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1 Introduction

In this thesis we study a certain simple problem from a general class of transportation
problems known as Dial-a-Ride problems. Dial-a-Ride problems abstract transporta-
tion problems frequently arising in practice, both in industrial and service applica-
tions. The basic setting is the following: We control a set of servers, which travel
along a transportation network. Furthermore, there are requests for transportation,
i. e., our servers have to carry some goods or persons from a source location to a
destination. Now we have to decide which requests to assign to each server and the
exact order of service such that a certain optimization criterion is met. In general
there are some constraints to these decisions, for example limited capacity of the
servers.
Real-world applications covered by this general framework are for example:

Berlin’s Telebus Telebus is Berlin’s transportation service for handicapped people.
Handicapped persons may request to be transported at arbitrary times between
arbitrary locations. These requests are collected a day in advance and shall be
scheduled to a fleet of vehicles (mini-busses), which is rent on a day-by-day
basis. Clearly, the objective is to incur small cost for renting vehicles while
ensuring a punctual service. In this case the transportation network is the road
network of Berlin. See Borndörfer et al. [8] for details of how to tackle this
complex large-scale problem.

Commissioning in high rack warehouses High rack warehouses play an essential
role in modern logistics. They are used to store and retrieve larger quantities of
many different goods. Typically, each high rack is operated by an elevator-like
system, where the elevator travels along a rectangular grid, which constitutes
the transportation network. Requests consist of a set of goods which have to be
commissioned into one packaging unit for delivery to customers. A description
of a concrete high rack warehouse system can be found in Hauptmeier’s Diplom
thesis [23].

The focus of this thesis is more limited. Many of the Dial-a-Ride problems arising
in practice feature complex constraints, often interacting in a nontrivial way with
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1 Introduction

application-specific issues. The analysis of such intricate systems is very involved if
not intractable. One therefore tries to consider simplified problems exhibiting the
essential features. This theoretical approach is taken in this thesis.

1.1 Graph-theoretic Interpretation of Dial-a-Ride
Problems

We now derive a formalization of Dial-a-Ride problems which will be the basis for
the further discussion. This formalization is based on concepts from Graph Theory,
see Section A.1 for a short introduction.
To simplify our graph-theoretic model and since we will later study a more spe-

cialized version anyway, we first make some further assumptions on the Dial-a-Ride
problems under consideration. We assume that:

• There is only one server, which can serve at most one request at a time.

• All requests can be served by just traveling to a source location, picking up the
object to transport and traveling to the destination location where the object
is delivered; there are no other constraints.

• There is a distinguished location (called depot) from which the server unit starts
and has to return to.

• Once the service of a request has started there must not be an interruption
until the request is finished at the destination location (non-preemptive trans-
portation).

• There are only finitely many interesting locations (i. e., source and destination
locations) and we know the structure of the transportation network, especially
the distances between the locations.

• The objective is the total completion time (also known as makespan), that is we
want to finish all requests as early as possible. This is equivalent to minimizing
the total travel distance.

These restrictions allow for the following abstract description: Each location is
modeled by a vertex of a graph G = (V,E) whose edges are possible interconnections
between the locations. Furthermore we use an edge length function c : E → R≥0

assigning each edge the length of the corresponding interconnection. A transportation

2 2004-07-05/059/IN99/2239



1.2 Offline Dial-a-Ride Problems: State of the Art and New Results

request is then simply an ordered pair (or arc) of locations. A feasible transportation
is given by a directed closed walk (sequence of arcs) on the vertex set of our graph,
which starts and ends at the depot vertex o ∈ V and traverses each request arc
exactly once. Note that in order to obtain such a feasible transportation we may
have to add arcs connecting the destination location of a request with the source
location of the next one. These arcs correspond to empty rides of the server. Notice
that we do not allow splitting a request arc into successive arcs traversing one edge
each, so the non-preemptive-transportations-requirement will be fulfilled. We call a
feasible transportation a tour or solution. Our goal is to find a tour minimizing the
total travel distance. Formally, we have the following optimization problem:

Definition 1.1 (Dial-a-Ride Problem Darp)

Darp

Instance: A (connected) graphG = (V,E), called underlying network, a multiset A
of arcs from V × V , a distance function d : E → R≥0 for the edges of G
and a distinguished vertex o ∈ V .

Output: A closed walk starting and ending at o which traverses each a ∈ A and
has minimal length w. r. t. the lifted distance function D : V ×V → R≥0,
which assigns to each possible arc (u, v) ∈ V ×V the length of a shortest
path from u to v in G. More precisely, we are required to determine a
tour T minimizing ∑

(u,v)∈T
D(u, v).

We say that an edge {u, v} is traversed by an arc (u′, v′) if the path connecting u′

and v′ contains {u, v}.
In this thesis we will only deal with the case that the underlying transportation

network is a tree. In the following two overview sections we remark on the known
results for general graphs, too.

1.2 Offline Dial-a-Ride Problems: State of the Art
and New Results

The Darp in its general form includes the Traveling-Salesman-Problem as an im-
portant special case and is thus NP-hard. Frederickson and Guan [18] show that
the Darp is NP-hard, even for rather restricted classes of underlying networks such
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1 Introduction

as trees. An interesting fact is that the Darp can be solved in polynomial time if
the graph G is a path, but it is NP-hard on a special tree called caterpillar which is
essentially the path with n vertices [23, 4]. A systematic survey studying the com-
plexity of many variants of Dial-a-Ride problems has been undertaken by de Paepe et
al. [16, 15]. They were able to identify “maximal easy” and “minimal hard” problems
as well as a small set of problems with unknown complexity status.
The standard way to deal with NP-hard problems is to look for approximation

algorithms, which try to find a-close-to-optimal solution in polynomial time. For
the case of Darp for general graphs a 9

5
-approximation algorithm was presented by

Frederickson et al. [19]. An improved algorithm for trees proposed by Frederickson
and Guan [18] has a performance ratio of 5

4
.

However, it has been observed that another algorithm proposed by Frederickson
and Guan [18] called use-MST performs even better in practice. In fact, most of
the solutions generated by use-MST were indeed optimal, whereas the performance
guarantee of use-MST is only 4

3
. This suggests to do probabilistic analysis : Instead

of considering the behaviour of an algorithm w. r. t. worst-case instances, we are
interested in its “typical” behaviour on instances drawn from a certain probability
distribution.
This approach was taken by Coja-Oghlan et al.: They first showed that use-MST

solves asymptotically all instances optimal if it is run on a caterpillar [13] and later
extended this result to general trees [12]. We were able to improve an intermediate
result of the last-mentioned analysis which is presented in detail in Chapter 4.
Another common probabilistic technique in algorithm analysis is average case an-

alysis : As in probabilistic analysis, one assumes that the considered Darp instances
occur according to a probability distribution and shows that the behaviour of a cer-
tain algorithm is good on average. “Being good” may mean (expected) polynomial
running time and / or better solution quality than is guaranteed for the worst case.
The result shown by Coja-Oghlan et al. is stronger: The algorithm use-MST has al-
ways polynomial running time (in fact, nearly-linear running time) and is optimal on
almost all large instances, whereas an algorithm with good performance on average
may be bad on a large part of the instances.
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1.3 Online Dial-a-Ride Problems: State of the Art and New Results

1.3 Online Dial-a-Ride Problems: State of the Art
and New Results

We are also interested in online versions of the Darp modeling more appropri-
ately the lack of information about future requests, which is an important feature
of real-world applications. In environments encountered in practice there often is
the following situation: While a server unit serves its transportation requests, new
requests waiting for service become available. It is not possible to wait until the last
request has arrived and then serve all the requests in an optimal way for the following
reasons:

• The stream of requests may be very long or even (practically) infinite.

• There is no sufficient capacity to store the requests.

• Each request has to be served as fast as possible since other processes depend
on its service.

Therefore the server has to serve the requests somehow while others arrive.
For online considerations, we will assume that the server travels at unit speed.

(Equivalently, the edge distance function gives the time needed to traverse that edge.)
It is not quite clear what objective to choose for the online problem; in fact, there
are at least the following natural choices:

• Minimize the distance traveled by the server.

• Minimize the completion time, i. e., the time at which the server returns to the
depot and the last request has been served (also known as Makespan).

• Minimize the (average) time a request is unserved, i. e., the so-called flow time.

We will mainly focus on the total travel distance, mainly because this objective is
very similar to the offline objective and we hope to be able to exploit our knowledge
of the offline problem. Both total travel distance and completion time are relatively
easy to analyze. A problem with the completion time is that it does not make much
sense in an environment where requests arrive at a steady rate since there will always
be work to do. Clearly, the most interesting objective for such a system is the flow
time since one is usually interested in serving requests as fast as possible. The flow
time can thus be seen as a sort of “quality of service” criterion whereas the total
travel distance corresponds to the cost of service.

2004-07-05/059/IN99/2239 5



1 Introduction

The standard performance measure for online algorithms is the competitive ratio.
An online algorithm is compared to an optimal offline algorithm knowing the entire
request sequence in advance. The competitive ratio is the ratio of the online algo-
rithm’s cost compared to those of the offline algorithm. This is very similar to the
approximation ratio for approximation algorithms.
Online versions of the Darp so far have been investigated for general graphs. Its

is known that there is no competitive algorithm w. r. t. total travel distance. The
algorithm SmartStart introduced by Ascheuer et al. [3] is 2-competitive w. r. t.
completion time, which is optimal. Hauptmeier et al. [23, 24] showed that under ap-
propriate restrictions to the request sequence the Ignore-strategy leads to bounded
average and maximum flow time.
The contribution of this thesis is to extend competitive analysis to the probabilistic

setting: Analogously to the offline situation, we are interested in the competitive
ratio of “typical” instances. We show a first such result stating that the Ignore-
strategy employing use-MST is asymptotically optimal w. r. t. total travel distance
if requests arrive rapidly, assuming a tree transportation network. Thus it is unlikely
that a server controlled by Ignore travels substantially further than the optimal
distance.

1.4 Dial-a-Ride Problems on Trees

As mentioned before we will investigate the Darp on trees in this thesis. The original
motivation for this restriction was the performance analysis of a large distribution
center, whose pallet transportation system features some vertical elevators [1]. These
were modelled by a path which was later extended to a caterpillar graph to allow
modeling different acceleration and deceleration times.
From the theoretical point of view the Darp on trees is interesting, too. First of

all, it has a particularly simple combinatorial structure. Secondly, the Darp is not
thoroughly understood even for such elementary special cases. Furthermore there are
techniques which allow the transfer of results obtained for trees to arbitrary graphs
with a penalty factor of O (log n) [5, 6, 17], although in some cases better direct
results for general graphs are known.
In the remaining thesis the underlying transportation network will be a tree de-

noted by T = (V,E). By convention, we always have |V | = n, |E| = n − 1

and |A| = m.
Moreover we will assume that the considered Darp instance has a certain struc-
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1.5 Overview on this Thesis

ture, namely that the tree T does not contain leaves which are neither source nor
destination vertex of a request nor depot. This assumption can be enforced via an
adequate preprocessing.

Proposition 1.2 Let I = (T,A, d, o) be an arbitrary Darp instance. Then the
instance I ′ = (T ′, A, d, o) where T ′ is obtained from T by repeatedly deleting leaves,
which are neither source vertex, destination vertex nor depot, has an optimal tour
which is equivalent to an optimal tour of I with the same total length. Moreover, all
edges of T ′ will be traversed by any optimal tour for I ′.

Proof. Clearly, an optimal tour T for I will not use edges with no requests starting
or ending at the other side, so it can be directly translated to T ′, since none of the
vertices T visits is deleted. On the other hand T ′ is just a connected subgraph of T ,
so any optimal tour for I ′ is an optimal tour for I.
To see that all edges of T ′ are traversed by any optimal tour, suppose edge {u, v}

violates this requirement for the optimal tour T . The edge {u, v} is a cut in T , so
all vertices visited by T have to be on one side of {u, v}, say on the side of u. But
now there have to be leaves on the side of v which are neither depot nor source or
destination vertex of any request, which is a contradiction. 2

1.5 Overview on this Thesis

We start by introducing an approximation algorithm called use-MST for the Darp
on trees in Chapter 2. The algorithm use-MST exploits the combinatorial structure
exhibited at the beginning of this chapter. The cornerstone of use-MST is the so-
called balancing operation, which “glues” many of the requests to closed subtours.
It is explained how this operation can be implemented efficiently in linear time and
how the resulting subtours are connected to form an approximate solution to the
input Darp instance. The material of Chapter 2 is essentially taken from an article
of Frederickson and Guan [18]. Finally we observe that use-MST yields optimal
solutions whenever the subtours generated by balancing constitute a star metric.

Before turning to probabilistic analyses we review the necessary Probability Theory
in Chapter A. Special emphasis is on the techniques underlying the probabilistic
analyses in the later chapters.

We already mentioned that even though Darp on trees is NP-hard it has been
observed that many instances are solved optimally by use-MST. A probabilistic
result giving an asymptotic verification of this observation is the subject of Chapter 4.

2004-07-05/059/IN99/2239 7



1 Introduction

This result has been obtained by Coja-Oghlan et al. [13, 12]. The basic idea is to
show that most of the instances constitute a star metric after the balancing operation.
A key feature of the probability model used in the analysis is that the underlying

network and the corresponding distance function are assumed to be fixed and only
the requests are generated according to a probability distribution. The reason for
this separation is that in practice the topology and the transportation cost of the
transportation networks are fixed. In contrast, there are lots of requests which are
in principle unpredictable but may exhibit some statistical structure.
We were able to improve an important intermediate result (Lemma 4.9): The

proof of this lemma is now nearly straightforward and we get a better constant, too.
Furthermore, the presentation is more accessible than in the original paper.

Chapter 5 is devoted to first steps of an probabilistic analysis of the online version
of Darp on trees. First we extend the list random model by release times, indicat-
ing the time a request becomes known, to arrive at online models. We distinguish
between release times chosen in a deterministic way (similar to worst-case-analysis)
and release times generated by random interarrival times, that is, the time between
two successive requests is a random variable with a given distribution. We choose the
exponential distribution here, because it is relatively easy to analyze and often used
for modeling queuing systems, which bear some resemblance to our online models.
The standard way of (theoretically) evaluating online algorithms, namely competi-

tive analysis, is reviewed. Furthermore, we explain probabilistic versions of competi-
tive analysis: Randomized competitive analysis, which is the standard for comparing
randomized online algorithms, and a new notion of probabilistic competitive analysis.
In the final section we show a first probabilistic competitiveness result for the Darp

on trees. The main idea is that if there are enough requests, relatively few balancing
arcs will be needed since the requests match up quite well. This is complemented
by the observation that the additional distance traveled by an online server is in the
largest part due to balancing arcs.

The thesis ends with concluding remarks and directions for future research.

8 2004-07-05/059/IN99/2239



2 A Fast Approximation Algorithm
for the Dial-a-Ride Problem on
Trees

Recall that Darp is in P for paths but already NP-hard on trees. Thus approxima-
tion algorithms play a central role in Darp research. In this chapter we sketch an
approximation algorithm for the Darp on trees which was proposed by Frederickson
and Guan [18]. The algorithm use-MST is not the best known one in terms of
approximation quality but is introduced here because it generates optimal solutions
quite often.
The emphasis is on the balancing technique which tries to add as many unavoidable

empty rides as possible. It can also be used as a basis for similar approximation algo-
rithms which has actually been done by Frederickson and Guan. They also show how
to implement those algorithms efficiently and derive bounds on the approximation
ratio. Their paper in part motivated Hauptmeier’s Diplom thesis [23] which was a
source for the material of this chapter, too.
The approximation ratio of use-MST is 4

3
and it can be implemented to run

in time O (m+ TMST(q, n)) where q is the number of subtours after balancing and
TMST(q, n) denotes the time needed to compute a MST of a graph with q vertices
and n edges. To obtain this small running time we have to implement the balancing
process carefully.

2.1 Basic Idea: Balancing Arcs

The main concept for the following approximation algorithm is that of a balancing
set. Since a solution to the Darp is a closed walk and we are working on a tree,
each edge {u, v} has to be traversed from u to v as often as from v to u. Thus, we
can safely (without increasing the objective value) augment our request set A with
further pseudo-requests B that will ensure that this condition is satisfied, because

2004-07-05/059/IN99/2239 9



2 A Fast Approximation Algorithm for the Dial-a-Ride Problem on Trees
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(a) Original instance.

1

2

4

6

3

5

7

(b) Instance with a balancing
set.

Figure 2.1: A Darp instance. Throughout this thesis requests are indicated by arcs
with an arrowhead in the middle. The dotted arcs are balancing arcs.

each solution has to traverse the arcs in B. One can think of the arcs in B as
unavoidable empty rides.
As an example, consider the Darp instance in Figure 2.1(a). The edge {3, 1} is

traversed once from 1 to 3, namely by the request (2, 3). It is traversed by no request
times the other way round, so we know that the empty ride (3, 1) is necessary to
obtain a closed walk. Thus (3, 1) belongs to the set B. Likewise, edge {1, 2} is
traversed twice from 2 to 1, so B gets two copies of (1, 2). Figure 2.1(b) shows a
set B for this instance.

To make this intuitive notion more precise we need some definitions. First of all,
we consider a fixed Darp instance I = (T,A, d, o) which is implicitly used in the
remaining chapter. Notice that each {u, v} ∈ E is a cut in the tree T and thus
partitions the vertex set V in two sets V (u) and V (v) (u ∈ V (u)). For a tree T and
a request multiset A, let Φ(T,A)(u, v) denote the number of requests traversing {u, v}
from u to v; likewise, Φ(T,A)(v, u) is the number of requests starting in V (v) and
ending in V (u). If no tree and request set is specified, our generic tree T and request
set A are implied.

Definition 2.1 (Balancing Set) An arc multiset B over V ×V is called a balancing
set for a Darp instance (T = (V,E), A, d, o) if

Φ(T,A∪B)(u, v) = Φ(T,A∪B)(v, u) ∀{u, v} ∈ E. (2.1)

We can compute a canonical balancing set B easily: Compute the number of times

10 2004-07-05/059/IN99/2239



2.1 Basic Idea: Balancing Arcs

an edge {u, v} has to be traversed from u to v as

b(u, v) :=


1 Φ(u, v) = Φ(v, u) = 0

Φ(v, u)− Φ(u, v) Φ(v, u) > Φ(u, v)

0 otherwise.

(2.2)

and construct B to contain b(u, v) copies of (u, v) for all adjacent vertices u and v.
The balancing set shown in Figure 2.1(b) is the set B for this instance.

Lemma 2.2 B is a balancing set for the Darp instance I = (T,A, d, o). Moreover,
B is a subset of the arcs of every optimal tour.

Proof. The fact that B is indeed a balancing set for the Darp instance I = (T,A, d, o)

follows directly from the definition of b(u, v).
We still need to verify that the arcs in B are contained in every optimal tour for I.

To this end, we check the cases of Equation (2.2) which defines b(u, v) and thus B.
The first case deals with edges which do not have to be traversed for satisfying the

requests, but are used to connect subtours for some requests to bigger ones. Recall
that our tree T does not contain leaves which are neither source vertex, destination
vertex nor depot so all edges will be used by any tour (Proposition 1.2). For such
edges, one arc for each direction has to be inserted.
In the second case there are more requests for transportation from V (v) to V (u)

than from V (u) to V (v); the difference is just the number of times the server has
to traverse edge {u, v} from u to v without carrying an object since a solution is a
closed walk.
The only remaining case is that there are some requests from V (u) to V (v) and

fewer requests the other way round, in which b(u, v) is zero. In fact there is no need
to travel in that direction more often than there are requests in that direction. 2

If we have a balancing set B for our input instance, we may be lucky and the
digraph (V,A ∪ B) is strongly connected. In that case every Eulerian tour in that
graph is an optimal tour, since it uses only arcs present in all possible tours. In
general we have the following result.

Lemma 2.3 Every weakly connected component of (V,A ∪ B) is strongly connected
and Eulerian.

Proof. Let C be a weakly connected component of (V,A ∪ B). It suffices to show
that C is Eulerian since this implies strong connectedness.
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If we can show that δ+(u) = δ−(u) for every vertex u in the vertex set of C it follows
that C is Eulerian (see Lemma A.3). To see that δ+(u) = δ−(u), we first replace
every arc (u, v) ∈ A ∪ B by the corresponding directed path from u to v. Note that
this affects δ+(v) and δ−(v) in the same way, i. e., they increase by the same value.
Now suppose there is a u with δ+(u) > δ−(u) (or vice versa). This implies that
there is a vertex v such that there is an arc (u, v) but no corresponding arc (v, u).
This means that condition (2.1) is not satisfiead for edge {u, v}, contradicting the
definition of a balancing set. 2

Corollary 2.4 If the graph (V,A ∪ B) is strongly connected every Eulerian tour
of (V,A ∪B) is an optimal solution for the Darp instance I = (T,A, d, o). 2

As mentioned above, every edge in T will be traversed so one might think that
the digraph (V,A ∪B) is always connected. The problem is that a request arc must
not be broken in a sequence of edge-by-edge-arcs since transportation shall be non-
preemptive. The following example instance shows that after balancing there may
be more than one strongly connected component (here: B = ∅):

1

2
3

4

5

As we have seen, the graph (V,A ∪ B) may decompose into several strongly con-
nected components. If such a component contains the depot vertex or at least one
vertex incident with a request we call it nontrivial, trivial otherwise. In order to
obtain a tour through all requests it remains to connect the subtours contained in
the nontrivial components. The trivial components need not be visited, of course.
We want to employ minimum spanning tree algorithms to get short connecting

arcs. It is well-known that this can be done in nearly linear time. However, our
balancing set B may be as large as Ω(mn) (see [18, 4]) and thus needs at least
Ω(mn) time to be generated. Since we are interested in a fast overall algorithm we
strive to compute a balancing set in linear time.
In the next section we will explain how to compute a balancing set B in time
O (n+m). The method for connecting nontrivial components via minimum spanning
trees is given in Section 2.3. This is the last piece of the algorithm use-MST which
will be discussed in this section, too. Finally, the last section explains an important
special case where use-MST is indeed optimal.
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2.2 Computing a Balancing Set of Arcs in Linear Time

Algorithm 2.1 Algorithm Balance for determining a balancing set.

Balance (T,A)

Input: Tree T = (V,E), request multiset A.
Output: A balancing set for T and A.
1 Choose an arbitrary vertex r ∈ V and root the tree T with respect to r, that is
compute the parent vertex for each vertex.

2 Compute b(u, v) and b(v, u) for each {u, v} ∈ E using algorithm compute-b.
3 Set B := ∅. For each {u, v} ∈ E with b(u, v) > 0 [b(v, u) > 0] add an arc (u, v)

[(v, u)] to B and decrease b(u, v) [b(v, u)] by one.
4 Add a new vertex r′ and an edge {r′, r} to T . Set b(r′, r) = b(r, r′) = 0.
5 B := B ∪ balancing-arcs-up(r′, r)

B := B ∪ balancing-arcs-down(r′, r)
return B

2.2 Computing a Balancing Set of Arcs in Linear
Time

When looking for a faster algorithm to compute a balancing set B, we have to keep
in mind the following requirements and goals:

1. All arcs in B have to be traversed in any optimal tour (i. e., we do not give
away anything by balancing).

2. B can be computed efficiently (should contain few arcs).

3. (V,A ∪B) has not more nontrivial components than (V,A ∪B).

In order to keep the number of arcs small, we use the following idea: If B con-
tains a sequence of arcs (v1, v2), (v2, v3), . . . , (vl−1, vl), we may substitute those arcs
by (v1, vl). Notice that any tour traversing the original arc sequence is equivalent to a
tour traversing the arc (v1, vl) instead, so this construction meets requirement 1. The
resulting multiset is again a balancing set with possibly more nontrivial components.
To avoid this, our B will contain a submultiset of B such that no more nontrivial
components arise.
Algorithm 2.1 shows the top-level-structure of Balance which computes a bal-

ancing set B from a tree T and a request multiset A. It uses two kinds of subrou-
tines compute-b and balancing-arcs-up (balancing-arcs-down is similar to
balancing-arcs-up). Step 1 roots the tree with respect to an arbitrarily chosen
vertex r, which is an algorithmic trick to tackle the efficient computation of b(u, v) in
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v

Succ(v)

V (v)

u

r

V (u) A1 ∩ (V (v) \ v)× (v ∪ V (u))

A1 ∩ (V (v) \ v)× v

A1 ∩ v × V (u)

Figure 2.2: Situation when computing Φ(v, u) using A1. Each edge {u, v} is a cut
in T , thus partioning the vertices in components V (u) and V (v). We can
now count Φ(v, u) as follows: A request in A1 traversing {u, v} from v

to u starts either in V (v) \ {v} or in v. Therefore Φ(v, u) equals the
sum of the number of requests starting in v and V (v) \ {v} minus those
starting in V (v) \ {v} and ending in v.

step 2 as well as the balancing in step 5. Step 3 ensures that the constructed balanc-
ing set B has no more nontrivial components than B by adding one copy of each arc
in B. We still need to add the equivalent of the remaining arcs from B which is done
in step 5. Those arcs are added by balancing-arcs-up and balancing-arcs-
down, which do shortcut longer sequences of adjacent arcs in the way explained
above. Again, the addition of an auxiliary root in step 4 is an algorithmic aid to
avoid a special treatment of the root r in balancing-arcs-up and balancing-
arcs-down.
We will later see that the overall running time of algorithm Balance is O (n+m),

which is also the number of arcs in the generated balancing set B. In order to achieve
this run time, the subroutines compute-b and balancing-arcs-up have to be
designed carefully.

2.2.1 Computing the Balancing Defect b(u, v)

We want to compute the b(u, v) via Equation (2.2), so we need to compute the Φ(u, v)

first.
The basic idea for doing this is the following (see Figure 2.2): Suppose the input

tree T has been rooted with respect to a root node r. Let A1 be the multiset
of all request-arcs directed towards the root and fix an arc (u, v) of our tree (this
corresponds to an edge {u, v} of the original tree and has been directed away from
the root by the rooting process). Observe that Φ(v, u) depends only on arcs directed
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towards the root. All arcs contributing to Φ(v, u) originate either in V (v) \ {v} or
in v. Arcs starting in V (v) \ {v} contribute only to Φ(v, u), if they do not end in v.
This leads to the formula

Φ(v, u) = |A1 ∩ (V (v) \ v)× (v ∪ V (u))|+ |A1 ∩ v × V (u)|
− |A1 ∩ (V (v) \ v)× v|.

However, requests to be transported from V (v) \ {v} to V (u) ∪ {v} have to pass
through the set of v’s successors Succ(v), since T is a tree. Using some basic graph
theoretic notation we then have

Φ(v, u) =
∑

w∈Succ(v)
Φ(w, v) + δ+

(V,A1)(v)− δ−(V,A1)(v).

We have arrived at a recursive formula for Φ(v, u). The basis for this recursion is the
case when v is a leaf. The formula then collapses to

Φ(v, u) = δ+
(V,A1)(v),

since δ−(V,A1)(v) is zero. A similar recursion can be derived for the multiset A2 of
requests directed away from the root.
We assumed so far that each request is either directed towards the root or away

from it. However, in general there will be requests that go some way towards the
root and later away from it. The solution to this problem is to replace such request
arcs by two arcs, one directed towards the root and one directed away from it (this
replacement is done only for the computation of the b(u, v)).
We are now ready to give the algorithm compute-b (see Algorithm 2.2), which

uses two subroutines compute-Φ-up and compute-Φ-down. These compute the
values Φ(u, v) bottom-up in the way explained above, proceeding in depth-first man-
ner.
Step 1 of Algorithm 2.2 does the replacement of request arcs which are not directed

entirely towards or away from the root. The rest of the algorithm works as already
sketched.

Lemma 2.5 Algorithm 2.2 correctly computes b(u, v) in time O (n+m).

Proof. The correctness follows from the construction of the algorithm. It remains to
discuss the running time.
The nearest common ancestor of two vertices can be found in time O (1) after a

preprocessing taking time O (n) (see [22, 34]), so the substitution loop starting in
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Algorithm 2.2 Algorithm compute-b for computing b(u, v).

compute-b (T,A)

Input: A rooted tree T with root r, request multiset A.
Output: b(u, v) and b(v, u) for each pair of adjacent vertices u, v.
1 for all (u, v) ∈ A do
2 Let w be the nearest common ancestor of u and v.
3 if w 6= u and w 6= v then
4 Replace (u, v) by (u,w) and (w, v).
5 end if
6 end for
7 Partition A into multisets A1 and A2, containing requests directed towards r and
away from r, respectively.

8 Precompute all δ+
(V,A1)(v), δ−(V,A1)(v) and δ+

(V,A2)(v), δ−(V,A2)(v) for all v ∈ V .
9 for all v ∈ Succ(r) do
10 Φ(v, r) := compute-Φ-up(r, v)

11 end for
12 for all v ∈ Succ(r) do
13 Φ(r, v) := compute-Φ-down(r, v)

14 end for
15 Compute all b(u, v) and b(v, u) via Equation (2.2).

return b(u, v) and b(v, u)

compute-Φ-up (u, v)

Input: An arc (u, v) of the tree T .
Output: Φ(v, u) and all Φ(v′, u′) for arcs (u′, v′) in the subtree below v.

1 Φ(v, u) := δ+
(V,A1)(v)− δ−(V,A1)(v)

2 for all w ∈ Succ(v) do
3 Φ(w, v) := compute-Φ-up(v, w)

4 Φ(v, u) := Φ(v, u) + Φ(w, v)

5 end for
return Φ(v, u)

compute-Φ-down (u, v)

Input: An arc (u, v) of the tree T .
Output: Φ(u, v) and all Φ(u′, v′) for arcs (u′, v′) in the subtree below v.

1 Φ(u, v) := δ−(V,A2)(v)− δ+
(V,A2)(v)

2 for all w ∈ Succ(v) do
3 Φ(v, w) := compute-Φ-down(v, w)

4 Φ(u, v) := Φ(u, v) + Φ(v, w)

5 end for
return Φ(u, v)
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line 1 takes timeO (n+m). The partitioning step and the computation of the degrees
needs time O (m). The subroutines compute-Φ-up and compute-Φ-down need
only constant time at each vertex and visit each vertex once, resulting in time O (n).
Putting all Φ(u, v) together to get the resulting b(u, v) can be done with O (m)

steps. 2

2.2.2 Contracting Balancing Arcs

We need to describe how the subroutines balancing-arcs-up and balancing-
arcs-down work. Recall that the task of these subroutines is to create balancing
arcs according to the modified values of b(u, v) and b(v, u). The generated arcs have
to be shortcut versions of longer successive arc sequences in B.
We explain balancing-arcs-up in more detail. Each vertex v with b(v, u) > 0 (u

is the parent of v) will be called unsatisfied initial vertex since arcs of the form (v, w)

where w is an ancestor of v have to be generated in order to balance {u, v}. The
algorithm computes for each vertex v a list l(v) of unsatisfied initial vertices in the
subtree with root v.
The general goal for balancing-arcs-up is to satisfy a vertex as late as possible,

that is to generate long balancing arcs. Since we are considering balancing arcs
directed towards the root this means that arcs starting deep down the tree should
end near the root. Suppose we know the list l, which is the concatenation of all l(w),
where w is a successor of v. Then there are the following cases:

Case 1: v is a leaf, l = ∅
v has to be the initial vertex for b(v, u) balancing arcs, so l(v) contains exactly
b(v, u) copies of v.

Case 2: v is not a leaf; b(v, u) > |l|
We need more balancing arcs with initial vertex in the subtree of v than there are
already in the list l, so we have to add (b(v, u)− |l|) copies of v to l to obtain l(v).

Case 3: v is not a leaf; b(v, u) = |l|
There are already exactly as many unsatisfied initial vertices in l as are needed to
balance edge {u, v}, so l(v) = l.

Case 4: v is not a leaf; b(v, u) < |l|
We need fewer balancing arcs with initial vertex in the subtree of v than there
are already in the list l, so (|l| − b(v, u)) arbitrary vertices of those have to be
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Algorithm 2.3 Algorithm balancing-arcs-up for computing contracted balanc-
ing arcs directed towards the root.

balancing-arcs-up (u, v)

Input: Edge {u, v} ∈ E
Output: A multiset B of balancing arcs for edges {u, v} with b(v, u) > 0

ending in v or its subtree. Furthermore, computes list l(v).
1 B := ∅
2 if v is a leaf then
3 l(v) consists of b(v, u) copies of v.
4 else
5 l(v) is an empty list.
6 for all w ∈ Succ(v) do
7 B := B ∪ balancing-arcs-up(v, w)

8 Add l(w) to list l(v).
9 end for
10 if b(v, u) > |l(v)| then
11 Add (b(v, u)− |l(v)|) copies of v to l(v).
12 end if
13 if b(v, u) < |l(v)| then
14 Let k := |l(v)| − b(v, u) and v1, . . . , vk be the first k vertices in l(v).
15 Add arcs (vi, v) to B, 1 ≤ i ≤ k.
16 Delete v1, . . . , vk from l(v).
17 end if
18 end if

return B

satisfied by a balancing arc ending in v. The remaining unsatisfied vertices form
the list l(v).

Notice that only in the last case balancing arcs are generated.
The algorithm balancing-arcs-up (see Algorithm 2.3) will traverse the tree

in a depth-first-search way similar to compute-Φ-up to compute the list l before
computing l(v). We start with our artificial edge {r′, r} (see step 5 in Algorithm 2.1).
Observe that since b(r, r′) = 0 all vertices which are still unsatisfied after all successors
of r have been traversed will be connected to r by balancing arcs.

Lemma 2.6 The multiset of balancing arcs generated by Algorithm 2.3 has the prop-
erty that it contains exactly b(v, u) arcs that traverse an edge {u, v} from v to u.
Analogously, the similar algorithm balancing-arcs-down adds exactly b(u, v)
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arcs traversing {u, v} from u to v.

Proof. We know from the above discussion that |l(v)| = b(v, u). We also noted
that because of b(r, r′) = 0 we have l(r) = 0, which tells us that every vertex
which was once unsatisfied will be satisfied eventually. In the subtree rooted at v
are exactly |l(v)| = b(v, u) unsatisfied initial vertices, which lead to exactly b(v, u)

balancing arcs traversing {u, v} from v to u. 2

2.2.3 Running Time of the Balancing Algorithm

Theorem 2.7 The algorithm Balance (Algorithm 2.1) computes a balancing set B
with O (n+m) arcs in time O (n+m).

Proof. The correctness follows from Lemmas 2.5 and 2.6.
In order to analyze the running time, let us first count the size of B. Step 3 adds

at most 2n− 2 balancing vertices, namely for each edge an arc in both directions.
To count the number of balancing arcs generated by balancing-arcs-up and

balancing-arcs-down is more difficult. At the end of Balance the graph (V,A∪
B) consists of several strongly connected Eulerian components Di. Let ki denote the
number of arcs in Di and let M be the set of arcs inserted by balancing-arcs-up.
Consider an Euler tour of Di: There cannot be two consecutive arcs (u, v), (v, w) ∈

M in that Euler tour since otherwise balancing-arcs-up would have generated an
arc ending in v and another one starting in v, which is impossible (see steps 10
and 13 in Algorithm 2.3). Consequently, there cannot be more than bki

2
c arcs in Di

which have been added by balancing-arcs-up. A similar argument holds for
balancing-arcs-down. In other words, balancing-arcs-up and balancing-
arcs-down add at most as many arcs as have been inserted in step 3 of Balance
(Algorithm 2.1) to ensure that the number of components does not increase. This
shows |B| ∈ O (n+m).
The running time of Balance can be bounded as follows. Rooting the tree can be

done in time O (n). Lemma 2.5 states that the computation of the b(u, v) does not
need more than O (n+m) steps. The preprocessing for the final balancing (steps 3
and 4) again takes time O (n). All we need to show yet is that balancing-arcs-up
and balancing-arcs-down run in time O (n+m).
Notice that for each vertex v, balancing-arcs-up(u, v) is called exactly once (u

is the direct predecessor of v). The time spent for traversing the tree is O (n), since
at each vertex O (δT (v)) steps are needed. Since every vertex added to the list l(v) is
deleted to create a balancing arc and only O (n+m) balancing arcs are generated in
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total, the total time to maintain the lists is alsoO (n+m), because each list operation
can be done in constant time. This holds analogously for balancing-arcs-down.2

2.3 Connecting Nontrivial Components

As mentioned before, there may be more than one component after balancing (the
original input may be balanced also). It thus remains to connect the resulting strongly
connected Eulerian components at minimal distance to obtain an overall solution.
As it turns out, the complexity of the Darp on trees stems from this connection

step. Frederickson and Guan [18] show the NP-hardness of the Darp on trees by
reducing a decision variant of SteinerTree to the decision version of Darp.

SteinerTree

Instance: A graph G = (V,E), an edge length function d : E → R≥0 and a sub-
set U ⊆ V . (The vertices U and V \U are called terminals and Steiner
points, respectively.)

Output: A subtree S of G with minimum length d(S) spanning at least the
vertices in U . (A subtree S of G spanning at least U is called a Steiner
tree.)

We will not give the NP-hardness proof here but motivate where the connection to
Steiner tree problems comes from.
Consider a balanced Darp instance I = (T,A ∪ B, c, o) with a possibly empty

balancing set B. In the sequel we will not distinguish anymore between original
request arcs from A and pseudo-request arcs in B introduced by the balancing process
and simply write Â := A ∪ B. The so-called arc-identified graph H for instance I
is the graph arising if in (T, Â) all vertices connected by arcs are identified, i. e., all
strongly connected components are contracted to a single vertex. It is helpful to think
of the vertices of H as being labeled by the set of original vertices in T . Figure 2.3(b)
shows the arc-identified graph for the instance displayed in Figure 2.3(a).
Connecting the nontrivial components of our balanced instance I can be done by

solving a SteinerTree instance: In the arc-identified graph H, we have two kinds
of vertices: Those whose labels contain the start or destination vertex of some request
or the depot o (and thus represent the nontrivial components to be connected) form
the terminal set U ; all other vertices are Steiner points. If we can find a Steiner tree S
of H, we have to add arcs (u, v) and (v, u) for each edge {u, v} used by S to our arc
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(a) Instance with a balanced request set.
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(b) The arc-identified graph
for the instance.
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for the instance.

Figure 2.3: A Darp instance and its arc-identified and component graph. Notice that
in the original instance every edge is used at least once in each direction.

set to get one strongly connected Eulerian component in the original instance, which
corresponds to an optimal solution.

Theorem 2.8 Let I = (T, Â, d, o) be a balanced Darp instance, H its arc-identified
graph as above and define the digraph D := (V, Â). An optimal Steiner tree S∗ is
related to an optimal tour T for I by

Darp(I) = d(T ) = d(Â) + 2d(S∗).

In other words: An optimal Steiner tree S∗ can be used to obtain an optimal tour T .

Proof. First note that each vertex of H corresponds to a component of D.

d(Â) + 2d(S∗) ≥ d(T )

Let S be a subtree ofH with length d(S) such that S spans at least U . Consider the
directed graph D′ on vertex set V which consists of the arcs from Â and arcs (u, v)

and (v, u) for each edge {u, v} contained in S. This graph is Eulerian because Â
is balanced and thus degree-balanced and the additional arcs also keep degrees
balanced. Therefore, D′ admits an Euler tour T which is a solution for I since all
requests Â as well as the depot o belongs to nontrivial components represented by
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the vertices of H, which are connected by S. The length of an optimal tour T is
thus bounded by

d(T ) ≤ d(Â) + 2d(S)

for any subtree S.

d(T ) ≥ d(Â) + 2d(S∗)

Let T be an optimal tour for I with length d(T ). We know that every tour has to
traverse all arcs in Â which are the arcs of D so we can write d(T ) = d(Â) + 2x.
Denote by E ′ the set of edges of T traversed by T without servicing a request and
let E ′′ be the set of edges of H corresponding to E ′. The induced graph H[E ′′] =:

S0 spans the set U since E ′ connected all nontrivial components and thus has a
subgraph S which is a tree and still spans U .

Since T is an optimal tour it does not traverse an edge {u, v} of S more than once
in each direction without servicing a request. This can be seen by the following
construction: Let {u, v} be an edge of T which is traversed by T at least twice
from u to v without servicing a request. Assume that T traverses {u, v} in that
direction r times. Split all requests (ui, vi), 1 ≤ i ≤ r, using {u, v} from u to v in
arcs (ui, u), (u, v) and (v, vi). As Â is balanced there are r requests using that edge
in the other direction which can be split similarly. If we now remove (r− 1) copies
of (u, v) and (v, u) the graph remains connected and Eulerian, because afterwards
every indegree equals every outdegree as before. If the length of {u, v} is positive
this deletion decreases the length, contradicting the fact that T was an optimal
tour. Otherwise we get a tour with the same length which traverses {u, v} once in
each direction.

Now that we are convinced that each edge of S is traversed at most twice we see
that

d(S) ≤ d(S0) =
d(T )− d(Â)

2
= x,

which is equivalent to d(T ) ≥ d(Â) + 2d(S∗). 2

We sketch an approximation algorithm for the connection of the components. It
uses a minimum spanning tree of the component graph of our balanced instance I.
The minimum spanning tree problem is

Minimum spanning tree (MST)

Instance: A graph G = (V,E) and an edge length function d : E → R≥0.
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Output: A subtree T of G with minimum length d(T ) spanning all vertices of V .

In a sense, the minimum spanning tree problem is the special case U = V of the
Steiner tree problem. This difference is essential: There are polynomial time algo-
rithms for solving MST whereas SteinerTree is NP-hard which justifies using an
approximation algorithm.
The component graph H ′ for instance I is a weighted complete graph, whose vertex

set is the set of nontrivial components of I, i. e., the set U mentioned above. The
weight DU : U×U → R≥0 of an edge is the length of a shortest path connecting both
nontrivial components (Note that paths from all vertices in the first to all vertices in
the second component are considered.). The component graph for our above example
instance is shown in Figure 2.3(c). Let S ′ be a minimum spanning tree of H ′. To
obtain a set of linking arcs between the nontrivial components we can take S ′ as an
approximation to S, add an arc for each edge used by S ′ to the graph (V,A ∪ B)

which is then Eulerian. Any Euler tour is a solution to our instance I. The steps are
summarized in Algorithm 2.4. Frederickson and Guan [18] show how to implement
this efficiently and prove the following result.

Theorem 2.9 [18] For every Darp instance I = (T,A, c, o) the algorithm use-
MST computes a tour which is at most 4

3
times as long as an optimal one. The

running time is O (m+ TMST(q, n)) where q is the number of nontrivial components
and TMST(q, n) denotes the time needed to compute a MST of a graph with q vertices
and n edges. 2

Remark The exact complexity of the minimum spanning tree problem is not known.
It is known, however, that TMST(n,m) ∈ Ω(m) and TMST(n,m) ∈ O (mα(m,n))

(see [10, 31]), where α(m,n) is an inverse of the Ackermann function and n andm are
the number of vertices and edges, respectively. Since α(m,n) grows extremely slowly
it is legitimate to say that use-MST is a nearly-linear time algorithm. Curiously
there is an optimal algorithm, i. e., one with running time O (TMST(n,m)), but the
function TMST(n,m) has not yet been determined [32].

2.4 A Special Case Where use-MST is Optimal

There is an interesting special case for the SteinerTree-Problem, in which the
MST is not longer than the optimal Steiner tree. Notice that the graph G = (V,E)

with edge length function d : E → R≥0 in the input of SteinerTree can be viewed
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Algorithm 2.4 Algorithm use-MST for computing an approximate solution to the
Darp on trees.
use-MST (T,A, c, o)

Input: A Darp instance I = (T = (V,E), A, c, o).
Output: A tour for I, i. e., a closed walk containing all arcs from A.
1 Compute a balancing set B: B := Balance(T,A).
2 Compute the component graph H ′ for (V,A ∪B).
3 Compute a minimum spanning tree S ′ of H ′.
4 Construct a set of connecting arcs C: For each {u, v} ∈ E used at least once
by S ′ add arcs (u, v) and (v, u) to C.

5 Find an Euler tour T of (V,A ∪B ∪ C).
return T

as defining a metric (V,D), where D : V × V → R≥0 is the lifted distance function
of d.

Definition 2.10 (Star metric) A metric (M,d) is said to be a star metric if there
is a u∗ ∈M satisfying

d(u, v) = d(u, u∗) + d(u∗, v)

for all u, v ∈M .

The proof of the following result is due to Sven O. Krumke.

Proposition 2.11 Let I = (G = (V,E), d : E → R≥0, U ⊆ V ) be an instance of
SteinerTree. Furthermore, let G′ be the complete graph with vertex set U and
denote by D : U × U → R≥0 the function assigning each pair (u1, u2) the length of a
shortest path from u1 to u2 in G. Suppose that (U,D) is a star metric.
We then have

MST(G′, D) = SteinerTree(G, d, U).

Proof. Consider an optimal Steiner tree S of (G, d, U) and let u∗ be the center of
the star metric (G′, D). For the moment, assume that |U | is even. The Pairing
Lemma (see Lemma A.4) tells us that for every tree T with an even number of
marked vertices U ⊆ V we can arrange the vertices of U in pairs (u1, u2) such that
all the (u1, u2)-paths are edge-disjoint. Therefore we can pair our terminals U in the
tree T = S in that way. Consider the edge set S ′ ⊆ S which is the union of all the
edges used in those paths.
Based on S ′ we can construct a spanning tree T ′ of G′ which is not more longer

than S ′: For each pair (u1, u2) add edges {u1, u
∗} and {u∗, u2} to T ′. The length of
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the path u1, u
∗, u2 is at most the length of the path from u1 to u2 used by our pairing

due to the star metric property. The fact that those paths are edge-disjoint ensures
that there is no hidden synergy between two or more paths that could share an edge
and which would subvert the last argument. Clearly, T ′ is a tree, even a star graph.
We have just seen that each optimal Steiner tree corresponds to a MST that is

not longer. Obviously, the other direction also holds. This proves MST(G′, D) =

SteinerTree(G, d, U) in the case of even |U |.
It remains to discuss the case that there is an odd number of terminals. This can

easily be dealt with: Just copy a terminal and link the copy at distance 0 to its
original. The copy shares all relevant properties of the original and we have thus
reduced this case to that of an even number of terminals. 2

The relevance of Proposition 2.11 in our context is that H ′ is just the graph U ′

for G = H. It follows that if (H ′, DU) is a star metric, then use-MST computes an
optimal tour.
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3 Probability Theory Basics for
Probabilistic Analysis

This chapter is devoted to reviewing some basic concepts and results from Probability
Theory. The presentation will be rather condensed and tailored to our purposes, but
we try to elaborate on the way notions and results are used in probabilistic analyses.
Basically we follow the overview given in the book of Motwani and Raghavan [29]
and those of Janson et al. [25], which are also the recommended references for details
on how to apply Probability Theory to the analysis of algorithms and of random
combinatorial objects, respectively.
Probabilistic analysis of algorithms deals with the following situation: We have a

(usually deterministic) algorithm which is run on an input generated by some random
process. We are interested in the “typical” (instead of worst-case) performance of the
algorithm, measured for instance by the running time or the solution quality. The
“typical” performance is the performance on a large part of the instances where the
“size” of a subset of the instances is measured by its probability. Thus we need to
determine properties which govern the behavior of the algorithm and are enjoyed by
most instances.
Before introducing tools and techniques for this sort of analysis we need some

technical background.

3.1 Basic Notions: Random Objects and Random
Variables

In this thesis we are interested in the properties of certain combinatorial objects
(i. e., the input instances for our algorithms) constructed by some random process or
random experiment. One usually models the outcomes of such a random process by
a set Ω, called sample space. Our goal is to associate with every subset a probability.
Once we have done this we have completely described our random experiment.
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For technical reasons it is in general not possible to associate a probability to
every subset of Ω in a consistent way. We have to restrict ourselves to a collection
of subsets of Ω which has to carry a certain algebraic structure in order to facilitate
the usual computations with such subsets, namely set-theoretic union, intersection
and complement.

Definition 3.1 (σ-field) A σ-field is a pair (Ω,A) consisting of a sample space Ω

and a collection of subsets of Ω satisfying the following axioms

1. ∅ ∈ A

2. A ∈ A =⇒ A ∈ A
(A denotes the complement of an event A w. r. t. Ω, i. e., A := Ω \ A.)

3. If countably many events A1, A2, . . . are in A then their union is also in A:
A1, A2, · · · ∈ A =⇒

⋃
i∈NAi ∈ A.

An element of A called event.

The concept of σ-field allows us to define a function assigning probabilities to each
event in A. Of course, this function has to comply with some natural requirements.

Definition 3.2 (Probability measure) Let (Ω,A) be a σ-field. A probability mea-
sure is a function Prob: A → [0, 1] with the properties

1. Prob [Ω] = 1.

2. Suppose A1, A2, . . . are disjoint events. We then have

Prob
[⋃

i∈N
Ai

]
=
∑

i∈N
Prob [Ai] .

Definition 3.3 (Probability space) A probability space is a triple (Ω,A,Prob)

consisting of a σ-field (Ω,A) and a probability measure Prob for (Ω,A).

Note that a probability space is just the abstract description of a random experi-
ment mentioned above. Recall that our goal was to construct random objects from
a random experiment. So far we have only a mechanism for “throwing a dice” or
“tossing a coin” but no way to derive something interesting from the outcomes.

Definition 3.4 (Random object, random variable) Let S be a countable set
and Ω a countable sample space. A function X : Ω→ S is called a random object (or
random element of S).
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Consider a σ-field (Ω,A). A function X : Ω→ R is called a random variable if for
all x ∈ R the condition

{ω ∈ Ω | X(ω) ≤ x} ∈ A

holds.∗

Intuitively, the function X : Ω→ S tells us how to determine a fixed element of S
from a specific outcome of a random experiment.

Example (Binomial model for random graphs) Suppose S is the set of graphs
on n vertices and Ω = {0, 1}(

n
2). We can construct a graph G(x) from x ∈ Ω by fixing

a numbering of all
(
n
2

)
possible edges of a graph on n vertices and interpreting xi

as an indicator whether G(x) contains edge i (xi = 1) or not (xi = 0). This is just
the construction step and we still need to specify how elements of Ω are selected
at random. In the binomial model, each component xi is chosen to be one with
probability p and to be zero with probability 1 − p. Since there are only finitely
many graphs on n vertices we can safely choose A = 2Ω and the probability measure
consistent with the above interpretation is

Prob [G(x) = G] = pm(G)(1− p)(
n
2)−m(G),

where m(G) denotes the number of edges of G. �

Before investigating random objects in more detail we introduce two further con-
cepts. Suppose we are considering a fixed random experiment described by the
probability space (Ω,A,Prob) and we already know that some event B has occurred
and now want to examine how this influences the probability of another event A.
Clearly, the probability of A must be 0 if A ∩ B = ∅, i. e., if A and B are mutually
exclusive. In general only the fraction of A compatible with B does contribute to the
probability of A.

Definition 3.5 (Conditional probability) Fix a probability space (Ω,A,Prob) and
an event B ∈ A with Prob [B] > 0. For any event A ∈ A, the probability

Prob [A | B] :=
Prob [A ∩B]

Prob [B]

is called conditional probability of A given B. The function Prob [· | B] is a probability
measure on (Ω,A).
∗A similar measurability condition would be necessary for the case of a countable set S, too.
However, in that case the function X is always measurable w. r. t. the sigma field (Ω, 2Ω), so the
condition is satisfied automatically.
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Conditional probabilities are useful because in many circumstances it is easy to
compute the probability of some event A conditional on another event B. If the
probability of B can also be determined we can use it to obtain the probability of
both A and B by

Prob [A ∩B] = Prob [A | B] Prob [B] .

It is often advantageous to deal with random objects (variables) that “have nothing
to do with and do not influence each other”.

Definition 3.6 (Independence) Let (Ω,A,Prob) be a probability space and con-
sider random objects Xi : Ω→ Si, 1 ≤ i ≤ k. The Xi are called independent if

Prob [X1 = s1, . . . , Xk = sk] = Prob [X1 = s1] · · ·Prob [Xk = sk]

for all si ∈ Si, 1 ≤ i ≤ k. Similarly, random variables Yi : Ω→ R, 1 ≤ i ≤ k, are said
to be independent if

Prob [Y1 ≤ y1, . . . , Yk ≤ yk] = Prob [Y1 ≤ y1] · · ·Prob [Yk ≤ yk]

for all combinations y1, . . . , yk ∈ R.

The intuition that two independent random objects X1, X2 “have nothing to do
with each other” can be illustrated as follows: The conditional probability of {X1 =

s1} given {X2 = s2} is

Prob [X1 = s1 | X2 = s2] =
Prob [X1 = s1 ∩X2 = s2]

Prob [X2 = s2]

=
Prob [X1 = s1] Prob [X2 = s2]

Prob [X2 = s2]
= Prob [X1 = s1] .

According to our interpretation of conditional probabilities the fact that X2 = s2

does not tell us anything about X1.
The standard construction for independent random objects is to use product prob-

ability spaces: Suppose we are given probability spaces (Ωi,Ai,Probi) and random
objects (or random variables) Xi : Ωi → Si, 1 ≤ i ≤ k. So far these random objects
are entirely unrelated. In order to relate them to each other we use the product
probability space (Ω,A,Prob) defined as

Ω := Ω1 × · · · × Ωk

A := A1 × · · · × Ak
Prob [(A1, . . . , Ak)] := Prob1 [A1] · · ·Probk [Ak] ∀(A1, . . . , Ak) ∈ A.
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If we think of the random object Xi as being defined on the ith component of Ω, we
see that the Xi are independent by construction, since the conditions Xi = si (or
Yi ≤ yi) used in the definition of independence are just special events of A. Of course
this construction is often kept implicit.

Now that we know what random objects are we turn to study their properties.
There are two kinds of properties: Numerical ones (for instance the number of edges
of a graph, the number of connected components, the length of a shortest path
between two vertices) and non-numerical ones (Is the graph connected? Does it have
a cycle? Is it Eulerian?). We will first address numerical properties.

3.2 Numerical Properties of Random Objects

Note that any numerical value associated with a random object can be considered
as a random variable X: First, construct the random object and then compute
the numerical quantity from it. The majority of all random variables occurring in
this thesis are of this type. One way to specify a random variable is by giving its
distribution function.

Definition 3.7 (Distribution function) Let X : Ω → R be a random variable.
The distribution function FX : R→ [0, 1] of X is defined by

FX(x) := Prob [X ≤ x] .

For technical reasons we discriminate two types of random variables.

Definition 3.8 (Discrete vs. continuous random variables) Let X : Ω → R
be a random variable. If the range of X is a countable subset S ⊂ R, X is a
discrete random variable.
A random variable is called continuous if there is a non-negative function fX : R→

R≥0 such that

FX(x) =

∫ x

t=−∞
fX(t) dt. (3.1)

The function fX is called density of X.

For every discrete random variable X there is a discrete analogue of the density:
One often writes it explicitly as Prob [X = x] = px for all possible values x. The
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distribution function is completely determined by these probabilities similarly to
Equation (3.1):

FX(x) =
∑

t∈S,t≤x
Prob [X = t] .

Since it is often difficult to cope with random variables in general, we are interested
in some key characteristics of them.

Definition 3.9 (Expectation, Variance) Let X be a random variable. The ex-
pectation E [X] of X is defined by

E [X] :=


∑

t∈S t · Prob [X = t] X is discrete∫∞
t=−∞ t · fX(t) dt X is continuous

(3.2)

whenever the right hand side is <∞.
The variance Var [X] of X is

Var [X] := E
[
(X − E [X])2

]
. (3.3)

The expectation of a random variable is its average value, whereas the variance
measures the “typical deviation” from the average: The larger the variance, the more
likely are values relatively far away from the expectation.

Example (Important probability distributions) A simple discrete probability
distribution is the uniform distribution on S = {x1, . . . , xk} given by

Prob [X = x] =
1

k
∀x ∈ S.

Another well-known discrete distribution is the Poisson distribution with parame-
ter λ > 0

Prob [X = k] =
λk

k!
e−λ ∀k ∈ N0.

If X is Poisson-distributed we have that E [X] = Var [X] = λ.
The exponential distribution with parameter λ > 0 is a continuous distribution and

defined by

FX(t) =

0 x < 0

1− e−λt x ≥ 0

and it is easy to see that E [X] = 1
λ
and Var [X] = 1

λ2 . �

The following rules greatly simplify dealing with expectations and variances.
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Theorem 3.10 Let X1, . . . , Xn be random variables.

1. For any reals ai, bi ∈ R, 1 ≤ i ≤ n, we have the well-known linearity of
expectation:

E
[∑n

i=1
(aiXi + bi)

]
=
∑n

i=1
(aiE [Xi] + bi). (3.4)

2. Var [X1] = E [X2
1 ]− E [X1]2.

3. If X1, . . . , Xn are independent random variables we have

Var
[∑n

i=1
Xi

]
=
∑n

i=1
Var [Xi] . 2

In applications it is often crucial to know that a random variable is in a certain
range with a high probability. Many random variables are well-behaved in this respect
and do not deviate far from their expectation. To prove such statements a large class
of tail inequalities or concentration of measure inequalities have been developed. The
simplest of them is Markov’s inequality stating that

Prob [X ≥ t] ≤ E [X]

t
(3.5)

for any non-negative random variable X. We can see that it is unlikely that X is
large provided that E [X] is small. Another related one is Chebyshev’s inequality

Prob [|X − E [X]| ≥ t] ≤ Var [X]

t2
, (3.6)

which is valid for any random variable X. It is more useful if the expectation is large.
The main use of expectations and variances in this thesis will be to arrive at such

results. However, both the Markov and Chebyshev inequalities are sometimes to weak
and we need stronger results, for example the following theorem which is related to
the so-called Azuma’s inequality. For a proof and discussion see [25].

Theorem 3.11 Let X1, . . . , Xn be independent random variables Xi : Ω → R, 1 ≤
i ≤ n, and f : Rn → R a function satisfying the Lipschitz-condition

Each pair of vectors x, x′ ∈ S1 × · · · × Sn differing only in the kth
coordinate satisfies

|f(x)− f(x′)| ≤ ck

for some suitable constants ci ∈ R≥0, 1 ≤ i ≤ n.

(3.7)
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Then, the random variable Y = f(X1, . . . , Xn) satisfies for each t ≥ 0

Prob [Y ≥ E [Y ] + t] ≤ exp

(
− t2

2
∑n

1 c
2
k

)
(3.8)

Prob [Y ≤ E [Y ]− t] ≤ exp

(
− t2

2
∑n

1 c
2
k

)
. (3.9)

2

3.3 Non-numerical Properties of Random Objects

Let us now consider non-numerical properties. The motivating examples where all
questions such as “Does a graph have a cycle?” which can be answered for each
concrete object by yes or no. This suggests formalizing such properties by a predicate
function φ which assigns to each object enjoying the property under consideration
a “1” and a “0” otherwise. Remember that our random objects are by definition
constructed from events of the sample space. Thus we can as well characterize our
property by all events leading to random objects satisfying this property.

Definition 3.12 (Asymptotic properties) We say that a property defined by a
family of events {An}n∈N holds asymptotically almost surely (a. a. s. for short), if

Prob [An] = 1− o(1) as n→∞. (3.10)

To make the above idea a bit more explicit, let {Xn : An → Sn}n∈N be a fam-
ily of random objects indexed by a parameter n which is interpreted as the size
of the random object. The random objects are defined on a family of probability
spaces {(Ωn,An,Probn)}n∈N. Moreover, let φ be a predicate as explained above. If
the family of events

An := {ω ∈ Ωn | φ
(
Xn(ω)

)
= 1}

satisfies condition (3.10) this means that as the objects Xn get larger and larger, a
growing fraction of them has property φ. Intuitively, almost all of the really large
objects exhibit property φ, which is thus in a sense typical.
Often it is not easy to show directly that property φ is satisfied a. a. s. We can

help ourselves by finding properties φ1, . . . , φk such that

φ1 ∧ · · · ∧ φk =⇒ φ

and showing that φ1, . . . , φk are satisfied a. a. s., allowing us to conclude that φ is
also satisfied a. a. s. This is justified by the following computation: Assume that An
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and Bn are the event sets corresponding to properties φA and φB, respectively, which
hold a. a. s. The probability that φ⇐= φA ∧ φB holds is at least

Prob [An ∩Bn] = 1− Prob
[
An ∩Bn

]
= 1− Prob

[
An ∪Bn

]
= 1− Prob

[
An
]
− Prob

[
Bn

]
+ Prob

[
An ∩Bn

]
≥ 1− o(1)− o(1) = 1− o(1) as n→∞.

Note that finding suitable properties φ1, . . . , φk is a purely deterministic considera-
tion, so all the deterministic theory on the objects in question can be employed.
We often can resort to numerical properties, such as the expectation, to prove that

a certain property is satisfied a. a. s. The main advantage is that they can be better
handled and there is a whole arsenal of methods to deal with them. An important
example are the first and second moment methods. Suppose the family of random
variables {Xn : An → R}n∈N counts the number of a “bad” substructure of a random
object (such as the small loops in a graph that is supposed to be a big loop) and we
want to show that a. a. s. there are no “bad” substructures, i. e., Xn = 0 a. a. s. We can
do this by establishing E [Xn] = o(1) as n→∞ since then Markov’s inequality (3.5)
says that

Prob [Xn > 0] = Prob [Xn ≥ 1] ≤ E [X] = o(1).

This kind of argument is valid for any non-negative integer-valued family of random
variables and is called first moment method.
In other cases we want to have a. a. s.-lower or upper bounds on Xn. We can show

that Xn is within constant factors of E [Xn] a. a. s. if

Var [X]

E [X]2
∈ o(1) as n→∞

because Chebyshev’s inequality yields

Prob [|X − E [X]| ≥ cE [X]] ≤ Var [X]

c2E [X]2
∈ o(1) as n→∞.

This is known as the second moment method.
Yet another useful technique for analyzing random objects is to consider a different

random experiment for generating them, which is better adapted to the analysis
applied. Of course one has to ensure that the new random model is in some way
equivalent to the original one which means that the probabilities that a fixed object
is constructed do agree.
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4 Probabilistic Analysis of the Darp
on Trees

The investigations of this chapter are motivated by the following, seemingly contra-
dictory, facts: On the one hand Darp is known to be NP-hard on trees, on the other
hand it has been observed experimentally that the algorithm use-MST introduced
in Chapter 2 solves many instances of Darp optimally, although its approximation
ratio is only 4

3
in the worst case. This suggests that instances exhibiting bad or even

worst-case behaviour of use-MST are rare.
To substantiate this conjecture Coja-Oghlan et al. [12] performed a probabilistic

analysis of use-MST on random instances which is reviewed in this chapter. Recall
that the only situation in which use-MST does not find am optimal solution is when
the minimum spanning tree in the component graph is more expensive than a Steiner
tree of the arc-identified graph, i. e., if the MST-heuristic for SteinerTree fails.
Thus most instances have to feature some structure implying that the MST-heuristic
returns a tree equivalent to an optimal Steiner tree. One would first hypothesise that
the balancing operation leaves only one strongly connected component but it turns
out that this is not sufficient. The correct generalisation is that the components left
by the balancing operation make up a star metric.
Before delving into the technical details of this result we first give an overview and

a brief discussion. The second section explains the structure of the proof of the main
theorem from a higher perspective but with technical details. In the third section
we provide formal statements and proofs only motivated in Section 4.2. The final
Sections 4.4 to 4.6 present intermediate results. The proof of the main theorem is in
Section 4.6, too.

4.1 Overview and Key Ideas

At the heart of this analysis is the following probabilistic model for the Darp in-
stances. The key feature of this model is that the underlying network and the cor-
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responding distance function are assumed to be fixed and the requests are generated
according to a probability distribution. The reason for this separation is that in
practice the topology and the transportation cost of the transportation networks are
fixed. In contrast, there are lots of requests which are in principle unpredictable but
may exhibit some statistical structure.

Definition 4.1 (List random model) Let the tree T = (V,E), the depot ver-
tex o ∈ V and the distance function d : E → R≥0 be fixed and assume that (pv)v∈V

is a probability distribution on the vertex set V . Then a random request list Lm
of length m is constructed by randomly choosing m pairs of source and destination
vertices according to (pv)v∈V . Denote by A(Lm) the multiset of arcs corresponding
to the request list Lm. The random Darp instance is now I = (T,A(Lm), d, o).

Note that the list random model includes the important uniform distribution on
the vertices (leading to the uniform request distribution on V ×V ) as a special case.
The main result of the probabilistic analysis is summarized by the following theo-

rem.

Theorem 4.2 Let I = (T,A, c, o) be a random Darp instance where the request
set A = A(Lm) is chosen randomly according to the list random model. The algo-
rithm use-MST (see Algorithm 2.4) solves I optimally a. a. s., that is

Prob [use-MST(I) = Darp(I)] = 1− o(1) as m→∞.

Moreover, if the tour output by use-MST is optimal there is a. a. s. a certificate of
optimality which can be computed in polynomial time.

This result follows from the fact that the graph (V,A∪B) arising from the balancing
operation is a. a. s. such that its component graph forms a star metric. We know
that then the result of the MST-heuristic corresponds to an optimal solution of the
SteinerTree-Problem for the arc-identified graph (see Proposition 2.11). Further-
more it can be checked in polynomial time whether the component graph is a star
metric or not, thereby providing the promised certificate.
Some remarks on the result of Theorem 4.2 are in order. First of all, it is an

asymptotic result. That means that it does not tell us much about “small” instances
– it may well be that this result does not give us anything for all real-world-size
instances. Indeed the probability that “everything goes well” increases to 1 rather
slowly. On the other hand we know empirically from experiments that use-MST is
well-behaved on small instances so we may look at both results as complementing
each other.
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4.2 A More Technical Road Map

Another issue we want to emphasise is that this result is (asymptotically) much
stronger than any average case result on use-MST: The algorithm use-MST has
always polynomial running time (in fact, nearly-linear running time) and is optimal
on almost all large instances, whereas an algorithm with good performance on average
may be bad on a large part of the instances.

The main idea for this probabilistic analysis is to use a reformulation of the list
random model featuring more stochastic independence. We then proceed by the
following steps:

1. We first show that the balancing arcs alone a. a. s. make up less than one
component per request, i. e., there are a. a. s. less than m components in the
graph (V,B) (Section 4.4).

2. Next we consider what happens to these balancing arcs components if we add
the request arcs. It turns out that there are a. a. s. one large nontrivial compo-
nent and some small ones (Section 4.5).

3. The last step consists of showing that a. a. s. each path starting in one of the
small nontrivial components and ending in another nontrivial component has
to pass through the large nontrivial component (Section 4.6). This ensures that
we have a star metric on the component graph and thus concludes the proof of
Theorem 4.2.

4.2 A More Technical Road Map

We now sketch the ideas underlying the reformulation of the list random model. At
the end of this section we discuss how this reformulation helps us in the analysis.
We use the same notation as in Chapter 2 although all the symbols depending

on the Darp instance are now random objects or random variables. Recall that an
edge {u, v} is used by the balancing set B output by Balance (see Algorithm 2.1)
if and only if b(u, v) + b(v, u) > 0, where

b(u, v) =


1 Φ(u, v) = Φ(v, u) = 0

Φ(v, u)− Φ(u, v) Φ(v, u) > Φ(u, v)

0 else.

(2.2)
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1

2 3

4 5

6 7

Figure 4.1: The balancing set for the Darp instance of Figure 2.1(a) divided into arc
sets B′ (dotted) and B′′ (dashed).

The balancing arcs in B can be partitioned into arc multisets B′ and B′′ (see Fig-
ure 4.1)

B′ := {(u, v) | Φ(v, u) > Φ(u, v)}
B′′ := {(u, v) | Φ(u, v) = Φ(v, u) = 0}.

We saw in the justification of Equation (2.2) that the arcs in B′ augment the request
set A to form strongly connected Eulerian components. In contrast, arcs from B′′

connect some of those components to larger ones. The analysis presented here deals
only with arcs in B′. By definition, B′ is a submultiset of B, so every component
of (V,A ∪B) corresponds to one or more components of (V,A ∪B′).
This restricted balancing operation requires the computation of Φ(v, u)−Φ(u, v),

which can conveniently be expressed by using the in- and outdegrees of TA := (V,A):

Φ(v, u)− Φ(u, v) = |V (v)× V (u) ∩ A| − |V (u)× V (v) ∩ A|
= |V (v)× V ∩ A| − |V (v)× V (v) ∩ A|
−
(
|V × V (v) ∩ A| − |V (v)× V (v) ∩ A|

)
= |V (v)× V ∩ A| − |V × V (v) ∩ A|
= δ+

TA
(V (v))− δ−TA

(V (v)). (4.1)

Intuitively, the surplus of requests traversing {u, v} from v to u over those in the
opposite direction is just the number of requests starting in V (v) minus the number
of requests ending in V (v).
Notice that Φ(v, u) − Φ(u, v) depends only on the in- and outdegrees of TA, that

is, for a request starting in v the destination vertex is irrelevant. We have thus
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decoupled the in- and outdegree information from the actual connection information,
which will be exploited by the modified list random model.

Modified list random model We define a modified random model which is not
fully equivalent to the standard list random model (see Definition 4.1). It is only
equivalent in a restricted sense: Consider all random request lists Lm having a certain
fixed request-vertex-incidence vector χ = (χv)v∈V . Our modified list random model
generates request sets according to χ with the same distribution as the standard
list random model conditioned on χ(Lm) = χ. This will be made more precise in
Proposition 4.7.
The philosophy behind this restriction is the following: For each fixed χ we can

imagine random instances as being generated by the modified list random model,
which facilitates our analysis. We show that for each χ the (restricted) balancing of
random instances results in a star metric, so this property holds in general.
The request-vertex-incidence vector χ is where our probability distribution (pv)v∈V

comes into play: We may think of χ as being generated by choosing 2m vertices
according to (pv)v∈V ; χv is then just the number of times v has been chosen. The
vector χ can be interpreted as assigning a vertex v exactly χv “slots”, which may be
used as either source or destination of a request. As source and destination vertex
are chosen according to the same probability distribution, we can first decide on the
number of requests incident to a vertex v (namely χv) and in a second step choose
whether a “slot” will be a source or destination such that there are m source and
destination “slots”. It then remains to connect them. To simplify the random experi-
ment for achieving this and because we need a more structured T in the subsequent
analysis, we will assume a normalized T .
More precisely, we will assume that both the source and the destination vertex of

a request are leaves and that each leaf is either source or destination of exactly one
request thus the leaves will play the role of the “slots” mentioned above. Furthermore
we need the technical requirement that T is a rooted full binary tree, i. e., each non-
leaf has exactly two children. It is possible to transform an arbitrary tree to meet
this requirements such that if the component graph of the transformed tree is a star
metric so is the component graph of the original tree. The transformation depends
only on T and the fixed request-vertex-incidence vector χ and is described later. Its
properties are given by Lemma 4.5 and the preservation of the star metric is the
statement of Proposition 4.6.
Note that this transformation is a purely technical device to simplify the proof of
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Theorem 4.2, since it justifies that we can restrict ourselves to full binary trees with
requests starting and ending at leaves. This transformation is not carried out for the
original instance but only used to show that the original instance gives rise to a star
metric.
Henceforth we will assume that the tree T and all related items have been normal-

ized. We are now able to describe the modified list random model.

Definition 4.3 (Modified list random model) Let T be a full binary tree with
exactly 2m leaves. A random request list is now constructed as follows:

1. Choose a vector x ∈ {+1,−1}2m such that
∑

1≤i≤2m xi = 0 at random. This is
interpreted as “leaf i is source of a request” (xi = +1) or “leaf i is destination
of a request” (xi = −1).

2. Choose a permutation σ : {1, . . . ,m} → {1, . . . ,m} at random. The permuta-
tion σ determines how to connect the “+1”-leaves to “−1”-leaves: The ith leaf
having xi = +1 is connected to the σ(i)th leaf having xσ(i) = −1.

We get a random request set A(x, σ) this way.

Example Suppose the list random model produced a request set A(L3) =
{

(1, 3),

(1, 2), (4, 3)
}
, depicted in the following figure.

1 2 3 4

An equivalent request set would be obtained by the modified list random model for
x = (+1,+1,−1,−1,−1,+1) and σ = ( 1 2 3

2 1 3 ). These parameters yield the request
set A(x, σ) =

{
(l1, l4), (l2, l3), (l6, l5)

}
:

+ + - - - +

1 2 3 4

l1 l2 l3 l4 l5 l6
σ =

„ «
1

2

2

1

3

3

Note that we did not insist on the full binary tree requirement for the purposes of
this example. �

We may choose whether a leaf is source or destination with equal probability after
fixing the request-vertex-incidence vector χ because the list random model uses the
same distribution (pv)v∈V for both source and destination of a request.
As mentioned before the modified list random model is equivalent to the list ran-

dom model conditioned on a fixed request-vertex-incidence vector χ. This is formally
stated in Proposition 4.7.
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Road map of the analysis In order to pursue the program stated at the end of
the last section we need to describe both the set of balancing arcs B′ and the request
set A in terms of the modified list random model. Since we know that any weakly
connected component of (V,A ∪ B′) is indeed strongly connected (see Lemma 2.3)
it suffices to analyse weakly connected components and we can restrict ourselves to
edge sets (instead of arc sets). We can describe the underlying edge sets of A and B′

by exploiting the modified list random model as follows:

EB′(x) =
{
{u, v} | δ+

TA
(V (v))− δ−TA

(V (v)) 6= 0
}

EA(x, σ) =
{
{u, v} | (u, v) ∈ A(x, σ)

}
.

Our tree T is rooted w. r. t. to the root vertex r, allowing us to express the set V (v)

induced by an edge {v, %(v)} as V (v) = {v′ ∈ V | v′ � v}, where %(v) denotes the
parent vertex of a vertex v. The partial order on the vertices used here is defined as

u � v :⇐⇒ v is on the unique path from u to the root r.

We also say that v majorizes u.
The analysis now proceeds as follows:

• First we show that TB′ := (V,EB′) has few components a. a. s. To this end, we
define the random variable Sv(x) indicating the “balance” of a vertex v:

Sv(x) :=
∑

v′�v
(δ+
TA

(v′)− δ−TA
(v′))

=
∑

li�v
xi,

so we have
EB′(x) =

{
{v, %(v)} | Sv(x) 6= 0, v 6= r

}
.

If v is the maximum vertex of a component of TB′ we have Sv(x) = 0, so we can
use the number of vertices satisfying Sv(x) = 0 as an estimate for the number
of components of TB′ .

• Second we consider what happens if TB′ is augmented with the request edges
EA(x, σ) to obtain TAB′ := (V,EB′ ∪ EA): As it turns out, there is a. a. s. one
component C∗ containing more than half of the leaves and all other components
are a. a. s. cycles.

• The last step consists of showing that the path from vertex u to vertex v from
the remaining components crosses C∗ a. a. s., which establishes the star metric
property.
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r

1

2

3 3′

3′′

5

1 2

3

4 5

6

7 8 V0

V1

V2

V3

Figure 4.2: Layers in the vertex set of the normalized version (cf. Figure 4.3) of the
Darp instance shown in Figures 4.1 and 2.1(a).

We will need a little more notation. Let l(v) be the number of leaves below a
vertex v. We partition the vertex set V in “layers” (see Figure 4.2), depending on
how many leaves each vertex majorizes:

Vj := {v ∈ V | 2j ≤ l(v) < 2j+1}, 0 ≤ j ≤ dlog2(2m)e . (4.2)

Moreover, we set

V≤k :=
⋃

j≤k
Vj and V≥k :=

⋃
j≥k

Vj.

It will prove useful in the later discussion to know something about the number
of maximal and minimal vertices of Vj. We can exploit the binary tree structure to
obtain such bounds.

Lemma 4.4 There are at most 2m
2j maximal and minimum vertices w. r. t. � in Vj.

Proof. Different maximal vertices u, v ∈ Vj majorize disjoint sets of leaves. Since
each maximal vertex of Vj majorizes at least 2j leaves, there can be at most 2n

2j

distinct maximal vertices in Vj.
To conclude that the number of minimal vertices is also at most 2n

2j we establish a
one-to-one-correspondence between the maximal and minimal vertices of Vj. To this
end, we show that the set

M(v) := {u ∈ Vj | u � v}

of vertices in Vj majorized by a fixed maximal vertex v ∈ Vj is a chain w. r. t. �.
To construct a contradiction, assume that u, u′ ∈ M(v) are such that u 6� u′

and u′ 6� u. Since both u, u′ are elements of Vj, we know that l(u), l(u′) ≥ 2j.
Furthermore, u and u′ majorize disjoint leaf sets, so we have l(v) ≥ l(u)+l(u′) ≥ 2j+1,
contradicting v ∈ Vj. 2
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4.3 Some Preliminaries

In this section basic results used in the following sections are proven. Most of them
have been mentioned and motivated in the preceding discussion.
First we have to verify our claim that a transformation with the properties de-

scribed in the last section exists. Algorithm NormalizeTree is one way to do such
a transformation and the properties of its output are summarized by the following
lemma. Note that in order to establish the required properties we have to ensure
that the distances of the vertices are the same. Transformed items are indicated by
a bar.

Lemma 4.5 The algorithm NormalizeTree (see Algorithm 4.1) transforms a tree
T = (V,E), its edge length function d : E → R≥0 and the vector χ to another
tree T̄ = (V̄ , Ē), associated edge length function d̄ : Ē → R≥0 and vector χ̄, which
are equivalent for our purposes. More specifically, T̄ , d̄ and χ̄ satisfy

1. T̄ is a full binary tree: each non-leaf has exactly two children

2. Each “slot” is a leaf and vice versa: χ̄v = 0 for all non-leaves v and χ̄li = 1 for
all leaves li. Furthermore, there are χv leaves for vertex v ∈ V , which are at
distance 0 to a corresponding vertex for v in T̄ .

3. The distances do not change: If ū, v̄ are corresponding vertices of u, v ∈ V , we
have D̄(ū, v̄) = D(u, v). (Recall that D denotes the lifted distance function.)

4. In both subtrees of the root vertex r are at least a third of the leaves.

Proof. By inspection of the algorithm (see Figure 4.3 for an example). 2

The purpose of the transformation process is to justify the restriction to full binary
trees with requests starting and ending at leaves only. The following proposition gives
us this justification.

Proposition 4.6 Let T = (V,E) be an arbitrary tree with associated edge length
function d : E → R≥0, χ a request-vertex-incidence vector, Lm a list of requests
with χ(Lm) = χ and finally B′ the arc multiset resulting from the restricted balancing
process on T and A(Lm). Furthermore, let T̄ , d̄, χ̄ and L̄m be the corresponding items
as transformed by NormalizeTree and B̄′ the result from restricted balancing.
If the component graph H̄ ′ of (V̄ , A(L̄m)∪ B̄′) is a star metric, so is the component

graph H ′ of (V,A(Lm) ∪B′).
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Algorithm 4.1 Algorithm NormalizeTree for transforming a tree T to a canonic
structure.
NormalizeTree (T, d, χ)

Input: Tree T = (V,E), edge length function d : E → R≥0,
request-vertex-incidence vector χ = (χv)v∈V .

Output: Modified tree T̄ = (V̄ , Ē), edge length function d̄ : Ē → R≥0,
request-vertex-incidence vector χ̄ = (χ̄v)v∈V̄ .

1 V̄ := V ; Ē := E; d̄ := d; χ̄ := χ

2 for v ∈ V̄ do
3 Create χ̄v leaves l1, . . . , lχ̄v and connect them to v at distance 0. Set χ̄v = 0

and χ̄li = 1.
4 end for
5 for v ∈ V̄ and δT̄ (v) = 2 do
6 Let {u, v} and {v, w} be the incident edges.
7 Remove v from V̄ and replace {u, v} and {v, w} by {u,w} in Ē.
8 Set d̄({u,w}) := d̄({u, v}) + d̄({v, w}).
9 end for
10 for v ∈ V̄ do
11 while δT̄ (v) > 3 do
12 Let w1, w2 be neighbors of v.
13 Remove edges {v, w1} and {v, w2} from Ē.
14 Add a new vertex v′ to V̄ and add edges {v, v′}, {v′, w1} and {v′, w2} to Ē.
15 Set d̄({v, v′}) := 0

d̄({v′, w1}) := d̄({v, w1})
d̄({v′, w2}) := d̄({v, w2}).

16 end while
17 end for
18 Insert a root vertex r by splitting an edge {u, v} such that V (u) and V (v) contain

at least 2m/3 leaves. The distances after splitting are

d̄({u, r}) := 1
2
d̄({u, v})

d̄({r, v}) := 1
2
d̄({u, v}).

return T̄ , d̄, χ̄
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(a) Instance after inserting leaves (af-
ter step 4).
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(b) Instance after contracting paths (af-
ter step 9).
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(c) Instance after splitting vertices of
degree greater than 3 (after step 17).
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(d) Normalized instance.

Figure 4.3: Stages of the normalization done by algorithm NormalizeTree on the
Darp instance shown in Figures 2.1(a) and 4.1. Dotted edges are edges
of length 0. Other edge lengths are as indicated.
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Proof. The key to the proof is the following observation:

Every nontrivial component of (V,A(Lm) ∪ B′) corresponds to one
or more nontrivial components of (V̄ , A(L̄m) ∪ B̄′), which are at
distance 0 from each other.

(4.3)

This property can be verified by looking at how the changes done by Normalize-
Tree affect the balancing operation. Let us suppose that the “slots” are connected
somehow by m requests.
The creation of leaves as source and destination vertices for the requests (steps 2ff)

does not lead to further components, since balancing adds exactly one arc along edge
{v, li}.
Similarly, the contraction of path segments (steps 5ff) does not increase the number

of components either: All arcs traversing edges {u, v} and {v, w} have to traverse
both successively, which is equivalent to one traversal of the new edge {u,w}. A
similar argument holds for the addition of the root vertex r.
Finally, splitting vertices with degree larger than 3 (steps 10ff) may result in more

nontrivial components: The new edge {v, v′} need not be traversed by any request
arc. In this case there is a new nontrivial component containing v′, which is at
distance 0 to the component of v.
Now we can use Property (4.3) to show that H ′ is a star metric whenever H̄ ′ is.

For the sake of simplicity, we will sometimes treat components of (V,A(Lm)∪B′) as
vertices of H ′ and similarly for H̄ ′.
Let C̄∗ be the center of the star metric of H̄ ′ and C∗ be the corresponding ver-

tex in H ′. Furthermore, suppose that C1, C2 are vertices of H ′ such that the dis-
tance d(C1, C2) is determined by a shortest path starting in u ∈ C1 and ending
in v ∈ C2. Since the length of shortest paths is not changed by NormalizeTree we
have d(C1, C2) = d(C̄1, C̄2) for some components C̄1 and C̄2 containing the vertices
corresponding to u and v, respectively.
However, the star metric property of H̄ ′ yields d(C̄1, C̄2) = d(C̄1, C̄

∗) + d(C̄∗, C̄2).
By Property (4.3) we have d(C̄1, C̄

∗) = d(C1, C
∗) and d(C̄∗, C̄2) = d(C∗, C2) since

lengths of shortest paths are preserved and the possibly remaining vertices of H̄ ′ cor-
responding to C∗ are all at distance 0 (see Figure 4.4). Thus d(C1, C2) = d(C1, C

∗)+

d(C∗, C2) as claimed. 2

We also claimed that the modified list random model is equivalent to the list
random model conditioned on a fixed request-vertex-incidence vector χ.
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d(C1, C2)

d(C∗, C2)

d(C1, C
∗)

C1

C2

C∗

(a) Situation in H ′.

C̄1

C̄2

C̄∗

· · ·

· · ·

· · ·d(C̄1, C̄2)

d(C̄1, C̄
∗)

d(C̄∗, C̄2)

0

0

C(C1)

C(C2)

C(C∗)

(b) Situation in H̄ ′.

Figure 4.4: Idea for translating star metric property from H̄ ′ to H ′. The symbol C(C)

denotes the set of components of (V̄ , A(L̄m) ∪ B̄′) corresponding to a
component C of (V,A(Lm) ∪B′).

Proposition 4.7 Let χ be an arbitrary fixed request-vertex-incidence vector. The
list random model and the modified list random model are related by

Prob
[
A(x, σ) = Ā

]
= Prob [A(Lm) = A | χ(Lm) = χ] . (4.4)

Proof. The proof is along the lines of [13]. Let A = {a1, . . . , am} be a request set
with request-vertex-incidence vector χ. Furthermore, let ki be the the multiplicity
of ai in A.
We start by computing Prob [A(Lm) = A | χ(Lm) = χ]. How many request lists Lm

satisfy A(Lm) = A? The only difference between A and Lm is that A is unordered.
For each request ai a subset of ki out of initially m positions in Lm can be chosen
(without replacement), where all ki! subsets give rise to the same list Lm. Therefore
there are in total (

m

k1, . . . , km

)
=

m!∏
ai∈A ki!

different Lm with A(Lm) = A. Since Lm can equivalently be viewed as being an
element of V 2m and for each v ∈ V we have to choose χv out of initially 2m positions
to obtain a Lm with request-vertex-incidence vector χ, the total number of such Lm
is (

2m

χv1 , . . . , χvn

)
=

(2m)!∏
v∈V χv!

.
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We thus have

Prob [A(Lm) = A | χ(Lm) = χ] =
m!
∏m

i=1 χvi
!

(2m)!
∏m

i=1 ki!
.

Similarly, we have to determine the number of pairs (x, σ) leading to Ā. LetM(v) :=

{l1, . . . , lχv} be the set of leaves corresponding to v’s “slots” and A(v) := {a1, . . . , am′}
the submultiset of request arcs incident to v. In order to generate Ā, the permutation
σ has to map M(v) to A(v) which can be done in(

χv
k1, . . . , km′

)
=

χv!∏
ai∈A(v) ki!

distinct ways, since |M(v)| = |A(v)| = χv. Considering all v, there are

χv1 ! · · ·χvn !∏
ai∈A(v1) ki! · · ·

∏
ai∈A(vn) ki!

=
χv1 ! · · ·χvn !∏

ai∈A(ki!)2

different σs mapping eachM(v) to A(v). Notice that σ implicitly determines whether
a leaf is a “+”-leaf or a “−”-leaf, depending on whether it is mapped to a leaving or an
entering request arc, respectively. In fact, the number of “+”s and “−”s in v’s “slots”
is already given by Ā. However, if ai is an arc of multiplicity ki we still have ki!
possibilities to map “+”-leaves to “−”-leaves.
Obviously, there are

(
2m
m

)
m! = (2m)!

m!
possibilities for (x, σ), so we get

Prob
[
A(x, σ) = Ā

]
=

m!
∏m

i=1 χvi
!

(2m)!
∏m

i=1 ki!
.

2

The following lemma bounds the probability that a vertex is balanced.

Lemma 4.8 For all v 6= r we have

Prob [Sv = 0] ≤ 2

√
6

π
· 1√

l(v)
∈ O

(
l(v)−1/2

)
.

Proof. Notice that for Sv = 0 to hold, l(v) =: k has to be even. Then

Prob [Sv = 0] =

(
k
k/2

)(
2m−k
m−k/2

)(
2m
m

)
(A.3)

≤
2k√
πk/2

22m−k√
π(m−k/2)

22m−k√
πm

=
2
√
πm

π
√
k/2
√
m− k/2
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Due to the choice of r (see Lemma 4.5) we know that both the left and the right
subtree of r contain at least 2

3
m leaves. Thus we have k ≤ 2

3
·2m, leading tom−k/2 ≥

1
3
m and

Prob [Sv = 0] ≤ 2
√
m
√

3
√
π
√
k/2
√
m

= 2

√
6

π
· 1√

k
∈ O

(
l(v)−1/2

)
. 2

4.4 Estimating the Number of Components Arising
From Balancing Arcs

In this section it will be shown that TB′ has less than one component per request
a. a. s. To estimate the expected number of components we need to know a bound on
the weight of all full binary trees for a certain weight function. The weights of each
vertex are an upper bound for the probability that this vertex is the maximal vertex
of component. This will become clearer in the proof of Lemma 4.10.
The next lemma, which is an improvement of Lemma 20 in [12] gives us this bound.

We were able to improve this intermediate result in two ways: Most importantly, the
proof we give here is much simpler and more intuitive than the original one. Moreover
the constant α is a bit better than the original 49

50
= 0.98. Of course this is irrelevant

for asymptotic results.

Lemma 4.9 Let T be a full binary tree with l leaves. Then the vertex weight func-
tion f : V → R defined by f(v) = g(l(v)) with

g(k) :=


1
2

k = 2√
2
πk

k ≥ 4, k even

0 otherwise

satisfies f(T ) =
∑

v∈V f(v) ≤ αl for α ≤ 0.42.

Proof. We define

F (l) := max{f(T ) | T is full binary tree with l leaves}

to be the maximum weight possible for a full binary tree with l vertices and call

%(l) :=
F (l)

l
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the average weight of a maximum weight tree. It thus suffices to show that %(l) ≤
α ≤ 0.42 ∀l.
We assume that there are suitable constants α < 1, β > 0 such that

%(l) ≤ (1− β
l
)α (4.5)

holds for all l and derive conditions on α and β by an inductive argument in order to
determine a small upper bound on α. The constant β is needed to obtain a bound
for α which is less than 1

2
.

As a a basis for the induction, suppose we know values for α and β which sat-
isfy (4.5) for all l ≤ l0. To see what happens for l > l0, let T be a full binary
tree with l vertices and root r. Denote by T1 and T2 the left and the right subtree
having l1 and l2 leaves, respectively. We can thus write f(T ) as

f(T ) = f(T1) + f(T2) + f(r) = f(T1) + f(T2) + g(l).

Since every tree T can be decomposed in this way we have

F (l) = max{f(T ) | T is a full binary tree with l leaves}
= max{f(T1) + f(T2) + g(l) | T = (T1, r, T2)}
= max{F (l1) + F (l2) | l1 + l2 = l}+ g(l).

Using %(l1) and %(l2) and dividing by l we get

%(l) =
F (l)

l
= max

{
l1%(l1) + l2%(l2)

l

∣∣∣∣ l1 + l2 = l

}
+
g(l)

l
.

We assumed that condition (4.5) is satisfied for any l′ ≤ l0, so it is in particular
satisfied for %(l1) and %(l2). Substitution yields

%(l) ≤ max

{
l1(1− β

l1
)α + l2(1− β

l2
)α

l

∣∣∣∣ l1 + l2 = l

}
+
g(l)

l

= max

{
α
(
(l1 − β) + (l2 − β)

)
l

∣∣∣∣ l1 + l2 = l

}
+
g(l)

l

= max

{
α(l1 + l2)− 2αβ

l

∣∣∣∣ l1 + l2 = l

}
+
g(l)

l

= α− 2αβ − g(l)

l

=

(
1−

2β − g(l)
α

l

)
α.
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We want α and β to satisfy (4.5), so we have the condition

2β − g(l)
α
≥ β

which is equivalent to β ≥ g(l)
α
. Note that due to the definition of g, the value g(l0+2)

is an upper bound for g(l), since l > l0.
All in all, α and β must obey the conditions

%(l) ≤ (1− β
l
)α, ∀l ≤ l0 (4.6)

β ≥ g(l0 + 2)

α
.

Setting

β := β(l0) =
g(l0 + 2)

α

Equation (4.6) reads

%(l) ≤ α− g(l0 + 2)

l0
.

If we set

α(l0) := %(l0) +
g(l0 + 2)

l0

and α(l0) and β(l0) satisfy (4.6) for all l ≤ l0, α(l0) is an upper bound for α.
It turns out (and can be verified by a tedious computation) that α(6) ≤ 0.42

satisfies all conditions. This value could be improved but is already quite tight, as
Table 4.1 shows. 2

We are now ready to estimate the number of components in TB′ , which is done by
using the random variables

Xj(x) := number of components of TB′ with maximal vertex in Vj.

Clearly, the total number of components is
∑

j≥1Xj(x).
We use a two step approach: We investigate

∑j0
j=1Xj(x) and

∑
j>j0

Xj(x) for
j0 := blog2(2m)/3c separately. This choice for j0 is justified at the end of the proof
for Lemma 4.10.

Lemma 4.10 We have a. a. s.∑j0

j=1
Xj(x) ≤ (1 + o(1))2αm.
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l %(l) α(l)

2 0.25 0.449471
4 0.349736 0.431169
8 0.384997 0.416537
16 0.397464 0.409218
32 0.401872 0.406148
64 0.403430 0.404965
128 0.403981 0.404528
256 0.404176 0.404370
512 0.404245 0.404314
1024 0.404269 0.404294

Table 4.1: Some values for %(l) and α(l).

Proof. The technique to proof this result is the standard one: First we estimate
the expectation E

[∑j0
j=1 Xj(x)

]
and then we invoke a tail inequality — Azuma’s

inequality in this case — to obtain this concentration result. However, there is one
technical obstruction to applying Azuma’s inequality (see Theorem 3.11) directly:
The components xi of the vector x are not independent.
To overcome this difficulty, we make the following observation: The definition of the

random variables and random objects Sv(x), EB′(x), TB′(x), and Xj(x) introduced
so far do not depend on the fact that

∑
i xi = 0. Consequently, we can extend their

definition to an arbitrary random ±1-vector y ∈ {−1, 1}2m giving us the desired
independence.
Let us consider a vector y ∈ {−1, 1}2m chosen uniformly at random. The first

step in the proof will be to show that h(y) :=
∑j0

j=1 Xj(y) is (1 + o(1))2αm a. a. s.
In a second step this result is transfered to a restricted vector satisfying

∑
i xi = 0.

Furthermore let Zv(y) be the indicator variable

Zv(y) :=

1 v is the maximal vertex of a nontrivial component of TB′(y)

0 otherwise

for every v ∈ V .

E [h(y)] ≤ E
[∑

j≥1
Xj(y)

]
= E

[∑
v∈V

Zv(y)
]

≤
∑

v∈V
Prob [Sv(y) = 0] .
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It is easy to see that

l(v) = 2 =⇒ Prob [Sv(y) = 0] = 1
2

l(v) > 2, l(v) even =⇒ Prob [Sv(y) = 0] =

(
l(v)

l(v)/2

)
2−l(v),

which using Lemma 4.9 gives the estimate∑
v∈V

Prob [Sv(y) = 0] =
|{v | l(v) = 2}|

2
+
∑

v : l(v)≥4,v even

(
l(v)

l(v)/2

)
2−l(v)

(A.3)
≤ |{v | l(v) = 2}|

2
+

√
2

π

∑
v : l(v)≥4,v even

l(v)−1/2

≤ f(T ) ≤ 2αm.

To show that h(y) is concentrated around its expected value, let us consider two
sequences y, y′ ∈ {−1, 1}2m which differ only in position k.
We claim that the function h satisfies the Lipschitz-type condition

|h(y)− h(y′)| ≤ 2(2m)1/3.

To see this, observe first that vertices w ∈ V≤j0 which do not majorize the leaf lk
contribute in the same way to h(y) and h(y′), since then Sw(y) = Sw(y′). Thus the
only interesting vertices are those from the set

W := {w ∈ V≤j0 | lk � w}.

Note that W is a chain with respect to �, because all w ∈ W are on the path from lk

to the root r. The maximum vertex ŵ := maxW majorizes at most 2j0+1 leaves, so
the subtree with root ŵ has at most 2j0+1 inner vertices. The difference |h(y)−h(y′)|
can be bounded by the number of inner vertices, since at most each of them can be
the maximum vertex of a nontrivial component. This leads to the claimed bound

|h(y)− h(y′)| ≤ 2j0+1 ≤ 2log2(2m)/3+1 = 2(2m)1/3.

All components yi of the vector y are independent random variables, so we can
invoke Azuma’s inequality (see Theorem 3.11) to get the bound

Prob
[
|h(y)− E [h(y)]| ≥ t

]
≤ 2 exp

(
− t2

2
∑2m

i=1

(
2(2m)1/3

)2

)
= 2 exp

(
− t2

8(2m)5/3

)
for arbitrary positive t.
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Let us get back to constrained ±1-sequences:

Prob
[∑j0

j=1
Xj ≥ 2αm+ t

]
= Prob

[
|h(y)− E [h(y)]| ≥ t

∣∣∣∣∣ ∑2m

i=1
yi = 0

]

≤
Prob

[
|h(y)− E [h(y)]| ≥ t

]
Prob

[∑2m
i=1 yi = 0

]
≤ 2 exp

(
− t2

8(2m)5/3

)
22m(
2m
m

)
∼ 2
√
πm exp

(
− t2

8(2m)5/3

)
.

In order to prove the lemma, it remains to choose t such that

1. t ∈ o(m) (left hand side)

2. 2 exp
(
− t2

8(2m)5/3

)√
πm ∈ o(1) (right hand side).

Set f(m) := 1/(8(2m)5/3). Clearly, the second condition can be satisfied if

2 exp (−f(m))t
2√

πm� 1

⇐⇒ t2 ln(exp (−f(m)))� ln(
√
πm)−1

⇐⇒ −t2f(m)� − ln(
√
πm)

⇐⇒ t2f(m)� ln(
√
πm)

⇐⇒ t2 � ln(
√
πm)

f(m)
.

We choose t2 = ln(2m)
f(m)

= 8 ln(2m)(2m)5/3, satisfying both conditions.
Note that for j0 := bc log2(2m)c our bound for |h(y) − h(y′)| would be 2(2m)c,

leading to

Prob
[
|h(y)− E [h(y)]| ≥ t

]
≤ 2 exp

(
− t2

8(2m)5c

)
.

Because of the second condition, t2 has to be greater than (2m)5c, implying t ≥
(2m)5c/2. Our choice c = 1

3
is just small enough to meet the first condition for t, i. e.,

that t ∈ o(m). 2

The following lemma estimates the number of components of TB′ with maximal
vertex in V>j0 . Combining it with the preceding lemma we see that the total number
of components is a. a. s. ∑

j
Xj(x) ≤ 2αm.
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Lemma 4.11 We have a. a. s.∑
j0<j

Xj(x) ∈ o(m).

Proof. Similarly to the argument in Lemma 4.10 we have the estimate

E
[∑

j0<j
Xj(x)

]
= E

[∑
v∈V>j0

Zv(x)

]
≤
∑

v∈V>j0

Prob [Sv(x) = 0]

≤ 2

√
6

π

∑
v∈V>j0

1√
l(v)

,

where the last inequality has been obtained by using Lemma 4.8.
Next, we rewrite the last term to sum by the number l(v) of leaves below a vertex v

instead of vertices v itself. Note that each vertex v ∈ V>j0 majorizes at least 2j0+1 ≥
2log2(2m)/3 = (2m)1/3 and at most 2m leaves.

2

√
6

π

∑
v∈V>j0

1√
l(v)

= 2

√
6

π

∑2m

b=(2m)1/3

1√
b
· |{v ∈ V>j0 | l(v) = b}|

Since all vertices v with l(v) = b for a given b form an antichain with respect to �,
there are at most 2m

b
of them:

≤ 2

√
6

π

∑2m

b=(2m)1/3

1√
b
· 2m

b

= 4m

√
6

π

∑2m

b=(4m)1/3
b−3/2

≤ 4m

√
6

π

∫ 2m

b=(2m)1/3−1

b−3/2 db

≤ 4m

√
6

π
· 2(2m)−1/6

= 8

√
6

π

m

(2m)1/6
∈ o(m).

Invoking Markov’s inequality with t := cm5/6 logm ∈ o(m) establishes the “high
probability” claim:

Prob
[∑

j0<j
Xj(x) ≥ cm5/6 logm

]
≤

E
[∑

j0<j
Xj(x)

]
cm5/6 logm

≤ 1

logm
∈ o(1). 2
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C0
C1

+

+

− −

+ −

Figure 4.5: Illustration of separated sets: The set C0 is separated in TAB′ , since there
are no arcs in A which connect its components to components not in C0.
In contrast, the set C1 is clearly not separated in TAB′ .

4.5 The Structure of the Graph After Balancing

We already know that the graph TB′ a. a. s. has no more than 2αm components, the set
of which will be denoted by CB′ . We will now consider the graph TAB′ := (V,EB′∪EA)

in which the components of TB′ are joined by request edges.
A subset C0 ⊆ CB′ will be called separated (in TAB′), if there is no edge in EA

joining a vertex in C0 with a vertex outside C0 (see Figure 4.5).
It is an easy fact that each component of TAB′ is a nonempty separated subset

of CB′ , which is minimal w. r. t. inclusion. To see this, let C0 be such a subset. Since C0

is minimal w. r. t. inclusion, for each component C ∈ C0, the subset C0 \ {C} is not
separated, which tells us that the edges in EA join exactly all components in C0. Thus
the subgraph of TAB′ induced by C0 is obviously a component of TAB′ . Now let C be
a component of TAB′ and denote by CB′(C) the set of components of TB′ it is made of.
Clearly, CB′(C) is nonempty and separated. Furthermore, it is also minimal w. r. t.
inclusion, because if CB′(C) \ {C ′} was separated for some C ′ ∈ CB′(C), C cannot be
a component.
We will use this equivalence between the components of TAB′ and the minimal

separated subsets of CB′ by bounding the number of separated subsets and thus the
number of components. Denote by l+(C0) the number of “+”-leaves in C0, i. e., the
number of leaves li with xi = +1.

Lemma 4.12 Suppose x0 is such that |CB′(x0)| ≤ 2αm. The expected number of
separated subsets C0 ⊆ CB′(x0) satisfying

• |C0| = k and

• l+(C0) ≤ m
2
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is at most
(2α)k

(k + l)l
(m− k)l

. (4.7)

where we assumed that l+(C0) = k + l. Note that l ≥ 0 since every C ∈ CB′(x0) has
at least one “+”-leaf.
Moreover, Equation (4.7) bounds the expected number of such C0 even for arbi-

trary l, k + l ≤ l+(C0).

Proof. Consider for each subset C0 with the above properties the indicator variable

IC0 :=

1 C0 is separated

0 otherwise.

Clearly, C0 is separated if and only if all its “+”-leaves are connected to its “−”-leaves:

Prob [IC0 = 1] =
l+(C0)!(m− l+(C0))!

m!
=

(
m

l+(C0)

)−1

≤
(

m

k + l

)−1

for l with k + l ≤ l+(C0).

The last inequality follows from the fact that l+(C0) ≤ m
2
.

We can now use the bound for the probability to estimate the expected number of
separated subsets C0:

E
[∑

C0⊆CB′ ,|C0|=k,l+(C0)≤m
2

IC0

]
≤
∑

|C0|=k,l+(C0)≤m
2

(
m

k + l

)−1

≤
(
|CB′ |
k

)(
m

k + l

)−1

=
(|CB′ |)k (k + l)!

k! (m)k+l

≤ (2αm)k (k + l)l
(m)k+l

=
(2α)k(m)(m− 1

2α
) · · · (m− k+1

2α
) (k + l)l

(m)k+l

≤ (2α)k (m)k (k + l)l
(m)k+l

(since 2α ≤ 1)

= (2α)k
(k + l)l

(m− k)l
.

This completes the proof. 2
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Let us call a component of TAB′ large if it contains more than m leaves and small
otherwise. Note that this implies that there is at most one large component. We are
now ready to prove the following result on the structure of TAB′ .

Proposition 4.13 The graph TAB′ enjoys the following properties a. a. s.:

1. The are O (logm) small components.

2. All small components are cycles of length O (logm).

3. There is one large component containing (2− o(1))m leaves.

Proof. Assume that |CB′| ≤ 2αm. By definition, a subset C0 ⊆ CB′ is separated if
and only if CB′ \C0 is separated. Therefore for each minimal separated subset C0with
l+(C0) ≤ m

2
there is at most one other minimal separated subset C ′0 with l+(C ′0) > m

2
.

The number η(TAB′) of components of TAB′ is thus bounded by twice the number
of minimal separated subsets C0 with l+(C0) ≤ m

2
, which in turn is bounded by the

number of separated subsets with l+(C0) ≤ m
2
.

E [η(TAB′)] ≤ 2
∑2αm

k=1
E
[
|{C0 | C0 is separated, |C0| = k, l+(C0) ≤ m

2
}|
]

≤ 2
∑∞

k=1
(2α)k ∈ O (1) .

The second inequality is obtained by invoking Lemma 4.12 with l = 0. The Markov
inequality yields for t := c logm

Prob [η(TAB′) ≥ c logm] ≤ O (1)

c logm
∈ o(1) as m→∞,

thereby establishing claim 1.
Lemma 4.12 allows us to conclude that a. a. s. every small component of TAB′

consists of O (logm) nontrivial components of TB′ . Suppose k ≥ c logm for some
suitably large c, leading to

E
[
|{C0 | C0 is separated, |C0| = k, l+(C0) ≤ m

2
}|
]
≤ (2α)k

(k + l)l
(m− k)l

≤ (2α)c logm (k + l)l
(m− k)l

≤ m−c̄
(m/2)l
(m/2)l

for some c̄ > 0

= m−c̄ ∈ o(1) as m→∞.
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We used the fact k + l ≤ m
2
and the implied bound m− k ≥ m

2
in this estimate. By

the first moment method, there are a. a. s. no small components consisting of more
than c logm nontrivial components.
So let us assume k ≤ c logm. Again, we can use Lemma 4.12 and the first moment

method to show that l+(C0) = k a. a. s.. The expected number of separated sets C0

having l+(C0)− k =: l > 0 is at most

(2α)k
(k + l)l

(m− k)l
≤ (k + l)l

(m− k)l
∈ O

(
m−1

)
.

This can be seen by considering two cases:

Case 1: l is small: l ≤ c logm

We then have
(k + l)l

(m− k)l
≤ k + l

m− k
∼ 1

m
.

Case 2: l is large: l ≥ c logm

(k + l)l
(m− k)l

∼ (k + l)l
(m)l

≤ (m/2)l
(m)l

=
∏l−1

i=0

m/2− i
m− i

=
∏l−1

i=0

(
1

2
− i

2(m− i)

)
≤
(

1

2

)l
≤
(

1

2

)c logm

=
1

mc̄
for some c̄ > 1.

The condition l+(C0) = k implies that all nontrivial components of TB′ that make
up C0 are “cherry”-like structures with one “+”-leaf and one “−”-leaf each, so C0 must
be a cycle, which was claim 2.
We now know that there are at most O (logm) small components, each having at

most O (logm) leaves, so the remaining 2m − O
(
log2m

)
leaves have to be in the

unique large component. 2

4.6 Algorithm use-MST Is a. a. s. Optimal

Throughout this section we implicitly assume that the properties stated in Proposi-
tion 4.13 hold. We want to show that the component graph of TAB′ will be a star
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metric. We do this by showing that every path connecting different small components
passes through the large component C∗. The main technical idea is to identify larger
regions in TAB′ which border single small components, so different small components
will be in different regions. Furthermore crossing region borders will lead a. a. s. to a
traversal of C∗.
The probability that a certain leaf set associated with such a region encompasses

leaves from more than one small component is estimated in the following technical
lemma.

Lemma 4.14 LetM ⊆ {l1, . . . , l2m} be a subset of l := |M | leaves. Consider distinct
small components C1, C2 ∈ CB′ which both contain leaves of M . Then

Prob [∃C1, C2 ∈ CB′ which end up in different small components] ∈ O
(
l2

m2

)
.

Proof. Three cases are possible:

1. C1, C2 are joined to further distinct components of TB′

2. C1 makes up a nontrivial component of TAB′ while C2 is joined to further
components of TB′

3. C1, C2 are both nontrivial components of TAB′

Case 1: C1, C2 are joined to further distinct components of TB′

Let C1, C2 be the subsets of TB′ ’s components C1 and C2 are joined to, respec-
tively. Clearly, C0 := {C1, C2} ∪ C1 ∪ C2 is a separated subset with k := |C0| ≥ 4

components. The probability for this case can thus be bounded by the probabil-
ity that there is such a C0. For a fixed C0, the probability that C0 is separated
is at most

(
m
k

)−1. Furthermore there are at most
(
l
2

)
choices for {C1, C2} and at

most
(|CB′ |
k−2

)
possibilities for C1 and C2.

Prob [∃C1, C2 ending up in different small components]

≤
∑O(logm)

k=4

(
l

2

)(
|CB′ |
k − 2

)(
m

k

)−1

≤
∑O(logm)

k=4

l2

2

(2αm)k−2

(k − 2)!

k!

(m)k

≤
∑O(logm)

k=4

l2k2

(m− k + 2)(m− k + 1)

(2αm)k−2

(m)k−2

≤
∑O(logm)

k=4

l2k2

(m− k + 1)2
(2α)k

≤ l2

(m−O (logm))2

∑O(logm)

k=4
k2(2α)k ∈ O

(
l2

m2

)
.
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Case 2: C1 is a nontrivial component of TAB′ , C2 is joined to further components
of TB′

Similarly to the previous case, let C2 be the subset of TB′ ’s components C2 is joined
to. We set C0 := {C2} ∪ C2 and k := |C0| ≥ 2. This time, there are at most l(l− 1)

choices for {C1, C2} and not more than
(|CB′ |
k−1

)
choices for C2. The probability that

both {C1} and C0 are separated is

l+(C1)! l+(C0)! (m− l+(C1)− l+(C0))!

m!
,

leading to the estimate

Prob [∃C1, C2 ending up in different small components]

≤
∑O(logm)

k=2
l(l − 1)

(
|CB′ |
k − 1

)
l+(C1)! l+(C0)! (m− l+(C1)− l+(C0))!

m!

≤
∑O(logm)

k=2
l2
(
|CB′ |
k − 1

)
k!(m− 1− k)!

m!

≤
∑O(logm)

k=2

l2

m− k
(2αm)k−1

(k − 1)!

k!

(m)k

≤
∑O(logm)

k=2

l2k

(m− k)(m− k + 1)

(2αm)k−1

(m)k−1

≤ l2

(m−O (logm))2

∑O(logm)

k=2
k(2α)k−1 ∈ O

(
l2

m2

)
.

Case 3: C1 and C2 are both nontrivial components of TAB′

In the final case we have the bound

Prob [∃C1, C2 ending up in different small components]

≤
(
l

2

)
l+(C1)! l+(C2)! (m− l+(C1)− l+(C2))!

m!

≤ l2

2

(m− 2)!

m!
=

l2

2m(m− 1)
∈ O

(
l2

m2

)
. 2

For the final proof of Theorem 4.2 we need the following proposition, which actually
identifies the “regions” mentioned above.

Proposition 4.15 The graph TAB′ enjoys the following properties a. a. s.:

1. There is no vertex v ∈ V≤0.9 log2(2m) that majorizes vertices of distinct small
components.
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2. If u, v ∈ V≥0.9 log2(2m) are such that u � v, u majorizes vertices of a small
component Cu and v majorizes vertices of another small component Cv 6= Cu,
then there is a vertex s, u � s � v, with |Ss| > 2.

Proof. For the sake of brevity let j0 := 0.9 log2(2m) and l0 := 2j0 = (2m)0.9. The first
claim is a relatively easy consequence of Lemma 4.14 applied to the leaf set M :=

{li ∈ V | li � v} for some v ∈ V≤j0 . It suffices to show that there are no maximal
vertices in V≤j0 majorizing distinct small components. Lemma 4.4 tells us that there
are at most 2m

2j maximal vertices in Vj. For a fixed j, 1 ≤ j ≤ j0, the expected number
of maximal vertices majorizing distinct small components thus does not exceed (note
that l := |M | ≤ 2j+1)

2m

2j
O

((
2j+1

m

)2
)

= O
(

2j+1

m

)
∈ O

(
m−0.1

)
.

There are only log2(2m) choices for j, so the expected number of v ∈ V≤j0 is
O (m−0.1 logm) ∈ o(1), entailing claim 1.
Establishing the second claim is more subtle. We think of the vertex set V≥j0 as

being partitioned into segments which are paths from the minimal vertices towards
the root. A segment is a path vi · · · v′i and will be denoted by [vi, . . . , v

′
i]. The basic

idea is that for any segment [vi, . . . , v
′
i] we have that

1. there is a. a. s. at most one small component majorized by v′i and not by vi,
and

2. |Svi
| > 2 a. a. s.

In that situation the path from u to v has to leave the segment [v1, . . . , v
′
1] (which

is the first segment on the path from u to v majorizing Cu) and to enter another
segment [v2, . . . , v

′
2] through vertex v2 satisfying |Sv2| > 2 – we have thus found

our s.
To show that the mentioned properties hold a. a. s., we require that the partitioning

is such that

• Each segment [vi, . . . , v
′
i] majorizes at most l0 new small leaves, i. e., the number

of leaves majorized by v′i but not by vi is at most l0:

l(v′i)− l(vi) ≤ l0. (4.8)
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• The number of leaves majorized by vi+1 but not by vi is at least l0
2
, where vi

and vi+1 are initial vertices of successive segments:

l(vi+1)− l(vi) ≥ l0
2
. (4.9)

Algorithm PartitionUpperPart (see Algorithm 4.2) shows how to achieve this.
The critical issue is to ensure that the number of leaves majorized by initial vertices
of successive segments grows at least by l0

2
, i. e., establishing condition (4.9) which is

done in steps 9ff. The situation at this point is as follows:

vi

u

v 9>>>>>=>>>>>;
l(v)− l(vi) > l0

ff
l(v)− l(u)

There are the following two cases:

Case 1: l(v)− l(u) > l0
2

l(vi+1)− l(vi) = l(v)− l(vi) ≥ l(v)− l(u) >
l0
2
.

Case 2: l(v)− l(u) ≤ l0
2

We need that l(v) − l(vi) > l0 which is the case due to the choice of v controlled
by the while-loop. We then have

l(vi+1)− l(vi) = l(u)− l(vi) = l(v)− l(vi)−
(
l(v)− l(u)

)
> l0 −

l0
2
≥ l0

2
.

Now that we are convinced that a partition of V≥j0 into segments meeting the
requirements (4.8) and (4.9) exists we turn to verifying that there is a. a. s. at most
one small component majorized by v′i but not by vi in a fixed segment [vi, . . . , v

′
i]. By

invoking Lemma 4.14 withM := {lj | lj � v′i, lj 6� vi} we see that the probability that
the leaves majorized by v′i but not by vi belong to more than one small component
is at most O

(
l20
m2

)
.

We still need to show that the probability for |Svi
| ≤ 2) is small. We have the

estimate

Prob [|Svi
| = 0] + Prob [|Svi

| = 2] ∈ O
(
l(vi)

−1/2
)
⊆ O

(
l
−1/2
0

)
,

by means of Lemma 4.8 and the fact that Prob [Svi
= ±2] ∼ Prob [Svi

= 0].
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It remains to estimate the probability that both properties hold for all segments.
To this end we need to know the number of segments. condition (4.9) allows us to
bound the total number of segments as follows.

• There are at most |{minimal vertices of V≥j0}| “upper” segments containing at
most l0

2
new leaves, i. e., at most 2m

2j0
= 2m

l0
ones (by Lemma 4.4).

• There are at most 2m
l0/2

= 4m
l0

other segments.

All in all, there are not more than 6m
l0

segments.
The expected number of segments violating our requirements is then at most

6m

l0

(
O
(
l20
m2

)
+O

(
l
−1/2
0

))
= O

(
l0
m

+
m

l
−3/2
0

)
= o(1) as m→∞,

which completes the proof. 2

Proof (of Theorem 4.2). The properties of TAB′ stated in Propositions 4.13 and 4.15
hold a. a. s., so we may presume them. Our goal is to show that any path from a
small component C1 to a small component C2 passes through the large component C∗,
which implies that the component graph is a star metric. By Proposition 2.11 the
proof will be complete.
Suppose u is a vertex of C1 and v is a vertex of C2. If u ∈ V≤0.9 log2(2m) then

the first part of Lemma 4.15 guarantees us that the path to v crosses V≥0.9 log2(2m)

since there is no other small component below the maximal vertex of V≤0.9 log2(2m)

majorizing u. Otherwise, u is in V≥0.9 log2(2m) so the path connecting u and v passes
through V≥0.9 log2(2m) in any case. Let w be the first vertex on the path from u to v
which is in V≥0.9 log2(2m) and x be the maximal vertex of the path. We thus have more
or less the following situation:

u v

x

r

s

w

V≥0.9 log2(2m)

C2
C1

Most importantly, vertices w and x majorize different small components C1 and C2

and x majorizes w, so we can apply the second part of Proposition 4.15 to see that
there is a vertex s satisfying w � s � x and |Ss| > 2. Since the condition |Ss| > 2

can only be met by vertices outside a cycle, the vertex s has to be in C∗. 2
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Algorithm 4.2 Algorithm PartitionUpperPart for partitioning the vertex
set V≥0.9 log2(2m) of a tree T into segments.

PartitionUpperPart(T )

Input: A full binary Tree T = (V,E).
Output: Set of segments S.
1 Mark the root r and add [r] to S.
2 for v̌ ∈ V≥j0 , v̌ minimal do
3 i := 0; vi := v̌; v := %(v̌);
4 repeat
5 while v is not marked and l(v)− l(vi) ≤ l0 do
6 v := %(v);
7 end while
8 Let u be the predecessor of v on the path vi · · · v.

{Ensure that between vi and vi+1 there are at least l0
2
new leaves: }

9 if l(v)− l(u) > l0
2
then

10 vi+1 := v;
11 else
12 vi+1 := u;
13 end if
14 Let v′i be the predecessor of vi+1 on the path vi · · · vi+1.
15 Add new segment [vi, . . . , v

′
i] to S and mark all of its vertices.

16 i := i+ 1;
17 until vi is marked
18 end for

return S

2 1 1

3 2

2

3

2

1 2

Figure 4.6: The set V≥j0 of a tree and the segmentation output by PartitionUp-
perPart if minimal vertices are processed from left to right (we assume
values j0 = 2 and l0 = 6). The leaves are maximal vertices of V<j0 giving
the number of “real” leaves they majorize.
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5 Towards Probabilistic Competitive
Analysis of the OnlineDarp on
Trees

Until now we totally neglected the online nature of typical Dial-a-Ride problems. We
start to overcome this deficiency in this chapter.
First we introduce a natural extension of the offline Darp to get an online version.

We then review the standard tool for analyzing online algorithms, namely competitive
analysis, in Sections 5.2 and 5.3 based on the presentation in the book of Borodin
and El Yaniv [9]. This notion is then extended to yield probabilistic competitive
analysis. We also give some lower bounds for the performance of any algorithm for
the OnlineDarp first published by Ascheuer et al. [2].
The same source mentions two online strategies called Replan and Ignore, which

allow to build online algorithms from any algorithm for the offline problem. Both
strategies are discussed and used to obtain online algorithms based on use-MST.
We will describe how they influence the stochastic structure of the offline problems
they have to solve.
Finally, a special case of the OnlineDarp on trees is considered and analysed in

Section 5.6 under the assumption that the requests arrive faster than they can be
served. This unusual assumption will be discussed in that section, too.
The results on the structure of offline problems solved by Ignore and Replan, the

notion of probabilistic competitiveness as well as the first such competitiveness result
in Section 5.6 are new contributions created in cooperation with Sven O. Krumke.

5.1 Online Versions of Darp

So far we only considered the offline Darp, i. e., all requests were known in advance
and we could in principle predict the entire future of any solution and thus determine
an optimal one. However, in practice the requests arrive distributed over longer time
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periods. For reasons discussed already in the introduction the requests must not be
delayed too long and we have to come up with intermediate schedules for some subset
of the requests. In other words, we try to solve an online problem.
The further difficulty introduced by this online aspect is the lack of information

about the future. Typically, after the arrival of some new requests the so-far optimal
schedule may be very bad w. r. t. the new extended request set. Clearly, we could
avoid this effect if we could anticipate all future requests.
We will not give a formal online computation model for our notions of online and

offline algorithms, but use more intuitive definitions. However, a formalization of
the online version of Darp in the framework of request-answer-games can be found,
for example, in [28]. All notions can be suitably generalized to fit general online
problems.
Before turning to performance measures for such online problems in the next sec-

tions, we first give a online version of Darp and try to model the evolution of the
request set. To this end, we equip each request ri with a release time ti which is
the time the request enters the system. From now on we will mainly deal with a
request sequence ω =

(
(r1, t1), . . . , (rm, tm)

)
instead of a request set, that is requests

are ordered according to their release times. Note that m is used to denote the length
of the request sequence.
The task of an online algorithm for Darp is to determine a sequence of sched-

ules specifying the order of the requests and the paths between them. (Since we
always deal with trees paths between requests are unique and are thus not strictly
necessary.) The goal is to minimize an objective function; we restrict ourselves to
the overall completion time and the total travel distance. Notice that in the offline
version minimizing the completion time is equivalent to minimizing the total distance
traveled, which is the objective of offline Darp.
We assume that the online algorithm does not know neither the total number of

requests nor the last release time. Otherwise we could trivially be 1-competitive
w. r. t. total travel distance: Just wait until the last request has arrived and serve all
requests as the offline server does.

Definition 5.1 (Schedule) A schedule for a request set A = {r1, . . . , rm} is a se-
quence of time-request-pairs

(
(τ1, ri1), . . . , (τm, rim)

)
such that

• each request ri occurs exactly once and

• request rik+1
can be reached at time τk+1 if request rik is started at time τk.

Notice that waiting is allowed.
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Definition 5.2 (Online Dial-a-Ride Problem OnlineDarp)

OnlineDarp

Instance: A graph T = (V,E), a request sequence ω =
(
(r1, t1), . . . , (rm, tm)

)
, a

length function d : E → R≥0 for the edges of G and a distinguished
vertex o ∈ V .

Output: A feasible sequence of current schedules (S1, . . . , Sm) such that the ob-
jective (overall completion time or total travel distance) is minimized.
Feasibility means:

• The first current schedule S1 starts at the depot o and the last
current schedule Sm ends there.

• If the last current schedule Sm has been finished all requests have
been served.

• Each current schedule Si contains only requests known at time ti
(i. e., with release time tj ≤ ti) and not already served by the
schedules Sj, 1 ≤ j < i.

• When changing from current schedule Si to Si+1, a possibly in-
terrupted request is immediately finished by Si+1 (non-preemptive
transportation).

Observe that since we are considering arbitrarily long request sequences and an
online algorithm has no way to determine when the last request arrives it is of no
use to wait a fixed time in order to mimic the offline algorithm.
To extend our offline random model (the list random model) to online instances,

we have to say how the release times are chosen, which can be done in essentially two
ways. Either they are provided by a deterministic process or they are determined
by a suitable random model. We will define a variant with deterministically chosen
release times and one where a nice probability distribution is used.

Definition 5.3 (Online model 1) Let m be an integer. The random request se-
quence ω of the Online Model 1 is constructed by choosing a request list Lm according
to a distribution (pv)v∈V and the sequence of release times ti, 1 ≤ i ≤ m, in any de-
terministic way.
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Definition 5.4 (Online model 2) For an integer m let X1, . . . , Xm be random
variables which are all exponentially distributed with parameter λ, i. e., their dis-
tribution function is given by

FXi
(t) =

0 x < 0

1− e−λt x ≥ 0.

Then the request release times for a random request list chosen as in the list random
model are the times Ti defined by

Ti =
∑i

j=1
Xj 1 ≤ i ≤ m.

5.2 Deterministic Competitiveness Results for
OnlineDarp

The main theoretical tool for evaluating online algorithms is the so-called competitive
analysis. The idea is to compare an online algorithm to an optimal offline algorithm
knowing the entire online instance (request sequence in our case) in advance.
Let us review the requirements for an online algorithm: An online algorithm main-

tains a current schedule for a subset of all requests known so far, which is executed
by the server. (The schedule may be empty indicating that the server does nothing.)
The algorithm may update this schedule at arbitrary times but is restricted to use
only information available at that time.
In contrast, an offline algorithm is provided with the entire request sequence ω at

once, i. e., it can “anticipate the future”. Especially interesting are the optimal offline
algorithms which always give optimal solutions. We will denote an optimal offline
algorithm for OnlineDarp by Opt. Clearly, Opt will always be at least as good
as any online algorithm, since any online solution (i. e., sequence of schedules) can
be converted to an offline schedule.
We say that an online algorithm OlAlg solves OnlineDarp (or is an algorithm

for OnlineDarp) if its output is a feasible sequence of current schedules for every
input instance. (Strictly speaking OlAlg would have to return an optimal solution.)
We can now define our performance measure for online algorithms.

Definition 5.5 (Competitive ratio) Let OlAlg be any online algorithm for On-
lineDarp. OlAlg is said to be c-competitive for OnlineDarp if for any (finite)
request sequence ω there is a constant c satisfying

OlAlg(ω) ≤ c ·Opt(ω).
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The infimum of all c with this property is the competitive ratio of OlAlg and
denoted by cOlAlg.

Observe that we do not say anything about the efficiency of OlAlg. The competi-
tive ratio measures the impact of the lack of information on the performance of online
algorithms with unrestricted computational power. Of course we would like to have
efficient online algorithms. This is even more important since in online environments
there are often real-time requirements, so decisions must be made fast.
The technique of determining cOlAlg as well as providing lower bounds for any

online algorithms is known as competitive analysis.
A very fertile view on this kind of analysis is to think of it as a game between

the online algorithm and a malicious adversary. Since the online algorithm does
not know of future requests, we can imagine our request sequence ω being built
by some adversary, who successively responses to the choices of OlAlg, trying to
make cOlAlg as large as possible. Of course, since OlAlg is deterministic its choices
can be computed in advance and the adversary can in principle choose the request
sequence ω at once. The following two results show how to exploit this view in the
construction of lower bounds for the competitive ratio. The first of them is probably
folklore.

Theorem 5.6 There is no competitive deterministic online algorithm for the On-
lineDarp w. r. t. total travel distance.

Proof. Fix an online algorithm OlAlg. Consider the following simple transportation
network, where epsilon is a small positive constant less than 1.

0 1 2
1 ε

o =

We now construct a request sequence of length m. The first request r1 = (2, 1)

is released at time 0. Algorithm OlAlg has to serve r1 and will finally return to
the depot o = 1. Assume this happens at time t1. The second request r2 = (2, 1) is
released at time t1. Again, algorithm OlAlg will eventually return to the origin at
some time t2, at which a request r3 = (2, 1) is released. This process continues until
m requests have been determined.
Clearly, OlAlg is forced to serve every request separately resulting in a total

travel distance of 2m(1 + ε). The optimal offline solution is to travel to vertex 2,
serve all m requests and to return to the origin. Thus the optimal travel distance
is 2(1 +mε). The competitive ratio is thus at least

2m(1 + ε)

2(1 +mε)
m→∞

= ∞.
2
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Theorem 5.7 [2] No deterministic algorithm for OnlineDarp can achieve a com-
petitive ratio smaller than 5

3
w. r. t. completion time.

Proof. The instance used for this lower bound is the path of length 5, again with
unit weights on the edges.

o = 0 1 2 3 4

Note that the number of a vertex is its distance from the depot o.
Now assume that OlAlg is a deterministic c-competitive online algorithm with c <

5
3
.
At time t = 0, we issue two requests r1 = (0, 2) and r2 = (2, 0). Clearly,

Opt(r1, r2) = 4 and thus OlAlg has to start serving request r2 at some time T ,
2 ≤ T ≤ 4c− 2 in order to be c-competitive.
The remaining request sequence depends on T and we distinguish two cases.

Case 1: 2 ≤ T ≤ 3

At time T the request r3 = (3, 2) becomes known. OlAlg has just started serving
r2 so it needs OlAlg(r1, r2, r3) = T+2+6 ≥ 10 time, whereas Opt(r1, r2, r3) = 6.
Thus c must be at least 5

3
.

Case 2: 3 < T < 4c− 2 ≤ 14
3

The request r3 = (bT c, 2) is released at time T . The online algorithm has to serve r2

first and thus needs time OlAlg(r1, r2, r3) ≥ T + 2 + 2bT c. On the other hand,
the server controlled by the optimal offline algorithm has traveled to vertex bT c
and can serve r3 and r2 at once, requiring time Opt(r1, r2, r3) = T + bT c. Since
the function

f(T ) :=
T + 2 + 2bT c
T + bT c

is monotonic decreasing in the intervals (3, 4) and [4, 14
3

] and we have

lim
T→4−

f(T ) =
12

7
>

5

3
and f

(
14
3

)
=

22

13
>

5

3

we can conclude c > 5
3
, which is a contradiction. 2

5.3 Probabilistic Extensions: Randomized and
Probabilistic Competitive Analysis

Although competitive analysis has been applied quite successfully, there are many
interesting online problems for which it does not yield useful results. More precisely,
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there are some online problems where it can be shown that no (deterministic) online
algorithm can perform considerably better than a more or less trivial algorithm. This
implies that competitive analysis fails in discriminating different online algorithms
w. r. t. their performance, so we do not get any decision support which algorithm to
use in practice. For example, both the strategies Ignore and Replan discussed
in the next section are 5

2
-competitive w. r. t. completion time when using optimal

algorithms for reoptimization. (We have to admit that OnlineDarp w. r. t. comple-
tion time is quite well-behaved since it allows constant competitive ratios. Typically,
competitive ratios depend on some instance size parameter.)
This flaw of competitive analysis mainly stems from the adversary being too pow-

erful: He can anticipate the behavior of any deterministic online algorithm and thus
easily exploit the online algorithm’s weaknesses. To overcome this problem several
extensions were developed. The most common approach is to consider randomized
online algorithms, i. e., algorithms whose decisions are not based on the input se-
quence alone, but also on random bits which are assumed to be independent of the
input sequence. In effect this means that we are not doing worst-case analysis any
longer since the performance of a randomized algorithm does not depend solely on
the input, but the algorithm has a chance to perform better for some (hopefully
many) choices of the random bits.
In defining the adversary for a randomized online algorithm ROlAlg (and thus

our yardstick for measuring its performance) we have to choose whether or not the
adversary knows something about the random choices of ROlAlg. This leads to
the distinction between oblivious and adaptive adversaries.

Definition 5.8 (Adversaries for randomized online algorithms) Consider a
randomized online algorithm ROlAlg for a given online problem.

• The oblivious adversary Obl chooses the request sequence ω at once based
on ROlAlg (especially the probability distribution of ROlAlg). The cost of
Obl are the optimal offline cost of ω.

• An adaptive adversary builds a request sequence ω step-by-step in response
to ROlAlg’s online decisions. There are two types of adaptive adversaries,
differing in the cost they incur: The adaptive offline adversary AdOff serves ω
at the cost of an optimal solution, whereas the adaptive online adversary AdOn
decides how to serve a request as soon as it is generated and thus serves ω in
an online fashion.
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In the context of Darp, we can describe the difference between AdOn and AdOff
more explicitly. AdOff builds a request sequence in interaction with ROlAlg,
depending on ROlAlg decisions; finally, AdOff chooses a schedule for the requests
which is used to determine the cost of AdOff (in our case the completion time or
the total travel distance). In contrast, AdOn has to come up with a schedule for
all yet unserved requests for every arriving request. It incurs cost in the same way
as the online algorithm does, i. e., between successive requests, costs are determined
according to the current schedule. Due to the unpredictable behavior of ROlAlg,
AdOn may have to do some additional empty rides, which AdOff certainly can
avoid.
Notice that Obl is the weakest of these adversaries, because it has access to the

least information. Similarly, AdOn is weaker than AdOff, since AdOn’s solution
can be used by AdOff and is thus at least as expensive as an optimal offline solution
for that request sequence.

Definition 5.9 (Randomized competitive ratio) Let ROlAlg be a random-
ized online algorithm and Adv ∈ {Obl,AdOn,AdOff} be an adversary. The
randomized competitive ratio of ROlAlg is the infimum of all c satisfying

E [ROlAlg(ω)] ≤ c · E [Adv(ω)] ,

denoted by cAdv
ROlAlg. ROlAlg is said to be cAdv

ROlAlg-competitive if cAdv
ROlAlg ≤ ∞.

When establishing a certain randomized competitive ratio of a randomized online
algorithm the oblivious adversary is used most often. Randomized competitive an-
alysis often improves the competitive ratio, for example from O (k) to O (log k) for
some instance size parameter k (this is the case for the paging problem, see [9]).
However, randomized competitive analysis is not of much use for deterministic

algorithms which cannot be randomized easily, as it is the case for the algorithm use-
MST considered so far. Similarly to the offline case, another way to replace worst-
case analysis by some probabilistic method is to randomize the input instead of the
algorithm and to do probabilistic competitive analysis, which is just an extension of
offline probabilistic analysis to the online case.
The advantages of probabilistic analysis over worst-case analysis are the same as

in the offline case: In reality, there is no malicious adversary and the orientation
towards worst case instances may lead to algorithms which are inferior on actual
instances. When doing probabilistic analysis, one has the possibility to model real-
world instances by a suitable probability distribution (although an analysis for a
more complex distribution may be intractable).
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Definition 5.10 (Probabilistic competitive ratio) Let OlAlg be a (determin-
istic) online algorithm and suppose that request sequences ω of length m are chosen
according to a probability distribution, one for each m ∈ N. The probabilistic com-
petitive ratio of OlAlg is the infimum of all c satisfying

OlAlg(ω) ≤ c ·Opt(ω) a. a. s.,

denoted by cprob
OlAlg. OlAlg is said to be a. a. s.-cprob

OlAlg-competitive if cprob
OlAlg ≤ ∞.

Remark There is another way to analyze the behaviour of online algorithms on ran-
domized request sequences: average-case competitive analysis. When doing average-
case analysis one is interested in expected behaviour instead of the behaviour of the
algorithm on almost all request sequences.
There are two notions of average-case competitiveness used in the literature. The

papers by Becchetti et al. [7] and by Fujiwara and Iwama [20] define the average-case
competitive ratio of an online algorithm OlAlg as

cavg
OlAlg := Eω

[
OlAlg(ω)

Opt(ω)

]
.

There is a slightly different definition in the scheduling literature ([35, 33]), which
has also been studied by Becchetti et al. The average-case competitive ratio is then
defined by

cavg
OlAlg :=

Eω [OlAlg(ω)]

Eω [Opt(ω)]
.

However, our notion is much stronger (at least asymptotically) since we require
that the competitive ratio is attained for almost all request sequences, whereas the
expectation-based approach admits that the behaviour on a large part of the se-
quences is much worse, as long as there are enough instances which are handled
substantially better.

5.4 The Strategies Ignore and Replan

Ascheuer et al. [2] also give two natural strategies Replan and Ignore for construct-
ing online algorithms from offline algorithms. The idea is simple: Just compute at
certain times an (optimal) schedule for the current request set. One then has to
choose appropriate reoptimization times and what to do with the schedule from the
last reoptimization. Replan and Ignore are in a sense extreme in this respect:
Ignore reoptimizes only after the last schedule has been finished while Replan
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tries to make use of further knowledge as soon as possible and thus discards the
old schedule if a new one is computed. Note that both Ignore and Replan make
no assumptions on the underlying network and thus can be used to obtain online
algorithms for any graph (or metric).

Definition 5.11 (Ignore-strategy) Suppose that Alg is an algorithm for Darp.
An online algorithm based on Alg works as follows:

• Initially the server is idle. As soon as requests arrive, we collect the requests
and solve the associated Darp instance by employing Alg. The result is a
schedule for the requests known so far.

• The server immediately starts executing this schedule. In the meantime, all
newly released requests are collected to form the request set for the next reop-
timization.

• If the server finishes its schedule and there are no further requests the server
becomes idle. Otherwise, a new schedule is computed as described above and
the server executes it.

This online algorithm will be called Ignore(Alg).

Definition 5.12 (Replan-strategy) Let Alg be any algorithm for the following
slightly modified version of Darp: Additionally, we are given some point v in the
continuous metric associated with Darp’s graph G (see Definition A.2) and the goal
is to find an optimal tour starting in v (instead of o) and ending in o.
The online algorithm Replan(Alg) works as follows:

• Initially the server is idle and located at the origin o. As soon as requests arrive,
we solve a Darp instance arising from the requests known so far using Alg to
obtain a schedule.

• The server immediately starts executing this schedule. If a new request is
released, the server finishes its current transportation if there is one. Let v be
the position of the server position. (Note that we need the continuous version
of the graph metric here.) Compute a new schedule by invoking Alg on the
current request set and v. The server now follows the new schedule.

Note that both online strategies Ignore and Replan are polynomial-time al-
gorithms whenever the offline algorithm employed by them is a polynomial-time
algorithm.
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The interesting thing about Replan and Ignore is that they can in fact be used
to obtain competitive algorithms w. r. t. completion time.

Theorem 5.13 ([2],[23]) Let Alg and Alg′ be %-approximation algorithms for
Darp and the modified version of Darp given in the definition of Replan, re-
spectively. Then both Ignore(Alg) and Replan(Alg′) are 5%

2
-competitive w. r. t.

completion time.

Thus if we plug an optimal algorithm in Ignore or Replan we get a 5
2
-competitive

online algorithm.

Later in this chapter we will study the Ignore-strategy in more detail, so let us
introduce some terminology and notation. The time between Ignore’s successive
reoptimizations will be called a phase. Clearly, Ignore partitions the random request
sequence ω in P subsequences ω1, . . . , ωP corresponding to the phases. Request
subsequence ωi consists of mi requests and the server needs time ∆i to complete the
schedule computed by Ignore.
Before turning to a probabilistic competitive analysis of Ignore(use-MST) for a

special situation, we have a look at how the structural results for offline instances
(Chapter 4) transfer to the “snapshot” problems solved by Ignore and Replan.

5.5 Structure of Snapshot Problems

In this section we deal with the structure of the problems solved by Ignore and
Replan to obtain the new schedule, which will be called snapshot problems for
short.

Proposition 5.14 Suppose the Ignore-strategy is used on a request sequence ω =(
(r1, t1), · · · , (rl, tl)

)
which is obtained by choosing the requests ri as in the list random

model and the release times ti in any fixed fashion (deterministically or probabilisti-
cally). Denote by A(ωi) the set of requests to be served in phase i. Then the request
sets A(ωi) are distributed exactly as the random request sets of size mi constructed
by the list random model:

Prob [A(ωi) = A | mi = k] = Prob [A(Lk) = A] .

Proof. Observe that both A(ωi) and A(Lm) are actually constructed by building
request lists and then “forgetting” the order of requests. It thus suffices to show that
the distributions of the request lists coincide. In both cases the same distribution
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(namely (pu × pv)(u,v)∈V×V ) is used to determine each request. The distributions on
the request lists are just the product distribution and therefore equal. 2

The situation is not as comfortable when the Replan-strategy is employed. The
problem with Replan is that some requests might be in the system for a long time.
This behavior is caused by the following situation: The server is located in a region
where many requests occur and the request set features a request far away from that
region. As long as there are new requests in this region the server may not travel
towards the distant request, which is delayed longer and longer. That is a serious
flaw of the Replan-strategy and it can even be proved that the maximum flow time
is unbounded for deterministically chosen request sequences [24, 23]. In fact, this
effect destroys the initial random structure of the requests.

Proposition 5.15 Suppose the Replan-strategy is used on a request sequence ω =(
(r1, t1), · · · , (rl, tl)

)
obtained by choosing the requests ri as in the list random model

and the release times ti deterministically, i. e., by online model 1. Then the snapshot
request sets are in general not compatible to any probability distribution on the vertices
i. e., there is no probability distribution on the vertices allowing to describe the request
distribution as in the list random model.

Proof. Consider the following simple tree and corresponding probability distribution
on the vertices (ε < 1

2
):

o = u

v

pu = 1− ε

pv = ε

1

We now release k + 1 requests r1, . . . , rk+1 in the following fashion:

• The first k requests are released at time 0.

• The last request rk+1 is released at time δ, 0 < δ < 1.

Note that most of the k first requests will be u-loops and are thus served instantan-
eously. Let Xuu, Xuv, Xvu and Xvv be the number of requests along those arcs in the
snapshot problem at time δ. Clearly, their expectations are

E [Xuu] = (1− ε)2

E [Xuv] = E [Xvu] = (k + 1)ε(1− ε)
E [Xvv] = (k + 1)ε2,
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because only the u-loop-requests have been served so far. If the request set of this
snapshot problem was distributed according to a distribution (p′v)v∈V on the ver-
tices as in the list random model E [Xuu] would be proportional to p′u · p′u, E [Xuv]

proportional to p′u · p′v and so on. However, since ε < 1
2
we get from the last two

equations that (k+ 1)ε(1− ε) > (k+ 1)ε2, implying p′u > p′v. On the other hand, we
have for sufficiently large k that (k + 1)ε2 > (1 − ε)2, implying p′v > p′u, which is a
contradiction to the last implication. 2

5.6 Probabilistic Analysis of the High Load Case

We are mainly interested in the long-term behavior of our online algorithms and
therefore consider long request sequences. The completion time is not a sensible
measure of performance for online algorithms in this setting, since the competitive
ratio gets arbitrarily close to 1 by just increasing the request sequence length. For
this reason, we will study the total travel distance as an alternative objective: An
online algorithm performs well if it does not do many empty rides.
In this section we show that Ignore(use-MST) is a. a. s.-(1 + o(1))-competitive

w. r. t. the total travel distance if there is enough load. We need to require high
load since otherwise the behaviour found in the deterministic lower bound for On-
lineDarp w. r. t. total travel distance will occur in the probabilistic setting, too, and
we will not achieve competitiveness. Recall that this lower bound exploited the fact
that the server has to return to its depot to enforce unavoidable empty rides for the
online server. When working on trees the unavoidable empty rides are determined
essentially by the balancing arcs.
We assume a fixed tree T = (V,E) as underlying transportation network and

that the requests are randomly generated independently of each other according to
a vertex distribution (pv)v∈V as in the list random model. Additionally we require
that the expected request length given by µ is larger than zero and the variance σ2

of the request length is finite. The corresponding release times are constructed by
online model 2.
For shortness, we will use Ignore instead of the more precise Ignore(use-MST)

from now on. Intuitively, we will exploit that the number of requests per phase is
high in a high load situation and the requests can be scheduled in a short tour due
to synergy effects because the number (and length) of balancing arcs needed will be
comparatively small.
We know from the discussion of the solution structure of Darp in Chapter 2 that
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every solution has to use at least the request arcs and the balancing arcs, whereas
suboptimal solutions use more linking arcs than necessary. We can exploit this know-
ledge to obtain good lower and upper bounds for the traveled distance of Opt and
Ignore, respectively.
Denoting by L(ω) the total length of the requests in ω and by B′(ω) the length of

unavoidable restricted balancing arcs for request sequence ω, we get the lower bound

Opt(ω) ≥ L(ω) +B′(ω) (5.1)

for Opt. Similarly, we can bound Ignore(ω) as

Ignore(ω) ≤ L(ω) +
∑P

i=1
B′(ωi) + 2P |E|, (5.2)

where the last term is used as an upper bound for the total length of a MST per
phase.
In this analysis we will exploit the fact that the snapshot problems solved by Ig-

nore have the same stochastic structure as the offline problem which was established
in Proposition 5.14.
We divide the set of phases into epochs : For a fixed (small) parameter ε ∈ (0, 1),

phase i belongs to epoch j (j = 1, . . . , 1
ε

+ 1) if

m(j−1)ε ≤ mi < mjε.

We will require that starting in epoch 2 the number of requests per phase will be
strictly monotonic increasing, which happens a. a. s. This justifies the name “epoch”.
The first epoch will be treated separately for technical reasons: In the first epoch,
the number of requests in a phase does not depend on m, so we are not able to say
anything about its asymptotic behaviour.
In order to arrive at the promised (1 + o(1))-competitive ratio, we will show that

the following properties are satisfied a. a. s. if the load is sufficiently high:

1. The length Lm of m requests satisfies Lm ≥ (1− o(1))µm (Proposition 5.17).

2. There are at most mε phases with at least a constant number of requests per
phase in epoch 1 and at most O (logm) phases in epochs j, j ≥ 2 (Proposi-
tion 5.19).

3. There are at most O (
√
m logm) ⊆ o(m) balancing arcs for m requests. Fur-

thermore, there are at most O
(√

mi logmi

)
balancing arcs generated by Ig-

nore in phase i during epochs 2, . . . , 1
ε

+ 1 (Proposition 5.22).
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All these considerations are based on request sequences generated by Online Model 2
and T as underlying tree.

Theorem 5.16 Let the tree T = (V,E) and the edge length function d : E → R≥0 as
well as the vertex probability distribution (pv)v∈V be such that for the expectation µ

and variance σ2 of the length of a single request we have that µ > 0 and σ2 <∞.
Ignore(use-MST) working on the tree T with request sequences provided by online

model 2 according to (pv)v∈V achieves a probabilistic competitive ratio (w. r. t. total
travel distance) of 1 + o(1) as m → ∞ if the arrival rate λ satisfies λ = 1

µ
+ δ for

some constant δ > 0.

Proof. We tacitly assume that the properties 1, 2 and 3 stated above hold.
We first need a good bound on the length of balancing arcs produced by Ignore,

given by the term
∑P

i=1B
′(ωi) in Equation (5.2). The total number of balancing

arcs for the at most mε phases in epoch 1 is maximized if each phase contains only a
single request. To see this, let k be the number of requests in those mε phases and fix
a constant C such that the function f(x) := C

√
x log x gives an upper bound f(m)

on the number of balancing arcs for m requests. Note that f is concave and there
are not more than k phases. The question is now for which choice of m1, . . . ,mk the
sum ∑

m1,...,mk :
P

i mi=k
f(mi)

is maximized. Applying Jensen’s inequality (see Theorem A.8) to θi = 1
k
and real

variables xi subject to
∑

i xi = k we get

f
(∑k

i=1

1
k
xi

)
= f(1) ≥

∑k

i=1

1
k
f(xi).

If we multiply by k our claim follows. We have just seen that the length of balancing
arcs in the first epoch is in O (mε) since the length of each balancing arc is bounded
by a constant.
Now let us estimate the number of balancing arcs Z generated in later epochs. By

definition, every phase i in epoch j serves at most m(j+1)ε requests. As there are at
most O (logm) phases per epoch, we have

Z ≤ O (logm)
∑1/ε+1

j=2
O
(
m(j+1)ε/2 logmi

)
≤ O

(
log2m

)∑1/ε+1

j=2
m(j+1)ε/2

≤ O
(
log2m

) ∫ 1/ε+2

x=2

m(x+1)ε/2 dx
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= O
(
log2m

) 2

ε lnm
m3ε/2(

√
m− 1)

≤ O
(
m(1+3ε)/2 logm

)
.

Again, the length of a balancing arc is bounded by a constant so the total length of
the balancing arcs is O

(
m(1+3ε)/2 logm

)
.

Using the last results in the lower and upper bounds provided by Equations (5.1)
and (5.2) yields

Ignore(ω)

Opt(ω)
≤
L(ω) +

(
O (mε) +m(1+3ε)/2 logm

)
+O (mε)

L(ω)

≤ 1 +
O
(
mε +m(1+3ε)/2 logm

)
cµm

where cµ is some positive constant satisfying L(ω) ≥ cµm a. a. s. We see that this
ratio is

= 1 + o(1) as m→∞,

if we choose an ε < 1
5
, for instance ε = 1

10
.

Note that we did not use the length of balancing arcs in the lower bound for Opt.
The main reason for this is that we simply do not have a lower bound for this. Since
we have an upper bound of O (

√
m logm) they would not contribute much anyway.2

A short discussion of this result is in order. First note that the requirement that
requests arrive faster than they can be coped with is not a suitable assumption
for real-world systems. In fact we do not have reasonable load (see [24]); queuing
theorists call such a system unstable since the number of requests is ever-increasing
if the request sequence continues infinitely.
The real story is that we wanted to know where the approach described by the

lower and upper bounds (5.1) and (5.2) leads to. It turned out that the “unreasonable
load” requirement is sufficient to prove a (1 + o(1))-competitiveness result. We do
not know whether this requirement is necessary and it may well be that a similar
asymptotic result may be obtained without resorting to probabilistic tools at all.
However, the result is interesting in its own right. It affirms the intuition that if

there are many requests there will be synergy effects which can be exploited. Another
issue is that the offline algorithm does not have a real advantage over the Ignore
strategy. This is obvious if the constant δ is very large since then most requests
arrive in a short interval and Ignore works essentially as the offline algorithm. But
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it is also true if δ is very small and there is (at least at the beginning) real online
behaviour.
Finally, observe that this result applies also to Ignore(Opt) since the upper

bound for Ignore(use-MST) is naturally one for Ignore(Opt). This implies that
asymptotically Ignore(use-MST) is as good as Ignore(Opt).

5.6.1 A Simple Special Case and Some First Observations

We first have a look at how a typical example of a tree and vertex distribution might
look like. More specifically, we look at the so-called caterpillar graph, which has been
the starting point for the probabilistic analysis presented in Chapter 4 (see [13]).

Example The caterpillar graph Catn (caterpillar for short) is the tree with n leaves
l1, . . . , ln, whose non-leaf vertices b1, . . . , bn make up a path of length n − 1, called
backbone. The edges {li, bi} are called feet.

b1 b2 b3 b4 bn−1 bn

l1 l2 l3 l4 ln−1 ln

. . .

Note that the caterpillar is just the underlying network of an elevator system: The
backbone vertices bi correspond to the floors and the weights of the feet can be used
to model delays. According to this interpretation, requests enter and leave the system
through the leaves li, so we will use a special random model for them. Furthermore,
we consider only the caterpillar with uniform edge weights.
In the Caterpillar random model we assume that each request is of the form (li, lj)

and that all requests are equally probable, that is we choose the uniform distribution
on the leaves for generating random requests.
Denote by L the random variable giving the length of a randomly chosen request.

Notice that in Catn, no request with non-zero length can be shorter than 3 or longer
than n+ 1. There are exactly 2(n− l+ 2) distinct requests of length l, namely twice
the number of pairs (li, li+l−2). We thus have

Prob [L = l] = 2
n− l + 2

n2
for 3 ≤ l ≤ n+ 1.

Computing the expected request length yields

µ = E [L] =
∑n+1

l=3
l Prob [L = l]

=
2

n2

∑n+1

l=3
l(n− l + 2)

=
1

3

n2 + 6n− 7

n
= 1

3
n+O (1) .
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Similarly, we get the variance

σ2 = Var [L] = E
[
L2
]
− (E [L])2

=
2

n2

∑n+1

l=3
l2(n− l + 2)−

(
1

3

n2 + 6n− 7

n

)2

=
1

18

n4 + 25n2 + 72n− 98

n2
= 1

18
n2 +O (1) . �

Now let us return to the general case.

Proposition 5.17 Let the tree T = (V,E) and the edge length function d : E → R≥0

as well as the vertex probability distribution (pv)v∈V be such that for the expectation µ
and variance σ2 of the length of a single request we have that µ > 0 and σ2 <∞.
Let Lm be the total length of m requests. We have a. a. s. that

Lm ≥ (1− o(1))µm. (5.3)

Proof. Clearly, E [Lm] = mµ. Applying Chebyshev’s inequality, we see that

Prob
[
|Lm −mµ| ≥ m2/3

]
≤ mσ2

m4/3
= σ2m−1/3 ∈ o(1) as m→∞.

2

5.6.2 There Are Many Requests Per Phase

A very important issue in this analysis is the fact that there are not too many
phases, because this keeps the total length of balancing arcs generated by Ignore
small. To prove this fact we will need that the release rate is larger than the rate at
which requests can be finished. In that case the number of requests should grow (on
average) from phase to phase. There are two points to consider:

1. Show that once there are “lots of requests” the probability is very high that this
property is also satisfied in the next phase.

2. Show that it will not take too many phases until there are the first time “lots
of requests”.

We will start by examining the first issue. The following lemma bounds the prob-
ability that in an interval of length ∆i significantly less requests arrive than are
expected. Recall that the number of requests generated by a process with exponen-
tially distributed interarrival times is Poisson-distributed (see Section A.5.1).
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Lemma 5.18 Recall that mi denotes the number of requests in phase i and that ∆i

is the time needed to serve these requests. Fix an α ∈ (0, 1).

Prob [mi+1 ≤ αλ∆i | mi = k] ∈ O
(
e−λ∆i

)
.

Note that ∆i implicitly depends on k.

Proof. Using the distribution function of the Poisson distribution we can express the
left hand side as

Prob [mi+1 ≤ αλ∆i | mi = k] ≤
∑αλ∆i

i=0

(λ∆i)
i

i!
e−λ∆i

= e−λ∆i

∑αλ∆i

i=0

(λ∆i)
i

i!
.

To prove the lemma we need to show that the sum at the right hand side is inO
(
ecλ∆i

)
for some c < 1. To simplify our computations let x := λ∆i and i0 := αx. Since α < 1

we know that the summands are increasing which leads to the bound∑i0

i=0

xi

i!
≤ i0

(
xi0

i0!

)
+ 1

∼ i0
xi0ei0√

2πi0 (αx)i0

=

√
i0
2π

( e

α

)i0
=

√
i0
2π

ei0(1−lnα)

≤ eα(1−lnα)x+O(1) ∈ O (ecx) .

As the function f(α) := α(1−lnα) is strictly increasing in (0, 1) and limα↗1 f(α) = 1

the constant c is smaller than 1. 2

Proposition 5.19 Let the arrival rate be λ = 1
µ

+δ for some (possibly small) positive
constant δ and fix some ε ∈ (0, 1).
Then the first epoch a. a. s. consists of at most mε phases with at least a constant

number of requests per phase. Furthermore, in each epoch j, j > 2, the number of
requests increases from phase to phase (with the possible exception of the last phase)
and thus the epoch consists of O (logm) phases a. a. s.

Proof. Let us first examine how many requests are unserved at time t(m). Denote
by Nt(m) the number of requests already released at time t(m) and by Dt(m) the
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number of requests already served. Clearly, Nt(m) is Poisson-distributed with pa-
rameter λt(m), so we have E

[
Nt(m)

]
= λt(m). Invoking Chebyshev’s inequality

with t :=
√
t(m) logm tells us that Nt(m) ≥ (1− o(1))λt(m) a. a. s.

We know from Section 5.6.1 that k requests need a. a. s. at least time (1− o(1))kµ

to be served. If t(m) is sufficiently large we can assume that each request takes
time (1 − o(1))µ, providing us with the bound Dt(m) ≤ t(m)

(1−o(1))µ
= (1+o(1))

µ
t(m).

Combining both estimates we see that at time t(m) there are at least

Nt(m) −Dt(m) ≥ (1− o(1))λt(m)− (1 + o(1))

µ
t(m)

= t(m)

(
(1− o(1))

(
1

µ
+ δ

)
− (1 + o(1))

µ

)
= t(m)

(
(1− o(1))δ − o(1)

µ

)
= δ(1− o(1))t(m)

requests in the system. Choosing t(m) := mε we have that after at most mε phases
with at least constantly many requests there is a first phase with Ω(mε) requests.
It remains to establish that once Ignore-phases feature mε requests (i. e., as of

epoch 2) the sequence of requests in the phases is strictly monotonic increasing a. a. s.,
that is mi+1 > mi for all phases i + 1 6= P in epoch j, j ≥ 2. Assume for the
moment that there are at most O (logm) phases in those epochs and that the request
generation process is not stopped after the mth request.
Suppose phase i0 is the first phase of epoch 2. Since the length of k requests

is a. a. s. ≥ (1 − o(1))µk, we see that ∆i0 ≥ (1 − ε0)µmi0 a. a. s. for some suitable
ε0 ∈ (0, 1). We want to invoke Lemma 5.18 to guarantee that mi0+1 > mi0 a. a. s., so
we need an α such that αλ∆i0 > mi0 , or equivalently

α

(
1

µ
+ δ

)
(1− ε0)µmi0 > mi0 .

From the last inequality we get the condition

α >
1

(1 + δµ)(1− ε0)

for an appropriate choice of α. On the other hand, α has to be less than 1, leading
to another condition on ε0

1 >
1

(1 + δµ)(1− ε0)
⇐⇒ 1− ε0 >

1

1 + δµ
.
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There are values for α and ε0 which obey all conditions so we get that mi0+1 > mi0

a. a. s.
In the preceding argument we did not explicitly use that we dealt with the first

phase of epochs 2, . . . , 1
ε

+ 1, so this choice of α and ε0 indeed guarantees mi+1 > mi

for all i + 1 > i0. We still have to consider the probability that we have this kind
of “success” for all phases. By Bernoulli’s inequality, the probability that mi+1 > mi

for all i ≥ i0 is at least

(
1−O

(
e−λm

ε))O(logm) ≥ 1−O (logm) · O
(
e−λm

ε)
= 1− o(1) as m→∞.

Similarly, the probability that ∆i ≥ (1− ε0)µmi for all i ≥ i0 is at least

(
1− σ2m−ε/3

)O(logm) ≥ 1−O (logm) · σ2m−ε/3 = 1− o(1) as m→∞,

where we made use of Proposition 5.17.
So far we have seen that the number of requests per phase is a. a. s. strictly mono-

tonic increasing provided that there are at most O (logm) phases in the last epochs
and there are infinitely many requests. The number of requests per phase grows by
a factor of αλ(1− ε0)µ > 1 so there are at most O (logm) phases in an epoch. This
holds also if we consider only the first m requests of the infinitely many requests,
since then only the last phase P may violate the increasing-condition. Since there
are not more than 1

ε
+ 1 epochs the number of phases is indeed O (logm) in total.2

5.6.3 Estimating the Number of Balancing Arcs

In the deterministic case (see Chapter 2) we used the variables Φ(u, v) and Φ(v, u)

to count the number of request arcs using edge {u, v} in the corresponding direction.
The difference Φ(v, u) − Φ(u, v) =: U(u, v) told us how many balancing arcs (u, v)

we had to add. We are not interested in the direction, but only in the number of
balancing arcs, so |U(u, v)| is just the number of times edge {u, v} is traversed by
the balancing arcs. The total number Z of balancing arcs is

Z =
∑

{u,v}∈E
|U(u, v)|.

What happens to U(u, v) if a new request is added? The first possibility is that
this new request does not use edge {u, v} so U(u, v) does not change. Otherwise,
U(u, v) increases (decreases) by one if the request traverses {u, v} from v to u (from u
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to v). Thus we can express U(u, v) as

U(u, v) =
∑m

i=1
Xi(u, v) for (5.4)

Xi(u, v) :=


1 request i traverses {u, v} from u to v

−1 request i traverses {u, v} from v to u

0 else.

(5.5)

All Xi(u, v) are identically distributed. If we define

puv :=

(∑
u′∈V (u)

pu

)
·
(∑

v′∈V (v)
pv

)
for each edge {u, v} ∈ E the probability distribution of Xi(u, v) is given by

Prob [Xi(u, v) = k] =


pvu k = 1

puv k = −1

1− 2puv k = 0.

Obviously, U(u, v) behaves similar to the symmetric random walk with the dif-
ference that there is some positive probability of no change. We want to transfer
the result on the expected distance for the symmetric random walk to this more
general case. To this end, we give an equivalent random experiment for generating
the vector

(
Xi(u, v)

)
1≤i≤m which makes the connection explicit. Let p := puv = pvu

and q := 1− 2p.

Definition 5.20 (Equivalent random model for U(u, v)) Construct a random
vector x′ =

(
X ′i(u, v)

)
1≤i≤m ∈ {−1, 0, 1}m as follows:

• Choose a set J ⊆ {1, . . . ,m} of size |J | at random, where |J | is binomially
distributed:

Prob [|J | = j] =

(
m

j

)
qj(2p)m−j.

The set J determines the zeroes of x′: X ′j(u, v) := 0 for all j ∈ J .

• Choose a realization y = (Yj)j∈{1,...,m−|J |} of the symmetric random walk of
length m− J at random. This determines whether the remaining positions are
−1 or 1: Suppose that the non-zero positions are renumbered from 1 to m−J .
Now define X ′j(u, v) := Yj for all j ∈ {1, . . . ,m− |J |}.
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Lemma 5.21 Fix an integer m. The distributions induced by a random walk accord-
ing to Equation (5.4) and by the modified random model of Definition 5.20 on the set
x ∈ {−1, 0, 1}m coincide.

Proof. This proof is just a straightforward computation. Let x ∈ {−1, 0, 1}m and j
be the number of zeroes in x.

Prob
[(
Xi(u, v)

)
1≤i≤m = x

]
= qjpm−j

Prob
[(
X ′i(u, v)

)
1≤i≤m = x

]
=

(
m

j

)
qj(2p)m−j ·

(
m

j

)−1

·
(

1

2

)m−j
= qjpm−j. 2

We can now directly exploit this fact to estimate E [Z] via E [|U(u, v)|]. Intuitively
it is clear that the last value should be smaller than the expected travel distance of
a symmetric random walk of length m.

Proposition 5.22 We have for the number of balancing arcs Z for m requests

Z ≤ (1 + o(1))|E|
√

2m

π
∈ O

(√
m logm

)
a. a. s.

Starting from epoch 2, every request subsequence ωi corresponding to phase i a. a. s.
fulfills |B′(ωi)| ∈ O

(√
mi logmi

)
.

Proof. We compute E [|U(u, v)|] by using the modified random model for U(u, v).
Recall that Wk is just the symmetric random walk of length k (see Section A.5.2).

E [|U(u, v)|] =
∑m

j=0

{(
m

j

)
qj(2p)m−j

∑
S∈({1,...,m}

j )

(
m

j

)−1

E [|Wm−j|]

}

=
∑m

j=0

{(
m

j

)
qj(2p)m−jE [|Wm−j|]

}
≤ E [|Wm|]

∑m

j=0

(
m

j

)
qj(2p)m−j

= E [|Wm|] ∼
√

2m

π
.

From this we get the estimate

E [Z] ≤ |E|
√

2m

π
∈ O

(√
m
)
.
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To obtain the sharp concentration result, we apply Azuma’s inequality (Theo-
rem 3.11). In order to do this, we have to show that the function f(r1, . . . , rm) :=∑
{u,v}∈E|U(u, v)| satisfies the required Lipschitz-condition. Suppose that request ri

is replaced by request r′i. How does this influence U(u, v)? We have already seen
that U(u, v) changes by at most 1 if a request is added and the same holds if a request
is deleted. Thus, |U(u, v)| increases by at most 2, so we get

|f(r1, . . . , ri−1, ri, ri+1, . . . , rm)| − |f(r1, . . . , ri−1, r
′
i, ri+1, . . . , rm)| ≤ 2|E|.

Substituting in Equation (3.8) yields

Prob [Z ≥ E [Z] + t] ≤ exp

(
− t2

2
∑m

1 4|E|2

)
= exp

(
− t2

8|E|2m

)
.

Choosing t :=
√
m lnm shows that Z ≤ (1 + o(1))E [Z] lnm ∈ O (

√
m logm) a. a. s.,

namely with probability ≥ 1− 1
m2 .

Consider the phases in epochs j, j ≥ 2. In all of these phases there are at
least mε requests and Proposition 5.19 states that there are at most O (logm) of
them. Thus the the probability that none of them violates the condition |B′(ωi)| ∈
O
(√

mi logmi

)
is at least(

1− 1

m2ε

)O(logm)

≥ 1−O (logm) · 1

m2ε
= 1− o(1) as m→∞.

by Bernoulli’s inequality (see Theorem A.7). 2
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6 Conclusions and Outlook

In this thesis we studied an elementary Dial-a-Ride problem originally motivated
by an elevator system from a theoretical point of view. Although this problem is
drastically simplified compared to the real-world problem it is known to be NP-hard.
We studied standard ways to deal with NP-hard optimization problems, namely
approximation algorithms and probabilistic analysis, on this particular Dial-a-Ride
problem. We also had a first look at an probabilistic online version of this problem.

We started by providing a graph-theoretic model called Darp for our special Dial-
a-Ride problem. All of our results rely on the further assumption that the graph
used here is a tree. Based on this model we described the 4

3
-approximation algorithm

use-MST running in nearly-linear time, which was proposed by Frederickson and
Guan [18]. This algorithm has the important property that it is optimal whenever a
certain associated graph constitutes a star metric.

It has been observed in computer experiments that use-MST generates optimal
solutions very frequently. This triggered the probabilistic analysis by Coja-Oghlan et
al. [12] which we reviewed in detail in Chapter 4. This technical result was based
on a suitably chosen random model which nevertheless entails a large class of re-
quest probability distributions. The main idea of this result is that almost all large
instances are such that the associated graph mentioned above is indeed a star met-
ric. At this point it payed off to know something about this special case, which is a
further motivation to look at special cases of hard optimization problems. Another
interesting thing about this analysis is its delicate interplay of combinatorial and
probabilistic arguments.

The final chapter was devoted to first steps of a probabilistic analysis of the corre-
sponding online problem. To this end we extended the classical competitive analysis
to probabilistic competitive analysis. We were able to exploit the structure of solu-
tions for Darp, which was already used in the analysis of use-MST, in the online
setting. We showed that the Ignore strategy of Ascheuer et al. [1] employing use-
MST does achieve an asymptotically optimal probabilistic competitive ratio, i. e., is
as good as an optimal offline algorithm, if requests arrive at a larger rate than can
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be served.
We think there are the following interesting directions for further research:

• How do approximation algorithms for general graphs behave in practice and /
or on random instances? Do they exhibit a better solution quality than their
worst case approximation ratio? If so, why is this the case?

• Are there ways to exploit the results obtained for trees in the case of general
graphs?

• Is the “unreasonable” load requirement necessary to obtain a constant proba-
bilistic competitive ratio for Ignore(use-MST)? How does the performance
of Ignore(use-MST) change if requests arrive less frequently?

• Are there lower bounds for the deterministic competitive ratio in high load
situations?

• What can be said about the flow time? We think it is promising to look for
related results in scheduling and queuing theory and to check how these can be
adapted to Dial-a-Ride problems and the Ignore and Replan strategies.

• How do the assumed probability distributions match the request distributions
in practice? Can these probabilistic results be applied to the design of real-
world systems?
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One challenging thing concerning the analysis of algorithms is the use of tools from
many branches of mathematics and computer science. This appendix collects basic
notions and facts used in this thesis.

A.1 Graph Theory

A.1.1 Basic Notions

As usual, a graph G=(V,E) is a pair of a vertex set V and an edge (multi)set E, each
edge being an unordered pair of vertices, denoted by {u, v}. Similarly, a directed
graph G = (V,A) (or digraph for short) is a pair of a vertex set V and an arc
(multi)set A, but now an arc (u, v) is an ordered pair of vertices.
For a graph G, we use the notation δG(v) for the degree of v, i. e., the number of

edges incident to v. Analogously, we have the indegree δ−G(v) and outdegree δ+
G(v) for

vertices of a digraph G. We extend both δ−G(·) and δ+
G(·) to subsets U ⊆ V by taking

the sum over all elements of U : δ−G(U) :=
∑

v∈U δ
−
G(v) and δ+

G(U) :=
∑

v∈U δ
+
G(v).

In a digraph G, the set Succ(v) is the set of all direct successor vertices of v, that
is

Succ(v) := {u ∈ V | (v, u) ∈ A}.

A walk in a (di)graph G is a sequence of arcs (edges) (u1, v1), . . . , (ul, vl) such
that ui+1 = vi, 1 ≤ i ≤ l − 1. If no vertex occurs more than once the walk is called
a path. It is closed if additionally vl = u1 holds. A closed walk visiting each of its
intermediate vertices only once is a cycle. An Euler tour is a closed walk visiting all
arcs (edges) of the graph exactly once. A (di)graph is said to be Eulerian if it admits
an Euler tour.
We say that an undirected graph is connected if for every pair of vertices u, v ∈ V

there is a path from u to v. For any undirected graph G = (V,E) the binary
relation ∼ defined on V × V by

u ∼ v :⇐⇒ there is a path from u to v
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is an equivalence relation; the equivalence classes are called connected components
of G. The symbol η(G) gives the number of connected components of G.
In the case of digraphs there are two notions of connectedness: We say that a

digraph G = (V,A) is weakly connected if the underlying undirected graph G′ = (V,E)

defined by
E := {{u, v} | (u, v) ∈ A}

is connected. Moreover, G = (V,A) is said to be strongly connected whenever for
every pair of vertices u, v ∈ V there is a directed path from u to v. The strongly
connected components of G are defined as in the undirected case.
A tree is a connected graph without any cycle. A tree can be turned into a rooted

tree (which is a digraph) by choosing a vertex r as root and replacing all edges by arcs
directed away from r. Such a rooted tree can be interpreted as a partial order �;
intuitively, we have u � v if and only if v lies on the (unique) path from r to u.
We sometimes say that v majorizes u. Every non-root vertex v has a unique parent
vertex %(v) determined by the arc (%(v), v).
If one removes an edge {u, v} from a tree its vertex set decomposes into two

connected sets V (u) and V (v) determined by u ∈ V (u) and v ∈ V (v). The edge {u, v}
is called a cut edge and the pair (V (u), V (v)) a cut in T .
Furthermore a graph G′ = (V ′, E ′) is said to be a subgraph of G = (V,E) if V ′ ⊆ V

and E ′ ⊆ E. A subgraph G′ of G is spanning a vertex set U ⊆ V if it is connected
and for every vertex u ∈ U there is an edge in E ′ which is incident to u.
Often a graph is considered in connection with a non-negative distance function

on the edges. We speak of a weighted graph in that case.

A.1.2 Graphs and Metrics

Many combinatorial optimization problems can be expressed in a natural way using
metrics. A metric is simply an abstract way to “measure” distances.

Definition A.1 (Metric) A metric (M,d : M × M → R≥0) consists of a set of
points and a function d giving distances between each pair of points. This distance
function has to satisfy the following axioms:

1. d(u, u) = 0 for all u ∈M

2. d(u, v) = d(v, u) for all u, v ∈M

3. d(u, v) + d(v, w) ≥ d(u,w) for all u, v, w ∈M . (Triangle inequality)
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Frequently there are only finitely many points. In that case a metric (M,d) can
be interpreted as a weighted graph as follows: The vertices are just the points and
we have an edge for any pair of points (including edges of the form {u, u}). The
weight of each edge is defined to be the distance of the corresponding points. This
compact representation is the reason why weighted graphs show up so prevalently in
combinatorial optimization.

The converse, i. e., interpreting a weighted graph as a finite metric, is also possible.
Consider a weighted graph G = (V,E) with distance function d : E → R≥0 and define
by

D(u, v) := length of a shortest u-v-path in G ∀(u, v) ∈ V × V

the lifted distance function D : V × V → R≥0. The lifted distance function D obeys
the Triangle inequality due to this shortest path construction and the tuple (V,D)

constitutes a metric known as graph metric.

For some applications it is useful to extend a graph metric to further points imag-
ined to lie between the end points of an edge. The basic idea for this extension is
that an edge {u, v} is replaced by a copy of the interval [0, 1]. We need to remember
the edge a point belongs to, so we “tag” it by “uv”. To make the following definition
unambiguous, we assume that the original points have been numbered 1, . . . , n.

Definition A.2 (Continuous graph metric) Assume a graph metric is given by a
graph G = (V = {1, . . . , n}, E) and a distance function d : E → R≥0. To construct
the continuous graph metric (Mc, dc) we first choose

Mc := {θuv | ∀{u, v} ∈ E, u ≤ v, θ ∈ [0, 1]}.

The intuition for defining the distance dc between two points θ1u1v1 and θ2u2v2 is
displayed in the following picture, in which P·,· is a shortest path in G between the
indicated vertices:

u1

θ1u1v1

v1

u2

θ2u2v2

v2

Pv1u2

Pv1v2

Pu1u2

Pu1v2
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Clearly, there are four possible paths between θ1u1v1 and θ2u2v2 so we set

dc(θ1u1v1, θ2u2v2) := length of the shortest of the paths
• θ1u1v1, u1, Pu1u2 , u2, θ2u2v2

• θ1u1v1, u1, Pu1v2 , v2, θ2u2v2

• θ1u1v1, v1, Pv1u2 , u2, θ2u2v2

• θ1u1v1, v1, Pv1v2 , v2, θ2u2v2

where the length of P·,· is given by d and we additionally use the equations

d(θuv, u) := θd(u, v) d(θuv, v) := (1− θ)d(u, v).

A.1.3 Useful Facts

Lemma A.3 [11] Let G = (V,A) be a weakly connected digraph with at least one
arc. The digraph G is Eulerian if and only if we have for any vertex v ∈ V

δ+(v) = δ−(v). 2

Lemma A.4 (Pairing Lemma, [26]) Let T = (V,E) be a tree and U a subset of V
with an even number of vertices. Then there is a pairing (v1, w1), . . . , (vk, wk) of the
vertices in U such that the vi-wi-paths are all edge-disjoint.

Proof. Suppose we know a pairing (v1, w1), . . . , (vk, wk) such that the total number
of overlaps between the vi-wi-paths is minimal. We claim that in fact all vi-wi-paths
are edge-disjoint in this pairing.
In order to derive a contradiction, assume that the paths Pi and Pj, connecting

vi to wi and vj to wj respectively, share an edge {u, v}. Thus we have the following
situation

Pviu Pwiv

Pvju Pwjv

vi wi

vj wj

u v

and the paths P·,· are defined as depicted. We can now improve our pairing by
replacing the pairs (vi, wi) and (vj, wj) by (vi, vj) and (wi, wj) which are connected by
the paths PviuPuvj

and PwivPvwj
, respectively. This operation decreases the number

of overlaps by one, contradicting the minimality of our original pairing. 2

98 2004-07-05/059/IN99/2239



A.2 Asymptotics

A.2 Asymptotics

The asymptotic notions and symbols used here are rather standard (see for ex-
ample [25]).
We say that two functions f, g : N→ R≥0 are asymptotic to each other, written f ∼

g, if and only if

lim
n→∞

f(n)

g(n)
= 1.

Simple application of basic limit properties yields the laws

f ∼ f ′, g ∼ g′ =⇒ f + g ∼ f ′ + g′, f · g ∼ f ′ · g′, f

g
∼ f ′

g′
.

If f, g are such that

lim
n→∞

f(n)

g(n)
= 0

we write this as f � g or f ∈ o(g). Similarly we write f ∈ O (g) and g ∈ Ω(f) if

lim sup
n→∞

f(n)

g(n)
<∞.

The O (·)-Notation is usually used for giving upper bounds, whereas Ω(·) denotes a
lower bound. Furthermore we use f ∈ Θ(g) if we have both f ∈ O (g) and f ∈ Ω(g).
It is easy to see that we have the asymptotic hierarchy

c1 · 1� c2 log n� c3n
ε � c4n

k � c5en � c6n
n

for any constants c1, . . . , c6 ∈ R>0.

A.3 Important Combinatorial Formulas

In the sequel we will make frequent use of binomial coefficients. Intuitively, the
binomial coefficient

(
n
k

)
gives the number of ways to choose k things out of n when

the order does not matter, i. e.,
(
n
k

)
is the number of k-element subsets of a n-element

set. By definition we have (
n

k

)
=

n!

k! (n− k)!
=

(n)k
k!

.

We used so-called falling factorials on the right hand side: The symbol (n)k is defined
as

(n)k := n(n− 1) · · · (n− k + 1).
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Due to the already mentioned combinatorial interpretation we will use the nota-
tion

(
S
k

)
to denote the set of all k-element subsets of a set S.

Put in a slightly different way, the binomial coefficient
(
n
k

)
tells us how many

different partitions of a n-element set into a k-element set and a (n− k)-element set
exist. Sometimes we need to consider partitions in more than two sets. The number
of distinct partitions of a n-element set into l subsets of size ki, 1 ≤ i ≤ l, is given
by the multinomial coefficient (of course we assume

∑
i ki = n)(

n

k1, . . . , kl

)
,

which can be expressed by binomial coefficients as(
n

k1, . . . , kl

)
=

(
n

k1

)
·
(
n− k1

k2

)
·
(
n− k1 − k2

k3

)
· · ·
(
kl
kl

)
=

n!∏l
i=1 ki!

.

In order to estimate binomial coefficients we need to approximate the factorial
function. This can be done by using the well-known Stirling’s formula (see for ex-
ample [21, 14]):

n! ∼
√

2πn
(n

e

)n
. (A.1)

We will use it to estimate the binomial coefficient
(

2k
k

)
as follows:(

2k

k

)
=

(2k)!

k! k!

∼
√

4πk
(

2k
e

)2k(√
2πk

(
k
e

)k)2

=
2
√
πk · (2k)2k · e2k

2πk · e2k · k2k

=
22k

√
πk
. (A.2)

In fact, the right hand side of the last equation is actually an upper bound for
(

2k
k

)
,

i. e., we have the bounds

1

2

22k

√
πk
≤
(

2k

k

)
≤ 22k

√
πk
. (A.3)

To see this, set f(k) :=
(

2k
k

)
and g(k) := 22k

√
πk
. We will show that

f(k)

g(k)
≤ f(k + 1)

g(k + 1)
(A.4)
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which implies the upper bound since we already know from (A.2) that limn→∞
f(k)
g(k)

=

1. Similarly the lower bound follows since 1
2
g(1) ≤ f(1) and Equation (A.4) tells us

that the gap between 1
2
g(k) and f(k) grows with k. The straightforward calculation

f(k)

g(k)
≤ f(k + 1)

g(k + 1)
⇐⇒ f(k)

f(k + 1)
≤ g(k)

g(k + 1)

⇐⇒
(2k)!

(
(k + 1)!

)2

(k!)2(2k + 2)!
≤

22k
√
π(k + 1)√

πk 22k+2

⇐⇒ (k + 1)2

(2k + 2)(2k + 1)
=

k + 1

2(2k + 1)
≤
√
k + 1

4
√
k

⇐⇒ (k + 1)2

4(2k + 1)2
≤ k + 1

16k

⇐⇒ 16k(k + 1) ≤ 4(2k + 1)2 = 16k2 + 16k + 4.

concludes this argument.

A.4 Complexity Theory: Optimization vs.
Approximation

Let us recall the following standard notions from basic complexity theory [30]: A
decision problem Π is a subset of {0, 1}∗. The elements of Π are supposed to be en-
codings of complex objects having a certain property in common. An algorithm Alg
is said to decide Π if its output Alg(x) on a x ∈ {0, 1}∗ is “yes” if and only if x ∈ Π

and “no” otherwise.
An algorithm Alg is a polynomial time algorithm if its running time is bounded

by a polynomial in the length of the input x. All decision problems Π admitting
polynomial time algorithms constitute the class P. A decision problem Π is in class NP
if there is a polynomial time algorithm Alg such that for any x ∈ Π there is a
certificate y ∈ {0, 1}∗ with the properties

• The length of y is bounded by a polynomial in the length of x.

• Alg(x, y) = “yes”

and for all x 6∈ Π and y ∈ {0, 1}∗ the output of Alg is “no”. A decision problem Π

is NP-hard if any problem Π′ ∈ NP can be reduced to Π in polynomial time.
However, in practical applications we often are concerned with optimization prob-

lems. Formally, an optimization problem consists of
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1. A set of instances I.

2. For each instance I ∈ I a set of feasible solutions SI .

3. For each instance I ∈ I an objective function c : SI → R, assigning each feasible
solution a value (often interpreted as cost or profit).

4. An indicator whether the objective is to be minimized (cost interpretation) or
maximized (profit interpretation).

We will only consider minimization problems. Furthermore, we adopt the convention
that the name of an optimization problem denotes the optimal value for an instance.
For example, ShortestPath(G, u, v) is the length of a shortest path connecting u
and v in G.
There is the following connection between decision problems and optimization

problems: For an instance I ∈ I we can construct a canonical decision problem ΠI

ΠI := {(s, k) | s ∈ SI , c(s) ≤ k}

that formalizes the question “Is there a solution costing at most k?”. We say that
the optimization problem is NP-hard if ΠI is NP-hard. Since it is widely believed
that P 6= NP, establishing the NP-hardness of an optimization problem is an in-
dication that there possibly is no polynomial time algorithm and the optimization
problem is therefore hard to solve.
Unfortunately, many interesting optimization problems are NP-hard. The usual

way to circumvent this issue is to look for approximation algorithms: Instead of
looking for optimal feasible solutions, one is comfortable with any feasible solution
which cost is close to the optimal one. A polynomial time algorithm Alg is called
%-approximation algorithm for an optimization problem Opt if

Alg(I) ≤ % ·Opt(I)

for every instance I of Opt.

A.5 Results from Applied Probability

A.5.1 A Short Excursion to Queuing Theory

In Queuing Theory, one considers systems in which requests waiting for some kind
of service arrive and are served by some server process. The arrival and service of
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requests is modelled as a stochastic process. More precisely, requests arrive at times
determined by a probability distribution. Similarly, request service times are also
given by probability distributions and the assumption is made that each request has
a service time according to this distribution.
The simplest case is when the time between successive arrivals of requests, called

interarrival time, is given by an exponential distribution. Formally, (Xn)n∈N is a
family of random variables, all independently and identically distributed according
to the exponential distributed with parameter λ. The so-called arrival times are then
given by

T0 := 0

Tn :=
∑n

i=1
Xi n ∈ N.

The family (Nt)t∈R of random variables counting the requests which arrived until
time t (i. e., Nt := max{n ∈ N0 | Tn ≤ t}) is called Poisson process with parameter λ.
There is the following very important connection between a Poisson process with

parameter λ and the Poisson distribution with parameter λ. A proof as well as an
excellent introduction can be found in [27].

Theorem A.5 Let t1, t2 be reals with t2 > t1 ≥ 0. The number of requests N arriving
between time t1 and time t2 is distributed as

Prob [N = Nt2 −Nt1 = k] =

(
λ(t2 − t1)

)k
k!

e−λ(t2−t1). (A.5)

In other words: The distribution of N is the Poisson distribution with parame-
ter λ(t2 − t1). 2

A.5.2 A Result on the Symmetric Random Walk

Another interesting concept intensively studied by the methods of Probability Theory
is the so-called symmetric random walk : Suppose we have n independent random
variables X1, . . . , Xn with probability distribution

Prob [Xi = k] =

1
2

k = 1

1
2

k = −1.

The sequence Wj :=
∑j

i=1 Xi, 1 ≤ j ≤ n, is called random walk because one can
imagine it as moving n steps on a line, for each step deciding by a coin toss whether
to move left or right.
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There are many things known about the symmetric random walk, but we are
mostly interested in the expected travel distance E [|Wn|]. A detailed derivation can
be found in [39] or at the web resource [40].

Theorem A.6 Let Wn be a symmetric random walk of length n.

E [|Wn|] ∼
√

2n

π
. (A.6)

2

A.6 Tools from Analysis

The results mentioned in this section can be found in standard books on analysis,
for example [36].

Theorem A.7 (Bernoulli’s inequality) For any real x > −1 and n ∈ N we have
the relation

(1 + x)n ≥ 1 + nx. 2

A function f : [a, b]→ R is called concave (on [a, b]) if the condition

f(θa+ (1− θ)b) ≥ θf(a) + (1− θ)f(b)

holds for all θ ∈ [0, 1]. (Note that θa+ (1− θ)b ∈ [a, b] for all such θ.)

Theorem A.8 (Jensen’s inequality) Let f : [a, b]→ R be a concave function. For
arbitrary points x1, . . . , xn from [a, b] and θi ∈ [0, 1] such that

∑n
i=1 θi = 1 the func-

tion f satisfies
f
(∑n

i=1
θixi

)
≥
∑n

i=1
θif(xi). 2
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List of Symbols

The following is a list of the most important symbols used in the text. Furthermore
the page where the symbol is introduced is given.

Chapter 1: Introduction

G = (V,E) Underlying network of a Darp instance. The vertices
correspond to locations and the edges to interconnections
of the locations.

3

A Request set (arcs) of Darp. 3
d Edge length function of Darp. 3
o Depot location of Darp. 3
D Lifted distance function for a Darp instance. 3
T Standard transportation network tree of Darp. 6
n Number of vertices (locations) in Darp instance. 6
m Number of requests in Darp instance. 6

Chapter 2: A Fast Approximation Algorithm for the
Dial-a-Ride Problem on Trees

V (u), V (v) Vertex sets (cut) induced by an edge {u, v} in a tree. 10
Φ(T,A)(u, v) Number of requests traversing edge {u, v} from u to v. 10

B Canonical balancing set obtained by using b(u, v) copies of
arc (u, v).

10

b(u, v) Number of times edge {u, v} has to be traversed from u
to v by any tour.

11

B Balancing set equivalent to B, but maybe with fewer arcs. 12

Chapter 3: Probability Theory Basics for Probabilistic
Analysis

Prob [A] Probability of event A. 28
FX Distribution function of a random variable X. 31

E [X] Expectation of a random variable X. 32
Var [X] Variance of a random variable X. 32
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List of Symbols

Chapter 4: Probabilistic Analysis of the Darp on Trees

(pv)v∈V Probability distribution on the vertices used by the list
random model.

38

Lm Random request list of length m generated according
to (pv)v∈V .

38

A(Lm) Random request set generated according to list random
model.

38

B′ Restricted balancing set which just balances each edge. 40
χ = (χv)v∈V Request-vertex-incidence vector fixed for our analysis. 40

EB′(x) Set of edges used by balancing set B′. 43
EA(x, σ) Set of edges used by request set A. 43

TB′ TB′ := (V,EB′) 43
Sv(x) Balance of vertex v: Sv(x) =

∑
li�v xi. 43

TAB′ TAB′ := (V,EB′ ∪ EA) 43
Vj Set of vertices majorizing between 2j and 2j−1 leaves. 43

V≤k, V≥k Upper and lower vertices: V≤k :=
⋃
j≤k Vj and

V≥k :=
⋃
j≥k Vj.

44

2α Bound for average number of components of TB′ per
request.

51

Xj(x) Number of components of TB′ with maximal vertex in Vj. 53
l+(C0) Number of “+”-leaves in C0. 58

Chapter 5: Towards Probabilistic Competitive Analysis of
the OnlineDarp on Trees

ω Request sequence. 70
cOlAlg Competitive ratio of online algorithm OlAlg for

OnlineDarp.
73

cAdv
ROlAlg Randomized competitive ratio of ROlAlg against

adversary Adv, Adv ∈ {Obl,AdOn,AdOff}.
76

cprob
OlAlg Probabilistic competitive ratio of OlAlg. 77

Ignore(Alg) Online algorithm obtained by Ignore-strategy when
using Alg.

78

Replan(Alg) Online algorithm obtained by Replan-strategy when
using Alg.

78

P Number of phases (reoptimizations) Ignore needs to
serve ω.

79

ωi Request subsequence corresponding to phase i. 79
mi Number of requests in ωi. 79
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∆i Duration of schedule for ωi. 79
µ Expected request length. 81
σ2 Variance of request length. 81

L(ω) Total length the requests in ω. 82
B′(ω) Length of unavoidable restricted balancing arcs for

balancing ω.
82
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Zusammenfassung

Diese Diplomarbeit beschäftigt sich mit der probabilistischen Analyse eines elemen-
taren Spezialfalls von sogenannten Dial-a-Ride-Problemen. Dabei handelt es sich um
allgemeine Transportprobleme, die z. B. das Traveling-Salesman-Problem umfassen.
Allgemein haben Dial-a-Ride-Probleme folgende Struktur: Eine Flotte von Fahr-

zeugen muß eine Reihe von Transportaufträgen bedienen, wobei jeder Transportauf-
trag aus einem Gut besteht, das von einem Ursprungsort zu einem Zielort zu trans-
portieren ist. Dazu können die Fahrzeuge ein Transportnetzwerk, z. B. ein Straßen-
system, benutzen. Wesentlich ist, daß durch die Wahl von Wegen im Transportnetz-
werk Kosten entstehen, die minimiert werden sollen. Hinzu kommen häufig Neben-
bedingungen, wie z. B. beschränkte Kapazität und / oder Reichweite der Fahrzeuge,
Bedingungen an die Reihenfolge der Aufträge und so weiter.
Wir betrachten ein spezielles Dial-a-Ride-Problem, das bei der Optimierung von

industriellen Aufzugsystemen aufgetreten ist. Es hat die folgenden Charakteristiken:

• Es gibt nur ein Fahrzeug, das höchstens einen Auftrag gleichzeitig bearbeiten
kann.

• Ein Auftrag wird bedient, indem das Fahrzeug zum Ursprungsort fährt, das
Gut auflädt und es zum Zielort transportiert. Ein einmal aufgeladenes Gut
muß zum Zielort gebracht werden (nicht-präemptive Transporte).

• Es gibt ein Depot, von dem aus das Fahrzeug seine Fahrt beginnt und zu dem
es am Ende zurückkehren muß.

• Das zugrundeliegende Transportnetzwerk ist ein (graphentheoretischer) Baum.

• Ziel ist es, die Gesamtbedienungszeit zu minimieren.

und wird kurz mit Darp bezeichnet. Es ist bekannt, daß Darp sogar für sehr einfache
Bäume NP-schwer ist [23].
Zunächst geben wir ein graphentheoretisches Modell für Darp an. Anschließend

beschreiben wir einen effizienten Approximationsalgorithmus von Frederickson und
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Guan [18]. Herz dieses Algorithmus ist die sogenannte Balancierungstechnik, die aus
einzelnen Aufträgen größere (Teil-)Touren von Aufträgen erzeugt, die jede Gesamt-
tour enthalten muß. Diese Balancierungstechnik ist auch von grundlegender Bedeu-
tung für die späteren probabilistischen Analysen. Um zu einer Gesamttour zu ge-
langen, müssen die Teiltouren mit minimalen Kosten verbunden werden, was durch
Lösen eines ebenfalls NP-schweren Steinerbaum-Problems erreicht werden kann. Da-
her wird dieser Schritt mit Hilfe der Minimaler-Spannbaum-Heuristik gelöst, was auf
den 4

3
-Approximationsalgorithmus use-MST führt. Ferner zeigen wir, daß use-MST

eine optimale Lösung liefert, wenn die Teiltouren eine Sternmetrik bilden.
Nach einer kurzen Wiederholung der wahrscheinlichkeitstheoretischen Grundlagen

widmen wir uns der probabilistischen Analyse von use-MST. Dazu betrachten wir
ausführlich das Ergebnis von Coja-Oghlan, Krumke und Nierhoff [12], wonach die
Teiltouren mit hoher Wahrscheinlichkeit eine Sternmetrik bilden, wobei ein bestimm-
tes allgemeines Wahrscheinlichkeitsmodell vorausgesetzt wird. Daraus folgt sofort,
daß use-MST auf fast allen Eingaben optimale Lösungen liefert. Wir konnten ein
Lemma verbessern, das die Anzahl der Teiltouren abschätzt.
Dial-a-Ride-Probleme sind in der Praxis häufig durch eine weitere Schwierigkeit

gekennzeichnet, den sogenannten Online-Aspekt : Die Aufträge werden erst nach und
nach bekannt, müssen jedoch möglichst bald bearbeitet werden. Dieses Nicht-Wissen
über die Zukunft kann momentan günstige Lösungen in der weiteren Entwicklung
sehr schlecht werden lassen, weshalb nach guten Online-Algorithmen gesucht wird.
Das Standardwerkzeug zur Analyse von Online-Algorithmen ist die kompetitive

Analyse, die die Ergebnisse von Online-Algorithmen mit denen optimaler Offline-
Algorithmen vergleicht, die „in die Zukunft schauen“ können, die also alle Aufträge
im Voraus kennen. Dies ist aber oft eine viel zu starke Annahme, weswegen mehrere
Varianten der kompetitiven Analyse entwickelt wurden.
Unser Ansatz besteht in einer Kombination von probabilistischer Analyse und

kompetitiver Analyse, also probabilistischer kompetitiver Analyse: Wir möchten wis-
sen, wie gut ein Online-Algorithmus bei fast allen Eingaben gegenüber dem Offline-
Algorithmus sein kann, wenn die Eingaben zufällig erzeugt werden. Wir untersuchen
in diesem Zusammenhang die Ignore-Strategie [2] unter Verwendung von use-MST
genauer und können ein erstes probabilistisches Kompetivitätsresultat zeigen. Au-
ßerdem zeigen wir, daß sich Ignore gutartig gegenüber zufällig erzeugten Eingaben
verhält, wohingegen die Replan-Strategie im allgemeinen deren zufällige Struktur
verfälscht.
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1. Die Eindeutigkeit von Wegen in Bäumen gestattet eine einfache und nützliche
Beschreibung der Lösungsstruktur des Darp auf Bäumen: Eine Lösung besteht
aus Auftragsbögen, balancierenden Bögen und verbindenden Bögen.

2. Eine Menge balancierender Bögen kann in linearer Zeit berechnet werden. Zu-
sammen mit der MST-Heuristik führt das auf einen effizienten 4

3
-Approxima-

tionsalgorithmus use-MST.

3. Der Algorithmus use-MST erzeugt optimale Lösungen (empirisch).

4. Für ein geeignetes Wahrscheinlichkeitsmodell der Eingaben kann gezeigt wer-
den: use-MST erzeugt asymptotisch fast sicher optimale Lösungen, ðwenn viele
Aufträge vorhanden sind, werden fast alle Eingaben optimal gelöst.

5. Grundlage für dieses Ergebnis ist ein modifiziertes Wahrscheinlichkeitsmodell,
das es erlaubt, die „Verbindungsinformation“ und die „Balancierungsinforma-
tion“ der Aufträge getrennt zu analysieren. Damit kann gezeigt werden, daß
die Balancierungsoperation die Aufträge zu wenigen Komponenten „zusam-
menklebt“, die dann eine Stern-Metrik bilden.

6. Man kann die klassische kompetitive Analyse auf zufällige Eingaben ausdehnen
und damit probabilistische Kompetitivität definieren.

7. Wenn die Aufträge gemäß der Wahrscheinlichkeitsverteilung erzeugt werden,
die der Analyse von use-MST zugrunde liegt, und ferner Ankunftszeiten in
beliebiger Weise erzeugt werden, so haben die von der Ignore-Strategie erzeug-
ten Probleme die gleiche Wahrscheinlichkeitsstruktur. Dies gilt im Allgemeinen
nicht für die Replan-Strategie.

8. Für Auftragssequenzen, die durch mit Parameter λ exponentialverteilte Zwi-
schenankunftszeiten erzeugt werden, erzeugt Ignore(use-MST) Lösungen, die
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für große Auftragszahlen nicht teurer sind als optimale Offline-Lösungen. Vor-
ausgesetzt wird, daß die Aufträge schneller ankommen als sie abgearbeitet wer-
den.

9. Probabilistische kompetitive Analyse ist für die Bewertung von Online-Algo-
rithmen für den praktischen Einsatz geeigneter als klassische worst-case kom-
petitive Analyse.

Benjamin Hiller
Ilmenau, den 05. Juli 2004
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