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Introduction

Automation of production and transport logistics is an ongoing process in in-
dustry. Increasingly complex manufacturing systems have prompted a grow-
ing interest in designing efficient control algorithms. Also, knowledge of the
difficulties and bottle-necks involved in controlling material flow should yield
new insights for designing more efficient layouts for automated logistics sys-
tems.

In this thesis, we study aspects of a particular pallet transportation system
which is installed at the logistics center of the Herlitz PBS AG in Falkensee
near Berlin. We will focus on the control of a subsystem providing vertical
transportation between the eight floors of the facility via five elevators. The
elevators are on each floor connected to a conveyor belt on which pallets can
circle around the elevators. Both for entering and exiting elevators, there are
waiting areas, holding one pallet each. The system is described in detail in
Chapter 1.

We generalize the problem of scheduling elevators in the following fashion:
We consider a server that has to carry objects between points in a metric space.
The requests will become known and available at their release times. This
problem is the online version of the well-known Dial-a-ride problem, which we
call ONLINE-DARP. In this thesis we are dealing with the case where there is
one server that can carry one object at a time. We do not allow preemption,
the server has to deliver an object to its destination once the server has picked
up the object, without dropping it in between. We also study a new problem,
which we call ONLINE-FIFO-DARP. Here we allow precedence constraints be-
tween requests starting at the same point in the space. We use this to model
FIFO waiting queues feeding the elevators. ONLINE-DARP and ONLINE-FIFO-
DARP also model a number of other tasks in transportation systems, such as
the scheduling of stacker cranes in automated storage systems and the control
of Automated Guided Vehicles.

A special difficulty is to devise a suitable objective function. The intuitive
goal would be to maximize “throughput”. In discussions with our partners
in industry we formalized this as the task of minimizing average flow times.
However, it is also important that the system is “reliable” and “predictable”
which leads to the goal of minimizing maximal flow times, to ensure that no
request is postponed for too long.
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Many of the online algorithms which we developed need to solve offline in-
stances of DARP and FIFO-DARP, where all requests are known and available
at the start. For the offline case, all results consider minimizing the comple-
tion time of the schedule as objective function. We first prove a new result on
the complexity of DARP: We show that DARP on caterpillars is NP-hard. We
also show that the same applies to FIFO-DARP. Both DARP and FIFO-DARP on
paths can be solved to optimality in polynomial time. We then describe exist-
ing combinatorial approximation algorithms for DARP and design new algo-
rithms for FIFO-DARP. Practical tests of one of the algorithms suggest, that for
instances of DARP and FIFO-DARP encountered in transport problems these
heuristics work very well. We have not studied DARP and FIFO-DARP from a
polyhedral perspective1. Initially we did formulate a Mixed Integer Program
modelling an elevator connected to circular conveyor belts. This particular
model, however, contained a number of weakly linked blocks and required
“big M” inequalities. These are known to cause difficulties while seeking for
integral solutions. We therefore did not further pursue the study of this pro-
gram. Polyhedral studies of variants of DARP and FIFO-DARP surely present
a direction for future research, however the good results achieved with our
combinatorial approximation algorithms seem to justify our approach. The re-
sults for DARP are described in Chapter 2 and our new results for FIFO-DARP

are contained in Chapter 3.

Roughly speaking, there are two paradigms for designing and analyzing
algorithms that deal with uncertainty about the future: Firstly, one can make
assumptions about the underlying probability distributions of the events and
derive stochastical optimization problems. The second approach, used in this
thesis, compares solutions computed by online algorithms with optimal offline
solutions in a worst-case fashion. This method of designing and analyzing
algorithms is called competitive analysis. We believe that the combinatorial
nature of the decisions facing algorithms in transport systems cannot be ade-
quately dealt with, when making assumptions on probability distributions: A
split second delay in an event can lead to radically different situations, e.g., a
new pallet arrives on a floor just after the elevator has started to move away
from that floor. In our opinion, such situations are better dealt with using
worst-case techniques, such as competitive analysis. Competitive Analysis is
described in more detail in Appendix C.

In Chapter 4 we describe algorithms and theoretical results concerning on-
line algorithms for ONLINE-DARP and ONLINE-FIFO-DARP. The main focus
is on studying two online strategies: REPLAN computes a new optimal of-
fline schedule, each time a new request arrives. IGNORE on the other hand
executes its current schedule and temporarily “ignores” all requests arriving
in the mean time. When completing the schedule, IGNORE computes a new
schedule serving all the previously ignored requests, then serves this schedule

1DARP can be modeled as the well-known Asymmetric Traveling Salesman problem. This
approach has been applied in the past to logistical problems, e.g., N. Ascheuer studied Asym-
metric Hamiltonian Path Problems with time window constraints with the application of
scheduling a stacker crane [Asc95].



INTRODUCTION 3

and so. Both algorithms are competitive, and they can not be distinguished
by their competitive ratios. Furthermore, all the competitiveness results are
for the objective of minimizing the total completion time—we prove that the
competitive ratio for average and maximal flow times, which we are really
interested in, is unbounded for all algorithms.

This together with the desire to find theoretical criteria distinguishing RE-
PLAN and IGNORE lead to the development of a new concept for studying
online algorithms in continuously operating systems: In Chapter 5, we intro-
duce the new notion of reasonable load. This concept restricts request sequences
to sequences that “make sense” in continuously operating systems: There may
be no arbitrarily long periods of time, where the requests arriving in this pe-
riod cannot be served (by an optimal offline algorithm) in a time period at
most as long as that period. Using this new concept, we prove that the max-
imal and average flow times of IGNORE are bounded under reasonable load,
which—as we show—is not the case for REPLAN.

We finally tested the online algorithms in simulations of both single eleva-
tors fed by FIFO-waiting queues and also in simulations of the integrated ele-
vator system, which motivates this thesis. The results are described in Chap-
ter 6. The simulations suggest, that their is a conflict between the objectives
of minimizing average and maximal flow times. Algorithms such as REPLAN
achieve very good average flow times, but can have disastrous maximal flow
times. On the other hand, IGNORE achieves the best maximal flow times,
however its average flow times are only average. Yet, in terms of balancing
both objectives, a slightly modified version of IGNORE, called IGGREEDY,
seems to be the most suitable algorithm. IGGREEDY inserts ignored requests
into its schedule, when they simply substitute empty moves. These experi-
mental results seem to confirm the theoretical results on the performance of
IGNORE and REPLAN gained from the new concept of reasonable load.

The simulation of the integrated elevator system generally supports the re-
sults concerning the elevator algorithms. However, it also suggests that the
layout of the subsystem, with the circular conveyor belt around the elevators,
is not suitable. The differences in the performance of the algorithms is very
prominent when looking at the individual elevators, however the effects are
leveled off when considering the whole system. We believe that this is due to
the fact, that pallets moving on the conveyor belt allow only little room for ad-
vance planning with respect to which elevator they should use. An interesting
project for future research should be to consider other layouts such as longer
waiting queues in front of the elevators. We believe that such research might
lead to general insights into the design of efficient transport systems.
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Chapter 1

Description of the Considered
Transport System

In this chapter we describe the integrated vertical pallet transportation sys-
tems at the Herlitz logistics center in Falkensee near Berlin, which is studied
in this thesis.

1.1 The Herlitz plant in Falkensee

The Herlitz PBS AG is the major European office supply provider. The com-
pany established in 1994 a new logistics and production center in Falkensee
near Berlin, investing about 350 million DM. This plant covers an area of 5,000
square meters and employs some 700 people. The center includes a production
facility for greeting cards (with an annual output of almost 120 million cards
featuring 4,000 different images), a facility for printing gift wrapping paper, a
warehouse and various commissioning and loading facilities.

The material flow through the plant is fully automatic. The pallet trans-
portation system consists of truck loading stations, pallet sorters, conveyor
belts (horizontal transportation), elevators (vertical transportation), registra-
tion and inspection stations, and an automatic storage system. The flow of
pallets from the automatic storage system to the truck loading stations is con-
trolled by a central computer unit. Online decisions with respect to control
have to be made, e.g., which way a pallet should travel to its destination, or the
time when a pallet is to be stored in the automatic storage system. There are
constraints restricting the organization of the system, for instance the FIFO-
principle which requires that pallets must be delivered in the order of their
manufacturing date.

The overall goal is to control the system in such a way that there is a quick
and congestion free flow of pallets which satisfies all restrictions. Violating
constraints inhibits the throughput. For instance, if the capacity of a route is
exceeded this might lead to blocking of the automatic transport system.

5
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The pallets that have to be transported during one day of production are
not known in advance. Thus, decisions have to be made online without any
knowledge of the future. Upon the arrival of a new transportation request
a (temporarily) locally optimal control might have bad consequences which
even reoptimization can not cure.

Decisions do not only have to be made online, they also must be made
within severe time restrictions which brings up the realtime aspect of the prob-
lem.

7 8

6

Figure 1.1: Layout of one floor of the pallet transportation system
(from [GHKR99]).

Figure 1.1 displays a layout diagram of the pallet transportation system at
Herlitz.

A research team of the ”Konrad-Zuse-Zentrum für Informationstechnolo-
gie” in Berlin is working in cooperation with partners from the Herlitz PBS AG
on studying the mathematical background of controlling this complex trans-
portation system and on developing suitable algorithms which are adequate
for the online and real-time nature of the environment.

In this thesis we focus on the control of the elevator system of the facility.
The next section describes this subsystem in greater detail.

1.2 The integrated elevator system

Attached to the logistics center is a warehouse. On both sides of this ware-
house are two elevator towers. Each of these two subsystems consists of five
elevators, which are connected to a conveyor belt on each floor. On this con-
veyor belt, pallets can circle around the elevators. Figure 1.2 shows a top view
of one of the eight floors. The arrows indicate the direction of the conveyor
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Figure 1.2: Top view of one of the eight floors (from [GHKR99]).

Figure 1.3: Horizontal view of an elevator (from [GHKR99]).

belts which move pallets between the five elevators. A schematic horizontal
view of a single elevator is shown in Figure 1.3.

Each elevator can carry one pallet at a time. For each elevator there is on
each floor a waiting space for entering pallets and a waiting space for exiting
pallets. All waiting spaces can hold one pallet. Part of one of the circular
conveyor belts together with the switches leading to the elevators is shown in
Figure 1.4.

Figure 1.4: One of the circular conveyor belts of the elevator system (courtesy
of Herlitz PBS AG).

The conveyor belt for the pallets works in a discrete fashion: It is separated
into segments of the size of one pallet. A pallet moves from one segment to the
next segment only if the next segment is empty. This can lead to a blockage of
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the conveyor system, if all segments are currently filled. Figure 1.5 shows part
of a conveyor belt at the facility in action.

An important aspect of the system is that horizontal transportation within
the elevator subsystem is much slower than vertical transportation: A pallet
takes about 4s to move from one floor to another (not counting another 5s for
boarding the elevator and the same time for exiting from the elevator). How-
ever traveling from the system entrance to the first elevator takes 15s and com-
pleting a whole journey around the conveyor belt takes more than 2minutes.

On each of the eight floors there is one entrance and one exit connecting
the elevator subsystem to the plant. On the second and on the third floor
there are connections to the ten aisles of the storage system which is shown
in Figure 1.6. Here pallets are picked up or delivered by the stacker cranes
serving the warehouse.

Figure 1.5: A conveyor belt in action (courtesy of Herlitz PBS AG).

1.3 Algorithms used to control the elevator system

Within the elevator subsystem, there are two tasks that require algorithmic
control: Firstly, decisions need to be made concerning which elevator a pallet
should use. Secondly, the elevators need to be scheduled. Currently, the pallets
are assigned to the elevators using a simple first-fit type algorithm. Whenever
a pallet that needs to be transported to a different floor passes an empty eleva-
tor waiting area, it will enter this area and request transportation from the cor-
responding elevator. Additionally, the current Herlitz strategy requires, that
the waiting area for exiting pallets of the respective elevator is empty on the
destination floor of the pallet.

Elevators are also controlled using a first-fit type strategy. Whenever an
elevator has delivered a pallet, it will next serve the pallet which is located
on the nearest floor, i.e., the algorithm tries to minimize in a greedy fashion
the length of it’s empty moves. To guard against single pallets being left for
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Figure 1.6: The automatic storage system (courtesy of Herlitz PBS AG).

an arbitrarily long time, each pallet is associated with a counter. This counter
is increased by one each time the elevator chooses another pallet for serving
and leaves this pallet waiting. When the counter of a pallet reaches a certain
threshold, the elevator has to serve this pallet next.

Clearly, a setting of this threshold parameter which is too low, leads to a
FIFO pattern, where all pallets have to be served in order of their arrival in the
waiting areas. On the other hand, if the parameter is set too high, it will fail to
achieve the desired result.

1.4 Objectives for the elevator system

Discussion with our partners in industry showed that there are two main ob-
jectives for the elevator system, and, in fact, the entire transport system. These
two objectives try to reflect the intuitive goals of “maximal throughput”, which
proves difficult to formalize in a discrete system, and of “reliability” in the
sense of “predictable behavior”.

• Global efficiency—pallets should arrive quickly. This can be modeled by
minimizing average flow times for pallets.

• Reliability—pallets traveling under similar conditions should take about
the same time for their journey. This can be modeled by minimizing
maximal flow times.
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It seems intuitively clear, that there is a conflict between the two objectives.
This is confirmed by our simulation studies, which we describe in Chapter 6:
Algorithms which do particularly well with respect to one objective, show a
less satisfying behavior in terms of the other objective.



Chapter 2

Dial-a-ride Problems

In this chapter we study a variant of the combinatorial Dial-a-ride problem.
With DARP we denote the case where a single server with unit capacity moves
on a graph. We are dealing with closed schedules, i.e., the server has to return
to its origin. The objective is to minimize overall server movements.

We will first show that DARP can also be expressed as a graph augmen-
tation problem. We then discuss balancing, which is a general technique for
tackling DARP on paths and trees introduced in [AK88] and [FG93]. From this
we derive the polynomial solvability of our variant of DARP on paths. We then
show that the problem is NP-hard on caterpillar graphs. This is a new result,
which strengthens the complexity results for this variant of DARP from [FG93],
where it is shown that the variant is NP-hard on trees. Next, we explain the
approximation algorithms for this problem on general graphs from [FHK78]
and also on trees, published in [FG93].

We summarize the main results for DARP discussed in this chapter:

Hardness Best approx. result
Path P –
Caterpillar NP-hard 5/4

Tree NP-hard 5/4

Graph NP-hard 9/5

2.1 DARP on graphs

We study in this chapter the subclass 1, cap1||G|
∑
m of the Dial-a-ride prob-

lem, employing the notation described in Appendix B. We use the term DARP

in this thesis to denote this particular case of the general problem. The space
for this subclass is a (finite) graph with edge weights, as indicated by the en-
try G. The entry 1 specifies, that a unique server moves on this graph. The
server has to deliver a (finite) set of transportation requests. We consider the
requests to be given as arcs in the graph, directed from their source vertex to

11
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their destination vertex. The server has unit capacity, as indicated by the en-
try cap1. This means that it can only serve one request at a time. The entry

∑
m

specifies that the objective is to find a shortest transportation for the jobs. We
also require the server to start and end its movements at a designated location.

2.1.1 DARP on graphs is a graph augmentation problem

We show in this section that DARP can be formulated as a graph augmentation
problem. To this end, we will first define more formally what we mean by
DARP. For notation from graph theory see Appendix A.1.

Definition 2.1.1 (Dial-a-Ride Problem (DARP)). The input for DARP consists
of a finite mixed graph G = (V, E,A), an origin vertex o ∈ V and a non-
negative cost function c : E ∪ A → R≥0. It is assumed that G[E] is connected
and contains all endpoints of arcs from A. Also, for any arc a = (u, v) ∈ A, its
cost C(a) equals the length of a shortest path from u to v in G[E].

The goal of DARP is to find a closed walk in G of minimum cost which
starts in o and traverses each arc in A.

Figure 2.1: An instance of DARP as a graph augmentation problem. The dotted
arcs are a solution with arcs from A(E) and a solution from V ×V respectively.

An important observation is that DARP can be equivalently formulated as
a graph augmentation problem as illustrated in Figure 2.1. Let A(E) be the set of
arcs containing a pair of antiparallel arcs between the endpoints of each edge
in E. We can then extend the cost function c to A(E) in a natural way by defin-
ing the cost of an arc in A(E) to be the cost of the corresponding undirected
edge in E.

Let W be any feasible solution to a given instance of DARP, i.e., a closed
walk that starts in o and traverses each arc in A. Then W induces a multiset S
of arcs in the following way: For each time an undirected edge e = [u, v] ∈ E
is traversed by W from u to v, the multiset S contains a copy of the directed
arc (u, v). The graph G[A ∪ S] consisting of the arcs in A ∪ S and their end-
points (which include the origin o) is then Eulerian. This follows from the
following observation: When tracing W and traversing for each undirected
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edge in W the corresponding directed arc in S in the respective direction we
get an Eulerian cycle.

Conversely, let S be a multiset of arcs fromA(E) such thatG[A ∪ S] is Eule-
rian and contains the origin o. Then we can easily obtain a feasible solutionW
for our instance of DARP as follows: Choose an Eulerian cycle C in G[A ∪ S ]

which starts and ends in o. The walk W starts at o and then follows C. If
the current arc r from C is in A then W traverses this arc in G, otherwise W
traverses the undirected edge corresponding to r.

Thus, any feasible solution for DARP corresponds to an augmenting mul-
tiset S of arcs such that G[A ∪ S ] is Eulerian and contains o and vice versa.
This enables us to reformulate DARP equivalently as the problem of finding
a multiset S containing arcs from A(E) minimizing the cost C(A ∪ S) such
that G[A ∪ S] is Eulerian and contains o.

We can also allow augmentation with arcs from V × V as illustrated in
Figure 2.1. We extend the cost function c to arcs from V × V by defining the
cost of an arc to be the cost of a shortest path in G[E] from its source to its
destination.

Definition 2.1.2 (Graph augmentation version of DARP). An instance of the
problem DARP I = (G = (V, E,A), C, o) consists of a finite mixed graph G =

(V, E,A), an origin vertex o ∈ V and a non-negative cost function c : E ∪ V ×
V → R≥0. It is assumed that for any arc a = (u, v) ∈ V ×V its cost C(a) equals
the length of a shortest path from u to v in G[E].

The goal of DARP is to find a multiset S of arcs in V×V minimizingC(A∪ S)
such that G[A ∪ S] is Eulerian and contains the vertex o.

2.1.2 Simplifying technical assumptions

We start with some technical assumptions about the input instances depend-
ing on the structure of the undirected graphG[E] given in an instance I = (G =

(V, E,A), C, o) of DARP. While all these assumptions are without loss of gener-
ality they greatly simplify the presentation of our algorithms in Sections 2.3, 2.5
and 2.6.

Suppose that G[E] is a tree. Let v ∈ V \ {o} be a vertex of degree at most two
in G[E] which is neither source nor target of an arc from A. If the degree of v is
one, i.e., if v is a leaf, we can remove v and its incident edge without affecting
the optimal solution. Similarly, if the degree of v is two, we can replace v
and its incident edges by a single edge with cost equal to the sum of the two
edges. Thus, for trees we can make the following assumption without loss of
generality:

Assumption 2.1.3 (Technical assumption for DARP on trees). Each vertex v ∈
V of degree one or two is either the origin o or incident to at least one arc from A.
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If G[E] is a path, then every vertex has degree one or two. It is easy to see
that in this case we can make an even stronger assumption without loss of
generality:

Assumption 2.1.4 (Technical assumption for DARP on paths). Each vertex v ∈
V is either the origin o or it is incident to at least one arc from A.

We now turn to DARP on general graphs.

Assumption 2.1.5 (Technical assumption for DARP on general graphs).

(i) Each vertex v ∈ V is incident to at least one arc from A.

(ii) G[E] is complete and the cost function c obeys the triangle inequality, i.e., for
any edge [u, v] ∈ E the cost C(u, v) does not exceed the length of a shortest path
in G[E] between u and v.

Note that Assumption 2.1.5 can be enforced without increasing the value
of an optimal solution. If the start vertex o is not incident to any arc from A

we can add a new vertex o ′, a new arc (o, o ′) and a new edge [o, o ′], each of
cost zero. The new vertex o ′ is joined by undirected edges to all neighbors of o
where the cost of an edge [o ′, v] equals C(o, v). We can then remove vertices
which are not source or target of an arc and for every pair u and v of vertices
insert new edges of cost equal to the shortest path in G[E] between u and v.

Assumption 2.1.5 can not be made without loss of generality for DARP on
trees, since removing vertices and later completing the graph as described will
in general destroy the “tree-property”. For further properties of DARP on trees
see Section 2.5.1.

2.2 Balancing

An important concept for tackling DARP on paths and trees is balancing. Bal-
ancing is based on the observation that every edge in a tree is a cut edge. This
implies that any closed walk on a tree has to traverse each edge as often in one
direction as it traverses it in the other direction. Given an instance of DARP, we
can exploit this observation and construct a multiset of balancing arcs which
is contained in an optimal solution. Balancing multisets have been studied
in [AK88, FG93].

2.2.1 Balancing DARP on trees

We begin by formally defining the concept of a balancing multiset. We then
will explain a simple method for constructing a balancing multiset for a given
instance of DARP on a tree, such that the balancing multiset is contained in an
optimal solution.
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Definition 2.2.1 (Balancing multiset). LetG = (V,A) be a directed multigraph.
A multiset B of arcs from V ×V is called a balancing multiset if inH = G[A ∪ B]

we have d+
H(v) = d−

H(v) for all vertices v ∈ H.

We now describe a method for generating a balancing set which is illus-
trated in Figure 2.2. Suppose that for a mixed graphG = (V, E,A) the graphG[E]

is a tree and that Assumption 2.1.3 is satisfied. Let [x, y] be an arbitrary edge
from E. The removal of [x, y] cuts V into the sets X and Y := V \ X with x ∈ X
and y ∈ Y. Any closed walk W in G = (V, E,A) which traverses each arc
from A must traverse the cut (X, Y) the same number of times in each direc-
tion. Denote by Φ(X, Y) the number of arcs emanating from X, i.e., Φ(X, Y) :=

|{r = (x, y) ∈ A|x ∈ X, y ∈ Y}|. Hence, W must traverse edge [x, y] from x to y
at least b(x, y) times, where

b(x, y) :=


1 if φ(X, Y) = φ(Y, X) = 0

φ(Y, X) − φ(X, Y) if φ(Y, X) > φ(X, Y)

0 otherwise.

Y

x

y

x

y

X
[x,y]

X

Y[x,y]

Figure 2.2: An instance of DARP on a tree with a balancing set (dashed arcs).
On the left hand side, the edge [x, y] defines vertex sets X and Y (dotted re-
gions) with Φ(X, Y) = Φ(Y, X) = 1. Therefore b(x, y) = b(y, x) = 0, and
no balancing arc is added. On the right hand side, we have Φ(X, Y) = 2

and Φ(Y, X) = 0, therefore b(x, y) = 0 and b(y, x) = 2, two balancing arcs
from y to x are added.

The above observation has the following consequence for the equivalent
graph augmentation version: If B is a multiset of arcs from A(E) such that B
contains exactly b(x, y) copies of the directed arc (x, y), then for every solu-
tion S which uses only arcs from A(E) we have that B ⊆ S. This leads to the
following lemma, which is proved in [AK88].

Lemma 2.2.2. Let I = (G = (V, E,A), C, o) be an instance of DARP such that G[E]

is a tree. Then in timeO(nmA) one can find a balancing set B of arcs from A(E) such
that B ⊆ S for every feasible solution S which uses only arcs from A(E).
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2.2.2 An O(n+mA) time algorithm for balancing on trees

In the last section we showed how to compute a balancing multiset with arcs
fromA(E). We will now consider the general case where solutions contain arcs
from V × V .

Lemma 2.2.2 obviously does not apply when allowing augmentation with
arcs from V×V : Any directed path P of arcs in a balancing set B can be replaced
with a single arc which has the same cost. If there is for every arc in P a parallel
arc with the same endpoints in B, then the new balancing set obviously visits
the same vertices and is still a balancing set. Given a solution S containing B,
we can also in S replace P with a single arc and have constructed a solution
which does not contain B. However it is intuitive that these balancing sets are
in some way equivalent, since “embedding” them into a closed walk in G[E]

yields the same walk.

We now define formally what we mean by an embedding and will use this
to derive an equivalence relation between arc multisets. The two concepts are
illustrated in Figure 2.3.

(a) (b) (c)

Figure 2.3: The arcs of the graph in (b) are an embedding of both the arcs in (a)
and (c) into the set of edges. The multiset of arcs in (a) and (c) are equivalent,
they are however not equivalent with the multiset of arcs in (b).

Definition 2.2.3 (embedding). Let G = (V, E,A) be a mixed graph. A multi-
set D of arcs from A(E) is an embedding of A into E if

1. for every arc a = (u, v) ∈ A there is a path Pa in D from u to v,

2. the multiset D is the disjoint union of all these paths, D =
⋃
a∈A Pa.

Let c be a cost function c : E → R≥0. A multiset D of arcs from A(E) is a
minimum cost embedding of A into E, if it is an embedding and all the paths Pa
have minimum cost.

It is easy to see that an embedding is not unique if G[E] is a general graph.
However, if G[E] is a tree, the path connecting any two vertices in this graph is
unique, and therefore an embedding into E is also unique.

We now define an equivalence relation on multisets of arcs.
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Definition 2.2.4 (equivalence). Let G = (V, E) be a graph and let c be a cost
function c : E→ R≥0. LetN,M be multisets of arcs from V×V . ThenN andM
are equivalent (N ∼ M) if

1. there exists a multiset D of arcs from A(E) which is a minimum cost
embedding of both N andM,

2. the set V(N) containing all endpoints of arcs in N equals the set V(M)

containing all endpoints of arcs inM.

We will now derive the result, that for a solution to a DARP, all multisets
of arcs equivalent to this set are also solutions of the same cost. However, we
notice that even on paths not all optimal solutions are equivalent multisets!

Lemma 2.2.5. Let I = (G = (V, E,A), C, o) be an instance of DARP and let S be
a solution. Let D be a minimum cost embedding of S. Then D is also a solution
and C(S) = C(D).

Proof. By definition of embedding, each arc s ∈ S corresponds to a path Ps ∈ D
and D =

⋃
s∈S Ps. In an Euler tour through A ∪ S we replace each arc s ∈ S

by the corresponding path Ps. This yields an Euler tour traversingA ∪ D. The
claim C(S) = C(D) follows from the way we extended the cost function from E

to V × V : The cost C(s) of an arc s = (u, v) ∈ S was defined as the cost of a
shortest path from u to v in E. However the path Ps is a shortest path from u

to v in A(E), therefore C(s) = C(Ps). This yields C(S) = C(D).

Corollary 2.2.6. Let I = (G = (V, E,A), C, o) be an instance of DARP and let S be
a solution of DARP. Let C be a submultiset of S and C ′ be a multiset of arcs such
that C ′ ∼ C. Then S ′ := (S \ C) ∪ C ′ is also a solution of DARP and C(S) = C(S ′).

Proof. By definition of equivalence we can find a multiset of arcs from A(E)

which is an embedding of both S and S ′. The claim follows therefore directly
from Lemma 2.2.5.

Notice that the converse of Corollary 2.2.6 is not true: Two solutions of an
instance of DARP with the same cost are not necessarily equivalent. This holds
even for instances of DARP on trees, if there are edges of cost zero.

We use Lemma 2.2.5 together with the earlier results on balancing for DARP

restricted to A(E) to prove the following result from [AK88]:

Lemma 2.2.7. Let I = (G = (V, E,A), C, o) be an instance of DARP such that G[E]

is a tree. Then in timeO(nmA) one can find a balancing multiset B of arcs from V× V
such that there exists an optimal solution S∗ with B ⊆ S∗.

Proof. Let S∗ be an optimal solution. Let S ′ be the embedding of S∗ into E.
Then by Lemma 2.2.5 S ′ is also an optimal solution. However S ′ uses only arcs
from A(E), therefore by Lemma 2.2.2 we can find in time O(nmA) a balancing
multiset B contained in an optimal solution.
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Input: A mixed graph G = (V, E,A), such that G[E] is a tree
1 Choose an arbitrary leaf r of tree G[E] and root the tree relative to this vertex (that is,

calculate the parent of each vertex other than r).
2 Let B = ∅. Compute the function b(x, y) for each ordered pair of adjacent vertices in G[E]

using procedure calculate-b.
3 For each b(x, y) > 0, add to B an arc from x to y and subtract 1 from b(x, y).
4 Add a new vertex r ′, connected via an edge to the root r of the tree. Set b(r, r ′) =

b(r ′, r) = 0.
5 Let B1 be the set of edges with b(u, v) > 0 and u is a parent of v, let B2 be the set of all

other edges with b(u, v) > 0.
6 Add balancing arcs to B generated by calling algorithm arcs-towards-root(r ′, r) using the

edges in B1.
7 Generate balancing arcs using the edges in B2 with algorithm arcs-away-from-root(r ′, r).
8 return B which is a multiset of O(n+mA) balancing arcs for G = (V, E,A).

Algorithm 1: Algorithm Balance for DARP on trees.

We will now discuss Balance (Algorithm 1) as described in [AK88, FG93].
This algorithm calculates a balancing multiset with arcs from V × V and has
an improved time bound of O(n+mA). The balancing multiset B returned by
the algorithm has at most O(n+mA) elements.

In the first step of Balance the values b(u, v) for all (u, v) ∈ A(E) are cal-
culated. This can be accomplished using procedure compute-b (Algorithm 2).
Clearly the algorithm correctly calculates the values of b. Note that the modi-
fied version of compute-Φ referred to in Step 14 is basically the same algorithm
as compute-Φ, only replacing all occurrences of destcount with sourcecount and
vice versa. We will now consider the time complexity of algorithm compute-b.

Lemma 2.2.8. The algorithm compute-b runs in time O(n +mA), where n = |V |

andmA = |A|.

Proof. The treeG[E] can be rooted at r in timeO(n). UsingO(n) preprocessing
time, the nearest common ancestor of any pair of vertices can be found inO(1)

time [SV88, HT84]. Replacing some arcs in A and partitioning the resulting
multiset into A1 and A2 can therefore be accomplished in O(mA) time. Hence
all the preprocessing steps take together O(n+mA) time.

Calculating the values for destcount and sourcecount takesO(mA) time. The
recursive procedure compute-Φ takes O(1) time for its calculations. Includ-
ing recursive calls, compute-Φ is executed twice for each edge. Therefore the
algorithm compute-b runs in time O(n+mA).

After calculating the values of b, in Step 3 algorithm Balance adds one copy
of each arc in A(E) which is contained in the embedding of the balancing arcs
into A(E). This ensures that this algorithm returns a balancing multiset with
the same set of endpoints as the balancing set using arcs fromA(E) considered
in the last section.

Now the other balancing arcs are computed, using two recursive proce-
dures, arcs-towards-root and arcs-away-from-root, which respectively compute
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Input: A mixed graph G = (V, E,A), and a vertex r ∈ V , such that G[E] is a tree with
root r ∈ V

1 for all (u, v) ∈ A do
2 Let n ∈ V be the nearest common ancestor of u and v in G[E].
3 if n is neither u nor v then
4 Replace a by two arcs, one from u to n and one from n to v.
5 end if
6 end for
7 Partition the arcs into multiset A1 containing arcs directed towards the root and multiset A2

of arcs directed away from the root.
8 for all v ∈ V do
9 Set destcount(v) to be the number of arcs in A1 that have v as destination vertex and

set sourcecount(v) to be the number of arcs in A1 emanating from v.
10 end for
11 for all v ∈ V such that [r, v] ∈ E do
12 Φ(r, v) = compute-Φ(r, v)

13 end for
14 Repeat steps 8 and 11 with the arcs in A2 using a modified version of compute-Φ(r, v) that

deals with arcs directed away from the root.
15 for all [u, v] ∈ E do
16 Calculate b(u, v) from Φ(u, v) and Φ(v, u) using formula 2.2.1.
17 end for
18 return b

Algorithm 2: Procedure compute-b of algorithm Balance

Input: A pair of vertices u and v such that [u, v] ∈ E.
Input: A mixed graph G = (V, E,A), such that G[E] is a tree with root r ∈ V ,

values sourcecount and destcount for each vertex and values Φ(x, y) for each
ordered pair of adjacent vertices (x, y).

1 Set Φ(u, v) = sourcecount(v) − destcount(v).
2 for all w ∈ V such that w is child of v do
3 Compute Φ(v,w) =compute-Φ(v,w).
4 Increment Φ(u, v) by Φ(v,w).
5 end for
6 return Φ

Algorithm 3: Procedure compute-Φ of algorithm Balance

balancing arcs directed towards the root and balancing arcs directed away
from the root. We will only discuss procedure arcs-towards-root. The pro-
cedure arcs-away-from-root is similar.

Algorithm arcs-towards-root keeps for each vertex v ∈ V a list of ver-
tices L(v) containing possible initial vertices for balancing arcs whose embed-
ding into E contains the arc (u, v) where u is the parent of v. We assume that
these lists are empty when the procedure is called first. Recursive procedure
calls will then manipulate the lists. Note that any vertex added to a list will
become an initial vertex of a balancing arc. Also note that for any vertex v,
either copies of v are added to the list L(v) or balancing arcs with destination v
are generated, but not both.

Lemma 2.2.9. Let I = (G = (V, E,A), C, o) be an of DARP where G[E] is a tree.
Then algorithm Balance calculates in time O(n +mA) (where n = |V | and mA =
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Input: An arc (u, v) ∈ B1.
Input: A mixed graph G = (V, E,A), such that G[E] is a tree with root r ∈ V , a

multiset of arcs B1 ⊂ A(E), values b(x, y) for each (x, y) ∈ B1 and a list of
vertices L(v) for each vertex v ∈ V .

1 if v is a leaf then
2 Append b(v, u) copies of v to L(v).
3 else
4 Set L(v) = ∅.
5 for all w ∈ V such that w is a child of v do
6 Call arcs-towards-root(w, v).
7 Append L(w) to L(v).
8 end for
9 if b(v, u) > |L(v)| then

10 Append b(v, u) copies of v to L(v).
11 end if
12 if b(v, u) < |L(v)| then
13 for |L(v)| − b(v, u) elements x from the list L(v) do
14 Add a balancing arc (x, v) to B.
15 Remove x from L(v).
16 end for
17 end if
18 end if
19 return B

Algorithm 4: Procedure arcs-towards-root of algorithm Balance

|A|) a balancing multiset B of arcs from V × V such that B ⊆ S∗ for some optimal
solution S∗. The multiset B has O(n+mA) elements.

Proof. First, we note that the artificial edge [r, r ′] with b(r, r ′) = 0 is the last
edge considered by the procedure arcs-towards-root. Therefore the procedure
generates an arc for each initial vertex that has been inserted into one of the
lists.

It is easy to see that the multiset of arcs B generated by the algorithm has
the property that for the multiset A ∪ B and for all ordered pairs of adjacent
vertices (u, v) the value b(u, v) = 0. This implies that B is a balancing multiset.

Let B̄ be the balancing set from A(E) considered in the last section. We
already noticed that Step 3 of Balance ensures that B and B̄ have the same set
of endpoints. The procedures arcs-towards-root and arcs-away-from-root yield
arcs which are chains of arcs from B̄. In fact, the algorithm generates a set B
such that B ∼ B̄. With Corollary 2.2.6 we conclude that there is an optimal
solution that contains B.

We now show that the multiset B generated by Balance contains at most
O(n+mA) elements. In Step 3, algorithm Balance addsO(n) arcs to B. In each
connected component inG[A∪B], no more than half the arcs are balancing arcs
generated by arcs-towards-root. Otherwise in an Euler tour of the component,
two arcs generated by arcs-towards-root would have to be traversed directly
after each other. This is not possible, since we already noted that a vertex can
never be both start and stop vertex for arcs generated by arcs-towards-root.
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The same argument applies to the number of arcs generated by arcs-away-
from-root. We also notice that the targets of arcs generated by arcs-away-from-
root can not be sources of arcs generated by arcs-towards-root. If this would be
the case, then the edge from this vertex towards the root would be traversed
in both directions by the two shortest path connecting the endpoints of both
arcs. This, however, can not happen due to the definition of b. Therefore the
number of balancing moves generated by the two procedures is O(mA). This
yields an overall number of arcs of O(n+mA).

We finally consider the time that Balance takes. For this discussion we
assume the following times for each list operation: For each list, we save addi-
tionally its size. The size is updated in O(1) for each list operation. Append-
ing a list to another list takes O(1) time and so does adding one element and
also removing the first element. We already know that procedure compute-b
takesO(n+mA) time. Step 3 of algorithm Balance clearly takesO(n) time. We
now consider the time for executing arcs-towards-root and arcs-away-from-
root.

The algorithm appends at each vertex v ∈ V at most d(v) lists to L(v)
where d(v) is the degree of the vertex. This yields O(n) appending opera-
tions. For each arc generated the algorithm once inserts the initial vertex into a
list and once deletes it from the list and generates the arc. We already showed
that the two procedures generateO(n+mA) arcs. We conclude that algorithm
Balance runs in time O(n+mA).

2.3 A polynomial time algorithm for DARP on paths

In this section we give a polynomial time algorithm for DARP on paths, which
was presented in [AK88]. To this end, let G = (V, E,A) be a mixed graph such
that G[E] is a path. We assume throughout this section that Assumption 2.1.4
holds, i.e., each vertex is either the origin or it is incident to at least one arc.

The algorithm uses the component graph Ĝ[A] = (V̂, Ê) of a multiset A of
arcs. This graph is constructed as follows: V̂ is the set of all strongly connected
components Gi in G[A]. For every vertex v ∈ V that is not contained in one of
the connected components, add a vertex Gi to V̂ . Add an edge to Ê between
two vertices Gi and Gj in V̂ if there is an edge in G[A ∪ S] from some vertex in
Gi to some vertex in Gj. Its cost is set to the shortest edge connecting Gi and
Gj.

Note that the number of edges in Ĝ[A] is at most |E|, the number of edges
in the original graph. If G[E] is a tree, this implies that there are at most n − 1

edges in Ĝ[A] where n = |V |.

Theorem 2.3.1. Algorithm OptPath finds an optimal solution for DARP on paths.

Proof. Clearly the algorithm constructs a feasible solution to the problem. It
remains to show optimality. Let S∗ be an optimal solution such that B ⊆ S∗.
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Input: A mixed graph G = (V, E,A), such that G[E] is a path, a cost function c on E,
an initial vertex o ∈ V

1 Compute a balancing multiset B of arcs from V × V such that B ⊆ S∗ for some optimal
solution S∗.

2 Construct the graph of strongly connected components Ĝ[A ∪ B] = (V̂, Ê) of G[A ∪ B].
3 Compute a minimum spanning tree T of Ĝ.
4 Let N = ∅. For each edge in T add a pair of antiparallel arcs between the endpoints of the

corresponding edge in G[E] to N.
5 return the multiset B ∪ N.

Algorithm 5: Algorithm OptPath for DARP on paths.

Then N∗ = S∗ \ B is a multiset of arcs from V × V which strongly connect the
components ofG[A∪B]. SinceA∪B is balanced andG[A∪ S∗] is Eulerian (and
therefore also balanced), we can conclude that the multiset N∗ is balanced.
Since the underlying graph is a path, every edge is a cut edge. This implies
that the embedding of S∗ \ B into E consists of pairs of antiparallel arcs. The
edges in Ĝ[A ∪ B] traversed by arcs in the embedding of S∗ \ B into E connect
all vertices in Ĝ and hence contain a spanning tree. The cost of N∗ is therefore
at least twice the cost of a MST in Ĝ[A ∪ B]. Since the multisetN calculated by
OptPath has exactly twice the cost of an MST, the multiset B ∪ N is an optimal
solution.

We briefly comment on the running time of algorithm OptPath for DARP.
Computing a balancing multiset B can be accomplished in time O(n + mA)

(where n = |V | and mA = |A|) using algorithm Balance. The graph of con-
nected components can be constructed in O(n +mA) time. Let q be the num-
ber of connected components. The MST algorithm from [FT84] takes time
O(nβ(n, q)) where β(n, q) = min{i|login ≤ n/q} is a very slowly growing
function. This implies an overall time complexity of O(mA + nβ(n, q)).

2.4 DARP on caterpillars is NP-hard

In the last section we saw that DARP can be solved in polynomial time if the
underlying graph G[E] is a path. Frederickson and Guan proved that DARP is
NP-hard when the graph G[E] is a tree [FG93]. We will strengthen this result
and show that DARP is NP-hard on a caterpillar graph. This will allow us in
Section 3.2 to show that introducing time penalties for starting and stopping at
a given vertex leads to the resulting problem PENALTY-DARP being NP-hard
even on paths.

Theorem 2.4.1. DARP on caterpillars is NP-hard to solve. This result continues to
hold when the sources and destinations of all arcs are leafs of the caterpillar and when
there is at most one request starting from each leaf.

Proof. To show that DARP on a caterpillar graph is NP-complete, we reduce the
Steiner tree problem on bipartite graphs BIPARTITE-STP to it, which is known



CHAPTER 2. DIAL-A-RIDE PROBLEMS 23

to be NP-complete [GJ79, Problem ND12]. An instance of BIPARTITE-STP con-
sists of a bipartite graph H = (X ∪ Y, F) with bipartitions X, Y and a nonneg-
ative number k. The problem is then to decide, whether there exists a tree T
contained in H which spans all vertices in X and has at most k edges.

P ′(f)

Q ′(c)

ff

bbb

g h

cb a

X

Y

f f hgg h

a

Figure 2.4: Transformation of a Steiner tree problem on a bipartite graph to
a DARP on a caterpillar graph. Optimal solutions correspond to each other
(from[HKRW99]).

We begin with a short outline of the proof as illustrated in Figure 2.4: Each
vertex is split into sufficiently many copies, such that each of these copies is
incident to exactly one of the edges incident to the original vertex. These edges
will be the hairs of the caterpillar and we assign them a weight of one. We then
add additional edges of weight zero, so that for each vertex in Y all of its copies
lie on a path segment of weight zero. These path segments are then joined with
edges with a very large weight. The resulting paths is the backbone of the
caterpillar. Finally, for each vertex in X its copies are joined by a cycle of arcs.
An solution of the resulting instance of DARP connects all these cycles. We will
show that all the (original) edges traversed by an optimal solution correspond
to a Steiner tree of minimum weight spanning X in the original graph.

Without loss of generality, we assume that each vertex in X has degree at
least two. For a vertex in X with a single edge incident to it, this edge has to
be contained in any tree in H that spans X. Also without loss of generality,
we assume that H is connected. Otherwise two cases can apply: If there is a
connected component ofH that contains X, then we can restrict our discussion
to this component. If there is no such component, then it follows that there
is no tree connecting all vertices in X. We further assume that |X| ≤ k ≤ |F|.
Since X is an independent set in H, any tree connecting the vertices in X has
to contain at least one vertex from Y. Therefore such a tree must contain at
least |X| edges. The assumption k ≤ |F| follows from the observation that T is a
subgraph of H and therefore it can not contain more than |F| edges.

We now describe how to construct an instance I = (G = (V, E,A), C, o) of
DARP where G[E] = (V, E) is a caterpillar, the arcs A describe the requests, c
is a positive cost function and o ∈ V is the origin of the server. The method is
illustrated in Figure 2.4. It is based on the following ideas: First, we construct
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a new graph which contains the edges from G[E], but these edges are all not
adjacent. We further add a backbone to this graph which traverses one vertex
from each edge. The resulting graph is a caterpillar. We add arcs between the
leafs of the caterpillar, so that all those edges which in the original graph were
incident to a single vertex from X are now connected with a cycle of arcs. By
choosing appropriate weights for the edges, we can then show that a solution
for DARP on the graph constructed in this way corresponds to a solution of the
BIPARTITE-STP.

We start our construction ofGwith the backbone of the caterpillar. We first
construct a path of |Y| vertices, where for each vertex in Y the path contains a
copy of this vertex. The weight of the edges on the path are all set toM = |F|+1.
We then replace each vertex y on this path by a path of dH(x) vertices of cost
zero. Here dH(y) denotes the degree of y in H. The set of copies of all vertices
in Y is called Q ′ and the set of copies of vertex y ∈ Y is called Q ′(y).

In the second step we add for each edge in F a hair of cost one to the cater-
pillar. Iteratively we choose the edges f ∈ F. Let the endpoints of f be x ∈ X
and y ∈ Y. We choose a copy y ′ ∈ Q ′(y) of vertex y which is not yet incident
to a hair, and add a new hair to this vertex (note that there is always a “free”
vertex in Q ′, since the number of copies of each vertex equals to its degree
in H). The other endpoint of the hair is a new vertex x ′ which is a copy of the
vertex x ∈ X. This construction will add dH(x) many copies of each x ∈ X to
the caterpillar. Again we denote with P ′ the set of copies of all vertices in X and
we denote with P ′(x) the set of copies of vertex x ∈ X. Clearly, the graph G[E]

constructed in this way is a caterpillar graph.

We proceed to construct the transportation requestsA on the caterpillarG[E]:
For each vertex x ∈ X, we add arcs between copies of x, such that these arcs
constitute a simple directed cycle through the vertices in P ′(x). Finally the ori-
gin of the server is chosen to be the source of an arbitrary arc in A. Notice that
there is at most one arc leaving each leaf of the caterpillar and that there are no
arcs incident to vertices on the backbone.

Let K =
∑
a∈AC(a). We will show, that H contains a tree T spanning X

which has less than k edges, if and only if there is a feasible solution to the
instance I of DARP with cost less than K+ 2k.

Notice that the graph G[A] is by construction degree balanced, i.e., the in-
degree of each vertex is equal to its out-degree. Also each set P ′(x) containing
the copies of a vertex x ∈ X corresponds to a strongly connected component
in G[A]. Due to the property that G[A] is degree balanced, each strongly con-
nected component is Eulerian and there are no arcs between different compo-
nents.

Let T ⊆ H be a tree with k edges spanning X. We now describe how to
construct a multiset of arcs S such that G[A ∪ S] is Eulerian, o ∈ G[A ∪ S] and
which has cost C(A ∪ S) at most K+ 2k.

Let YT be the subset of vertices in Y which is spanned by T . For each edge
in F with cost zero that connects copies of vertices in YT we add to S two an-
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tiparallel arcs between the endpoints of this edge. This does not incur any cost.
Notice that these arcs ensure, that for each vertex y ∈ YT its copies Q ′(y) are
strongly connected.

For each edge t in the tree T we add two antiparallel arcs between the end-
points of the corresponding edge in E (remember that the hairs of the caterpil-
lar correspond to edges in F, such that for each edge f ∈ F there is a unique
hair whose endpoints are copies of the endpoints of f). The resulting multiset
of arcs S has therefore cost C(S) = 2k.

Since S contains only pairs of antiparallel arcs, G[S] is degree balanced.
ThereforeG[A ∪ S] is also degree balanced. It remains to show thatG[A ∪ S] is
connected. Recall that the arcs in A were constructed such that the copies of a
vertex in X are a strongly connected component ofG[A]. We already remarked
that the copies of each vertex in YT are strongly connected in G[S]. Since T is
a tree with vertex set X ∪ YT , the pairs of antiparallel arcs in S corresponding
to edges in T connect in G[A ∪ S] the (strongly connected) sets of copies of
vertices in X ∪ YT .

Conversely, let S be a multiset of arcs with the properties that G[A ∪ S] is
Eulerian and C(A ∪ S) is less or equal to K+2k. Without loss of generality, we
assume that S contains only arcs from A(E)—otherwise we replace it with its
embedding into A(E) which, by Lemma 2.2.5, is a solution of the same cost.

The graph G[S] is degree balanced, since G[A ∪ S] is Eulerian and G[A] is
degree balanced. We claim that each arc in S has cost of less than M = |F| + 1.
Since all arcs correspond to edges in E, an arc can have at most cost M. If an
arc a of cost M exists, then a corresponds to an edge e ∈ E of cost M. We
choose the connected component in G[S] that contains a (such a component
exists, since G[A] is degree balanced). Since G[S] consists only of arcs corre-
sponding to edges in G[E], an Euler tour through this component describes a
closed walk in G[E], which is a caterpillar. Each edge in a caterpillar is a cut
edge. A closed walk has to traverse a cut edge as often in one direction as it
traverses it in the other direction. Therefore G[S] contains another arc corre-
sponding to e but traversing it in the opposite direction than a. Since k ≤ |F|,
the cost of the arcs A plus the cost of two M-weighted arcs already exceed the
alleged cost of K+ 2k.

We denote by T the undirected graph induced by the hairs of the caterpil-
lar G[E] that correspond to an arc in S. We showed that all other arcs in S have
weight zero. Since C(S) = 2k and the weight of arcs corresponding to hairs is
one, there are 2k arcs corresponding to hairs. Using again the observation that
for an arc corresponding to an edge there must be a second arc traversing this
edge in the opposite direction, we conclude that there are at most k elements
in T .

We recall that there is a one-to-one correspondence between the hairs of the
caterpillar G[E] and the edges F in the bipartite graph. We call H[T ] the graph
inH induced by those edges. It only remains to show, thatH[T ] contains a path
between any two vertices u, v ∈ X. In this case, H[T ] contains a tree connecting
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all vertices in X. This tree can have at most k edges since H[T ] itself consists of
at most k edges.

To prove that any two vertices u, v ∈ X are connected via a path in H[T ],
we pick any two copies u ′, v ′ ∈ P ′ of u and v respectively. There is a chain of
arcs L ⊆ (A ∪ S) such that G[L] is a walk connecting u ′ and v ′. There are only
three types of arcs in L: The arcs in A connect copies of the same vertex in X,
the arcs in S with weight zero connect copies of the same vertex in Y and the
arcs in S which are hairs of the caterpillar correspond to edges in H[T ]. This
implies that traversing the edges inH[T ] that correspond to arcs in S traversing
hairs of the caterpillar yields a walk in H[T ] connecting u and v.

2.5 Approximation algorithms for DARP on trees

In this section we discuss approximation algorithms for DARP on trees. We
have already seen that DARP on caterpillars (and therefore also on trees) is
NP-hard (see Section 2.4).

We first show, that in order to solve DARP on trees we have to solve a
Steiner tree problem on the component graph, which is a general graph. We
will then study two approximation algorithms for DARP on trees. Freder-
ickson and Guan [FG93] showed that a combination of these two algorithms
achieves a performance of 5/4.

2.5.1 Notes about balanced instances of DARP on trees

A balanced instance of DARP dissects G into strongly connected components
Gi each of which can either be traversed by an Euler tour in A or consists of a
single unused vertex inG. We have seen in Section 2.3, that we can compute an
optimal solution for DARP on paths by finding a MST of the component graph,
which has as vertices the components and unused vertices of G. Why does
this not yield an optimal solution on trees? The answer to this question is that
we can not eliminate the unused nodes without destroying the tree-property.
Thus, we need to solve a Steiner tree problem rather than a MST problem on
the component graph. In some instances where the “doubled MST” is not
optimal, the Steiner points to use are still canonical (see Figure 2.5) because,
e.g., Ĝ happens to be a tree, and hence the problem is efficiently solvable. In
general, however, we can not expect this (see Figure 2.6)—not even on a path.
The component graph can also contain instances of K4 (otherwise it could be
solved in linear time using Wald and Colbourn’s algorithm [WC83]).

In fact, for an arbitrary graph H = (W,F) we can easily construct a mixed
graph G = (V, E,A) where G[E] is a tree such that H is the component graph
ofG: Initially, letG be a spanning tree of F. For each vertex u, we add a copy u ′

of this vertex connected via an edge to u. Then, for each edge [u, v] in F which
is not used by the spanning tree we add a copy u ′ of vertex u to V and add an
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edge between v and u ′ to E. Finally we construct an arc set A as follows: For
any vertex v ∈ W we add a cycle of arcs connecting all its copies in V . This
construction clearly yields a mixed graph G = (V, E,A) such that G[E] is a tree
and Ĝ[A] = F. We conclude that Ĝ has in general no properties that can be
exploited for solving the Steiner problem.

Figure 2.5: The “doubled MST” solution (pointed) does not equal the opti-
mal tour (dashed) on trees. The given requests are: bring a unit from each
symbol to its counterpart; this induces back-and-forth arcs between equally
shaped nodes; the grey node is neither start nor end point of any request. From
left to right: the instance with four connected components, the component
graph Ĝ, and Ĝ after removal of Steiner points and shortest-path completion
(from[HKRW99]).

Figure 2.6: A small instance on a tree where Ĝ is not a tree (from[HKRW99]).

A possible approximation algorithm for solving DARP on trees would be
to employ approximation algorithms for the corresponding Steiner tree prob-
lems on the component graph. This has been studied by Frederickson and
Guan [FG93] using the approximation algorithms for the Steiner tree problem
by Zelikovsky [Zel93] and by Berman and Rahmaiyer [BR92].

However, Frederickson and Guan achieved even better approximation re-
sults using a combination of two other approximation algorithms. We will
discuss these two approximation algorithms and the combined strategy in the
remainder of this chapter.
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Input: A mixed graph G = (V, E,A), a cost function c on E, an initial vertex o ∈ V
1 Compute a balancing multiset B of arcs from V × V such that B ⊆ S∗ for some optimal

solution S∗.
2 Compute the set of edges X in G[E] that are traversed by the shortest paths connecting the

source and destination of arcs from A which are in different components of G[A ∪ B].
3 Generate the instance I ′ = (G ′ = (V ′, E ′, A ′), C, o) that results from instance I when

contracting edges in X. Let B ′ be a multiset of arcs in G ′ corresponding to B.
4 Compute the component graph Ĝ ′[A ′ ∪ B ′].
5 Compute a minimum-cost Steiner tree T for Ĝ ′[A ′ ∪ B ′] that spans at least the set of

vertices corresponding to strongly connected components of G ′[A ′ ∪ B ′].
6 Let N = ∅. For each edge in T ∪ X add two corresponding antiparallel arcs to N.
7 Find an Euler tour C in G[A ∪ B ∪ N].
8 return the multiset B ∪ N and the cycle C.

Algorithm 6: Algorithm SteinerSpecial for DARP on trees

2.5.2 Approximation algorithm SteinerSpecial

The algorithm SteinerSpecial first reduces the problem of connecting the
components of G[A ∪ B] to a special case of the Steiner tree problem, which it
can then efficiently solve in linear time.

The algorithm exploits a property of instances I = (G = (V, E,A), C, o) of
DARP on trees where A is balanced and where each edge in E is contained in
the shortest paths in G[E] between the sources and targets of arcs from at most
one component. Frederickson and Guan prove in [FG93] that the component
graph of such an instance contains no subgraph homeomorphic to K4.

Using this result we can easily prove the following lemma:

Lemma 2.5.1. Let I = (G = (V, E,A)) be an instance of DARP where G[E] is
a tree and A is balanced. If every edge e ∈ E is contained in the shortest paths
between sources and sinks of arcs from at most one connected component of G[A]

then the corresponding Steiner tree problem on the component graph can be solved in
time O(n+mA) where n := |V | andmA := |A|.

Proof. In time O(n + mA) we can compute the component graph Ĝ[A]. As
shown in [FG93] the graph Ĝ[A] does not contain a subgraph homeomorphic
to K4. We can therefore use Wald and Colbourn’s algorithm [WC83] to com-
pute a Steiner tree in O(n) time.

To prove the linear time complexity of algorithm SteinerSpecial, it remains
to show that the set X computed in Step 2 can be found in O(n+mA). Freder-
ickson and Guan describe a linear time algorithm for this [FG93].

Theorem 2.5.2. For an instance I = G = (V, E,A), C, o) where G[E] is a tree, the
algorithm SteinerSpecial computes multisets B and N such that G[A ∪ B ∪ N]

is Eulerian and C(A ∪ B ∪ N) ≤ 3
2C(A ∪ S∗) where S∗ is an optimal solution

for the instance of DARP. The algorithm takes O(n + mA) time where n = |V |

andmA = |A|.
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Proof. Clearly the algorithm computes a feasible solution. The worst case per-
formance ratio is established as follows: Since X is the set of edges traversed
by the shortest paths connecting sources and sinks of arcs from more than one
component, this edge is clearly traversed by at least four paths connecting the
source and sink of arcs, twice in each direction. Note that the edges in X and
the edges in T are disjoint. Therefore 4C(X) + 2C(T) ≤ C(A ∪ B). Let S∗

be an optimal solution such that B ⊆ S∗. We define N∗ := S∗ \ B. Using the
observation that C(T) ≤ C(N∗) we get

C(A ∪ B ∪ N) = C(A ∪ B) + 2C(X) + 2C(T)

≤ C(A ∪ B) +
(C(A ∪ B)

2
− C(T)

)
+ 2C(T)

≤ 3
2
C(A ∪ B) + C(T) ≤ 3

2
C(A ∪ B) + C(N∗)

≤ 3
2

OPT.

We now consider the computation time of the algorithm. Frederickson and
Guan [FG93] show that it is possible to find the set X in time O(n +mA). We
also know that we can find a multiset of balancing arcs in timeO(n+mA) (see
section 2.2.2). Clearly contraction of the edges in X and the subsequent compu-
tation of the component graph can take place in O(n +mA) time. The Steiner
tree can be computed in O(n) time. Finding the cycle C will take O(n +mA)

time. This concludes the proof that SteinerSpecial has time complexity O(n+

mA).

We will later use the following intermediary result from the last proof:

Corollary 2.5.3. With premises as in the last theorem, the inequality

C(A ∪ B ∪ N) ≤ 3
2
C(A ∪ B) + C(T)

holds.

2.5.3 Approximation algorithm MinSpanTree

The approximation algorithm MinSpanTree is adapted from algorithm Opt-
Path, which computes optimal solutions for DARP on paths (see section 2.3).
However this time we can not simply calculate a MST for the component graph
since in the case of trees, the component graph in general contains Steiner ver-
tices which do not correspond to connected components of the balanced prob-
lem instance. However we approximate the Steiner tree by calculating a MST
of a reduced graph.

The algorithm uses the reduced component graph Ḡ[A] = (V̄, Ē) of a multi-
set A of arcs. This graph is constructed as follows: V̄ is the set of all strongly
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Input: A mixed graph G = (V, E,A), such that G[E] is a tree, a cost function c on E,
an initial vertex o ∈ V

1 Compute a balancing multiset B ⊆ A[E] such that B ⊆ S∗ for some optimal solution S∗.
2 Compute the reduced component graph Ḡ[A].
3 Compute a MST T̄ of Ḡ[A].
4 Let N = ∅. For each edge in T̄ add a pair of antiparallel arcs between the endpoints of the

corresponding edge in G[E] to N.
5 Find an Euler tour C in G[A ∪ B ∪ N].
6 return the multiset B ∪ N and the cycle C.

Algorithm 7: Algorithm MinSpanTree for DARP on trees.

connected componentsGi inG[A]. Edges in the graph have weight equal to the
shortest path connecting any two vertices from the two components in G[E].
To allow calculation of a MST in the reduced component graph, we can simply
generate an edge between any two vertices.

Kou and Makki [KM87] and Mehlhorn [Meh88] showed the following re-
sult and we refer to these authors for a proof:

Lemma 2.5.4. There is an algorithm that computes in O(n) time a reduced compo-
nent graph which has at most O(n) edges and has the property that a MST of this
graph is also a MST of the complete reduced component graph, containing an edge
between any pair of vertices.

In order to establish a worst-case ratio for algorithm MinSpanTree, we use
the following lemma, that a MST of the reduced component graph has cost
at most twice that of an optimal Steiner tree in the component graph. This is
proved in [FG93].

Lemma 2.5.5. Let G = (V, E,A) be a mixed graph such that A is balanced. Let c be
a cost function on the edges. Let T̂ be a Steiner tree in Ĝ[A] = (V̂, Ê), the component
graph of A which spans the vertices corresponding to connected components in G[A].
Then we can construct a MST T̄ of Ḡ[A] = (V̄, Ē), the reduced component graph,
with cost C(T̄) ≤ 2C(T̂).

We can now prove the following theorem on the performance and time
complexity of algorithm MinSpanTree.

Theorem 2.5.6. For an instance I = (G = (V, E,A), C, o) where G[E] is a tree, the
algorithm MinSpanTree computes multisets B and N such that G[A ∪ B ∪ N] is
Eulerian and C(A ∪ B ∪ N) ≤ 4

3 C(A ∪ S∗) where S∗ is an optimal solution for the
instance of DARP. The algorithm takes O(mA + n logβ(n, q)) time, where mA :=

|A|, n := |V | and q is the number of connected components in A ∪ B and β(n, q) =

min{i| logi(n) ≤ n/q}

Proof. Clearly the algorithm computes a feasible solution. The worst-case per-
formance ratio of 4/3 can be shown as follows:

Let S∗ be an optimal solution for the instance of DARP such that B ⊆ S∗.
Let N∗ := S∗ \ B. In a balanced problem instance for which assumption 2.1.3
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holds, each edge is traversed by at least two antiparallel arcs from A ∪ B.
Therefore C(A ∪ B) ≥ C(N). We will now show that C(N) ≤ 2C(N∗). The cost
of C(N) is at most twice the cost of a MST of the reduced component graph.
In section 2.5.1 we discussed, that the cost of N∗ is twice the cost of a Steiner
tree in the component graph spanning the vertices corresponding to connected
components in G[A]. Using lemma 2.5.5 we get the claimed bound C(N) ≤
2C(N∗).

Together with the first result that C(A ∪ B) ≥ C(N) we get that C(A ∪ B)+

C(N∗) ≥ C(N) + 1
2 C(N) = 3

2 C(N) and therefore

C(A ∪ B ∪ N) ≤ C(A ∪ B) + C(N) + C(N∗) − C(N∗)

= C(A ∪ B ∪ N∗) + C(N) − C(N∗)

≤ C(A ∪ B ∪ N∗) +
1

2
C(N)

≤ 4
3
C(A ∪ B ∪ N∗)

=
4

3
OPT

With algorithm Balance from section 2.2.2 we can find B in time O(n +

mA) when allowing balancing arcs from V × V . Lemma 2.5.4 tells us that
in time O(n) we can compute a reduced component graph with q vertices
and O(n) edges where q is the number of connected components in G[A ∪
B]. A minimum spanning tree in the reduced component graph can be com-
puted in time O(mA + n logβ(n, q)) time, where β(n, q) = min{i| logi(n) ≤
n/q} [GGST86].

We will later use the following intermediary result from the last proof:

Corollary 2.5.7. With premises as in the last theorem, the inequality

C(A ∪ B ∪ N) ≤ C(A ∪ B ∪ N∗) +
1

2
C(N)

holds.

2.5.4 A mixed strategy algorithm

We finally present Frederickson and Guan’s result that a combination of the
algorithms MinSpanTree and SteinerSpecial yields an improved worst-case
performance ratio of 5/4.

For an instance of DARP on a tree we compute solutions with both al-
gorithm MinSpanTree and algorithm SteinerSpecial and select the one with
lower cost.
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Theorem 2.5.8. Given an instance I = (G = (V, E,A), C, o) of DARP where G[E]

is a tree we compute solutions (SMST) and (SSteiner) with algorithms MinSpanTree
and SteinerSpecial respectively. Let S∗ be an optimal solution for this instance. Then
the following holds:

min{C(A ∪ SMST), C(A ∪ SSteiner)} ≤
5

4
C(A ∪ S∗)

Proof. Since both MinSpanTree and SteinerSpecial calculate a balancing mul-
tiset B, we can assume without loss of generality, that both algorithms return
the same balancing multiset B. LetNMST := SMST \B andNSteiner := SSteiner \B.
With T we denote the Steiner tree calculated by SteinerSpecial. Further, let S∗

be an optimal solution such that B ⊆ S∗ and let N∗ := S∗ \ B.

If C(A ∪ S∗) ≥ 2C(NMST) then from Corollary 2.5.7 we get

C(A ∪ B ∪ NMST) ≤ C(A ∪ B ∪ N∗) +
1

2
C(NMST)

≤ 5
4
C(A ∪ B ∪ N∗)

=
5

4
OPT

Otherwise C(A ∪ S∗) ≤ 2C(NMST) and with Corollary 2.5.3 it follows that

C(A ∪ B ∪ NSteiner) ≤
3

2
C(A ∪ B) + C(T)

≤ 3
2
C(A ∪ B) +

1

2
C(N∗)

≤ 3
2
C(A ∪ B ∪ N∗) − C(N∗)

≤ 6
4
C(A ∪ B ∪ N∗) −

1

2
C(NMST)

≤ 5
4
C(A ∪ B ∪ N∗)

=
5

4
OPT

2.6 Approximation algorithm for DARP on general graphs

We present two approximation algorithms for DARP on general graphs by
Frederickson, Hecht and Kim [FHK78]. They showed, that combining the two
algorithms yields a performance ratio of 9/5.

Our discussion makes use of Assumption 2.1.5 for DARP on general graphs.
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Input: A mixed graph G = (V, E,A) satisfying assumption 2.1.5, a cost function c
on E, an initial vertex o ∈ V

1 Compute a balancing multiset B of arcs from V × V of minimum cost.
2 Compute the reduced component graph Ḡ[A].
3 Compute a MST T̄ of Ḡ[A].
4 Let N = ∅. For each edge in T̄ add a pair of antiparallel arcs between the endpoints of the

corresponding edge in G[E] to N.
5 Find an Euler tour C in G[A ∪ B ∪ N].
6 return the multiset B ∪ N and the cycle C.

Algorithm 8: Algorithm LargeArcs for DARP on general graphs.

2.6.1 Approximation algorithm LargeArcs

The algorithm LargeArcs is basically the same algorithm as MinSpanTree,
which is an approximation algorithm for DARP on trees (see section 2.5.3).
However MinSpanTree computed a balancing multiset B which is contained
in an optimal solution using algorithm Balance.

On a general graph such a multiset can not be computed efficiently. The
set B computed in Step 1 is in general not contained in an optimal solution.

Before we analyze the performance and time complexity of LargeArcs we
briefly comment on the computation of a minimum cost balancing multiset.
Frederickson, Guan and Hecht [FHK78] compute a minimum cost bipartite
matching between the set of sources of arcs and the set of destinations of arcs.
They show that this can be done in time O(m3A) (wheremA = |A|) when using
the weighted general matching algorithm by Edmonds and Johnson [EJ73] as
implemented by [GL75]. The balancing arcs are from V × V . There are at
mostmA balancing arcs in B.

Alternatively Step 1 can be carried out by performing a minimum cost
flow computation in the auxiliary graph F = (V,A(E)). A vertex v has charge
d−
G(v)−d+

G(v) and the cost of sending one unit of flow over arc r ∈ A(E) equals
its cost C(r). We then compute an integral minimum cost flow in F. If the flow
on an arc r is t ∈ N, we add t copies of arc r to the multiset B. It is easy to see
that this yields in fact a balancing multiset of minimum cost.

With this approach the balancing multiset of arcs B contains O(mE) ele-
ments (where mE = |E|). The arcs in B are all from A(E). The minimum cost
flow computation can be accomplished in time O(m2E logn +mEn log2 n) by
using Orlin’s enhanced capacity scaling algorithm [AMO93].

For both methods of computing B the running time of LargeArcs is clearly
dominated by this computation.

Theorem 2.6.1. For an instance I = (G = (V, E,A), C, o) of DARP the algorithm
LargeArcs computes multisets B and N such that G[A ∪ B ∪ N] is Eulerian
and C(A ∪ B ∪ N) ≤ 3C(A ∪ S∗) − 2C(A) where S∗ is an optimal solution
for the instance of DARP.
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Input: A mixed graph G = (V, E,A) satisfying assumption 2.1.5, a cost function c
on E, an initial vertex o ∈ V

1 Compute the arc-distance graph G ′[A] = (V ′, E ′).
2 Compute a TSP tour T in G ′[A]. Consider T to be a set of arcs.
3 Let A1 ⊂ A be the multisubset of arcs a such that T enters the vertex representing a

in G ′[A] through an edge representing a shortest path in G[E] incident to the destination
vertex of a and leaves the vertex representing a through an edge representing a shortest
path on G[E] incident to the source vertex of a.

4 Let A2 ⊂ A be the multisubset of arcs a such that T enters the vertex representing a
through an edge representing a shortest path in G[E] incident to the destination vertex of a
and leaves the vertex representing a through an edge representing a shortest path on G[E]

incident to the source vertex of a.
5 Let A3 ⊂ A be the multisubset of arcs a such that the two edges in T incident to the vertex

representing a represent shortest path incident to a single endpoint of a.
6 Let N1 := ∅ and N2 := ∅.
7 while traversing the TSP tour T once do
8 Let t be the current edge from E ′ in the tour.
9 Let M be the embedding of t into A(E) and let M̄ be the multiset of arcs computed

from M by reversing the direction of each arc in M.
10 Add M to N1 and add M̄ to N2.
11 end while
12 Add to N1 a copy and an antiparallel copy of each arc in A2.
13 Add to N2 a copy and an antiparallel copy of each arc in A1.
14 Add to both N1 and N2 an antiparallel copy of each arc in A3.
15 Let S be the set among N1 and N2 which has lower cost.
16 Find an Euler tour C in G[A ∪ S].
17 return the multiset S and the cycle C.

Algorithm 9: Algorithm SmallArcs for DARP on general graphs.

Proof. Clearly algorithm LargeArcs computes a feasible solution.

The balancing multiset B found in Step 1 of algorithm LargeArcs has cost at
most OPT−C(A): The optimal solution S∗ is degree balanced, hence a minimal
set of balancing arcs has at most cost C(S∗) = OPT − C(A).

The cost of the spanning tree edges must also be smaller than OPT −C(A),
therefore C(N) ≤ 2OPT − 2C(A). Adding together both inequalities, we get
that C(A ∪ B ∪ N) ≤ 3OPT − 2C(A).

From the Theorem 2.6.1 we can immediately derive the following result:

Corollary 2.6.2. Algorithm LargeArcs computes a solution of cost at most 3OPT.

2.6.2 Approximation algorithm SmallArcs

The algorithm SmallArcs uses the arc-distance graph G ′[A] of a multiset of
arcs A in a mixed graph G = (V, E,A). The graph G ′[A] = (V ′, E ′) is con-
structed as follows: For each arc a ∈ A we include a vertex v ′a into V ′. The
graph V ′ is complete. The weight of an edge (v ′a, v

′
b) is set to be the minimum

distance in G[E] between either source and sink of arc a and source or sink of
arc b.
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Theorem 2.6.3. If in Step 2 a ρTSP-approximation algorithm for computing a TSP-
tour is employed, then algorithm SmallArcs finds a solution of cost at most ρTSP ·
(OPT − C(A)) + 2C(A).

Proof. Clearly algorithm SmallArcs computes a feasible solution. We now show
that C(A ∪ S) ≤ 3

2 C(A ∪ S∗) + 1
2 C(A). An optimal TSP solution on the arc

reduced graph has at most cost C(S∗) (a tour of this cost is implied by A ∪ S∗).
Therefore a ρTSP-approximation algorithm finds a solution of cost at most ρTSP ·
(OPT − C(A)). The cost of the smaller multiset of arcs added toN1 andN2 re-
spectively is clearly no greater than C(A). This yields C(A ∪ S) ≤ ρTSP ·(OPT−

C(A)) + 2C(A).

The TSP tour computation in Step 2 can be accomplished with Christofides’
approximation algorithm [Chr76]. This yields a tour of length not more then
3/2 times the optimum.

The time that algorithm SmallArcs takes is then clearly dominated by run-
ning Christofides’ approximation algorithm, which can be implemented to
take time O(|A|3).

We can therefore derive the following Corollary:

Corollary 2.6.4. Algorithm SmallArcs employing Christofides’ algorithm computes
a solution of cost at most 2OPT.

Proof. From Theorem 2.6.3 we get C(A ∪ S) ≤ 3
2 OPT+ 1

2 C(A). Since we know
that 12 C(A) ≤ 1

2 OPT the claim follows.

2.6.3 A mixed strategy

Similarly to DARP on trees, we get an improved performance ratio of 9/5 by
combining the algorithms LargeArcs and SmallArcs. This result was shown
by Frederickson, Hecht and Kim [FHK78]

Given an instance of DARP we compute solutions with both algorithm
LargeArcs and algorithm SmallArcs and select the one with lower cost.

Theorem 2.6.5. Given an instance I = (G = (V, E,A), C, o) of DARP and solu-
tions (SSmall) and (SLarge) computed with algorithms SmallArcs and LargeArcs re-
spectively, let S∗ be an optimal solution for this instance. Then the following holds:

min{C(A ∪ SSmall), C(A ∪ SLarge)} ≤
9

5
C(A ∪ S∗)
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Proof. Let OPT := C(A ∪ S∗). If C(A) ≥ 3
5 C(A ∪ S∗) then from Theorem 2.6.1

we get

C(A ∪ SLarge) ≤ 3OPT − 2C(A)

≤ 3OPT −
6

5
OPT

=
9

5
OPT.

Otherwise C(A) ≤ 3
5 C(A ∪ S∗) and with Theorem 2.6.3 it follows that

C(A ∪ SSmall) ≤
3

2
OPT +

1

2
C(A)

≤ 3
2

OPT +
3

10
OPT

=
9

5
OPT.



Chapter 3

Extensions of the Dial-a-ride
Problem

In this chapter we consider extensions of the combinatorial optimization prob-
lem DARP studied in Chapter 2. All results presented in this chapter are
new. They have been published together with S. O. Krumke, J. Rambau and
H. C. Wirth in [HKRW99].

First we deal with FIFO-DARP, where a certain type of precedence rela-
tions is present. Similarly to DARP, we show that FIFO-DARP can be solved
polynomially on paths and is NP-hard for caterpillars. Again, approximation
algorithms for trees and general graphs are presented.

We then look at PENALTY-DARP, where time penalties for starting and
stopping are considered. We show that PENALTY-DARP reduces to DARP on
a slightly larger graph. This, however, yields that PENALTY-DARP is NP-hard
even on paths.

Finally, we show how to derive open schedule solutions for DARP and
FIFO-DARP, given approximate algorithms for the closed schedule case.

We summarize the main results for FIFO-DARP discussed in this chapter:

Hardness Best approx. result
Path P –
Caterpillar NP-hard 5/3

Tree NP-hard 5/3

Graph NP-hard 9/4

3.1 DARP with FIFO precedence constraints

We now study FIFO-DARP, which is an extension of DARP. In FIFO-DARP

we are given for each vertex a partial ordering on the arcs emanating from
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this vertex. The arcs have to be traversed by the Euler tour according to this
ordering. With this we can model cargo elevators fed via conveyor belts: The
elevator has to transport the first pallet waiting on a specific floor before being
able to access the next pallet on this floor.

3.1.1 Precedence constraints

In FIFO-DARP for each vertex v ∈ V we are additionally given a partial order
≺v on the arcs inAv. For each feasible solution we require that the arcs fromAv
are traversed according to that partial order: whenever a ≺v a ′, then arc a
must be traversed before a ′ in any feasible solution.

A partial order ≺ on the arc multiset of a graph H = (V, R) is a FIFO-order,
if it satisfies: r ≺ r ′ implies that r and r ′ have the same source. The partial
order≺ on the arc multisetA ofG = (V, E,A) resulting from the disjoint union
of the partial orders ≺v is clearly a FIFO-order. In the sequel ≺ is extended to
multisets containing arcs from V × V by defining that arcs which are not in A
are incomparable to each other and to those of A.

FIFO-orders are useful to model situations in applications when FIFO wait-
ing lines are present at each source and objects can be picked only from the
head of the queue. The elevator system described in Chapter 1 has waiting ar-
eas of capacity one and is therefore not directly an example for FIFO-DARP—
however we use FIFO-DARP for modelling a generalization of the elevators in
this system where the waiting spaces are conveyor belts holding more than
one pallet.

Figure 3.1 shows an instance where a FIFO-respecting transportation is
strictly longer than a transportation neglecting the FIFO-order. The undirected
edges of the graph (which is a path) are drawn as solid lines, and the arcs
corresponding to the transportation jobs are shown as dashed arcs. If no con-
straints have to be obeyed, then the jobs can be served without any “empty
move”, i.e., without traversing any undirected edge. If the constraint a ′ ≺ a
must be obeyed then two empty moves are necessary.

o u v w

a ′
a

Figure 3.1: One precedence constraint increases the cost.

Again, FIFO-DARP can be reformulated as a graph augmentation problem.
To do this, we need some additional notations:

Definition 3.1.1 (≺-respecting Eulerian Cycle, ≺-Eulerian). Let H = (V, R) be
a directed graph, ≺ be a FIFO-order on the arcs R, and o ∈ V . A ≺-respecting
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Eulerian cycle in H with start o is a Eulerian Cycle C in G such that a ≺ a ′ im-
plies that in the walk from o along C the arc a appears before a ′. The graph H
is then called ≺-Eulerian with start o.

Notice that in contrast to classical Eulerian cycles, in the case of≺-respecting
Eulerian cycles it is meaningful to specify a start node explicitly. Consider the
graph in Figure 3.1, with solid edges removed. Then, for a ≺ a ′, there is a
≺-respecting Eulerian cycle with start vertex o, but there is none starting at v.

Definition 3.1.2 (Graph Augmentation Version of FIFO-DARP). An instance
of FIFO-DARP consists of the same input as for DARP and additionally a FIFO-
order≺ on the arc multisetA. The goal is to find a multiset S of arcs from V×V
minimizing the weight C(A ∪ S) such that G[A ∪ S ] is ≺-Eulerian with start o
and to determine a ≺-respecting Eulerian cycle in G[A ∪ S].

In the sequel we consider FIFO-DARP as a graph augmentation problem.
We use S∗ to denote an optimal solution and OPT := C(A ∪ S∗) to denote its
cost. Notice that if C∗ is a≺-respecting Eulerian cycle in G[A∪S∗] with start o,
then the length of C∗ is equal to OPT.

3.1.2 Technical assumptions and balancing

In this section we will first explain some technical assumptions for FIFO-DARP.
We will then show that the technique of balancing described in Section 2.2 for
DARP can also be applied to FIFO-DARP on paths and trees.

We note that the assumptions made for DARP in Section 2.1.2 are also with-
out loss of generality valid for FIFO-DARP. For the sake of completeness we
repeat these assumptions here:

Assumption 3.1.3 (Technical assumption for FIFO-DARP on trees). Each ver-
tex v ∈ V of degree one or two is either the origin o or incident to at least one arc
from A.

For FIFO-DARP on paths we can make the following even stronger assump-
tion:

Assumption 3.1.4 (Technical assumption for FIFO-DARP on paths). Each ver-
tex v ∈ V is incident to at least one arc from A.

We now turn to FIFO-DARP on general graphs.

Assumption 3.1.5 (Technical assumption for FIFO-DARP on general graphs).

(i) Each vertex v ∈ V is incident to at least one arc from A.
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(ii) G[E] is complete and the cost function c obeys the triangle inequality, i.e., for
any edge [u, v] ∈ E the cost C(u, v) does not exceed the length of a shortest path
in G[E] between u and v.

In Section 2.2 we discussed the concept of balancing, which turned out to
be very useful for solving DARP on paths and trees. Remember that for a
mixed graph G = (V, E,A), we called a multiset B ⊆ V × V of arcs balancing
multiset if in H = G[A ∪ B] we have d+

H(v) = d−
H(v) for all vertices v ∈ H.

In Section 2.2.1 we showed for DARP on trees that we can construct in
time O(nmA) a balancing multiset which is contained in every feasible so-
lution using only arcs from A(E). Since a feasible solution for FIFO-DARP is
clearly also a feasible solution for DARP, we can immediately conclude that
this multiset is also contained in every feasible solution for FIFO-DARP which
uses only arcs from A(E).

When allowing augmentation with arcs from V × V we have seen in Sec-
tion 2.2.2 that we can compute with algorithm Balance in O(n+mA) a multi-
set B of balancing arcs. We proved in that section that there exists an optimal
solution containing that balancing set B. The proof of this result is equally
valid when considering FIFO-DARP. We can therefore conclude that, when al-
lowing augmentation with arcs from V ×V , Balance computes for an instance
of FIFO-DARP on trees a balancing multiset which is contained in an optimal
solution.

3.1.3 Euler tours respecting FIFO-orders

In this section we prove some new structural results about Eulerian cycles
which respect a given FIFO-order. Notice that it is easy to decide whether
a given graph H is ≺-Eulerian with start o, provided the restriction of ≺ to
each multiset Av is total: The ≺-respecting cycle (if it exists) is uniquely deter-
mined and can be found by a walk through the graph where at each vertex v
we always choose among the yet unused arcs from Av the minimal (with re-
spect to ≺). In the sequel we prove a necessary and sufficient condition for a
graph to be ≺-Eulerian with start at a given vertex.

Let C be an Eulerian cycle starting at o in a directed graph. We define the
set of last arcs of C, denoted by L, to contain for each vertex v ∈ V the unique
arc emanating from v which is traversed last by C. Observe that L contains a
directed spanning tree rooted towards o.

Let≺ be a FIFO-order. We denote the set of maximal elements with respect
to ≺ byM≺, that is,M≺ := {a ∈ A : there is no arc a ′ such that a ≺ a ′ }.

Definition 3.1.6 (Possible set of last arcs). Let H = (V, R) be a directed graph
and o ∈ V be a distinguished vertex. A set L ⊆ R is called a possible set of last
arcs, if it satisfies the following conditions:

(i) d+
L (v) = 1 for all v ∈ V , and
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(ii) for each v ∈ V there is a path from v to o in H[L].

Theorem 3.1.7. Let H = (V, R) be a directed Eulerian graph with distinguished ver-
tex o ∈ V and let L ⊆ R be a possible set of last arcs.

(i) There exists an Eulerian cycle C in H such that for each vertex v ∈ V the
(unique) arc from L emanating from v is traversed last at v by C.

(ii) Let ≺ be any FIFO-order with L ⊆ M≺. Then there exists a ≺-respecting
Eulerian cycle with start o in H. This cycle can be found in time O(|V | + |R|).

Proof. We first show (i). Color the arcs from L red and the arcs in R\L blue. We
claim that by the following procedure we construct an Eulerian cycle C in H
with the desired properties. Start with current vertex o. If possible, choose
an arbitrary (but yet untraversed) blue arc emanating from the current vertex,
otherwise choose the red arc. Traverse the arc, let its target be the new current
vertex, and repeat the iteration. Stop, if there is no untraversed arc emanating
from the current vertex. Call the resulting path of traversed arcs C. Since H
is Eulerian by assumption, for each vertex its in-degree equals its out-degree.
Therefore, Cmust end in the origin o and forms in fact a cycle.

We show that there is no arc in H which is not traversed by C. For a
node v ∈ V , let dist(v, o) be the distance (i.e., the number of arcs) on the short-
est path from v to o in the subgraph H[L]. We show by induction on dist(v, o)
that all arcs emanating from v are contained in C.

If dist(v, o) = 0 then v = o. Since the procedure stopped, all arcs ema-
nating from o are contained in C. This proves the induction basis. Assume
that the claim holds true for all vertices with distance t ≥ 0 and let v ∈ V
with dist(v, o) = t+ 1. Let a = (v,w) be the unique red arc emanating from v.
Then dist(w,o) = t and by the induction hypothesis all arcs emanating fromw

are contained in C. For d+
H(w) = d−

H(w), it follows that all arcs entering w, in
particular arc a, are also contained in C. Since red arc a is chosen last by the
procedure, all other arcs emanating from v must be contained in C. This com-
pletes the induction. Hence, C is actually an Eulerian cycle with the claimed
properties.

We proceed to show (ii). Analogously to (i) construct a Eulerian cycle with
the sole difference that at each node v we choose the next arc according to the
≺-constraint at v. Since by assumption L ⊆M≺ this yields a valid≺-respecting
Eulerian cycle with start o.

Corollary 3.1.8. Let H = (V, R) be a graph, o ∈ V and ≺ a FIFO-order. Then the
following two statements are equivalent:

1. H is ≺-Eulerian with start o.

2. H is Eulerian and the setM≺ of maximal elements with respect to ≺ contains a
possible set of last arcs.
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Input: A mixed graph G = (V, E,A), such that G[E] is a path, a cost function c on E,
an initial vertex o ∈ V , and a FIFO-order ≺

1 Compute a balancing multiset B of arcs from V × V such that B ⊆ S∗ for some optimal
solution S∗.

2 Let M≺ be the set of maximal elements with respect to ≺.
3 Set H = G[B ∪M ∪A(E)] with cost function C ′ on the arcs defined by

C
′(r) =

{
0 if r ∈ B ∪M≺
C(r) if r ∈ A(E) \ (B ∪M≺)

4 Compute a directed spanning tree D rooted towards o of minimum weight C ′(D) in G[B ∪
M≺ ∪A(E)].

5 Set N := ∅. For each directed arc r ∈ D which is not in B ∪M≺, add r and its anti-
parallel r−1 to N.

6 Define L := D ∪ {r}, where r is an arbitrary arc from Ao ∩ (M≺ ∪ B)

{Notice that such an arc must exist since o is source or target of at least one job
and G[A ∪ B] is degree-balanced.}

7 Use the method from Theorem 3.1.7 to find a ≺-respecting Eulerian cycle C with start o
in G[A ∪ B ∪N] such that L is the last set of arcs of C.

8 return the multiset B ∪N and the cycle C.

Algorithm 10: Algorithm FifoOptPath for FIFO-DARP on paths.

Proof. IfH is≺-Eulerian with start o, then the set of last arcs of any≺-respecting
Eulerian cycle forms a possible set of last arcs which must be contained inM≺.
Thus Statement 1 implies 2. The other direction is an immediate consequence
of part (ii) of Theorem 3.1.7.

Observe that Corollary 3.1.8 in fact implies a polynomial time algorithm for
deciding whether a given graph H is ≺-Eulerian with start o. Provided H is
Eulerian it suffices to check whether the subgraph formed by the arcs fromM≺
contains a directed spanning tree D rooted towards o (which can be done in
linear time). Adding to D an arbitrary arc from Ao ∩M≺ then yields indeed a
possible set of last arcs.

3.1.4 A polynomial time algorithm for FIFO-DARP on paths

In this section we consider FIFO-DARP on paths and show that the problem
can be solved in polynomial time. To this end, let G = (V, E,A) be a mixed
graph such that G[E] is a path. We assume throughout this section that As-
sumption 3.1.4 holds. Our algorithm FifoOptPath is an extension of OptPath
for DARP on paths, as discussed in Section 2.3. The algorithm FifoOptPath has
been published in [HKRW99].

Lemma 3.1.9. Let B ∪ N be the multiset returned by algorithm FifoOptPath. The
multiset B∪N is a feasible solution for FIFO-DARP, i.e., G[A∪B∪N] is≺-Eulerian
with start o.

Proof. In G[A ∪ B] each node has in-degree equal to its out-degree. Since N
consists of pairs of anti-parallel arcs, the graph G[A ∪ B ∪ N] is also degree
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balanced. Since by constructionG[A∪B∪N] contains a directed spanning tree
rooted towards o andG[A∪B∪N] is degree balanced it follows that this graph
is strongly connected and hence Eulerian.

The set L of arcs determined in Step 6 is clearly a set of possible last arcs. By
Theorem 3.1.7 (ii) there exists indeed a≺-respecting Eulerian cycle with start o
in G[A ∪ B ∪N].

Theorem 3.1.10. Algorithm FifoOptPath finds an optimal solution for FIFO-DARP

on paths.

Proof. The idea behind this result is is based on the following two observa-
tions: Each solution has to include a possible set of last arcs and, since G[E] is
a tree, each arc from A(E) has to be traversed as often in one direction as it is
traversed in the other direction. Therefore, we get a solution of minimum cost
by constructing an minimum directed spanning tree (where existing arcs can
be used “for free”) and “doubling” this tree.

More formally, let S∗ be an optimal solution such that B ⊆ S∗. With-
out loss of generality, we assume that all arcs in S∗ \ B are copies of arcs
from A(E) (we can otherwise replace S∗ \ B with its embedding into A(E),
which by Lemma 2.2.5 yields a solution of the same cost). By feasibility of S∗

the graph G[A ∪ S∗] is ≺-Eulerian with start o.

We now consider the multiset Z := (A∪S∗)\(A∪B) = S∗\B. SinceG[A∪B]

and G[A ∪ S∗] = G[A ∪ B ∪ Z] are degree balanced and Z ∩ (A ∪ B) = ∅, we
can decompose the set Z into arc disjoint cycles C1, . . . , Cp. Since Z contains
only (multiple) copies of arcs from A(E) and G[E] is a tree it follows that r ∈ Z
implies that r−1 ∈ Z.

Let C be a ≺-respecting Eulerian cycle in G[A ∪ S∗] and let L be its last
set of arcs. Notice that L ⊆ B ∪M ∪ Z, where the set M is defined in Step 2
of the algorithm. The set L must contain a directed spanning tree D ′ rooted
towards o. We partition D ′ into the multiset D ′B∪M≺ := D ′ ∩ (B ∪M≺) and
D ′Z := D ′ ∩ Z. Thus, C ′(D ′B∪M≺) = 0 and C ′(D ′Z) = C(D ′Z). Since we have
seen that for each arc r ∈ Z also its anti-parallel version r−1 ∈ Z (and D ′Z does
not contain a pair of anti-parallel arcs) we get that

C(Z) ≥ 2C(D ′Z) = 2C ′(D ′Z) + 2C ′(D ′B∪M≺)︸ ︷︷ ︸
=0

= 2C ′(D ′) ≥ 2C ′(D). (3.1)

Here,D is the directed spanning tree of minimum weight computed in Step 4.
The multiset N computed in Step 5 has cost

C(N) = 2C(D \ (B ∪M≺)) = 2C ′(D \ (B ∪M≺)) = 2C ′(D)
(3.1)
≤ C(Z). (3.2)

Using this result yields that

C(A ∪ B ∪N) = C(A ∪ B) + C(N) = C(A ∪ (S∗ \ Z)) + C(N)

(3.2)
≤ C(A ∪ (S∗ \ Z)) + C(Z) = C(A ∪ S∗).
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Thus, B ∪N is an optimal solution as claimed.

We briefly comment on the running time of algorithm FifoOptPath. Com-
puting a balancing multiset B with Balance takes O(n +mA) time. A rooted
spanning tree of minimum weight in a graph with n vertices andm arcs can be
computed in time O(min{m logn,n2}) by the algorithm from [Tar77] Thus al-
gorithm FifoOptPath can be implemented to run in timeO(n+mA+min{(mA+

n) logn,n2}).

3.1.5 Algorithms for general graphs

In this section we present an approximation algorithm for FIFO-DARP on gen-
eral graphs. The algorithm uses ideas similar to the algorithms for DARP on
general graphs discussed in Section 2.6. We will assume that Assumption 3.1.5
is satisfied, i.e., each vertex is incident to at least one arc and the cost function
obeys the triangle inequality.

Clearly FIFO-DARP is NP-hard to solve on caterpillars, since it contains
DARP as a special case. Even if we assume that the FIFO-orders for each vertex
are total, we notice that in Theorem 2.4.1 we showed that DARP on caterpillars
is NP-hard to solve even when restricted to instances when there is at most
one request starting from each leaf. However for an instance of FIFO-DARP

on a caterpillar with at most one arc starting from each leaf, the precedence
relation ≺ is empty.

Once again, the algorithm consists of two different sub-algorithms, FifoTSP
and FifoLastArcs, which are run both and the best solution is picked. The first
sub-algorithm, FifoTSP, is extremely simple: It computes a shortest tour which
visits each vertex from which emanates an arc at least once. Then, it uses this
TSP-tour to obtain a feasible solution for FIFO-DARP in the most obvious way.
The algorithm is shown in Algorithm 11.

Lemma 3.1.11. If in Step 3 a ρTSP-approximation algorithm for computing a TSP-
tour is employed, then algorithm FifoTSP finds a solution of cost at most ρTSP ·OPT+

2C(A).

Proof. Let S∗ be an optimum augmenting multiset and C∗ be a ≺-respecting
Eulerian cycle inG[A∪S∗] starting at o. Since C∗ visits all vertices from Vs, the
length of C∗ (which equals OPT) is at least that of a shortest TSP-tour on the
vertices Vs. Thus, if a ρTSP-approximation is used, the tour computed in Step 3
will have length at most ρTSP · OPT. The additional cost incurred in Step 7
is not greater than 2C(A), since each path added has weight not greater than
the corresponding arc from A. Hence, the total cost of the cycle C found by
algorithm FifoTSP is bounded from above by ρTSP·OPT+2C(A) as claimed.

Since the cost of the optimum tour serving all jobs is at least C(A), we get
from Lemma 3.1.11 that FifoTSP is a (ρTSP + 2)-approximation algorithm for
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Input: A mixed graph G = (V, E,A), a cost function c on E, an initial vertex o ∈ V ,
and a FIFO-order ≺

1 Let Vs be the set of vertices which are sources of arcs from A.
2 Compute a complete undirected auxiliary graph U with vertex set Vs. The weight d(v,w)

of edge [v,w] is set to be the length of a shortest path in G[E] from v to w.
3 Find an approximately shortest Traveling Salesperson tour P in U starting and ending in o.

Let the order in which the vertices of V are visited by P be v0 = o, v1, . . . , v|Vs|, v|Vs|+1 = o.
4 Construct a feasible tour C for FIFO-DARP as follows:
5 Start with the empty tour C.
6 for i := 0, . . . , |Vs| do
7 Let a1, . . . , ak be the arcs from A emanating from vertex vi. Set C ← C +

(a1, p1, . . . , ak, pk), where pj is a shortest path in G[E] from the endpoint of aj to vi.
8 Append to C the shortest path in G[E] from vi to vi+1.
9 end for

10 Let S be the multiset of directed edges used in C which are not contained in A.
11 return the multiset S and the cycle C.

Algorithm 11: TSP-based approximation algorithm FifoTSP for FIFO-DARP.

Input: A mixed graph G = (V, E,A), a cost function c on E, an initial vertex o ∈ V ,
and a FIFO-order ≺

1 Compute a balancing multiset B of arcs from V × V of minimum cost.
2 Follow steps 2 to 7 of algorithm FifoOptPath to compute a multiset N of arcs and a ≺-

respecting Eulerian cycle C with start o.
3 return the multiset B ∪N and the cycle C

Algorithm 12: Algorithm FifoLastArcs “mimicking” the algorithm for paths.

FIFO-DARP. Using Christofides’ algorithm [Chr76] achieves ρTSP = 3/2 and
thus FifoTSP provides a 7/2-approximation for FIFO-DARP. In the sequel we
will improve this bound by providing a second algorithm and combining this
algorithm with FifoTSP.

Our second algorithm, FifoLastArcs, is based on similar ideas as the algo-
rithm from Section 3.1.4 for paths. We first compute a multiset of balancing
arcs B which makes G[A ∪ B] degree balanced. Again, we then compute a
rooted tree directed towards the origin o of minimum cost, double the arcs
which are not yet in A ∪ B and add the resulting multiset N to the solution.
Our second algorithm, FifoLastArcs is shown in Algorithm 12.

By a proof similar to Lemma 3.1.9 it follows that the multiset B ∪N found
by algorithm FifoLastArcs is indeed a feasible solution.

Lemma 3.1.12. The balancing multiset B found in Step 1 of algorithm FifoLastArcs
has cost at most OPT − C(A). Step 1 can be accomplished in the time needed for one
minimum cost flow computation on a graph with n vertices and 2mE arcs.

Proof. Let S∗ be an optimal solution for an instance of FIFO-DARP, i.e., an aug-
menting multiset of arcs from V× V with minimum cost. Then the graphG[A∪
S∗] is ≺-Eulerian with start o. Thus, in particular, the addition of the arcs
from S∗ turnsG Eulerian, which means that each vertex has an in-degree equal
to its out-degree. Thus, the cost C(S∗) = OPT − C(A) is at least that of a mini-
mum cost multiset B of arcs from V × V which achieves the degree balance.
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Step 1 can be carried out by performing a minimum cost flow computation
in the auxiliary graph F = (V,A(E)). A vertex v has charge d−

G(v) − d+
G(v) and

the cost of sending one unit of flow over arc r ∈ A(E) equals its cost C(r).
We then compute an integral minimum cost flow in F. If the flow on an arc r
is t ∈ N, we add t copies of arc r to the multiset B. It is easy to see that this
yields in fact a balancing multiset of minimum cost.

Lemma 3.1.13. The cost of the multisetN computed in algorithm FifoLastArcs is at
most 2(OPT − C(A)).

Proof. The proof of the lemma is similar to the one for Theorem 3.1.10. The ma-
jor difference is that in general we can not assure that the balancing multiset B
computed in Step 1 is a subset of an optimal solution.

Let again be S∗ an optimal augmenting and L be the set of last arcs of a
≺-respecting Eulerian cycle in G[A ∪ S∗]. We can find a directed spanning tree
rooted towards o in L. The only arcs from A that L can contain are those from
the setM≺. Thus L \ (A∪B) = L \ (M≺ ∪B). Similar to Theorem 3.1.10 we can
now conclude that

OPT − C(A) = C(S∗) ≥ C(L \ (A ∪ B)) = C(L \ (M≺ ∪ B)) = C ′(L) ≥ C(N)

2
.

This shows the claim.

Corollary 3.1.14. Algorithm FifoLastArcs finds a solution of cost at most 3OPT −

2C(A).

Proof. By Lemma 3.1.12,C(A∪B) ≤ OPT. Lemma 3.1.13 establishes thatC(N) ≤
2OPT − 2C(A). Thus C(A ∪ B ∪N) ≤ 3OPT − 2C(A) as claimed.

We are now ready to combine the algorithms into one with an improved
performance guarantee. The combined algorithm Combine simply runs both
algorithms and picks the better solution.

Theorem 3.1.15. The combined algorithm Combine has a performance of ρTSP+3
2 .

Proof. Let β := 4
3−ρTSP

. If OPT ≤ βC(A), then the solution returned by FifoTSP
has cost at most

(ρTSP +
2

β
) OPT =

(
ρTSP + 2

3− ρTSP

4

)
OPT =

ρTSP + 3

2
OPT.

If OPT > βC(A), then the cost of the solution found by FifoLastArcs is bounded
from above by

(3−
2

β
) OPT =

(
3− 2

3− ρTSP

4

)
OPT =

ρTSP + 3

2
OPT.

This shows the claim of the theorem.
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Using Christofides’ algorithm [Chr76] with ρTSP = 3/2 results in a perfor-
mance guarantee of 3/4+ 3/2 = 9/4 for algorithm Combine.

Corollary 3.1.16. There is an approximation algorithm for FIFO-DARP with perfor-
mance 9/4. This algorithm can be implemented to run in timeO(max{n3+mAmE+

mAn logn,m2E logn+mEn log2 n}).

Proof. The performance has already been proved. The running time of algo-
rithm FifoTSP is dominated by that of Christofides’ algorithm, which can be
implemented to run in timeO(n3), and the time needed for the addition of the
paths in Step 7 which can be done in total time O(mAmE +mAn logn). The
running time of FifoLastArcs is dominated by the minimum cost flow compu-
tation which can be accomplished in time O(m2E logn +mEn log2 n) by using
Orlin’s enhanced capacity scaling algorithm [AMO93].

3.1.6 Improved performance on trees

For graph classes where the TSP can be approximated within a factor better
than 3/2 the performance improves over the one stated in Corollary 3.1.16.
In particular for trees, where the TSP can be solved in polynomial time, The-
orem 3.1.15 already implies a 2-approximation algorithm. However, we can
still improve this performance guarantee. This is again analogous to DARP on
trees as discussed in Section 2.5.

Theorem 3.1.17. There exists a polynomial time approximation algorithm for FIFO-
DARP on trees with performance 5/3. This algorithm can be implemented to run in
time O(nmA + n2 logn).

Proof. Our algorithm for trees uses a modified version of FifoLastArcs. We
defer removal of the vertices in V which are neither start nor endpoint of an
arc fromA and the completion ofG via shortest paths until after the (modified)
balancing step. The balancing step Step 1 of FifoLastArcs is modified so that
we find a balancing subset B ⊆ S∗ as in Lemma 2.2.2. After the balancing we
remove all vertices which are not incident to the arcs in A ∪ B and continue
with FifoLastArcs from Step 2 on.

Let I = (G = (V, E,A), C, o,≺) be the original instance given such that G[E]

is a tree. We can consider the instance I ′ = (G = (V, E,A ∪ B), C, o,≺) of FIFO-
DARP (still on a tree) which results from adding the balancing arcs B as new
transportation jobs. Since any feasible solution to I will have to use the arcs
from B anyway (cf. Lemma 2.2.2), we get that OPT(I) = OPT(I ′).

Now look at the instance I ′′ of FIFO-DARP which is obtained by removing
vertices and completing G along shortest paths as in the algorithm. It is easy
to see that OPT(I ′′) = OPT(I ′). Notice also that a feasible solution to I ′′ is
also a feasible solution to I ′. Let S∗ and S ′′ be optimal solutions for I and I ′′,
respectively. Define Z := S∗ \ B and Z ′′ := S ′′ \ B. Since OPT(I) = C(A ∪ B) +

C(Z) = OPT(I ′′) = C(A ∪ B) + C(Z ′′), we have that C(Z) = C(Z ′′).
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LetA∪B∪N be the solution found by the modified version of FifoLastArcs.
Then, using the arguments of Lemma 3.1.13 we get that

C(A ∪ B ∪N) = C(A ∪ B) + C(N) = C(S∗) − C(Z) + C(N)

≤ C(S∗) − C(Z) + 2C(Z ′′) ≤ C(S∗) + C(Z)

= 2OPT(I) − C(A).

As noted before, FifoTSP finds a solution of cost at most OPT + 2C(A), since
we can solve the TSP on the tree G[E] in polynomial time. We can estimate
the cost of the best of the two solutions returned by FifoTSP and the modified
FifoLastArcs by the techniques from Theorem 3.1.15 where this time β = 3.
This yields a performance of 5/3 as claimed.

The time bound for the algorithm is derived as follows: We can solve the
TSP on the metric space induced by G[E] in time O(n). We then root the
tree G[E] at an arbitrary vertex. With O(n) preprocessing time, the least com-
mon ancestor of any pair of vertices can be found in constant time (see [HT84,
SV88]). Thus, we can implement FifoTSP in such a way that the invocations of
Step 7 take total time O(nmA). This means that FifoTSP can be implemented
to run in time O(nmA).

The balancing in the modified version of FifoLastArcs can be accomplished
in time O(n +mA). Completion of the graph by computing all-pairs shortest
paths can be done in timeO(nmE+n2 logn) = O(n2 logn) [CLR90, AMO93].
All other steps can be carried out in time O(n2) where again the algorithm
from [Tar77] is employed for computing a minimum weight directed spanning
tree.

3.2 FIFO-DARP with start and stop penalties

In this section we show how to incorporate additional start- and stop-penalties
into the problem FIFO-DARP. In the Dial-a-Ride-Problem with Penalties, short
PENALTY-FIFO-DARP, we are given additional penalty functions p+ and p− on
the set of vertices, where p+(v) is the time penalty for starting from a vertex
and p−(v) is the penalty for stopping at a vertex. The objective is to find a
closed walk serving all requests, such that the cost of the walk plus the cost of
starting and stopping is minimized.

Definition 3.2.1 (Graph augmentation version of PENALTY-FIFO-DARP). An
instance of PENALTY-FIFO-DARP consists of the same input as for FIFO-DARP

together with additional penalty functions p+, p− : V → R≥0 on the set of ver-
tices V . The objective is to find a multiset of arcs S from V × V minimizing the
weight

C(A ∪ S) +
∑
u∈U+

d+(u)p+(u) +
∑
u∈U−

d−(u)p−(u)

such that G[A ∪ S ] is ≺-Eulerian with start o. Here, U+ is the set of sources of
arcs in A ∪ S and U− is the set of endpoints of arcs in A ∪ S.
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In the sequel we show that an instance I = (G = (V, E,A), C, o,≺, p−, p+) of
PENALTY-FIFO-DARP can be transformed into an equivalent instance of FIFO-
DARP I ′ = (G ′ = (V ′, E ′, A ′), C ′, o ′,≺ ′) on a slightly larger graph.

The transformation is accomplished as follows: For each vertex v ∈ V we
add both v and a new vertex v(±) to V ′. Vertex v(±) is used to model starting
or stopping at vertex v. The set E ′ consists of the edges in E and an additional
edge ev between v and v(±) for each vertex v ∈ V . The cost of the new edges
is C ′(ev) = 1/2(p+(v) + p−(v)). The cost function C ′ coincides with c on the
set E. For each arc a = (u, v) ∈ A we add an arc a ′ = (u(±), v(±)) to A (the
arcs in A are not contained in A ′). The partial order on the multiset Au(±) is
induced in the obvious way by that on Au. Finally, the start vertex o ′ equals o.

Lemma 3.2.2. Let I = (G,C, o,≺, p+, p−) be an instance of PENALTY-FIFO-DARP

and I ′ = (G ′,≺, C ′, o ′) be the instance of DARP constructed by the above method.
Then, I and I ′ are equivalent in the following sense: Any feasible solution for I ′ can
be transformed into a feasible solution for I of the same cost and vice versa. This
transformation can be accomplished in polynomial time.

Proof. Let S ′ be a valid solution for problem instance I ′ of FIFO-DARP where S ′

is an augmenting multiset of arcs. Let C ′ be a ≺-respecting Eulerian cycle in
G ′[A ′ ∪ S ′] with start o ′.

We first construct an auxiliary multiset M of arcs by traversing C ′ and re-
placing all chains of arcs from S ′ with a single arc from the start vertex of the
chain to its end vertex. Notice that all endpoints of arcs in M are contained
in V ′ \ V . We now construct a solution S by replacing each arc (u(±), v(±))

by (u, v). It is easy to see that S is in fact a valid solution for I of cost equal to
that of S ′.

Conversely, let S be a feasible solution for I. We can construct a solution S ′

for I ′ with equal cost by adding to S ′ for each arc (u, v) in S the arc (u(±), v(±)).

The time bound is obvious.

It follows from the construction that if G[E] is a tree then G ′[E ′] is also a
tree. Thus, the last lemma implies that approximation results for FIFO-DARP

on trees can be applied directly to PENALTY-FIFO-DARP on tree. Similarly,
approximation results for general graphs carry over immediately. Hence, we
obtain the following result:

Theorem 3.2.3. The problem PENALTY-FIFO-DARP can be approximated on trees
with performance 5/3 and with performance 9/4 on general graphs.

However, transforming an instance of PENALTY-FIFO-DARP where G[E] is
a path yields an instance of FIFO-DARP where G ′[E ′] is a caterpillar graph.
This seems unfortunate, since we know from Theorem 2.4.1 that FIFO-DARP

is NP-hard to solve on caterpillars. Is there a better transformation? More
general, is PENALTY-FIFO-DARP on paths still polynomial time solvable?
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The caterpillar constructed in the proof of Theorem 2.4.1 has the property
that jobs have sources and targets only in the feet of the caterpillar and all
hairs have the same length. Actually every instance of FIFO-DARP on cater-
pillars with these properties can be transformed into an equivalent instance of
PENALTY-FIFO-DARP on a path: Let f be a foot and v be its unique adjacent
vertex on the backbone. We replace all arcs from A which are incident to f by
corresponding arcs with source or target v. We then remove foot f. The start-
and stop-penalty on v are set to the length C(f, v) of the hair between v and the
foot f. It follows by arguments similar to those given in Lemma 3.2.2 that the
constructed instance of PENALTY-FIFO-DARP on the path (which corresponds
to the former backbone) is in fact an equivalent instance to the instance of FIFO-
DARP on the caterpillar. Thus, we obtain the following result which contrasts
with the polynomial solvability of FIFO-DARP on paths:

Lemma 3.2.4. PENALTY-FIFO-DARP on paths is NP-hard to solve.

3.3 Open schedule problems

All our results for DARP from Chapter 2 and for FIFO-DARP and PREC-DARP

from this chapter are derived for the closed schedule case, where the server
has to return to the origin at the end.

In this section we will briefly describe how algorithms for the closed sched-
ule case can be used to compute solutions for the open schedule case—however
the method described in this section does not use any special insight into the
open schedule problem. Dedicated research into open schedule DARP (and
FIFO-DARP) should yield much better algorithms.

Let I = (G = (V, E,A), C, o) be an instance of DARP (or FIFO-DARP, when
given an additional FIFO-order≺v) and letA be a ρ-approximate algorithm for
DARP (or FIFO-DARP) with closed schedules. We will run algorithm A |V | − 1

times. In each iteration we pick one of the vertices v ∈ V \ {o}—each time a
different one. We then add a new arc av = [v, o] to the multiset of arcs and
run algorithm A on this instance. At the end, we choose the shortest schedule,
remove the corresponding additional request and return the resulting open
schedule solution. When solving instances of FIFO-DARP in this manner, the
artificial arc will get the highest precedence with respect to ≺v of all arcs ema-
nating from v, i.e., the “dummy request” has to be served last.

It is easy to see, that, given an optimal algorithm for solving closed sched-
ule instances, the above procedure yields an optimal algorithm for solving the
open schedule case. For ρ-approximate algorithms, it is easy to see that we get
the following result:

Theorem 3.3.1. Let I = (G = (V, E,A), C, o) be an instance of DARP (or FIFO-
DARP, when given an additional FIFO-order ≺v) and let A be a ρ-approximate al-
gorithm for DARP (or FIFO-DARP) with closed schedules. The procedure described
above yields a 2ρ− 1-approximate algorithm for open schedules.
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Proof. Let Copen be the cost of the solution returned by A, let Cclosed be the cost
of the closed schedule, which yielded the open schedule solution, i.e, there ex-
ists an arc a = [v, o], v ∈ V such thatCopen = Cclosed−C(a). Further, let OPTopen
be the optimal solution for the open schedule problem and let OPTclosed be
the optimal solution for the closed schedule problem with addition-l arc a.
Clearly, C(a) ≤ OPTopen—this follows directly from our assumptions for any
of the graph classes (paths, trees and general graphs). We therefore get

Copen = Cclosed − C(a)

≤ ρ(OPTclosed) − C(a)

≤ ρ(OPTopen + C(a)) − C(a)

≤ ρOPTopen + (ρ− 1)C(a)

≤ (2ρ− 1)OPTopen.
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Chapter 4

Online Dial-a-ride Problems

In this chapter we study the online versions of the combinatorial optimization
problems DARP and FIFO-DARP. We begin by defining the problems more
formally and we also introduce the special case ONLINE-TSP, where sources
and targets of requests are identical. We then show lower bounds on the com-
petitive ratio of algorithms for ONLINE-DARP and ONLINE-TSP which have
been proved in [AFL+95, AFL+94, AKR98a]. For all these results the objective
function is—as in DARP—the total completion time of the schedule. However
we also show that there can be no competitive algorithm for the task of min-
imizing the maximal or the average flow or waiting times. We then present
the algorithms REPLAN and IGNORE and prove competitive ratios for these
algorithms. We conclude the chapter by discussing two other competitive al-
gorithms, namely algorithm PAH for ONLINE-TSP and algorithm SLEEP for
ONLINE-DARP.

We summarize the main results discussed in this chapter:

Lower bound REPLAN IGNORE Best other
ONLINE-TSP ≈ 1.64 5/2 5/2 2

ONLINE-DARP ≈ 1.71 5/2 5/2 5/2

ONLINE-FIFO-DARP ≈ 1.71 3 5/2 –

4.1 The problems ONLINE-TSP and ONLINE-DARP

The problem ONLINE-DARP studied in this chapter is the online version of the
Dial-a-ride variant 1, cap1||M|

∑
m, using the notation from Appendix B. An

instance consists of a metric spaceMwith a distance function d : M×M→ R
+

which is symmetric and obeys the triangle inequality (we allow non-identical
points to have distance zero—e.g., vertices in a graph connected via a zero-
weight edge). Additionally, we require the metric space to be continuous: For
any pair x, y ∈ M there must be a continuous map from the interval [0, 1] to
the shortest path inM from x to y.

53
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Each request is a triple ri = (ti, ai, bi). The real number ti is the release time,
when request ri becomes known. The points in the metric space ai, bi ∈ M
are the source and target, respectively, between which an object is to be trans-
ported. We will consider each set σ = {r1, . . . , rm} of transportation requests as
ordered by their release times. We assume that the online algorithm does nei-
ther have information about when the last request occurs nor about the total
number of requests.

The server can move at constant unit speed and is positioned at location o ∈
M at time 0. The server has unit capacity, i.e., it can carry at most one object at
a time. Finally, we do not allow preemption: once the server has picked up an
object, it is not allowed to drop it at any place other than its destination.

A server move mj = (tj, aj, bj, Rj) is a quadruple, where the real number tj
is the time when the server starts the move at location aj. It’s arrival time at
location bj is tj + d(aj, bj). The set R contains all requests that are served by
the move—for the unit capacity problems studied in this thesis, R is either
empty or contains one request.

An open transportation schedule serving a sequence of requests σ is a se-
quence of moves of the server Σ = (m1,m2,m3 . . . ) with the following prop-
erties:

• The first move starts in the origin o (a1 = o),

• The starting point ofmj is the end point ofmj−1 (aj = bj−1),

• The starting time ofmj carrying Rj is greater than the release times of all
requests ri ∈ R (tj ≥ max{ti : (ti, ai, bi) ∈ R})

• For every request ri ∈ σ there is a first move mk and a last move ml
carrying ri. The movemk starts at the source of ri and the moveml ends
at the destination of ri, the request is carried by all moves in betweenmk
and ml (j < k : ri /∈ Rj; j > l : ri /∈ Rj; k ≤ j ≤ l : ri ∈ Rj; ak = ai and
bl = bi).

For the unit capacity case considered in this thesis we simplify the last
property and require that there is exactly one move serving each request, which
starts at the source of the request and ends at the destination of the request.

For a closed schedule we additionally require that the last move has the ori-
gin as destination. If there is no restriction on the final destination of the server
we are dealing with an open schedule problem.

For an algorithm A and a request sequence σ, let CA(σ) denote the comple-
tion time of the sequence of moves that algorithm A generates for serving σ.
With OPT(σ) we denote the completion time of an optimal (offline) solution
for serving the request sequence.

The problem ONLINE-TSP studied by Aussiello et.al. is a special case of
ONLINE-DARP: The source and the destination of each request are identical
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[AFL+95, AFL+94]. We will denote requests for ONLINE-TSP as tuples ri =

(ti, ai) where ti is the time when the request occurs and ai ∈M is the position
of the request. Using the notation from Appendix B, ONLINE-TSP is the online
version of the Dial-a-ride variant 1, cap1|s = t|M|

∑
m. There are two main

differences between ONLINE-TSP and the (more general) ONLINE-DARP:

• In ONLINE-TSP the server can change its schedule at any time and, if
necessary, move in a different direction straight away. In ONLINE-DARP

this is not always possible: Once the server has picked up an object to be
transported from a to b it is not allowed to drop that object at any other
place than b.

• The distances in the metric space of ONLINE-TSP are assumed to be sym-
metric. Thus, if starting and ending in the origin, a set σ = {r1, . . . , rm} of
requests can be served in the order r1, . . . , rm or rm, . . . , r1 at the same
cost (ignoring release times). In ONLINE-DARP changing the “direction”
of service could increase the cost by a factor of two.

Clearly, ONLINE-DARP generalizes the online variant of the Dial-a-ride
problem on graphs (DARP) studied in Chapter 2, which we formulated as a
graph augmentation problem in a mixed graphG(V, E,A) together with an ori-
gin o and a cost function c: Given a graph with positive edge weights, we can
restrict server moves to the shortest path in the graph. Hence we can assume
that the graph is complete, with edge-weights satisfying the triangle inequal-
ity. This in turn yields a metric space with the properties specified above.

However, we have to allow the server to move “continuously” in the space,
i.e., to move continuously from one endpoint of an edge (u, v) to the other
endpoint and possibly change its direction while at some location s on the
edge (u, v). The problem is different when the server may not change direction
while traversing an edge and results stated in this chapter may not apply in
this case.

Given an offline instance of the problem studied in this chapter where
servers move in metric spaces, we can transform this into an instance of DARP

on graphs: The set of vertices V =
⋃
ri∈σ{ai, bi} ∪ {o} is the set of endpoints of

requests together with the origin. For each pair of vertices u, v ∈ V we add an
edge of weight d(u, v). Finally the set of arcs A =

⋃
ri∈r{(ai, bi)} contains one

arc for each request, directed from the source of the request to its destination.

Yet we note that even though the offline problems are equivalent, the on-
line problem on metric spaces is more general than the online problem on finite
graphs: In an offline setting a server will never move towards a point and then
“change its mind”, therefore the direct paths between all sources and destina-
tions and the origin fully describe the feasible walks of the server. However
in an online setting, where new requests can occur at any time, the server may
decide to move into a different direction at any location—moving only along
the edges of a finite graph is therefore a restriction on the server movements.
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Most of the results for ONLINE-DARP presented in this chapter apply equally
to the online case of the problem FIFO-DARP studied in Chapter 3: All requests
with a common source point in the metric space have to be served in the order
of their release times. We call this problem ONLINE-FIFO-DARP.

4.2 Lower bounds

In this section we address the question of how well an online algorithm for
ONLINE-DARP and for ONLINE-TSP can perform compared to the optimal
offline adversary. Since DARP is a special case of FIFO-DARP, all the lower
bounds derived in this section apply equally to ONLINE-FIFO-DARP.

For ONLINE-TSP with closed schedules (the server has to return to the
origin), Aussiello et.al. have shown the following result [AFL+95]:

Theorem 4.2.1. For closed schedules, no deterministic algorithm for ONLINE-TSP
on the real line can achieve a competitive ratio c < 9+

√
17

8 ≈ 1.640388.

Proof. The underlying continuous metric space is the real line with 0 as the
origin of the server. Suppose that A is a deterministic online algorithm with
competitive ratio c. We can assume that c ≤ 9+

√
17

8 , since otherwise there is
nothing left to prove. It is also easy to see that c ≥ 1.5 1.

0−1 1 1 + q−(2c − 3) (2c − 3)

(7 − 4c)−(7 − 4c)

Figure 4.1: The requests and intervals from the proof of the lower bound for
ONLINE-TSP.

Figure 4.1 illustrates the requests and the intervals which we use in this
proof. Before time 1 no request occurs. At this time the online server must
be located within the interval [−(2c − 3), (2c − 3)]: Otherwise, if for example
the online server is positioned to the right of (2c − 3), we let a request oc-
cur at time 1 at position −1. The optimal offline server incurs cost 2, whereas
the online server incurs cost CA > 1 + (2c − 3) + 2 = 2c, which contradicts
the assumption that it is c-competitive. The case when it is located to the
left of −(2c − 3) is symmetric. We conclude that the online server must be
within [−(2c− 3), (2c− 3)] which is contained in (−1, 1) since c < 9+

√
17

8 .

We now present at time 1 two simultaneous requests at 1 and −1. Due to
the above observations, at time 3 the online server can not have served both
requests. W.l.o.g. we assume that the server has not served the request at −1.

1The first request occurs at time 1. W.l.o.g. the online server is either at zero or to the right
of zero. Let a request occur at −1. Then the offline server can serve this request and return to
the origin at time 2 whereas the online server will incur cost of at least 3.
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Case 1: The server is at time 3 positioned within (−(7− 4c), (7− 4c)) (and has
either served the request at 1 or not).

At time 3 another request at position 1 is presented. The offline server
can serve all requests and return to the origin in time 4. The online server
still has to move to both extremes and return to the origin, therefore CA >

3+ 4− (7− 4c) = 4c. This contradicts the assumption that A is c-competitive.

Case 2: The server has at time 3 served request one and is not within (−(7 −

4c), (7− 4c)).

We show that the online server is then within [(7 − 4c), 1]: It remains to
show that the online server is not within (−1,−(7 − 4c)]. Since at time 1 the
online server has been to the right of (2c − 3) and it then moves to 1, it must
be at time 3 to the right of −(2c − 3) which is to the right of −(7 − 4c) for
any c ≤ 5/3. Therefore the claim holds for our range of c.

We already noted that the optimal offline solution for the request sequence
can serve both requests and return to the origin in time 4. Our online algorithm
is now at time 3 positioned to the right of (7 − 4c) > 0 and still has to serve
the request at −1. To be c-competitive it must therefore pass the origin at some
time before 4c−2. Let 3+q be the time when the online server passes the origin.
We know that q ≤ 4c−5. At time 3+qwe issue a new request at position 1+q.
An optimal offline solution takes time 4 + 2q to serve all requests. The online
algorithm, however, is at time 3 + q at position 0 and has to serve requests
at −1 and at 1 + q. Therefore it can not finish before time 7 + 3q. This yields
the following condition for the competitive ratio:

c ≤ 7+ 3q

4+ 2q

This is a monotonically decreasing function in q, and, using q ≤ 4c−5, we get:

c ≤ 7+ 3(4c− 5)

4+ 2(4c− 5)

The lowest value for c satisfying this inequality is c = 9+
√
17

8 .

Case 3: The server has neither served the request at 1, nor the request at −1

and is not within (−(7− 4c), (7− 4c)).

If the server is within [(7 − 4c), 1], then by the last case, the server can
not even serve the request at −1 and return to zero (even when ignoring the
request at 1) in sufficient time. Otherwise we can apply the same argument by
symmetry.

For ONLINE-DARP with closed schedules, Ascheuer, Krumke and Rambau
proved the following lower bound [AKR98a]:

Theorem 4.2.2. For closed schedules no deterministic algorithm for ONLINE-DARP

on the real line can achieve a competitive ratio c < 1+
√
2/2 ≈ 1.7071068.
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Proof. The underlying continuous metric space for the instance of ONLINE-
DARP is the real line. The server is initially positioned at the origin 0. Suppose
that A is a deterministic online algorithm with competitive ratio c. We can
assume that c < 1+

√
2/2, since otherwise there is nothing left to prove.

$0$ $T+\epsilon$$1$0 T + ε1

Figure 4.2: The requests from the proof of the lower bound for ONLINE-DARP

on the real line.

Figure 4.2 illustrates the requests which are used for this proof. At time t =

0, the algorithm A is faced with two requests r1 = (0, 0, 1) and r2 = (0, 1, 0).
Thus OPT(r1, r2) = 2 and the server operated by A must start serving request
r2 at some time 1 ≤ T ≤ 2c− 1. Since c < 1+

√
2/2, we have 1 ≤ T ≤ 2c− 1 <

1+
√
2.

We issue at time T + ε another request r3 = (T + ε, T + ε, 1). The optimal
offline server will need total time 2(T + ε). The online server however will
need total time T + 1+ 2(T + ε) = 1+ 3T + 2ε.

Thus the ratio of the time needed by A and the optimal offline algorithm is

CA(r1, r2, r3)

OPT(r1, r2, r3)
≥ 1+ 3T + 2ε

2T + 2ε
≥ 1+ 3(2c− 1) + 2ε

2(3c− 2) + 2ε
=
6c− 2+ 2ε

4c− 2+ 2ε

It is easy to check that the expression given above is increasing in ε. Thus the
competitive ratio c is bounded from below by the value of the above expres-
sion for ε approaching 0:

c ≥ lim
ε→0

(
6c− 2+ 2ε

4c− 2+ 2ε

)
=
6c− 2

4c− 2
(4.1)

The smallest value c ≥ 1 satisfying Equation (4.1) is c = 1+
√
2
2 ≈ 1.7071068,

which contradicts the assumption that A is c-competitive with c < 1+
√
2
2 .

Ascheuer, Krumke and Rambau have also proved a (slightly weaker) lower
bound for continuous metric spaces where requests can only occur at discrete
points, namely to paths where the ratio of the diameter and the minimum dis-
tance between any two vertices is bounded by 4 [AKR98a]. The construction
in the following proof is similar to the proof of Theorem 4.2.2.

Theorem 4.2.3. For closed schedules no deterministic algorithm for ONLINE-DARP

can achieve a competitive ratio c < 5/3.
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Proof. The underlying metric space is a path G = (V, E) of 5 vertices v0, . . . , v4
with the origin being the “leftmost” vertex v0 at distance D = 4 from the right
end. All edge-weights are equal to one, hence d(o, vi) = i.

Suppose that A is a deterministic online algorithm with competitive ratio c.
We can assume that c ≤ 5/3, since otherwise there is nothing left to be proved.

At time t = 0, the algorithm A is faced with two requests r1 = (0, o, v2)

and r2 = (0, v2, o). Thus OPT(r1, r2) = 4 and the server operated by A must
start serving request r2 at some time 2 ≤ T ≤ 4c − 2. Since c ≤ 5/3, we have
2 ≤ T ≤ 4c− 2 ≤ 423 .

Case 1: 2 ≤ T ≤ 3.

At time T the adversary issues another request r3 = (T, v3, v2). Thus, the
online server can not finish before time T + 8 ≥ 10. On the other hand, the
offline server first handles r1, then continues to move to v3 which it reaches
no earlier than the time when r3 becomes known. Hence, the optimal offline
server incurs a total cost of 6, which gives us that

CA(r1, r2, r3)

OPT(r1, r2, r3
≥ 5
3
.

Case 2: 3 < T ≤ 4c− 2.

In this case, at time T the adversary issues another request r3 = (T, vbTc, v2).
Notice that since T > 3 and bTc ≤ 4we have that vbTc ∈ {v3, v4}.

Let bTc = T + ε for some −1 ≤ ε ≤ 0. The online algorithm will need total
time at least T +2+2bTc = 3T +2+2ε. The offline server first serves request r1
and then moves to vertex vbTc where it sits until time T . It then serves r3 and,
finally, r2 at a total cost of OPT(r1, r2, r3) = T + bTc = 2T + ε.

Thus in the second case the ratio between the time needed by A and the
optimal offline algorithm is

CA(r1, r2, r3)

OPT(r1, r2, r3)
≥ 3T + 2+ 2ε

2T + ε
≥ 3(4c− 2) + 2+ 2ε

2(4c− 2) + ε
=
12c− 4+ 2ε

8c− 4+ ε

It is easy to check that the expression given above is increasing in ε. Thus we
have that the competitive ratio c is bounded from below by the value of the
above expression for ε = −1:

c ≥ 12c− 6

8c− 5
. (4.2)

The smallest value c ≥ 1 satisfying Equation (4.2) is c = 17+
√
97

16 ≈ 1.678 > 5
3 ,

which contradicts the assumption that A is c-competitive with c < 5/3.

We now establish a (trivial) lower bound on the competitive ratio of any
deterministic algorithm for ONLINE-TSP with open schedules.
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Theorem 4.2.4. For open schedules no deterministic algorithm for ONLINE-TSP
can achieve a competitive ratio c < 2.

Proof. The metric space for the instance of ONLINE-TSP consists of a pathG =

(V, E) of 3 vertices v−1, v0 and v1 with the origin v0 being the middle vertex at
a distance of 1 from each end. Let A be a deterministic online algorithm with
competitive ratio c < 2.

There is no request until time 1. At this time the server can not be be-
tween v0 and v1 since otherwise we could issue a request (1, v−1,) which the
optimal server could serve at a cost of 1 by moving at time zero towards v−1.
However the online server would reach v−1 not before time 2, contradicting
the assumption that c < 2.

Therefore we know that the online server must be between v0 and v−1. We
then issue at time one a request at v1 and by the same argument as before we
once again get a contradiction to the assumption that c < 2.

Aussiello et.al. gave a slightly more complicated proof of the last result,
where the first request is issued at time zero [AFL+95]—showing that the
lower bound also holds when defining the completion time as the difference
between the time when the last request is served and the time that the first re-
quest is issued. No better lower bound for ONLINE-DARP with open schedules
is known.

All the lower bounds we proved so far have dealt with the objective of min-
imizing the completion time. To conclude this section, we show that the same
simple idea that we used for proving Theorem 4.2.4 also yields that there can
be no competitive algorithms for the task of minimizing the maximal waiting
time or the maximal flow time and that there can also be no competitive algo-
rithms for minimizing the average flow time or the average waiting time.

Theorem 4.2.5. The competitive ratio for online algorithm for ONLINE-DARP on
the real line minimizing the maximal flow- or waiting time is unbounded.

Proof. The metric space is the real line, with 0 as the origin of the server. The
first request occurs at time 1. At this time the online server is either to the
right of 0, at 0, or to the left of 0. W.l.o.g. we assume that the position of the
online server is less or equal to 0. Then the following request occurs: (1, 1, 1+

ε). Clearly the optimal offline server begins to move at time 0 towards 1 and
achieves a waiting time of 0 and a flow time of ε. The waiting time of the
online server, however, is not less then 1 and the flow time is not less then 1+ε.
This shows that the competitive ratio for both the maximal flow time and the
maximal waiting time are unbounded.

Corollary 4.2.6. The competitive ratio for online algorithm for ONLINE-DARP on
the real line minimizing the average flow- or waiting time is unbounded.
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Proof. Notice that the proof of Theorem 4.2.5 uses an instance of ONLINE-
DARP with just one request. Therefore the maximal flow and waiting time
and the average flow and waiting time are equal for this instance.

4.3 Strategies FIFO and FIRSTFIT are not competitive

In this section we will study two very simple algorithms, namely FIFO and
FIRSTFIT. We show that both algorithms can not achieve a constant competi-
tive ratio.

Definition 4.3.1 (Algorithm FIRSTFIT). After serving a request, select the un-
served request with source nearest to the current position of the server and
serve this request. In the closed schedule case, the server moves towards the
origin when there is currently no unserved request.

Definition 4.3.2 (Algorithm FIFO). Serve the requests in the order of their re-
lease times. In the closed schedule case, the server moves towards the origin
when there is currently no unserved request.

We will now prove that neither FIRSTFIT nor FIFO are competitive with a
constant ratio.

Theorem 4.3.3. For the algorithm FIRSTFIT for ONLINE-TSP there does not exist
any constant c such that FIRSTFIT is c-competitive.

Proof. An instance of ONLINE-TSP where all requests are known in advance,
is also an instance of the (offline) TSP in metric spaces (where we have to find
a shortest closed walk connecting a set of points in a metric space). The online
algorithm FIRSTFIT is in an offline setting equivalent to the Nearest Neighbor
heuristic (NN) for the TSP. Rosenkrantz, Stearns and Lewis showed that for
eachm > 3, there exists a traveling salesman graph with n = 2m−1 nodes and
having only positive edge weights such that CNN ≥ (1/3 log(n+ 1) + 4/9)OPT
[RSL77].

Theorem 4.3.4. For the algorithm FIFO for ONLINE-TSP there does not exist any
constant c such that FIRSTFIT is c-competitive.

Proof. The metric space is a graph with two vertices v0 and v1 connected via
an edge of weight 1. The server is initially at the origin v0. We present the
following request sequence:

ri :=

{
(1/2(i− 1), 0) ∀i = 1, . . . ,N with i odd
(1/2(i− 1), 1) ∀i = 1, . . . ,N with i even

The FIFO algorithm will incur a cost ofNwhereas the optimal server will incur
a cost of less than N/2+ 1.
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4.4 Preliminaries for the competitive analysis of ONLINE-
DARP

In this section we will derive some results which we will use for the competi-
tiveness proofs in the following sections.

First we introduce some notation for analyzing the closed schedule case
of both ONLINE-DARP and ONLINE-FIFO-DARP. For a set σ of requests and
a point x let L∗(t, x, σ) denote the length of a shortest schedule (i.e., the time
difference between its completion time and the start time t) which starts in x
at time t, serves all requests from σ and ends in the origin (for ONLINE-FIFO-
DARP we additionally require the schedule to serve requests with a common
source in the order of their release times). Clearly for any t ′ ≥ t it is true
that L∗(t ′, x, σ) ≤ L∗(t, x, σ). Moreover, OPT(σ) = L∗(0, o, R) and thus we get
that OPT(σ) ≥ L∗(t, o, σ) for any time t ≥ 0.

Let rm = (tm, am, bm) be the last request from σ. Since the optimum offline
server can not serve rm before it is released we get that

OPT(σ) ≥ max{L∗(t, o, σ), tm + d(am, bm) + d(bm, o)} for any t ≥ 0. (4.3)

Notice that all of these claims are equally true for ONLINE-DARP and for
ONLINE-FIFO-DARP. However the following lemma does not hold when there
are precedence constraints present, since we explicitly reorder requests in a
schedule.

Lemma 4.4.1. For an instance of ONLINE-DARP, let σ = {r1, . . . , rm} be the set of
requests. Then for any t ≥ tm and any request ri = (ti, ai, bi) from σ

L∗(t, bi, σ \ ri) ≤ L∗(t, o, σ) − d(ai, bi) + d(ai, o).

Proof. Consider an optimum schedule S∗ which starts at the origin o at time t,
serves all requests in σ and has length L∗(t, o, σ). It suffices to construct an-
other schedule S which starts in bi no earlier than time t serves all requests
in σ \ ri and has length at most L∗(t, o, σ) − d(ai, bi) + d(ai, o).

Let S∗ serve the requests in the order rj1 , . . . , rjm such that ri = rjk . Notice
that if we start in b at time t and serve the requests in the order

rjk+1
, . . . , rjm , rj1 , . . . , rjk−1

and then move back to the origin, the resulting schedule S has the desired
properties.

We will now derive similar results for the open schedule case of ONLINE-
DARP and ONLINE-FIFO-DARP. For a set σ of requests, a time t and a point x,
let L̃∗(t, x, σ) denote the length of a shortest schedule (i.e., the time difference
between its completion time and t) which starts in x at time t and serves all
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requests from σ (again, for ONLINE-FIFO-DARP we additionally require the
schedule to serve request with a common source in the order of their release
times). The difference to L∗(t, x, σ) is that we do not require the schedule to
end at the origin.

For t ′ ≥ t we have that L̃∗(t ′, x, σ) ≤ L̃∗(t, x, σ). Moreover, OPT(σ) =

L̃∗(0, o, σ) and thus OPT(σ) ≥ L̃∗(t, o, σ) for any time t ≥ 0. Since the optimum
offline server can not serve the last request rm = (tm, am, bm) from σ before
this request is available we get that

OPT(σ) ≥ max{L∗(t, o, σ), tm + d(am, bm)} for any t ≥ 0. (4.4)

These results hold for both ONLINE-DARP and ONLINE-FIFO-DARP. The
following lemma can be proved similarly to Lemma 4.4.1, and its proof again
requires that no precedence constraints are present (i.e., the lemma is not valid
for ONLINE-FIFO-DARP).

Lemma 4.4.2. For an instance of ONLINE-DARP, let σ = {r1, . . . , rm} be the set of
requests. Then for any t ≥ tm and any request ri = (ti, ai, bi) from σ

L̃∗(t, bi, σ \ ri) ≤ L̃∗(t, o, σ) − d(ai, bi) + d(b, o),

where b is the endpoint of a path with length L̃∗(t, o, σ). In particular

L̃∗(t, bi, σ \ ri) ≤ 2L̃∗(t, o, σ) − d(ai, bi).

4.5 The REPLAN algorithm

Definition 4.5.1 (Algorithm REPLAN ). Algorithm REPLAN may assume the
following states (initially it is IDLE):

IDLE Wait until a request is released, then goto PLAN.

BUSY Execute the current schedule. When a new request is released goto
PLAN. When the current schedule is completed, goto IDLE.

PLAN Produce a preliminary optimal transportation schedule starting in the
current position of the server for all currently available unserved re-
quests R. Then goto BUSY.

Ascheuer, Krumke and Rambau proved that the REPLAN algorithm is 5/2
competitive:

Theorem 4.5.2. Algorithm REPLAN is 5/2-competitive.



64

Proof. Let σ = {r1, . . . , rm} be any set of requests. We distinguish between two
cases depending on the current load of the REPLAN-server at the time tm (the
last request becomes known).

If the server is currently empty it recomputes an optimal schedule which
starts at its current position, denoted by s(tm), serves all unserved requests,
and returns to the origin. This schedule has length at most L∗(tm, s(tm), σ) ≤
d(o, s(tm)) + L∗(tm, o, σ). Thus,

CREPLAN(σ) ≤ tm + d(o, s(tm)) + L∗(tm, o, σ)
(4.3)
≤ tm + d(o, s(tm)) + OPT(σ).

(4.5)

We now consider the second case, when the server is currently serving a re-
quest r = (t, a, b). The time needed to complete the move is d(s(tm), b). Then
a shortest schedule starting at b serving all unserved requests is computed
which has length at most L∗(tm, b, σ \ r). Thus in the second case

CREPLAN(σ) ≤ tm + d(s(tm), b) + L∗(tm, b, σ \ r)

≤ tm + d(s(tm), b) + L∗(tm, o, σ) − d(a, b) + d(a, o) (by 4.4.1)
≤ tm + OPT(σ) − d(a, b) + d(s(tm), b) + d(a, s(tm))︸ ︷︷ ︸

=d(a,b)

+d(s(tm), o)

= tm + d(o, s(tm)) + OPT(σ).

This means that inequality (4.5) holds in both cases. Since the REPLAN server
has traveled to position s(tm) at time tm, there must be a request rj = (tj, aj, bj)

in σ where either d(o, ai) ≥ d(o, s(tm)) or d(o, bi) ≥ d(o, s(tm)). But this
means that the optimal offline server will have to travel at least twice the dis-
tance d(o, s(tm)) during its schedule. Thus, d(o, s(tm)) ≤ OPT(σ)/2 and us-
ing this result together with (4.5) we get that the total time the REPLAN server
needs is no more than 5/2 times that of the offline server.

The REPLAN algorithm is in general not a polynomial time algorithm,
since it has to solve a number of instances of (offline) DARP, which we showed
in Section 2.4 to be NP-hard.

If the REPLAN algorithm uses approximate solutions instead of the opti-
mal solution for instances of DARP, it is easy to see that we can modify the
proof of the last theorem to yield the following result:

Corollary 4.5.3. Let A be a ρ-approximate algorithm for the following problem: Given
an instance of (offline) DARP and an additional point x in the continuous metric space,
compute a shortest sequence of moves starting in x and terminating in the origin that
serves all requests. REPLAN computing schedules with A is 5/2ρ-competitive.

However, when using the ρ-approximate algorithms for closed-schedule
DARP described in Chapter 2, the proof of the last theorem does not carry
through: Given a ρ-approximate algorithm for DARP with closed schedules,
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we can calculate an approximate schedule starting in x and terminating in the
origin by inserting a “dummy request” between x and o. However this will
not necessarily yield a ρ-approximate solution! Also for ONLINE-FIFO-DARP

the proof is not applicable, since it uses Lemma 4.4.1 which is in general not
true for ONLINE-FIFO-DARP.

The following theorem proves a different competitive ratio for these cases:

Theorem 4.5.4. Let B be a ρ-approximate algorithm for (offline) FIFO-DARP with
closed schedules. Then REPLAN for ONLINE-FIFO-DARP using B to compute ap-
proximate offline solutions is (2+ ρ)-competitive.

Proof. We make the assumption, that the (offline) schedule for a set of re-
quests σ starting in a point x and terminating at the origin, which is com-
puted using B, is at most as long as the distance from x to the origin plus
a ρ-approximate closed schedule solution for σ (we can always achieve this
bound with the—rather impractical—strategy of returning to the origin before
starting on a new tour).

Let σ = {r1, . . . , rm} be any set of requests. Again, we distinguish between
two cases depending on the current load of the REPLAN-server at the time tm
(the last request becomes known).

If the server is currently empty it recomputes an optimal schedule which
starts at its current position, denoted by s(tm), serves all unserved requests,
and returns to the origin. This schedule has (by our initial comments) length
at most d(s(tm), o) + ρL∗(tm, o, σ). Thus,

CREPLAN(σ) ≤ tm + d(o, s(tm)) + ρL∗(tm, o, σ) ≤ 3/2OPT(σ) + ρOPT(σ).

(4.6)

We now consider the second case, when the server is currently serving a re-
quest r = (t, a, b). The time needed to complete the move is d(s(tm), b). Then
a shortest schedule starting at b serving all unserved requests is computed
which has length at most d(o, b) + ρL∗(tm, 0, σ \ r). Thus in the second case

CREPLAN(σ) ≤ tm + d(s(tm), b) + d(b, o) + ρL∗(tm, b, σ \ r)

≤ 2OPT(σ) + ρOPT(σ)

Using the approximation algorithms from Chapter 2 and Chapter 3, we
immediately get the following results:

Corollary 4.5.5. REPLAN with suitable approximation algorithms is a polynomial
time algorithm that can achieve the following competitive ratios:

ONLINE-DARP on the real line: 5/2

ONLINE-DARP on trees: 13/4

ONLINE-DARP on general continuous metric spaces: 19/5

ONLINE-FIFO-DARP on the real line: 3

ONLINE-FIFO-DARP on trees: 11/3

ONLINE-FIFO-DARP on general continuous metric spaces: 17/4
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Ascheuer, Krumke and Rambau also showed how to modify the proof of
Theorem 4.5.2 to obtain a result about the competitiveness of REPLAN for
open schedules [AKR98a]:

Theorem 4.5.6. In the case of open schedules algorithm REPLAN is 3-competitive.

Proof. If at the time tm when the last request rm = (tm, am, bm) from σ is
issued, the REPLAN server does not perform a carrying move, then the total
time needed by REPLAN is no more than

tm + L̃∗(tm, s(tm), σ) ≤ tm + d(s(tm), o) + L̃∗(tm, o, σ)

≤ d(o, s(tm)) + 2OPT(σ).

The distance d(o, s(tm)) can be bounded from above by OPT(σ) (instead of
OPT(σ)/2 as for closed schedules) and thus REPLAN needs time at most 3
times the optimum in this case.

If at time tm REPLAN performs a carrying move from a to b, it will finish
its move at time tm + d(s(tm), b). We thus have

CREPLAN(σ) ≤ tm + d(s(tm), b) + L̃∗(tm, b, σ)

≤ tm + d(s(tm), b) + 2 L̃∗(tm, o, σ) − d(a, b) (by Lemma 4.4.2)
≤ tm + 2 L̃∗(tm, o, σ)

≤ 3OPT(σ).

This completes the proof.

Given a ρ-approximate algorithm for solving offline DARP with open sched-
ules, we can easily adapt the above proof to yield a (1+ 2ρ)-competitive algo-
rithm. However, the last proof uses Lemma 4.4.2 which is not true for ONLINE-
FIFO-DARP. It is easy to see that we therefore get the following results:

Corollary 4.5.7. REPLAN for ONLINE-DARP with open schedules that solves of-
fline instances with a ρ-approximate algorithm for DARP with open schedules is
min{1+ 2ρ, 3+ ρ}-competitive.

REPLAN for ONLINE-FIFO-DARP with open schedules that solves offline in-
stances with a ρ-approximate algorithm for FIFO-DARP with open schedules is (3 +

ρ)-competitive.

For ONLINE-TSP Aussiello et.al. showed that the REPLAN algorithm (which
they call “greedy”) is 5/2-competitive for the open schedule case:

Theorem 4.5.8. REPLAN for ONLINE-TSP with open schedules is 5/2-competitive
on vector spaces.
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Proof. At time tm the last request rm = (tm, am, bm) from σ((t1, a1) . . . (tm, am))

is issued. Let x be the current position of the server. It will then need at most
time L̃∗(tm, x, σ) to finish. Let V(σ) := {ai : 1 ≤ i ≤ m}∪ {o} be the set of points
including the origin and the points in M where requests occur. Let P∗ be the
shortest path through all points in V(σ), and let d(P∗) be its length. Notice
that x lies on the shortest path between two points a, b ∈ V(σ). It is easy to see
that the distance between x and one of the two endpoints of P∗ is therefore at
most half the length of P∗. Let y be this endpoint, i.e., d(x, y) ≤ d(P∗). Then

CREPLAN(σ) ≤ tm + L̃∗(tm, x, σ)

≤ tm + d(x, y) + d(P∗)

≤ 5/2OPT(σ)

4.6 The IGNORE algorithm

Definition 4.6.1 (Algorithm IGNORE). Algorithm IGNORE has an internal buf-
fer for requests. It may assume the following states (initially it is IDLE):

IDLE Wait until a request is released, then goto PLAN.

BUSY Execute the current schedule. While it is in work store the upcoming
requests in a buffer (“ignore them”). When the current schedule is com-
pleted, goto IDLE if the buffer is empty, else goto PLAN.

PLAN Produce a preliminary optimal transportation schedule for all currently
available requests R (taken from the buffer). Then goto BUSY.

Ascheuer, Krumke and Rambau showed that IGNORE is a 5/2-competitive
algorithm for ONLINE-DARP [AKR98a]. Just like REPLAN, the IGNORE al-
gorithm has to solve offline instances of DARP and is therefore in general not
a polynomial time algorithm. However, the proof by Ascheuer, Krumke and
Rambau can be applied directly to IGNORE using a ρ-approximate algorithm
for solving (offline) DARP and is even applicable to ONLINE-FIFO-DARP. We
also note that the competitive ratio for IGNORE holds also for discrete metric
spaces—we do not require the metric space to be continuous.

Theorem 4.6.2. IGNORE employing a ρ-approximate algorithm for solving instances
of (offline) DARP (or FIFO-DARP) with closed schedules is a 5/2ρ-competitive algo-
rithm for ONLINE-DARP (or ONLINE-FIFO-DARP)

Proof. Consider tm, the moment in time when the last request rm becomes
known. If the IGNORE server is currently idle at the origin o, then its com-
pletes its last schedule no later than

tm + ρL∗(tm, o, {rm} ≤ ρ (tm + d(o, am) + d(am, bm) + d(bm, o))

≤ ρ (OPT(σ) + d(o, am))

≤ 3/2ρOPT(σ).
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Here, we have used again the fact that the optimum offline server will have to
travel at least twice the distance d(o, am).

It remains the case that at time tm the IGNORE server is currently working
on a schedule S for a subset σS of the requests. Let tS denote the starting
time of this schedule. Thus, the IGNORE-server will complete S latest at time
tS + ρL∗(tS, o, σS). Denote by σ≥tS the set of requests presented after time tS.
Notice that σ≥tS is exactly the set of requests that are served by IGNORE in its
last schedule. The IGNORE-server will complete its total service no later than
time tS + ρL∗(tS, o, σS) + ρL∗(tm, o, σ≥tS).

Let rf ∈ σ≥tS be the first request from σ≥tS served by the offline server.
Thus

OPT(σ) ≥ tf + L∗(tf, af, σ≥tS) ≥ tS + L∗(tm, af, σ≥tS). (4.7)

Now L∗(tm, o, σ≥tS) ≤ d(o, af) + L∗(tm, af, σ≥tS) and L∗(tS, o, σS) ≤ OPT(σ).
This gives us that

CIGNORE(σ) ≤ tS + ρ (OPT(σ) + d(o, af) + L∗(tm, af, σ≥tS))

(4.7)
≤ ρ (tS + OPT(σ) + d(o, af) + L∗(tm, af, σ≥tS))

≤ 2ρOPT(σ) + ρd(o, af)

≤ 5/2ρ ·OPT(σ).

This completes the proof.

Using the approximation algorithms from Chapter 2 and Chapter 3, we
immediately get the following results:

Corollary 4.6.3. IGNORE with suitable approximation algorithms is a polynomial
time algorithm that can achieve the following competitive ratios:

ONLINE-DARP on the real line: 5/2

ONLINE-DARP on trees: 25/8

ONLINE-DARP on general metric spaces: 9/2

ONLINE-FIFO-DARP on the real line: 5/2

ONLINE-FIFO-DARP on trees: 25/6

ONLINE-FIFO-DARP on general metric spaces: 45/8

Ascheuer, Krumke and Rambau proved that the open schedule case of
ONLINE-DARP is 4-competitive [AKR98a]. Again, their proof can be applied
directly to IGNORE using a ρ-approximate algorithm for solving (offline) DARP

with open schedules and is also applicable for ONLINE-FIFO-DARP:

Theorem 4.6.4. In the case of ONLINE-DARP (or ONLINE-FIFO-DARP) with open
schedules, the competitive ratio of algorithm IGNORE using a ρ-approximate algo-
rithm for (offline) DARP (or FIFO-DARP) is 2+ 2ρ.
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Proof. The only interesting case is that at the time tm when the last request be-
comes known the IGNORE server is currently working on a schedule S. Sup-
pose that Swas started at time tS and has starting point x and ends at point y.

Then the schedule will be completed no later than time tS + ρL̃∗(tS, x, σS),
where σS denotes the subset of requests served in the current schedule S. The
IGNORE server will complete its total work no later than time

tS + ρL̃∗(tS, x, σS) + ρL̃∗(tm, y, σ≥tS),

where σ≥tS denotes the set of requests presented after time tS.

Let rf be the first request from the set σ≥tS of ignored requests served by the
optimal offline server (note that therefore in the case of ONLINE-FIFO-DARP

the online server is also allowed to serve rf as the first among the requests
in σ≥tS). Then

OPT(σ) ≥ tf + L̃∗(tS, af, σ≥tS) ≥ tS + L̃∗(tS, af, σ≥tS).

Thus, we have that

CIGNORE(σ) ≤ ρL̃∗(tS, x, σS) + d(y, af) + tS + ρL̃∗(tm, af, σ≥tS)

≤ ρL̃∗(tS, x, σS) + d(y, af) + OPT(σ)

≤ 2ρOPT(σ) + d(x, o) + d(y, af).

It is easy to see that both values d(x, o) and d(y, af) are bounded from above
by OPT(σ), and so the theorem follows.

4.7 Other competitive algorithms

In this section we will consider the algorithm PAH for closed schedule ONLINE-
TSP and the SLEEP algorithm for ONLINE-DARP. The strategy PAH—which
abbreviates “Plan at Home”—is basically an adaption of the IGNORE strat-
egy. It is an open question whether a similar algorithm for ONLINE-DARP can
perform better than IGNORE. The SLEEP algorithm on the other hand is not
suitable for practical implementations—as will become apparent when we ex-
plain how it works. However, it is a competitive strategy, which once again
illustrates the gap between competitiveness results and practical relevance.

Definition 4.7.1 (Algorithm PAH). If the server is at the origin, it plans an op-
timal schedule that serves all requests (and terminates again in the origin) and
the server begins to follow this schedule.

If a new request (t, a) is presented, then the server takes one of the two
following actions, depending on its current position x: If d(a, o) > d(x, o)

then the server goes back to the origin (along a shortest path), otherwise the
server ignores the request until it arrives at the origin.
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Aussiello et.al. showed that the algorithm PAH is a 2-competitive algorithm
for ONLINE-TSP with closed schedules.

Theorem 4.7.2. Algorithm PAH is 2-competitive for ONLINE-TSP with closed sched-
ules.

Proof. Let σ = (r1, . . . , rm) be a set of requests. Consider tm, the moment in
time when the last request rm = (tm, am) becomes known. Let x be the current
position of the server. There are three cases:

Case 1: At time tm the algorithm is at the origin. It then requires time tm +

L∗(tm, o, {rm}) to serve all requests, which is at most 2OPT.

Case 2: At time tm the algorithm is currently not at the origin (i.e., it is serving
a schedule or moving back to the origin) and d(am, o) > d(x, o). The server
goes back to the origin where it will arrive at time tm + d(x, o) and then it
serves all remaining requests. We notice that OPT ≥ tm + d(o, am). Therefore

CPAH ≤ tm + d(x, o) + L∗(tm, o, σ)

≤ tm + d(am, o) + L∗(tm, o, σ)

≤ 2OPT

Case 3: At time tm the algorithm is currently moving back to the origin due to
an earlier occurrence of a request rj = (tj, aj) with d(aj, o) < d(xj, o) where xj
is the position of the server at time tj. We can apply the argument from Case 2
to get the result.

Case 4: At time tm the algorithm is currently serving a schedule and d(am, o) <
d(x, o). Let σcur be the set of requests that are currently being served and let
σig be the set of requests that have been temporarily ignored since the server
last left the origin. Let rj = (tj, aj) be the first request in σig that is served by
an optimal offline solution, then L∗(tm, aj, σig) is the length of a shortest path
starting in aj, visiting all points where requests in σig occur and finishing at o.
Clearly, OPT ≥ tj+L∗(tm, aj, σig). Let xj be the position of the server at time tj,
we note that d(aj, o) < d(xj, o) since rj was ignored. We further note that the
current tour has started at the origin not after time tj − d(xj, o). Therefore we
get

CPAH ≤ tj − d(xj, o) + L∗(0, o, σcur + L∗(tm, o, σig)

≤ tj − d(aj, o) + L∗(0, o, σcur) + L∗(tm, aj, σig) + d(aj, o)

≤ tj + L∗(tm, aj, σig) + L(0, o, σcur)

≤ 2OPT

This completes the proof.

Rather surprisingly, Ascheuer, Krumke and Rambau showed that the fol-
lowing algorithm for ONLINE-DARP is competitive [AKR98a]:
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Definition 4.7.3 (Algorithm SLEEP). The algorithm has a fixed “waiting scal-
ing” parameter θ > 1. The algorithm also records a “base time” T which is
initially equal to zero. From time to time the algorithm consults its “work-or-
sleep” routine: this subroutine computes a shortest schedule for all unserved
requests. If this schedule can be completed before time θT the subroutine re-
turns (S,work), otherwise it returns (S, sleep).

The server of algorithm SLEEP can be in four states:

IDLE In this case the server has served all known requests, is sitting in the
origin and waiting for new requests to occur.

SLEEPING In this case the server knows of some unserved requests but also
knows that they take too long to serve (what “too long” means will be
formalized in the algorithm below).

WORKING In this state the algorithm (or rather the server operated by it) is
following a computed schedule.

We now formalize the behavior of the algorithm by specifying how it reacts in
each of the four states.

• If the algorithm is idle and a new request arrives, it updates the base
time T to the release time of the new request (which equals the current
time). It then calls “work-or-sleep”. If the result is (S,work), the algo-
rithm resets T to the completion time of S and enters the working state.

If the result of “work-or-sleep” is (S, sleep), then the algorithm enters
the sleeping state.

• In the sleeping state the algorithm resets its base time to T ′ = θT and
simply does nothing (or sleeps) until time T ′. At time T ′ the algorithm
reconsults its “work-or-sleep” subroutine. This process is continued un-
til the server eventually enters the working state (since the number of
requests is finite).

• In the working state, i.e, while the server is following a schedule all new
requests are ignored. As soon as the current schedule is completed the
server either enters the idle-state (if there are no unserved requests) or it
consults its “work-or-sleep” subroutine which determines the next state.

Theorem 4.7.4. Algorithm SLEEP for ONLINE-DARP with closed schedules has a
competitive ratio of max

{
5
2 , 2+ 1

θ−1

}
.

Proof. Let σ=tm be the set of requests released at time tm, i.e., the point in
time when the last requests becomes known. We distinguish between different
cases depending on the state of the SLEEP-server at time tm:

Case 1: The server is idle.
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In this case the algorithm computes a shortest schedule for the requests
in σ=tm and resets its base time to T = tm. The SLEEP-server will start
its work at time Tθi, where i is the smallest nonnegative integer such that
Tθi + L∗(Tθi, o, σ=tm) ≤ Tθi+1. Notice that for all i we have L∗(Tθi, o, σ=tm) =

L∗(tm, o, σ=tm) ≤ OPT(σ).

In other words, the server starts its work at time Tθi where i ≥ 0 is the
smallest nonnegative integer such that

L∗(tm, o, σ=tm) ≤ Tθi(θ− 1). (4.8)

The server will complete its work at time Tθi + L∗(tm, o, σ=tm).

If i = 0, then CSLEEP(σ) = tm + L∗(tm, o, σ=tm) ≤ 2OPT(σ). If i > 0, then
the minimality of i yields that Equation (4.8) is false for i− 1. Therefore we get
that

OPT(σ) ≥ L∗(tm, o, σ=tm) > Tθi−1(θ− 1). (4.9)

On the other hand

CSLEEP(σ) ≤ Tθi + L∗(tm, o, σ=tm)

(4.9)
<

θ

θ− 1
OPT(σ) + L∗(tm, o, σ=tm)

≤
(
1+

θ

θ− 1

)
OPT(σ)

=

(
2+

1

θ− 1

)
OPT(σ).

Case 2: The server is sleeping.

Let Tθp for some p ≥ 0 be the time when the algorithm went to sleep the
last time. At time Tθp+1 the algorithm will reconsult its “work-or-sleep” sub-
routine. We have that Tθp ≤ tm ≤ Tθp+1.

The server will start its last schedule at time Tθp+1+i, where i is the smallest
integer such that Tθp+1+i + L∗(tm, o, σ

′) ≤ δθp+i+2, where σ ′ denotes the set
of yet unserved requests. By similar arguments as in Case 1 we get that

CSLEEP(σ) ≤
(
2+

1

θ− 1

)
OPT(σ).

Case 3: The algorithm is working.

If after completion of the current schedule S the server enters the sleep
state then the arguments given above establish that the completion time does
not exceed

(
2+ 1

θ−1

)
OPT(σ).

The remaining case is that the SLEEP-server starts its final schedule imme-
diately after having completed S. Thus, from the time tS where the server
started S, the SLEEP algorithm behaves exactly like the IGNORE strategy
and the arguments given in the proof of Theorem 4.6.2 show that in this case
CSLEEP(σ) ≤ 5/2OPT(σ). This completes the proof.
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We note that the second factor 1 + θ
θ−1 = 2 + 1

θ−1 is at most 5/2 provided
that θ ≥ 3. We thus obtain the following corollary.

Corollary 4.7.5. If θ ≥ 3, then algorithm SLEEP is 5/2-competitive.
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Chapter 5

ONLINE-DARP under
Reasonable Load

In this chapter we introduce a new concept for studying online algorithms in
continuously operating systems. The main idea is to restrict the request sets to
sequences which “make sense” in a continuously operating system and at the
same time to measure “how difficult” they are. For this twin task we introduce
the new concept of ∆0-reasonable request sets.

We begin by motivating the basic idea behind the concept. We then for-
mally define what we mean by a ∆0-reasonable request set. Finally we will
study the algorithms REPLAN and IGNORE for ONLINE-DARP under reason-
able load. Our main result is, that for ONLINE-DARP (and also for ONLINE-
FIFO-DARP) under ∆0-reasonable load, IGNORE yields a maximal and an av-
erage flow time of at most 2∆0, whereas the maximal and the average flow
time of REPLAN are unbounded. The results presented in this chapter have
been published together with S. O. Krumke and J. Rambau in [HKR99].

5.1 Introducing reasonable load

In Chapter 4 we studied the problem ONLINE-DARP, focusing on the REPLAN
and IGNORE algorithm. Competitive analysis of ONLINE-DARP provided the
following:

• There are competitive algorithms (IGNORE and REPLAN) for the goal of
minimizing the total completion time of the schedule.

• For the task of minimizing the maximal flow or waiting time or the average
flow or waiting time there can be no competitive algorithm.

When considering a continuously operating system with a possibly infinite
request sequence, the total completion time is meaningless. In this case, the
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existing positive results cannot be applied and the negative results tell us, that
we cannot hope for performance guarantees that are of practical relevance. In
particular, the two algorithms IGNORE and REPLAN cannot be distinguished
by classical competitive analysis.

The objective function value for an offline optimal solution that is used
in classical competitive analysis can be thought of measuring how difficult a
particular instance of a problem is. We are looking for a similar measure telling
us how difficult it is to serve a set of possibly infinitely many requests.

At the same time, a “good” algorithm should show a stable behavior: If
possible, it should keep up with its work. However, when is it possible for
an algorithm to do that in a continuously operating system? In queuing the-
ory this is usually modeled by a stability assumption: the rate of incoming
requests is at most the rate of requests served. Since in many instances we
have no exploitable information about the distributions of requests we want
to develop a worst-case model rather than a stochastic model for stability of a
continuously operating system.

For the twin task of “measuring” the combinatorial complexity of a request
set, and deciding whether a “good” algorithm can be stable when serving it,
we introduce the notion of ∆0-reasonable request sets. A set of requests is ∆0-
reasonable if—roughly speaking—requests released during a period of time
∆ ≥ ∆0 can be served in time at most ∆. A set of requests R is reasonable if there
exists a ∆0 < ∞ such that R is ∆0-reasonable. That means, for non-reasonable
request sequences we find arbitrarily large periods of time where requests are
released faster than they can be served—even if the server has the optimal
offline schedule.

We already remarked that ∆0 measures in a sense the combinatorial diffi-
culty of a request set. Thus, it is natural to ask for performance guarantees
for algorithms in terms of ∆0. Our main result on the ONLINE-DARP under
∆0-reasonable load is the following:

Theorem 5.1.1. For the ONLINE-DARP under ∆0-reasonable load, IGNORE yields
a maximal and an average flow time of at most 2∆0, whereas the maximal and the
average flow time of REPLAN are unbounded.

We prove this result in Sections 5.4 and 5.5.

We will also show how we can derive results for IGNORE when using an
approximate algorithm for solving offline instances of DARP. For this we refine
the notion of reasonable request sets again, introducing a second parameter
that tells us, how “fault tolerant” the request sequence is. In other words, the
second parameter tells us, how “good” the algorithm has to be, to show stable
behavior. Again, roughly speaking, a set of requests is (∆0,ρ)-reasonable if
requests released during a period of time ∆ ≥ ∆0 can be served in time at
most ∆/ρ. If ρ = 1, we get the notion of ∆0-reasonable as explained above.
For ρ > 1, the algorithm can work “sloppy” or have break-downs to an extend
measured by ρ and still show a stable behavior.
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We finally remark, that all the results proved in this chapter are equally
applicable to ONLINE-FIFO-DARP—again, as for the competitiveness results
concerning IGNORE proved in Section 4.6, additional precedence constraints
on the requests do not matter for the proofs.

5.2 Preliminaries

We start with some useful notation. The goal is to avoid the special meaning
for time 0 in the analysis of online algorithms with time stamped requests.

Definition 5.2.1. The time shift of r by τ ∈ R is the request

r+ τ := (t+ τ, a, b)

The offline version of r is the request

roffline := (0, a, b).

Definition 5.2.2. Let R be a request set for ONLINE-DARP. The time shift of R
by τ is the request set

R+ τ := {r+ τ : r ∈ R} .

The offline version of R is the request set

Roffline :=
{
roffline : r ∈ R

}
.

An important characteristic of a request set with respect to system load
considerations is the time period in which it is released.

Definition 5.2.3. Let R be a finite request set for ONLINE-DARP. The release
span ∆(R) of R is defined as

∆(R) := max
r=(t,a,b)∈R

t− min
r=(t,a,b)∈R

t.

The next definition describes a class of objectives that discard the special
meaning of time 0.

Definition 5.2.4. A cost function C for the ONLINE-DARP is translation invari-
ant if for any set of requests R = r1, r2, . . . and for all algorithms A we have

CA(R) = CA(R+ τ) forall τ ∈ R.

Example 5.2.5. We consider some objective functions which are relevant in
this chapter and remark whether they are translation invariant:
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• The completion time or makespan of a request set R, i.e., the time when all
requests from R are served, is not translation invariant. However, if we
set all release times in a request set R to 0 then we get the translation
invariant objective Ccomp(Roffline). This is the offline completion time of R.

• Assume the first request in R is released at time t1. Then the flow time of
R is the translation invariant objective Ccomp(R− t1).

• The average flow time and the maximal flow time of a request set R, i.e., the
average resp. maximum time taken over all request r ∈ R that r spends
in the system, are translation invariant. We consider these objectives as
especially important for a continuously operating system.

5.3 Reasonable load

We will now derive formally the notion of a (∆0,ρ)-reasonable set, where ∆0 >
0 serves as a measure of the combinatorial complexity of the instance, whereas
ρ > 1measures how stable the sequence is, in a worst-case fashion.

We start by relating the release spans of finite subsets of a request set to the
time we need to fulfill the requests.

Definition 5.3.1. Let R be a (possibly infinite) set of request for ONLINE-DARP.
A weakly monotone function

f :

{
R → R,

∆ 7→ f(∆);

is a load bound on R if for any ∆ ∈ R and any finite subset S of Rwith ∆(S) ≤ ∆
we have

C
comp
OPT (S

offline) ≤ f(∆).

Remark 5.3.2.

• If the whole request set R is finite then there is always the trivial load
bound given by the total completion time of R.

• For every load bound f we may set f(0) to be the maximum completion
time we need for a single request, and nothing better can be achieved.

A stable situation would be characterized by a load bound equal to the
identity on R. In that case we would never get more work to do than we can
accomplish. If it has a load bound equal to a function id/ρ, where id is the
identity and where ρ ≥ 0, then ρmeasures the tolerance of the request set: An
algorithm that is by a factor ρ worse then optimal will still accomplish all the
work that it gets. However, we cannot expect that the identity (or any linear
function) is a load bound for ONLINE-DARP or ONLINE-FIFO-DARP because
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of the following observation: a request set consisting of one single request
has a release span of 0 whereas in general it takes non-zero time to serve this
request. In the following definition we introduce a parameter describing how
far a request set is from being load-bounded by the identity.

Definition 5.3.3. A load bound f is (∆0,ρ)-reasonable for some ∆0, ρ ∈ R if

ρf(∆) ≤ ∆ for all ∆ ≥ ∆0

A request set R is (∆0,ρ)-reasonable if it has a (∆0,ρ)-reasonable load bound.

For ρ = 1, we say that the request set is ∆0-reasonable.

In other words, a load bound is (∆0,ρ)-reasonable, if it is bounded from
above by 1/ρ·id(x) for all x ≥ ∆0 and by the constant function with value 1/ρ∆0
otherwise.

Remark 5.3.4. If ∆0 is sufficiently small so that all request sets consisting of
two or more requests have a release span larger than ∆0 then the first-come-
first-serve strategy is good enough to ensure that there are never more than
two unserved requests in the system. Hence, the request set does not require
scheduling the requests in order to provide for a stable system. (By “stable”
we mean that the number of unserved requests in the system does not become
arbitrarily large.)

If for the same setting, we also have ρ > 1, then the server only has to work
for a time period 1/ρ · ∆ in any interval ∆ ≥ ∆0 and it will still provide for a
stable system.

5.4 Performance guarantees for IGNORE

We are now in a position to prove the performance guarantees for minimizing
the maximal resp. average flow time in ONLINE-DARP (and ONLINE-FIFO-
DARP) for algorithm IGNORE stated in Theorem 5.1.1. The algorithm IGNORE
has been defined in 4.6.1. We assume that IGNORE solves instances of (offline)
DARP (or FIFO-DARP) using a ρ-approximate algorithm.

The algorithm IGNORE induces a dissection of the time axis R in the fol-
lowing way: Because maximal flow time is a translation invariant objective
function, we can assume, w.l.o.g., that the first set of requests arrives at time 0.
Let ∆1 be the time period the server works on the first available set of requests.
Moreover, for i > 1 let ∆i be the time period the server is working on the re-
quests that have been ignored during the last ∆i−1 time units. Then the time
axis is split into the intervals

[0, ∆1], [∆1, ∆1 + ∆2], [∆1 + ∆2, ∆1 + ∆2 + ∆3], . . .

Let us denote these intervals by I1, I2, I3, . . . . Moreover, let Ri be the set of
those requests that come up in Ii. Clearly, the complete set of requests R is the
union of all the Ri.
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At the end of each interval Ii we solve an offline problem: all requests to
be scheduled are already available. The work on the computed schedule starts
immediately (at the beginning of interval Ii+1) and is done ∆i+1 time units
later (at the end of interval Ii+1). On the other hand, the time we need to serve
the schedule is not more than ρ times the optimal completion time of Rioffline.
In other words:

Lemma 5.4.1. For all i > 0 we have

∆i+1 ≤ ρC
comp
OPT (Ri

offline).

Let us now recall and prove the first statement of Theorem 5.1.1.

Theorem 5.4.2. Let ∆0 > 0 and ρ ≥ 1. For all instances of ONLINE-DARP

(ONLINE-FIFO-DARP) with (∆0, ρ)-reasonable request sets, IGNORE employing a
ρ-approximate algorithm for solving offline instances of DARP (FIFO-DARP) yields
a maximal flow time of no more than 2∆0.

Proof. Let r be an arbitrary request in Ri, i.e., r is released in Ii. By construction,
the schedule containing r is finished at the end of interval Ii+1, i.e., at most
∆i + ∆i+1 time units later than rwas released. Thus, for all i > 0we get that

C
maxflow
IGNORE(Ri) ≤ ∆i + ∆i+1.

If we can show that ∆i ≤ ∆0 for all i > 0 then we are done. To this end, let
f : R → R be a ∆0, ρ-reasonable load bound for R. Then Ccomp

OPT (Ri
offline) ≤ f(∆i)

because ∆(Ri) ≤ ∆i.

By Lemma 5.4.1, we get for all i > 0

∆i+1 ≤ ρC
comp
OPT (Ri

offline) ≤ ρf(∆i) ≤ max{∆i, ∆0}.

Because the release span of the requests served during the time period ∆1 is 0
by definition of IGNORE, we know that ∆1 ≤ max{0, ∆0} = ∆0. It follows by
induction on i that ∆i ≤ ∆0, and we are done.

The statement of Theorem 5.1.1 concerning the average flow time of IG-
NORE follows from the fact that the average is never larger then the maxi-
mum.

Corollary 5.4.3. Let ∆0 > 0 and ρ ≥ 1. For all instances of ONLINE-DARP

(ONLINE-FIFO-DARP) with (∆0, ρ)-reasonable request sets, algorithm IGNORE us-
ing a ρ-approximate algorithm for solving offline instances of DARP (FIFO-DARP)
yields an average flow time of no more than 2∆0.



CHAPTER 5. ONLINE-DARP UNDER REASONABLE LOAD 81

G

0

t

ε ε ε

`

ε ε ε

3/2`− ε `− 2ε `− 2ε

a

b

c

d

Figure 5.1: A sketch of a (223`)-reasonable instance of ONLINE-DARP (` = 18ε)
(from[HKR99]).

5.5 A disastrous example for REPLAN

We now provide an instance of ONLINE-DARP and a ∆0-reasonable request
set R such that the maximal and the average flow time of the REPLAN algo-
rithm C

maxflow
REPLAN(R) is unbounded, thereby proving the remaining assertions of

Theorem 5.1.1. The algorithm REPLAN is defined in 4.5.1

Theorem 5.5.1. There is an instance of ONLINE-DARP under reasonable load such
that the maximal and the average flow time of REPLAN is unbounded.

Proof. In Figure 5.1 there is a sketch of an instance for the ONLINE-DARP. The
graph G is a path on four nodes a, b, c, d; the length of the path is `, the dis-
tances are d(a, b) = d(c, d) = ε, and hence d(b, c) = `−2ε. At time 0 a request
from a to d is issued; at time 3/2`−ε, the remaining requests periodically come
in pairs from b to a and form c to d, resp. The time distance between them is
`− 2ε.

We show that for ` = 18ε the request set R indicated in the picture is 223`-
reasonable. Indeed: it is easy to see that the first request from a to d does
not influence reasonability. Consider an arbitrary set Rk of k adjacent pairs of
requests from b to a resp. from c to d. Then the release span ∆(Rk) of Rk is

∆(Rk) = (k− 1)(`− 2ε).

The offline version Rkoffline of Rk can be served in time

C
comp
OPT (Rk

offline) = 2`+ (k− 1) · 4ε.
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Figure 5.2: The track of the REPLAN-server. Because a new pair of requests is
issued exactly when the server is still closer to the requests at the top all the
requests at the bottom will be postponed in an optimal preliminary schedule.
Thus, the server always returns to the top when a new pair of requests arrives
(from[HKR99]).

In order to find the smallest parameter ∆0 for which the request set Rk is
∆0-reasonable we solve for the integer k− 1 and get

k− 1 =

⌈
2`

`− 6ε

⌉
= 3.

Hence, we can set ∆0 to

∆0 := C
comp
OPT (R4

offline) = 223`.

Now we define

f :


R → R,

∆ 7→ {
∆0 for ∆ < ∆0,
∆ otherwise.

By construction, f is a load bound for R4. Because the time gap after which
a new pair of requests occurs is certainly larger than the additional time we
need to serve it (offline), f is also a load bound for R. Thus, R is ∆0-reasonable,
as desired.

Now: how does REPLAN perform on this instance? In Figure 5.2 we see the
track of the server following the preliminary schedules produced by REPLAN
on the request set R.

The maximal flow time of REPLAN on this instance is realized by the flow
time of the request (3/2`− ε, b, a), which is unbounded.
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Figure 5.3: The track of the IGNORE-server (from[HKR99]).

Moreover, since all requests from b to a are postponed after serving all the
requests from c to d we get that REPLAN produces an unbounded average
flow time as well.

In Figure 5.3 we show the track of the server under the control of the IG-
NORE-algorithm. After an initial inefficient phase the server ends up in a
stable operating mode. This example also shows that the analysis of IGNORE
in Section 5.4 is sharp.

5.6 Reasonable load as a general framework

In this chapter we introduced the new concept of reasonable request sequences,
using as example the problem ONLINE-DARP. However, the concept can be
applied to any combinatorial online problem with (possibly infinte) sequences
of time stamped requests, such as online scheduling, e.g., as described by
Sgall [Sga98], or ONLINE-TSP, studied by Ausiello et.al. [AFL+95, AFL+94]
(see also Chapter 4).

IGNORE and REPLAN represent general “online paradigms” which can be
used for any online problem with time-stamped requests. We notice that the
proof of the result that the average and maximal flow and waiting times of
IGNORE are bounded by 2∆0 has not explicetly drawn on any specific prop-
erty of ONLINE-DARP—this result holds for all combinatorial problems with
time-stamped requests.

The proof that the maximal flow and waiting time of a ∆0-reasonable re-
quest sequence is unbounded for REPLAN is equally applicable to ONLINE-
TSP. We expect that the same is true for any “sufficiently difficult” online
problem with release times—for very simple problems, such as ONLINE-TSP
on a zero dimensional space, the result trivially does not hold.
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Chapter 6

Simulation Studies

We now discuss experimental results concerning the performance of the online
algorithms studied in Chapters 4 and 5. We tested variants of the algorithms
both in a simulation of single elevators with FIFO waiting queues and also in
a simulation of the integrated transportation system described in Chapter 1.
For our studies we used randomly generated data for various load situations
and also real life data provided by our partners in industry. Preliminary simu-
lation results have been published together with M. Grötschel, S. Krumke and
J. Rambau in [GHKR99].

We will first provide some information on the simulation model and on
the implemented algorithms. We will then present our results, focusing on the
performance with respect to minimizing the average and the maximal flow
times. Our main results are:

• Algorithms like FIRSTFIT or REPLAN, that seek for highest possible
“global efficiency” (low average flow times) may leave single requests
unserved for an unacceptable long period of time.

• Algorithms like FFMAXAGE or FFDYNAGE seem to require different pa-
rameter settings for different load situations. Parameters suitable for
normal load have both algorithms imitate the inefficient FIFO strategy
under high load.

• The algorithms IGNORE and IGGREEDY achieve a good balance be-
tween the two objectives in every load situation.

• The integrated transportation system suffers from the poor performance
of the conveyor system. The optimization effects on the single elevators
do not lead to a substantially higher overall performance.

6.1 The simulation model

Our simulation programs are built on top of AMSEL [Asc], a callable C-library
to design event-based simulation programs. The input data consists of a set of
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event points, a set of modules, and a collection of requests with release times.

Every request becomes an object which flows through the system via the
event points. For every event point, a subroutine is specified that derives a
successor event from the current state of the system. If an object is on an event
point then the event is stored in the global event list together with a time stamp,
and the object stores it as its current event. The basic flow of objects is modeled
as follows: the currently next event in time is read from the event list. Then
the successor event is derived together with the point in time when this event
should be processed. Now, the object updates its current event point to the
successor event, and the successor event is entered into the event list; the old
event is deleted from the list.

Modules are closed regions in the system where the number of objects in-
side is constrained by a capacity value. Modules are entered through entry
events and left through exit events. For more details on AMSEL see [Asc95].

All our studies were produced on a Sun UltraSparc 10 workstation. The
running time was approx. 2% of the simulated time. This shows that our sim-
ulation environment is fast and that the algorithms under consideration are all
real-time compliant.

Figure 6.1: The graphical interface of the simulation program

6.2 The algorithms

We used the simulation environment to test the algorithms studied in Chap-
ters 4 and 5 as well as some modifications of these algorithms. Since we are
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mainly concerned with average flow and waiting times, we let all algorithms
run open schedules rather than closed schedules, i.e., we did not require the
server to return to the origin at the end. For easier reference, we list all algo-
rithms tested in the simulation environment together with the most relevant
theoretical results from Chapters 4 and 5:

FIRSTFIT The server always serves a “nearest request”. A request is “near-
est”, if the corresponding empty move, i.e., the move of the empty server
to the source of the request, is shortest.

In Section 4.3, we show that this algorithm does not achieve a constant
competitive ratio for minimizing the total completion time.

FIFO Requests are served in the order of their occurrence.

In Section 4.3, we show that this algorithm does not achieve a constant
competitive ratio for minimizing the total completion time.

REPLAN As soon as a new request arrives, the server completes the current
carrying move (if it is performing one), then the server stops and replans:
it computes a new shortest schedule which starts at the current position
of the server and takes care of all yet unserved requests.

In Section 4.5 we show that this algorithm is (3 + ρ)-competitive for the
objective of minimizing the total completion time when solving instances
of offline FIFO-DARP with open schedules using a ρ-approximate algo-
rithm. In Section 5.5 we show for the closed schedule case that for a
∆0-reasonable request set, the maximal and average flow and waiting
times for single requests are not bound.

IGNORE The server remains idle until the first request becomes known. It
then serves the first request immediately. All requests that arrive dur-
ing the service of the first request are temporarily ignored. After the
first request has been served, the server computes a shortest schedule
for all unserved requests and follows this schedule. Again, all new re-
quests that arrive during the time that the server is following the sched-
ule are temporarily ignored. A schedule for the ignored requests is com-
puted as soon as the server has completed its current schedule. The al-
gorithm keeps on following schedules and temporarily ignoring requests
this way.

In Section 4.6 we show that this algorithm is (2+ 2ρ)-competitive for the
objective of minimizing the total completion time with open schedules
when solving instances of offline FIFO-DARP using a ρ-approximate al-
gorithm. In Section 5.4 we show for the closed schedule case that for
a ∆0-reasonable request set, the maximal and average flow and waiting
times for single requests are bound by 2∆0.

IGGREEDY The algorithm works basically like IGNORE. However, if a new
request becomes known and this request can be inserted into the current
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schedule without additional moves, then the new request is added to the
schedule.

Notice that inserting a request can still increase the cost of the tour, be-
cause it may require additional stops of the elevator.

FFMAXAGE The algorithm works like FIRSTFIT, but additionally for each
unserved request records its waiting time. If the waiting time for a re-
quest exceeds the grace period parameter then this request is served next.

FFDYNAGE This is a modification of FFMAXAGE which does not have a
fixed grace period parameter, but which adjusts the parameter dynam-
ically during the run to a fraction of the maximal waiting time of all
served request so far. The value of this fraction has to be given to the
algorithm as a parameter.

The current strategy for controlling the elevators in the Herlitz transport
system as described in Chapter 1 is similar to our FFMAXAGE algorithm.

6.3 Solving offline instances

Both the algorithm IGNORE and the algorithm REPLAN have to solve offline
instances of the problem PENALTY-FIFO-DARP on paths with open schedules.
We studied the closed schedule case in Section 3.2. There we showed that
PENALTY-FIFO-DARP and PENALTY-DARP are both NP-hard. However we
also showed that both problems can be transformed into instances of FIFO-
DARP and DARP on caterpillar graphs, respectively. This means that the prob-
lems with closed schedules can be tackled using the approximation algorithms
for FIFO-DARP and DARP on trees, which we studied in Section 3.1.6 and Sec-
tion 2.5, respectively.

In Section 3.3 we considered the open schedule case of (offline) DARP and
FIFO-DARP and derived a simple strategy that yielded a (2ρ− 1)-approximate
algorithm for open schedules, given a ρ-approximate algorithm for closed
schedules.

For the simulation of the integrated system, the waiting areas for elevators
have a capacity of one—there will never be two requests waiting for an eleva-
tor on the same level. Therefore we can employ an approximation algorithm
for solving DARP on trees for this simulation, rather than an approximation
algorithm for FIFO-DARP.

For solving the closed schedule problems, we used the MinSpanTree algo-
rithm, which is studied in Section 2.5.3. This algorithm is 4/3-approximate as
we showed in Section 2.5.3. This means, the open schedule algorithm which
we use for both REPLAN and IGNORE is 5/3-approximate. However, during
our simulations, the balancing step of algorithm MinSpanTree has yielded at
most two strongly connected components—which implies that MinSpanTree
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has for all instances of (offline) DARP encountered in the simulations com-
puted an optimal solution (the technique of balancing is explained in Sec-
tion 2.2). This in turn implies that the all solutions for the open schedule prob-
lems have been optimal.

Moreover, we also tested the algorithm for a number of instances of DARP

on caterpillars with up to 100 nodes and 300 requests. The number of con-
nected components after balancing has always been fairly small (between one
and six). Our only comparison has been the Branch and Bound algorithm de-
scribed in the next paragraph. MinSpanTree has (for a maximal Branch and
Bound time of 1 hour) always achieved equal or better results.

For the simulation of single elevators with FIFO queues, we allow the wait-
ing queues to be arbitrarily large. For this simulation, REPLAN and IGNORE
therefore need to solve instances of FIFO-DARP on a caterpillar. We have not
yet implemented any of the heuristics for FIFO-DARP on trees, which we stud-
ied in Section 3.1.6, and can therefore give no details on their behavior in prac-
tice. Instead, in our studies we used a simple Branch and Bound algorithm
for solving offline instances of PENALTY-FIFO-DARP. This algorithm uses a
random order of all requests as initial solution. It then enumerates all al-
lowed orders of subsets of requests. Whenever the length of a path defined
by an ordering of a subset of requests plus the net cost of the remaining arcs is
greater than the current best solution, all orderings of the requests containing
this “suborder” are eliminated. We let this algorithm run for at most one sec-
ond. We compared the performance of the Branch and Bound running for at
most one second with Branch and Bound solved to optimality on a number of
instances occurring in the simulation. In most cases the 1-second Branch and
Bound achieved optimality. The largest gap observed was 10%.

6.4 Simulation studies of a single elevator with random
data

The basic layout investigated in this section consists of one elevator of unit
capacity, connecting eight floors. The distances between the floors as well as
the start and stop times and the loading time of the elevator are all based on
the elevators that are used in the transportation system described in Chapter 1.

Waiting requests line up in front of the elevator; the requests on one level
have to be served in a First-In-First-Out fashion (FIFO). Requests are generated
randomly as follows: at every point, the time until the next requests occur is
taken uniformly at random on the interval (0, tε], where tε is an adjustable
parameter. The number of requests issued at that time is taken uniformly at
random from the integers in the interval [1, nmax], where nmax is another pa-
rameter of the simulation program. With these two parameters it is possible to
control the load of the system: a smaller tε yields a higher load; a larger nmax
leads to a stronger peakedness of the input data.
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Under low load almost all algorithms yield the same performance concern-
ing the minimization of the average flow time. For the minimization of the
maximal flow time we see that FIRSTFIT and REPLAN perform considerably
worse than the rest.

average flow maximal flow completion
Algorithm mean high low mean high low mean high low

FIRSTFIT 64 77 54 449 649 340 28879 28954 28832
FIFO 84 129 65 401 651 249 28909 29093 28815

REPLAN 65 79 56 439 695 293 28876 28954 28832
IGNORE 72 95 59 367 610 212 28885 28959 28815

IGGREEDY 70 91 58 356 557 211 28883 28954 28815
FFMAXAGE 69 92 58 359 539 227 28893 28998 28832
FFDYNAGE 65 79 55 346 512 227 28881 28954 28832

System Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 systems, 1 elevator each, 8 FIFO levels.
Request Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . tε: 165, and nmax: 3.
Statistics Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .simulated time: 8h, sample size: 20.

Table 6.1: Simulation studies for low load.

If the system works under medium load then we observe that algorithms
performing especially well for the average flow time (FIRSTFIT, REPLAN)
yield approx. 30% worse results for the maximal flow time than the other al-
gorithms. Note that FIFO is still a feasible strategy with comparably poor
performance for the average flow time and acceptable performance for the
maximal flow time. The algorithms IGNORE, IGGREEDY, FFMAXAGE, and
FFDYNAGE all show a balanced behavior in the sense that average and maxi-
mal flow times are not too much apart.

average flow maximal flow completion
Algorithm mean high low mean high low mean high low

FIRSTFIT 84 97 74 721 1407 492 28915 29229 28819
FIFO 224 409 144 754 1064 475 29046 29704 28819

REPLAN 88 103 76 736 1096 490 28900 29343 28583
IGNORE 107 135 89 528 766 355 28927 29413 28819

IGGREEDY 100 118 88 522 790 348 28926 29413 28819
FFMAXAGE 119 164 90 551 819 340 28936 29485 28819
FFDYNAGE 92 122 78 502 785 315 28921 29349 28819

System Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 systems, 1 elevator each, 8 FIFO levels.
Request Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . tε: 120, and nmax: 3.
Statistics Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .simulated time: 8h, sample size: 20.

Table 6.2: Simulation studies for medium load.

Under high load the FIFO strategy breaks down because it runs in such an
inefficient way that requests are issued faster than FIFO can serve them. Algo-
rithm FFMAXAGE almost breaks down because of the following: if many re-
quests are in the system then at some point there will be many requests whose
time has run out. All these requests are then scheduled first-in-first-out, which
is inefficient. Thus, the number of requests whose age is too large will in-
crease, resulting in an even worse situation. We conclude that FFMAXAGE
is unstable under heavy load and under large peakedness. While the average
performance on 20 instances of FFDYNAGE is acceptable, we see that there is a
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large deviation. Hence, we consider FFDYNAGE not very robust. For both FF-
MAXAGE and FFDYNAGE we have to cope with the problem that parameters
have to be adjusted to the actual system; this makes both algorithms difficult
to use in praxis. Algorithm FIRSTFIT works very efficiently under high load
(small average flow time). This is plausible because if many requests are in the
system then the probability that FIRSTFIT can proceed without non-carrying
moves is large. A similar argument explains why REPLAN also yields a small
average flow time: the potential for the optimization of a schedule is the larger
the more requests can be planned. Both algorithms, however, trade the flow
times of individual requests for the global efficiency. In this respect, IGNORE
and IGGREEDY show the most balanced behavior, where the average flow
time results of IGGREEDY show that the insertion of additional requests at no
extra costs pays off.

average flow maximal flow completion
Algorithm mean high low mean high low mean high low

FIRSTFIT 375 619 224 2729 4893 1521 29373 29794 29085
FIFO 6942 8203 5479 13990 15870 10849 42777 44677 39656

REPLAN 411 701 294 2611 5549 1428 29374 29906 29028
IGNORE 933 1520 629 2367 3730 1636 30189 30852 29550

IGGREEDY 740 1055 457 2097 3133 1210 29904 30834 29386
FFMAXAGE 3651 4713 2664 7538 9357 5308 36245 38163 34079
FFDYNAGE 3310 4648 901 7055 9289 3286 35763 38095 32057

System Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 systems, 1 elevator each, 8 FIFO levels.
Request Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . tε: 75, and nmax: 3.
Statistics Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . simulated time: 8h, sample size: 20.

Table 6.3: Simulation studies for high load.

We conclude that online control of elevator systems shows a trade-off be-
tween “global efficiency” (small average flow time) and “balanced behavior”
(small maximal flow time). The load of the system has a substantial influence
on the performance of the algorithms under consideration. Our simulation
renders FIFO unusable under high load, while FIRSTFIT and REPLAN often
show an unacceptable imbalance between average and maximal flow time.
The performance of the algorithms FFMAXAGE and FFDYNAGE heavily de-
pends on their parameter settings. We were not able to find parameters for
them that worked equally well in all load situations.

By ignoring upcoming requests IGNORE and IGGREEDY do not ignore
waiting requests for an arbitrarily long period of time, thereby showing a sta-
ble behavior with respect to the maximal flow time; the local improvement
procedure of IGGREEDY enhances it with a better performance for the av-
erage flow time than IGNORE. We propose IGGREEDY for robust control of
elevators under varying load.
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Elevator Passengers
1st elevator 683

2nd elevator 188
3rd elevator 45
4th elevator 8
5th elevator 5

Table 6.4: Passenger distribution on elevators—simulation with 24h real-world
traffic data

6.5 Simulation studies of an integrated elevator system

The layout investigated in this section integrates five elevators into a conveyor
system. This is the layout of the elevator system in the distribution center of
Herlitz which is described in more detail in Chapter 1. On each level, pallets
are transported on circuits which have connections to single-capacitated wait-
ing slots in front of the elevators. See Figure 1.2 in Chapter 1 for a sketch. For
the following simulation studies, the simulation parameters, such as the capac-
ities of the components and the times that pallets take for traveling between
components, were adjusted to reflect the real situation at the Herlitz plant.

Additionally to controlling the elevators, the system has to decide on which
elevator a pallet is to be transported. For all the results presented in this Chap-
ter, this is done using a “first fit” strategy: pallets enter the first free waiting
slot which they encounter. This obviously leads to the first elevators being
used much more extensively than the further elevators as shown in Table 6.4.

We have also implemented some simple strategies that balance the load
on the elevators. However all these algorithms lead to longer overall flow-
and waiting times then the first-fit strategy. This is not surprising, since in
this particular system vertical transportation is much faster than horizontal
transportation and therefore choosing the first possible elevator proves to be
efficient.

This observation together with the fact that there is at most one pallet wait-
ing for an elevator on each floor could lead to the conclusion that the schedul-
ing of elevators has a rather small influence on the performance of the system.

In fact, looking at a simulation using real data as shown in Table 6.5, we
see that the systems behave very similar, when different algorithms are used
for controlling the elevators.

A similar pattern emerges, when running the system on randomly gen-
erated data. The load used for generating Table 6.6 is chosen similar to the
maximum load observed in the real data.

However, when we increase the load of the system, some trends appear
which are similar to the observations for elevators without a connecting con-
veyor system. The following observations draw on Tables 6.7 and 6.8.
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Algorithm average flow maximal flow completion

FIRSTFIT 108 312 86363
conveyor 78 303

elevator 29 104

FIFO 108 312 86363
conveyor 79 303

elevator 29 104

REPLAN 108 312 86363
conveyor 78 303

elevator 29 170

IGNORE 108 312 86363
conveyor 79 303

elevator 29 104

IGGREEDY 108 312 86363
conveyor 79 303

elevator 29 104

FFMAXAGE 108 312 86363
conveyor 78 303

elevator 29 104

FFDYNAGE 108 312 86363
conveyor 79 303

elevator 29 104
System Parameter: . . . . . . . . . 7 systems, 5 elevators each, 8 levels.
Requests: . . . . . . . . . . . . . . . Real request data, simulated data: 24h.

Table 6.5: Simulation study using real data.

average flow maximal flow completion
Algorithm mean high low mean high low mean high low

FIRSTFIT 120 123 119 342 425 266 28931 28973 28884
conveyor 87 89 87 272 352 155

elevator 32 34 31 176 231 137

FIFO 122 125 120 342 402 216 28929 28973 28884
conveyor 87 89 87 286 352 155

elevator 33 36 32 137 209 105

REPLAN 121 124 119 406 799 316 28929 28973 28884
conveyor 87 88 87 277 352 156

elevator 33 35 31 274 680 146

IGNORE 121 123 119 337 402 215 28929 28973 28884
conveyor 87 89 87 277 352 155

elevator 33 34 32 141 241 112

IGGREEDY 121 123 119 337 402 215 28929 28973 28884
conveyor 87 89 87 277 352 155

elevator 33 34 31 142 241 112

FFMAXAGE 120 123 119 340 425 266 28931 28973 28884
conveyor 87 89 87 272 352 155

elevator 32 34 31 163 198 137

FFDYNAGE 120 123 119 340 425 255 28931 28973 28884
conveyor 87 89 87 272 352 155

elevator 32 34 31 170 289 132
System Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 systems, 5 elevators each, 8 levels.
Request Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . tε: 90, and nmax: 3.
Statistics Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . simulated time: 8h, sample size: 20.

Table 6.6: Simulation study with low random load.
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average flow maximal flow completion
Algorithm mean high low mean high low mean high low

FIRSTFIT 160 168 157 638 985 549 29000 29112 28921
conveyor 103 107 101 526 719 369

elevator 56 60 54 461 534 363

FIFO 210 220 202 819 1089 680 29054 29167 28933
conveyor 120 125 116 706 975 565

elevator 89 95 85 302 342 270

REPLAN 163 167 160 645 945 558 29006 29112 28912
conveyor 103 106 102 507 731 369

elevator 59 62 56 492 874 417

IGNORE 171 179 167 626 763 556 29028 29120 28913
conveyor 107 111 105 551 731 499

elevator 64 67 61 274 319 238

IGGREEDY 169 176 165 603 803 500 29008 29077 28908
conveyor 106 110 104 523 766 376

elevator 63 66 60 276 353 247

FFMAXAGE 168 175 162 638 846 516 29009 29112 28917
conveyor 105 109 104 547 720 369

elevator 62 65 57 262 314 224

FFDYNAGE 162 167 159 612 713 554 29005 29108 28917
conveyor 104 107 102 536 586 369

elevator 58 62 56 278 318 246
System Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 systems, 5 elevators each, 8 levels.
Request Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . tε: 30, and nmax: 3.
Statistics Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . simulated time: 8h, sample size: 20.

Table 6.7: Simulation study with medium random load.

The algorithms FIRSTFIT and REPLAN once again show the best average
flow behavior. We also notice again that these algorithms are performing badly
when considering maximal flow times through the elevator subsystem, i.e.,
the maximal time it takes a pallet from entering the elevator waiting slot until
emerging from the elevator on its target floor. However, in the special settings
of the Herlitz system the conveyor belt levels off most of these effects, so that
the overall maximal flow times of FIRSTFIT and REPLAN are not much worse
than those achieved by other algorithms.

Once again FIFO performs initially quite well, however with rising load
both its average and maximum flow times deteriorate compared to other algo-
rithms.

The performance of the modified first fit algorithms FFMAXAGE and FF-
DYNAGE is for all samples run in the original Herlitz configuration similar
to that of IGGREEDY. However Table 6.9 displays the results of a simulation
under high load, when increasing the number of floors from eight to twenty.
Here we again notice for the elevator systems a deterioration of the perfor-
mance of both FFMAXAGE and FFDYNAGE, even though there is still at most
one request waiting on each floor. This suggests that even though FFMAXAGE
and FFDYNAGE are stable algorithms for small systems under low load, their
reliance on parameters does not allow them to “scale” well when using them
for larger systems and higher load situations.

When comparing the elevator results with the overall system results, it
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average flow maximal flow completion
Algorithm mean high low mean high low mean high low

FIRSTFIT 174 180 169 764 919 647 29041 29172 28943
conveyor 110 114 107 634 822 547

elevator 62 66 61 561 720 419

FIFO 297 356 256 1934 3276 1157 29205 29434 29087
conveyor 174 220 145 1778 3079 993

elevator 122 141 111 321 348 294

REPLAN 179 184 173 753 1072 569 29042 29147 28958
conveyor 112 115 109 606 797 513

elevator 66 70 63 535 682 407

IGNORE 191 199 185 792 1082 645 29056 29148 28962
conveyor 117 122 114 711 1024 577

elevator 73 77 71 285 310 264

IGGREEDY 189 194 183 786 1045 627 29051 29172 28941
conveyor 116 119 113 704 975 553

elevator 72 75 70 299 350 262

FFMAXAGE 192 200 184 858 1139 677 29058 29132 28983
conveyor 118 122 114 739 1023 559

elevator 73 77 70 285 319 245

FFDYNAGE 177 183 173 756 1058 611 29052 29157 28949
conveyor 112 115 108 664 1011 536

elevator 65 69 63 297 358 275
System Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 systems, 5 elevators each, 8 levels.
Request Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . tε: 25, and nmax: 3.
Statistics Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . simulated time: 8h, sample size: 20.

Table 6.8: Simulation study with high random load.

average flow maximal flow completion
Algorithm mean high low mean high low mean high low

FIRSTFIT 385 417 361 2895 4628 2034 29401 29525 29120
conveyor 123 137 117 1201 2280 779

elevator 261 280 243 2777 4343 1963

FIFO 4968 5775 3913 30098 33768 25034 38595 39988 36302
conveyor 3926 4698 2888 29602 33713 24788

elevator 1041 1076 1002 1558 1634 1469

REPLAN 418 475 390 2876 3820 2049 29397 29549 29174
conveyor 128 145 121 1061 1683 713

elevator 289 330 268 2680 3749 1970

IGNORE 479 544 436 1901 2586 1297 29460 29709 29198
conveyor 144 169 132 1458 2111 797

elevator 334 375 303 1192 1357 999

IGGREEDY 458 517 421 1726 2558 1295 29468 29687 29196
conveyor 138 158 128 1294 2287 779

elevator 319 359 293 1197 1398 1089

FFMAXAGE 1239 1720 849 11113 19491 4016 30979 31921 30027
conveyor 597 1006 301 10644 18906 3757

elevator 641 717 548 1277 1411 1141

FFDYNAGE 512 738 440 2825 6370 1687 29543 29937 29130
conveyor 161 279 135 2254 5733 1025

elevator 350 459 305 1095 1223 993
System Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 systems, 5 elevators each, 20 levels.
Request Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . tε: 35, and nmax: 3.
Statistics Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . simulated time: 8h, sample size: 20.

Table 6.9: Simulation study with 20 floors under high random load.



96

seems that the conveyor belts in fact harm the performance of the overall sys-
tem. Since pallets move constantly on the belt, advance planning becomes
impossible, or at least very difficult. A pallet can only enter a waiting slot,
when it is empty at the exact point in time when the pallet passes by. Once a
pallet passes the last elevator, it has to move back to the first elevator until it
gets the chance to find an empty waiting slot. This takes a comparatively very
long time.

A further problem of the circular conveyor belts is that they can get blocked,
as explained in Chapter 1: A pallet can only move forward when the next
segment of the conveyor is empty. When there is a pallet standing on each
segment, then one of the pallets has to be removed (by five workers!) before
anything can move again. Herlitz currently uses a “defensive” strategy for
running the elevator system: Only a limited number of pallets is allowed into
the system, which therefore works always under low load. In fact, in our sim-
ulation studies under medium and high load, the conveyor belts did get regu-
larly blocked (for high load, approximately every 200 hours). The results in the
tables of this chapter were all generated by simulation runs which terminated
without blocking of the conveyor belts.

It seems to us, that longer waiting queues in front of the elevators would
lead to a much better performance of the system. However, then one would
also have to employ more sophisticated algorithms for assigning pallets to el-
evators (when simply using the first-fit strategy, as for single capacity wait-
ing slots, simulation studies show that the system performance deteriorates—
which is hardly surprising). Studying how the system behaves when certain
features of the (logical) layout are changed should be an interesting topic for
future investigations.



Conclusions and Outlook

In this thesis we studied an elevator system in an industrial facility, which
needs to be controlled online and in real-time: The elevators have to move pal-
lets between floors without knowledge about the transportation requests that
appear in the future. Schedules need to be computed in seconds, so that the
running time of the algorithm does not impede the material flow. Good algo-
rithms should perform well with respect to two (conflicting) objectives: They
should achieve low average flow times and should also achieve low maximal
flow times of pallets.

We began by studying the offline case, where all requests are known and
available in advance. We concentrated on the problem DARP, where the ob-
jective is to minimize the completion time when running a closed schedule.
When considering open schedules, where the server does not have to return
to the origin, this corresponds to an instance of ONLINE-DARP with the objec-
tive of minimizing the maximal completion time where all requests are known
and available from the beginning. We proved a new complexity result, show-
ing that DARP on caterpillar graphs is NP-hard. We also described existing
combinatorial algorithms for this problem. We then looked at new exten-
sions of DARP. For the case of FIFO-DARP, where there are FIFO precedence
constraints on requests emanating from the same source, we developed new
approximation algorithms. Further, we could show that the problem PREC-
DARP, which includes penalties for starting and stopping, can be transformed
into DARP on a slightly larger graph. We finally considered how closed sched-
ule algorithms for DARP and FIFO-DARP can be used to derive open schedule
solutions.

We believe the following topics in this context should prove interesting for
future research:

• Find lower bounds for polynomial time approximation algorithms for
DARP and FIFO-DARP on trees and general graphs.

• Develop better approximation algorithms for open schedule DARP and
FIFO-DARP.

• Consider other objective functions than completion time—namely, the
weighted sum of the completion times of jobs. This covers the offline
problem resulting from an instance of ONLINE-DARP with the objective
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of minimizing average flow times, where all requests are available and
known in advance.

• There are many polyhedral results for the Asymmetrical Hamiltonian
Path (and Asymmetrical Traveling Salesman) problems, which are simi-
lar to DARP with open (and closed) schedules (see, e.g., [Asc95]). Study
FIFO-DARP and DARP from a polyhedral perspective.

We then studied the online case of DARP and FIFO-DARP, looking at both
closed and open schedules. Our main interest lies in the algorithms REPLAN
and IGNORE, which are both competitive. These algorithms need to solve
offline instances, for which the offline algorithms developed in the first part
of this thesis can be employed. We also showed that there are no competitive
algorithms for the objectives of minimizing average or maximal flow times.

To get theoretical results for distinguishing REPLAN and IGNORE in a
practically relevant manner, we conceived a new framework for studying on-
line algorithms in continuously operating systems. The idea is, to exclude
request sequences which cannot be served by any algorithm without an ever
increasing number of requests left waiting. In this framework, we showed that
the maximal and average flow times of requests are bounded when using IG-
NORE and that they are not bounded when using REPLAN. The new concept,
which we call “reasonable load”, can be employed to study online algorithms
with time-stamped requests.

The following interesting theoretical questions remain open:

• Close the gap between the lower bounds and the best competitive ratios
proved for ONLINE-DARP and ONLINE-FIFO-DARP.

• Study the case, when the elevator has a greater capacity than one, and
also the case, when there is more than one elevator serving the same
requests.

• Further refine the concept of “reasonable load” and apply it to other
problems and algorithms.

Finally, we tested various online algorithms in simulations of single ele-
vators and also of the integrated elevator system that motivates this thesis.
The results clearly suggest that there is a trade-off between minimizing aver-
age and maximal flow times. The results for REPLAN and IGNORE seem to
confirm the theoretical results for these algorithms under reasonable load: IG-
NORE shows a more balanced behavior with much better maximal flow times.
However, REPLAN achieves better average flow times. The most appropri-
ate algorithm for controlling elevators under varying load while balancing the
two objectives of minimizing average and maximal flow times, seems to be
IGGREEDY, which is an extension of IGNORE with a 1-OPT like heuristic.
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The simulation studies of the integrated elevator system suggest, that the
layout of this system is inappropriate. The circular conveyor belt connected
to unit capacity waiting slots seems to seriously harm efficient processing of
requests.

For future research, we suggest studying different layouts, e.g., with longer
waiting queues in front of the elevators, more then one elevator serving a wait-
ing queue and also higher capacitated elevators. This might lead to general
design principles for transportation systems.
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Appendix A

Basic Notation

A.1 Graphs

In this section we introduce the graph theoretical notation used in this the-
sis. In particular, we explain the definitions and assumptions concerning the
multigraphs studied in Chapter 2, which are not entirely canonical. For a more
detailed treatment of graph theory, we refer to, e.g., Bondy and Murty [BM76].

A multiset A is a finite sequence of elements A = (a1, a2, a3, . . . , ak) that
may contain repeated elements. The order of the elements is irrelevant, but
their multiplicities are part of the structure. The size of a multiset is the number
of elements, counting multiplicities. A submultiset A ′ ⊆ A is a multiset where
each element has a lower or equal multiplicity than in A.

A graph G = (V, E) consists of a set V of vertices and a set E of edges. A
graph is simple, if there is at most one edge between a pair of vertices and if
there is no edge connecting a vertex with itself.

A digraph G = (V,A) consists of a set V of vertices and a set A of arcs.
A digraph is simple, if there is at most one arc from u to v for every pair of
vertices and if there is no arcs connecting a vertex with itself.

A multigraph G = (V, E) consists of a set V of vertices together with a
multiset of arcs. Similarly a multidigraphG = (V,A) consists of a set of vertices
together with a multiset of arcs.

A mixed graph G = (V, E,A) consists of a set V of vertices, a set (or multi-
set) E of undirected edges, and a set (or multiset) A of directed arcs. An edge
with endpoints u and vwill be denoted by [u, v], an arc from u to v by (u, v). In
Chapter 2 we will study graph augmentation problems in mixed graphs with
a set of edges and a multiset of arcs.

For (di)graphs and multi(di)graphs, we denote by n := |V |, mE := |E| and
mA := |A| the number of vertices, edges and arcs, respectively. For a vertex v ∈
V we let Av be the set of arcs in A emanating from v.
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If X ⊆ E ∪ A, then we denote by G[X] the subgraph of G induced by X, that
is, the subgraph of G consisting of the arcs and edges in X together with their
endpoints.

The out-degree of a vertex v in G, denoted by d+
G(v), equals the number of

arcs inG leaving v. Similarly, the in-degree d−
G(v) is defined to be the number of

arcs entering v. If X ⊆ A we briefly write d+
X(v) and d−

X(v) instead of d+
G[X](v)

and d−
G[X](v). A graph G is called degree balanced if d+

G(v) = d−
G(v) for all ver-

tices v ∈ V .

A directed spanning tree rooted towards o ∈ V is a subgraph D = (V, Y) of
a directed (multi)graph H = (V, R) which is a tree and which for each v ∈ V
contains a directed path from v to o.

A caterpillar graph is a special case of a tree, consisting of a path, called the
backbone of the caterpillar, and additional vertices of degree one, called the leafs
of the caterpillar. The edges between vertices on the path and leafs are called
hairs. Notice that caterpillars have maximum degree three.

A walk in a (multi)graph (v0, e1, v2, e2, . . . , ek, vk) is a sequence of edges
and vertices such that each edge ei, 1 ≤ i ≤ k is incident to both vertices vi−1
and vi. For a closed walk in a (multi)graph, we additionally require the first and
the last vertex to be identical.

A walk in a (multi)digraph is a sequence of arcs a1, . . . , ak, such that for
any two arcs ai = (ui, vi) and ai+1 = (ui+1, vi+1) with 0 ≤ i ≤ k − 1 we have
that vi = ui+1. For a closed walk in a (multi)digraph, we additionally require
the last target vertex of the last arc to be identical to the source vertex of the
first arc.

A cycle is a closed walk containing no two edges (or arcs) twice. A tour is a
cycle containing for each vertex an edge (or arc) incident to that vertex.

A.2 Approximation algorithms

Since most of the problems studied in this thesis are NP-hard, we are interested
in approximation algorithms for them.

Let Π be a minimization problem. A polynomial-time algorithm A is said
to be a ρ-approximation algorithm for Π, if for every problem instance I of Π
with optimal solution value OPT(I) the solution of value A(I) returned by the
algorithm satisfies A(I) ≤ ρ ·OPT(I).

Notice that other authors often define a σ-approximate algorithm indepen-
dent of whether the problem Π is a minimization or a maximization problem:
A polynomial-time algorithm for an optimization problem Π is then said to
be a σ-approximate algorithm, if for every problem instance I of Π with opti-
mal solution value OPT(I) the solution of value A(I) returned by the algorithm
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satisfies |A(I)−OPT(I)|
OPT(I) ≤ ρ. For a minimization problem, a σ-approximation al-

gorithm according to the last definition is then a ρ-approximation algorithm
with ρ = 1 + σ according to the definition of approximation algorithms used
in this thesis.
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Appendix B

Feuerstein and Stougie’s
Classification of DARP

B.1 Classifying DARP

An instance of the Dial-a-ride problem DARP consists of a set of servers which
have to transport objects between sources and destinations in some metric
space or graph. As in scheduling, there are many variants of this problem.
They differ, for example, in the number of servers, the capacity of the servers,
or the nature of the space in which the servers move. Recently, a classification
of DARP has been proposed by Feuerstein and Stougie. It was first described
by de Paepe [dP98] and is based on the classification of scheduling problems
by Lawler et.al. [LLKS93].

Using this notation, a variant of DARP is given as a tuple of four fields with
a total of eight entries:

β1, β2|β3, β4, β5, β6|β7|β8

• The first field describes the servers. The entry β1 indicates the type and
number of servers, β2 specifies the capacity of the servers.

• The second field contains information about the transportation requests.
Constraints on their sources and destinations are given in β3. The entry
β4 indicates whether preemption is allowed. Possible release times and
deadlines for serving the requests are specified in β5. Finally β6 indicates
whether there are precedence constraints on the requests.

• The third field, consisting of β7, specifies the metric space or graph in
which the servers move.

• Finally β8 contains the objective function of the problem.
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B.2 The servers

The servers are described by the two entries β1 and β2. The entry β1 specifies
the type of the servers. As for scheduling, the notation allows three different
values for this entry:

P identical unit speed servers working in parallel;
Q uniform parallel servers, each traveling at its own fixed speed;
R unrelated parallel servers;

each server travels at a speed that depends on the rides it is serving.

If the number of servers k is given, we write Pk, Qk or Rk respectively. If
there is only one server, the entry receives 1 as its value .

The second entry β2 specifies the capacity of the servers. The capacity of a
server is given by the number of requests it can serve simultaneously. If this
entry is left blank, each server has its own specific capacity. Otherwise the
following constraints on the capacities may be given:

capc all servers have identical capacity c;
cap1 all servers have unit capacity;
cap∞ all servers have infinite capacity,

each server can handle all requests simultaneously.

The notation as described by de Paepe does not allow to convey informa-
tion about the origins of the servers. The servers can either start at one com-
mon origin or from distinct origins. The origins can either be given as part
of the problem instance or they can be chosen arbitrarily by the algorithm. In
the context of this thesis we will assume that servers may start from distinct
vertices, which are given as part of the problem instance.

B.3 The requests

The four entries β3 . . . β6 contain information concerning the transportation
requests. Each request j has a source sj and a destination tj. Constraints on the
sources and destinations are contained in β3:

S all requests have a common source
T all requests have a common destination
s = t source and destination are identical for each request

By default, sources and destination are not constrained.

The entry β4 specifies whether preemption is allowed when serving re-
quests. By default, preemption is not allowed. That means that a transporta-
tion request has to be served without interruption (once a server has started
serving a request, this request will decrease the free capacity of the server un-
til the server reaches the destination of the request). When preemption is al-
lowed, β4 contains the value pmtn. In this case a server can transport a request
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from its source to any other point. There the request may be picked up later,
possibly by a different server, which in turn delivers it to some other place
until it finally reaches its destination.

By default, requests have neither release times nor deadlines. The release
time rj of a request j is the time when it can first be served. A deadline dj of a
request j is the latest time when it may be delivered to its destination. If release
times or deadlines are given, β5 contains the value rj or dj respectively.

Finally the entry β6 specifies whether there are precedence constraints on
serving the requests. By default there are no precedence constraints. To indi-
cate that there are (general) precedence constraints present, β6 receives value
prec.

B.4 The space

The entry β7 indicates on what sort of metric space or graph the DARP is de-
fined. De Paepe allows the following entries:

G undirected (finite) graph with positive edge weights
line (finite) path with positive edge weights
tree (finite) tree with positive edge weights
R
n the Rn with Euclidean metric

B.5 The objective function

To define objective functions, we first have to take a a closer look at the con-
stituents of the time that a request spends in the transportation system: The
completion time Cj of a request j is the point in time when the request has been
processed, i.e., when it arrives at its destination. The flow time Fj of a job is the
time that a request spends in the transportation system. This is equal to the
difference between the job’s completion time and its release time Fj = Cj − Rj.
If we are dealing with a DARP without release times, flow times and comple-
tion times are equal. The flow time consists of two components, one being the
service time which is the time that the server dealing with the request takes for
serving it. The remainder is the waiting time Wj of a request. Notice that the
service time of a request can be different from the minimal service time, when
there are multiple servers with different speeds. The minimal service time is
the time for serving the request using the fastest server.

De Paepe suggested three possible objective functions:

Cmax the maximum of the completion times, also called makespan∑
Cj the sum of the completion times, also called latency,

a measure for the average completion time∑
wjCj the sum of the completion times,

weighted according to their priority
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Further objective functions result from using flow times or waiting times
instead of completion times.

The classification as described by de Paepe does not specify whether servers
have to return to their origin. If it is required that the servers return to their
origin after serving all requests, the problem is called a closed schedule problem
according to [AKR98b]. Otherwise we deal with an open schedule problem.

For all of the above objective functions, the closed schedule and open sched-
ule optimum will have the same value. However there are objective functions
where this is not the case. An example for an objective function which leads to
different solutions in the closed and open schedule case is to minimize the total
cost of server movements. We will use this as an objective for closed schedule
problems and denote it by

∑
m.

B.6 Examples

All variants of DARP studied in this thesis lie in the subclass described by
P, capc|rj|G|. P specifies that the problem has some identical unit speed servers.
The next entry capc means that each of these servers has capacity c. The token
rj means that the requests have release times. The entry G tells us, that the
metric space is a general (edge weighted) graph.

The traveling salesman problem of finding a shortest tour through a graph G
traversing all vertices can also be expressed as a DARP, given by 1|cap1|s =

t|G|
∑
m: One unit capacity server has to serve requests where the destination

of each request is equal to its source (additionally we require that the requests
occur on all vertices). The server moves on an edge weighted graph. The
objective is to minimize the cost of the server moves.

The traveling salesman problem is a good example that there may be mul-
tiple representations for the same problem. The following also represents the
same TSP: 1, cap∞|S|G|

∑
m. Here a server with infinite capacity has to serve

requests which have a common source.



Appendix C

Online Algorithms and
Competitive Analysis

In this appendix we introduce the notion of online algorithms, which are algo-
rithms that operate under uncertainty about the future. We will then discuss
how the performance of such algorithms can be determined using competitive
analysis. For a survey of the current state of research on online algorithms
we refer to the recent book edited by Fiat and Woeginger [FW98]. Another
book on the subject has been published by Borodin and El-Yaniv [BEY98]. A
number of articles have been published that introduce online algorithms and
competitive analysis, for example [Alb96], [Alb97], [IK97].

C.1 Online algorithms

An online algorithm in the strict sense can be characterized as an algorithm
responding to events over time without prior knowledge of these events.

Online problems in this strict sense exhibit therefore the following proper-
ties:

1. One or more servers,

2. Operating in a known environment,

3. Dealing with a sequence of requests arriving over time.

Many strict online problems can be reduced to the following model: Re-
quests arrive as a sequence σ = σ1, . . . , σn. Once a request has been dealt
with, the next request becomes known to the algorithm. This model has the
advantage of encapsulating the notion of time within the event sequence, time
does not appear explicitly in the analysis.
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The online algorithms studied in Chapters 4 and 5 of this thesis are also
online algorithms in the strict sense. However, we deal with time-stamped
requests, that become known at their release time and can be served at any
later time and in an order not necerssarily dependent on their release times. In
this case, therefore, time has to be considered explicitly.

In a wider sense, an online algorithm is an algorithm that is suitable for com-
petitive analysis. This applies to algorithms which operate with input data
that becomes known incrementally as the algorithm proceeds. The difference
to a strict online algorithm is, that the information revealed to the algorithm
depends not only on time but also on the actions of the algorithm.

Fiat and Woeginger [FW98] describe problems for which such algorithms
are appropriate as systems that possess the following properties:

1. Some notion of time progression,

2. A memory state,

3. An environment,

4. Respond in some way to changes in the environment.

Examples for online problems in the wider sense are navigation or explo-
ration problems, where information is gained through actions of the algorithm
rather than the passage of time. Distributed algorithms also fall in this cate-
gory since each component has only partial knowledge of the complete system
with this knowledge depending on its actions.

Some authors speak of online optimization if the aim of the algorithm is to
maximize or minimize a given objective function. In case of maximization, we
speak of benefit problems, when the objective is to minimize a function we are
dealing with a cost problem.

C.2 Competitive analysis

Competitive analysis addresses the question of how to evaluate the perfor-
mance of online algorithms. Sleator and Tarjan suggested to compare the per-
formance of the online algorithm with the performance of its offline counter-
part, i.e., the optimal solution given complete knowledge of the problem in-
stance.

An online algorithm is called k-competitive, if for all problem instances
the solution is only off by factor k. More formally, given a cost problem P with
problem instances I ∈ P, an algorithm A is k-competitive, if and only if

COPT(I) ≤ k · CA(I) + c ∀ I ∈ P (C.1)
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where COPT denotes the cost of an optimal (offline) solution to the problem
instance I, CA is the cost of the solution delivered by A and c is a constant that
does not depend on the problem instance I. Similarly competitiveness can be
defined for benefit problems.

If the constant c equals to zero in the above definition, the algorithm is said
to be strictly k-competitive

The competitive ratio of the algorithm is defined as

inf{k : A is k-competitive } (C.2)

Competitive analysis also illustrates the connections between online algo-
rithms and approximation algorithms: By definition, any c-competitive algo-
rithm is also c-approximate, using the definition of approximate algorithms
from Appendix A.2.

Competitive analysis can be interpreted as a game between two players,
where one player, the adversary, invents a sequence of requests, which the
other player has to serve. The two players have opposite objectives in the
sense that the adversary tries to make it as difficult as possible for the serving
player. In deterministic competitive analysis, the adversary is often called of-
fline adversary, since he posses complete knowledge about the (deterministic)
reactions of the online algorithms.

C.3 Beyond competitive analysis

Competitive Analysis is however not the answer to all ills. Since it is a worst
case measure, competitiveness is overly pessimistic—competitive algorithms
regularly perform much better in practice than their competitive ratio would
suggest.

Many authors have questioned the relevance of competitive ratios, both as
an absolute measure for the effectiveness of an algorithm and for comparing
different algorithms. Authors who stress the importance of timeliness in con-
nection with online algorithms also criticize that competitive analysis takes no
account of the time complexity of the algorithms [WZ98].

One possible way to improve the bounds of the online algorithm is to ran-
domize it, so that the adversary has restricted information on the algorithm’s
behavior. Competitive analysis of randomized online algorithm has first been
studied by Ben-David et.al.[BDBK+94].

A number of different approaches have also been suggested to refine com-
petitive analysis both for deterministic and randomized algorithms with the
aim of yielding more meaningful results, for example:

• Restricted classes of input: The possible input is restricted by some con-
straints [BIRS95]
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• Statistical adversary: The input has to fulfill certain statistical properties
[Rag91]

• Diffuse adversary: The input has to be generated AC-coding to a prob-
ability distribution D belonging to a class of “allowed” distributions ∆
[KP94]

In this thesis we introduce a new concept for studying online algorithms
with time-stamped requests, which falls into the category of “restricted classes
of input”. For details on this concept of reasonable request sequences see
Chapter 5.
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Zusammenfassung

In dieser Diplomarbeit untersuchen wir Online-Algorithmen zur Steuerung
industrieller Transportsysteme. Als Praxisbeispiel dient ein integriertes Las-
taufzugssystem der Herlitzwerke in Falkensee bei Berlin. Das System wird in
Kapitel 1 beschrieben.

Wir formulieren das Problem mathematisch als Online Dial-a-ride-Problem
(ONLINE-DARP): Ein Server muß Transportaufträge zwischen jeweils zwei
Punkten in einem metrischen Raum bedienen. Die Aufträge werden im Laufe
der Zeit bekannt und verfügbar. Der Server kann zu jedem Zeitpunkt nur
einen Auftrag transportieren. Wenn der Server angefangen hat, einen Auf-
trag zu bedienen, dann muß er ihn zu seinem Zielort befördern, ohne den
Auftrag zwischendurch abzusetzen. Außerdem formulieren wir eine neue
Erweiterung von ONLINE-DARP, bei der Reihenfolgebedingungen zwischen
Aufträgen mit dem selben Startpunkt bestehen können. Dieses Problem nen-
nen wir ONLINE-FIFO-DARP. Dies erlaub beispielsweise die Modellierung
von Aufzügen, bei denen Paletten über Förderbänder angeliefert werden.

Einige unserer Online-Algorithmen müssen regelmäßig Offline-Instanzen
der Probleme ONLINE-DARP und ONLINE-FIFO-DARP lösen. Hier sind von
Anfang an alle Aufträge bekannt und verfügbar. In Kapitel 2 zeigen wir ein
neues Komplexitätsresultat für DARP (die offline Version von ONLINE-DARP):
DARP auf Tausendfüßlergraphen ist NP-schwer. Außerdem beschreiben wir
verschiedene Approximationsalgorithmen für DARP aus der Literatur. In Kapi-
tel 3 beschäftigen wir uns mit dem neuen Problem FIFO-DARP (der Offline-
Version von ONLINE-FIFO-DARP). Wir beschreiben ein Strukturresultat für
dieses Problem und geben einige Approximationsalgorithmen an.

Für die Entwicklung und Analyse der Online-Algorithmen verwenden wir
das Konzept der kompetitiven Analyse, beschrieben in Anhang C. Wir geben
untere Schranken für die Kompetitivität von Algorithmen aus der Literatur an.
Unsere Diskussion konzentriert sich auf die beiden Algorithmen IGNORE und
REPLAN, die generelle Ansätze für Online-Algorithmen darstellen. REPLAN
berechnet jedesmal wenn ein neuer Auftrag eintrifft ein optimales Schedule
für alle bekannten, aber noch nicht abgearbeiteten Aufträge und fängt an,
dieses auszuführen. IGNORE dagegen führt ein berechnetes Schedule immer
bis zum Ende aus und ,,ignoriert“ vorläufig alle Aufträge die in der Zwis-
chenzeit entreffen. Wenn IGNORE ein Schedule abgearbeitet hat, berechnet
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der Algorithmus ein optimales Schedule für alle ,,ignorierten“ Aufträge und
führt dann dieses aus.

Sowohl IGNORE als auch REPLAN sind kompetitiv. Die Resultate der
Kompetitivitätsanalyse liefern keine praxisrelevanten Unterscheidungskrite-
rien für IGNORE und REPLAN. Außerdem gelten alle Aussagen nur für die
Zielfunktion der minimalen Gesamtfertigstellungszeit, eigentlich interessieren
uns aber die durschnittlichen und die maximalen Flußzeiten von Aufträgen.
Für diese Zielfunktionen kann es keine kompetitiven Algorithmen geben, wie
wir zeigen.

Dies führt zu der Entwicklung eines neuen Ansatzes zur Untersuchung
von Online-Algorithmen in kontinuierlich arbeitenden Systemen. Auftragsse-
quenzen werden beschränkt auf solche, die zu einer ,,vertretbaren Belastung“1

führen. Damit ist – grob gespochen – gemeint, daß alle Aufträge die in einem
ausreichend großen Zeitintervall eintreffen, von einem optimal arbeitenden
Offline-Server in einem ebenso großen Zeitintervall bedient werden können.
Unter vertretbarer Belastung läßt sich beweisen, daß für IGNORE sowohl die
maximale als auch die durschnittliche Flußzeit beschränkt sind und daß dieses
für REPLAN nicht gilt.

Schließlich testen wir verschiedene Algorithmen in Simulationen von ein-
fachen Aufzügen mit FIFO-Warteschlangen und auch in Simulationen des in-
tegrierten Aufzugsystems bei Herlitz. Es zeigt sich, daß offenbar ein Zielkon-
flikt besteht zwischen der Minimierung der maximalen und der durchschnit-
tlichen Flußzeiten. Außerdem werden die theoretischen Ergebnisse bzgl. IG-
NORE und REPLAN bestätigt – IGNORE erzielt bedeutend bessere maximale
Flußzeiten als REPLAN und zeigt insgesamt ein ausgewogeneres Verhalten.
Jedoch erreicht REPLAN meistens bessere durschnittliche Flußzeiten. Der er-
folgreichste Algorithmus ist anscheinend IGGREEDY, eine Erweiterung von
IGNORE, bei der neue Aufträge nicht ignoriert, sondern in den aktuellen Plan
eingefügt werden, falls sie eine Leerfahrtstrecke ersetzen.

1Deutsche Übersetzung von reasonable load, vorgeschlagen von Rainer E. Burkard.


