
those proposed by Polyak [1967].

Remark 2.7. Beside set partitioning the set covering model is also used in prac-
tice. The only difference between both models is that the latter one deals with
the constraint Ax ≥ 1 instead of Ax = 1. The Lagrangian relaxation of both
are similar, therefore we can also consider applications of set covering problems
for describing state-of-the-art applications of set partitioning. In this respect, the
FASTER competition is worth mentioning. In 1994 the Italian Railway Company
and Italian Operational Research Society organized this competition, where set
covering instances consisting of up to 5000 rows and 1 million columns and aris-
ing from crew scheduling problems for this railway company should be solved.
Note that although set partitioning and set covering are similar the size limits
of set covering instances are greater than those of the set partitioning instances.
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Two successful competitors are Ceria, Nobili, and Sassano [1995] and Caprara,
Fischetti, and Toth [1996], who got the first prize. Caprara, Fischetti, and Toth
[1996] have used among other things a subgradient method, which has in each
step a linear complexity in the number of non-zeros of the matrix A.

2.2.3.2 Coordinate Ascent Method--CAM

Another approach to solving maximization problems of non-differentiable func-
tions is called ascent methods (see Bertsekas [1995]). As other line search
methods they reduce the often higher-dimensional problem to one-dimensional
problems by maximizing in ascent directions. The question is how to get such
directions. A possibility is to ascend along a number of fixed directions.

One method, which uses fixed directions, is called coordinate ascent method
(see Wedelin [1995]), which proceeds along coordinate directions. We will refer
to this method by CAM. Unfortunately, there is a fundamental difficulty with
fixed line ascent methods. It is possible to get stuck at a corner, from which it is
impossible to make progress along any fixed direction, i.e., these methods are in
general not globally convergent. We illustrate this problem in Figure 2.6. Here,
the same contours of the concave function used in Figure 2.4 are plotted. But in
this case only the coordinate directions indicated by both vectors can be consid-
ered by the coordinate ascent method. It can be seen that both directions are
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Figure 2.6: Getting stuck at a corner

descending though the maximum has not been reached. Hence, the coordinate
ascent method gets stuck at this corner.

Furthermore, convergence may be slow. An example of such a situation is shown
in Figure 2.7. In this figure the lines are projections of the edges of a concave and
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y2

y1

Figure 2.7: Slow convergence

piecewise linear function on its domain. The gray set indicates the set of points,
where the concave function reaches its maximum, i.e., over this set the function
forms a plateau. We see that the speed of convergence, which is indicated by
the thick-lined course, depends on the distance between the three parallel lines.
The speed of convergence could also slow down if many of such projections clus-
ter around the optimal set such that the ’zig-zag’ course would become more
extreme. We call a location, which is clustered in that way, degenerated. A
problem, which has a large number of such locations, is called a degenerated prob-
lem. Real-world problems are often highly degenerated, especially around the set
of optimal points. Therefore, the coordinate ascent method can slow down the
nearer it gets to an optimal solution.

A possible approach, which overcomes both problems, is called spacer steps
(see Luenberger [1989]). The idea consists of inserting infinitely many steps of
a convergent algorithm (such as the subgradient method) in order to reach a
theoretical convergence. The only requirement imposed on the iterations of the
original algorithms is that it must not take decreasing steps, which is met by
the coordinate ascent method. Therefore, spacer steps can be built in, especially
whenever this method gets stuck at a corner or the convergence rate deteriorates.

The main advantages of the coordinate ascent method over other line search
methods are the basic operations, which are not very complex (see Bertsekas
[1995]), and its good performance. We will show this in the following sections.

The Method We consider equation (2.31):

L(y) = min
0≤x≤1

(ct − ytA)x + yt1
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In this work we are mainly interested in finding the optimal objective value L(y∗).
Therefore, we focus on finding either an optimal Lagrangian multiplier solution or
at least a good approximation of it in order to obtain a good lower bound for SPP.

We now explain how yi, which is the ith component of vector y, is computed.
The calculation is repeated for all possible i. Let i ∈ {1, . . . , m} be fixed and
let supp(i) be the support of row i, i.e., supp(i) := {j|aij = 1}, where aij is the
element in the ith row and jth column of matrix A. Furthermore, for each fixed
row i let r1 be the lowest and r2 be the second lowest reduced cost of supp(i).
The update formula for yi is

yi := yi +
[

r1 + p (r2 − r1)
]

cj := cj −
[

r1 + p (r2 − r1)
]

∀j ∈ supp(i),

(2.46)

where p ∈ (0, 1). If supp(i) = 1 then we set r2 := r1. Using (2.46) we obtain the
following lemma

Lemma 2.2. If yi and cj ∀j ∈ supp(i) are updated as in (2.46), then there exists
an optimal solution x(y) of L(y), which fulfills the ith constraint of Ax(y) = 1,
i.e., a t

i x
(y) = 1, where ai defines the ith row of matrix A.

Proof. Considering (2.32) we only have to show that after the update of c, either
there exists exactly one j ∈ supp(i) with cj < 0 or at least one j ∈ supp(i) with
cj = 0 and c ≥ 0. In the first case all feasible solutions x of L(y) would have a
component, which would equal 1 for exactly one j ∈ supp(i). In the second case
we can construct a feasible solution of L(y), where the solution would have the
same property like the solution in the first case. By showing these cases the proof
would be concluded.

Let c (old)
j denote the reduced cost of variable x(y)

j before the update and c (new)
j the

new reduced cost for all j ∈ supp(i) afterwards. We will distinguish two cases.

1. r1 6= r2:
If r1 6= r2, then it holds by definition of r1 and r2 that r1 < r2. The definition
of c (old)

j yields that c (old)
j∗ = r1 for a index j∗ ∈ supp(i). Therefore, we obtain

c (new)
j∗ = c (old)

j∗ −
[

r1 + p (r2 − r1)
]

= r1 −
[

r1 + p (r2 − r1)
]

= p (r1 − r2)

< 0.

(2.47)
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For any other index j ∈ supp(i) with j 6= j∗ it holds by definition c (old)
j ≥ r2.

This yields

c (new)
j = c (old)

j −
[

r1 + p (r2 − r1)
]

≥ r2 −
[

r1 + p (r2 − r1)
]

= (1− p) (r2 − r1)

> 0.

(2.48)

2. r1 = r2:
In (2.47) and (2.48) we obtain equality in the last equation because of
r1 = r2. That means that c (new)

j∗ = 0 and c (new)
j ≥ 0 ∀j ∈ supp(i).

The proof of Lemma 2.2 implies the following update algorithm for the ith entry
of y(k+1).

INPUT: 1. L : Rm 7→ R
2. y(k)

i

3. c (k)

4. p ∈ (0, 1)

OUTPUT: 1. y(k+1)
i

2. c (k+1)

3. L(y(k+1))

1: Let r1 and r2 be the lowest and second lowest reduced cost of supp(i)

2: ∆yi := r1 + p (r2 − r1)

3: y(k+1)
i := y(k)

i + ∆yi

4: for all j ∈ supp(i) do

5: c (k+1)
j := c(k)

j − ∆yi

6: end for

7: L(y(k+1)) :=
∑

j : c (k+1)
j <0

c (k+1)
j +

∑

i=1,...,n
y(k+1)

i

8: Return y(k+1) and f(y(k+1)).

Algorithm 3: Update algorithm of y(k+1)
i

In the next lemma we show that the update of the reduced cost is correct.

Lemma 2.3. c (k+1) evaluated in Algorithm 3 corresponds to the reduced cost with
respect to y(k+1), i.e., c (k+1)t equals ct − y(k+1)tA.
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Proof. It holds

ct − y(k+1)tA
step (3)

= ct − y(k)tA− ∆yi ai. (2.49)

Therefore, it follows for all j ∈ {1, . . . , n}

(ct − y(k+1)tA)j =







c(k)
j − ∆yi if j ∈ supp(i)

c(k)
j if j 6∈ supp(i).

(2.50)

Step 4 until step 6 finally imply the assertion.

Geometric Interpretation Theorem 2.1 shows that L is a concave and piece-
wise linear function. We will illustrate, how CAM—using the update algorithm
for each row as described in Algorithm 3—proceeds.

For each y the ith partial derivative can be written as

δL(y)
δyi

= 1− a t
i x

(y), (2.51)

where x(y) is an optimal solution to L(y). The existence of the partial derivative
is guaranteed by the fact that function L is a piecewise linear and continuous
function. This means that at each y there exists for all yi at least a one-sided
partial derivative. As in the previous section shown yi is chosen such that the
optimal solution x(y) satisfies a t

i x
(y) = 1, which yields δL(y)

δyi
= 0. Since L is

concave we may therefore conclude that y is also a maximum point along the yi-
axis. Note that p determines the location on that plateau along yi. If for example
p = 0.5 then the new point would be at the middle of the corresponding plateau.

Example 2.1. We consider the problem

max 6x1 + 9x2 + 2x3 + 3x4 + 5x5 + 2x6 + 5x7

x1 + x2 + x3 + x4 + x5 = 1
x1 + x2 + x6 + x7 = 1

0 ≤ x ≤ 1.

(2.52)

With respect to (2.11) the corresponding cost vector ct is

ct = (6, 9, 2, 3, 5, 2, 5)

and the corresponding matrix A is

A =
(

1 1 1 1 1 0 0
1 1 0 0 0 1 1

)

.

Since we have two constraints L becomes a function of two variables, say
( y1

y2

)

=: y.
Figure 2.8 illustrates function L in Lagrangian multiplier space. The lines corre-
spond to the constraints (ct − ytA)j = 0, which divide the Lagrangian multiplier
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Figure 2.8: The constraints (ct − ytA)j = 0 in Lagrangian multiplier space

space in several sets. Each set represents a set of points y, which have the com-
mon property of yielding the same optimal solutions x to L(y). For example
{y|yi ≥ 5 ∀i = {1, 2}} is such a set. The calculation of the corresponding so-
lution x(y) can be done in the following manner. (7, 7) is an element of the set
{y|yi ≥ 5 ∀i = {1, 2}}. It holds

L(
(

7
7

)

) = min
0≤x≤1

(ct −
(

7
7

)tA)x +
(

7
7

)t1

= min
0≤x≤1

(−8,−5,−5,−4,−2,−5,−2) x + 14,
(2.53)

which implies that the solution with respect to set {y|yi ≥ 5 ∀i = {1, 2}} is 1.
This holds for all y ∈ {y|yi ≥ 5 ∀i = {1, 2}} because the corresponding reduced
cost has only strictly negative entries. It holds Ax(y) = A1 = (5, 4)t, i.e., the set
{y|yi ≥ 5 ∀i = {1, 2}} is associated with the pair (5, 4). We can conclude that
each such set corresponds to a unique pair (a t

1x
(y), a t

2x
(y)). At points, which lie

on one or more lines, the corresponding solution x(y) is not unique because at
least one component of the corresponding reduced cost is zero. In this case there
exist at least two possible optimal solutions x(y). This implies that such points
do not yield unique pairs (a t

1x
(y), a t

2x
(y)).

In Figure 2.9 we illustrate the plot of L, the constraints (ct − ytA)j = 0 by lines
at the bottom of the plot and the pairs associated with each set, which result
from these constraints. Note that these lines at the bottom of the plot are in fact
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projections of the edges of L on the domain of L or Lagrangian multiplier space,
respectively. However, from any point CAM proceeds horizontally (or vertically)
until a set is reached, which has a 1 in the first (or second) entry. That means
that from any point we move either in y1-coordinate direction until we reach a
y, where the corresponding optimal solution x(y) fulfills the first constraint of
(2.52) or in y2-coordinate direction until we reach a y, where the corresponding
optimal solution x(y) fulfills the second constraint of (2.52). We interchangeably
repeat this iteration until the set (1, 1) is reached, which corresponds to the set
of optimal variables y∗.

The explanation for the optimality of set (1, 1) is as follows. Let Y be the set of
y variables associated with set (1, 1), where y∗ ∈ Y . It is not hard to see that
x(y∗) t = (0, 0, 1, 0, 0, 1, 0) is the corresponding solution to set (1, 1). However, this
solution is feasible to (2.52). That means particularly that Ax(y∗) = 1. Therefore,
it holds for all y ∈ Y

L(y) = ctx(y∗) + yt(1− Ax(y∗))

Ax(y∗)=1= ctx(y∗) + yt0

= ctx(y∗)

= 4.

(2.54)

Note that L has the same value for all y ∈ Y , therefore L forms a plateau over the
set (1, 1) (see Figure 2.9). That means that L yields its maximum over this set. In
(2.54) we have calculated that L(y∗) = 4 is a lower bound for problem (2.52). Fur-
thermore, this lower bound equals the objective value of a primal solution of the
original problem, namely, x(y∗). Therefore, the solution x(y∗) = (0, 0, 1, 0, 0, 1, 0) t

associated with the set (1, 1) is an optimal solution of problem (2.52).

In Figure 2.10 and Figure 2.11 we illustrate two possible courses for p = 0.5.
Let us start for example at y(0) :=

(

8.5
6

)

, and assume that we first move along
the y1-axis. We have already mentioned that for p = 0.5 the algorithm always
chooses the middle of the plateau along the considered axis. In this case we go
from

(

8.5
6

)

to
(

1
6

)

=: y(1), because over the line from (0,6) to (2,6) L defines a
plateau. Note that y(1) is an element of set (1,3), i.e., the first entry equals 1.
After three of those iterations we reach the optimal set (1, 1). Another possibility
would be to move first in y2-coordinate direction. Again, after 3 iterations we
reach the optimal set (1, 1) (see Figure 2.11).

In higher dimensional problems the set of global maximum points Y forms a
polyhedron in Lagrangian multiplier space. However, L attains a constant value
for all y ∈ Y . Let us assume first that the polyhedron is full-dimensional. Using
the fact that L is a concave and piecewise linear function we can conclude that
all y ∈ Y are optimal Lagrangian multipliers (see Luenberger [1989]). Optimal-
ity can also be proved by the subgradient theory. For all y ∈ Y , which are inner
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Figure 2.10: CAM run—starting with y1
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points of Y , it holds ∇L(y) = 0. We have already shown that ∇L(y) can be iden-
tified as a subdifferential of L at y. For the inner points y ∈ Y the corresponding
subdifferential consist only of the zero vector and by Theorem 2.4 optimality is
proven for this case.

It could also happen that the dimension of the polyhedron corresponding to the
set of the optimal variables y∗ is not full-dimensional. In that case, at least one
component of the reduced cost with respect to y∗ is zero. I.e., the corresponding
solution would not be unique, but this would not have any impacts on the opti-
mality of L(y∗). In the full-dimensional case we can recognize the optimality of
y∗ since ∇L(y∗) = 0. But if the optimal polyhedron is not full-dimensional, it
could be very time-consuming to check whether we have reached optimality or not
since ∇L(y) could be a polyhedron with exponentially many vertices. In order to
avoid this we use a heuristic stop criterion. We check regularly the improvement
of the lower bound and if the improvements get too small the algorithm has to
be terminated.

Convergence Aspects We have explained in the beginning of this section
why CAM is in general not convergent. It arises the question, whether the set
partitioning problem forms an exception to this rule. In order to answer this
question we have to check whether it is possible that a non-optimal Lagrangian
multiplier vector exists, where the corresponding ∆yi is zero for all i ∈ {1, . . . ,m},
i.e., we have to check whether at a non-optimal y the update algorithm described
in Algorithm 3 could lead to

∆yi = r1 + p (r2 − r1) = 0 ∀i ∈ {1, . . . , m}. (2.55)

There exist two cases.

1. r1 6= r2 ∀i ∈ 1, . . . , m:
If r1 6= r2, then we can state p as follows

r1 + p (r2 − r1) = 0

⇔ p = −r1
r2 − r1

⇔ p = r1
r1 − r2

.

(2.56)

We assumed r1 6= r2 and by definition of r1 and r2 it holds r1 ≤ r2. This
implies that r1 < r2 or r1 − r2 < 0, which leads to p < 0. This contradicts
to p ∈ (0, 1), therefore ∆yi 6= 0 if r1 6= r2.

2. r1 = r2 ∀i ∈ 1, . . . , m:
This case yields p = −r1. If (−r1) ∈ (0, 1) we can perturb p in order to
avoid getting stuck. If (−r1) 6∈ (0, 1) and r1 is non-zero then ∆yi is non-zero,
i.e., we are able to proceed, but if r1 is zero, which yields that r2 is zero,
too, then ∆yi is also zero.
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Our considerations imply that the update algorithm produces ∆yi = 0 if and only
if r1 = r2 = 0. This means geometrically that the corresponding Lagrangian mul-
tiplier vector y is located at the maximal vertex along the considered axis, i.e.,
we can not even move to a point, which yields the same lower bound along this
axis. If this happens for all axes, we have either reached optimality or we have
fallen into a local trap, from which we can not make any improvements along the
axes.

This geometric intuition is algebraically substantiated as follows. If for a La-
grangian multiplier vector y the equation r1 = r2 = 0 holds for all i ∈ {1, . . . , m}
then it follows that for a set of columns the reduced costs are zero and for the
other columns they are greater than zero or equal zero. We assume that they are
strictly greater than zero. In this case the corresponding entry of x(y) is zero. For
the columns with zero reduced costs we can choose whether the corresponding
entry of x(y) should be zero or one. In other words we get a feasibility problem of
our set partitioning problem. If this feasibility problem has a solution, then we
have reached optimality. The reason for that is that in this case 1 − Ax(y) = 0
holds, i.e., the zero vector would be an element of the subdifferential, which im-
plies by Theorem 2.4 optimality. If the considered feasibility problem has no
solution, then 1 − Ax(y) 6= 0. In this case Theorem 2.4 proves that we have not
reached optimality, which means that it holds ∆y = 0 and 1−Ax(y) 6= 0, i.e., we
have got stuck at a corner.

By this consideration we can construct a counterexample. We need a matrix
A, which implies at least one feasible solution. Furthermore, A must contain a
sub-matrix consisting of columns of A with at least two non-zero entries in each
row. A possible matrix is





1 1 0 0
0 1 1 0
1 0 1 1





We will use the first three columns as the sub-matrix mentioned above. Next, we
need a cost vector and Lagrangian multipliers. They must yield reduced costs of
zero for the first three columns and for example a reduced cost of one for the last
column. These demands can be satisfied by the following system of equations:

c1 − y1 − y3 = 0 (= c1)
c2 − y1 − y2 = 0 (= c2)
c3 − y2 − y3 = 0 (= c3)
c4 − y3 = 1 (= c4).

(2.57)

In this system we have four equations and seven variables. If we set y1 := y2 :=
y3 := 1 we get a cost vector of (2, 2, 2, 2). The resulting optimization problem has
only one feasible primal solution, namely, x∗ = (0, 1, 0, 1)t. This implies that this
solution is also an optimal solution. The corresponding optimal objective value
is 4.
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Now we consider the Lagrangian relaxation of this problem at (y1, y2, y3) =
(1, 1, 1). Due to our construction CAM can not move further, but it is easy
to show that L( (1, 1, 1) t ) equals 3. This means that we have not reached the
maximum of L. Therefore, CAM has got stuck at this corner. By this we have
proven that CAM is not globally convergent for set partitioning problems.

In the next section we describe the last type of methods for determining linear
programming bounds, which is called surrogate relaxation methods.

2.2.4 Surrogate Relaxation Methods

We consider linear programs of the form

min c(x)
A x = b

x ≤ d
x ≥ 0,

(2.58)

where c is a cost function in x. Note that in the case of LP the cost function c is
linear. The corresponding Lagrangian relaxation has the form

max
y

L̂(y) = max
y

min
x≤d
x≥0

c(x) + yt(b− Ax). (2.59)

As the Lagrangian relaxation the surrogate relaxation method maximizes
over a set of functions, but in this case they are defined as

ˆ̂L(y, x) := c(x) + yt(b− Ax), (2.60)

where x ≤ d, x ≥ 0, and y denotes the surrogate multiplier vector. These
functions are called surrogate functions. Note the important differences be-
tween surrogate and Lagrangian functions. The surrogate function depends on
both variables x and y, whereas the Lagrangian function depends only on y
because vector x depends on y. Therefore, the surrogate relaxation is a general-
ization of the Lagrangian relaxation. The reader should not be confused because
of the two names of y. We call y a Lagrangian multiplier vector with respect to
the Lagrangian relaxed problem and a surrogate multiplier vector with respect
to the surrogate relaxed problem. By this, we emphasize that both methods
deal with the same y, but in different manners. A method, which resolves the
surrogate relaxation method, is called surrogate subgradient method. This
method is related to the subgradient method, which solves the Lagrangian
relaxed problem. In the next section we will explain how surrogate subgradient
methods work.
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2.2.4.1 Surrogate Subgradient Methods

Consider

min c(x)
A x = b

x ≤ d
x ≥ 0 .

(2.61)

Note that c must not be linear in x. We decompose x := (x(1), . . . , x(l)), c(x) :=
(c(1)(x), . . . , c(l)(x)), A := (A(1), . . . ,A(l)), and d := (d(1), . . . , d(l)). Thus, the
Lagrangian function, which has the structure

L̂(y) := min
x≤d
x≥0

c(x) + yt(b− Ax) (2.62)

can be rewritten in terms of l individual subproblems:

L̂j(y) = min
x(j)≤d(j)

x(j)≥0

c(j)(x(j))− ytA(j)x(j) j ∈ 1, . . . , l (2.63)

L̂(y) =
l

∑

j=1

L̂j(y) + ytb. (2.64)

Thus the Lagrangian relaxation can be formulated as

max
y

L̂(y) = max
y

l
∑

j=1

L̂j(y) + ytb. (2.65)

As mentioned before problem (2.65) can be solved by subgradient methods, where
subgradients are in acute angle with the direction toward y∗, and the distance
between the current multipliers and the optimal y∗ can be decreased step by step.
However, in order to get a subgradient, we have to solve all subproblems, which
could be very time-consuming, especially for problems of large size. Therefore,
it is desirable to obtain a proper direction with less effort. The main idea of
the surrogate subgradient method is to obtain such directions, which we will call
surrogate subgradient directions, without solving all the subproblems.

For the surrogate function of (2.58) the corresponding surrogate subgradient can
be introduced as

g̃x := b− Ax, (2.66)

where x ≤ d and x ≥ 0 is fixed but arbitrary. Luh, Wang, and Zhao [1999]
have shown that, if the surrogate function is less than L̂(y∗), then the surrogate
subgradient is in acute angle with the direction towards y∗; therefore it is a proper
direction.
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Lemma 2.4. Given the current point (y(k), x(k)), if the surrogate function is less
than the optimal value of the Lagrangian relaxation, i.e.,

ˆ̂L(y(k), x(k)) < L̂(y∗) (2.67)

then the surrogate subgradient satisfies

0 ≤ L̂(y∗)− ˆ̂L(y(k), x(k)) ≤ (y∗ − y(k)) t(b− Ax(k)) (2.68)

This lemma implies that it is possible to find a proper direction and that the dis-
tance between the current multipliers and the optimal y∗ can be decreased step
by step, if an appropriate step-size is used. Due to the similarity of the surro-
gate subgradient method to the subgradient method the step-criteria described in
Theorem 2.5 are also suited to the former subgradient method. This fact leads to
the following surrogate subgradient method, where ‖ . . . ‖ denotes the Euclidean
norm.

INPUT: 1. Concave function L̂ : Rm 7→ R
2. Start vector y(0)

3. Termination parameter ε1 and ε2
OUTPUT: An optimal vector y∗ and its function value

1: Let g(0) be a subgradient of L̂ at y(0) with x(0) ∈ X(y(0))

2: Set ˆ̂g(0) := g(0) and ˆ̂L(y(0), x(0)) := L̂(y(0))

3: k := 0

4: while ‖y(k+1) − y(k)‖ ≥ ε1 and ‖x(k+1) − x(k)‖ ≥ ε2 do
5: y(k+1) := y(k) + s(k) ˆ̂g(k)

6: Perform an ’approximate optimization’ by obtaining x(k+1) such that
ˆ̂L(y(k+1), x(k+1)) < ˆ̂L(y(k+1), x(k)) = ctx(k) + y(k+1) t(b−Ax(k))

7: if such a x(k+1) can not be obtained then
8: x(k+1) := x(k)

9: end if

10: k := k + 1

11: Obtain a surrogate subgradient ˆ̂g(k)

12: end while
Algorithm 4: Surrogate Subgradient Method

Luh, Wang, and Zhao [1999] have shown that this algorithm leads to a sequence
of

{

(y(k), x(k))
}

k∈N, such that the surrogate multipliers move closer to y∗ step by
step. Furthermore it can be shown that if y(k+1) = y(k) and x(k+1) = x(k), then

L̂(y(k)) = L̂(y∗) (2.69)

holds and x(k) is the minimum solution of the subproblem L̂y(k). In this case
(y(k), x(k)) would be an optimal solution of the Lagrangian relaxed problem.
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The major difference between the surrogate subgradient method and the subgra-
dient method is that the subgradient method must solve all subproblems in order
to proceed, whereas the surrogate subgradient method needs only an approximate
optimization, which must fulfill

ˆ̂L(y(k+1), x(k+1)) < ˆ̂L(y(k+1), x(k)) = ctx(k) + y(k+1) t(b− Ax(k)). (2.70)

Since there are many ways to implement an approximate optimization, this
method provides a framework allowing creative variations. Compared with solv-
ing all the subproblems, the computational requirements for the approximate
optimization to satisfy (2.70) are much smaller. This can be a computational
saving for problems with complicated subproblems.

The effort to obtain a direction is one thing; the quality of the direction obtained
is another thing. Although it is difficult to quantify the quality of the surrogate
subgradient directions, it can be shown that ’zig-zag’ phenomena that occur often
in the basic subgradient method happen less.

It arises the question whether the surrogate relaxation is worth trying for solving
SPP. We have noticed that computational savings originate from treating many
complicating subproblems differently. SPP consists of many subproblems, but
they are not complicated at all. We do not expect substantial savings from
approximate optimization and have therefore not considered this method in this
work.
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Chapter 3

New Algorithms

3.1 Overview

The result of our literature survey was that for determining good lower bounds for
SPP two methods are worth mentioning, namely, the basic subgradient method
and the coordinate ascent method. The basic subgradient method is an exact
method and many efforts have been made to improve its performance. In this
respect we have extracted the bundling technique from the literature and applied
it. The resulting algorithm is called the subgradient bundle method. The other
class of algorithms are ascent methods. One well-known representative of this
class is the coordinate ascent method. Although this method is not exact it turns
out that it has a good performance. Motivated by the successful application of
the bundle technique to the basic subgradient method we have also used this
technique for developing two variations of the coordinate ascent method. These
new methods are called coordinate convex bundle method and coordinate
bundle method, respectively. Both methods are variations of the coordinate
ascent method because they make use of the information, which are available from
the coordinate ascent method. All in all we have four algorithms for determining
the lower bounds for SPP:

1. SBM—Subgradient bundle method

2. CAM—Coordinate ascent method

3. CCBM—Convex coordinate bundle method

4. CBM—Coordinate bundle method

In the following we describe the new algorithms CCBM and CBM.

3.2 Coordinate Convex Bundle Method--CCBM

Assuming a point in Lagrangian multiplier space CAM chooses one axis and de-
termines the direction and the step-size in order to get to the next iteration point.

39
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A disadvantage is that this method does not use the available information to go
along other axes at the same time. The new approach tries to take this informa-
tion at least partly into account by constructing a new direction from coordinate
directions, which are strictly ascending.

Let y be a non-optimal Lagrangian multiplier vector. For each i ∈ 1, . . . , m we
denote ∆yi as described in step 2 of Algorithm 3, i.e., ∆yi denotes the step-size
along the ith axis to proceed from point y. Let ∆y := (∆y1, . . . , ∆ym)t and ei the
ith unit vector. We will show in the next lemma that

∑m
i=1

∆yi
m ei is an ascent

direction at y.

Lemma 3.1. Let f : Rm 7→ R be some concave function, y ∈ Rm a fixed vector
and ∆y ∈ Rm, such that f(y + ∆yi ei) ≥ f(y) for all i ∈ {1, . . . , m}, where ei is
the ith unit vector. Then f(y +

∑m
i=1

∆yi
m ei) ≥ f(y) holds, i.e.,

∑m
i=1

∆yi
m ei is an

ascent direction of f at y.

Proof. We proof this by induction over the number of descent directions.

k = 1 : trival

k − 1 → k : f(y +
k

∑

i=1

∆yi
k ei)

= f(y + 1
k ∆y1 e1 + k−1

k

k
∑

i=2

∆yi
k−1 ei)

= f( 1
k (y + ∆y1 e1) + k−1

k (y +
k

∑

i=2

∆yi
k−1 ei))

= f( 1
k (y + ∆y1 e1) + (1− 1

k ) (y +
k

∑

i=2

∆yi
k−1 ei))

concavity
≥ 1

k f(y + ∆y1 e1) + (1− 1
k ) f(y +

k
∑

i=2

∆yi
k−1 ei)

induction
≥ 1

k f(y) + (1− 1
k ) f(y)

= f(y)

k = m proves the statement.

By this lemma we have found a method to construct new ascent directions, which
are not restricted to the axes any more. If vector ∆y has 0 < k < m zero entries
then we can neglect them and work on m − k instead on m dimensions. This
result forms the basis of CCBM. In Figure 3.1 we present the effects on Example
2.1. We start at y(0) := (8.5, 6). The gray lines at this point indicates the two
possibilities CAM could use in order to proceed. We take both possibilities into
account by proceeding along the black line, which results from the convex com-
bination of both mentioned gray lines. After two further such iterations we reach
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Figure 3.1: CCBM run

the optimal set. Note that due to the bundling idea the ascent directions seem
to aim more to the optimal polyhedron than the ascent directions of the CAM.

The CAM counterexample, which we have constructed in the last chapter, also
works for CCBM. This means that this method is not convergent, but it is guar-
anteed that it does not take deteriorating steps. Therefore, spacer steps can be
inserted, in order to let this method be globally convergent.

3.3 Coordinate Bundle Method--CBM

CCBM has a disadvantage. The rate of improvement of the lower bound is not
satisfying enough. This happens because the convex sum of ∆yiei aims more in the
direction of the optimum but shortens the step-size at the same time. Due to this
shortening the rate of improvement is low. In order to avoid this we enlarge the
step-size while keeping the computed direction by taking vector ∆yi =

∑m
i=1 yi ei

as the new direction. In this case we still get ascent directions, but now it is
possible to pass the plateau along these directions. In Figure 3.2 it can be seen
that this can happen. We start again at the point (8.5, 6). Note that the black
line has now double length, which lets CBM pass the optimal set. However, only
one further iteration leads to optimality. In general, it turns out that this change
leads empirically to a higher rate of improvement. A disadvantage is that it is
possible that in the neighborhood of the optimal set CBM takes too big steps
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Figure 3.2: CBM run

such that it always passes the optimal set. A solution to this problem would be
to stop this method and continue with a convergent one (like the subgradient
method) when CBM does not lead to significant improvements any more. How-
ever, in most cases this effort is not worthwhile because CBM reaches a good gap
of approximately 0.5 percent.

In practice, by these modifications we get a heuristic, which is not monotone
ascending, but it leads to satisfying results.



Chapter 4

Computational Results

In this chapter we will present the details of our four optimization methods and
their impacts on the performance of our implementations. These details can be
understood as improvement techniques, which have been built in step by step,
i.e., for each algorithm (SBM, CAM, CCBM, and CBM) we present the basic
algorithm and add one improvement after the other. At the end of this chapter
these algorithms will be compared with CPLEX dualopt and CPLEX baropt.

4.1 The Test Bed

Our test bed consists of 8 preprocessed large-scale SPP instances arising from real
world duty scheduling problems. In the following table the size and the optimal
objective values provided by CPLEX dualopt is given. Note that the densities of
the problem matrices are on average under 1%.

Size

Name Rows Cols NZEs Density z∗

ivu41 3570 56867 505195 0.24% 455.93
ivu08 2523 61464 528152 0.34% 347.30
ivu36 1978 40988 493266 0.61% 139.27
ivu37 1978 48138 605873 0.64% 143.56
ivu38 1968 42201 528019 0.64% 116.47
ivu07 1751 59055 590055 0.57% 192.50
ivu28 1295 82422 2375490 2.22% 55.24
ivu06 1177 48058 461360 0.82% 140.18

Table 4.1: Test bed

All instances originate from duty scheduling applications of bus or subway drivers
of some European public transport companies. ivu36, ivu37, and ivu38 are in-

43
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stances of a duty scheduling application of subway drivers of a big Italian city.
The other instances originate from bus driver duty scheduling of companies lo-
cated in Germany.

4.2 General Remarks

4.2.1 Data Structure

The matrix of SPP is a zero-one matrix. Moreover, the density of the matrix of
most instances is very low. Thus, for the representation of this matrix we have
chosen the row and column major format as ordered and contiguous lists of
the non-zero entries (see e.g. CPLEX [1997]). In the column major format we
store the row indices of the non-zero entries of each column. This data can be
saved in a array, say ind[ ]. I.e., ind[ ] contains the indices of the non-zero
entries of the first column, then the indices of the non-zero entries of the second
column, and so on. In order to locate the data of every single column we need
two additional arrays, say beg[ ] and cnt[ ]. Hence, the location of the data of
a particular column in the ind[ ] array works as follows. cnt[j] gives the number
of non-zero entries in column j, and beg[j] denotes the starting index for data of
this column in the array ind[ ].

4.2.2 Initialization

As a starting vector for all algorithms we can choose y(0) = 0, which yields a
lower bound L(0) = 0, but instead of the zero-vector we can also determine y(0)

as follows. We compute the average cost of every column by dividing the cost of
a column by the number of its non-zero entries. For every i we choose as y(0)

i the
lowest average cost of the support of i. This idea was also applied by Caprara,
Fischetti, and Toth [1996].

In Figure 4.1 we illustrate the proportion between the initial lower bound and the
optimum, where the bright-gray bars represents the optimal objective value as
100% and the dark-gray bars indicates the proportion of the initial lower bound
to the optimal objective value. Note that the objective value of the initial start
vector y0 is on average about 75% of the optimum.

4.3 Implementation Details for SBM

4.3.1 Determining a Subgradient

In this section we describe how we determine a subgradient for the Lagrangian
relaxation of SPP. As denoted in (2.31) L is defined as

L(y) = min
0≤x≤1

(ct − ytA)x + yt1.
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ivu41 ivu08 ivu36 ivu37 ivu38 ivu07 ivu28 ivu06

Figure 4.1: Quality of start vector y(0)

We have shown in (2.32) that a solution to L(y) can be easily obtained for each
y by x(y) whose entries are defined by

x(y)
j :=











0 if cj > 0
0 or 1 if cj = 0 ∀j
1 if cj < 0.

We do not calculate the whole subdifferential because in the worst case this
calculation has a complexity of 2n operations, where n could get very large.
Therefore, we have decided to determine a subgradient out of the subdifferential
as follows

x(y)
j :=











0 if cj > 0
0 or 1 (randomly chosen) if cj = 0 ∀j
1 if cj < 0.

(4.1)

4.3.2 Updating the Step-size

A step-size update formula suggested by Held and Karp [1971] is defined by

s(k+1) := α
L− L(y(k))
‖g(k)‖

, (4.2)

where L is an upper bound for the maximum of L and α is a step-size parameter.

Actually, we do not know an upper bound for L. Therefore, we use L(y(0)) (see
Section 4.2.2) and guess an upper bound by L := 2 L(y(0)). If our guess was too
small then we increase L by L(y(0)). We repeat this whenever we get a lower
bound, which is greater than the current value of L. If the primal problem is fea-
sible and bounded then the relaxed problem is bounded, too. I.e., in this case L
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can not increase to infinity. Moreover, Theorem 2.4 implies ‖g(k)‖ ≥ 1 as long the
corresponding multipliers are not optimal. This means that the step-size s(k+1)

has an upper bound unless optimality is reached. In addition it holds that the
step-size gets smaller as the method approaches the set of optimal Lagrangian
multiplier vectors. However, if for whatever reason the estimation of L is too
large, the step-sizes are too large as well. Therefore, we need a factor, which
compensates this.

For this task α is used. The classical approach of Held and Karp [1971] is
α := 0.5α for every p iterations. Our computational experiments revealed that
α := 0.8α for every two consecutive negative improvements of the lower bound
is more promising. Note that this step-size update formula does not necessarily
fulfill every step-size criterion of Theorem 2.5, but this heuristic leads to more
satisfying results. In Figure 4.2 the effects of the settings 0.5 and 0.8 compared.

- - - Using setting 0.5
----- Using setting 0.8

100 200 300 400 500 600

200

250

300

350

Figure 4.2: SBM—Using step-size parameter setting 0.5 and 0.8 for ivu08

Both settings lead to a similar practical behavior of SBM. Nevertheless, there is
an important difference. The settings 0.5 and 0.8 comply with shortening-rates
of α. 0.5 is a higher shortening-rate than 0.8, which means that the step-size can
be shortened faster. This leads to a faster approximation of the step-sizes. A dis-
advantage is that in the long run the step-sizes get too small, which means that
the rate of improvement slows down quickly. 0.8 has a converse character. Since
0.8 is a lower shortening-rate with this setting the performance of SBM is worse
than that using 0.5. But in the long run the rate of improvement is significantly
higher than that of 0.5. Due to our focus on high lower bounds for SPP we will
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use the latter setting.

From Table 4.2 it can be infered, that for the tested instances setting 0.8 leads
on average to an improvement of 2.31%.

Improvement

Name Setting 0.5 Setting 0.8 in %

ivu41 442.44 450.11 1.73%
ivu08 339.77 345.49 1.68%
ivu36 135.54 137.83 1.69%
ivu37 138.22 141.67 2.49%
ivu38 110.63 113.34 2.45%
ivu07 181.76 188.20 3.55%
ivu28 50.01 51.29 2.55%
ivu06 135.49 138.64 2.33%

Table 4.2: SBM—Step-size

4.3.3 Stabilization

Subgradient methods need many iterations to produce good step-sizes because
they have to guess them. They are too large after the first iterations, therefore
the first steps of SBM often lead to deteriorations of the objective value. In order
to compensate this, we bound the step-sizes as follows:

s(k+1) := max
[

min
[

s(k+1), cap
]

,−cap
]

, (4.3)

where cap > 0 is a parameter, which has to be determined for different classes
of problems. For our instances the best value for cap is 0.01. We will explain
in Section 4.6.2 how a good cap could be determined. This general technique is
called stabilization and was proposed by Desrosiers, Du Merle, Villeneuve, and
Hansen [1997].

In Figure 4.3 we show the positive effect of this technique for ivu38. If we do not
use stabilization the first iterations leads to a strong deterioration of the objective
value. By using this technique the proceeding fluctuates less and the deteriora-
tion is less extreme. Furthermore, stabilization yields higher improvements in the
long run.

This effect could be observed for nearly all instances of our test bed (see Table
4.3). On average an improvement of 0.40% can be obtained by using stabilization.
Therefore, this technique is worth being built in.
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- - - Not using stabilization
----- Using stabilization
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Figure 4.3: SBM—Stabilization for ivu38

Improvement

Name Before After in %

ivu41 449.06 450.33 0.28%
ivu08 345.78 345.78 0.00%
ivu36 137.91 138.41 0.36%
ivu37 141.65 142.04 0.28%
ivu38 113.18 113.75 0.51%
ivu07 188.46 191.19 1.45%
ivu28 51.38 51.17 -0.40%
ivu06 138.38 139.33 0.68%

Table 4.3: SBM—Stabilization

4.3.4 Diversification

It could happen that the step-sizes get too small. In addition to the reaching of
optimality this occurs when we get in in highly degenerate locations, where most
of the subgradients yield directions that do not lead to improvements. For such
cases a heuristical approach called diversification (see Aarts and Lenstra [1997])
suggests to make big steps in order to escape from such a neighborhood. These
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steps do not have to be ascending. Through this technique we try to approach
the global maximum from another, less explored location. I.e., we increase the
step-size appropriately and enforce the escape, when the convergence gets too
slow or the step-sizes too small.

In Figure 4.4 it can be seen that for ivu07 the two negative peaks are initiated
by two diversification steps, which have led to a strong decline of the objective
value. However, it is important to note that in the end these steps yield a further
improvement.

- - - Not using diversification
----- Using diversification
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Figure 4.4: SBM—Diversification for ivu07
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From Table 4.4 it can be infered that for our test bed diversification leads to an
average improvement of 0.53%.

Improvement

Name Before After in %

ivu41 449.27 449.27 0.00%
ivu08 346.02 346.81 0.23%
ivu36 138.33 138.77 0.32%
ivu37 142.26 142.64 0.27%
ivu38 114.14 115.28 0.99%
ivu07 191.26 191.85 0.31%
ivu28 51.47 52.54 2.09%
ivu06 139.74 139.83 0.06%

Table 4.4: SBM—Diversification
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The Algorithm Our consideration leads us to the following SBM algorithm.

INPUT: L
OUTPUT: An optimal or a ’nearly’ optimal vector y∗ and its function value  L(y∗)

1: for all i ∈ {1, . . . , m} do

2: y(0)
i := min

j∈supp(i)

cj

‖Aj‖2 , where Aj denotes jth column of matrix A

3: end for
4: c(0) := c− y(0) tA
5: for all j ∈ {1, . . . , n} do

6: x(0)
j :=











0 if c(0)
j > 0

0 or 1 (randomly chosen) if c(0)
j = 0

1 if c(0)
j < 0

7: end for
8: g(0) := 1−Ax(0)

9: g̃(0) := g(−1) := g(−2) := g(−3) := g(0)

10: Set α(0) := 1 and L := 2 L(y(0))
11: k := 0
12: while g(k) 6= 0 do
13: for all j ∈ {1, . . . , n} do

14: x(k)
j :=











0 if c(k)
j > 0

0 or 1 (randomly chosen) if c(k)
j = 0

1 if c(k)
j < 0

15: end for
16: g(k) := 1−Ax(k)

17: g̃(k) := 0.6 g(k) + 0.2 g(k−1) + 0.1 g(k−2) + 0.1 g(k−3)

18: y(k+1) := y(k) + α L− L(y(k))
‖g̃(k)‖2 g̃(k)

19: c(k+1) := c− y(k+1) tA

20: L(y(k+1)) :=
∑

j : c (k+1)
j <0

c (k+1)
j +

∑

i=1,...,n
y(k+1)

i

21: if L(y(k+1)) < 0 then

22: y(k+1) := y(k) + α L− L(y(k))
‖g(k)‖2 g(k)

23: c(k+1) := c− y(k+1) tA

24: L(y(k+1)) :=
∑

j : c (k+1)
j <0

c (k+1)
j +

∑

i=1,...,n
y(k+1)

i

25: end if
26: Update α and L as described in Section 4.3.2 and 4.3.4
27: k := k + 1
28: end while
29: Return y(k) and L(y(k))

Algorithm 5: The SBM Algorithm
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Let q denote the number of non-zero entries of matrix A. The most expensive
operations have a running time of O(q). Steps 1-3, 4, 8, 17, 20 and 24 have this
total complexity. The overall running time is therefore O(kq), where k is the
number of iterations.

4.4 Implementation Details for CAM

4.4.1 Stabilization

The update formula of ∆y is

∆y := r1 + p (r2 − r1), (4.4)

where Wedelin [1995] suggests p = 0.5. However, in most instances CAM does
not proceed that well especially during the first iterations, therefore we use (like
for SBM) the stabilization technique

∆y := max [min [r1 + 0.5 (r2 − r1), cap] ,−cap] (4.5)

where cap > 0. As in the case of SBM it turns out that 0.01 is a good setting for
cap. These boundaries work against too big steps along the axes, which mainly
happen in the first iterations. We will explain in Section 4.6.2 how a good cap
can be determined.

In Figure 4.5 it can be seen that for ivu37 both methods start from the same
initial point, but without the stabilization technique CAM deteriorates and does
not come up again. It cannot even compensate the decline for the next 600 itera-
tions. Thus the best lower bound is only 118.71, whereas CAM with stabilization
yields in the same time approximately 138, which is an improvement of about
15%.
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- - - Not using stabilization
----- Using stabilization

100 200 300 400 500 600

80

100

120

Figure 4.5: CAM—Stabilization for ivu37

The effect of this technique on all instances of our test bed is summarized in
Table 4.5. On average the improvement is 25.20%.

Improvement

Name Before After in %

ivu41 305.11 432.40 41.72%
ivu08 237.52 341.49 43.77%
ivu36 125.11 134.16 7.23%
ivu37 118.71 137.34 15.70%
ivu38 87.34 109.15 24.97%
ivu07 138.79 188.39 35.73%
ivu28 49.43 49.81 0.75%
ivu06 104.40 137.53 31.74%

Table 4.5: CAM—Stabilization

4.4.2 Random Order

Our computational experiments reveal that it is more effective to go through all
coordinate directions in a random order rather than in a fixed or numerical order.
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In Figure 4.6 the findings for ivu36 are illustrated. The influence of the random

- - - Using a fixed order
----- Using random order
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Figure 4.6: CAM—Random order for ivu36

order technique starts right at the beginning and leads to higher improvements.

Table 4.6 presents the improvement rates for the other instances. On average we
reach an improvement rate of 2.19%.

Improvement

Name Before After in %

ivu41 432.40 448.67 3.76%
ivu08 341.49 343.28 0.52%
ivu36 134.16 136.68 1.88%
ivu37 137.34 140.83 2.54%
ivu38 109.15 111.80 2.43%
ivu07 188.39 191.97 1.90%
ivu28 49.81 51.38 3.16%
ivu06 137.53 139.40 1.36%

Table 4.6: CAM—Random order

Remark 4.1. In general it has not been shown yet, how the efficiency of CAM
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correlates with the choice of the coordinate directions. This choice is a degree of
freedom, which should be tuned to the treated class of problems.

4.4.3 Updating the Step-size

The update formula of ∆y with stabilization is

∆y := max [min [r1 + p (r2 − r1), cap] ,−cap] . (4.6)

With p := 0.5 we get

∆y := max [min [0.5 (r1 + r2), cap] ,−cap] , (4.7)

but it turns out that

∆y := max [min [0.95 (r1 + r2), cap] ,−cap] (4.8)

works better. Note that ∆y := 0.95 (r1 + r2) would geometrically mean to pass
the optimal polyhedron along the considered axis, if (r1 + r2) 6= 0. In the case
of equality ∆y := 0.95 (r1 + r2) = 0 means that we stay at the current location,
because we are already on the optimal plateau along the considered axis.

Figure 4.7 shows that for ivu06 this technique leads to a better result. Note that

- - - p = 0.5
----- p = 0.95
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Figure 4.7: CAM—Using step-size parameter setting 0.5 and 0.95 for ivu06

in the first iterations the performances of both variants are similar because of the
stabilization technique. The influence of p begins when |∆yi| gets smaller than
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cap, which happens in the neighborhood of the optimal set.

The effect of this technique can be infered from Table 4.7. The average improve-
ment is 0.10%.

Improvement

Name p = 0.5 p = 0.95 in %

ivu41 427.80 427.40 -0.09%
ivu08 327.03 327.75 0.22%
ivu36 132.31 132.12 -0.14%
ivu37 135.69 135.76 0.05%
ivu38 107.17 107.47 0.28%
ivu07 175.39 176.20 0.46%
ivu28 49.43 49.29 -0.28%
ivu06 128.02 128.44 0.33%

Table 4.7: CAM—Step-size parameter

4.4.4 Spacer Steps

We use spacer steps whenever ∆y = 0. This modification guarantees that CAM
does not get stuck. Furthermore, we use this technique if too many small im-
provements occur successively, in order to avoid slow convergences as described
in Section 2.2.3.2. Spacer steps could be also seen as a diversification technique:
they lead to unexplored locations, from which the optimum could be reached
better.

In the following figure it can be observed, how diversification and spacer steps
improves the convergence. It can be seen that the diversification technique causes
two negative peaks, but it leads to higher lower bounds in the long run.

From Table 4.8 the improvement of this technique for all tested instances can be
infered. On average the improvement rate is 0.88%.
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- - - Not using spacer steps
----- Using spacer steps
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Figure 4.8: CAM—Spacer steps for ivu37

Improvement

Name Before After in %

ivu41 450.79 451.71 0.20%
ivu08 342.86 345.96 0.90%
ivu36 136.92 138.17 0.92%
ivu37 140.76 142.33 1.11%
ivu38 111.97 113.99 1.80%
ivu07 192.17 192.15 -0.01%
ivu28 51.60 52.70 2.12%
ivu06 139.96 140.00 0.03%

Table 4.8: CAM—Spacer steps

4.4.5 Lazy Check

In contrast to SBM it is not necessary for CAM to evaluate the lower bound in
order to proceed, but this method needs these evaluations to check the devel-
opment of the lower bound. Therefore, it is sufficient to compute it, say, every
20 iterations. This saves a lot of computation time, because the calculation of
the lower bound needs O(n) operations where n could get very large for most
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practical instances.

The Algorithm We will present the algorithm of our implementation of CAM.

INPUT: L
OUTPUT: An optimal or a ’nearly’ optimal vector y∗ and its function value L(y∗)

1: Steps 1 until 4 from SBM (see Algorithm 5)
2: k := −1
3: while the last iterations are satisfying do
4: k := k + 1
5: for all i ∈ {1, . . . ,m} in a random order do
6: Let r1 and r2 be the lowest and second lowest reduced cost on the support of

row i
7: Define ∆y := max [min [0.95 (r1 + r2), cap] ,−cap]

8: y(k+1)
i := y(k)

i + ∆y
9: for all j ∈ supp(i) do

10: c (k+1)
j := c(k)

j − ∆y
11: end for
12: end for
13: if ∆y was zero for all i or the last improvements were too small then
14: Determine a subgradient g(k) and let α := 0.8α

15: y(k+1) := y(k) + α g(k)

‖g(k)‖

16: c (k+1)
j := c(k)

j − α g(k)

‖g(k)‖
17: end if
18: if k mod 20 = 0 then
19: L(y(k+1)) :=

∑

j : c (k+1)
j <0

c (k+1)
j +

∑

i=1,...,n
y(k+1)

i

20: if L(y(k+1)) is the best found lower bound then
21: y∗ := y(k+1)

22: end if
23: end if
24: end while
25: Return y∗ and L(y∗)

Algorithm 6: The CAM Algorithm

As for SBM, the most expensive operations of this method have a running time
of O(q). Steps 1, 5-6, 9-11 and 14 have this total complexity. The total running
time is O(kq).
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4.5 Implementation Details for CCBM

4.5.1 Choosing the Size of the Packages

A degree of freedom is the number of rows, which can be considered in order to
construct a bundle-direction. Let packagesize be the considered number of rows
represented in percent, e.g., 0.20% corresponds to packagesize := 0.002 m. If
packagesize is less than 1, then we simply round packagesize up. Thus, in order
to evaluate CCBM only for different settings of packagesize, ivu28 and ivu06
have no entries in the column 0.04%.

packagesize

Name 0.04% 0.12% 0.20% 10% 50% 100%

ivu41 449.81 427.93 427.56 374.01 327.47 317.34
ivu08 345.83 322.76 321.99 293.63 257.69 249.08
ivu36 138.27 131.51 131.30 126.51 120.30 117.31
ivu37 142.28 135.03 134.60 131.54 126.05 123.98
ivu38 113.59 107.69 109.11 103.72 97.53 94.35
ivu07 192.19 173.17 172.69 168.49 155.63 149.31
ivu28 —— 52.59 48.93 48.56 48.04 47.53
ivu06 —— 139.54 126.61 123.89 115.72 112.12

Table 4.9: CCBM—Lower bounds for different settings of packagesize

Note that for packagesize = 1 CCBM corresponds to CAM, therefore from Table
4.9 it can be infered that CAM is in fact better than CCBM. Nevertheless, we
have mentioned this method because a heuristical approach of CCBM seems to
be more promising than CAM; but first we will give a description of the CCBM
algorithm.

The Algorithm The only algorithmic differences between CCBM and CAM
are the frequency of updates of the reduced cost and the way of updating the
multipliers. If we update the reduced cost after every update of yi, then we get
CAM. However, if we do these updates every packagesize (> 1) updates of yi

then we get CCBM. This algorithm can be described as follows:
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INPUT: L
OUTPUT: An optimal or a ’nearly’ optimal vector y∗ and its function value  L(y∗)

1: Steps 1 until 4 from SBM (see Algorithm 5)
2: k := −1
3: while the last iterations are satisfying do
4: k := k + 1
5: Randomize the order of the m rows to {i1, . . . , im}
6: for all l ∈ {1, . . . , m

packagesize} do
7: nonzero := 0
8: for all i ∈ {il, . . . , il+packagesize} do
9: Let r1 and r2 be the lowest and second lowest reduced cost on the support

of row i
10: Define ∆yi := max [min [0.95 (r1 + r2), cap] ,−cap]
11: if |∆yi| > 0 then
12: nonzero := nonzero + 1
13: end if
14: end for
15: for all i ∈ {il, . . . , il+packagesize} do

16: y(k+1)
i := y(k)

i + ∆y/ max[nonzero, 1]
17: for all j ∈ supp(i) do

18: c (k+1)
j := c(k)

j − ∆y/ max[nonzero, 1]
19: end for
20: end for
21: end for
22: if ∆y was zero for all i or the last improvements are too small then
23: Determine a subgradient g(k) and let α := 0.8α

24: y(k+1) := y(k) + α g(k)

‖g(k)‖

25: c (k+1)
j := c(k)

j − α g(k)

‖g(k)‖
26: end if
27: if k mod 20 = 0 then
28: L(y(k+1)) :=

∑

j : c (k+1)
j <0

c (k+1)
j +

∑

i=1,...,n
y(k+1)

i

29: if L(y(k+1)) is the best found lower bound then
30: y∗ := y(k+1)

31: end if
32: end if
33: end while
34: Give out y∗ and L(y∗)

Algorithm 7: The CCBM Algorithm

Because CCBM is a variation of CAM the most expensive operations of CCBM
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have a running time of O(q). Steps 1, 8-9, 17-19 and 25 have this total complexity.
The overall running time is O(kq).

4.6 Implementation Details for CBM

4.6.1 Relaxing the Convex Combination

We mentioned already in the previous chapter the reason for the unsatisfying
performance of CCBM: the convex sum of the considered vectors leads to a bundle
vector, which turns out to be too short in order to proceed well, i.e., we get a
slow convergence. As described in Section 3.3 we try to overcome this obstacle
by taking just the sum of the considered vectors instead of a convex combination.
In the following table we can see that except for ivu07 and ivu06 the peak is in
the column 0.20%, i.e., for 0.20% of m rows CBM performs better than CAM.

packagesize

Name 0.04% 0.12% 0.20% 10% 50% 100%

ivu41 451.49 451.70 452.32 451.82 440.35 379.45
ivu08 342.96 343.88 346.20 341.62 328.20 281.55
ivu36 136.91 136.93 138.53 134.60 122.51 112.45
ivu37 140.68 141.12 142.76 138.00 119.29 119.37
ivu38 112.10 112.51 114.58 111.30 93.22 89.44
ivu07 192.20 191.57 191.25 187.42 174.21 147.95
ivu28 —— 52.69 53.98 49.97 43.77 43.77
ivu06 —— 140.02 139.33 136.96 127.63 106.93

Table 4.10: CBM—Lower bounds for different settings of packagesize
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The Algorithm CBM has the following algorithmic structure.

INPUT: L
OUTPUT: An optimal or a ’nearly’ optimal vector y∗ and its function value L(y∗)

1: Steps 1 until 4 from SBM (see Algorithm 5)
2: k := −1
3: while the last iterations were satisfying do
4: k := k + 1
5: Randomize the order of the m rows to {i1, . . . , im}
6: for all l ∈ {1, . . . , m

packagesize} do
7: for all i ∈ {il, . . . , il+packagesize} do
8: Let r1 and r2 be the lowest and second lowest reduced cost on the support

of row i
9: Define ∆yi := max [min [0.95 (r1 + r2), cap] ,−cap]

10: end for
11: for all i ∈ {il, . . . , il+packagesize} do

12: y(k+1)
i := y(k)

i + ∆y
13: for all j ∈ supp(i) do

14: c (k+1)
j := c(k)

j − ∆y
15: end for
16: end for
17: end for
18: if ∆y was zero for all i or the last improvements were too small then
19: Determine a subgradient g(k) and α := 0.8α

20: y(k+1) := y(k) + α g(k)

‖g(k)‖

21: c (k+1)
j := c(k)

j − α g(k)

‖g(k)‖
22: end if
23: if k mod 20 = 0 then
24: L(y(k+1)) :=

∑

j : c (k+1)
j <0

c (k+1)
j +

∑

i=1,...,n
y(k+1)

i

25: if L(y(k+1)) is the best found lower bound then
26: y∗ := y(k+1)

27: end if
28: end if
29: end while
30: Give out y∗ and L(y∗)

Algorithm 8: The CBM Algorithm

Due to the similarity of CCBM and CBM the total running time of CBM is
O(kq).
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4.6.2 Determining a Good Stabilization Parameter

CBM has been used to find a good cap for the ∆y update of all methods proposed
in this work. We set cap to a certain value and start the CBM algorithm for
some instances of a problem class. After 40 iterations we stop the algorithm. We
repeat this procedure for different values of cap. The value of cap, which leads
to the highest improvement will be taken for cap. For nearly all of our instances
cap := 0.01 turned out to be the best choice (see the following table).

cap

Name 100 10 1 0.1 0.01 0.001

ivu41 305.11 305.11 305.11 440.46 429.50 372.77
ivu08 237.52 237.52 237.52 324.16 334.86 284.56
ivu36 109.89 109.89 109.89 124.73 135.04 125.52
ivu37 118.71 118.71 118.71 127.06 138.93 130.89
ivu38 87.34 87.34 87.34 101.08 110.60 102.90
ivu07 138.79 138.79 138.79 168.98 183.57 165.31
ivu28 43.77 43.77 43.77 44.82 51.10 49.28
ivu06 104.40 104.40 104.40 123.72 134.73 119.89

Table 4.11: Determining a good cap

Note that the first three entries of each row have the same value. This happened
because for cap greater than 1 CBM makes negative improvements such that the
initial lower bound stays always as the best one. Therefore, the entries are all
the same, but for cap less than 1 we can observe that CBM works better, which
is indicated by higher lower bounds. Note that the best choice of cap depends on
the class of problems.

4.7 Comparison

In this section we will compare the six methods:

1. CPLEX dualopt—Dual simplex method implemented in CPLEX

2. CPLEX baropt—Barrier function method implemented in CPLEX

3. SBM—Subgradient bundle method

4. CAM—Coordinate ascent method

5. CCBM—Coordinate convex bundle method

6. CBM—Coordinate bundle method
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The tested instances are ivu41, ivu08, ivu36, ivu37, ivu38, ivu07, ivu28, and
ivu06, which originate from duty scheduling applications of different European
public transport companies.

The source codes of SBM, CAM, CCBM, and CBM are written in ANSI C and
have been compiled with the GNU project C Compiler gcc with optimization -O2.
For the dual simplex method and the barrier function method we have fallen back
on CPLEX 6.5.3. All computations were made on a SUN UltraSPARC 60 Model
2360.

In Table 4.12 the performances of the dual simplex method and the barrier func-
tion method are described. We have listed the lower bounds and the computation
times of both methods. Note that their lower bounds have an accuracy of 10−6.
For this reason the entries of the columns ’Gap’ are empty. That means that we
can consider these bounds as references for the optimal objective value of the in-
stances of our test bed. In contrast to the accuracy the computation times of both
methods differ a lot. The barrier function method is much faster than the dual
simplex method. This observation supports the fact that interior points methods
allow to devise methods of polynomial complexity (see Karmarkar [1984]) while
simplex methods are in general exponential.

The performances of the other four algorithms are listed in Table 4.13. Note that
SBM, CAM, and CBM have similar performance, whereas CCBM has performed
not that well. The explanation for this is that the convex combination of sev-
eral ascent coordinate directions leads to improvements per iteration, which are
too small. By using a simple combination instead (see CBM) we get a better
performance. An interesting observation is that on average CBM reaches higher
lower bounds than SBM, which is based on an exact method. This means that
our heuristical approach is at least as effective as subgradient bundle methods. If
we were to rank all six methods, CPLEX would be one followed by CBM, SBM,
CAM, and CCBM.

Another aspect is the running time for reaching a fixed gap. We have drawn such
comparisons for the gaps of 1%, 2%, and 5%. The results are listed in Table 4.14
and Table 4.15. If a method has not reached a gap the corresponding entry is
empty. As we have already noticed CCBM has a bad performance. This method
has even problems to reach the 5% margin. If we compare all methods the ranking
would be CBM, CAM, SBM, CPLEX baropt, CPLEX dualopt, and CCBM. This
holds for nearly all gaps and instances. In few cases (compare the 1% columns)
CPLEX baropt has a better performance than CBM. In this case CBM needs more
computation time than CPLEX baropt in order to reach tighter gaps. But, it can
be also noticed that the number of rows seems to have a stronger influence on the
running of CPLEX baropt than on that of CBM. I.e., the higher the number of
rows of an instance the better CBM performs in comparison with CPLEX baropt.
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As a result we can state that the performance of CBM and partly that of CAM
seem to be better than that of SBM, which is derived from an exact method, and
that of CPLEX, which can be considered as the state-of-the-art. Applications,
which profit from this discovery, are, for example, duty scheduling applications,
which use column generation techniques. Such applications need to solve La-
grangian relaxations of large-scale SPP iteratively, where the Lagrangian multi-
pliers of these problems are needed in order to proceed. These multipliers do not
necessarily have to be optimal for column generation. This fact supports the use
of CBM instead of CPLEX baropt especially for large-scale problems.
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Chapter 5

Summary

In this work we concentrated on developing methods, which determine good lower
bounds for SPP instances in an appropriate amount of time. We found out that
it makes sense to use the Lagrangian relaxation method for this task. The La-
grangian relaxed problem of SPP has a simple structure, which leads to algorithms
and heuristics, whose total complexity per iteration depends linearly on the num-
ber of non-zeros of the problem matrix of SPP. In contrast, other methods like
simplex methods or interior points methods have a complexity of higher order.
Because the problem matrices of our tested instances are sparse (see our test
bed presented in Table 4.1 or for another example Borndörfer [1998]) the linear
dependence becomes an advantage for the algorithms and heuristics mentioned
above.

As a reference for the state-of-the-art we have applied the dual simplex method
and the barrier function method, implemented in CPLEX. The methods, which
we have developed and compared with those of CPLEX, are SBM, CAM, CCBM,
and CBM. SBM is a subgradient bundle method derived from the basic subgradi-
ent method, which is a global convergent method for determining the maximum
of concave functions. CAM is a coordinate ascent method, where the convex
coordinate bundle method CCBM and the coordinate bundle method CBM are
derivatives from CAM.

We observed that the basic subgradient and the coordinate ascent method are
improved if bundling techniques can be used. But the motivation for bundling
differs for both approaches. In the former case bundling helps to approximate
a minimum norm subgradient, which provides a steepest ascent direction, in or-
der to speed up the performance. In the latter case bundling enables proceeding
along directions, which are not restricted on the coordinate directions. By this
the performance is accelerated.

Among all used techniques stabilization is worth mentioning. Stabilization im-
proves the performance especially at the beginning by avoiding too big steps
during the proceeding. This leads to a more stabilized progression. Stabilization
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was successfully applied to SBM, CAM, CCBM, and CBM.

As an overall result we conclude the following:

1. CPLEX computes the optimal objective values, whereas SBM and CBM
has on average a gap of under 1.5%.

2. In comparison to CPLEX baropt, SBM, CAM, and CBM the algorithm
CCBM has a slow convergence because of the convex combination of ascent
coordinate directions. An alternative is to relax the convex combination to
a simple sum of the corresponding directions. This idea is realized in CBM.

3. If we focus on the running time rather than on optimality then CBM is on
average the fastest algorithm.

Note that methods like SBM or CBM are applied on static SPP instances in
order to determine a good lower bound. For solving SPP we need dynamical
methods. Due to the complex topic of dynamical methods we will not discuss
them, but a certain technique is worth mentioning. It is called column genera-
tion. We have indicated that this technique needs good Lagrangian multipliers
of the corresponding SPP instances in order to generate further columns (in our
case duties), which are added to the current SPP instance. Those multipliers
are by-products of methods like our six considered methods. Due to the large
number of such generation steps the running time depends on the computation
time of these methods. Therefore, CBM fits more to this technique than CPLEX
baropt or SBM.

To sum it up it can be said that applications such as a duty scheduling can
be described as set partitioning problems, whose lower bound can be solved by
simplex, interior points, subgradient, or coordinate ascent methods. It turns out
that the interior points method CPLEX baropt and the heuristic CBM have good
performances. Furthermore, good Lagrangian multipliers, which are by-products
of these methods, can be used by techniques like column generation. For this
particular technique it also turns out that among our tested algorithms CBM is
the most efficient one. In general we can state that real-world applications, which
have to solve a large number of Lagrangian relaxed SPP instances can improve
their performance by using CBM.



Zusammenfassung

In dieser Arbeit entwickeln wir schnelle Algorithmen zur Bestimmung guter un-
terer Schranken von Set Partitioning Problemen. Es hat sich herausgestellt, daß
für dieses Problem sich die Methoden der Lagrangerelaxierung anbieten. Die
Lagrangerelaxierung eines Set Partitioning Problems (SPP) hat eine relativ ein-
fache Struktur, die zu Verfahren führen, deren Komplexität pro Iteration linear
in der Anzahl der Einsen der Problemmatrix von SPP ist. Im Gegensatz zu
ihnen haben andere Methoden, wie zum Beispiel der Simplexalgorithmus oder
das Innere-Punkte-Verfahren, eine höhere Komplexität aufzuweisen. Aufgrund
der Tatsache, daß die Problemmatrizen relativ dünn sind (siehe Tabelle 4.1 oder
Borndörfer [1998]), erweist sich daher die lineare Komplexität der Lagrangerela-
xierungsmethoden als vorteilhaft.

Die von uns entwickelten Algorithmen sind SBM (Subgradient Bundle Method),
CAM (Coordinate Ascent Method), CCBM (Coordinate Convex Bundle Method)
und CBM (Coordinate Bundle Method). Sie wurden mit dem dualen Simplexal-
gorithmus und der Barrierefunktionsmethode, die in CPLEX implementiert sind,
verglichen. Somit ist ein Vergleich mit aktuellen Algorithmen gewährleistet. SBM
ist eine Subgradienten-Bündelmethode, die von der allgemeinen Subgradienten-
methode abgeleitet wurde. CAM ist ein Koordinatenaufstiegsverfahren, wobei
CCBM und CBM Weiterentwicklungen von CAM bilden.

Es läßt sich beobachten, daß man durch die Anwendung von Bündeltechniken die
Effektivität der Subgradientenmethode und des Koordinatenaufstiegsverfahrens
erhöhen kann. Jedoch ist die Anwendung dieser Technik bei beiden Methoden
verschieden motiviert. Für die Subgradientenmethode wird durch diese Tech-
nik ein Subgradient mit minimaler Norm approximiert. Die Attraktivität solcher
Subgradienten liegt darin, daß sie strikte Aufstiegsrichtungen darstellen. Koor-
dinatenaufstiegsverfahren nutzen die Bündeltechnik dazu, andere Richtungen als
die der Koordinatenrichtungen zu benutzen. Dadurch erhöhen sie ihre eigene
Flexibilität.

Von allen angewendeten Techniken zur Verbesserung unserer Algorithmen ist vor
allem die Stabilisierungstechnik (stabilization) erwähnenswert. Die Stabilisie-
rung verbessert die Algorithmen vor allem in ihren ersten Iterationen, indem sie
zu große Schrittweiten verhindert. Dadurch ergeben sich stabilere Verläufe. Auf
SBM, CAM, CCBM und CBM brachte die Stabilisierungstechnik immense Ver-
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besserungen ein.

Als Gesamtergebnis unserer Arbeit können wir folgendes festhalten:

1. CPLEX berechnet die optimalen Funktionswerte mit einer Genauigkeit von
10−6. Der Gap von SBM und CBM beträgt im Durchschnitt 1.5%.

2. Im Vergleich zu SBM, CAM, CBM und der Barrierefunktionsmethode von
CPLEX besitzt CCBM eine relativ langsame Konvergenz. Dieses Verhalten
erklärt sich durch die Konvexkombination der Koordinatenrichtungen. Eine
Alternative bildet hierbei CBM, die die Richtungen einfach aufsummiert.

3. Wenn die höhere Priorität der Laufzeit gilt, dann bildet CBM den schnell-
sten Algorithmus von allen sechs betrachteten Algorithmen.

Für die Lösung von SPP benötigt man dynamische Methoden. Aufgrund der The-
menkomplexität von dynamischen Methoden werden wir hier nicht weiter darauf
eingehen. Die Spaltengenerierungmethode ist jedoch erwähnenswert. In vori-
gen Kapiteln haben wir bereits angedeutet, daß sie gute Lagrangemultiplikatoren
benötigt, um weitere Spalten (in Fall der Dienstplanoptimierung Dienste) zu ge-
nerieren, die der aktuellen SPP-Instanz hinzugefügt werden. Die dazu genutzten
Lagrangemultiplikatoren sind Nebenprodukte der sechs miteinander vergliche-
nen Algorithmen. Aufgrund der großen Anzahl von Spaltengenerierungsschritten
hängt die Laufzeit dieses Verfahrens von der Berechnungszeit von guten aber
nicht unbedingt optimalen Lagrangemultiplikatoren ab. CBM eignet sich auf-
grund seiner schnellen Laufzeit daher am besten für dieses Verfahren.

Zusammenfassend kann man festhalten, daß gewisse Anwendungen, wie zum Bei-
spiel die Dienstplanoptimierung, als Set Partitioning Probleme mathematisch
modelliert werden können. Das Problem der Bestimmung von unteren Schran-
ken solcher Set Partitioning Probleme kann durch Verfahren, wie zum Beispiel
Simplexmethoden, Innere-Punkte-Verfahren, Subgradientenmethoden oder Ko-
ordinatenaufstiegsverfahren, gelöst werden. Es hat sich herausgestellt, daß unter
den betrachteten Algorithmen die Barrierefunktionsmethode von CPLEX und die
CBM-Heuristik die effektivsten sind. Aufgrund des besseren Laufzeitverhaltens
von CBM ist dieser Algorithmus jedoch besser für das Spaltengenerierungsverfah-
ren geeignet. Man kann also den Schluß ziehen, daß Praxisanwendungen, die eine
große Anzahl von SPP-Lagrangerelaxierungen lösen müssen, ihre Effektivität mit
CBM merklich erhöhen können.
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(1996). Einführung in Graphen und Algorithmen1.

Fiacco, A. (1979). Barrier methods for nonlinear programming. in: A. Holzman
(ed.), Operations Research Support Methodology, Marcel Dekker, New York,
pages 377–440.

Fischetti, M. and Toth, P. (1992). An additive bounding procedure for the asym-
metric TSP. Mathematical Programming, 53:173–197.

Fisher, M. L. and Rosenwein, M. B. (1985). An interactive optimization system
for bulk cargo ship scheduling. Working paper.

Frisch, K. (1955). The logarithmic potiential method of convex programming.
University Institute of Economics, Oslo, Norway.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company, New
York.

Gill, P., Murray, W., and Wright, M., editors (1981). Practical Optimization.
Academic Press, London.

Graham, R., Grötschel, M., and Lovász, L., editors (1995). Handbook of Combi-
natorics, volume 2. Elsevier Science B.V., Amsterdam.

Grötschel, M., Lovász, L., and Schrijver, A. (1988). Geometric Algorithms and
Combinatorial Optimization. Springer Verlag, Berlin.

Held, M. and Karp, R. M. (1971). The traveling-salesman problem and minimum
spanning trees: part ii. Mathematical Programming, 1:6–25.
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