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Abstract

The topic of this diploma thesis is the solving of a Frequency Assignment Prob-
lem (FAP) in GSM radio networks by means of Constraint Programming. The
task of frequency planning is the assignment of frequencies to base stations
w.r.t. various constraints such that interference, which may have a substantial
impact on the quality of the received signals, is avoided as far as possible.

Constraint Programming is employed since currently applied heuristics aimed
at interference minimization often fail for problems where it is problematic to
obtain any feasible assignment. First, the focus is on feasibility problems only.
Having determined valid solutions, it is also tried to explicitly minimize total
interference.

After the introduction of the underlying mathematical model, it is shown that
the discussed version of FAP is strongly NP-hard. An overview on the theory
of Constraint Programming and a proof that Constraint Satisfaction Problems
are strongly NP-complete are provided as well.

ILOG OPL Studio is employed for solving FAP, where the “Optimization Pro-
gramming Language” (OPL) allows to state mathematical models using an own
modeling language. It is investigated to what extent the additional elements of
this language compared to Mixed Integer Programming really enable to express
more conditions in OPL models than in Mixed Integer Programs.

In this work, various OPL models for FAP feasibility problems are presented.
Different modeling alternatives are analyzed and compared with each other. By
means of OPL feasibility models, it is possible to obtain valid assignments for
large instances as well as for instances which are difficult to solve. As the quality
of the determined solutions is often not satisfactory, approaches on explicitly
minimizing total interference are introduced. A minimization framework by
means of OPL is developed, a construction heuristic is applied, and OPL feasi-
bility models are combined with an improvement heuristics. Furthermore, the
results for all these minimization techniques are compared with each other.



4



Contents

1 Introduction 13

2 The Frequency Assignment Problem (FAP) 17
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Our Model of FAP . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Complexity of FAP . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Constraint Programming: Algorithms and Techniques 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Systematic Search . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Node Consistency . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Arc Consistency . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.3 k-Consistency and Path Consistency . . . . . . . . . . . 29

3.4 Trimming the Search Tree: Constraint Propagation . . . . . . . . 32
3.4.1 Underlying Ideas of the Algorithms . . . . . . . . . . . . . 32

3.5 Constructing the Search Tree . . . . . . . . . . . . . . . . . . . . 34

4 The Optimization Programming Language (OPL) 37
4.1 A brief Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Modeling Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 MIPs versus OPL Models . . . . . . . . . . . . . . . . . . . . . . 40

4.3.1 Translating OPL models into MIPs . . . . . . . . . . . . . 41
4.3.2 Translating MIPs into OPL models . . . . . . . . . . . . . 49

5 OPL Models for FAP 51
5.1 Introducing TRX-based and cell-based Models . . . . . . . . . . 51

5.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1.2 Differences between cell-based and TRX-based Models . 52
5.1.3 The Role of the Preprocessing . . . . . . . . . . . . . . . . 52

5.2 TRX-based Feasibility Model . . . . . . . . . . . . . . . . . . . . 54
5.2.1 Model Data . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.4 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 56



6 CONTENTS

5.2.5 Search Heuristic . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.6 Optional Parts . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Cell-based Feasibility Model . . . . . . . . . . . . . . . . . . . . . 63
5.3.1 Model Data . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.4 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.5 Search Heuristic . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.6 Optional Parts . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Minimizing Total Interference . . . . . . . . . . . . . . . . . . . . 69
5.5 Non-linear TRX-based Feasibility Model . . . . . . . . . . . . . . 71

6 Computational Results 75
6.1 Test Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Overview on Cell-based and TRX-based Models . . . . . . . . . . 78
6.3 Comparing different Cell-based Models . . . . . . . . . . . . . . . 81

6.3.1 Redundant Constraints . . . . . . . . . . . . . . . . . . . 82
6.3.2 Formulating Cost Constraint . . . . . . . . . . . . . . . . 84
6.3.3 Using predicates . . . . . . . . . . . . . . . . . . . . . . 85
6.3.4 Alternative Search Heuristics . . . . . . . . . . . . . . . . 86

6.4 Minimizing Total Interference . . . . . . . . . . . . . . . . . . . . 87
6.4.1 Employing OPL . . . . . . . . . . . . . . . . . . . . . . . 87
6.4.2 Using a Construction Heuristic . . . . . . . . . . . . . . . 89
6.4.3 Combining OPL and an Improvement Heuristic . . . . . . 89

6.5 Summary of the Computational Results . . . . . . . . . . . . . . 90

7 Summary and Conclusions 93

A TRX-based Feasibility Model 95

B Cell-based Feasibility Model 97

Bibliography 101

Index 105

Summary in German/Deutsche Zusammenfassung 107



List of Algorithms

1 Revise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2 AC-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3 AC-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4 Initialization of AC-4 . . . . . . . . . . . . . . . . . . . . . . 29
5 AC-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



8 LIST OF ALGORITHMS



List of Figures

2.1 Sketch of a site within a GSM network . . . . . . . . . . . . . . . 18

3.1 A simple constraint graph . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Example: Search tree for backtracking . . . . . . . . . . . . . . . 25
3.3 Arc consistency is directed . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Number of possible solutions of an arc consistent constraint graph 27
3.5 A 3-consistent but not strongly 3-consistent constraint graph . . 30
3.6 Two orderings of a constraint graph . . . . . . . . . . . . . . . . 31
3.7 Running example for Constraint Propagation . . . . . . . . . . . 33
3.8 Variable ordering according to the first-fail principle . . . . . . . 35

4.1 OPL model for the weighted graph coloring problem . . . . . . . 38
4.2 Example graph for the weighted graph coloring problem . . . . . 38

5.1 TRX-based models: data definition . . . . . . . . . . . . . . . . . 55
5.2 TRX-based models: variable definition . . . . . . . . . . . . . . . 56
5.3 TRX-based models: stating the objective . . . . . . . . . . . . . 56
5.4 TRX-based models: stating the constraints . . . . . . . . . . . . 56
5.5 TRX-based models: alternative formulation of constraints . . . . 57
5.6 TRX-based models: search heuristic Smallest Domain Size . . . 58
5.7 TRX-based models: search heuristic T-Coloring . . . . . . . . . . 59
5.8 TRX-based models: search heuristic DSATUR with Costs . . . . 60
5.9 TRX-based models: optional data definition . . . . . . . . . . . . 61
5.10 TRX-based models: optional variable definition . . . . . . . . . . 61
5.11 TRX-based models: stating optional constraints . . . . . . . . . . 62
5.12 Cell-based models: data definition (1/2) . . . . . . . . . . . . . . 64
5.13 Cell-based models: data definition (2/2) . . . . . . . . . . . . . . 65
5.14 Cell-based models: variable definition . . . . . . . . . . . . . . . 65
5.15 Cell-based models: stating the constraints . . . . . . . . . . . . . 66
5.16 Cell-based models: search heuristic Smallest Domain Size . . . . 67
5.17 Cell-based models: stating optional constraints . . . . . . . . . . 69
5.18 Minimizing total interference: tightening the separation . . . . . 70
5.19 Non-linear model: variable definition . . . . . . . . . . . . . . . . 72
5.20 Non-linear model: stating the constraints . . . . . . . . . . . . . 73
5.21 Non-linear model: search heuristic Smallest Domain Size . . . . 73



10 LIST OF FIGURES



List of Tables

3.1 Overview on constraint propagation algorithms . . . . . . . . . . 32

4.1 Logical conditions on constraints . . . . . . . . . . . . . . . . . . 44
4.2 Transformation of OPL models into MIPs . . . . . . . . . . . . . 50

5.1 Separation values for a hand-over of active calls . . . . . . . . . . 67

6.1 Overview on scenario characteristics . . . . . . . . . . . . . . . . 77
6.2 Maximum clique sizes within carrier and cell networks . . . . . . 78
6.3 Computational results: overview on feasibility models . . . . . . 80
6.4 Computational results: comparing cell-based models (1/4) . . . . 83
6.5 Computational results: comparing cell-based models (2/4) . . . . 84
6.6 Computational results: comparing cell-based models (3/4) . . . . 85
6.7 Computational results: comparing cell-based models (4/4) . . . . 86
6.8 Computational results: minimizing total interference with OPL . 87
6.9 Computational results: minimizing with C++ programs . . . . . 89



12 LIST OF TABLES



Chapter 1

Introduction

The most common technology for mobile telecommunication is nowadays the
General System for Mobile Communications GSM. Currently, more than half
a billion customers in more than 150 countries worldwide are using the GSM
standard.

A high connection quality is a major competitive edge for telecommunication
providers. One of the most important problems for radio network operators is
the limited availability of frequencies. A high level of interference, particularly
due to an unavoidable reuse of frequencies, can have a substantial impact on
the quality of the received signals; sometimes a proper reception may even be
impossible. Frequency planning deals with assigning frequencies to base stations
such that interference is avoided as far as possible. In this thesis, we deal with
frequency planning problems especially arising in GSM networks.

A communication link between a mobile and other parties reachable through
a public telecommunication network is established by means of a radio link to
some stationary antenna which is part of a large infrastructure. Each radio
network provider acquires a certain frequency spectrum from a national regu-
lation authority. This spectrum is slotted equidistantly into so-called channels
which are the available channels of the company. For each stationary antenna,
a certain number of transmitter/receiver units (TRXs) is installed, where one
channels has to be assigned to each of these TRXs. Since the number of em-
ployed TRXs is typically much larger than the number of available channels,
the reuse of frequencies cannot be avoided. It is not uncommon that the same
channel is operated by several hundred TRXs in the network.

The reuse of frequencies is limited by interference and separation requirements.
Significant interference may occur if the same channel (co-channel) or if directly
neighboring channels (adjacent channels) are assigned to different TRXs. The
level of interference depends on a lot of factors as different as the distance bet-
ween both transmitters, the power of the signals, geographical and vegetational
aspects, and weather, to name only a few. Separation requirements are defined
for pairs of transmitters and enforce a minimum separation in the electromag-
netic spectrum between the channels assigned to both TRXs. Furthermore, not
each channel of the spectrum may be available for every TRX.
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The problem of assigning channels to TRXs while taking additional require-
ments into account is called the Frequency Assignment Problem (FAP). Our
optimization goal is to minimize the sum of all co- and adjacent channel inter-
ferences, but other objectives are possible.

In the early nineties, frequency planning in GSM networks was often performed
manually due to a lack of adequate, commercially available software tools. Be-
cause of the enduring growth of network installations in the middle of the
nineties, this practice soon reached its limits. New software for automatic
frequency planning has been developed, and since the end of the nineties, sig-
nificantly improved planning tools are successfully employed. However, further
capacity extensions and particularly the introduction of new technologies like
GPRS or HSCSD make frequency planning be more and more important again.
Thereby, even determining any feasible solution of the Frequency Assignment
Problem becomes problematic.

Currently employed heuristics like improvement methods often fail to solve
problems when it is difficult to calculate any valid solution since these heuris-
tics rely on the ability of easily obtaining feasible assignments. Constraint
Programming is said to be well suited especially for solving problems where
feasibility is a limiting factor.

Among others, Constraint Programming has been applied to assignment prob-
lems, i.e., problems where one kind of resources has to be assigned to an-
other kind of resources while respecting additional constraints. For instance,
Rossi [25] reports that the Hong Kong container harbor employed Constraint
Programming to allocate berths for container ships. A promising article by
Voudouris and Tsang [26] deals with solving the Radio Link Frequency Assign-
ment Problem, which is a problem related to our version of FAP, in military
telecommunication networks. They report on obtaining very good results con-
cerning both performance and quality of the determined solutions.

Hence, we decided to employ Constraint Programming for the described Fre-
quency Assignment Problem in GSM networks, while we are especially inter-
ested in obtaining solutions for problems where it is difficult to determine any
feasible solution. First, we consider feasibility problems only. Subsequently, we
also try to explicitly minimize total interference.

Many different constraint solvers are available, including ILOG Solver which is
an object-oriented C++ library offering Constraint Programming algorithms.
We use ILOG OPL Studio which is built on top of ILOG Solver (among oth-
ers). The “Optimization Programming Language” (OPL) allows to formulate
mathematical models by means of an own modeling language, while ILOG OPL
Studio provides possibilities to solve models stated in OPL.

We investigate whether the additional features of the modeling language of
OPL compared to Mixed Integer Programming, such as logical conditions or
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minimum and maximum functions, provide more possibilities to formulate con-
straints in OPL models than in Mixed Integer Programs (MIPs). It is shown
that under some restrictions, many of the additional elements of OPL can be
expressed in MIPs as well, at the expense of additional variables and constraints.

Several OPL models for FAP feasibility problems are introduced. They al-
low to solve many instances, but the quality of the obtained solutions is not
satisfactory. To overcome this, we develop a framework which uses OPL to
explicitly minimize total interference. However, the quality of the assignments
determined this way is often not much convincing. But a successful procedure
proved to be to obtain any solution by means of an OPL feasibility model and
to subsequently apply an improvement heuristic to the assignment.

The remaining of this document is organized as follows. Chapter 2 gives some
background information on GSM networks and introduces our mathematical
model for FAP. Furthermore, the complexity of FAP is studied and it is shown
that our version of FAP is strongly NP-hard. Chapter 3 deals with the theory
of Constraint Programming. In particular, we show that Constraint Satisfac-
tion Problems are strongly NP-complete. In Chapter 4, an introduction to
OPL and a comparison of the modeling capabilities of OPL models and MIPs
are given. Chapter 5 presents various OPL models for FAP. Besides feasibi-
lity models, our approaches on minimizing total interference are introduced.
Computational studies on feasibility as well as on minimization problems are
reported in Chapter 6, while conclusions of our investigations are drawn in
Chapter 7.
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Chapter 2

The Frequency Assignment
Problem (FAP)

In this chapter, we discuss the mathematical model of the Frequency As-
signment Problem. Section 2.1 provides background information, Section 2.2
presents the model for FAP, while the complexity of FAP is investigated in
Section 2.3.

2.1 Background

The topic of this section is the structure of GSM networks. Only the parts
relevant for frequency planning and for our model are explained. For further
information, in particular for information on the fixed part of the network,
see [23].

Signal, speech, and data traffic between mobiles and the system is received and
transmitted by means of Base Transceiver Stations (BTSs). One BTS typically
operates three antennas. Several transmitter/receiver units (TRXs) can be
installed for each antenna, see Figure 2.1. Each TRX offers capacity for about
six to eight parallel (full rate voice) connections. This is done by means of
time divisioning, where each subscriber gets only one out of the available eight
time slots. A site is where a Base Transceiver Station is installed, the area
that can be served by one antenna is called a cell. Some of the time slots of the
TRXs within each cell are needed to broadcast protocol information. One TRX
operates the broadcast control channel (BCCH). The TRX itself rather than its
assigned channel is also often called BCCH. Thus, in the rest of this thesis
we refer to the TRX instead to its assigned channel as BCCH. Additionally
installed TRXs within a cell are called traffic channels (TCHs).

The reuse of frequencies within the network is unavoidable since the number
of channels available for a network operator is significantly smaller than the
number of installed TRXs (each requiring one channel). When assigning chan-
nels to TRXs, interference and separation requirements have to be taken into
account. Two kinds of interference have to be considered between geograph-
ically close TRXs: Co-channel interference may occur if the same channel is
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Site

TRX

BTS

antenna

Figure 2.1: Sketch of a site within a GSM network

assigned to different TRXs, adjacent channel interference may occur if directly
neighboring channels are assigned. Separation requirements impose a minimum
separation between assigned channels in the spectrum. In particular, it is used
to protect TRXs from interference: Co-channel interference is ruled out with
a minimum separation of one, co- and adjacent channel interference are pre-
vented with a minimum separation of two. There are several types of separation
requirements: Co-site separation imposes restrictions on the TRXs within one
site, co-cell separation restricts the assignment of TRXs within one cell, and
hand-over separation is used to ease hand-overs of active calls between two cells.
Co-channel interference, adjacent channel interference, and minimum separa-
tion are given for each pair of TRXs and need not be symmetric. In addition, it
is possible that not each globally available channel is available within each cell.
Such locally blocked channels may, for example, appear along national borders
due to international agreements. Hence, for each cell a (possibly empty) list of
locally blocked channels is specified.

One channel has to be assigned to each TRX such that no channel is locally
blocked and all separation requirements are met. The optimization goal is to
find a frequency assignment with the minimal possible interference. Several
objectives stating what to minimize in detail are possible. Our objective is to
minimize the sum over all occurring interferences. Further ones are conceivable
since the sum over all interferences does not tell much about the interference
level between two cells. Even if the overall interference is small, there can be a
small number of cells suffering from a high level of interference.

Obtaining interference values between cells is complex [7, Section 2.3.2]. There
are several approaches how to predict co-channel interference as well as adjacent
channel interference. Consider on the one hand, two cells overlapping on a
small region with a high level of interference and on the other hand, two cells
overlapping on a large region with little interference. There is no general rule
how to express this by means of a single value. Furthermore, interference often
occurs between several cells rather than between pairs of cells only.
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2.2 Our Model of FAP

In the following we restate the GSM frequency assignment problem described
informally in the previous section, cf. [7, Section 3]:

Given are a list of TRXs, a range of channels, a list of locally
blocked channels for each TRX, as well as the minimum separation,
the co-channel interference, and the adjacent channel interference
matrices.

Assign to every TRX one channel from the spectrum which is not
locally blocked such that all separation requirements are met and
such that the sum over all interferences occurring between pairs of
TRXs is minimized.

For details on the transformation of the problem into a mathematical model,
see [7, Section 3.1]; a sketch is given in the following. Let G = (V, E) be an
undirected graph. The nodes of G represent the TRXs and are also called car-
riers, the edges of G represent relations between pairs of TRXs. The spectrum
C of available channels is a finite interval in Z+. For each carrier v ∈ V , a
set Bv ⊂ C of locally blocked channels is specified. The set C \ Bv is called
the set of available channels of v. Moreover, three functions cco : E → [0, 1],
cadj : E → [0, 1], and d : E → Z+ are given. They define the co-channel interfer-
ence, the adjacent channel interference, and the minimum required separation.

The 7-tuple N = (V, E, C, {Bv}v∈V , cco, cadj , d) is referred to as carrier net-
work. A frequency assignment is a function y : V → C that maps every carrier
to a channel. As mentioned above, an assignment is feasible if and only if:

y(v) ∈ C \Bv ∀ v ∈ V (2.1)
|y(v)− y(w)| ≥ d(v, w) ∀ (v, w) ∈ E (2.2)

Constraint (2.1) enforces that only available channels are assigned to carriers,
and requirement (2.2) imposes that channels assigned to neighboring carriers
meet the minimum required separation. The objective is to minimize the sum
over all co-channel and adjacent channel interferences:

min
y feasible

∑
(v,w)∈E:
y(v)=y(w)

cco(v, w) +
∑

(v,w)∈E:
|y(v)−y(w)|=1

cadj(v, w) (2.3)

2.3 Complexity of FAP

In this section, we focus on the computational complexity of FAP and show
that FAP is strongly NP-hard. Thus, unless P = NP, there is no polynomial
time algorithm that solves this problem.

Theorem 2.1: FAP is strongly NP-hard.
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Proof. After restating the definition of strong NP-hardness, we show that
FAP is NP-hard by means of a reduction from k-Colorability for undirected
graphs to FAP. Then, we explain why FAP is strongly NP-hard.

For a problem instance x let max(x) be the value of the largest number occur-
ring in x. In addition, for a given problem P and a polynomial p let Pmax,p

denote the problem obtained by restricting P to only those instances x for which
max(x) ≤ p(|x|), where |x| is the coding length of x. A problem P is said to
be strongly NP-hard if a polynomial p exists such that Pmax,p is NP-hard [1].

The problem k-Colorability for an undirected graph G = (V,E) is to decide
whether a function c : V → {1, . . . , k} exists such that c(u) 6= c(v) for each edge
e = (u, v) ∈ E. Testing whether some graph is k-colorable is NP-complete for
any fixed k ≥ 3, see for instance Garey and Johnson [11].

Given an arbitrary instance of k-Colorability, an instance of FAP can be con-
structed as follows. Without loss of generality it is assumed that k ≤ |V |
since at most one color per node is needed. The graph for FAP is the same as
for k-Colorability, the spectrum C is the set {1, . . . , k}. There are no locally
blocked channels, i.e., Bv = ∅ for all v ∈ V . For each edge e ∈ E, the value
for co-channel interference cco(e) is set to 1, adjacent channel interference, and
separation are set to zero.

An optimal solution y : V → C of FAP can be used to decide the problem
k-Colorability: If the optimal solution value is equal to zero, then the solution
of FAP is a solution for k-Colorability, too. The given graph is not k-colorable
if the optimal solution value is greater than zero. This transformation can be
done in polynomial time in the number of nodes and edges of G. Thus, FAP is
NP-hard.

FAP is strongly NP-hard since it is NP-hard even if k ≤ |V |, C = {1, . . . , k},
and if all edge weights are in {0, 1}. The largest occurring number in this
instance is k and is less than the coding length of the instance. Hence, the
polynomial p(n) = n satisfies the above condition, which proves that FAP is
strongly NP-hard.

2



Chapter 3

Constraint Programming:
Algorithms and Techniques

This chapter is about the theoretical aspects of Constraint Programming. Some
basic definitions are provided in Section 3.1 and it is shown that Constraint
Satisfaction Problems are strongly NP-complete. Thus, (unless P = NP) one
must resort to heuristics to solve these kind problems if one wants to obtain
polynomial running times. Two popular approaches exist for solving a CSP:
Systematic Search investigated in Section 3.2 and Consistency Techniques dis-
cussed in Section 3.3. Since both of them are often not well suited for solving
CSPs when applied on their own, there is Constraint Propagation studied in
Section 3.4, which is a combination of both of them. Finally, some hints for the
construction of the search tree are given in Section 3.5.

3.1 Introduction

Constraint Programming (CP) deals with computational systems based on con-
straints [3]. Like Mathematical Programming, Constraint Programming han-
dles solving problems whose variables are restricted.

Constraint Programming is also often called Constraint Logic Programming
(CLP).

A class of problems with many practical applications are the so-called Con-
straint Satisfaction Problems (CSPs).

Definition 3.1: (CSP)
A CSP is given by:

• a finite set of variables X = {x1, . . . , xn},

• a finite set Di of explicitly given, possible values (domain) for each vari-
able xi,

• a finite set of restrictions (constraints), each defined over some subset of
the given variables.
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A solution of a CSP is an assignment of one value from its domain to every
variable satisfying each constraint on the variables. It is possible to search for
one solution, for all solutions or for a specific solution minimizing or maximizing
a given objective function.

As an example for a CSP, consider the variables v1, . . . , v3 with the correspon-
ding domains D1 = {1}, D2 = {1, 2}, D3 = {4}, together the constraints
vi 6= vj for i 6= j. The solution of this CSP is v1 = 1, v2 = 2, and v3 = 4.

In Constraint Programming the focus is on feasibility problems. However, mi-
nimizing or maximizing of an additionally given objective function is possible.
This topic is called Constraint Optimization. There are two popular meth-
ods [19]. For Standard Search, an arbitrary feasible solution is computed in the
beginning of the procedure. Iteratively, it is tried to obtain a better solution.
Therefore a bound on the objective value is tightened in each step until no new
solution is found for the first time. The last detected solution this way is then
the optimal one. To apply Dichotomic Search, a lower bound on the objective
function is needed (if considering minimization problems). Again, in the be-
ginning some solution is computed. This one provides an upper bound on the
objective. Roughly speaking, this technique is a binary search on the objective
value whereby it is stressed to find feasible solutions.

Theorem 3.2: CSP is strongly NP-complete.

Proof. After showing that solving CSP is in NP, we prove that it is NP-
complete. This is done by means of a reduction from Sat to CSP. Solving
CSP is NP-complete since it is in NP and Sat, which is also NP-complete
(see for instances Garey and Johnson [11]), can be reduced to CSP. Finally, we
demonstrate that solving CSP is strongly NP-complete.

Any solution of a CSP is a certificate which can be used to verify that the CSP
is satisfiable. The size of this certificate is polynomial in the size of the problem,
and verification can be done in polynomial time in the number of constraints
since it consists simply of assigning all variables and checking each constraint.
Hence, solving CSP is in NP.

An arbitrary instance of Sat is given as n binary variables and a conjunction
of m terms. Each term is a disjunction of a number of literals, where a literals
is either one of the n variables itself or the negation of one of the variables.
The task is to determine an assignment of the variables such that all terms are
satisfied.

Let lij denote the i-th literal of term j and mj denote the number of literals of
term j.

The CSP corresponding to the given Sat instance can be constructed straight-
forwardly. For each variable v1, . . . , vn of the Sat problem, a binary variable
V1, . . . , Vn for the CSP is introduced. Each term in Sat corresponds to one
constraint in the CSP as follows:
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mj∑
i=1

Lij ≥ 1, j = 1, . . . ,m, Lij =
{
Vk lij = vk
1− Vk lij = vk

In case the CSP has a solution, this is a solution for the given Sat problem,
too. In case the CSP is not satisfiable, the Sat problem is not satisfiable as
well. Without loss of generality it is assumed that each variable occurs only
once in each term. In case a variable exists within one term once negated and
once not negated, this term is always satisfied and need therefore not further be
investigated. The truth of a term does not depend on whether the same literal
occurs only once or several times within this term. Clearly, this transformation
can be done in polynomial time in the number of terms and variables. Thus,
CSP is NP-complete.

Solving CSP is strongly NP-complete since CSP is also NP-complete even if
in all constraints all occurring coefficients are at most 1.

2

A CSP is called binary if each constraint is unary or binary. This means that
at most two variables are involved in any constraint. A binary CSP can be
depicted as a constraint graph G = (V,E). A node v ∈ V is introduced for each
given variable and an edge e ∈ E is introduced for each given constraint. An
edge e connects the variables involved in the constraint corresponding to e and
simply means that both variables are restricted in any way. A label on e depicts
the specific condition. Unary constraints are represented by loops within G.

x = z

x

y z

y = z

x = y

y z

x

D  = {1,2,3}D  = {1,2}

D  = {1}

Figure 3.1: A simple constraint graph

Two methods are reported to convert a non-binary CSP into an equivalent bi-
nary problem: the dual graph translation and the hidden variable translation.
Both methods introduce for each non-binary constraint one variable, where the
former approach adds constraints between newly introduced variables only and
the latter procedure introduces constraint which connect both original and new
variables. These schemes are described, for instance, in [2]. However, there are
also generalizations for the case of non-binary CSPs of the algorithms presented
in the following which are based on binary constraints. For example, an adap-
tion of the algorithm Forward Checking, which we discuss in Section 3.4.1, is
presented in [2] as well. Since any non-binary problem can be converted into an
equivalent binary problem, we examine binary CSPs for the rest of this chapter
only.
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3.2 Systematic Search

3.2.1 Techniques

A very simple approach is called Generate and Test (GT). Each possible com-
bination of variable assignments is consecutively generated and its validity is
tested. This is obviously impractical for large instances.

Backtracking tries to overcome the simplicity of Generate and Test. A partial
solution consistent with the constraints is stepwise extended by choosing a value
for an unassigned variable that is consistent with the previous partial assign-
ment. In case no consistent value can be found, backtracking is performed on
the variable assigned last, i.e., an alternative value from the domain is assigned
to the variable. For details, see [18, 3, 4].

3.2.2 Drawbacks

The disadvantage of Generate and Test is its enormous computational effort.
Thus, it is mostly not useful for practical applications at all. Already obtained
information on the structure of the problem are not exploited.

Backtracking is a very elementary paradigm, too. It suffers from thrashing,
i.e., repeated failure induced by the same reason. Furthermore, much redun-
dant work is performed. Inconsistencies are not remembered and the same
inconsistencies are detected again and again. Moreover, conflicts are detected
too late and are not avoided at the outset.

Example 3.3: See Figure 3.2.

• X = {A,B,C,D}

• Di = {1, 2, 3} ∀i ∈ {A,B,C,D}

• D < A, B − C ≥ 2

In each branch of the search tree each combination of possible values of the
variables B and C is tested for consistency. It is always determined that there
is only one possible combination (B = 3, C = 1).

If A = 1, there is no solution at all. Indeed, this is detected only as late as in
the very end of the search tree.

Thrashing can be avoided by means of Intelligent Backtracking, i.e., backtrack-
ing is directly done to the variable that is causing the conflict. However, this
approach does not solve the problem of redundant work.
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A=1
A=2

B=1 B=2 B=1 B=2 B=3B=3

C=2C=1 C=3
C=3C=2C=1

D=1 D=2 D=3 D=1 D=2 D=3

Figure 3.2: A search tree for backtracking

3.3 Consistency

The idea behind consistency techniques is to ease solving a CSP by removing
values from the variables domains that cannot be part of any solution. Hence,
the domains shrink in the course of the algorithms. Clearly, no solution gets lost
by deleting inconsistent values from domains, but, however, it is very unlikely
to solve a CSP by means of this approach. The entire CSP is solved if the
cardinality of each domain is one.

3.3.1 Node Consistency

Definition 3.4: (node consistency)
A node v ∈ V of a constraint graph G = (V,E) is called node consistent, if each
value in the domain of v satisfies all unary constraint on v.

A node v ∈ V can be made node consistent by simply deleting each inconsistent
value from its domain. If a constraint graph G = (V,E) is node consistent, i.e.,
all nodes v ∈ V are consistent, every unary constraint can be removed because
it is already fulfilled.

3.3.2 Arc Consistency

Definition 3.5: (arc consistency)
An arc (vi, vj) of a constraint graph is called arc consistent if for each value x in
the domain of vi there is a value y in the domain of vj such that the assignment
vi = x, vj = y is consistent with all binary constraints involving vi and vj . A
constraint graph G = (V,E) is arc consistent if each arc e ∈ E is consistent.

Definition 3.6: (Support)
Considering an arc (vi, vj), the support of a value x ∈ Di is the set of values
y ∈ Dj such that (x, y) is consistent.
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The concept of arc consistency is directed, i.e., the arc (vi, vj) being consistent
does not tell anything about the consistency of (vj , vi). As an example, see
Figure 3.3: The arc (v1, v3) is consistent, but the arc (v3, v1) is not consistent.

v = v

{1}

{1,2,3} {1,2}

v1

v3v2

v = v

2 1 3

2 3

v = v1

Figure 3.3: Arc consistency is directed

To make an arc (vi, vj) consistent it is only necessary to remove all values
without support from the domain of vi. However, to make an entire constraint
graph arc consistent, it is not sufficient to examine each arc only once. In case
an inconsistent value is removed from an arbitrary domain, it may happen that
a previously consistent arc becomes inconsistent [18, 3]. Considering Figure 3.3,
the arc (v2, v3) is consistent but becomes inconsistent after deleting the value 1
from domain of v3.

Let Di denote the domain of variable vi. If any value is removed from Di while
examining (vi, vj), it is not necessary to reconsider the arc (vj , vi). Let x be
an arbitrary value that is removed from Di while inspecting the arc (vi, vj).
The value x is removed since there is no y ∈ Dj such that vi = x, vj = y is
consistent. Notice that for no y ∈ Dj the value x ∈ Di is in the support of y.
Thus, the deletion of x does not make the arc (vj , vi) inconsistent.

In case any value is removed from Di while investigating the arc (vi, vj), it is
sufficient to reconsider the arcs (vk, vi), k 6= i, j, because they are the only ones
which could have become inconsistent.

Let d be the cardinality of the largest domain and let |E| denote the number of
arcs of a constraint graph G. It takes O(|E|d2) steps to make G arc consistent.
Each arc must be considered at least once and it takes d2 steps to verify the
consistency of one arc.

An arc consistent graph may have none, one or more than one solution, examples
are given in Figure 3.4.

There are several arc consistency algorithms that are denoted according to an
unified numbering scheme. These algorithms are called AC-i, where i is an
integer or fractional number. Integer values of i represent a full arc consistency
algorithm, i.e., an algorithm that makes the entire graph arc consistent. Frac-
tional values of i denote a partial arc consistency algorithm that ensures arc
consistency only on a subgraph of the constraint graph.
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(a) Exactly one

x = z
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x = y

y = z
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(b) More than one

x = z

x

y z

x = y

y = z

{1,2}

{1,2} {1,2}

(c) None

Figure 3.4: Number of possible solutions of an arc consistent constraint graph

Revise: Algorithm 1 is used to make an arc (vi, vj) consistent and is the basis
for the arc consistency algorithms presented in the following.

Algorithm 1: Revise

Data : An arc (vi, vj) of the constraint graph
Result: The arc (vi, vj) is arc consistent, returns true iff at least one

value has been removed from Di

begin
delete← false;
foreach x ∈ Di do

if there is no y ∈ Dj such that (x, y) is consistent then
Delete x from Di;
delete← true;

return delete;
end

AC-1 The most simple approach to make a constraint graph G = (V,E) arc
consistent is called AC-1, see Algorithm 2. All the arcs of G are tested for
consistency by means of the procedure Revise as long as at least one value
is removed from any domain. It has already been pointed out that this
approach is much too expensive, because each arc of G is reconsidered
even if only one value has been deleted from one domain. Let n be the
number of variables of a CSP and d be the size of the largest domain, the
complexity of AC-1 is O(n3d3) [20].

AC-3: The idea behind Algorithm AC-3, see Algorithm 3, is that after deleting
values from the domain of vi only the arcs (vk, vi) need to be checked
again. Let |E| be the number of arcs in the constraint graph and d be
defined as above, the complexity of AC-3 is O(|E|d3) [20].

AC-4: Algorithm AC-3 can be improved further because many pairs of values
are over and over checked for consistency for which already has been
determined that they are consistent. Algorithm AC-4, see Algorithm 5,
uses special data structures for this purpose which are initialized in the
beginning of AC-4 by means of algorithm Initialize, see Algorithm 4 [3].
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Algorithm 2: AC-1
Data : A constraint graph G

Result: The graph G is arc consistent
begin

Q← {(vi, vj) ∈ arcs(G), i 6= j};
repeat

change← false ;
foreach (vi, vj) ∈ Q do

change← Revise(vi,vj) or change ;

until not change;
end

Algorithm 3: AC-3
Data : A constraint graph G

Result: The graph G is arc consistent
begin

Q← {(vi, vj) ∈ arcs(G), i 6= j};
while not Q.empty() do

Choose and delete any arc (vi, vj) of Q;
if Revise(vi,vj) then

Q← Q ∪ {(vk, vi) ∈ arcs(G), k 6= i, k 6= j};

end

• For each variable vj and for each value y ∈ Dj a structure Svj , y is
used to remember for which x ∈ Di the value y is in the support of
x, if (vi, vj) ∈ arcs(G).

• For each arc (vi, vj) ∈ arcs(G) and for each value x ∈ Di it is
memorized how many values in Dj are in the support of x.

• If this number is zero, then x can be deleted from Di since it is
an inconsistent value. To verify whether any other variable-value
pairing has lost its support by this deletion, the pair (vi, x) is inserted
into a queue Q to be investigated later.

• To determine the variable-value pairings (vk, z) which need to be
checked because of the deletion of x from Di, the structure Svi, x is
used. For each of the values z ∈ Dk, it is furthermore memorized
how many values in Di are in the support of x. If the value z has lost
its support by the deletion of x from Di, i.e., there was only one sup-
porting value which now is removed, z is deleted from Dk. Because
of this deletion, further variable-value pairings must be checked for
consistency. Hence, the pair (vk, z) is inserted in Q.

The worst case running time of algorithm AC-4 is O(|E|d2) which equals
the lower bound to make an entire graph arc consistent, but it won’t be
better in the average case since the algorithm Initialize checks for each
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Algorithm 4: Initialize
Result: Internal data structures used by algorithm AC-4 are initialized
begin

Q← {};
S ← {};
foreach (vi, vj) ∈ arcs(G) do

foreach x ∈ Di do
total← 0;
foreach y ∈ Dj do

if vi = x, vj = y is consistent with the constraints on vi
and vj then

total← total + 1;
Svj , y ← Svj , y ∪ {< vi, x >};

counter[(vi, vj), x]← total;
if counter[(vi, vj), x] = 0 then

Delete x from Di;
Q← Q ∪ {< vi, x >};

return Q;
end

arc (vi, vj) each pair of values in the domains of vi and vj for consistency.

Further algorithms called AC-2, AC-5, AC-6, AC-7, . . . exist. They are more
or less refinements of AC-3 or AC-4. For additional information, see [18, 3].

3.3.3 k-Consistency and Path Consistency

This is a generalization of arc consistency since the latter one is not sufficient
to eliminate all inconsistencies within a constraint graph, cf. Figure 3.4. Path
consistency enforces consistency on paths of the constraint graph.

Definition 3.7: (path consistency)
A path (v1, . . . , vk) is consistent if for all pairs of values in the domains of v1

and vk there exist values within the domains of v2, . . . , vk−1 such that each arc
(vi, vi+1) is consistent.

Montanary [22] showed that a constraint graph is path consistent if and only
if all paths of length 2 are consistent. Hence, it suffices to deal with triples of
variables to make an entire constraint graph path consistent [4]. Notice, that
even path consistency does not remove all inconsistencies. There are algorithms
to make a constraint graph path consistent, but they are rarely used in practice
because of their extensive costs. In particular, they consume much memory.
Furthermore, theses algorithms add additional edges to the constraint graph.
Let n be the number of variables, path consistency can be achieved inO(n3) [20].
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Algorithm 5: AC-4
Data : A constraint graph G

Result: The graph G is arc consistent
begin

Q← Initialize;
while not Q.empty() do

Select and delete any pair < vi, x > from Q;
foreach < vk, z >∈ Svi, x do

counter[(vk, vi), z]← counter[(vk, vi), z]− 1;
if counter[(vk, vi), z] = 0 && z is still in Dk then

Delete z from Dk;
Q← Q ∪ {< vk, z >};

end

Definition 3.8: (k-consistency)
A constraint graph is k-consistent if the following holds: Choose for any k −
1 variables values from the corresponding domains such that each constraint
among these variables is fulfilled. Choose furthermore any k-th variable. There
exists a value in the domain of this k-th variable such that each constraint
among all k variables is satisfied.

Definition 3.9: (strong k-consistency)
A constraint graph is strongly k-consistent if it is j-consistent for each 1 ≤ j ≤ k.

Strong k-consistency and k-consistency are generalizations of node, arc, and
path consistency. Node consistency is equivalent to strong 1-consistency, arc
consistency to strong 2-consistency, and path consistency to strong 3-consistency.

Figure 3.5 presents an example of a 3-consistent constraint graph which is not
strongly 3-consistent. This graph is not 1-consistent since the node x is not
consistent, but the graph is 2-consistent as well as 3-consistent.

x = z

xD  = {1,2}x

y z

y = z

x = y

y zD  = {5,6}D  = {3,4}

x = 2

Figure 3.5: A 3-consistent but not strongly 3-consistent constraint graph
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Clearly, if a constraint graph with n nodes is strongly n-consistent, a solution
can be obtained without backtracking. The following questions arises: Under
which circumstances is it possible to determine a solution without backtracking
in a k-consistent constraint graph for k < n?

Definition 3.10: (ordered constraint graph)
An ordered constraint graph is a constraint graph whose nodes have been li-
nearly ordered.

As an example, see Figure 3.6 [18]. The order of the nodes from top to bottom
gives the order according to the linear ordering.

x

z

y

x

zy

1 2

z

y

x

Figure 3.6: A constraint graph and two of its orderings

Definition 3.11: (width)
The width of a node in an ordered constraint graph is the number of edges
leading to nodes with smaller values w.r.t. the linear ordering. The width of
an ordered constraint graph is the maximum of the widths of all its nodes, the
width of a constraint graph is the minimum of the widths of all its ordered
constraint graphs.

Theorem 3.12: If a constraint graph G of width ω is strongly k-consistent
and k > ω, then there exists a search order within G that is backtrack free, i.e.,
it is possible to assign all the nodes without performing backtracking.

Proof.

• There exists an ordering of the constraint graph such that for all nodes
the number of arcs leading to already instantiated variables is at most ω.

• Each newly assigned value must be consistent with at most ω values.

• It is always possible to determine such a value, because G is at least
strongly (ω + 1)-consistent.

2

The previous theorem leads to the following observation:

Each tree has width 1. If this graph is furthermore arc consistent, then there
exists a search order that is backtrack free.
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3.4 Trimming the Search Tree: Constraint Propaga-
tion

We already pointed out that it is often too expensive to apply search strategies
on their own. Furthermore, it is often not possible to determine solutions of
CSPs only by means of consistency techniques.

Constraint Propagation is a combination of both of them. Again, a backtrack-
ing algorithm is underlying. Additionally, consistency algorithms are called in
each node of the search tree enforcing a certain degree of consistency within
the constraint graph. Various full and partial arc consistency algorithms are
employed.

3.4.1 Underlying Ideas of the Algorithms

The following algorithms can be denoted schematically as TS+AC-i, where TS
stands for tree search and AC-i is a full or partial arc consistency algorithm.
Fractional values for i denote a partial arc consistency algorithm, and integer
values for i denote a full arc consistency algorithm, see Table 3.1 [24]. For partial
arc consistency algorithms holds that the larger the particular fractional value
of i is, the more inconsistencies are eliminated by this algorithm. Each full arc
consistency algorithm enforces the same level of consistency in the graph, only
computational costs differ.

algorithm scheme
BT TS + AC-1

5
FC TS + AC-1

4
PL FC + AC-1

3 = TS + AC-1
4 + AC-1

3
FL FC + AC-1

2 = TS + AC-1
4 + AC-1

2

RFL1 FC + AC-1 = TS + AC-1
4 + AC-1

RFL2 FC + AC-2 = TS + AC-1
4 + AC-2

RFL3 FC + AC-3 = TS + AC-1
4 + AC-3

Table 3.1: Overview on constraint propagation algorithms

The challenge is to determine an appropriate degree of consistency. If the
algorithms eliminate too few inconsistencies, much effort must be spent on
searching. In contrast, when investing too much in consistency algorithms the
saved costs for searching may not justify occurred additional costs.

The higher the degree of consistency gained, the smaller the number of nodes of
the search tree, however, much more tests are needed. Nadel [24] investigated
the “n-queens problem” (arrangement of n queens on a n × n chess board
such that no queen is attacked by another one) and the “Confused n-queens
problem” (arrangement of the queens such that all queens attack each other)
and showed that forward checking needs for these problems the fewest constraint
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test altogether. We did not find further observations concerning this topic, but
it shows that it is not necessarily useful to gain the highest level of consistency
within a constraint graph.

It is of course possible to invoke a different constraint propagation algorithm in
each node of the search tree.

V1

V

V V

V

2

3

4

5

Figure 3.7: Running example

Figure 3.7 is our running example to explain the various algorithms. In the
following it is assumed that variable v1 is already assigned.

Backtracking (BT): Even simple backtracking performs a certain kind of
constraint propagation. When assigning the i-th variable, it is assured
that the assigned value is consistent with the assignment of the previously
considered variables v1, . . . , vi−1; this is referred to as AC-1

5 .

Forward Checking (FC): Arc consistency on arcs between not yet assigned
variables and already assigned variables is enforced. Before assigning
the i-th variable, the arcs (vj , vi−1), j = i, . . . , n are made consistent by
removing inconsistent values (with respect to the assignment of vi−1) from
the domains Dj ; this is called AC-1

4 .

Considering our running example in Figure 3.7, this means that before
assigning v2 the arcs (v2, v1), (v3, v1) and (v4, v1) would be revised.

Partial Lookahead (PL): This algorithm also enforces arc consistency on
arcs between not yet assigned variables, but only the arcs (vj , vk) with
j < k are to be considered. Before assigning the i-th variable, forward
checking is invoked first. In addition, the arcs (vj , vk), j = i, . . . , n −
1, k = j + 1, . . . , n are checked and inconsistent values are removed from
the domains Dj ; this procedure is named AC-1

3 .

Considering Figure 3.7, these are the arcs (v2, v3), (v2, v5), (v3, v4), (v3, v5)
and (v4, v5).
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Full Lookahead (FL): Arc consistency with respect to the current domains
on each arc between not yet assigned variables is enforced. Before as-
signing the i-th variable, forward checking is invoked first. Furthermore,
the arcs (vj , vk), j = i, . . . , n, k = i, . . . , n, j 6= k are checked and in-
consistent values are removed from the domains Dj ; this is referred to as
AC-1

2 .

Considering Figure 3.7, this are all the arcs of the subgraph induced by
the nodes vi, i = 2, . . . , 5. This algorithm is only a partial arc consistency
algorithm, because each arc is considered only once.

Really Full Lookahead 1 (RFL1): Before assigning the i-th variable, for-
ward checking is invoked first. Furthermore, all arcs (vj , vk), j = i, . . . , n,
k = i, . . . , n, j 6= k are revised as long as in at least one domain are values
removed; this is AC-1.

Really Full Lookahead 3 (RFL3): Before assigning the i-th variable, for-
ward checking is invoked first. The subgraph induced by the unassigned
nodes is made arc consistent. AC-3 is called and only the arcs that could
have been affected by the domain reductions are reconsidered.

Really Full Lookahead 2 (RFL2): It works like RFL3, but instead of AC-3
the algorithm AC-2 is called.

Within the course of these algorithms except for simple backtracking itself, val-
ues are removed temporarily from the domains of the variables. In case back-
tracking is performed by such an algorithm, removed values have to be reinsert
in some domains. In the worst case, many deletions followed by reinsertions of
values are thus executed by these algorithms.

3.5 Constructing the Search Tree

Using backtracking, the order in which variables are to be considered is very
important.

A popular heuristic is to choose in each step the variable with the smallest
remaining domain. Thereby it may happen that the ordering of the variables
differs in various branches of the search tree. Figure 3.8 gives an example. This
approach is also called first-fail principle. The algorithm DSATUR proposed
by Brélaz [1979] for the node coloring problem can be modeled by this means.
DSATUR consists of choosing in each step one of the variables with the maximal
number of differently labeled adjacent vertices. Hence, the selected variable has
the least number of possible values left.

A further possibility is to choose in each step the variable being mostly bounded
by constraints. It is aimed at pruning invalid branches as soon as possible.

An additional heuristic is to determine a maximum stable set in the beginning
and to assign these nodes last. Unfortunately, computing a maximum stable set
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Figure 3.8: Variable ordering according to the first-fail principle

is NP-hard. In addition, if only a small stable set can be found, the benefit of
this approach is minor. The reason for assigning the stable set last is that there
are no constraints between these nodes. Hence, after assigning all other nodes
one can assign the nodes of the stable set without considering them among
themselves. This reduces the size of the search tree [18].

Since it is possible to solve tree structured constraint graphs without backtrack-
ing, one further method is to determine within a general graph a cycle-cut set
at the beginning, i.e., a set of nodes such that after deleting them the graph is
a tree. These variables are assigned first and then deleted from the constraint
graph. After enforcing arc consistency, it is possible to solve the problem with-
out backtracking [18]. Let n be the number of nodes of the constraint graph,
d be the size of the largest domain, and k be the size of the cycle-cut set.
Computational costs of this heuristic are in O(dk ∗ (n − k)d2) since the cycle-
cut set must be assigned at most dk times and after deleting these nodes it
takes O((n− k)d2) steps to achieve arc consistency on the resulting constraint
graph. This approach is only useful if the cycle-cut set is small, otherwise the
advantage is negligible.

Furthermore, the ordering of the values to be assigned to the variables is im-
portant. Clearly, if a CSP has a solution and always the correct value is chosen,
it is possible to solve the CSP without backtracking. If the CSP does not have
any solution or all solutions are needed, the value ordering is not relevant.

A possible heuristic for determining a value ordering is to always choose the
one that maximizes the number of possible assignments to not yet assigned
variables. To count this number, the algorithm AC-4 can be used since this
one counts for each possible value the size of its support. Kale [16] adapted
by applying this variable ordering a backtracking based algorithm for solving
the “n-queens problem”. This adaption enabled him to solve the problem for
significantly larger numbers of n [18].
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Chapter 4

The Optimization
Programming Language
(OPL)

This chapter gives an introduction to OPL before we present our models for
FAP in Chapter 5. A small OPL model is used to discuss some features of
the language in Section 4.1, some general modeling techniques are explained in
Section 4.2, and MIPs and OPL models are compared in Section 4.3.

4.1 A brief Introduction

The “Optimization Programming Language” (OPL) has been developed by van
Hentenryck [13] and combines two different aspects. On the one hand, it is a
modeling language that is more expressive than Mixed Integer Programming.
It allows to state Linear Programs, Mixed Integer Programs, and Constraint
Satisfaction Problems, as well as combinations of all of them. On the other
hand, OPL offers the possibility to solve formulated models by providing an
interface to underlying solvers. Thereto, in addition to the constraints of the
model, a search heuristic is stated that is then executed by a solver. A variety of
commercial constraint solvers is available. One of them is ILOG Solver, which
is an object-oriented C++-library offering constraint programming algorithms.
ILOG OPL Studio is built on top of ILOG Solver (among others) allowing
to solve Constraint Satisfaction Problems modeled in OPL by means of the
solution framework provided by ILOG Solver.

Figure 4.1 presents a small OPL model for the weighted graph coloring problem.
The corresponding graph is shown in Figure 4.2.

An OPL model consists of several parts including the definition of the model
data, the declaration of the variables, and the statement of objective and con-
straints. It is possible to define an own search heuristic. If none is given, a
default search procedure is applied. Available data types are strings, discrete
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and floating point numbers as well as enumerated data types, which are similar
to the ones used in the programming language C.

01: enum color {red, blue, green, yellow};
02: int+ number_of_nodes = 4;
03: range node 1..number_of_nodes;
04: struct edge_type { node u; node v; };
05: {edge_type} edges = {<1,2>, <1,3>, <2,3>, <2,4>, <3,4>};
06: int+ costs[color] = [2, 4, 6, 8];
07:
08: predicate is_different( color c1, color c2 )
09: return c1 <> c2;
10:
11: var color label[node];
12:
13: minimize
14: sum(v in node) costs[ label[v] ]
15: subject to {
16: forall( e in edges ) is_different(label[e.u], label[e.v]);
17: label[1] <> green;
18: sum(v in node) (label[v] = blue) = 2;
19: };

Figure 4.1: OPL model for the weighted graph coloring problem

3

2

1 4

Figure 4.2: Example graph for the weighted graph coloring problem

Row (1) of the model declares an enumerated data type color, which can
take on one out of four possible values representing the available colors for the
nodes. Row (2) defines a non-negative integer, which is the number of nodes of
the graph. Row (3) defines the nodes by means of a range of integers from 1
to number of nodes, and Row (4) declares a structure edge type representing
the two end nodes of an undirected edge. Row (5) defines the edge set of the
graph. Each set member is of type edge type. Row (6) defines an array costs
of non-negative integers, one value for each possible color. Array elements can
be accessed directly by elements of enumerated data types, i.e., the cost of color
red is 2, of blue 4, and so on. Rows (8) and (9) of the model define a predicate.
Predicates can be used to state user-defined constraints. The OPL implemen-
tation enforces arc consistency on the conditions defined by predicates. The
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use of predicates may result in a more effective pruning compared to simply
stating the constraints, but it is sometimes less efficient.

Row (11) declares an array of variables of type color, one variable for each
node. Rows (13) and (14) state the objective. Possible objectives are minimize,
maximize, and solve. In the latter case the problem is a feasibility problem
rather than an optimization problem. Rows (15) to (19) state the constraints.
Using the previously defined predicate is different, Row (16) imposes that
the label of node u differs from the label of node v for every edge e = (u, v).
Row (17) states that the color of node 1 shall not be green. Row (18) is
a so-called Higher-Order Constraint (Meta-Constraint). Meta-Constraints are
useful for stating complex conditions. It is possible to formulate further condi-
tions within a constraint. One binary variable is associated with each of these
embedded conditions that is equal to 1 if and only if the condition is satisfied.
The constraint in Row (18) enforces that the number of nodes labeled blue is
equal to 2. For each v ∈ V , a binary variable is associated with the condition
label[v]=blue.

4.2 Modeling Techniques

Given a combinatorial optimization problem, it is often not difficult to devise
some OPL model for it. However, to formulate efficient OPL models, a lot of
knowledge on Constraint Programming is necessary. The way the constraints
or the input data of a problem are formulated may have a substantial impact
on the performance of the model. The following guide lines were given in [15]
and apply to OPL as well as to Constraint Programming in general. Our tests
showed that it is very important to use few variables. Most of our approaches
needing a lot of variables were not successful. The formulation of the input data
has a major impact on the solution times, too. Especially breaking symmetries
(described below) enabled us to solve some instances that we could not solve
otherwise. However, if solutions could be obtained easily, the formulation of
redundant constraints or breaking symmetries often did not yield any benefit.

Few Variables: One should use as few variables as possible since the intro-
duction of unneeded variables unnecessarily enlarges the search space.
The search space of a CSP with variables v1, . . . , vn and corresponding
domains d1, . . . , dn is the Cartesian product of the domains d1× · · · × dn,
whose size is

∏n
i=1 |di|.

Symbolic Constraints: An important aspect of constraint programming in
general and of OPL in particular are symbolic constraints, also referred to
as global constraints. These are predefined constraints used to state fre-
quently occurring conditions. In addition, extra propagation algorithms
and consistency strategies are often applied to symbolic constraints such
that a more effective pruning is possible.
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A frequently employed global constraint is alldifferent. It takes one
array as parameter and enforces that all array elements differ from each
other. As an example, consider the variables v1, . . . , v3 with the corre-
sponding domains D1 = D2 = D3 = {1, 2}, together with the conditions
vi 6= vj for i 6= j. This problem is arc consistent but has no solution
(cf. Figure 3.4 (c)). Modeled by pairwise disequalities and enforcing arc
consistency, it is not possible to determine that the problem is infeasi-
ble. In contrast, by means of the specialized propagation rules applied to
alldifferent, it can be determined that there is no solution. A consis-
tency algorithm for alldifferent is given in [21, Section 3.5]. Roughly
speaking, it first removes the values of all fixed variables, i.e., the variables
vi with |Di| = 1, from the domains of all yet unfixed variables. Next it
checks whether the number of unfixed variables exceeds the total number
of different values available for all of them together. In the above example,
the number of unfixed variables is 3 and the number of different values
available for all of them is 2. Hence, the problem is not feasible.

There are a lot of further predefined symbolic constraints, see for in-
stance [13, 14, 15, 21].

Breaking Symmetries: It is also often helpful to break symmetries. Sym-
metries make the search space contain many different solutions that all
provide the same information for us. Breaking symmetries is done by
stating additional constraints, e.g., by imposing an ordering on some set
of variables. Notice that these additional constraints must not eliminate
any relevant solution. As an example, consider the Frequency Assignment
Problem presented in Chapter 2. In Section 5.1 it is shown that all TCHs
of one cell have to satisfy the same separation requirements. Thus, given
the set C of TCHs of a cell and the set of channels assigned to all of them,
it does not matter which TCH receives which channel. Let y be the fre-
quency assignment which maps every TRX to a channel, the described
symmetries can be broken by stating the requirement y(v1) < · · · < y(vn)
for all TCHs v1, . . . , vn ∈ C.

Redundant Constraints: The formulation of redundant constraints, i.e., con-
ditions resulting implicitly from the structure of the problem, may ease
finding solutions. Ideally, they provide information that the solvers can
(typically) not derive directly from the other given constraints. Consi-
dering our running example k-Colorability, let G be the given graph and
C ⊆ G be a clique of G. A possible redundant constraint is c(i) 6= c(j) for
all i, j ∈ C with i 6= j. The above mentioned alldifferent constraint
can be used for stating this condition.

4.3 MIPs versus OPL Models

The purpose of this section is to investigate whether the additional features of
OPL really provide more possibilites to formulate conditions for a mathemat-
ical problem, or if some of these further elements can be expressed in Mixed
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Integer Programs (MIPs) as well. Among others, OPL allows to employ logical
conditions and functions like absolute value, minimum, maximum, and mod-
ulo. Furthermore, strict inequalities and disequalities (6=) on integer variables
and symbolic constraints such as alldifferent can be stated. These addi-
tional features may make OPL models more loosely readable than MIPs, but
it is demonstrated that all these mentioned elements of OPL can be expressed
in Mixed Integer Programming as well. However, it is not always possible to
translate an OPL model into a MIP. Moreover, additional variables and con-
straints have to be introduced. Hence, the following observations are more of
theoretical than of practical interest.

4.3.1 Translating OPL models into MIPs

Important for the transformations given in this section is the capability to
express logical conditions in Mixed Integer Programming. Let C be an arbitrary
constraint and δ be a binary variable. It is possible to link C and δ by means
of additional constraints such that one of the following relations is satisfied:

(C holds) =⇒ (δ = 1)
(C holds)⇐= (δ = 1)
(C holds)⇐⇒ (δ = 1)

(4.1)

Binary variables linked with constraints are called indicator variables in the
following. They are especially used for formulating logical conditions among
constraints in Mixed Integer Programming.

Some of the ideas of the following transformations are summarized in Table 4.2
on page 50.

Restrictions

We have to face some limitations when transforming an OPL model into a MIP.
Rational variables may cause some difficulties in strict inequalities. It may even
happen that there is no optimal solution to a given problem at all. As an ex-
ample, consider max{x ∈ Q : x < 1}, which does not have an optimal solution,
but would have an optimal solution when restricted to integer variables.

Strict inequalities and disequalities (6=) on rational variables are not allowed
in OPL because of the arising problems. Actually, we do not need to discuss
them here. However, in order to perform some of the transformations below,
we have to deal with strict inequalities. Thus, we restrict ourselves to a certain
precision when considering rational numbers or variables, which enables us to
assume all variables and numbers to be integer.

In addition, most transformations cannot be done properly without the exis-
tence of some lower and upper bounds on involved terms. If they do not exist,
it is shown that these transformations cannot be done without imposing further
constraints on some variables. In each case, it is pointed out if lower and upper
bounds are needed, and if yes, which terms are affected.
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Logical Conditions

The transformations given in this subsection are based on Williams [27]. To
express a certain logical relation among a set R of constraints, it is necessary
to introduce a binary variable δr for all of the r ∈ R such that one or both of
the following relations are fulfilled:

r =⇒ δr = 1
δr = 1 =⇒ r.

Moreover, the introduced indicator variables δr can be used to ensure that at
least k or at most k of the expressions of R are satisfied simultaneously. The
following inequality imposes that at least k conditions of R are fulfilled:∑

r∈R
δr ≥ k.

Similarly, the statement
∑

r∈R δr ≤ k enforces that at most k conditions of R
hold.

Now, we show how to link inequalities and binary indicator variables. As a
running example, consider the relation:

δ = 1⇐⇒
∑
i

aixi ≤ b.

First, we model the direction:

δ = 1 =⇒
∑
i

aixi ≤ b. (4.2)

An upper bound M on the expression
∑

i aixi − b is needed for this task. As
explained below, if this bound does not exist, we cannot do the following trans-
formation without imposing further restrictions on the xi. Assuming that there
is an upper bound M on

∑
i aixi − b, Condition (4.2) can be modeled by the

constraint: ∑
i

aixi +Mδ ≤M + b

⇐⇒
∑
i

aixi − b+Mδ ≤M.
(4.3)

In case δ = 1, it is ensured that the original constraint holds. If δ = 0, the term∑
i aixi − b is constrained to be less than or equal to M . Obviously, unless M

is an upper bound on
∑

i aixi− b, an additional restriction on the xi is implied
by δ = 0.
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Second, we model the direction:(∑
i

aixi ≤ b =⇒ δ = 1
)

(4.4)

⇐⇒
(
δ = 0 =⇒

∑
i

aixi > b
)

(4.5)

⇐⇒︸︷︷︸
(∗)

(
δ = 0 =⇒

∑
i

aixi ≥ b+ 1
)
. (4.6)

The last equivalence (∗) is only valid since we restrict ourselves to integer num-
bers and variables.

To express Condition (4.6) as an inequality we need a lower bound m 6= 1 on∑
i aixi − b. As above, if this bound does not exist, it is not possible to do the

given transformation. Given a lower bound m 6= 1 on
∑

i aixi− b, we can state
Condition (4.6) as follows:∑

i

aixi − (m− 1)δ ≥ b+ 1, m 6= 1 (4.7)

⇐⇒
∑
i

aixi − b− (m− 1)δ ≥ 1, m 6= 1.

If δ is equal to 0, it is ensured that Constraint (4.6) holds. If δ = 1, the term∑
i aixi− b is constrained to be greater than or equal to m. There must not be

any implication if δ = 1, hence, m has to be a lower bound on this term. This
approach cannot be done correctly if this bound does not exist.

It is also possible to indicate whether a constraint
∑

i aixi ≥ b holds or not.
The constraints corresponding to (4.3) and (4.7) are:∑

i

aixi +mδ ≥ m+ b (4.8)∑
i

aixi − (M + 1)δ ≤ b− 1, M 6= −1. (4.9)

Finally, if we want δ = 1 to imply that
∑

i aixi = b holds, we simply state the
conditions (4.3) and (4.8) together.

The opposite direction
∑

i aixi = b =⇒ δ = 1 is slightly more difficult:(∑
i

aixi = b =⇒ δ = 1
)

(4.10)

⇐⇒
(
δ = 0 =⇒

∑
i

aixi 6= b
)

(4.11)

⇐⇒
(
δ = 0 =⇒

∑
i

aixi < b ∨
∑
i

aixi > b
)

(4.12)

⇐⇒︸︷︷︸
(∗)

(
δ = 0 =⇒

∑
i

aixi ≤ b− 1 ∨
∑
i

aixi ≥ b+ 1
)
. (4.13)

⇐⇒
(
δ = 1 ∨

∑
i

aixi ≤ b− 1 ∨
∑
i

aixi ≥ b+ 1
)
. (4.14)
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The transformation (∗) can be done since we assumed all ai and xi to be integer.

We have to introduce binary variables δ1 and δ2 for both terms on the right-hand
side of (4.14) that are equal to 1 if and only if their corresponding expressions
are fulfilled. Then it is possible to state (4.14) as δ + δ1 + δ2 ≥ 1.

Having introduced binary variables for each constraint that we wish to connect
logically, it is possible to represent logical relations between them. Let A and B
be two distinct constraints and δA and δB be the corresponding indicator vari-
ables. Table (4.1) gives an overview how to express logical conditions between
A and B.

A ∨B δA + δB ≥ 1
A ∧B δA = 1, δB = 1

!A δA = 0
A⇔ B δA − δB = 0
A⇒ B δA − δB ≤ 0

Table 4.1: Logical conditions on constraints

Strict Inequalities (>, <)

Given integer variables and coefficients, it is possible to transform a given strict
inequality of the form

∑
i aixi < b into a non-strict inequality

∑
i aixi ≤ b− 1.

Disequalities (6=)

Disequalities may be expressed by means of strict inequalities using logical
conditions:

xi 6= xj

⇐⇒ (xj > xi) ∨ (xi > xj)
⇐⇒ (xi − xj ≤ −1) ∨ (xj − xi ≤ −1).

We introduce binary indicator variables δ1 and δ2 that are equal to 1 if and
only if xi − xj ≤ −1 or xj − xi ≤ −1, respectively. It has to be satisfied that:

m1 ≤ xi − xj + 1 ≤ M1

m2 ≤ xj − xi + 1 ≤ M2.

If any of the lower bounds mi or upper bounds Mi does not exist, it is not possi-
ble to model disequalities by means of indicator variables and logical conditions.
The argument is analog to the one given on page 42.

The following constraints enforce that δ1 = 1 ⇐⇒ xi < xj :

xi − xj +M1δ1 ≤ M1 − 1 (4.15)
xi − xj − (m1 − 1)δ1 ≥ 0, m1 6= 1. (4.16)
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In the same manner it is ensured that δ2 = 1 ⇐⇒ xj < xi:

xj − xi +M2δ2 ≤ M2 − 1 (4.17)
xj − xi − (m2 − 1)δ2 ≥ 0, m2 6= 1. (4.18)

Finally, to express the same as the initial disequality we need to connect δ1 and
δ2 logically by stating δ1 + δ2 = 1.

Altogether, there are two extra variables and five extra constraints needed to
express one disequality in MIP.

Absolute Value

There are different approaches how to model absolute values within Mixed
Integer Programming. As an example, consider the constraint: |x1|+|x2| ≤ 2. It
is possible to express it without using an absolute value by stating the following
constraints:

x+ y ≤ 2
x− y ≤ 2
−x+ y ≤ 2
−x− y ≤ 2.

Unfortunately, the number of inequalities introduced this way is exponential in
the number of occurrences of the abs-function in the initial constraint. This
means, a constraint

∑n
i=1 ai|xi| ≤ b would cause 2n new inequalities. Clearly,

this approach is impractical.

Logical conditions are another possibility to model absolute values in Mixed
Integer Programming. We introduce a variable y ≥ 0 for each variable x whose
absolute value is taken and ensure that y is equivalent to |x| by satisfying the
following relations:

x ≥ 0 =⇒ y = x (4.19)
x ≤ 0 =⇒ y = −x. (4.20)

Binary variables have to be introduced in order to model it. As in the previous
subsections, we will need some lower and upper bounds on terms involving x
and y. If any of these bounds does not exist, it is not possible to express the
absolute value like this (cf. page 42). Assuming the existence of suitable bounds,
we introduce binary variables δ1, . . . , δ4 for the four constraints on both sides
of Relations (4.19) and (4.20) as explained in Section “Logical Conditions”.
This requires six additional constraints. Finally, to express the Relations (4.19)
and (4.20), we state:

δ1 − δ2 ≤ 0 (4.21)
δ3 − δ4 ≤ 0. (4.22)

Altogether, five additional variables and eight additional constraints are needed
for each variable whose absolute value is taken in order to apply this approach.
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Minimum Function and Maximum Function

Considering terms of the form min(xi, xj) or max(xi, xj), the simplest way to
express minimum or maximum functions in Mixed Integer Programming is to
introduce a variable y which is to be maximized or minimized, respectively, in
the objective function.

In order to model a minimum function, the introduced variable y has to be
maximized and constrained as follows:

y ≤ x1

y ≤ x2.

Analogously, a maximum function is stated by minimizing y and by constraining
it by means of:

y ≥ x1

y ≥ x2.

This approach can be used if there are no terms involving the minimum or
maximum function within the objective. If there is an objective to be maximized
containing a minimum function with a positive sign, or in case the objective
is to be minimized and contains a positively signed maximum term, we run
into no difficulties as well. Neither lower or upper bounds nor an introduced
precision is needed for this transformation. Consider the following example,
where the optimal solution value of both problems is 24 with x1 = x2 = 6:

max 3 min(x1, x2) + x2

2x1 + x2 ≤ 18
x1, x2 ≥ 0

=⇒

max 3y + x2

2x1 + x2 ≤ 18
y ≤ x1

y ≤ x2

x1, x2, y ≥ 0

However, the above approach cannot be used if the problem is a maximization
(minimization) problem and the maximum (minimum) function occurs within
the objective with a positive sign. In the following example, the optimal solution
value of the original problem is 72 with x1 = 0 and x2 = 18. In contrast, the
transformed problem is unbounded:

max 3 max(x1, x2) + x2

2x1 + x2 ≤ 18
x1, x2 ≥ 0

=⇒

max 3y + x2

2x1 + x2 ≤ 18
y ≥ x1

y ≥ x2

x1, x2, y ≥ 0

Given that we are able to model logical conditions, above example can also be
transformed as follows:
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max 3 max(x1, x2) + x2

2x1 + x2 ≤ 18
x1, x2 ≥ 0

=⇒
max 3y + x2

2x1 + x2 ≤ 18
y ≤ x1 ∨ y ≤ x2

x1, x2, y ≥ 0

Another way to express minimum or maximum functions is to use implications.
Considering the modeling of a minimum function, we introduce a variable y
and ensure that:

xi ≤ xj =⇒ y = xi (4.23)
xj ≤ xi =⇒ y = xj . (4.24)

This is done by means of binary indicator variables as shown in the previous
paragraphs. Maximum functions could be handled in the same manner.

Modulo

Consider an expression of the form x mod k, where x is a discrete or rational
variable and k is a non-negative integer number or an integer variable itself. If
there is a more complex expression followed by modulo, one can introduce a
new variable and associate the expression with it. For this approach, no lower
or bounds bounds or any introduced precision is needed.

Modulo can be expressed in Mixed Integer Programming as follows. We have
to introduce two new discrete variables y and z and need to state two extra
constraints:

z − k ≤ −1 (4.25)
y · k + z − x = 0. (4.26)

The first requirement models that the result z must be less than or equal to
k − 1, the second constraint states the modulo condition, i.e., that z is the
integer remainder of the division x by k. Then x mod k can be replaced by z.

If k is a variable itself, it is more difficult. The term x1 mod k can be replaced
by z, but, unfortunately, y · k is non-linear. In spite of this, it is possible to
express this in Mixed Integer Programming using Separable Programming. For
more details see the subsection on modeling non-linear constraints in MIP on
page 47.

Non-linear Constraints

As described in Williams [27], it is sometimes possible to express even non-linear
models by means of MIPs. We have to distinguish between convex programming
and non-convex programming.

A set S ⊆ Rn is said to be convex if for all x, y ∈ S and λ ∈ [0, 1]:
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λx+ (1− λ)y ∈ S.

A function f : Rn → R is said to be convex if for any λ ∈ [0, 1] and for any
x, y ∈ Rn:

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y). (4.27)

An optimization problem is said to be convex if the objective function as well
as the set of feasible points is convex.

The advantage of convex optimization problems is that each local optimum
is a global optimum as well. This does not hold for non-convex optimization
problems.

A function f : Rn → R is said to be separable if it can be expressed as the
sum of terms involving only one variable. Hence, the function f(x, y) = x2 +
y2 is separable but the function g(x, y) = x · y + x2 is not. It is useful to
consider separable functions in mathematical programming, because they can
be approximated by piecewise linear functions. This can be done by means of
additional variables and linear constraints. For details, see [27, Chapter 7].

Sometimes it is possible to convert a model in non-separable form into a model in
separable form [27, Section 7.4]. Consider the expression x1 ·x2. Two variables
y1 and y2 are introduced as follows:

y1 =
1
2

(x1 + x2)

y2 =
1
2

(x1 − x2).

The term y2
1 − y2

2 is equal to x1 · x2 and is separable.

Higher-order Constraints

Higher-order constraints like
∑

i∈I(xi = 3) = 2 can easily be expressed in
MIPs by means of binary indicator variables. We have to introduce one binary
variable for each expression embedded within the Higher-order constraint that
is equal 1 if and only if the corresponding expression is satisfied.

As an example consider above Higher-order constraint
∑

i∈I(xi = 3) = 2. We
introduce variables δi for all i ∈ I and ensure that xi = 3 ⇐⇒ δi = 1. Now,
the given constraint could be expressed as

∑
i∈I δi = 2.

alldifferent Constraints

This special kind of constraint is used to ensure that all members of an array
get different values. This can be expressed in Mixed Integer Programming by
stating pairwise disequalities on all members xi 6= xj of the array. Hence,
n(n − 1)/2 disequalities are needed, where n is the number of array elements,
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each requiring two introduced variables and five extra inequalities. Altogether,
this leads to n(n − 1) new variables and 5n(n − 1)/2 new constraints. As
described in Section “Disequalities”, this approach can only be applied if the
lower and upper bounds on the terms xi − xj + 1 and xj − xi + 1 exist for all
i 6= j.

distribute, atleast, atmost, atleastatmost Constraints

The constraints distribute, atleast, atmost, and atleastatmost are similar
to each other and can be used to formulate cardinality conditions on arrays.
Let card, value, low, up, and base be one-dimensional arrays. All of them may
have the same index set S with |S| = n, except for base whose index set is R
with |R| = m. The requirement distribute(card, value, base) holds if card[i]
is the number of occurrences of value[i] in the array base. In the same manner,
the constraints atleast and atmost ensure that the array base contains at least
or at most times the value value[i]. The constraint atleastatmost is used to
state lower and upper bounds on the frequencies of value[i] within the array
base.

These constraints can be expressed by means of Higher-order constraints. For
distribute this is:

card[i] =
∑
j∈R

(base[j] = value[i]) for all i ∈ S. (4.28)

The other constraints can be expressed in a similar way.

By means of binary indicator variables, these constraints can be expressed in
Mixed Integer Programming. We need to introduce for each i ∈ S and j ∈ R a
binary variable δij that equals to 1 if and only if base[i] = value[j]. Hence, we
can state:

distribute(card, value, base) : card[i] =
∑

j∈R δij for all i ∈ S
atleast(card, value, base) : card[i] ≤

∑
j∈R δij for all i ∈ S

atmost(card, value, base) : card[i] ≥
∑

j∈R δij for all i ∈ S
atleastatmost(low, up, card, base) : low[i] ≤

∑
j∈R δij ≤ up[i] for all i ∈ S.

Altogether, nm binary variables and 2mn extra inequalities are needed for the
variables δij since we have to state two extra conditions for each introduced
variable, see page 42. In addition, to state the actual cardinality constraints,
n inequalities are needed for distribute, atleast and atmost, and 2n are
needed for atleastatmost.

4.3.2 Translating MIPs into OPL models

Only equalities and inequalities are allowed in Mixed Integer Programming on
discrete and rational variables. All these conditions are also valid for OPL.
Hence, each MIP can be considered as an OPL model as well.
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Constraint in OPL in MIP
logical conditions A ∨B δA + δB ≥ 1

A ∧B δA = 1, δB = 1
!A δA = 0

A⇔ B δA − δB = 0
A⇒ B δA − δB ≤ 0

strict inequalities
∑

i aixi < b, ai, xi ∈ Z
∑

i aixi ≤ b− 1
disequalities xi 6= xj (xi − xj ≤ −1) ∨ (xj − xi ≤ −1)
absolute value y = |x| x ≥ 0 =⇒ y = x

x ≤ 0 =⇒ y = −x
minimum y = min(xi, xj) xi ≤ xj =⇒ y = xi

xi ≥ xj =⇒ y = xj
maximum y = max(xi, xj) xi ≥ xj =⇒ y = xi

xi ≤ xj =⇒ y = xj
modulo z = x mod k z ≤ k − 1

ky + z − x = 0
Higher-order x = (C) (δ = 1)⇐⇒ (C holds)
constraints x = δ

alldifferent(x1, . . . , xn) xi 6= xj ∀ 1 ≤ i < j ≤ n
distribute(card, value, base) card[i] =

∑
j∈R δij ∀ i ∈ S

atleast(low, value, base) low[i] ≤
∑

j∈R δij ∀ i ∈ S
atmost(up, value, base) up[i] ≥

∑
j∈R δij ∀ i ∈ S

atleastatmost(low, up, value, base) low[i] ≤
∑

j∈R δij ≤ up[i] ∀ i ∈ S

Table 4.2: Transformation of OPL models into MIPs

However, it may be useful to examine whether the given constraints can be
expressed in OPL more easily and efficiently by means of, for instance, logi-
cal conditions, disequalities, symbolic constraints, or functions like minimum,
maximum, and absolute value.



Chapter 5

OPL Models for FAP

We try to solve the Frequency Assignment Problem by means of ILOG OPL
Studio using different OPL models. Each of these models has its own advan-
tages and disadvantages and is useful to be applied in specific situations. We
distinguish between TRX-based and cell-based models. In Section 5.1, a com-
parison of the cell-based and the TRX-based approach, some general notes, and
some important details on our models are given. Sections 5.2 and 5.3 introduce
the TRX-based and the cell-based models for feasibility problems, respectively.
Our investigations on minimizing total interference are reported in Section 5.4.
Using OPL, we are not restricted to linear models. Thus, we also try a non-
linear OPL model which is discussed in Section 5.5. The computational results
of our tests are reported in Chapter 6. In the following, the models are explained
step by step; complete models can be found in the Appendix.

5.1 Introducing TRX-based and cell-based Models

This section gives an overview on our models. The differences between them,
their similarities, as well as their advantages and disadvantages are discussed.

5.1.1 Preliminaries

As already mentioned, we distinguish between TRX-based and cell-based mod-
els. The input graph to the former ones is the carrier network, while the latter
ones work on the cell graph, i.e., the graph where the nodes are the given cells
and the edges represent relations among the cells.

All models share the same structure and can be split into the same parts: data
definition, variables, objective, constraints, and search heuristic. Furthermore,
the definition of constraints is always according to the same scheme. Recall
from Section 2.2 that an assignment is feasible if and only if (i) no assigned
channel is blocked and if (ii) all separation requirements are met. Hence, each
model formulates constraints enforcing these requirements.

Roughly speaking, we have “base models” that can be extended as needed in the
TRX-based as well as in the cell-based case. The TRX-based models differ from
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each other in the way the input data is specified, which and how constraints are
formulated and which search heuristic is applied. The same holds for cell-based
models. Each of these models may be extended by some optional constraints.

All models mentioned so far represent feasibility problems rather than optimiza-
tion problems. In our case, the OPL built-in optimization procedures proved
not to be convincing. Hence, we decided to minimize total interference by means
of a preprocessing technique called tightening the separation, see Eisenblätter [7,
Section 4.1.2]. We have a TRX-based and a cell-based model for that purpose;
they are considered in Section 5.4.

5.1.2 Differences between cell-based and TRX-based Models

Recall from Section 2.1 that several kinds of separation requirements have to be
respected: co-site separation, co-cell separation, and hand-over separation. In
addition, a minimum required separation may be specified for each pair of cells
individually. The input graph to the TRX-based model is a carrier network,
which contains no information on cells and sites. Hence, for TRX-based models,
separation values for pairs of TRXs have to be set appropriately in order to
satisfy all these requirements. In addition, co-cell separation has to be taken
into account for all TRXs of one cell, co-site separation has to be respected for
all TRXs of one site, and hand-over relations and their corresponding separation
values have to be considered for all involved TRXs. The computation of correct
separation values for pairs of TRXs and the transformation of the given cell
graph into a carrier network has to be done in preprocessing.

TRX-based models are significantly smaller than their cell-based counterparts
since separation values for pairs of TRXs need not be computed within the
model. For cell-based models, all separation values are specified for pairs of
cells. In fact, co-cell separation and, as described in Section 5.1.3, hand-over
separation requirements are constraints on TRXs. For cell-based models, they
cannot be taken into account in preprocessing and have to be respected inside
the model, which leads to more than twice the number of constraints as for
TRX-based models. However, the information on the cell structure allows to
state some additional constraints for cell-based models that cannot be formu-
lated for TRX-based models without providing additional information.

5.1.3 The Role of the Preprocessing

OPL does not allow the addition of constraints dynamically during the compu-
tation. Hence, we have to add all information to the model in the beginning.
The following transformations, including the computation of separation values
for pairs of TRXs and the compilation of the carrier graph from the cell graph
are done in preprocessing when generating the model data.
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Integerization

The values for co- and adjacent channel interference are made integer in pre-
processing since all algorithms presented in Chapter 3 are based on discrete
variables. This is no problem since all these values can be truncated to at most
four decimal places without loosing significant precision.

Input Graphs

Actually, the given problems are directed. In particular, this means that the
cell graphs are directed and the values for separation, co- and adjacent channel
interference need not be symmetric. In addition, we are given some directed
hand-over relations between pairs of cells. In particular, a possible hand-over
from cell u to cell v does not tell anything about the possibility of a hand-over
from cell v to cell u.

We transform the given directed problems into undirected ones by considering
only edges {u, v} with u < v, after ensuring that for each given edge (u, v), an
edge (v, u) exists. The separation value of an undirected edge is defined to be
the maximum of the separation values of the underlying directed edges. The
values for co- and adjacent channel interference of an undirected edge are the
sum of the co- and adjacent channel interferences, respectively, of the underlying
directed edges.

Hand-over Separation

For TRX-based problems, the necessary hand-over separations can be taken
into account when computing the separation values for pairs of TRXs. For
cell-based models, the handling of the hand-over relations is more difficult since
the values for required hand-over separation are given for pairs of TRXs and
depend on whether the involved TRXs are BCCHs or TCHs. In particular,
different values may be required for a hand-over from a BCCH to a TCH and
vice versa. To realize the distinction of the hand-over direction, we introduce
a hand-over value for each undirected edge {u, v} of the cell graph, which can
take on one out of four possible values indicating whether (i) no hand-over is
possible in either direction, (ii) whether a hand-over is only possible from u
to v, (iii) whether a hand-over is only possible from v to u, or (iv) whether a
hand-over is possible in both directions. This approach enables us to correctly
set hand-over separation values inside cell-based models, but, in the worst case,
it doubles the number of formulated separation constraints compared to the
TRX-based model.

Available Channels

The available channels of a cell or of a carrier are also determined in prepro-
cessing, where a cell and all contained TRXs have the same set of available
channels. We are given the lower and the upper bounds of the spectrum. As
the spectrum need not be continuous, we are also given a set of globally blocked
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channels that excludes non-available channels from the given interval. More-
over, a set of locally blocked channels may be specified for each cell. For each
TRX or for each cell (depending on the model), we compute the list of available
channels by taking the lower and upper bounds and excluding globally as well
as locally blocked channels. Afterwards, these lists are added to the input data
of the models.

Redundant Constraints

A set of redundant constraints for TRX-based as well as for cell-based models
is obtained by computing maximum cliques and some further large cliques for
the corresponding carrier and cell graphs, and by employing the alldifferent
constraint to enforce that all TRXs of each clique get different channels. These
cliques are also determined in preprocessing.

5.2 TRX-based Feasibility Model

In this section, our TRX-based models are presented. The modeling of the
data, the variables, the objective, the constraints, and the search heuristic is
discussed in detail. Sections 5.2.1 to 5.2.5 deal with the “base model”, while
the optional parts of TRX-based models are examined in Section 5.2.6.

5.2.1 Model Data

The data definition of TRX-based feasibility models is shown in Figure 5.1.
Rows starting with a “//” are comments, while Row (02) defines a non-negative
integer number TRXs representing the number of TRXs of the problem. Thereby,
stating the = ... makes it possible to employ a data file for the initialization
of the variables. The nodes of the graph are defined in Row (03) by means of
a range from 0 to number TRXs−1.

Rows (06) to (10) define a record Edge type used to define the undirected edges
of the model. Three parameters are given for each edge: both end nodes u and
v, and the minimum required separation. This data structure could be used to
define directed edges as well, but the convention u < v allows the edges to be
considered undirected. The set of edges of the model is defined in Row (13);
each edge is of type Edge type. Many separation values for edges in the carrier
graph (as well as in the cell graph) are zero, see Table 6.1 on page 77. Even
if one or both of the interference values differ from zero, these edges need not
be considered since only the required separation is relevant for formulating the
constraints. Hence, only such edges with a minimum required separation of at
least 1 are given in the model.

Rows (16) and (17) define the lower and upper bounds of the available spectrum,
respectively, while Row (18) defines a range Channel of generally available
channels for the scenario. A set of available channels for each TRX is given
in Row (21). This is done as an array of sets of channels, whose name is
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01: // number of TRXs
02: int+ number_TRXs = ...;
03: range TRX 0..number_TRXs-1;
04:
05: // define a record for the set of edges
06: struct Edge_type {
07: TRX u;
08: TRX v;
09: int+ Sep;
10: };
11:
12: // the given set of edges
13: {Edge_type} Edges = ...;
14:
15: // the given spectrum
16: int+ first_channel = ...;
17: int+ last_channel = ...;
18: range Channel [first_channel..last_channel];
19:
20: // the set of available channels for each cell
21: {Channel} Available_channels[TRX] = ...;

Figure 5.1: TRX-based models: data definition

Available channels. Hence, given a TRX t, Available channels[t] returns
the set of its available channels.

Even though it is not complicated to state any OPL model of a given discrete
optimization problem, one should avoid pitfalls when formulating the models.
Recall from Section 2.2 that the values for interference and required separation
are given as matrices. A simple approach would be to actually store these
values inside OPL as matrices. Because all matrices are symmetric, another
possibility could be to only store the upper right-hand sides of the matrices in
corresponding vectors. However, in both cases many unnecessary data would
be stated since values would be defined for each possible edge in the given
graphs, and the graphs are far from being complete. We observed the impact
of these ideas in a few test runs. For the instance “siemens3”, see Section 6.1,
memory consumption rises from 60 MB if using edge sets to 340 MB if applying
vectors, and to 547 MB if employing matrices. Moreover, no bradford instance
is solvable at all. Another possible pitfall would be to add all edges to the model
instead of only those edges with a necessary separation of at least one, and to
also state separation constraints for edges with a minimum required separation
of zero, which would increase the number of stated constraints by a factor of
50 to 100.

5.2.2 Variables

This section deals with the definition of the variables of the model. The OPL
excerpt is given in Figure 5.2. One variable is needed for each TRX to store
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its assigned channel. Row (27) of the model defines an array of variables called
chan, where the variables are of type Channel.

26: // variables
27: var Channel chan[TRX];

Figure 5.2: TRX-based models: variable definition

5.2.3 Objective

Recall that we consider feasibility problems only and do not minimize total
interference. The objective is stated simply with the keyword solve followed
by the formulation of the constraints, see Figure 5.3.

29: solve {
30:

[... definition of the constraints ... ]

38: };

Figure 5.3: TRX-based models: stating the objective

5.2.4 Constraints

In order to obtain feasible assignments, two kinds of constraints have to be
satisfied. On the one hand, no assigned channel must be locally or globally
blocked. On the other hand, all separation requirements have to be met. Recall
that for the TRX-based models, all separation requirements such as co-cell, co-
site, and hand-over separation are taken into account in the separation values
for the given edges. The corresponding OPL excerpt is given in Figure 5.4.

31: // assign only allowed channels
32: forall( t in TRX )
33: chan[t] in Available_channels[t];
34:
35: // respect separation constraints
36: forall( e in Edges )
37: abs( chan[ e.u ] - chan[ e.v ] ) >= e.Sep;

Figure 5.4: TRX-based models: stating the constraints

Rows (32) and (33) impose that each TRX is assigned one of its available
channels, and Rows (36) and (37) ensure that the separation requirements are
satisfied for each edge e.
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Alternative Formulations

As mentioned in Section 4.1, the use of predicates may lead to a more effec-
tive pruning compared to simply stating the constraints. The conditions en-
suring the minimum required separation between TRXs can be rewritten with
predicates. The predicate definition as well as the rewritten constraints are
given in Figure 5.5.

25a: predicate respect_sep(int u, int v, int s)
25b: return u-v >= s \/ v-u >= s;

[ ... ]

35’: // respect separation constraints
36’: forall( e in Edges )
37’: respect_sep( chan[ e.u ], chan[ e.v ], e.Sep );

Figure 5.5: TRX-based models: alternative formulation of constraints

The “\/” stands for a logical OR in OPL. Rows (25a) and (25b) define the
predicate respect sep. It has integers u, v, and s as parameters and ensures
that the difference between u and v is at least s. Absolute values could be
employed instead of the logical OR, but this would lead to larger solution times
in our cases. In Row (37′), the predicate is applied for each edge e of the
problem.

5.2.5 Search Heuristic

The search heuristic in OPL is used to develop the search tree and is a very
important aspect of the model. The definition of a search heuristic consists of
two parts. First, a rule is defined how to choose the variable which is to be
assigned next. This is done with the keyword forall. Second, criterions for
the choice of the value are specified by means of try or tryall. Each node in
the search tree corresponds to one CSP with some additional conditions. This
could be, for example, fixing of variables or domain splittings. The nodes in the
search tree are also referred to as choice points. For more information, see [12].

We devise a search heuristic, which we call Smallest Domain Size. Unfor-
tunately, the quality of the obtained solutions is not satisfactory. Thus, we
also implement variants of the heuristics T-Coloring and DSATUR with Costs,
which proved well-suited for obtaining good results in reasonable time when
employed by Eisenblätter while developing a tool for automatic frequency plan-
ning in GSM networks [7]. However, the OPL implementations of T-Coloring
and DSATUR with Costs are not successful and outperformed by the heuristic
Smallest Domain Size with respect to solution times as well as to the quality
of the solutions, see Chapter 6.
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Smallest Domain Size

Figure 5.6 shows our search heuristic Smallest Domain Size. The OPL function
dsize takes a variable as parameter and returns the current domain size of
the variable. Hence, Row (42) selects a TRX whose corresponding variable has
the least number of possible values left. The tryall statement in Rows (43)
and (44) selects the channel to be assigned to the chosen carrier. The function
nbOccur takes a value c and an array a of variables as parameters and returns
the number of occurrences of c in a. Given a TRX t, the value to be assigned
to t is an available channel which is most seldomly assigned to any other TRX
so far. The idea is to prevent co-channel interferences as far as possible. The
actual assignment of the variable is done in Row (45).

40: // search heuristic
41: search {
42: forall( t in TRX ordered by increasing dsize(chan[t]) )
43: tryall ( c in Available_channels[t] ordered by
44: increasing nbOccur(c, chan))
45: chan[t] = c;
46: };

Figure 5.6: TRX-based models: search heuristic Smallest Domain Size

T-Coloring

Given an undirected graph G = (V, E) and non-empty finite sets T (u, v) of
non-negative integers for all uv ∈ E, a T-coloring of G is a labeling f of the
nodes of G with non-negative integers such that |f(u) − f(v)| 6∈ T (uv) for all
edges uv ∈ E. An instance of list coloring is given as a graph and lists of
colors for each node. The task is to find a labeling of the nodes such that
each node receives a color from its list and such that no two adjacent nodes
are assigned the same color. Frequency assignments have to meet list coloring
constraints, because an available channel has to be assigned to each carrier.
Moreover, frequency assignments also have to respect T-coloring constraints
since the separation requirements have to be met. For more information on
these list T-colorings, see Eisenblätter [7, Section 4.2.1].

Two values are maintained by the T-Coloring heuristic for each carrier: the
saturation degree and the spacing degree. Let d(vw) be the minimum necessary
separation for the edge vw ∈ E, the saturation degree satdeg of a carrier v is
the number of its unavailable channels, whereas the spacing degree spadeg of v
is
∑

vw∈E : w unassigned d(vw). The spacing degree estimates the impact that the
assignment of all yet unassigned neighbors of v would have to the assignability
of v. The choice of the variable is done by means of both values. The variable
v with the maximum saturation degree is chosen. In case of ties, the variable
with the maximum spacing degree is taken. Further ties are broken arbitrarily.
The channel to be assigned to the chosen carrier v is the available channel of
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v with least index. The idea behind this heuristic is the same as for DSATUR
suggested by Brélaz, namely to choose the variable which is “hardest to deal
with” next.

Figure 5.7 presents the OPL implementation of this heuristic. For each TRX
u, every neighbor v and the necessary separation between u and v are needed.
Since the edge list Edges does not provide this information, we have to add a
new data member Neighbors to the model. Each entry in the adjacency list
of a given TRX u is a structure with two members: a neighbor v of u and
the required separation between u and v. Row (50) chooses the TRX with
the smallest number of values in its domain. This corresponds to choosing
the carrier with the maximum number of blocked channels. In case of ties
in Row (50), Row (51) first calculates the spacing degree and then takes the
carrier with the maximum spacing degree. The OPL function bound is used,
which test whether a variable has already received a channel. Row (53) selects
the available channel with least index for the chosen carrier, while Row (54)
assigns this channel.

48: search {
49: forall( t in TRX ordered by increasing
50: < dsize(chan[t]),
51: -(sum( v in Neighbors[t]: not bound(chan[v.trx]) ) v.Sep)
52: > )
53: tryall( c in Available_channels[t] ordered by increasing c )
54: chan[t] = c;
55: };

Figure 5.7: TRX-based models: search heuristic T-Coloring

DSATUR with Costs

DSATUR with Costs is another modification of DSATUR and aims at producing
a feasible assignment with least possible total interference, see Eisenblätter [7,
Section 4.2.2] for details. A matrix cost of channel is used to record the costs
of all carrier/channel combinations. These costs consist of co- and adjacent
interference. For each unassigned carrier, a value key is defined. Let Bv be the
set of locally blocked channels for a carrier v and let M be a suitably chosen,
large constant, the key of v is defined as

key(v) = |Bv|M +
∑

c∈C\Bv

cost of channel[v][c].

The carrier with the maximal key value is taken. The channel to be as-
signed to the chosen carrier is its available channel with the least value in
row cost of channel[v].

Figure 5.8 shows the implementation of DSATUR with Costs in OPL. Rows (58)
to (61) select the TRX t with the maximal value key(t). The number of blocked
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channels is computed as the number of channels in the spectrum minus the
number of channels still contained in the domain of t. Rows (62) and (63)
choose the available channel with the least value in row cost of channel[t],
and Row (64) assigns this channel. The matrix cost of channel is maintained
by means of additionally introduced constraints which are based on Higher-
order constraints and are very similar to the cost constraints discussed in detail
in Section 5.2.6.

57: search {
58: forall( t in TRX ordered by decreasing
59: (last_channel - first_channel + 1 - dsize(chan[t])) * M +
60: sum( chan in Available_channels[t])
61: cost_of_channel[ t, chan ] )
62: tryall ( c in Available_channels[t] ordered by
63: increasing cost_of_channel[t,c] )
64: chan[t] = c;
65: };

Figure 5.8: TRX-based models: search heuristic DSATUR with Costs

5.2.6 Optional Parts

The presented “base model” can be extended by stating constraints calculating
the costs of an assignment (by default, the costs are determined in post pro-
cessing) and by stating constraints ensuring that all TRXs of each given clique
are assigned different channels. Additional data members and variables have to
be defined in order to formulate these constraints.

Optional Data Members

Two types of optional data definition are presented in this section: the definition
of values for co- and adjacent channel interference, and the definition of cliques
in the graph. The adapted OPL excerpt is presented in Figure 5.9.

In order to specify values for co- and adjacent channel interference, two data
members Co c i and Adj c i have to be added to the definition of the structure
Edge type in Rows (06) to (10). Again, edges are added to the input of the
model only if at least one of the values for separation, co- or adjacent channel
interference differs from zero.

The variables for the set of cliques determined in preprocessing are defined in
Row (24). Each clique is a set of TRXs. Since the cliques themselves form a
set, too, the data member Cliques is of type set of set of TRXs.

Optional Variables

To be able to compute the costs of an assignment, we have to introduce ad-
ditional variables. The corresponding optional parts of the model are given in
Figure 5.10.
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05 : // define a record for the set of edges
06 : struct Edge_type {
07 : TRX u;
08 : TRX v;
09 : int+ Sep;
09a: int+ Co_c_i;
09b: int+ adj_c_i;
10 : };

[...]

23: // optionally: a set of cliques
24: {{TRX}} Cliques = ...;

Figure 5.9: TRX-based models: optional data definition

28a: // calculate upper bounds on occuring interferences
28b: int+ max_co_c_i = sum( e in Edges ) e.Co_c_i;
28c: int+ max_adj_c_i = sum( e in Edges ) e.Adj_c_i;
28d:
28e: var
28f: int+ co_c_i in 0..max_co_c_i,
28g: int+ adj_c_i in 0..max_adj_c_i,
28h: int+ total_costs in 0..max_co_c_i+max_adj_c_i;

Figure 5.10: TRX-based models: optional variable definition

All variables have to be restricted to finite intervals. Thus, we have to calculate
upper bounds on the total co- and adjacent channel interferences to be able
to introduce the new variables properly. The upper bounds are determined in
Row (28b) and (28c), where the sum is taken over all edges in the set Edges of
the values for co- and adjacent channel interference, respectively. Actually, it
would suffice to introduce one variable for the total costs of an assignment, but
the additional effort spent on distinguishing between co- and adjacent channel
interference is negligible. Row (28f) defines the variable co c i representing
the total amount of co-channel interference of the assignment. It ranges in
the interval [0, max co c i]. In the same manner, the variables adj c i and
total costs are introduced in Row (28g) and Row (28h).

Optional Constraints

The constraints calculating the costs of an assignment and the constraints ta-
king cliques in the given graph into account are discussed in this section. Notice
that the cost constraints do not impose any restrictions. They are used to set
the values of the optional variables, which are for informational issues only. The
optional constraints are presented in Figure 5.11.

The calculation of the costs of an assignment is done by means of Higher-order
constraints (as explained in Section 4.1); hence, we refer to these cost constraints
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37a:
37b: // calculate co_c_i
37c: co_c_i = sum(e in Edges: e.Co_c_i > 0 )
37d: ( chan[e.u] = chan[e.v] ) * e.Co_c_i;
37e:
37f: // calculate adj_c_i
37g: adj_c_i = sum(e in Edges: e.Adj_c_i > 0 )
37h: ( abs( chan[e.u] - chan[e.v] ) = 1 ) * e.Adj_c_i;
37i:
37j: // calculate total costs
37k: total_costs = co_c_i + adj_c_i;
37l:
37m: // consider cliques
37n: forall( clique in Cliques )
37o: alldifferent( all( trx in clique ) chan[ trx ] );

Figure 5.11: TRX-based models: stating optional constraints

as Higher-order Costs. The total amount of co-channel interference is deter-
mined by the constraints in Rows (37c) and (37d). For each edge e, a binary
variable is associated with the Meta-constraint ( chan[e.u] = chan[e.v] ),
which equals 1 if and only if both end nodes u and v of edge e received the same
channel. Thus, the sum takes exactly those edges into account where co-channel
interference occurs between both end nodes. However, the value for co-channel
interference may be equal to zero for some of the edges. This may happen if at
least one of the values for adjacent channel interference or separation on this
edge is greater than zero. To prevent unnecessary summations, we exclude such
edges with the condition e.Co c i > 0.

The calculation of total adjacent channel interference in Rows (37g) and (37h)
parallels that of co-channel interference: the binary variables associated with
( abs( chan[e.u] - chan[e.v] ) = 1 ) equal 1 if and only if the channels
assigned to u and v differ by 1. The total costs of an assignment are computed
by the constraint in Row (37k).

The drawback of this approach is that it leads to many new variables. In the
worst case, two binary variables are introduced for each edge. This significantly
enlarges the search space, and may lead to longer solution times. To overcome
this, we apply another way to compute the costs of an assignment, which is
called Implication Costs. Only one variable edge cost is introduced for each
edge, corresponding to the cost of this edge. Afterwards, logical conditions are
used to set the variables edge cost appropriately. Even though this alternative
needs only half as many additional variables as our first approach, it proved not
to be useful in practice. Details on the tests with both kinds of cost constraints
are given in Chapter 6.

In the following, we assume that some cliques of TRXs are given in the subgraph
of the carrier graph consisting only of those edges with a separation requirement
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of at least 1. The alldifferent constraint, and therefore extra propagation
techniques for symbolic constraints, can be employed to ensure for each clique
that a different channel is assigned to all involved TRXs. We call these kind of
redundant constraints Cliques. For each given clique, Row (37o) ensures that
the assignments of all involved TRXs differ from each other. It is possible that
separation requirements on some edges of a clique are greater than 1. In this
case, alldifferent enforces less than the actually needed separation, and it
is not clear if stating this additional constraint yields any benefit. However,
its formulation seems promising since redundant constraints are combined with
the use of symbolic constraints.

5.3 Cell-based Feasibility Model

Our cell-based models are discussed in detail in this section. Most of the ideas
explained for TRX-based models also hold for cell-based models. However, ad-
ditional data and constraints are defined since co-cell and hand-over separation
requirements have to be considered within the model. Furthermore, there are
more possibilities to state redundant constraints.

5.3.1 Model Data

The first part of our cell-based models is the data definition. The correspond-
ing excerpts of our OPL models are shown in Figures 5.12 and 5.13. Row (02)
declares a non-negative integer, which is the number of cells of the problem.
The nodes of the graph are defined in Row (03) using a range from 0 to
number cells−1. Row (07) declares an array of integers to store the num-
ber of TRXs in each cell.

Like in our TRX-based models, we define a structure Edge type in Rows (10)
through (17), which is used to model the undirected edges of the problem. For
each edge, both end nodes, the required separation, and the hand-over value
indicating the directions of possible hand-overs are given. The set of edges is
defined in Row (20). As above, only those edges {u, v} are given where at least
one of the values for required separation or possible hand-over is greater than
zero.

Rows (23) to (26) declare a structure used to define the TRXs. Two attributes
are given for each TRX: the cell containing it, and its number in this cell. The
following convention is made: the first TRX in each cell is the BCCH, whereas
TRXs with n ≥ 2 are TCHs. The set of TRXs is computed in Row (29). Each
set member is a structure of type TRX type. A structure in OPL is accessed by
means of the brackets “<” and “>”. As an example, <3,1> denotes the BCCH
(n = 1) of the third cell (cell = 3).

The upper and lower bounds of the spectrum and the range of channels are
defined as in the TRX-based models in Rows (32) to (34). The set of available
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01: // number of cells
02: int+ number_cells = ...;
03: range Cell 0..number_cells-1;
04:
05: // number of TRXs per cell: BCCH + TCH’s
06: // 1: BCCH, 2..n: TCH’s
07: int+ number_TRXs[Cell] = ...;
08:
09: // define a record for the set of edges
10: struct Edge_type {
11: Cell u;
12: Cell v;
13: int+ Sep;
14: // hand-over relations between cells
15: // 0: no HO, 1: HO(u->v), 2: HO(v->u), 3: HO(u<->v)
16: int+ Ho;
17: };
18:
19: // the given set of edges
20: {Edge_type} Edges = ...;
21:
22: // define a record for the set of TRXs
23: struct TRX_type {
24: Cell cell;
25: int+ n;
26: };
27:
28: // build the set of all TRXs
29: {TRX_type} TRX = { <c,t> | c in Cell & t in 1..number_TRXs[c] };

Figure 5.12: Cell-based models: data definition (1/2)

channels for each cell is given in Row (37) by means of an array of sets of
channels.

The value for required co-cell separation may differ from cell to cell. Hence,
Row (40) defines the necessary co-cell separation for each cell by means of an
array. The values of required hand-over separation are given in Rows (43)
to (46). These values may depend on whether the involved TRXs are BCCHs
or TCHs. Thus, we are given four different values. Row (47) computes the
maximum of two of the required hand-over separation values. The OPL function
maxl is employed, which returns the maximum of a given list of parameters.

5.3.2 Variables

The definition of the variables is the same as for TRX-based models, even
though the data member TRXs is defined as a set of structures in cell-based
models and as a range of integers in TRX-based models. Figure 5.14 shows the
OPL excerpt.
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31: // the given spectrum
32: int+ first_channel = ...;
33: int+ last_channel = ...;
34: range Channel [first_channel..last_channel];
35:
36: // the set of available channels for each cell
37: {Channel} Available_channels[Cell] = ...;
38:
39: // co-cell separation
40: int+ Co_cell_separation[Cell] = ...;
41:
42: // hand-over separation
43: int+ Ho_bcch_to_bcch = ...;
44: int+ Ho_bcch_to_tch = ...;
45: int+ Ho_tch_to_bcch = ...;
46: int+ Ho_tch_to_tch = ...;
47: int+ Ho_max_bcch_tch = maxl( Ho_bcch_to_tch, Ho_tch_to_bcch );

Figure 5.13: Cell-based models: data definition (2/2)

49: // variables
50: var Channel chan[TRX];

Figure 5.14: Cell-based models: variable definition

5.3.3 Objective

The objective is again simply stated by the keyword solve followed by the
definition of the constraints since we only consider feasibility problems here.

5.3.4 Constraints

In addition to the constraints discussed for TRX-based models, co-cell sepa-
ration and hand-over separation requirements have to be respected inside the
cell-based models. Figure 5.15 presents the corresponding OPL excerpt.
Rows (55) and (56) are similar to TRX-based models and ensure that each TRX
is assigned one of its available channels.

The constraint in Rows (59) to (61) enforces co-site separation constraints as
well as individual separation requirements for pairs of cells. Conditions are for-
mulated for all pairs of TRXs in both end nodes of each edge. The requirement
in Rows (64) and (65) imposes co-cell separation constraints for each cell, where
the cell specific co-cell separation is enforced for each pair of TRXs i and j with
i < j.

The handling of hand-over separations is more complex. On the one hand,
we have to differentiate between BCCHs and TCHs, on the other hand, the
direction of the hand-overs has to be respected. Table 5.1 shows the appropriate
hand-over separation values depending on the direction of the hand-over and
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54: // assign only allowed channels
55: forall (t in TRX)
56: chan[t] in Available_channels[t.cell];
57:
58: // separation constraints
59: forall( e in Edges )
60: forall( t1 in 1..number_TRXs[e.u], t2 in 1..number_TRXs[e.v] )
61: abs( chan[<e.u,t1>] - chan[<e.v,t2>] ) >= e.Sep;
62:
63: // respect co-cell separation
64: forall( c in Cell, ordered i,j in 1..number_TRXs[c] )
65: abs( chan[<c,i>] - chan[<c,j>] ) >= Co_cell_separation[c];
66:
67: // hand-over separation u->v, v->u, u<->v
68: forall( e in Edges: e.Ho >= 1 ) {
69: // BCCH <-> BCCH
70: abs( chan[<e.u,1>] - chan[<e.v,1>] ) >= Ho_bcch_to_bcch;
71: // TCH <-> TCH
72: forall( t1 in 2..number_TRXs[e.u], t2 in 2..number_TRXs[e.v] )
73: abs( chan[<e.u,t1>] - chan[<e.v,t2>] ) >= Ho_tch_to_tch;
74: };

Figure 5.15: Cell-based models: stating the constraints

on the type of involved TRXs. A possible hand-over between a TRX of cell c1
and a TRX of cell c2 with c1 < c2 is described. The table is divided into four
parts, corresponding to the four possible directions of a hand-over between two
cells. We discuss some examples. First, consider the case that a hand-over is
only possible from c1 to c2, which corresponds to a hand-over value of 1. Given
a TRX with n > 1 in c1 and a TRX with n = 1 in c2, we have to impose
between these two the requirement for a hand-over from a TCH to a BCCH.
Assuming now, that a hand-over only is possible from c2 to c1, and considering
again a TCH in c1 and a BCCH in c2, we have to ensure the requirement for a
hand-over from a BCCH to a TCH between both TRXs.

Four related constraints are formulated in the cell-based models to ensure all
hand-over conditions. One of them is the constraint in Rows (68) to (74) pre-
sented on page 66, imposing the conditions that are independent of the direction
of a possible hand-over, i.e., the constraints between pairs of BCCHs and pairs
of TCHs. Rows (68) selects all edges with a possible hand-over in at least one
direction. Given an edge e, Row (70) enforces the minimum required separation
between both BCCHs. For each pair of TCHs in both end nodes u and v of
e, the required hand-over separation is ensured by the constraint in Rows (72)
to (74). The remaining constraints modeling the direction dependent part of
the hand-over relations are similar to the discussed one, but not explained in
detail here. The complete cell-based model including these constraints can be
found in the Appendix on page 97.

1maximum of required hand-over separation from a BCCH to a TCH and vice versa.



5.3 Cell-based Feasibility Model 67

Cell c1
Hand-over no c1→ c2 c1← c2 c1↔ c2
HO value 0 1 2 3

TRX 1 > 1 1 > 1 1 > 1 1 > 1

c2

BCCH TCH BCCH BCCH BCCH
1 0 0 ↓ ↓ ↓ ↓ ↓ Max 1

BCCH BCCH BCCH TCH BCCH
BCCH TCH TCH TCH TCH

> 1 0 0 ↓ ↓ ↓ ↓ Max ↓
TCH TCH BCCH TCH TCH

Table 5.1: Separation values for a hand-over of active calls

5.3.5 Search Heuristic

We also implement the search heuristics Smallest Domain Size, T-Coloring,
and DSATUR with Costs for cell-based models. However, the syntax slightly
differs from the implementation for TRX-based models since the modified data
definition have to be taken into account.

Moreover, the heuristic Smallest Domain Size is modified in order to use the
additional information on cells. The adapted OPL excerpt is presented in Fig-
ure 5.16. Again, a TRX is chosen with the least number of possible values left.
Unlike for TRX-based models, the TRX contained in the cell with the highest
number of TRXs is taken in case of ties. The choice of the channel is the same
as for TRX-based models. The additional definition of the tie breaker has a
major impact on the performance of this heuristic; without this condition, the
heuristic is hardly usable.

124: search {
125: forall( t in TRX ordered by increasing
126: <dsize(chan[t]), -number_TRXs[t.cell]> )
127: tryall ( c in Available_channels[t.cell] ordered by
128: increasing nbOccur(c, chan))
129: chan[t] = c;
130: };

Figure 5.16: Cell-based models: search heuristic Smallest Domain Size

5.3.6 Optional Parts

The optional constraints Higher-order Costs and Cliques for TRX-based models
can be formulated for cell-based models as well. In addition, it is possible to
state constraints breaking symmetries between the TCHs within each cell and
to impose conditions on the minimum value of the sum of all channels assigned
to one cell.
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Optional Data Members

The definition of optional data members is analogous to the case of TRX-based
models. In order to be able to compute the costs of an assignment, we have to
add two entries Co c i and Adj c i to the definition of the structure Edge type.
Moreover, the definition of the data member Cliques is also like for TRX-based
models, except that the cliques are given as a set of cells rather than as a set
of TRXs.

Optional Variables

The definition of the variables used to store the costs of an assignment is the
same as in the TRX-based case.

Optional Constraints

The definition of the constraints Higher-order Costs and Cliques parallels the
TRX-based case as well.

All TCHs within one cell can be considered equivalent since all of them have
to fulfill the same separation requirements. Hence, given the set of TCHs of
one cell and the set of channels to be assigned to them, the specific assignment
to all of them is not relevant. These symmetries can be broken by introducing
an ordering on the assignments of all TCHs in one cell. We refer to these
constraints as Break Symmetries.

Furthermore, for each cell, the required co-cell separation has to be taken into
account when assigning all contained TRXs. This leads to a redundant con-
straint on the minimum value of the sum of all channels assigned to one cell.
We call these requirements Sum Channels. Let lb be the lower bound of the
given spectrum and let dco cell(c) be the required co-cell separation for a given
cell c containing the TRXs t1, . . . , tn, any feasible assignment y has to satisfy:

n∑
i=1

y(ti) ≥
n∑
i=1

(
lb+ (i− 1) dco cell(c)

)
= n · lb+ dco cell(c)

n∑
i=1

(i− 1)

= n · lb+ dco cell(c)
n(n− 1)

2

= n
(
lb+

n− 1
2

dco cell(c)
)

(5.1)

The excerpt with both new constraints is shown in Figure 5.17. The constraint
in Rows (113) to (115) imposes an ordering on the channels assigned to the
TCHs of one cell. Thereby, only cells with at least 3 TRXs need to be consid-
ered. The constraint in Rows 118 to 121 ensures Inequality (5.1) for each cell
with at least two TRXs.
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112: // break symmetries between TCH’s within one cell
113: forall( c in Cells: number_TRXs[c] >= 3 )
114: forall( i in 2..number_TRXs[c]-1 )
115: chan[<c,i>] < chan[<c,i+1>];
116:
117: // constraint on the sum of assigned channels within one cell
118: forall( c in Cells: number_TRXs[c] >= 2 )
119: ( number_TRXs[c] * ( first_channel +
120: (number_TRXs[c]-1) / 2 * Co_cell_separation[c] )
121: ) <= sum( i in 1..number_TRXs[c] ) chan[<c,i>];

Figure 5.17: Cell-based models: stating optional constraints

5.4 Minimizing Total Interference

Up to now, we have considered feasibility problems only. The quality of the
solutions obtained with the above models is often poor in comparison to known
reference solutions. Hence, we try to explicitly minimize total interference.

As described in Section 3.1, Constraint Programming offers two approaches
to minimize or maximize a given objective function: standard search and di-
chotomic search. Standard search first determines some feasible solution for
the problem, and then tries to improve on it step by step, tightening a bound
on the objective value. On the contrary, dichotomic search performs a binary
search on the objective value. Both methods can be used in OPL but proved
not to be successful in our case. Using standard search, the objective value of
the initial solution is sometimes about 100 times higher than objective values of
known reference solutions, while the attained improvement in each step is mini-
mal. The first solution found by means of dichotomic search is unsatisfactory.
This approach fails to determine any further assignment except the first one,
even within several hours of continued computation. The reason may be that
a lower bound on the objective value is needed in order to apply dichotomic
search [19], but that no trivial lower bound greater than zero is available for
most instances of the Frequency Assignment Problem, see [10].

To cope with this problem, we employ the preprocessing technique tightening
the separation, see Eisenblätter [7, Section 4.1.2]. Given a certain threshold,
all interference values beyond this value are ruled out by means of additionally
introduced separation requirements: co-channel interference is eliminated with
a separation of one, while co- and adjacent channel interference are prevented
with a separation value of two.

We develop a framework to perform tightening the separation, which is explained
in the following. Even though the goal is to minimize total interference, fea-
sibility models are used to compute the actual assignments. Minimization is
achieved by modifying the input data for these models. For a given scenario,
the optimization procedure mainly consists of determining that tightening the
separation threshold, which yields the least total interference.
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Either a TRX-based or a cell-based feasibility model is applied to determine
the solutions. As shown in Section 6.2, scenarios often can be solved faster by
means of TRX-based models than with cell-based models, but cell-based models
enable us to solve some scenarios that cannot be solved with TRX-based models
at all. Hence, both kinds of models are employed for our approach. For the
TRX-based model, no optional constraints are formulated, while the additional
constraints Cliques, Break Symmetries, and Sum Channels are stated for the
cell-based model. The search procedure Smallest Domain Size is applied in
either case.

In order to perform tightening the separation, both feasibility models are ex-
tended by (i) adding the tightening the separation threshold to the model data
and (ii) by defining an initialization procedure which modifies the given sepa-
ration values in order to prevent interferences beyond the threshold. The corre-
sponding OPL excerpt is presented in Figure 5.18. It applies for the cell-based
as well as for the TRX-based model. Row (47a) defines a non-negative inte-
ger representing the given threshold, while the actual tightening the separation
procedure is shown in Rows (47d) through (47q).

47a: int+ Threshold = ...;
47b:
47c: // tightening the separation
47d: initialize{
47e: forall( e in Edges ) {
47f: if e.Adj_c_i > Threshold & e.Sep < 2 then {
47g: e.Sep = 2;
47h: }
47i: else {
47j: if e.Co_c_i > Threshold & e.Sep = 0 then {
47k: e.Sep = 1;
47l: }
47m: endif;
47n: }
47o: endif;
47p: }
47q: };

Figure 5.18: Minimizing total interference: tightening the separation

ILOG OPL Studio offers the possibility to use scripts, similar to shell scripts in
UNIX operating systems. These scripts allow solving a specific scenario several
times consecutively. In addition, it is possible to modify parts of the input data.

The whole computation is controlled by either an OPL script or by a Perl
script. In the beginning, the script determines an initial solution by means
of a feasibility model. Subsequently, it computes the costs of this assignment
and performs a binary search on the new tightening the separation threshold.
Whenever a new threshold has been determined, tightening the separation with
this value is performed and the input data for the feasibility model is altered.
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After this, the script uses the feasibility model and the modified data to compute
a new assignment.

Our computational tests show that the described costs constraints should not
be used for feasibility models, because otherwise most of the calculation time
is spent for computing the costs rather than for determining the actual assign-
ments. The costs of an assignment are obtained by employing a second OPL
model, which does not search for any solution, but only calculates the total
amount of interference for a given assignment. The cost constraints Higher-
order Costs are used for this purpose. This method reduces the solution times
compared to directly stating the cost constraints for the feasibility model, but
memory consumption is considerable in both cases. To avoid the calculation of
the costs by means of OPL, we employ a Perl script instead of the OPL script,
which computes the costs of a given assignment itself. This approach reduces
memory consumption by a factor of 2, but the total solution time of the Perl
script is in most cases slightly higher than the solution time of the OPL script.
The reasons are explained in Section 6.4.1.

A time limit is used to abort the computation for the feasibility models when
searching for a solution according to the current tightening the separation thresh-
old. If no solution could be found during this time, it is assumed that there is
no solution, and a higher threshold is chosen. Obviously, the choice of the time
limit is very important for the success of the minimization approach. Setting
the limit too high results in unnecessary long solution times. However, some
solutions may not be found if the search is aborted too quickly. Our compu-
tational tests indicate that the solution times for the scenarios do not depend
much on the choice of the current threshold. The time limit is set to 5 times
the time needed to solve the scenario with the initial threshold. This proved to
be a good compromise.

Altogether, we try three different approaches for minimizing total interference:
an OPL script combined with a cell-based feasibility model, an OPL script
combined with a TRX-based feasibility model, and a Perl script together with
a cell-based feasibility model. The Perl script is not used in conjunction with
the TRX-based model since our computational studies show that the cell-based
model should be preferred to the TRX-based model when minimizing total
interference. For details on the results of all three minimization methods, see
Section 6.4.

5.5 Non-linear TRX-based Feasibility Model

As already pointed out, the quality of the solution obtained with the models
discussed so far is often unsatisfactory. Since OPL offers the possibility to state
and solve non-linear models, we also investigate this approach. After introdu-
cing our non-linear mathematical model for FAP, the corresponding OPL model
is presented.
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Mathematical Model

One binary variable yvc is introduced for each TRX v and for each available
channel c of v, which equals 1 if and only if TRX v is assigned the channel c.
As in Section 2.2, C denotes the available spectrum, Bv is the set of locally
blocked channels for each carrier v ∈ V , and cco : e → [0, 1], cadj : e → [0, 1],
d : e → Z+ define the co-channel interference, adjacent channel interference,
and minimum required separation, respectively. An assignment y is feasible if
and only if:∑

c∈C\Bv

yv,c = 1 ∀ v ∈ V (5.2)

yu,c1 · yv,c2 = 0 ∀ (u, v) ∈ E, c1 ∈ C \Bu, (5.3)
c2 ∈ {c ∈ C \Bv : |c1 − c2| < d(u, v)}

Equation (5.2) ensures that each TRX is assigned exactly one of its available
channels, and the separation requirements are respected due to Condition (5.3).

The objective is to minimize the total amount of co- and adjacent channel
interference and can be stated as follows:

min
∑

(u,v)∈E

∑
c∈C\(Bu∪Bv)

yuc · yvc · cco(u, v) +

∑
(u,v)∈E

∑
c∈C\Bu:
c−1∈C\Bv

yuc · yv,c−1 · cadj(u, v) +

∑
(u,v)∈E

∑
c∈C\Bu:
c+1∈C\Bv

yuc · yv,c+1 · cadj(u, v)

OPL Model

Having introduced our non-linear model for FAP, we now turn to its OPL imple-
mentation. For reasons described in Section “Optional Constraints” on page 61,
we formulate a model for a feasibility problem rather than for an optimization
problem. As for linear models, the parts for data definition, variable definition,
stating the objective, the constraints, and the search heuristic are discussed.

The model data is defined as shown in Section 5.2.1 since the non-linear OPL
model is TRX-based, too. The variable definition is given in Figure 5.19.

26: // variables
27: var int+ y[TRX,Channel] in 0..1,

Figure 5.19: Non-linear model: variable definition

Row (27) introduces a binary variable y for each TRX and for each channel
in the spectrum by means of a 2-dimensional array (sets of variables are not
supported in OPL). The objective is stated with the keyword solve, whereas
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the definition of the constraints is presented in Figure 5.20. Rows (32) and (33)
impose that each TRX is assigned one of its available channels, while separa-
tion requirements are ensured by the constraints in Rows (36) to (40). Given
an edge e = (u, v) and a channel c1 assigned to u, it is enforced that no channel
c2 with |c1− c2| < d(u, v) is assigned to v.

31: // assign exactly one channel
32: forall( v in TRX )
33: sum( c in Available_channels[v] ) y[v,c] = 1;
34:
35: // separation requirements
36: forall( e in Edges )
37: forall( c1 in Available_channels[e.u],
38: c2 in Available_channels[e.v]:
39: c1 - e.Sep + 1 <= c2 <= c1 + e.Sep - 1 )
40: y[e.u,c1] * y[e.v,c2] = 0;

Figure 5.20: Non-linear model: stating the constraints

As a search heuristic we employ Smallest Domain Size, because this is the most
successful one when applied in the previously discussed feasibility models. The
OPL excerpt of the adapted heuristic is presented in Figure 5.21.

42: // search heuristic
43: search {
44: forall ( v in TRX ordered by increasing
45: sum( c in Available_channels[v] ) dsize(y[v,c]) ) {
46: tryall( c in Available_channels[v] ordered by increasing
47: sum( w in TRX: bound( y[w,c] ) ) y[w,c] ) {
48: y[v,c] = 1;
49: forall( c2 in Channel: c <> c2 ) y[v,c2] = 0;
50: };
51: };
52: };

Figure 5.21: Non-linear model: search heuristic Smallest Domain Size

In Rows (44) and (45), the TRX with the least number of possible values left is
chosen. To calculate the number of channels currently available for a TRX, the
sum is taken over all available channels of this TRX of the domain sizes of the
corresponding binary variables. For a chosen TRX, Rows (46) and (47) select
the channel least often assigned to any other TRX so far. For this, the OPL
function bound is used, which tests whether a variable has already received a
channel. Row (48) assigns the selected channel to the chosen TRX, whereas
Row (49) ensures that each TRX is assigned only one channel.

In this chapter, we discussed TRX-based and cell-based feasibility models, our
approaches for minimizing total interference as well as a non-linear model for
FAP. Our tests show that many scenarios are not solvable by means of the
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non-linear model, but whenever an assignment is obtained for a given scenario,
it is exactly the same as the assignment computed with a linear TRX-based
feasibility model (using the search heuristic Smallest Domain Size). Hence, we
do not further investigate the non-linear approach. In Chapter 6, we present the
computational studies made with TRX-based and cell-based feasibility models,
compare several feasibility models with each other, and report on the results of
the approaches for minimizing total interference.



Chapter 6

Computational Results

In the previous chapter, we introduced different TRX-based and cell-based fea-
sibility models and our investigations on minimizing total interference. In the
following, we report on the computational studies of all these approaches.

The tests are performed on a dual Pentium 4 Xeon machine, operating with 2.4
GHz clock speed, equipped with 2 GB system memory, and running a Linux
operating system.

Section 6.1 introduces our test instances, while Section 6.2 gives a comparison
of cell-based and TRX-based feasibility models. It is shown that TRX-based
models often find solutions more quickly than cell-based models, but that TRX-
based models fail to solve some scenarios which can be solved by means of
cell-based models.

In Section 6.3, a computational comparison of different cell-based feasibility
models is presented. TRX-based models are not considered here since cell-
based models offer more possibilities to analyze modeling alternatives than
TRX-based models, because of the additional constraints for cell-based models
that cannot be formulated for TRX-based models without providing additional
information in the input data (cf. Section 5.1). Furthermore, the results of the
investigations are the same for TRX-based as well as for cell-based feasibility
models.

In Section 6.4, the approaches on minimizing total interference are discussed.
Our methods using OPL are studied and the obtained results are compared
with the solutions computed with a construction heuristic. Furthermore, an
improvement heuristic is applied to the solutions computed by means of OPL
in order to reduce total interference.

No results on the non-linear approach are reported since on the one hand, most
of the instances cannot be solved in reasonable time, and on the other hand,
whenever an assignment is found, it is the same as the assignment computed
with a linear TRX-based feasibility model.
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6.1 Test Instances

Now, we are going to present our test instances. These scenarios have been
provided by the E-Plus Mobilfunk GmbH & Co. KG, by the Siemens AG, and
by the Swisscom Ltd. Their characteristics are summarized in Table 6.1, a
more detailed description and investigation of them can be found in [7]. All
these scenarios and corresponding reference solutions can be obtained from FAP
web [8].

K: A GSM 1800 network of a dense urban environment with 92 sites, 264
cells, and 267 TRXs. There are 151 interference relations per TRX on
the average, e.g., the carrier network contains more than the half of the
edges of the complete graph. The spectrum is a contiguous interval of 50
channels.

We also use a modified version of “K” referred to as “K(0.02)”, where
tightening the separation has been performed with a threshold of 0.02.
For “K”, this value proved to be a good choice to reduce total interference
when employing cell-based models.

siemens1: A GSM 900 network with 179 sites, 506 cells, and 930 TRXs. The
spectrum is given as two blocks of 20 and 23 channels.

siemens2: A GSM 900 network with 86 sites, 254 cells, and 977 TRXs. The
spectrum consists of two contiguous intervals of 4 and 72 channels.

siemens3: A GSM 900 network with 366 sites, 894 cells, and 1623 TRXs. The
spectrum is given as 55 contiguous channels.

siemens4: A GSM 900 network with 276 sites, 760 cells, and 2785 TRXs. The
available spectrum consists of 39 contiguous frequencies.

Swisscom: A GSM 900 network within a city with 87 sites, 148 cells, and
310 TRXs. The spectrum consists of two contiguous blocks of 3 and 49
channels. There are many local channel blockings: 136 cells are restricted,
only 15 channels are available in the worst case, the median value of
available channels per cell is 29.

Even though this is a very small network, it is difficult to determine
any feasible solution at all because of its many channel blockings. Some
example solutions for this scenario can be found at FAP web [8]. However,
Eisenblätter et al. report in [10] that they did not succeed in solving the
FAP as an Integer Linear Program. In addition, Eisenblätter mentions
in [7, Chapter 5] that their heuristics for this scenario failed since they
do not work if it is hard to obtain any feasible solutions. Hence, we are
especially interested in solving this test instance by means of Constraint
Programming.
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bradford nt-d-p: GSM 1800 networks with (in most cases) 649 sites and 1886
cells. Actually, the same cell graph is underlying all these instances, but
three cell graphs differ in their number of nodes and edges. The available
spectrum consists of 75 contiguous channels.

On the one hand, these scenarios differ by their number of TRXs, on the
other hand, three different interference predictions are available. A basic
traffic load has been scaled by the factor d, which can take on values of 0,
1, 2, 4, and 10. The resulting number of TRXs for the scenarios are 1886,
1971, 2214, 2775, and 4145. Interference prediction (p) is done accord-
ing to a model developed by E-Plus (eplus), using free space propagation
(free), and according to a Modified Okumura-Hata model (race). For de-
tails, see [7, Section 2.3.2]. There are also variants called bradford-d-p
with a higher number of TRXs compared to their corresponding brad-
ford nt instances. The number of TRXs for the bradford instances are
1886, 2947, 3406, 3996, and 4871.

In order to increase performance, we compute maximum cliques (and, in ad-
dition, a set of further large cliques) for the given graphs and add these in-
formation to the input data of the models. For details on the algorithm used,
see [6, 7]. We are interested in maximum cliques for the cell graphs as well as
for the underlying carrier networks of the scenarios. However, we need cliques
for the subgraphs consisting only of those edges e ∈ E with a minimum re-
quired separation d(e) ≥ 1 rather than cliques for the given graphs themselves.
Let Gcell and Gcarrier be the given cell and carrier networks and let Hcell and
Hcarrier be their subgraphs containing only those edges e with d(e) ≥ 1. Ta-
ble 6.2 lists the sizes of the maximum cliques for all these graphs.

Scenario Gcell Gcarrier Hcell Hcarrier

K 68 69 7 7
siemens1 38 75 5 10
siemens2 75 295 6 24
siemens3 51 100 13 23
siemens4 107 443 4 11
Swisscom 9 21 9 21

Table 6.2: Maximum clique sizes within carrier and cell networks

6.2 Overview on Cell-based and TRX-based Models

This section contains a general overview on our experiences made when solving
the Frequency Assignment Problem by means of feasibility models and also
presents the results for solving all scenarios with one cell-based and one TRX-
based feasibility model. These results as well as the values of known reference
solutions of the test instances are shown in Table 6.3 on page 80. For both



6.2 Overview on Cell-based and TRX-based Models 79

models, the search heuristic Smallest Domain Size is used and no additional
constraints are formulated.

The following observations can be made with all our cell-based and TRX-based
feasibility models:

• Cell-based models enable us to solve more instances than TRX-based
models because of the additional constraints for cell-based models that
exploit information on the cell structure.

• Whenever TRX-based models determine a solution for a scenario, the
time consumed is less than the time needed by cell-based models.

• TRX-based models require slightly more memory than cell-based mo-
dels. One reason could be that the carrier graph in TRX-based models is
typically larger than the cell graph in cell-based models. TRX-based mo-
dels consume at most 1.5 times the memory needed by cell-based models,
i.e., even for instances with more than 4000 TRXs, only about 250 MB
RAM is needed by TRX-based models. Hence, this additional memory
consumption does not cause any problem.

However, as reported in Section 6.3.3, minor changes in the formulation
of the constraints may increase memory consumption dramatically, such
that most of the instances can hardly be solved at all by the modified
model on a regular work station.

• The problem of all feasibility models is the quality of the obtained solu-
tions. As shown in Table 6.3, the costs of the assignment computed for
“K” is 85 times the value of the known reference solution if no tightening
the separation is performed, and 4.4 times the reference value if tighten-
ing the separation with a threshold of 0.02 is applied. The results for
the bradford instances are even less satisfactory. The costs of our assign-
ments exceed the costs of the reference solutions by a factor of 7.5 to 500
(“bradford nt-10”). For a given scenario, any assignment is computed by
means of feasibility models without trying to prevent occurring interfer-
ences, which results in this extensive costs. The solution values obtained
with cell-based and TRX-based feasibility models differ by at most 10
percent.

• An interesting observation can be made when investigating the solutions of
the scenarios determined by means of feasibility models. Given a scenario
and applying the search heuristic Smallest Domain Size, most of the cell-
based models compute exactly the same assignment. The only difference
between the models is the performance: solution times differ by a factor
of more than 484 (“K”), and memory consumption differs by a factor of
40 (“siemens2”). This holds true for each scenario except for “Swisscom”,
where different assignments are obtained with different models, and except
for the cell-based model with the additional constraint Implication Costs,
which determines other assignments for two given instances (“siemens1”
and “siemens2”) than the remaining models.
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cell-based model TRX-based
no additional constr. no additional constr.

RAM time RAM time ref.
Scenario [MB] [s] costs [MB] [s] costs value
K 18 0.16 41.9 19 0.08 38.3 0.45
K(0.02) 32 0.79 2.0 28 >3600 - 0.45
siemens1 35 1.40 52.0 38 1.26 55.1 2.30
siemens2 49 2.05 56.8 70 1.12 59.9 14.28
siemens3 60 >3600 - 63 >3600 - 5.19
siemens4 78 13.85 297.9 107 6.17 297.2 80.97
Swisscom 11 27565 - 13 20400 - 27.21
bradford-0-eplus 90 4.46 187.5 81 3.84 187.5 0.80
bf-0-free 92 4.40 118.0 83 3.97 118.0 0.00
bf-0-race 87 4.51 82.9 82 3.94 82.9 0.00
bf-1-eplus 120 11.04 484.7 141 5.85 484.2 33.99
bf-1-free 124 10.89 366.9 146 5.29 348.0 0.16
bf-1-race 120 10.66 233.0 141 5.43 231.4 0.03
bf-2-eplus 136 14.85 667.3 167 6.96 688.8 80.03
bf-2-free 140 14.78 488.3 173 7.05 488.9 2.95
bf-2-race 136 14.46 315.5 167 7.17 312.3 0.42
bf-4-eplus 156 20.10 974.4 198 >3600 - 167.70
bf-4-free 165 19.96 770.7 144 >3600 - 22.09
bf-4-race 156 19.39 478.9 201 9.71 436.1 3.04
bf-10-eplus 116 >3600 - 159 >3600 - 400.00
bf-10-free 130 >3600 - 209 >3600 - 117.80
bf-10-race 99 >3600 - 236 >3600 - 30.22
bf nt-1-eplus 89 4.92 201.0 86 2.29 195.2 0.86
bf nt-1-free 95 4.84 143.5 87 2.39 135.5 0.00
bf nt-1-race 123 5.01 96.9 86 2.28 92.3 0.00
bf nt-2-eplus 129 6.16 267.6 167 7.01 261.8 3.17
bf nt-2-free 99 6.12 204.1 157 5.25 200.4 0.00
bf nt-2-race 100 5.97 133.2 165 6.83 144.9 0.00
bf nt-4-eplus 116 9.75 446.7 125 4.36 430.1 17.73
bf nt-4-free 117 9.88 326.2 131 4.49 311.5 0.00
bf nt-4-race 115 9.87 219.9 125 4.46 226.5 0.00
bf nt-10-eplus 157 20.34 1119.0 199 9.33 1109.7 146.20
bf nt-10-free 163 20.05 870.2 194 9.76 854.9 5.86
bf nt-10-race 163 19.76 549.9 199 9.48 555.6 1.07

Table 6.3: Solutions of a cell-based and a TRX-based feasibility model
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• The TRX-based case parallels the cell-based one. All TRX-based feasi-
bility models using the search heuristic Smallest Domain Size compute
the same assignment for a given scenario, but the performance between
the TRX-based models varies less drastically than in the cell-based case.
Even the non-linear model (which is TRX-based) produces the same as-
signment (if any) for a given scenario as all the linear TRX-based models.

Considering Table 6.3, every scenario can either be solved within a few seconds,
or no solution can be found for this instance within more than one hour. The
bradford instances, which have between 2000 and 4000 TRXs, can be solved by
means of TRX-based feasibility models in at most 10 seconds, and by means
of cell-based models in at most 21 seconds (if any solution is found), while
instances with about 1000 TRXs are solved in about 1 to 2 seconds (“siemens1”
and “siemens2”). Furthermore, comparing the results for the scenarios “K”
and “K(0.02)” computed with the cell-based model, performing tightening the
separation with a threshold of 0.02 reduces total interference by a factor of 20,
whereas the required time remains nearly the same. Moreover, the scenario
“K(0.02)” cannot be solved by the TRX-based model, even though a solution
is found for this instance by the cell-based model. A tightening the separation
threshold higher than 0.02 has to be chosen in order to solve the instance “K”
by means of a TRX-based feasibility model.

As we have seen, TRX-based models only need about half the time than cell-
based models to compute a feasible assignment for a given instance. However,
cell-based models enable us to solve some instances that cannot be solve by
means of TRX-based models in reasonable time. The differences regarding
memory consumption and quality of the solution between both kinds of mo-
dels are negligible, whereas the quality of the obtained solutions is often not
convincing.

6.3 Comparing different Cell-based Models

Computational studies on different cell-based feasibility models are reported in
this section. The influence of formulating redundant constraints, of breaking
symmetries, of stating cost constraints, and the impact of applying an alterna-
tive formulation for the separation constraints are investigated, and different
search heuristics are compared.

Among others, the scenario “bradford nt-10-eplus”, which has more than 4000
TRXs and is one of the largest instances we are able to solve, is used for the
following tests. The search heuristic Smallest Domain Size is employed for all
models unless stated otherwise. The results of the following tests are compared
with the ones for the model without any further constraint, which are given in
Table 6.3.



82 Computational Results

6.3.1 Redundant Constraints

In this section, the impact of stating redundant constraints and of breaking
symmetries is investigated for cell-based feasibility models. It is shown that it is
useful to apply these constraints since this may allow solving some instances that
are not solvable otherwise. In case no benefit is gained, the effort additionally
spent on maintaining the optional constraints is negligible.

In the following, the constraints Sum Channels, which impose a condition on
the minimum value of the sum of all channels assigned to one cell; Break Sym-
metries, which break the symmetries between the TCHs of one cell; and Cliques,
which enforce that all TRXs of each given clique are assigned different chan-
nels, are investigated. The impact of separately stating these three constraints
and the effect of combining the constraints Break Symmetries and Cliques are
observed. Since formulating the constraint Sum Channels does not improve
performance, it is not combined with any other constraint. The results of these
tests are shown in Table 6.4. As a reference for comparison, the results for the
model without any redundant constraint are listed as well, cf. Table 6.3.

Comparing the results from Table 6.4 for the models with and without the
constraint Sum Channels, the solution times are slightly higher if this constraint
is formulated.

Stating the constraint Break Symmetries enables us to solve the scenarios
“siemens3” and “Swisscom”, which cannot be solved without this constraint.
It is remarkable that “siemens3” can be solved in about six and a half seconds
if Break Symmetries is formulated, while no solution can be found within one
hour if this constraint is omitted. The results for most of the other instances
have not changed significantly. This is particularly surprising for “bradford nt-
10-eplus” since this scenario has up to 12 TRXs per cell, and we expected that
breaking symmetries reduces the solution time in this case.

The formulation of the redundant constraint Cliques allows us to solve “Swiss-
com” in about three and a half hours. However, the impact of this constraint
on the results of the other instances is minor.

When combining the constraints Break Symmetries and Cliques, it is possible
to solve “Swisscom” in less than one hour. This is a considerable success since
it is difficult to obtain any feasible solution for this scenario, cf. the notes on
page 76.

In summary, stating the additional constraints enables to solve the instances
“siemens3” and “Swisscom”, while the solution times for the other instances
remain nearly the same. Hence, it is useful to apply these optional constraints
for the Frequency Assignment Problem.
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6.3.2 Formulating Cost Constraint

The costs of the assignments are determined in post processing by means of a
Perl script. It is also possible to state some constraints in OPL, which allow to
calculate the occurring costs. In Section 5.2.6, two different ways for formulating
these cost constraints are described. The first approach is by means of Higher-
order Constraints and is referred to as Higher-order Costs, while the second
method uses implications and is called Implication Costs.

In the following, the impact of the cost constraints on the performance is in-
vestigated and it is shown that both kinds of cost constraints should not be
applied. In either case, no redundant constraints are formulated. The obtained
results are summarized in Table 6.5 and are compared with the results for the
model without any additional constraint from Table 6.3.

with with
Higher-order Costs Implication Costs

RAM time RAM time
Scenario [MB] [s] costs [MB] [s] costs
K 67 1.90 41.9 130 77.70 41.9
K(0.02) 60 2.21 2.0 160 64.60 2.0
siemens1 102 5.65 52.0 106 21.53 45.1
siemens2 337 27.20 56.8 287 50.35 44.1
siemens3 252 >3600 - 164 >3600 -
siemens4 547 104.83 297.9 319 >3600 -
Swisscom 14 34014 - 13 29520 -
bradford nt-10-eplus 1236 1461 1119.0 >2300 >3600 -

Table 6.5: Formulating cost constraints

Considering both tables and comparing the models with and without the con-
straint Higher-order Cost, the formulation of these constraints leads to an in-
crease in memory consumption by a factor of up to 7 and to an increase in the
solution times by a factor of up to 10. The computed assignments remain the
same. The additional variables implicitly introduced by the Higher-order con-
straints may cause this deterioration of the performance since two variables are
introduced for all those edges, where at least one interference value is greater
than zero.

The results for the models with and without the constraint Implication Costs
can be found in Table 6.5 and 6.3, too. Even though only one variable is needed
for each of the previously mentioned edges, the performance deteriorates sub-
stantially. As an example, consider the solution time for “K”, which increases
by a factor of 485 compared to the model without any cost constraints. In addi-
tion, the scenarios “siemens3”, “siemens4”, “Swisscom”, and “bradford nt-10-
eplus” cannot be solved within one hour and the amount of consumed memory
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increases by a factor between 4 and 15 if the constraint Implication Costs is
formulated. As mentioned in Section 6.2, this model is the only one that deter-
mines solutions for “siemens1” and “siemens2” different than all other models.
The costs of these assignments are 10 and 20 percent less, respectively, than
the costs of the assignments computed otherwise by the cell-based models, but
to obtain these new assignments, the twentyfold of time is needed. However, it
remains unclear why this approach has such enormous drawbacks compared to
Implication Costs.

Summing up, both kinds of cost constraints should not be used for feasibility
models since performance decreases significantly otherwise.

6.3.3 Using predicates

In Section 5.2.4, we presented an alternative way to state the separation con-
straints by means of predicates. The goal is to enhance finding solutions
since arc consistency is enforced on all constraints formulated by means of
predicates. However, our computational studies show that this alternative
formulation should not be applied. The results of the tests are given in Ta-
ble 6.6, no optional constraints are stated.

employing
predicates

RAM time
Scenario [MB] [s] costs
K 119 1.27 41.9
K(0.02) 727 11.11 2.0
siemens1 330 7.82 52.0
siemens2 1900 28.16 56.8
siemens3 1752 >3600 -
siemens4 1156 54.74 297.9
Swisscom 64 14764 -
bradford nt-10-eplus >2500 - -

Table 6.6: Formulating separation constraints with predicates

The major problem when employing predicates for FAP is the memory con-
sumption. For “siemens2”, the amount of needed memory is 1900 MB, while
“bradford nt-10-eplus” cannot be solved at all since more than 2500 MB mem-
ory is needed. Even though special propagation techniques may be applied
when stating predicates, the resulting assignments are identical to the ones
obtained by the other models. Hence, we do not employ predicates for stating
the separation constraints.
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6.3.4 Alternative Search Heuristics

All previous tests in this chapter were performed with models employing the
search heuristic Smallest Domain Size. Since the quality of the obtained solu-
tions is often not convincing, the alternative heuristics T-Coloring and DSATUR
with Costs are investigated and compared to the heuristic Smallest Domain Size
in this section. No additional constraints are formulated for all these models.

with the heuristic with the heuristic
T-Coloring Smallest Domain Size

time time ref.
Scenario [s] costs [s] costs value
K 13.57 336.3 0.16 41.9 0.45
K(0.02) 14.97 2.5 0.79 2.0 0.45
siemens1 127.63 290.0 1.40 52.0 2.30
siemens2 751.31 156.3 2.05 56.8 14.28
siemens3 >3600 - >3600 - 5.19
siemens4 >3600 - 13.85 297.9 80.97
Swisscom 323286 - 27565 - 27.21
bradford nt-10-eplus >3600 - 20.34 1119.0 146.20

Table 6.7: Comparing the heuristics T-Coloring and Smallest Domain Size

The results for the heuristics T-Coloring and Smallest Domain Size as well
as the values of the known reference solutions for the scenarios are given in
Table 6.7. It can be seen that the costs of the assignment determined for “K”
when applying T-Coloring is 8 times the costs when using the heuristic Smallest
Domain Size and almost 750 times the costs of the known reference solution
for this scenario. The second disadvantage of T-Coloring implemented in OPL
is the solution time. As can also be seen in Table 6.7, solving “siemens2” takes
750 seconds with the heuristic T-Coloring compared to about 2 seconds needed
by the search heuristic Smallest Domain Size. No solution can be found within
one hour for the instances “siemens3”, “siemens4”, and “bradford nt-10-eplus”.
The reasons for the failure of this heuristic in our case are not clear.

The results for the search heuristic DSATUR with Costs are even more drastic.
Not even the instance “K” can be solved within one hour if this heuristic is
applied, hence no results on the tests are presented in any table. More than
1300 MB of memory is consumed by this heuristic, which is an increase by a
factor of 70 compared to the heuristic Smallest Domain Size. The reason for
the failure of this heuristic may be the large number of additional variables
which are introduced by the Higher-order constraints in order to maintain the
matrix cost of channel, cf. page 59.

Hence, we apply the search heuristic Smallest Domain Size. It outperforms the
OPL implementations of T-Coloring and DSATUR with Costs with respect to
solution times and the quality of the obtained assignments.



6.4 Minimizing Total Interference 87

6.4 Minimizing Total Interference

We try to explicitly minimize total interference since the quality of the solutions
determined by means of feasibility models is often not convincing with respect
to known reference solutions.

Three different approaches to minimize total interference are introduced in Sec-
tion 5.4: an OPL script combined with a cell-based feasibility model, an OPL
script combined with a TRX-based feasibility model, and a Perl script in con-
junction with a cell-based feasibility model. In Section 6.4.1, these methods are
investigated and it is shown that altogether a minor advantage can be seen for
the OPL script combined with the cell-based model.

We implement the heuristic DSATUR with Costs in the programming language
C++ to compare the results obtained with ILOG OPL Studio with solutions
determined by an own computer program. Furthermore, in order to reduce
total interference, we apply the improvement heuristic Variable Depth Search
to the solutions determined by means of OPL. The results of both approaches
are discussed in Section 6.4.2 and Section 6.4.3, respectively.

6.4.1 Employing OPL

In the following, we investigate our minimization methods which employ OPL.
The computational results are presented in Table 6.8 and are compared with
the solutions determined by feasibility models and with the values of known
reference solutions for the scenarios, see Table 6.3.

OPL script with OPL script with Perl script with
TRX-based model cell-based model cell-based model

RAM time RAM time RAM time
Scenario [MB] [s] costs [MB] [s] costs [MB] [s] costs

K 56 21.56 2.3 60 61.71 1.7 54 84.52 1.7

siemens1 106 65.82 8.8 80 65.00 12.6 86 81.03 12.6

siemens2 515 157.61 40.4 297 223.13 29.3 119 204.02 29.3

siemens3 - - - 204 93.53 55.6 237 99.41 55.6

siemens4 885 1472.36 252.8 500 1153.90 206.9 286 1271.11 206.9

Table 6.8: Minimizing total interference by means of OPL

First, we report some general observations on the minimization approaches with
OPL. Thereafter, the three applied methods are compared with each other.

Considering Table 6.8 and Table 6.3 and comparing the solutions determined by
the minimization approach with the solutions computed with feasibility models,
the achieved improvement varies widely among the scenarios. The costs for “K”
decrease by a factor of more than 24 (from 41.9 to 1.7), whereas the costs for
“siemens3” cannot be reduced by the optimization procedure. The solution
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times are considerable for the minimization approach; about 20 minutes are
needed to solve the scenario “siemens4”. The values of the improved solutions
are still between 2 and 10 times the values of known reference solutions. In
order to investigate whether it is possible to obtain better results by increasing
the search time, we set the time limit for the instance “K” to more than 5
hours (instead of to a few seconds), but the obtained assignments are the same
in either case.

Thus, applying the minimization approaches reduces total interference in most
cases, but the quality of the obtained solutions is still not much satisfactory.

In the remaining of this section, the three possibilities for minimizing total in-
terference by means of OPL are compared with each other. Considering the
results of the OPL script combined with either the cell-based or the TRX-based
feasibility model, it can be seen that the cell-based procedure produces in 4 out
of 5 cases better solutions than the TRX-based method; recall that no solu-
tion at all is found for “siemens3” by means of TRX-based (feasibility) models
within more than one hour. In contrast to feasibility models, the quality of the
solution obtained with cell-based and with TRX-based models differ by up to 50
percent (“siemens2”) when minimizing total interference, because of different
final tightening the separation thresholds for both kinds of models. Comparing
the memory consumption for both methods, the TRX-based approach consumes
up to 50 percent more memory than the cell-based method on large instances:
for “siemens4” 885 MB is needed instead of 500 MB. This is caused by the
variables implicitly introduced by the cost constraints (recall that two variables
are added for each edge and that the carrier graph is most often larger than
the cell graph). Hence, cell-based models should be preferred to TRX-based
models when trying to minimize total interference.

We also employ a Perl script instead of the OPL script in order to prevent
calculating the costs by means of OPL, because the latter method consumes
much memory. If the same OPL model is used in conjunction with either the
OPL script or the Perl script, the obtained assignments are identical since the
same algorithm is implemented for the binary search on the final tightening the
separation threshold in both scripts. As the cell-based model determines better
solutions than the TRX-based model in most cases, the Perl script is only used
with the cell-based model.

Comparing the amount of memory consumed by the Perl approach and by the
OPL script combined with the cell-based model, the Perl variant needs about
half the memory than the OPL method on large instances. However, solutions
can often be obtained more quickly with the OPL script than with the Perl
script, because on the one hand, the whole ILOG OPL Studio has to be started
each time the Perl script tries to determine a solution by means of the feasibility
model, and on the other hand, the communication between ILOG OPL Studio
and our Perl script is realized by files, which slows down the computation. A
considerable amount of time is required for starting ILOG OPL Studio when
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employing the Perl script. Tests for the instances “K” and “siemens1” show
that altogether about 24 and 16 seconds (this are 28 and 20 percent of the total
solution times), respectively, are needed for the starts of ILOG OPL Studio.

Considering the discussed methods, the OPL script combined with the cell-
based model is preferable if high memory consumption does not cause any prob-
lem. The Perl script is useful to be applied in conjunction with the cell-based
model if available memory is a bottleneck, while TRX-based models should not
be used when minimizing total interference.

However, the approaches using OPL are not much convenient since the quality
of the assignments improved this way is still not convincing.

6.4.2 Using a Construction Heuristic

The results of our implementation of the construction heuristic DSATUR with
Costs are shown in Table 6.9 and are compared with the solutions determined
by means of OPL.

If any feasible solution is found, better assignments are obtained in less time by
DSATUR with Costs compared to our OPL methods. For the scenario “K”, we
are able to determine an assignment with cost 1.0 within 15 seconds using our
C++ program, while only an assignment with cost 1.7 is obtained within 62
seconds by means of OPL. However, the instances “siemens3” and “siemens4”
cannot be solved at all by our implementation of DSATUR with Costs.

construction heuristic improvement heuristic
DSATUR with Costs Variable Depth Search
RAM time start final time ref.

Scenario [MB] [s] costs value value [s] value
K 20 15.3 1.0 1.7 1.1 4.92 0.45
siemens1 55 77.0 4.5 12.6 4.8 8.03 2.30
siemens2 95 331.3 26.9 29.3 20.4 28.19 14.28
siemens3 50 22.6 - 55.6 11.6 32.80 5.19
siemens4 365 292.0 - 206.9 134.7 51.33 80.97
Swisscom - - - 56.6 36.9 0.60 27.21

Table 6.9: Minimizing interference with C++ programs

6.4.3 Combining OPL and an Improvement Heuristic

The optimization procedures with OPL enable us to solve all considered sce-
narios, whereas the determined solutions are not good. In contrast, our C++
program produces much better solutions than the OPL methods for some in-
stances, but fails to solve some other scenarios.
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In the following, we try to combine OPL models with a C++ program by ap-
plying the improvement heuristic Variable Depth Search implemented by Eisen-
blätter [7] to the solutions obtained by means of OPL. The results are presented
in Table 6.9, the values of the start and the final solution, the consumed time,
and the values of known reference solutions are given. We also try to improve a
solution for “Swisscom” in order to investigate whether it is possible to obtain
better assignments for an instance where it is difficult to calculate any feasible
solution.

As can be seen from Table 6.9, applying Variable Depth Search to the assign-
ments determined by means of OPL reduces total interference by a factor of up
to 5 (“siemens3”) within a few seconds. The costs of the improved solutions
are between 1.5 and 2 times the values of the reference solutions. Even the
assignment for “Swisscom” is improved this way.

Hence, determining a solution with OPL and improving this assignment by
means of an improvement heuristic can be used to obtain solutions with toler-
able quality, also for scenarios where feasibility is a limiting factor.

6.5 Summary of the Computational Results

The observations presented in this chapter can be summarized as follows:

Cell-based feasibility models combined with some optional constraints enable
us to solve all but three of the given scenarios. In particular, we are able to
determine a feasible assignment for “Swisscom”, see page 76. Moreover, we
solve instances with up to 1000 TRXs within 1 to 2 seconds and instances with
up to 4000 TRXs within about 20 seconds with cell-based models.

Using TRX-based feasibility models, it is not possible to solve all instances
which can be solved with cell-based feasibility models. But if an assignment
is found, the required time is only about half the time as needed by cell-based
models.

The differences between the quality of the assignments obtained with cell-based
and TRX-based feasibility models are negligible. But for both kinds of mo-
dels, the quality of the solutions is not sufficient. Comparing the costs of our
assignments with the values of known references solutions, our costs exceed the
reference costs by a factor between 2 (“Swisscom’) and 500 (“bradford nt-10-
race”).

Comparing different cell-based feasibility models for FAP, we observe that it
is useful to state redundant constraints and constraints breaking symmetries,
while cost constraints and predicates should be avoided. In addition, it is very
important to employ only a few variables since all of our approaches needing
many variables failed.
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As we succeeded in solving most of the instances, we also try to obtain good
assignments. To minimize total interference by means of OPL, we apply the
preprocessing technique tightening the separation and employ either an OPL
script or a Perl script in conjunction with a feasibility model. The benefit
of this technique heavily depends on the given scenario, but the quality of
the solutions is still not convincing, whereas the required time is considerable.
Thus, the OPL approach is not very suitable for minimizing total interference.

Comparing the results obtained by ILOG OPL Studio with the solutions com-
puted with a construction heuristic, the latter one produces better assignments
in less time than the OPL approach in three cases, but fails to determine any
solution for two out of five investigated instances. Thereby, only those scenarios
are solved, where it is not difficult to calculate any feasible assignment.

A successful approach is to combine OPL models and a C++ program by apply-
ing the improvement heuristic Variable Depth Search to the solutions computed
by means of OPL. This significantly reduces total interference, such that the
costs of the finally determined assignments are only about 1.5 to 2 times the val-
ues of known reference solutions. Compared to the best known solution values,
this is not very good, but even such instances where feasibility is problematic
can be solved this way.
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Chapter 7

Summary and Conclusions

In this thesis, the solving of a version of the Frequency Assignment Problem
(FAP) in GSM networks by means of Constraint Programming has been consi-
dered. Having introduced our mathematical model, we showed that our version
of FAP is strongly NP-hard. Furthermore, the theory of Constraint Program-
ming has been studied. It turned out that Constraint Satisfaction Problems
are strongly NP-complete, where the discussed Frequency Assignment Prob-
lem can be formulated as a Constraint Satisfaction Problem.

The “Optimization Programming Language” (OPL) has been employed to state
and solve various models for FAP. Since the modeling language of OPL is more
expressive than Mixed Integer Programming, we analyzed whether the addi-
tional features of OPL really provide more possibilities to state constraints
than in Mixed Integer Programming. We observed that many of these addi-
tional elements can be expressed in Mixed Integer Programs (MIPs) as well, but
that the transformation from an OPL model into a MIP is not always possible.
Moreover, additional variables and constraints often have to be introduced in
order to translate the models. Thus, these investigations are more of theoretical
than of practical interest.

On the one hand, we considered feasibility problems only. On the other hand, we
tried to explicitly minimize total interference. Two kinds of models have been
proposed for feasibility problems: cell-based and TRX-based models. Using
a cell-based model, we were particularly able to determine a solution for an
instance where it is very difficult to obtain any feasible assignment. TRX-
based models did not enable us to solve all those instances we could solve with
cell-based models, but if a feasible assignment was found, the solution times of
TRX-based models were only about half the solution times of cell-based models.
It depends on the scenario, which kind of model should be preferred. However,
the quality of the assignments determined with feasibility models has not been
satisfactory.

To cope with this, we developed a framework to minimize total interference by
means of OPL. The gained benefit varied significantly among the scenarios, but
the quality of the solutions still was not much convincing. Alternatively, we
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combined our OPL models with a C++ program by applying an improvement
heuristic to the solutions determined with OPL, which considerably reduced
total interference in reasonable time. Hence, this combination can be used to
obtain solutions of moderate quality for many scenarios, even if it is hard to
compute any feasible assignment.

Altogether, OPL is suitable for determining feasible assignments even for large
instances of FAP or for scenarios where it is difficult to obtain any feasible
assignment. However, we could not produce solutions of adequate quality only
by means of OPL. In order to compute such assignments, we propose the use
of an improvement heuristic in addition to OPL feasibility models.



Appendix A

TRX-based Feasibility Model

// number of TRXs
int+ number_TRXs = ...;
range TRX 0..number_TRXs-1;

// define a record for the set of edges
struct Edge_type {

TRX u;
TRX v;
int+ Sep;

};

// the given set of edges
{Edge_type} Edges = ...;

// the given spectrum
int+ first_channel = ...;
int+ last_channel = ...;
range Channel [first_channel..last_channel];

// the set of available channels for each cell
{Channel} Available_channels[TRX] = ...;

// optionally: a set of cliques
{{TRX}} Cliques = ...;

// variables
var Channel chan[TRX];

solve {

// assign only allowed channels
forall( t in TRX )

chan[t] in Available_channels[t];
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// respect separation constraints
forall( e in Edges )

abs( chan[ e.u ] - chan[ e.v ] ) >= e.Sep;

// optionally: consider cliques
forall( clique in Cliques )

alldifferent( all( trx in clique ) chan[ trx ] );
};

// search heuristic
search {

forall( t in TRX ordered by increasing dsize(chan[t]) )
tryall ( c in Available_channels[t] ordered by

increasing nbOccur(c, chan))
chan[t] = c;

};



Appendix B

Cell-based Feasibility Model

// number of cells
int+ number_cells = ...;
range Cell 0..number_cells-1;

// number of TRXs per cell: BCCH + TCH’s
// 1: BCCH, 2..n: TCH’s
int+ number_TRXs[Cell] = ...;

// define a record for the set of edges
struct Edge_type {

Cell u;
Cell v;
int+ Sep;
// handover relations between cells
// 0: no HO, 1: HO(u->v), 2: HO(v->u), 3: HO(u<->v)
int+ Ho;

};

// the given set of edges
{Edge_type} Edges = ...;

// define a record for theset of TRXs
struct TRX_type { Cell cell; int+ n; };

// build the set of all TRXs
{TRX_type} TRX = {<c,t> | c in Cell & t in 1..number_TRXs[c] };

// the given spectrum
int+ first_channel = ...;
int+ last_channel = ...;
range Channel [first_channel..last_channel];

// the set of available channels for each cell
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{Channel} Available_channels[Cell] = ...;

// separation
int+ Co_cell_separation[Cell] = ...;

// handover separation
int+ Ho_bcch_to_bcch = ...;
int+ Ho_bcch_to_tch = ...;
int+ Ho_tch_to_bcch = ...;
int+ Ho_tch_to_tch = ...;
int+ Ho_max_bcch_tch = maxl( Ho_bcch_to_tch, Ho_tch_to_bcch );

// variables
var Channel chan[TRX];

solve {

// assign only allowed channels
forall (t in TRX)

chan[t] in Available_channels[t.cell];

// separation constraints
forall( e in Edges )

forall( t1 in 1..number_TRXs[e.u], t2 in 1..number_TRXs[e.v] )
abs( chan[<e.u,t1>] - chan[<e.v,t2>] ) >= e.Sep;

// respect co-cell separation
forall( c in Cell, ordered i,j in 1..number_TRXs[c] )

abs( chan[<c,i>] - chan[<c,j>] ) >= Co_cell_separation[c];

// handover separation u->v, v->u, u<->v
forall( e in Edges: e.Ho >= 1 ) {

// BCCH <-> BCCH
abs( chan[<e.u,1>] - chan[<e.v,1>] ) >= Ho_bcch_to_bcch;
// TCH <-> TCH
forall( t1 in 2..number_TRXs[e.u], t2 in 2..number_TRXs[e.v] )

abs( chan[<e.u,t1>] - chan[<e.v,t2>] ) >= Ho_tch_to_tch;
};

// handover separation u->v
forall( e in Edges: e.Ho = 1 ) {

// BCCH -> TCH
forall( t2 in 2..number_TRXs[e.v] )

abs( chan[<e.u,1>] - chan[<e.v,t2>] ) >= Ho_bcch_to_tch;
// TCH -> BCCH
forall( t1 in 2..number_TRXs[e.u] )

abs( chan[<e.u,t1>] - chan[<e.v,1>] ) >= Ho_tch_to_bcch;
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};

// handover separation v->u
forall( e in Edges: e.Ho = 2 ) {

// BCCH -> TCH
forall( t2 in 2..number_TRXs[e.v] )

abs( chan[<e.u,1>] - chan[<e.v,t2>] ) >= Ho_tch_to_bcch;
// TCH -> BCCH
forall( t1 in 2..number_TRXs[e.u] )

abs( chan[<e.u,t1>] - chan[<e.v,1>] ) >= Ho_bcch_to_tch;
};

// handover separation u<->v
forall( e in Edges: e.Ho = 3 ) {

// BCCH -> TCH
forall( t2 in 2..number_TRXs[e.v] )

abs( chan[<e.u,1>] - chan[<e.v,t2>] ) >= Ho_max_bcch_tch;
// TCH -> BCCH
forall( t1 in 2..number_TRXs[e.u] )

abs( chan[<e.u,t1>] - chan[<e.v,1>] ) >= Ho_max_bcch_tch;
};

// consider cliques
forall( clique in Cliques )

alldifferent( all( cell in clique,
t in 1..number_TRXs[cell] ) ass[<cell,t>] );

// break symmetries within one cell between TCH’s
forall( c in Cells: number_TRXs[c] >= 3 )

forall( i in 2..number_TRXs[c]-1 )
ass[<c,i>] < ass[<c,i+1>];

// redundant constraint on the sum of assigned channels within one cell
forall( c in Cell: number_TRXs[c] >= 2 )

( number_TRXs[c] *
( first_channel + (number_TRXs[c]-1) / 2 * Co_cell_separation[c] )

) <= sum( i in 1..number_TRXs[c] ) chan[<c,i>];
};

search {
forall( t in TRX ordered by increasing

<dsize(chan[t]), -number_TRXs[t.cell]> )
tryall ( c in Available_channels[t.cell] ordered by

increasing nbOccur(c, chan))
chan[t] = c;

};
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Zusammenfassung

Die vorliegende Diplomarbeit beschäftigt sich mit dem Lösen des Frequenzzu-
weisungsproblems in GSM-Mobilfunknetzen. Ziel der Frequenzplanung ist die
Zuweisung von Frequenzen an Basisstationen unter der Berücksichtigung von
zahlreichen Nebenbedingungen, so dass Interferenz, welche die Empfangsqua-
lität nachhaltig beeinträchtigen kann, weitestgehend vermieden wird.

Constraint Programming wird für die Suche von Lösungen des Frequenzzuwei-
sungsproblems verwendet, da gegenwärtig eingesetzte Heuristiken für die Inter-
ferenzminimierung oft beim Bestimmen von gültigen Zuweisungen für schwer
zu lösende Instanzen scheitern. Zuerst werden reine Zulässigkeitsprobleme un-
tersucht. Ist es möglich, Lösungen zu berechnen, so wird auch die explizite
Minimierung der Gesamtinterferenz erforscht.

Nach der Formulierung eines geeigneten mathematischen Modells wird die Kom-
plexität des Frequenzzuweisungsproblems untersucht und gezeigt, dass es streng
NP-schwer ist. Ein Überblick über die Theorie von Constraint Programming,
sowie ein Beweis, dass Constraint Satisfaction Probleme streng NP-vollständig
sind, werden ebenfalls erbracht.

Als Lösungswerkzeug wird ILOG OPL Studio verwendet, wobei OPL (”Op-
timization Programming Language“) die Formulierung von mathematischen
Modellen in einer eigenen Modellierungssprache erlaubt. Es wird untersucht,
inwiefern die im Vergleich zu Mixed Integer Progamming zusätzlichen Elemen-
te dieser Sprache tatsächlich mehr Möglichkeit bieten, Bedingungen in OPL
Modellen zu formulieren als in Mixed Integer Programs.

In dieser Arbeit werden verschiedene Modelle für Zulässigkeitsprobleme vorge-
stellt. Unterschiedliche Modellierungsalternativen werden analysiert und mit-
einander verglichen. Mit Hilfe von OPL Modellen für Zulässigkeitsprobleme
können sowohl für große als auch für schwer zu lösende Instanzen gültige Zu-
weisungen berechnet werden. Da die Qualität der gefundenen Lösungen oft un-
zureichend ist, werden außerdem Methoden zur expliziten Interferenzminimie-
rung entwickelt. Minimierungsmethoden mit Hilfe von OPL werden präsentiert,
eine Konstruktionsheuristik wird angewendet, und OPL Modelle für Zulässig-
keitsprobleme werden mit einer Verbesserungsheuristik kombiniert. Weiterhin
werden die Resultate all dieser Minimierungsmethoden mit einander verglichen.
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