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Zusammenfassung

Diese Arbeit führt das Steinerzusammenhangsproblem (Steiner connectivity problem) ein.
Es ist eine Verallgemeinerung des sehr bekannten Steinerbaumproblems. Beim Steiner-
baumproblem wird in einem Graphen G = (V,E) eine kostenminimale Menge von Kanten
gesucht, die eine gegebene Teilmenge T ⊆ V von Knoten verbindet. Beim Steinerzusam-
menhangsproblem wird statt einer kostenminimalen Menge von Kanten eine kostenmi-
nimale Menge von Pfaden gesucht, die alle Knoten in T verbindet. Die Pfade werden
dabei aus einer gegebenen Menge von Pfaden ausgewählt. Wir zeigen im ersten Teil
dieser Arbeit, dass Hauptresultate über Komplexität, Approximierbarkeit, ganzzahlige
Formulierungen und Polyeder für das Steinerbaumproblem auf das Steinerzusammen-
hangsproblem übertragen bzw. erweitert werden können.

Ein Beispiel für eine direkte Übertragung sind Steinerpartitionsungleichungen, eine fun-
damentale Klasse von facettendefinierenden Ungleichungen für das Steinerbaumproblem.
Sie können in ähnlicher Weise für das Steinerzusammenhangsproblem definiert werden.
Andere Resultate erfordern mehr Aufwand, z.B., das Finden einer gerichteten Schnittfor-
mulierung und das Beweisen, dass diese die kanonische ungerichtete Schnittformulierung
mit allen Steinerpartitionsungleichungen dominiert. Im Steinerzusammenhangsfall muss
man dafür auf erweiterte Formulierungen zurückgreifen, ein „Umweg“, der für das Steiner-
baumproblem nicht notwendig ist. Es gibt aber auch Resultate, die sich nicht übertragen
lassen, z.B., führt der Fall T = V beim Steinerzusammenhangsproblem zu Set Covering
Problemen und damit nicht zu einem polynomial lösbaren Fall wie beim Steinerbaum.

Das Steinerzusammenhangsproblem ist nicht nur eine interessante Verallgemeinerung
des Steinerbaumproblems, sondern auch das grundlegende Zusammenhangsproblem in
der Linienplanung mit integriertem Passagierrouting. Das integrierte Linienplanungs-
und Passagierroutingproblem ist ein wichtiges Problem in der Angebotsplanung des öf-
fentlichen Nahverkehrs und Gegenstand des zweiten Teils dieser Arbeit. Gegeben ist ein
Infrastrukturnetzwerk für den öffentlichen Nahverkehr, d. h. Kanten entsprechen Straßen
und Schienen und Knoten entsprechen Haltestellen von Linien. Gesucht werden Wege
im Infrastrukturnetzwerk für Linien und Passagiere, so dass die Kapazität der Linien
ausreicht, eine gegebene Beförderungsnachfrage zu erfüllen. Existierende Modelle, die ein
Passagierrouting integrieren, behandeln entweder das Umsteigen von Passagieren zu un-
genau und vernachlässigen einen wichtigen Aspekt in der Routenwahl der Passagiere,
oder sie behandeln das Umsteigen zu detailliert und sind für große reale Probleme nicht
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Zusammenfassung

berechenbar. Wir stellen ein neues Modell vor, das den Fokus auf Direktverbindungen
legt. Durch eine Umsteigestrafe für jede nicht-direkte Verbindung, wird die Attraktivität
von umsteigefreien Verbindungen erhöht und das Passagierrouting in Richtung auf mehr
umsteigefreie Verbindungen gelenkt.

Für die Berechnung des Modells verwendeten wir Algorithmen, die durch Erkenntnisse
über das Steinerzusammenhangsproblem beeinflusst sind. Die Ergebnisse zeigen, dass
das Modell sehr gute Lösungen berechnet, die eine gewichtete Summe aus den Kosten
eines Linienplans und der Gesamtfahrzeit aller Passagiere minimieren. Im Vergleich zu
einem existierenden Ansatz, der Direkttverbindungen nicht gesondert betrachtet, ergibt
sich eine deutliche Verbesserung von bis zu 17%. Im Gegensatz zu einem Ansatz, in dem
alle Umstiege betrachtet werden und für den wir innerhalb von 10 Stunden nicht einmal
das Wurzel-LP für große Instanzen lösen konnten, konnten wir mit dem neuen Modell,
in der gleichen Zeit, sehr gute Lösungen (Differenz zum Optimum <1%) oder sogar
Optimallösungen für reale Instanzen finden. In einem Projekt mit der Verkehrsgesellschaft
in Potsdam GmbH zur Berechnung des Linienplans 2010 konnten wir nachweisen, dass
unser Verfahren für die Lösung echter Praxisprobleme angewendet werden kann.
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Abstract

This thesis introduces the Steiner connectivity problem. It is a generalization of the well
known Steiner tree problem. Given a graph G = (V,E) and a subset T ⊆ V of the nodes,
the Steiner tree problem consists in finding a cost minimal set of edges connecting all
nodes in T . The Steiner connectivity problem chooses, instead of edges, from a given set
of paths a subset to connect all nodes in T . We show in the first part of this thesis that
main results about complexity, approximation, integer programming formulations, and
polyhedra can be generalized from the Steiner tree problem to the Steiner connectivity
problem.

An example for a straightforward generalization are the Steiner partition inequalities, a
fundamental class of facet defining inequalities for the Steiner tree problem. They can be
defined for the Steiner connectivity problem in an analogous way as for the Steiner tree
problem. An example for a generalization that needs more effort is the definition of a
directed cut formulation and the proof that this dominates the canonical undirected cut
formulation enriched by all Steiner partition inequalities. For the Steiner connectivity
problem this directed cut formulation leads to extended formulations, a concept that is
not necessary for the Steiner tree problem. There are also major differences between
both problems. For instance, the case T = V for the Steiner connectivity problem is
equivalent to a set covering problem and, hence, not a polynomial solvable case as in the
Steiner tree problem.

The Steiner connectivity problem is not only an interesting generalization of the Steiner
tree problem but also the underlying connectivity problem in line planning with inte-
grated passenger routing. The integrated line planning and passenger routing problem
is an important planning problem in service design of public transport and the topic of
the second part. Given is the infrastructure network of a public transport system where
the edges correspond to streets and tracks and the nodes correspond to stations/stops
of lines. The task is to find paths in the infrastructure network for lines and passengers
such that the capacities of the lines suffice to transport all passengers. Existing models
in the literature that integrate a passenger routing in line planning either treat transfers
in a rudimentary way and, hence, neglect an important aspect for the choice of the pas-
senger routes, or they treat transfers in a too comprehensive way and cannot be solved
for large scale real world problems. We propose a new model that focuses on direct
connections. The attractiveness of transfer free connections is increased by introducing
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Abstract

a transfer penalty for each non-direct connection. In this way, a passenger routing is
computed that favors direct connections.

For the computation of this model we also implemented algorithms influenced by the
results for the Steiner connectivity problem. We can compute with our model good
solutions that minimize a weighted sum of line operating costs and passengers travel
times. These solutions improve the solutions of an existing approach, that does not
consider direct connections, by up to 17%. In contrast to a comprehensive approach,
that considers every transfer and for which we could not even solve the root LP within
10 hours for large instances, the solutions of the new model, computed in the same time,
are close to optimality (<1%) or even optimal for real world instances. In a project with
the Verkehr in Potsdam GmbH to compute the line plan for 2010 we showed that our
approach is applicable in practice and can be used to solve real world problems.
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Overview

In the year 2009 the S-Bahn Berlin was in big trouble with its vehicles of the series
481. A broken wheel was followed by an extensive safety inspection. As a consequence,
only a quarter of the car pool was available for the service. The S-Bahn Berlin had to
shorten lines, reduce frequencies of lines, and even stop the service on some routes. The
purpose of this so-called “Notfahrplan” [89] was to offer a minimum of service for a set
of important stations. But how can we identify the resource-minimal set of lines that
connects a set of important stations?

This question can also be put in a broader, in a graph theoretic context by identifying
the infrastructure of a public transport system, i. e., the streets and tracks, with a graph
and the lines, operating on these streets/tracks, with paths in the graph. Associating
costs with the paths, representing a resource usage, e. g., money or number of vehicles for
operation, the problem is then to find a cost minimum set of paths such that a (sub)set
of nodes are connected. Here, connected means that one can “travel” from one node in
the set to any other node in the set along the chosen paths. We denote this problem by
the Steiner connectivity problem. A very similar problem is the Steiner tree problem, a
classical and well investigated combinatorial optimization problem. Given a graph with
costs on the edges, the problem is to find a cost minimum set of edges that connects
a subset of nodes. Steiner trees are fundamental for network design in transportation
and telecommunication; see Dell’Amico, Maffioli, and Martello [4] for an overview. In
fact, the Steiner tree problem can be seen as the prototype of all problems where nodes
are connected by installing capacities on individual edges or arcs. In the same way, the
Steiner connectivity problem can be seen as the prototype of all problems where nodes
are connected by installing capacities on paths which is exactly the case in line planning.
Hence, the significance of the Steiner connectivity problem for line planning is similar to
the significance of the Steiner tree problem for telecommunication network design. The
relation between all four problems is illustrated in Figure 1. The first comprehensive
investigation of the Steiner connectivity problem is the topic of the first part of this
thesis.

Although the Steiner tree problem and the Steiner connectivity problem look very similar
at first glance, it is not possible to generalize all structural results and algorithms from
the Steiner tree problem directly to the Steiner connectivity problem. More precisely,
an equivalent directed cut formulation as it is proposed by Chopra and Rao [35] for the
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Steiner Tree Problem Steiner Connectivity Problem

Network Design Problem Line Planning Problem

Figure 1: Relations between Steiner tree problem, Steiner connectivity problem, (capacitated) network design
problem, and line planning problem. Horizontal edges represent the generalization from edges/arcs (left) to
paths (right); vertical edges correspond to the generalization from pure connectivity (top) to connectivity
w. r. t. capacity (bottom). The topic of this thesis is the investigation of the Steiner connectivity problem
and the line planning problem (with integrated passenger routes).

Steiner tree problem does not exist for the Steiner connectivity problem. Chopra and
Rao showed that the LP relaxation of the undirected IP formulation of the Steiner tree
problem, including all so-called Steiner partition inequalities, is dominated by a certain
family of directed formulations; see also Polzin [79] and Polzin and Daneshmand [82].
For the Steiner connectivity problem, analogous results can instead be derived from an
extended formulation based on a suitably constructed directed Steiner tree problem. We
show that this formulation is provably strong, including, e. g., a class of facet defining
generalized Steiner partition inequalities. It is often too large to be solved directly,
however, it can be used to produce a strong relaxation of the Steiner connectivity problem
via projection to the original space of variables.

The solution of a Steiner connectivity problem gives a lower bound on the costs of a line
plan. Focusing on line paths, it ignores travel times and passenger route choices. The
infrastructure of a public transport system usually offers several possibilities to find a
route between an origin and a destination, often with similar travel times or lengths, and
passengers change their routes not only according to the travel times but also according
to the lines operating on these routes. Hence, the passenger routing is an important
aspect, that a good line planning method must take into account. Coming back to the
S-Bahn Berlin, the “Notfahrplan” of the year 2009 also forced me to use a different route
on my daily way to work. Fortunately, the travel time on the new route was similar to
that on the old one, and I continued to use the new route when the regular service was
reintroduced. But how should a “regular service”, a system of lines in public transport,
be defined? We will address this question in the second part of the thesis. More precisely,
we will consider the integrated line planning and passenger routing problem.

An informal description of the line planning problem is as follows: We are given a graph
with edges and nodes representing the infrastructure of the public transport system. We
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are further given point-to-point demands, i. e., the number of passengers that want to
travel from one point in the network to another point. A line is a path in the network,
visiting a set of stops/stations in a predefined order. Passengers can travel along these
lines and they can change from one line to another line in a stop/station if these lines
intersect. Bringing capacities into play, the task is to find a set of lines with associated
frequencies of operation such that the capacities of those lines suffice to transport the
given travel demand. There are two main objectives for a line plan, namely, minimization
of line operation costs and minimization of passenger discomfort measured in, e. g., travel
times and number of transfers.

We will introduce and investigate line planning models that integrate a passenger routing,
i. e., the passenger routes are computed in dependence of the line plan. Since the number
of transfers is an important decision factor for passengers, we will propose a novel direct
connection approach that encourages transfer free connections. We will show that this
approach leads to a computationally tractable line planning method that provides good
estimates of transfer times. As far as we know, this is the only line planning model inte-
grating a passenger routing and a transfer handling that allows to solve large scale real
world instances. Indeed, in a joint project with the ViP Verkehr in Potsdam GmbH we
supported the development of the Potsdam line plan 2010 with mathematical optimiza-
tion methods. The resulting direct connection line planning model including all practical
requirements could be solved to proven optimality. ViP also certified that our computed
line plan is indeed practicable. In the end ViP implemented a slightly different variant.
The reason was that ViP rated the demand for tram lines higher than for transfer free
connections. In fact, our final solution moved some traffic from the tram network to the
bus network to offer more transfer free connections which was one important goal for
ViP.

Background

The work in this thesis was carried out at the Konrad-Zuse Zentrum für Informations-
technik Berlin (ZIB) in the project “Service Design in Public Transport” [13] supported
by the DFG Research Center Matheon Mathematics for key technologies. This project
deals with public transport planning problems in service design, which are network design,
line planning, timetabling, and fare planning, compare with Figure 2. The problem of
network design is to specify the infrastructure of a public transport network. Determining
the exact arrival and departure times for each line at each station is the problem of
timetabling. The fare planning problem investigates the definition of different ticket
types and prices. The goal of the project “Service Design in Public Transport” is to
advance mathematical optimization methods for service design problems following the
example of the subsequent operational planning problems such as vehicle scheduling and
duty scheduling. These problems involve the assignment of vehicles and duties/drivers
to the line routes.

Indeed, mathematical optimization methods are well established in operational planning
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Figure 2: Service design problems in public transport. Upper left: Infrastructure network of Potsdam, red are
additional streets/tracks that can be established for public transport. Upper right: A line plan of Potsdam.
Lower right: Piece of the Berlin Subway network: two stations and three lines with waiting and transfer
times [68]. Lower left: Revenue function depending on single ticket and monthly ticket fares for Potsdam;
plotted with Matlab [100], see also [19].

and nowadays integrated in planning software for public transport such as IVU.plan [63],
see Borndörfer, Grötschel, and Löbel for duty scheduling [14], and Löbel [70] for vehicle
scheduling. These problems are even so well understood that approaches to integrate
duty scheduling and vehicle scheduling have been successfully analyzed by Borndörfer,
Löbel, and Weider [21].

In other areas of traffic planning, the relevance of mathematics also becomes more and
more evident. Bussieck, Winter, and Zimmermann [32] discussed the use of mathematical
programming methods in public rail transport. Borndörfer, Grötschel, and Jäger [11, 12]
describe “the state and the relevance of mathematics in planning and operating public
transit” not only in urban traffic but also in rail and air traffic. Two particular examples
are given by Borndörfer, Dovica, Nowak, and Schickinger [9] on delay management in
airline industries and by Schlechte [90] on track allocation problems in rail traffic.

In public transport service design, however, mathematical optimization methods are
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currently rarely used in practice. One reason for this backlog is that the problems
in service design are very complex. In contrast to operational planning, in which the
objective is mainly cost minimization, service design also has to cover passenger interests
like short travel and transfer times, i. e., service design leads naturally to bi- or even
multi-criteria optimization problems. Another challenge is the consideration of passenger
behavior. Changes in the line plan or timetable surely influence the choice of the route
that passengers will use to travel from their origin to their destination in the public
transport network. Likewise, changes in the ticket prices may influence the passengers
in using public transport or not, i. e., there is a behavioral component in service design.
Such aspects could not be handled well until very recently. Three of four contributions
have been made within the project “Service Design in Public Transport” and its two
predecessor projects “Strategic Planning in Public Transport” at ZIB and “Line Planning
and Periodic Timetabling in Railway Traffic” at TU Berlin, where we could show that
optimization applications to real world problems are becoming possible also in service
design [25]. Liebchen [67] optimized the Berlin subway timetable in 2005; this was
the first optimized timetable that has been implemented. Moreover, he extended his
timetabling model by vehicle and duty scheduling aspects in a project together with the
ViP Verkehr in Potsdam GmbH (ViP) [96]; this was the first integrated treatment of
these planning steps [69]. A comprehensive investigation of timetabling can be found
in the dissertation of Liebchen [68]. Passenger behavior plays a prominent role in fare
planning. We introduced a family of optimization models to compute fares that maximize
revenue, demand, or social welfare in [19] and tested them in a pilot project with data of
ViP Verkehr in Potsdam GmbH. These models integrate a discrete choice model for the
passenger behavior. Although, or maybe because, fares are subject to economic, social,
and political interests, we believe that flexible models for mathematical fare optimization
can be a valuable decision support tool. We optimized the line plan for the city of
Potsdam in 2010 with mathematical optimization methods [24]. To our knowledge, no
mathematically computed line plans had been implemented in practice before. In a
project with ViP we showed that such an implementation is possible [10].

Main Contribution and Outline of this Thesis

This thesis consists of two parts. The first part investigates the Steiner connectivity
problem while the second part covers integrated line planning and passenger routing
problems. An overview of the content of the two parts is as follows.

The first part generalizes and extends complexity, approximation, and polyhedral re-
sults for the Steiner tree problem to the Steiner connectivity setting. In Chapter 1, we
introduce the Steiner connectivity problem (SCP) and two special cases, the minimum
spanning set problem and the minimum st-connecting set problem. We point out the rela-
tion to the undirected and the directed Steiner tree problem and show that the minimum
spanning set problem can also be stated in terms of a (submodular) set covering problem.
These relations allow to carry over some complexity results to the Steiner connectivity
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problem. In particular, the greedy algorithm gives a logarithmic bound for the minimum
spanning set problem, compare with Wolsey [105], which is asymptotically optimal, see
Feige [46]. We give a direct and elementary proof for this approximation guarantee. Fur-
ther results have to be extended to the Steiner connectivity problem, e. g., we show that
the primal-dual approximation technique of Goemans and Williams [54] can be applied
to the Steiner connectivity problem. The proof of the approximation guarantee is based
on a degree property for minimum connected hypergraphs which, as far as we know, was
not proven before. Chapter 2 investigates integer programming formulations and poly-
hedral results for the Steiner connectivity problem. We propose a canonical undirected
cut formulation as well as an extended directed cut formulation which is based on the
relation of the Steiner connectivity problem to the directed Steiner tree problem shown
in the preceding chapter. We generalize the Steiner partition inequalities, a fundamental
class of facet defining inequalities for the Steiner tree problem, see Chopra and Rao [35],
to the Steiner connectivity problem. Then we state necessary and sufficient conditions
for the Steiner partition inequalities to be facet defining. We show that a super class of
the Steiner partition inequalities can be separated in polynomial time. In particular, we
show that the undirected cut formulation enriched by all Steiner partition inequalities is
dominated by the extended directed cut formulation. This shows that extended formula-
tions provide tight relaxations for the SCP. Indeed the extended directed cut formulation
for the SCP plays a similar role as the directed cut formulation for the Steiner tree prob-
lem, see, e. g., Chopra and Rao [35], Polzin [79] and Polzin and Daneshmand [82], with
the exception that the extended formulation for the SCP is not suitable for computations
in the same way as the directed cut formulation for the Steiner tree problem, compare
with Koch and Martin [66] and the computational results in Chapter 4. In Chapter 3 we
emphasize the similarity of the minimum st-connecting set problem with the common
shortest st-path problem and show that properties and duality results on paths and cuts
in a graph can be generalized to connecting and disconnecting sets. More precisely, we
show that connecting and disconnecting sets give rise to a blocking pair of ideal matrices
just like paths and cuts. Using a relation of the Steiner connectivity problem to hyper-
graphs this implies that the blocking properties of paths and cuts can be extended to
hypergraphs. In this way, it turns out that Menger’s theorem and the associated com-
panion theorem also hold for hypergraphs. While the first theorem is folklore, we prove
the second theorem by showing that the LP relaxation of the cut formulation for the
minimum st-connecting set problem is TDI. In this context, we propose an algorithm to
solve the minimum st-connecting set problem. In the graph case, the duality results and
the blocking properties of paths and cuts are also valid if paths and cuts are directed,
i. e., for directed graphs. This is not true for connecting and disconnecting sets. We will
show this by proving that the directed generalization of the minimum st-connecting set
problem even becomes NP-hard. We present computational investigations and results
for the Steiner connectivity problem in Chapter 4. This involves, e. g., a partial projection
method to derive strong inequalities including facet defining cuts from a combinatorially
motivated subsystem of the extended formulation. We provide a computational compar-
ison of this approach with a shrinking heuristic, which gives rise to a very effective way
to improve the canonical undirected cut formulation using Steiner partition inequalities.
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The comparison gives evidence that these inequalities close most of the gap between the
canonical undirected and the extended directed cut formulation. Chapter 5 concludes the
first part by summarizing complexity and polyhedral results for the Steiner connectivity
problem including a comparison to the Steiner tree problem.

The second part investigates models and algorithms for the integrated line planning and
passenger routing problem. Chapter 6 starts with a literature overview on the line plan-
ning problem. We discuss two existing models that consider an integrated line planning
and passenger routing, the column generation approach of Borndörfer, Grötschel, and
Pfetsch [15] and the change-and-go approach of Schöbel and Scholl [93]. While the col-
umn generation model is computable but lacks a sufficient handling of transfers, the
change-and-go model considers a detailed treatment of transfers but is of enormous size
and computationally hard to handle for real world instances. We propose a novel direct
connection approach that combines the advantages of both. The idea of this model is
to increase the attractiveness of direct connections by penalizing non-direct connections.
We first define a model that implements this idea in an exact way. Then we relax and
compress the model in order to reduce the number of variables and constraints. Finally,
we propose an extension of the direct connection model by incorporating the number
of unavoidable transfers, i. e., the number of transfers a passenger has to do in any fi-
nal line plan. The relaxed direct connection model and the extended direct connection
model can be seen as a computationally tractable “first order approximation” to the
change-and-go model or as a “transfer improvement” of the column generation model.
In all cases, a strong LP formulation improves the computation. Therefore, we want to
identify additional cutting planes. To this purpose, we analyze the line planning poly-
tope in Chapter 7. This polytope is fundamental for all integrated line planning and
passenger routing models that were considered in Chapter 6. We investigate dimension,
valid inequalities, and a number of facet defining inequalities for this polytope. Here,
some results for the Steiner connectivity polytope, that can be seen as an uncapacitated
variant of the line planning polytope, can be generalized. In Chapter 8, we provide a
computational comparison of the column generation model, the change-and-go model,
the relaxed direct connection model, and the extended direct connection model. To this
purpose, we have implemented the corresponding branch-and-cut algorithms on the basis
of the constraint integer programming framework SCIP [2, 95]. These algorithms include
heuristics to find violated inequalities defined in Chapter 7 as well as primal heuristics
to find valid solutions. It turns out that the direct connection model can be solved quite
as efficiently as the column generation model. The number of direct travelers can be
overestimated by the direct connection model. However, our computational results show
that the model works well in practice and estimates the number of direct travelers in a
quite accurate way. The further improvement via the extended direct connection model
is only little while the extended model is harder to solve. On the other hand, it turns out
that already the LP relaxation of the change-and-go model cannot be solved within 10
hours for half of our test instances. We, finally, present our most important success, the
optimization of a real world line plan, in Chapter 9. In particular, we report on a project
in cooperation with the ViP Verkehr in Potsdam GmbH to compute the line plan 2010
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for Potsdam. We computed a solution that covered all requirements of ViP and produced
a cost reduction of around 4% and a reduction of the perceived travel time of around
6%. ViP confirmed the practicability of our solution but established a slightly different
version that shifts some of the traffic from the bus network to the tram network. To our
knowledge, this is the first line plan used in practice that was optimized using integer
programming methods that integrate line planning and passenger routing. Chapter 10
ends this thesis with concluding remarks for the second part.

We assume that the reader is familiar with basic concepts in polyhedral theory, graph
theory, combinatorial optimization, and integer programming. We recommend the book
of Grötschel, Lovász, and Schrijver [56] for an introduction to combinatorial optimization.
The notation in this thesis mainly follows the notation of this book. Certain special
definitions needed in this thesis are stated at the point where they are used.
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The Steiner Connectivity Problem
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Chapter 1

Introduction and Complexity

In the first part of this thesis we introduce and analyze the Steiner connectivity prob-
lem, a fundamental problem to connect a set of nodes in a graph using a given set of
paths. The Steiner connectivity problem generalizes the Steiner tree problem, in which
all paths consist of a single edge, in fact, it can be interpreted as a hypergraph version
of this problem. It has applications in traffic and telecommunication network design,
where the paths correspond to bus, subway, or railway lines and fibers of different tech-
nical characteristics, respectively. Although the problem comes up naturally in these
ways, it has not been studied much up to now. In essence, all that was known is that
some basic Steiner connectivity questions such as the shortest st-connecting set problem
can be reduced to the graph theoretic case by simple transformations. But there is a
beautiful mathematical structure beyond that. With its own combinatorial flavor, the
Steiner connectivity problem allows to generalize almost all results on Steiner trees to
its much broader setting. The wider perspective can even lead to new results on well
investigated topics, such as the discovery of a companion theorem to Menger’s theorem
for hypergraphs. Not everything works, though! In contrast to the Steiner tree problem,
results do not carry over to the directed case.

In this chapter, we clarify the notation and definitions that are relevant for the first part.
We point out relations of the Steiner connectivity problem to the Steiner tree problem,
to the set covering problem, and to hypergraphs. These relations yield complexity results
and lead to approximation algorithms that can be, in some cases, applied in a straight
forward way and, in other cases, generalized or extended to the Steiner connectivity
problem and its special cases. Some results of this chapter are published in [20, 26].

The structure of this chapter is as follows. In Section 1.1, we define the Steiner connec-
tivity problem and two special cases including all relevant notation such as connecting
sets and disconnecting sets. This section also includes a proof of an important degree
lemma and an interpretation of the Steiner connectivity problem in hypergraphs. We
point out the relation to Steiner trees in Section 1.2 and the relation to set covering
in Section 1.3. Both sections include a complexity discussion of the problem in general
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and for some special cases. We end this chapter by presenting approximation results in
Section 1.4.

1.1 Problem Description

We consider the following setting. We are given an undirected graph G = (V,E) with
no loops, i. e., for each edge e = (u, v) we have u 6= v, u, v ∈ V . We denote by T ⊆ V a
set of terminal nodes. We are further given a set of paths P in G, where p ∈ P is defined
as p = (v0, e1, . . . , ek, vk) with v0, . . . , vk ∈ V and ei = {vi−1, vi} ∈ E, i = 1, . . . , k, for
some k ∈ N. We denote by V (p) = {v0, . . . , vk} ⊆ V the set of nodes of p and by E(p) =
{e1, . . . , ek} ⊆ E the set of edges of p; V (P′) = ∪p∈P′V (p) and E(P′) = ∪p∈P′E(p),
P′ ⊆ P. We say that an edge e ∈ E(p) is covered by p ∈ P and that p covers e. It is
perfectly possible that e is covered by more than one path. We assume that each edge
is covered by at least one path p ∈ P; otherwise the (uncovered) edge can be removed.
If there is no danger of confusion, i. e., if G has no parallel edges, we also define a path
according to its nodes, i. e., p = (v0, . . . , vk) and {vi−1, vi} ∈ E, i = 1, . . . , k.

A set P′ ⊆ P is T -connecting if every two nodes in T are connected in the subgraph
H = (V,E(P′)). By assumption P is V -connecting if H = G is connected. The graph
G = (V,E) is path-connected w. r. t. P if P is V -connecting. If the set P′ ⊆ P is V -
connecting we also denote it as a spanning set . In the following, we assume that G is
connected and, hence, by assumption path-connected.

A set P′ ⊆ P is T -disconnecting if P \ P′ is not a T -connecting set. Let W ⊂ V with
T ∩W 6= ∅ and (V \W )∩ T 6= ∅. We call the set Pδ(W ) := {p ∈ P : δ(W )∩E(p) 6= ∅} of
all paths that cross the cut δ(W ) = {e ∈ E | |e∩W | = 1} at least once a T -path cut or a
Steiner path cut. If T = {s, t} we also speak of an st-connecting set, an st-disconnecting
set, and an st-path cut. A T -connecting set (T -disconnecting set/T -path cut) P′ ⊆ P

is minimal if there does not exist a T -connecting set (T -disconnecting set/ T -path cut)
P′′ ⊆ P with P′′ ( P′.

Let P1,P2 ⊆ P. The sets P1 and P2 are path-disjoint if P1 ∩ P2 = ∅, i. e., there exists no
p ∈ P with p ∈ P1 and p ∈ P2. The sets P1, . . . ,Pk ⊆ P, k > 2, are path-disjoint if every
two sets Pi,Pj , i, j = 1, . . . , k, i 6= j, are path disjoint.

The length |p| = |E(p)| of a path is the number of edges it contains. We denote by
degP(v) = |{p ∈ P : v ∈ V (p)}| the path-degree w. r. t. P of node v ∈ V . We skip “w. r. t.
P” in the notation if there is no danger of confusion.

Figure 1.1 illustrates these definitions.

The following lemma relates disconnecting sets and path cuts.

Lemma 1.1. Minimal T -disconnecting sets are minimal T -path cuts and vice versa.
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Figure 1.1: Example of a graph and a set of six paths P = {p1 = (a, b, c, d), p2 = (e, f, g), p3 = (a, e), p4 =
(e, f, c), p5 = (g, d), p6 = (f, g, c, d)}. An example of a de-connecting set is {p1, p4}; a de-disconnecting set is
{p2, p3, p4}. The de-path cut defined by the set W = {e} also yields the set {p2, p3, p4}. The de-connecting
sets {p1, p3} and {p4, p6} are path-disjoint. Considering the path-degree, we have, e. g., degP(a) = 2,
degP(b) = 1, and degP(c) = 3.

Proof. “⇒”: Let P′ ⊆ P be a minimal T -disconnecting set, and let s, t ∈ T be two
terminal nodes that are disconnected. Define W to be the set of nodes reachable from t
via P \P′. Note that s /∈W and t ∈W , and hence Pδ(W ) is a T -path cut. We claim that
Pδ(W ) = P′.

◦ Assume p ∈ Pδ(W ) \ P′. Hence, p connects some node u in V \W to some node
v ∈W . By definition of W , P \ P′ connects v and t, and since p ∈ P \ P′ connects
u and v, P \ P′ connects u and t. It follows that u ∈ W , a contradiction. Hence,
Pδ(W ) ⊆ P′.
◦ Conversely, assume p ∈ P′ \ Pδ(W ). Since Pδ(W ) ⊆ P′ is a T -disconnecting set, it

follows that P′ is not minimal, another contradiction.

Finally, Pδ(W ) is minimal, because otherwise P′ = Pδ(W ) would not be a minimally
T -disconnecting set.

“⇐”: Let W ⊆ V with ∅ 6= W ∩ T 6= T , such that Pδ(W ) is minimal. Then Pδ(W ) is
a T -disconnecting set, because no terminal in W is connected to a terminal in V \W
via P \ Pδ(W ). We claim that Pδ(W ) is also a minimal T -disconnecting set. Suppose
not; then there is some smaller T -disconnecting set P′ ( Pδ(W ), which we can assume to
be minimal. By the forward direction of the proof, P′ = Pδ(W ′) for some set W ′ ⊆ V ,
∅ 6= W ′ ∩ T 6= T . It follows that Pδ(W ′) = P′ ( Pδ(W ), i. e., Pδ(W ) was not minimal, a
contradiction.

In addition to the graph G = (V,E), the terminal nodes T ⊆ V , and the set of paths P,
we now consider nonnegative costs c ∈ RP

≥0 for the paths. This allows to optimize over
T -connecting sets.

Definition 1.2. The Steiner connectivity problem (SCP) is to find a T -connecting set
P′ ⊆ P of minimum cost, i. e., c(P′) = min

P̃⊆P
∑

p∈P̃ cp.
For the special cases T = V and T = {s, t}, we denote the Steiner connectivity problem
also as the minimum spanning set problem and the minimum st-connecting set problem,
respectively.
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Figure 1.2: Left: Example of an SCP with four terminal nodes T = {a, d, e, f} and six paths
(
P = {p1 =

(a, b, c, d), p2 = (e, f, g), p3 = (a, e), p4 = (e, f, c), p5 = (g, d), p6 = (f, g, c, d)}
)
. Right: An inclusion wise

minimal solution.

An instance of the Steiner connectivity problem and an inclusion wise minimal solution
are shown in Figure 1.2. Note that the graph induced by an inclusion wise minimal
solution must not be a tree.

The Steiner connectivity problem generalizes the Steiner tree problem since the Steiner
tree problem is the special case where all paths have length one, i. e., correspond to exactly
one edge. On the other hand, the Steiner connectivity problem can also be transformed
into a directed Steiner tree problem. We consider this transformation in Section 1.2. This
relation yields a polynomial approximation result for a fixed number of terminal nodes,
i. e., for |T | = k. The minimum spanning set problem, i. e., the SCP in which all nodes
are terminal nodes, has a strong relation to the (submodular) set covering problem. This
relation implies an NP-hardness result and a harmonic approximation guarantee for a
Greedy algorithm. We will investigate this relation in more detail in Section 1.3. In
Section 1.4 we consider approximation algorithms for the general case.

In the remainder of this section we will prove a degree property which is needed to show
the approximation guarantee for a primal-dual approximation algorithm to be devel-
oped in Section 1.4 and we point out relations of the Steiner connectivity problem to
hypergraphs.

1.1.1 The Degree Property

If the length of all paths in P is 1, i. e., the paths correspond to edges, a minimal V -
connecting set is a spanning tree in G. A tree has |V | nodes and |V | − 1 edges, and each
edge is incident to exactly two nodes. The average node degree in a tree is therefore
2(|V |−1)
|V | ≤ 2− 2

|V | ≤ 2, i. e., at most 2. It is well known that this bound also holds for the
average degree of a terminal node in an inclusion wise minimal Steiner tree, because each
non-terminal node has degree at least 2. This basic property of Steiner trees generalizes
to minimal T -connecting sets.

Lemma 1.3 (Degree Lemma). The average path-degree of a terminal node w. r. t.
an inclusion wise minimal T -connecting set P′ is at most (k + 1), where k denotes the
minimum of
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Figure 1.3: Given is an inclusion wise minimal T -connecting set for T = {A,B,C,D}. The proof of
Lemma 1.3 considers only p1, p2, p3, p5. A starting order can be P′(T ) = {(p1, p2, p3), (p5)} which is also
a final order. We have T1 = T2 = {A,B}, T3 = {A,B,C}, T4 = {A,B,C,D}. The path p1 gives rise to
case 1., while p2 comes in case 2. Paths p2 and p3 constitute a pair.

(a) the maximal number of edges in a path,
(b) the maximal number of terminal nodes in a path.

More precisely, we have∑
t∈T

degP′(t) ≤ (k + 1)(|T | − 1), k = min{max
p∈P
|p|,max

p∈P
|T ∩ V (p)|}.

Proof. We only consider paths that contain at least one terminal node since these are the
only paths that contribute to the path-degree of the terminal nodes. Denote the set of
these paths by P′(T ). The idea of the proof is to consider these paths in such a sequence
that either each path or a pair of paths establishes a connection to some new terminal.
Reaching all terminals then requires at most |T | − 1 such paths or pairs of paths. This
gives rise to a sum of path-degrees at the terminal nodes of at most (|T |−1)(k+ 1). The
details of this argument are as follows. Define a starting order on P′(T ) as follows.

P′(T ) = {p1, . . . , pn} = {p1
1, . . . , p

1
s1 , . . . , p

`
1, . . . , p

`
s`
},

where

◦ V (pji ) ∩ (∪i−1
r=1V (pjr)) 6= ∅, j = 1, . . . , `, i = 2, . . . , sj , and

◦ pji ∩ p
j̃

ĩ
= ∅, for all j 6= j̃, i = 1, . . . , sj , ĩ = 1, . . . , sj̃ ,

i. e., the graph induced by the paths pj1, . . . , p
j
i , i ≤ sj , j ∈ {1, . . . , `}, is connected and

there is no connection to the graph induced by the paths pj̃1, . . . , p
j̃

ĩ
, ĩ ≤ sj̃ , j̃ ∈ {1, . . . , `},

j 6= j̃.

We define Ti = ∪ij=1(V (pi) ∩ T ) to be the set of terminal nodes that are covered by
p1, . . . , pi. We have Ti ⊆ Ti+1, i = 1, . . . , n− 1, and Ti = Ti+1 is also possible. Figure 1.3
shows the notation of this proof on an example.

Let r1 ≥ 1 be the number of terminal nodes contained in path p1, i. e., r1 = |T1|. For
i ≥ 2 let ri = |Ti \Ti−1| be the number of additional terminal nodes contained in pi, i. e.,
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terminal nodes not contained in Ti−1. Then we have one of the following two cases:

1. ri ≥ 1; then the maximum number of terminal nodes from the set Ti−1 contained
in path pi is
◦ the minimum of |Ti−1|−1 = (

∑i−1
j=1 rj)−1 and k+1−ri, if k is the maximum

length of the paths, or
◦ the minimum of |Ti−1| − 1 = (

∑i−1
j=1 rj) − 1 and k − ri, if k is the maximum

number of terminal nodes.
In both cases, pi increases the sum of the path-degrees of all terminal nodes by at
most ri plus the minimum of k and (

∑i−1
j=1 rj)− 1.

2. ri = 0, i. e., pi contains a subset of terminal nodes of Ti−1. Note that the order of
the paths implies that the terminal nodes in pi are connected by a subset of the
paths p1, . . . , pi−1.
Due to minimality, there has to exist a path ph, h > i, with V (pi)∩V (ph) 6= ∅ such
that ph adds rh ≥ 1 new terminal nodes and covers no terminal nodes of Ti, i. e.,
pi and ph have a non-terminal node in common. Move path ph to position i + 1.
Both paths, pi and ph, increase the sum of the path-degree of the terminal nodes
by at most rh plus the minimum of {|Ti| − 1 = (

∑i−1
j=1 rj)− 1, k}:

◦ If k is the maximum path-length, pi contains at most k terminal nodes since
it has a non-terminal node in common with ph.
◦ If k is the maximum number of terminal nodes in a path, the statement above

is also true.

The (final) order of the set P′(T ) yields m paths and pairs of paths, respectively, that
increase the path-degree on all terminal nodes by at most ri + min{k, (

∑i−1
j=1 rj) − 1},

ri ≥ 1, i = 1, . . . ,m ≤ n. Let 1 ≤ j ≤ m be an index such that (i) and (ii) below are
satisfied (if

∑m
i=1 ri ≤ k, the Lemma holds trivially); clearly (iii) – (v) also hold.

(i)
∑j

i=1 ri ≥ k + 1,
(ii)

∑j−1
i=1 ri ≤ k,

(iii) r1 + . . .+ rm = |T |,
(iv) m ≤ |T |,
(v) j ≤ k + 1.

We can then bound the sum of the path-degrees on all terminal nodes as follows:∑
t∈T

degP′(t) =
∑
t∈T

degP′(T )(t)

≤ r1 + (r2 + min{k, r1 − 1}) + . . .+ (rm + min{k, (
m−1∑
i=1

ri)− 1})

≤ r1 + r2 + (r1 − 1) + . . .+ rj + (r1 + . . . rj−1 − 1) + rj+1 + k + . . . rm + k

(i)-(iii)
≤ |T |+ (r1 − 1) + . . .+ (r1 + . . .+ rj−1 − 1) + (m− j)k (1.1)

(ii),(iv)
≤ |T |+ k(j − 1)− 1 · (j − 1) + (|T | − j)k
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Figure 1.4: Worst case example for the Degree Lemma 1.3, case (a) (left) and case (b) (right).

= |T |+ jk − k − j + 1 + |T |k − jk
if j ≥ 2
≤ |T | − 1 + |T |k − k = (|T | − 1)(k + 1).

For j = 1 we have m− 1 ≤ (|T | − r1) ≤ (|T | − 2) since r1 = k + 1 ≥ 2 and, therefore,

(1.1) = |T |+ (m− 1)k ≤ |T |+ (|T | − 2)k

≤ |T |+ |T |k − k − 1 = (|T | − 1)(k + 1).

We briefly show that this bound is tight for case (a) and (b) of Lemma 1.3. Consider
the instance in the left of Figure 1.4. All nodes are terminal nodes. We have n nodes
in the rim and k nodes in the middle. Suppose each path contains one node of the rim
and all nodes in the middle. All paths together form a minimal V -connecting set. We
have n nodes with path-degree 1 and k nodes with path-degree n, i. e., the total degree is
n(k+1), which gives an average path-degree of n(k+1)

(n+k) . This is arbitrarily close to (k+1)
as n goes to infinity. This instance can be slightly modified to get a worst case example
for case (b), compare with the right of Figure 1.4. We have n additional non-terminal
nodes in the inner rim and each path contains a non-terminal node in the inner rim and
all nodes in the middle. We further have n paths that connect the outer rim with the
inner rim. The maximal number of terminal nodes in a path is k and we have the same
path degree for each terminal node as for the case (a) above.

1.1.2 Interpretation in Hypergraphs

Path-connectivity can also be studied in terms of hypergraphs by interpreting each path
p ∈ P as a hyperedge in a suitably constructed hypergraph H, namely the undirected
hypergraph H = (V, E) with the same node set as G and hyperedge set E = {V (p) : p ∈
P}. Our setting translates as follows. Let s and t be two different vertices of H. An
st-path q in H is an alternating sequence of mutually different nodes vih , h = 0, . . . , k,
and mutually distinct hyperedges ejh , h = 1, . . . , k, such that vih−1

, vih ∈ ejh for all
h = 1, . . . , k, vi0 = s, and vik = t. If such a path exists, we call s and t connected in H.
We call the set of edges E ∩ q an st-hyperpath. A set of hyperedges E′ ⊆ E is called an
st-hypercut if s and t are connected in H = (V,E), but not in H′ = (V,E \ E′), see, e. g.,
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Frank [51]. It is easy to see that an st-connecting set in G corresponds to an st-hyperpath
in H while an st-disconnecting set in G corresponds to an st-hypercut in H. Let T ⊆ V
and ce ≥ 0 for all e ∈ E . The problem to find a cost minimal set of hyperedges E ′ ⊆ E
such that every two nodes s, t ∈ T are connected in H′ = (V, E ′) is then equivalent to
the Steiner connectivity problem.

To our knowledge, there is no systematic investigation of the Steiner connectivity problem
in the hypergraph literature. We are only aware of results for the special cases |T | = 2
and T = V .

The case |T | = 2 corresponds to an undirected shortest path problem in hypergraphs.
This problem has not received much attention, probably because it can be easily trans-
formed to a shortest path problem in common graphs: Each hyperedge is substituted
by a complete graph with edge cost corresponding to the cost of the hyperedge. While
this is true, it it not everything that can be said. We will, e. g., present in Chapter 3
a shortest path algorithm in the original graph which considers each path exactly once.
This algorithm is more efficient than the above described transformation method. More-
over, a primal-dual version of this algorithm can be used to prove a companion theorem
to Menger’s theorem for hypergraphs. These results have not been mentioned in the
literature before. The directed version of the shortest path problem for hypergraphs
has been studied extensively, e. g., by Nguyen and Pallottino [75] and Gallo, Longo, and
Pallottino [53]. However, the definitions for directed hypergraphs differ in the literature
and do not fit into our context, e. g., Gallo, Longo, and Pallottino [53] define a directed
hyperedge as a set of source nodes that are connected to a set of tail nodes.

The case |T | = V corresponds to what is called a minimum spanning set problem in
hypergraphs by Baudis et al. [6]. It is closely related to the set covering problem, see
Section 1.3. The spanning tree problem in hypergraphs, however, is defined a little bit
differently. Here, the task is to find a set of hyperedges E′ that connects all nodes such that
every two hyperedges e1, e2 ∈ E′ can have at most one node in common, i. e., |e1∩e2| ≤ 1.
This makes the problem hard, namely, even the question whether a hypergraph contains
a spanning tree is NP-hard, see, e. g., Warme [103]. We assume that a Steiner tree in
hypergraphs would be defined similarly, i. e., every two hyperedges can only intersect
in at most one node, although we could not find any references in the literature. The
closest hits are the papers by Warme [103] and Polzin and Daneshmand [81] who consider
spanning trees in hypergraphs in the context of geometric Steiner trees in the plane.

The degree property, Lemma 1.3, can also be interpreted in a straight forward way in
the context of hypergraphs. Case (a) of Lemma 1.3 has been mentioned in a paper
of Takeshita, Fujito, and Watanabe [64], written in Japanese, who used this property
to derive an approximation result for a primal-dual algorithm, compare also with Sec-
tion 1.4.3. We could, however, not find a proof for this claim. In fact, an inquiry with
the authors and several other persons in the hypergraph community revealed that there
is none published. Case (b) of the Degree Lemma is new and extends the result. We
have therefore added a self-contained proof of the Degree Lemma in Subsection 1.1.1.
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In what follows, we will not use a hypergraph notation, but stick to the notation of
Section 1.1, since this fits better with our line planning application.

1.2 Relation to Steiner Trees

We study in this section the complexity of the Steiner connectivity problem. The SCP is
a generalization of the Steiner tree problem and therefore NP-hard in general. However,
we will show that it is also equivalent to a suitably constructed directed Steiner tree
problem. This relation exhibits a number of polynomially solvable cases.

Assume we are given a graph G = (V,E), terminal nodes T ⊆ V , and costs on the edges
c ∈ RE≥0. Then the (undirected) Steiner tree problem is to find a set of edges E′ ⊆ E
with minimum cost such that all terminal nodes T are connected by E′. The Steiner tree
problem is strongly NP-hard, see Prömel and Steger [82].

Observation 1.4. If |p| = 1 for all p ∈ P, the Steiner connectivity problem is exactly
the Steiner tree problem, i. e., the Steiner connectivity problem is strongly NP-hard in
general.

The directed Steiner tree problem (DSTP) is the following: Given is a directed graph
with costs on the arcs, a set of terminal nodes T , and a root node r ∈ T . We have to
find a minimum cost set B of arcs that connects the root node to each other terminal
node t ∈ T\{r}, i. e., there exists a directed path from r to t in B. If the costs of the
arcs are nonnegative, which we assume, there exists a solution that is a directed tree (an
arborescence).

Consider an SCP with undirected graph G = (V,E), a set of paths P, terminal nodes
T ⊆ V , and nonnegative costs c ∈ RP

≥0. Define nodes vp, wp for each path p ∈ P and a
digraph D′ = (V ′, A′), which we call Steiner connectivity digraph. Its node set is

V ′ := T ∪ {vp, wp : p ∈ P}.

We choose some terminal node r ∈ T as a root node and define the following arcs a ∈ A′
and costs c′a:

a = (r, vp), c′a := 0, ∀ p ∈ P with r ∈ V (p),
a = (vp, wp), c′a := cp, ∀ p ∈ P,
a = (wp̃, vp), c′a := 0, ∀ p, p̃ ∈ P, r /∈ p, p 6= p̃, p and p̃ have

a node v ∈ V in common,
a = (wp, t), c′a := 0, ∀ p ∈ P, ∀ t ∈ T\{r} with t ∈ V (p).

Figure 1.5 illustrates our construction. Note that choosing different root nodes results in
different Steiner connectivity digraphs and hence different associated DSTPs. However,
we will show in Proposition 1.6 that the solutions of an SCP and any associated DSTP
are all equivalent, independent of the choice of the root node. For ease of notation, we
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Figure 1.5: A Steiner connectivity problem and an associated directed Steiner tree problem. Left: Graph
G with four paths and three terminal nodes. The numbers on the paths indicate costs. Right: Associated
Steiner connectivity digraph D′ for root node r = a. The numbers on the arcs are the costs; the default
value is zero.

will therefore omit the root node from the notation whenever the results are independent
of r. Polyhedral results can depend on the choice of the root node, see Remark 2.9 in
Chapter 2. In such cases we will include the root node in the notation.

Observation 1.5. The Steiner connectivity digraph D′ = (V ′, A′) has the following prop-
erties:

1. The only arc with target node wp is (vp, wp), for all p ∈ P.
2. The only arc with source node vp is (vp, wp), for all p ∈ P.
3. If r ∈ p then the only arc with target node vp is (r, vp).
4. Each simple directed st-path has the form (s, vp1 , wp1 , . . . , vpk , wpk , t), k ≥ 1.

Proposition 1.6. The following holds for an SCP and an associated DSTP: For each
solution of one problem there exists a solution of the other problem with the same objective
value. In particular, the optimal objective value of an associated DSTP is independent of
the choice of the root node.

Proof. Assume P̃ is a solution of SCP. Then let

Ã := A′ \ {(vp, wp) : p /∈ P̃}.

The arcs in Ã connect the root r with each terminal t ∈ T \ {r} via a directed path.
Moreover,

∑
a∈Ã c

′
a =

∑
p∈P̃ c

′
vpwp =

∑
p∈P̃ cp.

For the converse, assume that Ã is a solution of the DSTP. We show that

P̃ := {p ∈ P : (vp, wp) ∈ Ã}

is a solution of the corresponding SCP with the same cost. To this purpose, consider the
root node r and some terminal t ∈ T\{r}; these nodes are connected by a simple directed
path in D′ using only arcs in Ã. Each such path has the form (r, vp1 , wp1 , . . . , vpk , wpk , t),
k ≥ 1 (see Observation 1.5), with (vpi , wpi) ∈ Ã, i = 1, . . . , k, that is, pi ∈ P̃, i = 1, . . . , k.
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Due to the construction of D′, p1 contains r, pi and pi+1, i = 1, . . . , k − 1, have at least
one node in common, and pk contains t. Hence, we can find a path from r to t in G
that is covered by p1, . . . , pk ∈ P̃. Since the paths are undirected, every two terminal
nodes t1, t2 ∈ T , t1, t2 6= r, can be connected via r, i. e., P̃ connects T . Furthermore,∑

p∈P̃ cp =
∑

p∈P̃ c
′
vpwp =

∑
a∈Ã c

′
a.

These arguments hold for every root node.

Corollary 1.7. The SCP is solvable in polynomial time for |T | = k, k constant.

Proof. This follows from the complexity results for the directed Steiner tree problem, see
Feldman and Ruhl [47].

Corollary 1.8. The minimum st-connecting set problem is solvable in polynomial time.

In fact, the minimum st-connecting set problem can be solved by a directed shortest path
computation in the Steiner connectivity digraph. As an alternative, we will consider a
shortest st-connecting set algorithm in the original graph, i. e., without transforming the
problem, in Section 3.3.

1.3 Relation to Set Covering

We have seen that the Steiner connectivity problem has a strong relation to the (directed)
Steiner tree problem. However, a main difference is the complexity of these problems
if all nodes are terminal nodes. The Steiner tree problem then becomes a minimum
spanning tree problem which is polynomially solvable. In contrast to that the minimum
spanning set problem is NP-hard.

Proposition 1.9. The minimum spanning set problem, i. e., the SCP for T = V , is
NP-hard, even for unit costs.

Proof. We reduce the set covering problem to the minimum spanning set problem. In a
set covering problem we are given a finite set S and a set M ⊆ 2S . The problem is to
find a subsetM′ ⊆ M of minimal cardinality |M′|, such that for all s ∈ S there exists
an M ∈M′ with s ∈M .

Given a set covering instance, we define a minimum spanning set instance in a graph
G = (V,E) as follows: The nodes are V = S ∪ {v} = T with v being one extra node.
Let us write V = {s0, s1, s2, . . .}, where v = s0. All nodes are terminal nodes. We first
assume that G is a complete graph and later remove all edges that are not covered by
paths after their construction. For each set M ∈M order the elements in M arbitrarily
and construct a path beginning in node v and passing through all nodes of M in the
given order. The cost of each such path is 1. Figure 1.6 illustrates the construction.

It is easy to see that a cover M′ with at most k elements exists if and only if a set of
paths exists that is V -connecting with cost at most k, k ≥ 0.
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v a b c d e

v a b c d e

Figure 1.6: Top: A Steiner connectivity instance associated with a set covering instance with S = {a, b, c, d, e}
and M = ({a, c}, {b, d}, {b, c}, {c, e}, {a, d, e}). Bottom: A minimal solution for the Steiner connectivity
problem corresponding to the minimal coverM′ = ({b, c}, {a, d, e}).

Corollary 1.10. The SCP is strongly NP-hard for |T | = |V | − k, k constant.

Proof. We add k isolated nodes to the graph G in the proof of Proposition 1.9.

Proposition 1.11. Unless P = NP, there exists no polynomial time α-approximation
algorithm for the SCP with α = γ · log |V |, γ ≤ 1.

Proof. The transformation in Proposition 1.9 is approximation preserving, since there
exists a cost preserving bijection between the solutions of a set covering instance and
its corresponding Steiner connectivity instance. It has been shown that the set covering
problem is not approximable in the sense that there exists no polynomial time approxi-
mation algorithm with approximation factor smaller than logarithmic (in the number of
nodes) unless P = NP, see Feige [46].

The proof of Proposition 1.9 shows that the set covering problem can be transformed
to the minimum spanning set problem. On the other hand, the minimum spanning set
problem can be interpreted as a submodular set covering problem.

Definition 1.12. Let N = {1, . . . , n} and z : 2N → R be a nondecreasing, submodular
set function, i. e.,

z(A) ≤ z(B) ∀A ⊆ B ⊆ N (nondecreasing)
z(A) + z(B) ≥ z(A ∪B) + z(A ∩B) ∀A,B ⊆ N (submodular).

Then
min
S⊆N
{
∑
j∈S

cj : z(S) = z(N)}

is a submodular set covering problem. We call the submodular set covering problem
integer-valued if z : 2N → Z.
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Theorem 1.13 (Wolsey [105], 1982). There exists a greedy heuristic that gives an
H(k) =

∑k
i=1

1
i approximation guarantee for integer-valued submodular set covering prob-

lems with k = maxj∈N z({j})− z(∅).

Let N = P and define for P′ ⊆ P

z(P′) = |V | − number of connected components in (V,E(P′));

z(P′) can be interpreted as the maximum number of edges in (V,E(P′)) containing no
cycle. Note that this definition corresponds to the rank function for an edge set in a
graphical matroid, i. e., z(P′) = rank(E(P′)), see, e. g., Oxley [77]. The function z is,
therefore, a nondecreasing, integer-valued, submodular set function; this follows since
E(P′) ⊆ E(P′′) for P′ ⊆ P′′. Note that z(P′) = z(N) = z(P) = |V | − 1 means that P′

connects V . Hence, the Steiner connectivity problem can be seen as an integer valued
submodular set covering problem. We have z(p) = |p| for p ∈ P and z(∅) = 0. Therefore,
Wolsey’s greedy algorithm gives an approximation guarantee of H(k) =

∑k
i=1

1
i for the

minimum spanning set problem if all paths contain at most k edges. This logarithmic
bound is also asymptotically optimal, see Feige [46] and compare with Proposition 1.11.
In the following, we will consider the greedy algorithm for the minimum spanning set
problem in detail and give a direct and constructive proof of Theorem 1.13 for our case.
This proof is inspired by the one of Chvátal [36] who showed that a greedy algorithm
gives an H(k) =

∑k
i=1

1
i approximation guarantee for the set covering problem, where k

is the largest column sum.

The proof analyzes the greedy Algorithm 1.1. This procedure starts in an initial state
in which each single node forms a smallest possible connected component. The algorithm
then chooses in each iteration a path that minimizes the ratio of cost over the number
of components that are connected by the path minus one. These connected components
are merged into a new connected component. The algorithm terminates when all nodes
have been merged into a single connected component.

We use the following notation. Let Bi be the set of connected components and Pi the
set of chosen paths after iteration i of Algorithm 1.1. Note that in each iteration at least
two connected components are merged, i. e., |Bi| decreases strictly with increasing i. Let
us further denote by

N(p, i) = z(Pi−1 ∪ {p})− z(Pi−1) = rank(E(Pi−1 ∪ {p}))− rank(E(Pi−1))

= no. of conn. comp. in (V,E(Pi−1))− no. of conn. comp. in (V,E(Pi−1 ∪ {p}))

the component reduction number of path p and iteration i, i. e., if p were chosen in
iteration i, the total number of connected components would reduce by N(p, i). Note
that N(p, i) is nonincreasing for increasing i, i. e., N(p, 1) ≥ . . . ≥ N(p, n) where n is the
last iteration of Algorithm 1.1. Let P′ = {p(1), . . . , p(n)}. Algorithm 1.1 then computes
a solution of cost c(P′) =

∑n
i=1 cp(i). Let, further, Popt = {o1, . . . , om} be an optimal

V -connecting set. Finally, we denote by H(k) =
∑k

i=1
1
i the sum of the first k terms of

the harmonic series.
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Algorithm 1.1: Greedy heuristic for the SCP
Input : A connected graph G = (V,E), a set of paths P with costs c ∈ RP

≥0.
Output: A set of paths P′ ⊆ P that connects all nodes.

B0 := {{v} | v ∈ V }, P0 := ∅, i := 11

while |Bi−1| > 1 do2

p(i) := argmin p∈P{
cp

N(p,i) : N(p, i) > 0}3

P′ := Pi := Pi−1 ∪ {p(i)}4

Bi := (Bi−1 \ {b1, . . . , bj}) ∪ {b1 ∪ . . . ∪ bj} with5

{b1, . . . , bj} := {b ∈ Bi−1 : p(i) ∈ Pδ(b)}
i := i+ 16

end7

In order to analyze the greedy algorithm, we derive a lemma concerning the sum of the
component reduction numbers of the optimal paths in iteration i ∈ {1, . . . , n}. This
number is always greater or equal to the sum of the component reduction numbers of the
paths that are chosen by the greedy algorithm.

Lemma 1.14. In Algorithm 1.1 holds

∑
o∈Popt

N(o, i) ≥
n∑
j=i

N(p(j), j) ∀ i = 1, . . . , n. (1.2)

Proof. Consider the right hand side of inequality (1.2). We get

n∑
j=i

N(p(j), j) = z(Pi−1 ∪ {p(i)})− z(Pi−1) + z(Pi ∪ {p(i+ 1)})− z(Pi)

+ . . .+ z(Pn−1 ∪ {p(n)})− z(Pn−1)

= z(Pn)− z(Pi−1) = |V | − 1− z(Pi−1)

= no. of conn. comp. in (V,E(Pi−1))− 1

The claim then follows since each V -connecting set has to connect all connected compo-
nents in (V,E(Pi−1)).

Proposition 1.15. The greedy Algorithm 1.1 gives an H(k) approximation guarantee for
Steiner connectivity problems, where k = maxp∈P |p| is the maximum path length, i. e.,

c(P′) ≤
∑
p∈Popt

H(|p|)cp ≤ H(k) c(Popt).

Proof. The idea of the proof is as follows. In a first step (assignment), we assign the path
p(i) ∈ P′ (added to P′ in iteration i = 1, . . . , n in Algorithm 1.1) to a subset of optimal
paths O(i) ⊆ Popt. In a second step (bounding), we show that the cost of path p(i) can
be bounded from above by the cost of the paths in O(i). In a third step (summation),
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Algorithm 1.2: Assigning optimal paths to the paths of the greedy algorithm.
υ(o, i) := 0,∀ o ∈ Popt, ∀ i = 1, . . . , n

for i = n to 1 do
O(i) := ∅, z := 0
while z < N(p(i), i) do

choose o ∈ Popt \O(i) with N(o, i)−
∑n

j=i υ(o, j) > 0
υ(o, i) := min{N(o, i)−

∑n
j=i υ(o, j), N(p(i), i)− z}

z := z + υ(o, i)
O(i) := O(i) ∪ {o}

end
end

we show that the cost of each path of the optimal solution Popt is used at most H(k)
times in the bounding step.

1. Step: Assignment. Consider Algorithm 1.2. It assigns with each path p(i),
i = 1, . . . , n, of the greedy algorithm, passed in reverse order, a set O(i) ⊆ Popt of
optimal paths. The component reduction value N(p(i), i) for each path p(i), i = 1, . . . , n,
is distributed to the paths o ∈ O(i). To this purpose values υ(o, i) are computed such
that υ(o, i) > 0 ⇔ o ∈ O(i). More precisely, in each iteration i a set O(i) ⊆ Popt is
chosen such that ∑

o∈O(i)

υ(o, i) = N(p(i), i) ∀ i = 1, . . . , n. (1.3)

Here, the values υ(o, i), o ∈ O, i = 1, . . . , n, satisfy the following condition.

n∑
j=i

υ(o, j) ≤ N(o, i) ∀ o ∈ O(i), i = 1, . . . , n. (1.4)

Lemma 1.14 ensures that these values υ(o, i), i = 1, . . . , n, exist.

2. Step: Bounding. Consider the path p(i), i ∈ {1, . . . , n}, in iteration i of Algo-
rithm 1.1 and the corresponding set O(i) = {o1, . . . , oh} defined in Algorithm 1.2. Path
p(i) achieves the minimum in the ratio test in Step 3 of Algorithm 1.1. Using this fact
and equation (1.3), the cost of p(i) can be bounded as follows

cp(i)
N(p(i),i) ≤

co1
N(o1,i)

...
cp(i)

N(p(i),i) ≤
co1

N(o1,i)

 υ(o1, i) times

...
cp(i)

N(p(i),i) ≤
coh

N(oh,i)
...

cp(i)
N(p(i),i) ≤

coh
N(oh,i)

 υ(oh, i) times


N(p(i), i) times.
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Hence, we have cp(i) ≤
∑
o∈O(i)

co
N(o, i)

υ(o, i).

3. Step: Summation. We finally consider how often the costs of a path o ∈ Popt are
used in the bounding step. We have N(p, i) ∈ {0, 1, 2, . . . , |p|}, ∀p ∈ P, i = 1, . . . , n,
hence, the total cost for a path o ∈ O ⊆ P in the bounding step can be rewritten as

n∑
i=1

co
N(o, i)

υ(o, i) =
co
1
a1 +

co
2
a2 + . . .+

co
|o|
a|o|. (1.5)

Here, the coefficients

ak =

n∑
i=1

N(o,i)=k

υ(o, i), k = 1, . . . , |o|

are sums of the values υ(o, i). Note that N(o, i) is nonincreasing for increasing i. Let
sk ∈ {1, . . . , n} be the smallest iteration index of Algorithm 1.1 such that N(o, sk) = k,
k = 1, . . . , |o|, (for k = |o| we have sk = 1), if such index exists. Then equation (1.4)
implies

ak ≤
k∑
j=1

aj ≤ k, k = 1, . . . , |o|. (1.6)

This follows immediately if ak = 0, i. e., if N(o, i) 6= k for all i = 1, . . . , n. Otherwise

ak ≤
k∑
j=1

aj =
k∑
j=1

n∑
i=1

N(o,i)=k

υ(o, i) =
n∑

i=sk

υ(o, i) ≤ N(o, sk) = k.

The term co
k decreases with increasing k and is maximal for k = 1, and (1.6) implies

a1 ≤ 1. This means that the sum (1.5) is maximal for a1 = 1. Repeating this argument
for a2, etc., the sum (1.5) is maximal if all coefficients ak, k = 1, . . . , |o|, are 1. We then
get

n∑
i=1

co
N(o, i)

υ(o, i) ≤ co
1

+
co
2

+ . . .+
co
|o|
≤ coH(|o|).

Putting everything together, we get

c(P′) =

n∑
i=1

cp(i) ≤
n∑
i=1

∑
o∈O(i)

co
N(o, i)

υ(o, i)

υ(o,i)=0 if o/∈O(i)
=

∑
o∈Popt

n∑
i=1

co
N(o, i)

υ(o, i) ≤
∑
o∈Popt

H(|o|)co ≤ H(k)c(Popt).
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p1 p2 p3 p4 pk

pk+1

Figure 1.7: Worst case example for the greedy algorithm.

Figure 1.7 shows a worst case example for the greedy heuristic. We have k paths pi
consisting of one edge with cost cpi = 1

i , i = 1, . . . , k, and one path consisting of k edges
with cost cpk+1

= 1 + ε, ε > 0. The greedy algorithm takes the paths p1, . . . , pk in reverse
order producing a total cost of H(k). The optimal solution contains only path pk+1 with
a cost of 1 + ε which can be arbitrarily close to 1.

1.4 Approximation Results

In this section, we will investigate approximation algorithms for the (general) Steiner con-
nectivity problem. A natural idea is to adapt approximation algorithms for the Steiner
tree problem to the Steiner connectivity problem. We will pursue this idea in two ways:
In Subsection 1.4.1, we will transform a Steiner connectivity problem into a (not equiv-
alent) Steiner tree problem which gives a lower bound on the optimal solution value of
the SCP. An upper bound on the optimal solution can then be obtained by applying
an approximation algorithm for the Steiner tree problem and transforming the solution
back into a solution for the Steiner connectivity problem. This turns an α-approximation
algorithm for the Steiner tree problem into a kα-approximation algorithm for the SCP,
where k is the maximum path length. In Subsections 1.4.2 and 1.4.3, we will generalize
approximation algorithms for the Steiner tree problem to the Steiner connectivity prob-
lem. More precisely, in Subsection 1.4.2 we will construct a “minimum connecting set
tree” heuristic for the Steiner connectivity problem similar to a “minimum length span-
ning tree” heuristic for the Steiner tree problem. This yields a (k + 1)-approximation
algorithm, again for a maximum path length of k. In Subsection 1.4.3 we will apply
a general primal dual approximation technique of Goemans and Williamson [54] to the
Steiner connectivity problem. This yields a (k+ 1)-approximation algorithm for the case
that k is the maximum path length and for the case that k is the maximum number of
terminal nodes per path.

1.4.1 Approximation by Reduction to a Steiner Tree Problem

The idea is to transform the Steiner connectivity problem into a Steiner tree problem,
construct a Steiner tree, and to transform this solution back into a solution for the
original Steiner connectivity problem.

Algorithm 1.3 gives a detailed description of this idea. A Steiner tree instance is con-
structed by setting an edge cost ωe for each edge in the network as follows: For all paths
containing this edge take the minimum ratio of path cost divided by path length. The
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Algorithm 1.3: An approximation algorithm for the Steiner connectivity problem
using an algorithm for the Steiner tree problem.
Input : A connected graph G = (V,E), a set of paths P with costs c ∈ RP

≥0, a
set of terminal nodes T ⊆ V , an STP algorithm AlgoSTP.

Output: A T -connecting set P′ ⊆ P.

// define edge cost ωe for all e ∈ E
for all e ∈ E do1

p = argmin { cp|p| | p ∈ P, e ∈ E(p)}2

ωe :=
cp
|p|3

P (e) := p4

end5

// compute Steiner tree
E′ ← AlgoSTP(G,T, ω)6

P′ = {P (e) : e ∈ E′}7

path for which the minimum ratio is achieved is associated with the edge, ties are broken
arbitrarily. Then a Steiner tree is computed by the routine AlgoSTP(G,T, ω). All paths
associated with the edges of the Steiner tree form a T -connecting set, i. e., a solution for
the Steiner connectivity problem.

Proposition 1.16. Given a Steiner connectivity instance, let Popt be a minimum cost
T -connecting set and P′ a T -connecting set computed by Algorithm 1.3. Let further k
be the maximum path length for all p ∈ P and AlgoSTP(g, T, ω) be an α-approximation
algorithm for the Steiner tree problem with α ≥ 1. Then

c(P′) ≤ αk c(Popt).

Proof. Let Eopt be the edge set of an optimal Steiner tree on the graph G = (V,E) with
terminal nodes T ⊆ V and edge costs ωe ≥ 0, e ∈ E. Then we get

c(Popt) =
∑
p∈Popt

cp =
∑
p∈Popt

∑
e∈E(p)

cp
|p|
≥

∑
e∈E(Popt)

ωe ≥
∑

e∈Eopt

ωe = ω(Eopt).

Note that E(Popt) induces a Steiner tree.

Since AlgoSTP(g, T, ω) is an α-approximation algorithm for the Steiner tree problem, we
have ω(E′) ≤ αω(Eopt). We finally get

c(P′) ≤
∑
e∈E′

c(P (e)) =
∑
e∈E′

ωe|P (e)| ≤
∑
e∈E′

kωe = k ω(E′) ≤ αk ω(Eopt) ≤ αk c(Popt).

The first inequality is an equality if each e ∈ E′ corresponds to a different p ∈ P′.

Corollary 1.17. The routine AlgoSTP(g, T, ω) in Algorithm 1.3 can be defined such that
Algorithm 1.3 yields the following approximation results

c(P′) ≤ k c(Popt) if T = V,
c(P′) ≤ 1.55 k c(Popt) otherwise
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Algorithm 1.4: A connecting set heuristic for the Steiner connectivity problem.
Input : A connected graph G = (V,E), a set of paths P with costs c ∈ RP

≥0, a
set of terminal nodes T ⊆ V .

Output: A T -connecting set P′ ⊆ P.

P0 := ∅, choose r0 ∈ T , j := 0.1

Let V (P) as defined on page 12 with the exception of V (∅) := {r0}2

while |T \ V (Pj)| > 0 do3

j := j + 14

Qj = argmin {c(Q) : Q ⊆ P is vr-connecting for v ∈ V (Pj−1), r ∈ T \ V (Pj−1)}5

Pj := Pj−1 ∪ Qj6

end7

P′ := Pj8

for all p ∈ P′ do9

if P′ \ p is T -connecting then10

P′ := P′ \ p // deleting step11

end12

end13

with k being the maximum path length for all p ∈ P.

Proof. The best known approximation factor for the Steiner tree problem is 1 + ln 3
2 ≈

1.55, see Robins and Zelikovsky [87].

1.4.2 Approximation by Connecting Sets

Corollary 1.8 expounds that the minimum st-connecting set problem is solvable in poly-
nomial time. This result can be used to construct an approximation algorithm that per-
forms a minimum st-connecting set computation in each step. More precisely, a starting
graph containing an arbitrarily chosen terminal node is grown in each step by connecting
at least one terminal node not covered so far via a connecting set with minimum cost.
In this way, a (k + 1)-approximation result (with k being the maximal length of a path)
can be derived with similar arguments as for the analogous heuristic for the Steiner tree
problem, see, e. g., Takahashi and Matsuyama [99].

Algorithm 1.4 starts with an empty set of paths P0 and iteratively adds paths to P0

until all terminal nodes are covered by these paths. The first terminal node r0 is chosen
arbitrarily. In the first iteration, a terminal node r1 6= r0 is chosen such that the r0r1-
connecting set Q1 has minimum cost; Q1 and P0 are then united to P1. In each following
iteration j ≥ 2 a terminal node rj /∈ V (Pj−1)∩T is chosen such that a vrj-connecting set
Qj has minimum cost over all nodes v ∈ V (Pj−1); again Qj and Pj−1 are united to Pj .

Proposition 1.18. Given a Steiner connectivity instance, let Popt be the minimum cost
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T -connecting set and P′ a T -connecting set computed with Algorithm 1.4. Then

c(P′) ≤ (k + 1) c(Popt)(1− 1
|T |),

i. e., Algorithm 1.5 is a (k+1)-approximation algorithm with k being the maximal number
of edges in a path.

Proof. Consider an arbitrary inclusion wise minimal T -connecting set P? ⊆ P and recur-
sively construct a path-tree as follows. Define as G0 := (V (P?), E(P?)) the graph that is
spanned by P?. Let v0 be the root node in the path-tree, i. e., the node at level 0. Node
v0 represents G0.

Take any p0 ∈ P?. Since P? is minimally connected, the graph (V (P?), E(P? \ {p0}))
decomposes into

1. a number of connected components Gi, i = 1, . . . ,m1, spanned by disjoint path
sets P?i , i. e., Gi = (V (P?i ), E(P?i )) and ∪̇m1

i=1P
?
i ∪̇{p0} = P?,

2. a number of isolated terminal nodes ti, i = 1, . . . ,m2,
3. a number m3 of isolated non-terminal nodes.

Add nodes vi, i = 1, . . . ,m1 + m2, representing the components Gi and ti to the path-
tree. These are the nodes of the first level. Connect each node vi of the first level to the
node v0 of level 0; denote by p(vi) = p0 the path that establishes this connection. Apply
this procedure recursively to Gi by taking a path pi ∈ P?i for each i = 1, . . . ,m1 such
that V (pi)∩ V (p(vi)) 6= ∅. Then the graph Gi − pi := (V (P?i ), E(P?i \ {pi})) decomposes
in the same way as (V (P?), E(P? \ {p0})). For each connected component of Gi − pi
we add a node in the second level of the path-tree and connect these nodes to the node
representing Gi. Proceed with the nodes (and corresponding connected components) of
the second level in the same way as with the nodes of the first level. A visualization of
the construction is shown in Figure 1.8.

Note that the decomposition of each graph yields m1 +m2 +m3 ≥ 1 in the three above
defined cases and that only m1 nodes get children. Since the set of paths is finite the
procedure terminates. If all paths in P have at most k edges, every node in the path-tree
has at most k+1 children, and the edges connecting a node to its children all correspond
to a single path. The leafs of the tree correspond to the terminal nodes.

Traverse the tree in inorder and (re-)number the terminals t1, . . . , tn with n = |T |.
Connect terminals ti, ti+1 via a path p(ti, ti+1) in the path-tree as illustrated by the
gray arcs in Figure 1.8, taking indices i+ 1 mod n. Each path p(ti, ti+1) corresponds to
a (not necessarily minimal) titi+1-connecting set Pti,ti+1 in the original graph, compare
with Figure 1.8. The path set {p(ti, ti+1), i = 1, . . . , n} contains each path p ∈ P? at
most k + 1 times, hence,

n∑
i=1

c(Pti,ti+1) ≤ (k + 1)c(P?). (1.7)
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Figure 1.8: Construction of a path-tree as described in the proof of Proposition 1.18. Left: A minimal
{a, b, c, d}-connecting set. Right: The corresponding path-tree when path p3 is chosen first. The graph then
decomposes into two connecting components (one spanned by p1 and p2, the other spanned by p4 and p5) and
the terminal node c. The choice for all subsequent paths is unique. The path p(b, d) = {b, v4, v1, v0, v2, v5, d}
on the right corresponds to the bd-connecting set Pb,d = {p1, p2, p3, p4, p5} on the left which is not minimal
since {p2, p4, p5} is also a bd-connecting set.

This is true for each inclusion wise minimal T -connecting set P? and, therefore, also for
Popt = P?.

Now consider Algorithm 1.4. It starts with terminal r0 and connects in each iteration
at least one terminal node. Let the terminals r0, r1, . . . , rn−1 be ordered in the same
way as they are connected in Algorithm 1.4. If several terminals are connected in one
iteration then this subset is ordered arbitrarily. Assume ri, i = 1, . . . , n− 1, is connected
in iteration j, then we define

Pri−1,ri :=

{
Qj if ri−1 is connected in iteration j − 1,
∅ otherwise, i. e., ri−1 is also connected in iteration j.

Note that r0 is “connected in iteration 0”. In this way, each set Qj in the algorithm is
associated with exactly one Pri−1,ri for i ∈ {1, . . . , n−1}. We define the distance between
two (terminal) nodes or a set of (terminal) nodes as follows

distP({r0, . . . , ri−1}, ri) := argmin {c(Q) : Q ⊆ P is vri-connecting for v ∈ {r0, . . . , ri−1}}.

Then we have (compare with line 5 of Algorithm 1.4)

c(Pri−1,ri) ≤ distP({r0, . . . , ri−1}, ri), i = 1, . . . , n− 1. (1.8)

Moreover, the following holds for the terminal nodes of Algorithm 1.4

distP({r0, . . . , ri−1}, ri) = distP({r0, . . . , ri−1}, {ri, . . . , rn−1}). (1.9)

By the method of Rosenkrantz, Stearns, and Lewis II [88], one can construct a bijection

σ : {1, . . . , n− 1} → {1, . . . , n− 1} such that
{tσ(i), tσ(i)+1} ∈ {r0, . . . , ri−1} × {ri, . . . , rn−1} ∀i = 1, . . . , n− 1.

(1.10)
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Figure 1.9: Worst case example for the connecting
set heuristic given in Algorithm 1.4. All nodes but s
are terminal nodes.
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Figure 1.10: Example that Algorithm 1.4 yields no
bounded approximation ratio if each path contains at
most 2 terminals.

Then

c(P′) =
n−1∑
i=1

c(Pri−1,ri)
(1.8)
≤

n−1∑
i=1

distP({r1, . . . , ri−1}, ri)

(1.9),(1.10)
≤

n−1∑
i=1

c(Ptσ(i),tσ(i)+1
)
(1.7)
≤ (k + 1)c(Popt).

In the above chain of inequalities the summand c(Ptn,t1) does not appear. If we choose t1
in such a way that c(Ptn,t1) = max{c(Pti,ti+1) : i = 1, . . . , n} (taking indices i+1 mod n),
it follows with inequality (1.7) that

c(P′) ≤ (k + 1) c(Popt)(1− 1
n) = (k + 1) c(Popt)(1− 1

|T |),

which proves the claim.

We show that the approximation guarantee for Algorithm 1.4 is tight. Figure 1.9 il-
lustrates a worst case example. Given is a Steiner connectivity instance with only one
non-terminal node s. We have the following paths and costs

oi = (s, ai1, ai2, . . . , aik), c(oi) = 1, i = 1, . . . , n,
qi = (ai1, a(i+1)1), c(qi) = 2(1− ε), i = 1, . . . , n− 1,

pij = (aij , ai(j+1)) c(pij) = 1− ε, i = 1, . . . , n, j = 1, . . . , k − 1.

The heuristic would choose the paths qi, i = 1, . . . , n − 1, and pij , i = 1, . . . , n, j =
1, . . . , k − 1, with total cost

c(heur) = (n− 1) · 2(1− ε) + (k − 1) · n · (1− ε)
= n

(
(k − 1)(1− ε) + 2(1− ε)

)
− 2(1− ε) = n(k + 1)(1− ε)− 2(1− ε).

The optimal paths are oi, i = 1, . . . , n, with cost c(opt) = n. We get

c(heur)

c(opt)
= (k + 1)(1− ε)− 2(1− ε)

n

ε→0−−−→
n→∞

(k + 1).
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Figure 1.10 illustrates an example that the connecting set heuristic given in Algorithm 1.4
yields no bounded approximation ratio if each path contains at most 2 terminal nodes but
can be arbitrarily long. We have n+2 terminal nodes and n non-terminal nodes. The blue
path has cost 1 and contains two terminal nodes and n non-terminal nodes. Each (black)
edge is covered by a path with cost as noted next to the edge. The optimal T -connecting
set has cost c(opt) = 1, taking the blue path and all 0-cost paths. The T -connecting set
computed by the heuristic takes all other paths with cost c(heur) = (n+ 1)(1− ε), i. e.,

c(heur)
c(opt) = (n+ 1)(1− ε) −−−→

n→∞
∞.

The heuristic in Algorithm 1.4 can be modified to a “spanning set heuristic” similar as
the minimum spanning tree heuristic for the Steiner tree problem, see, e. g., Prömel and
Steger [82] and the references therein. The idea is to construct a complete graph Ḡ with
node set T and edge costs cuv = min{c(P′) : P′ ⊆ P is uv-connecting}. Computing a
minimum spanning tree in Ḡ gives rise to a T -connecting set P′ by uniting the minimal
uv-connecting sets for each edge {u, v} in the minimum spanning tree.

Corollary 1.19. The spanning set heuristic is a (k + 1)-approximation algorithm.

Proof. This follows with the same arguments as given in the proof of Proposition 1.18.
The spanning set heuristic adds a new terminal node t according to a minimum cost
st-connecting set with s being any terminal node already covered. (In Algorithm 1.4 s
could be any node already covered.)

1.4.3 Primal-Dual Approximation Algorithm

In the following we will construct a primal-dual algorithm to find a T -connecting set.
It is analogous to the algorithm of Goemans and Williamson [54] for the Steiner forest
problem that is visualized in Figure 1.11. Our application to the Steiner connectivity
problem is listed in Algorithm 1.5.

The algorithm constructs a T -connecting set P′. In the beginning P′ = ∅ and each
terminal node is considered to form a connected component that contains only itself. The
idea is to extend and merge the connected components along paths until we have only
one connected component left. In each iteration moats around the connected components
are grown until a path goes tight. The radii of the moats correspond to the values
of the dual variables for the cuts around the connected components, and a path goes
tight if its associated inequality in the dual program becomes an equality, compare with
equation (1.11).

More precisely, let Bi be the set of all connected components in iteration i of Algo-
rithm 1.5; the initial set is B0 = {{t} : t ∈ T}, i. e., the set of all terminal nodes.
We iterate as long as Bi consists of more than one connected component. Denote by
Bi
p = {b ∈ Bi : p ∈ Pδ(b)} the set of connected components the path p “cuts” in iter-

ation i. We set |Bi
p| = 0 for Bi

p = ∅. In iteration i we choose, among paths p ∈ P
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Figure 1.11: The idea of the primal dual algorithm of Goemans and Williamson for the (Euclidean) Steiner
tree problem. The upper left figure shows a Steiner tree instance, the square nodes are the terminal nodes, the
length of an edge corresponds to the cost of the edge. The colored areas around the connected components
b ∈ Bi (the terminal nodes in the first step) are the moats. If two moats touch each other or if a moat
reaches a non-terminal node, the corresponding edge goes tight and is added to the Steiner tree, marked blue
in the figures. The two connected components or the connected component and the non-terminal node are
merged. After the reverse deleting step, the lower right figure shows the final Steiner tree.
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Algorithm 1.5: A primal dual heuristic for SCP
Input : A connected graph G = (V,E), a set of paths P with costs c ∈ RP

≥0, a
set of terminal nodes T ⊆ V .

Output: A T -connecting set P′ ⊆ P.

B0 := {{t} | t ∈ T}}, P′ := ∅, c0
p := cp for all p ∈ P, i := 01

yW := 0∀W ⊂ V , W ∩ T 6= ∅, V \W ∩ T 6= ∅ // only set when needed2

while |Bi| > 1 do3

p = argmin q∈P{
ciq
|Biq |

: |Bi
q| > 0}4

ai :=
cip
|Bip|5

P′ := P′ ∪ {p}6

for all b ∈ Bi do7

yb := yb + ai8

end9

Bi+1 := (Bi \Bi
p) ∪ {b1 ∪ . . . ∪ bk ∪ V (p)} with {b1, . . . , bk} := Bi

p10

for all q ∈ P \ P′ do11

ci+1
q := ciq − |Bi

q|ai12

end13

i := i+ 114

end15

for all p ∈ P′ do16

if P′ \ p is T -connecting then17

P′ := P′ \ p // deleting step18

end19

end20

with |Bi
p| > 0, a path for which the quotient of reduced cost and number of connected

components the path cuts in iteration i is minimal, line 4. Denote by ai this minimum
value, line 5; it gives the maximum amount the dual variables can be increased. The
associated path is added to P′ (ties broken arbitrarily), line 6, and the dual variables or
moat radii are increased by the value ai, line 8. If the path contains several connected
components, these are merged into one connected component, line 10. All non-terminal
nodes of the path are also added to the new connected component. Note that the path
contains at least two connected components or at least one connected component and one
non-terminal node. Line 12 is an updating step to prepare the computation of the next
amount of increase of the dual variables. The final set of chosen paths is T -connecting.
In the end of the algorithm, lines 16 to 20, we consecutively remove paths as long as the
resulting set is still T -connecting to obtain a minimal T -connecting set P′.

Let W = {W ⊂ V ; ∅ 6= W ∩ T 6= T}. The analysis of Algorithm 1.5 is based on the
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consideration of the following dual programs:

min
∑
p∈P

cp xp max
∑

W∈W
yW

s.t.
∑

p∈Pδ(W )

xp≥ 1 ∀W ∈ W s.t.
∑

W∈W:p∈Pδ(W )

yW ≤ cp ∀ p ∈ P

xp≥ 0 ∀ p ∈ P yW ≥ 0 ∀W ∈ W.

(1.11)

The primal program is the LP relaxation of the undirected cut formulation of the Steiner
connectivity problem. It minimizes the cost of a set of paths. This set of paths has to
contain at least one path of each T -disconnecting set and is, hence, a T -connecting set.
The undirected cut formulation is considered in detail in Chapter 2.

Proposition 1.20. Setting xp = 1 for all p ∈ P′, xp = 0 for all p ∈ P \ P′, and using
variables y as defined at the end of Algorithm 1.5 gives solutions for the primal and dual
programs (1.11).

Proof. It is easy to see that P′ is a T -connecting set. Now, consider yW ,W ∈ W. Clearly,
yW ≥ 0, W ∈ W. Let p ∈ P and r be the last iteration of the while-loop, i. e., at the end
of this last iteration ar and cr+1

p , p ∈ P \ P′, are defined. Then we get

∑
W∈W:p∈Pδ(W )

yW
(i)
=

r∑
i=0

∑
b∈Bip

ai
(ii)
= c0

p − cr+1
p

(iii)

≤ cp. (1.12)

(i) Compare with line 8 in Algorithm 1.5.
(ii) We use the following equations, compare with line 12 in the algorithm,

cr+1
p = crp −

∑
b∈Brp

ar = c0
p −

r∑
i=0

∑
b∈Bip

ai.

(iii) This follows since 0 ≤ cr+1
p ≤ c0

p = cp, compare with lines 1, 4, and 5 in Algo-
rithm 1.5.

Hence, y is feasible for the dual program in (1.11). Moreover, we have equality in (1.12)
for p ∈ P′, i. e., ∑

W∈W:p∈Pδ(W )

yW = cp. (1.13)

Proposition 1.21. Given a Steiner connectivity instance, let Popt be the minimum cost
T -connecting set and P′ a T -connecting set computed with Algorithm 1.5. Then

c(P′) ≤ (k + 1) c(Popt)
(
1− 1

|T |
)
,

i. e., Algorithm 1.5 is a (k + 1)-approximation algorithm with k being the minimum of

(a) the maximal number of edges in a path,
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1.4. Approximation Results

Figure 1.12: Example for the necessity of the deleting step in Algorithm 1.5. We have two terminal nodes, the
square ones, and n non-terminal nodes, each connected by a path of cost 1 to one of the terminal nodes. The
two terminal nodes are connected via a path (red) of cost 2 which is the optimal solution. The primal-dual
Algorithm 1.5 initially adds all paths to the set P′, but the deleting step eliminates the superfluous ones.

(b) the maximal number of terminal nodes in a path.

Proof. Summing up the cost of all paths in P′, we get∑
p∈P′

cp
(1.13)

=
∑
p∈P′

∑
W∈W:p∈Pδ(W )

yW =
∑
W∈W

∑
p∈Pδ(W )∩P′

yW =
∑
W∈W

degP′(W )yW .

If we can show the following∑
W∈W

degP′(W )yW ≤ (k + 1)
(
1− 1

|T |
) ∑
W∈W

yW , (1.14)

we are done. Note that this is more general than to require degP′(W ) ≤ k+ 1. We show
inequality (1.14) by induction over the iterations of the algorithm. Initially, yW = 0 for
all W ∈ W, so inequality (1.14) is true. Now, we have to show that the increase on the
left hand side is smaller than the increase on the right hand side in every iteration, i. e.,
for each iteration i we have to show the following

ai
∑
b∈Bi

degP′(b) ≤ (k + 1)
(
1− 1

|Bi|
) ∑
b∈Bi

ai
|Bi|≤|T |
≤ (k + 1)

(
1− 1

|T |
) ∑
b∈Bi

ai

⇔
∑
b∈Bi

degP′(b) ≤ (k + 1)(|Bi| − 1) = (k + 1)
(
1− 1

|Bi|
)
|Bi|.

Each b ∈ Bi is connected. Consider the graph G̃ that contains a node for each b ∈ Bi

and all nodes v ∈ V that are not contained in one of the b ∈ Bi. Then the final set
P′ restricted to G̃ is a minimal Bi-connecting set. The rest follows with the Degree
Lemma 1.3 since P′ is minimal.

Case (a) in Proposition 1.21 was also stated by Takeshita, Fujito, and Watanabe [64] in
a paper written in Japanese. As far as we could find out, however, they do not give a
proof for the Degree-Lemma 1.3 (case (a)); we also do not know of any other reference.

The deleting step of Algorithm 1.5 is important for the approximation guarantee since
the degree property only holds for minimal T -connecting sets. Figure 1.12 shows an
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example in which the deleting step is necessary: the algorithm initially chooses all paths
but only one is necessary to connect the terminal nodes.

38



Chapter 2

IP Formulations and Polyhedra

In this chapter, we will analyze integer programming formulations and polyhedral aspects
of the Steiner connectivity problem. We propose an extended directed cut formulation
for the problem based on the relation to the directed Steiner tree problem shown in
Section 1.2. We show that this formulation is provably strong, including, e. g., a class
of facet defining generalized Steiner partition inequalities. It dominates the canonical
undirected cut formulation. This generalizes a similar result for the Steiner tree problem.
Main parts of this chapter are published in [20, 26].

The structure of this chapter is as follows. In Section 2.1 we propose and compare three
integer programming formulations for the SCP: a canonical undirected cut formulation
and two extended directed cut formulations that are based on the equivalence of the
Steiner connectivity problem and an associated directed Steiner tree problem, compare
with Section 1.2. An analysis of the polytope associated with the undirected cut formu-
lation follows in Section 2.2. We state necessary and sufficient conditions for the Steiner
partition inequalities to be facet defining. We show that a super class of the Steiner
partition inequalities can be separated in polynomial time. This shows that extended
formulations provide tight relaxations for the SCP.

2.1 IP Formulations

In this section, we propose three integer programming formulations for the SCP. The first
one (SCPcut) is the canonical undirected cut formulation, the second one (SCPrarc+) is a
directed cut formulation based on the equivalence between the SCP and its associated
DSTP, the third one (SCPrcon+) is also a directed cut formulation, but in a smaller space.
It will turn out that (SCPrarc+) and (SCPrcon+) are equivalent and dominate (SCPcut).

The section uses the following notation. For a vector x ∈ Rn and an index set I ⊆
{1, . . . , n}, let x|I = xI be the restriction of x onto the subspace indexed by I. Let
PLP (F ) be the polyhedron associated with the LP relaxation of an IP formulation F .
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2 IP Formulations and Polyhedra

Then PLP (F )|I is the orthogonal projection of PLP (F ) on the subspace of variables
indexed by I.

2.1.1 Cut Formulation

The cut formulation is as follows:

(SCPcut) min
∑
p∈P

cp xp

s.t.
∑

p∈Pδ(W )

xp ≥ 1 ∀ W ⊆ V, ∅ 6= W ∩ T 6= T (2.1)

xp ∈ {0, 1} ∀ p ∈ P.

Here, xp is a 0/1-variable that indicates whether path p is chosen (xp = 1) or not
(xp = 0). The set Pδ(W ) with W ⊆ V, ∅ 6= W ∩ T 6= T is the T -path cut or Steiner
path cut as defined in Chapter 1; a Steiner path cut Pδ(W ) with |Pδ(W )| = 1 is a Steiner
path bridge. For given x, the capacity of a Steiner path cut Pδ(W ) is

∑
p∈Pδ(W )

xp, and we
denote the inequalities (2.1) as Steiner path cut constraints; they state that the capacity
of each Steiner path cut must be at least one. It is easy to see that (SCPcut) is a valid
formulation for the SCP.

If each path has length 1, i. e., contains only one edge, the sets δ(W ) and Pδ(W ) are equal.
In this case the Steiner connectivity problem reduces to a Steiner tree problem, and the
Steiner path cut constraints reduce to the so-called Steiner cut constraints.

Replacing the Steiner path cut constraints by the inequalities∑
e∈δ(W )

∑
p:e∈p

xp ≥ 1 ∀ W ⊆ V, ∅ 6= W ∩ T 6= T

produces the integer program

(SCPw
cut) min

∑
p∈P

cp xp

s.t.
∑

e∈δ(W )

∑
p:e∈p

xp ≥ 1 ∀ W ⊆ V, ∅ 6= W ∩ T 6= T (2.2)

xp ∈ {0, 1} ∀ p ∈ P.

This weak cut formulation is also a correct IP formulation of the SCP. Note that the left
hand side of a weak Steiner path cut constraint (2.2) counts how often each path crosses
the cut δ(W ). These inequalities can be seen as a direct generalization of the Steiner cut
constraints for the STP. However, they are clearly dominated by the Steiner path cut
constraints.
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Figure 2.1: Left: Graph G with four paths (p1 = (s, c), p2 = (b, t), p3 = (c, b, d, e, t), p4 = (s, d)) with
x̂-value 0.5 and two terminal nodes s and t. Right: Corresponding Steiner connectivity digraph D′ for r := s.
Here, each arc has capacity 0.5. The minimum directed (s, t)-cut has value 0.5 and corresponds to the Steiner
path cut P′ = {p3} in G.

Formulation (SCPcut) has |P| variables and O(2|V |) Steiner path cut constraints, i. e.,
the number of Steiner path cut constraints can be exponential in the size of the input.
However, the associated separation problem, i. e., to decide whether a given point x̂ is
feasible for the LP relaxation of (SCPcut) or to find a violated Steiner path cut constraint,
can be solved in polynomial time. Namely, this problem can be formulated as a family
of max flow/min cut problems in the Steiner connectivity digraph D′ = (V ′, A′) that
was defined in Section 1.2. Consider some nonnegative vector x̂ ∈ RP

≥0. We define the
following standard arc capacities κ = κ(x̂) for D′:

a = (r, vp), κa := x̂p, ∀ p ∈ P with r ∈ p,
a = (vp, wp), κa := x̂p, ∀ p ∈ P,
a = (wp̃, vp), κa := min{x̂p, x̂p̃}, ∀ p, p̃ ∈ P, r /∈ p, p 6= p̃, p and p̃ have

a node v ∈ V in common,
a = (wp, t), κa := x̂p, ∀ p ∈ P, ∀ t ∈ T \ {r} with t ∈ p.

Figure 2.1 illustrates this construction. The following holds.

Lemma 2.1. Let t ∈ T \ {r} be a terminal node and x̂ ∈ RP
≥0 be a nonnegative vector.

If the Steiner connectivity digraph D′ has standard capacities κ = κ(x̂), there exists a
directed (r, t)-cut with minimum capacity in D′ such that all arcs over this cut are of the
form (vp, wp), p ∈ P.

Proof. Let δ−(W ) be a directed (r, t)-cut withW ⊆ V \{r}. We show that we can derive
an alternative cut set W̃ with smaller or equal capacity where all arcs are of the form
(vp, wp). Thus, if δ−(W ) has minimum capacity, then δ−(W̃ ) has minimum capacity as
well.

◦ Assume (r, vp) ∈ δ−(W ), i. e., vp ∈ W . We set W̃ = W \ {vp} ∪ {wp} and get
δ−(W̃ ) = δ−(W )\{(r, vp)}∪{(vp, wp)}, because (vp, wp) is the only arc with source
node vp and target node wp, recall statements 1 and 2 of Observation 1.5, and since
r ∈ p, r, vp) is the only arc with target node vp. Furthermore, (vp, wp) ∈ δ−(W̃ )
and κrvp = κvpwp . Hence, δ−(W̃ ) has the same capacity as δ−(W ).
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2 IP Formulations and Polyhedra

◦ If (wp, t) ∈ δ−(W ), we set W̃ = W \ {vp} ∪ {wp} and argue as above.
◦ Assume (wp̃, vp) ∈ δ−(W ), p 6= p̃, and x̂p ≤ x̂p̃. In this case, we set W̃ = W \
{vp} ∪ {wp} and get δ−(W̃ ) ⊆ δ−(W ) \ {(wp̃, vp)} ∪ {(vp, wp)}, again because
of statements 1 and 2 of Observation 1.5. Furthermore, (vp, wp) ∈ δ−(W̃ ) and
κvpwp = κwp̃vp . Hence, δ

−(W̃ ) has capacity not larger than δ−(W ).
◦ Assume (wp̃, vp) ∈ δ−(W ), p 6= p̃, and x̂p̃ ≤ x̂p. In this case we set W̃ = W \{vp̃}∪
{wp̃} and argue similarly.

In all cases, the set W changes in such a way that nodes wp enter W and nodes vp
leave W . Hence all steps can be repeated until the cut has the desired form.

We call a cut of the form stated in Lemma 2.1 a standard cut ; then Lemma 2.1 can be
rephrased as stating that there exists a minimum capacity directed (r, t)-cut in a Steiner
connectivity digraph with standard capacities which is a standard cut.

Proposition 2.2. Let κ ∈ RA′≥0 and x̂ ∈ RP
≥0 be capacities for D′ and G, respectively, such

that κa = x̂p for all a = (vp, wp) ∈ A′, p ∈ P. Then there is a one-to-one correspondence
between minimal directed (r, t)-standard cuts in D′ (w. r. t. root node r) and minimal
(r, t)-Steiner path cuts in G, and the capacities are equal.

Proof. “⇒”: Consider a directed (r, t)-standard cut δ−(W ′) in D′. We first show that
δ−(W ′) gives rise to an (r, t)-disconnecting set

P′ = {p ∈ P : (vp, wp) ∈ δ−(W ′)}

in G. Assume there exists a path from r to t in G that is covered only by paths in P\P′
(i. e., P′ is not a disconnecting set). Let p1, . . . , pk be the paths that are used in this
order when traversing the path. Then (r, vp1 , wp1 , . . . , vpk , wpk , t) is a path from r to t
in D′ that uses only arcs in A′ \ δ−(W ′). This is a contradiction to the assumption that
δ−(W ′) is a directed (r, t)-standard cut in D′.

Now let δ−(W ′) be minimal and suppose P′ is not. Then there exists a smaller (r, t)-
disconnecting set P′′ ⊂ P′. Consider for some path p ∈ P′ \ P′′ the arc (vp, wp) ∈
δ−(W ′). As δ−(W ′) is a minimal disconnecting set in D′, there exists an (r, t)-path
(r, vp1 , wp1 , . . . , vpk , wpk , t) in A

′ \ δ−(W ′)∪{vp, wp}. But then p1, . . . , pk is a set of paths
in P \ P′ ∪ {p} ⊆ P \ P′′ that connect r and t in G, i. e., P′′ is not an (r, t)-disconnecting
set. This is a contradiction. Therefore P′ is minimally disconnecting and, by Lemma 1.1,
P′ is a minimal (r, t)-Steiner path cut.

“⇐”: Let P′ be an (r, t)-Steiner path cut. Then P′ is an (r, t)-disconnecting set in G.
Define W ′ = {t} ∪ {wp : p ∈ P′} ∪W ′′, where W ′′ is the set of nodes from which t can
be reached using arcs in the set A′ \ {(vp, wp)|p ∈ P′}. Then we show that δ−(W ′) is a
directed (r, t)-standard cut in D′, namely, δ−(W ′) = {(vp, wp) : p ∈ P′}. It is clear that
δ−(W ′) ⊇ {(vp, wp) : p ∈ P′}, because the only node that can be reached from vp is wp.
To show equality, consider the following cases:
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◦ Assume (r, vp) ∈ δ−(W ′) for some p ∈ P. If p ∈ P′, then vp /∈ W ′, a contradiction.
If p /∈ P′ then t can be reached from vp via arcs in A′ \ {(vp, wp)|p ∈ P′}. Hence,
there is an (r, t)-path covered by p ∈ P \ P′, a contradiction.
◦ Assume (wp, t) ∈ δ−(W ′) for some p ∈ P. For both cases p ∈ P′ and p /∈ P′ we

have wp ∈W ′, a contradiction.
◦ Assume (vp, wp) ∈ δ−(W ′) for some p ∈ P \ P′. Then wp ∈ W ′, i. e., t can be

reached from wp via arcs in A′ \ {(vp, wp)|p ∈ P′}, but vp /∈W ′, a contradiction.
◦ Assume (wp̃, vp) ∈ δ−(W ′) for some p, p̃ ∈ P. Then wp̃ /∈ W ′ and vp ∈ W ′. This

implies that t can be reached from vp via arcs in A′ \ {(vp, wp)|p ∈ P′}. But then t
can also be reached from wp̃ via arcs in A′ \ {(vp, wp)|p ∈ P′}, a contradiction.

Now assume that P′ is a minimal (r, t)-Steiner path cut (i. e., a minimal (r, t)-disconnecting
set via Lemma 1.1) and δ−(W ′) is not minimal, i. e., there exists a standard cut δ−(W ′′) ⊂
δ−(W ′) = {(vp, wp) : p ∈ P′}. Then by the forward argument of the proof there exists a
disconnecting set P′′ ( P′, a contradiction.

“⇔”: It is easy to see that in both cases P′ and δ−(W ′) have the same capacity, and that
the constructions in the two directions of the proof pair the same cuts.

Remark 2.3. Note that Proposition 2.2 holds for all capacities such that κa = x̂p for all
a = (vp, wp) ∈ A′, p ∈ P, not only for standard capacities.

Proposition 2.4. The separation problem for Steiner path cut constraints can be solved
in polynomial time.

Proof. Computing for every two terminals s, t ∈ T a minimum (s, t)-cut in D′ with
respect to standard capacities, using s as root node, can be done in polynomial time. If
and only if the value of this cut is smaller than 1, we can find a violated Steiner path cut
constraint by transforming this cut into a standard cut via Lemma 2.1 and then applying
Proposition 2.2. This can also be done in polynomial time.

2.1.2 Directed Cut Formulation

Our second formulation of the SCP is the well-known directed cut formulation for the
associated DSTP, compare with Chopra and Rao [35] for the formulation and with Sec-
tion 1.2 for the definition of the associated DSTP:

(SCParc) min
∑
a∈A′

c′a ya

s.t.
∑

a∈δ−(W ′)

ya ≥ 1 ∀W ′ ⊆ V ′\{r}, W ′ ∩ T 6= ∅ (2.3)

ya ∈ {0, 1} ∀ a ∈ A′.

Compared to the undirected cut formulation, the number of variables of (SCParc) is
quadratic, i. e., |A′| ∈ O(|P|2), and we have O(2|V

′|) = O(22|P|) cut constraints. The
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2 IP Formulations and Polyhedra

solutions of (SCParc) are supersets of directed Steiner trees for the terminal set T . How-
ever, since we minimize a nonnegative objective, there always exists an optimal solution
that is a directed Steiner tree. The separation problem for the directed Steiner cut con-
straints (2.3) consists of solving |T | − 1 min-cut problems, i. e., for each t ∈ T\{r} one
has to find a minimum (r, t)-cut in D′. This can be done in polynomial time.

(SCParc) can be interpreted as an extended formulation of (SCPcut) by identifying arcs
(vp, wp) and paths p ∈ P. We define

A′P = {(vp, wp) ∈ A′ : p ∈ P}

and write y|P = y|A′
P
to simplify the notation. Then, Proposition 1.6 states that if y is

an integer solution of (SCParc), its projection on the subspace of path-arcs gives rise to
a solution x = y|P of (SCPcut) via xp = yvpwp , p ∈ P, and vice versa. This relation also
holds for the LP relaxations of (SCPcut) and (SCParc).

Lemma 2.5. PLP (SCPcut) = PLP (SCParc)|P.

Proof. “⊇”: Let y∗ ∈ PLP (SCParc), i. e., y∗ satisfies all directed (r, t)-Steiner cuts for
some root r and every terminal t ∈ T\{r}. By Proposition 2.2 and Remark 2.3, the
vector x∗ = y∗|P satisfies all (r, t)-Steiner path cuts for every terminal t ∈ T\{r}. Since
any (s, t)-Steiner path cut is either an (r, s)- or an (r, t)-Steiner path cut, y∗|P also satisfies
the (s, t)-Steiner path cuts for all s, t ∈ T \ {r}, i. e., y∗|P = x∗ ∈ PLP (SCPcut).

“⊆”: Let x∗ ∈ PLP (SCPcut), in particular, x∗ satisfies the (s, t)-Steiner path cuts for all
s, t ∈ T and hence all (r, t)-Steiner path cuts for some fixed root r. We define y∗ ∈ RA′

by setting y∗ = κ(x∗) according to the standard capacity definition, i. e., in particular,
y∗|P = x∗. By Proposition 2.2, the vector y∗ satisfies all directed (r, t)-standard cuts,
and by Lemma 2.1, all directed (r, t)-cuts, i. e., y∗ ∈ PLP (SCParc).

Corollary 2.6. The optimal objective values of the LP relaxations of (SCParc) and
(SCPcut) are equal. In particular, the objective value of the LP relaxation of (SCParc) is
independent of the choice of the root node r.

Proof. This follows from Lemma 2.5, since c′|P = c and c′|A′\A′
P

= 0.

It is known that directed cut formulations for the STP can easily be strengthened by a
small number of inequalities that one can write down explicitly. It will turn out that
in our case such a strengthening is also possible and dominates a large class of facet
defining Steiner partition inequalities for the undirected cut formulation of the SCP, see
Section 2.2. The additional inequalities are as follows. Since we assume nonnegative
costs, there is always an optimal solution of the associated DSTP that is a directed tree.
Each non-terminal node that is contained in such a cost minimal directed Steiner tree
has at least one outgoing arc and at most one incoming arc. Therefore, the so-called flow
balance inequalities can be added to (SCParc):∑

a∈δ−(v)

ya ≤
∑

a∈δ+(v)

ya ∀ v ∈ V ′\T.
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Figure 2.2: An SCP instance showing that choosing different roots leads to different solutions of the LP
relaxation of (SCPrarc+). Choosing node a as root allows to set all path values to 0.5 in the LP relaxation of
(SCPaarc+). This solution is not possible for the LP relaxation of (SCPbarc+), when b is chosen as root.

In the context of the Steiner tree problem these inequalities were first considered by
Duin [45] and later studied by Koch and Martin [66], Polzin [79], and Polzin and Danesh-
mand [80]. The only non-terminal nodes in D′ are the nodes vp and wp, p ∈ P. We will
show that the flow balance constraints for nodes vp, r /∈ p, and for nodes wp, t /∈ p,
∀ t ∈ T (note that r ∈ T is included), can be omitted. Appending these flow balance
constraints produces the following strengthened directed cut formulation for the SCP:

(SCPrarc+) min
∑
a∈A′

c′a ya

s.t.
∑

a∈δ−(W ′)

ya ≥ 1 ∀W ′ ⊆ V ′\{r}, W ′ ∩ T 6= ∅

yvpwp ≥
∑

a∈δ−(vp)

ya ∀ vp ∈ V ′ (p ∈ P : r /∈ p) (2.4)

∑
a∈δ+(wp)

ya ≥ yvpwp ∀wp ∈ V ′ (p ∈ P : t /∈ p ∀ t ∈ T ) (2.5)

ya ∈ {0, 1} ∀ a ∈ A′. (2.6)

This strengthened directed cut formulation (SCPrarc+) improves an earlier version defined
in our paper [20] in two ways. It enlarges the model by including the flow balance
constraints for the nodes wp and simultaneously omits flow balance constraints that have
(as we will see) no effect on the objective function. An example in which the additional
flow balance constraints for nodes wp tighten the formulation is discussed in the next
section in the context of the contracted directed cut formulation. The lower right of
Figure 2.2 shows an example of a typical violation of the flow balance constraints for node
vp: Setting the y-variables associated with the arcs shown in this Steiner connectivity
digraph to 0.5 produces a solution that satisfies all directed Steiner cut constraints, but
violates the flow balance constraint at node 2.

We will now consider the flow balance constraints that can be omitted in model (SCPrarc+).
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Lemma 2.7. There exists an optimal solution of the LP relaxation of (SCPrarc+) that
satisfies the flow balance constraints (a) for all nodes vp ∈ V ′ with r ∈ p and (b) for all
nodes wp ∈ V ′ with t ∈ p for a terminal node t ∈ T .

Proof.

(a) Let vp ∈ V ′, p ∈ P, with r ∈ p, i. e., (r, vp) ∈ A′. Assume we are given an optimal
LP solution y∗ ∈ PLP (SCPrarc+) with y∗rvp > y∗vpwp . Let δ

−(W ) be an (r, t)-cut with
(r, vp) ∈ δ−(W ) and

∑
a∈δ−(W ) y

∗
a = 1. If no such cut exists we can reduce the

y∗-value of arc (r, vp) until y∗rvp = y∗vpwp holds (and we are done) or until it exists.
We have vp ∈W . Then setting W ′ := W \ {vp} ∪ {wp} (wp ∈W is possible) yields
an (r, t)-cut δ−(W ′) with (vp, wp) ∈ δ−(W ′). Due to the construction of D′, (r, vp)
is the only arc with target node vp and (vp, wp) is the only arc with source node vp.
We get δ−(W ) \ {(r, vp)} = δ−(W ′) \ {(vp, wp)} and therefore

1 =
∑

a∈δ−(W )

y∗a ≤
∑

a∈δ−(W ′)

y∗a

⇔
∑

a∈δ−(W )\{(r,vp)}

y∗a + y∗rvp ≤
∑

a∈δ−(W ′)\{(vp,wp)}

y∗a + y∗vpwp ⇔ y∗rvp ≤ y
∗
vpwp ,

a contradiction. The construction reduces values y∗rvp and can be repeated until y∗

satisfies all flow balance constraints
∑

a∈δ−(vp) ya ≤ yvpwp for all p ∈ P.
(b) Let wp ∈ V ′, p ∈ P, with t ∈ p for a terminal node t ∈ T . We distinguish two

cases: (i) t 6= r and (ii) t = r. In case (i) we have (wp, t) ∈ A′. Then we can
increase, if necessary, y∗wpt until y

∗
wpt ≥ y

∗
vpwp since cwpt = 0. This construction can

be repeated until y∗ satisfies all flow balance constraints
∑

a∈δ+(wp) ya ≥ yvpwp for
all p ∈ P with t ∈ p for a t ∈ T \ {r}.
Consider case (ii). Due to the construction of D′ there exists only one path from
root node r to node wp, namely, (r, vp, wp). Case (a) ensures that we can assume
that y∗rvp ≤ y

∗
vpwp . Assume further that y∗vpwp >

∑
a∈δ+(wp) y

∗
a. The following holds.

If δ−(W ′) is an (r, t)-cut with (vp, wp) ∈ δ−(W ′) then W ′′ := W ′ \ {wp} yields an
(r, t)-cut δ−(W ′′) with δ−(W ′) \ {(vp, wp)} = δ−(W ′′) \ {a ∈ δ+(wp)}. Let δ−(W ′)
be an (r, t)-cut with (vp, wp) ∈ δ−(W ′) and

∑
a∈δ−(W ′) y

∗
a = 1. If no such cut

exists we can reduce the y∗-value of (vp, wp) and if necessary of (r, vp) as in case (a)
until y∗vpwp =

∑
a∈δ+(wp) y

∗
a (and we are done) or until such a cut exists. Suppose

there exists an arc a ∈ δ+(wp) with a ∈ δ−(W ′′). Otherwise δ−(W ′) \ {(vp, wp)}
is also an (r, t)-cut, i. e., y∗vpwp must have been 0 or

∑
a∈δ−(W ′)\{(vp,wp)} ya < 1, a

contradiction. We get

1 =
∑

a∈δ−(W ′)

y∗a ≤
∑

a∈δ−(W ′′)

y∗a

⇔
∑

a∈δ−(W ′)\{(vp,wp)}

y∗a + y∗vpwp ≤
∑

a∈δ−(W ′′)\{a∈δ+(wp)}

y∗a +
∑

a∈δ+(wp)∩δ−(W ′′)

y∗a

⇔ y∗vpwp ≤
∑

a∈δ+(wp)∩δ−(W ′′)

y∗a ≤
∑

a∈δ+(wp)

y∗a,
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a contradiction. The construction possibly reduces values y∗vpwp and y∗rvp and can
be repeated until y∗ satisfies all flow balance constraints yvpwp ≤

∑
a∈δ+(wp) ya for

all p ∈ P with r ∈ p.

The construction in the proof can be done consecutively for cases (a) and (b) such that
all flow balance constraints are satisfied for all vp, wp, p ∈ P.

Since (SCParc) and (SCPrarc+) always have an optimal solution that is a directed Steiner
tree, the optimal objective values of (SCPrarc+) and (SCParc) are equal but the LP relax-
ation of the first model might be stronger.

Corollary 2.8. PLP (SCPcut) = PLP (SCParc)|P ⊇ PLP (SCPrarc+)|P.

Remark 2.9. The objective value of the LP relaxation of (SCPrarc+) can depend on the
choice of the root node, see Figure 2.2.

2.1.3 Contracted Directed Cut Formulation

A third formulation of the SCP arises from the directed cut formulation by contracting
the path-arcs (vp, wp), p ∈ P, i. e., we consider a contracted Steiner connectivity digraph
D′′ = (V ′′, A′′) = D′/{(vp, wp) : p ∈ P}. Let vp be the node that arises from contracting
the arc (vp, wp), i. e., V ′′ = V ′ \{wp : p ∈ P} = T ∪{vp : p ∈ P}. Analogously, we identify
arcs in A′′ and A′, i. e., A′′ = A′ \ A′P (here (wp, v) ∈ A′ corresponds to (vp, v) ∈ A′′).
Furthermore, let c′′a = cp for a = (u, vp) ∈ A′′, p ∈ P, and 0 otherwise, i. e., the path costs
are shifted to the ingoing arcs of a node vp. D′′ can be interpreted as a terminal and
path intersection digraph more directly than D′. The strengthened contracted directed cut
formulation reads as follows:

(SCPrcon+) min
∑
a∈A′′

c′′a ya

s.t.
∑

a∈δ−(W ′′)

ya ≥ 1 ∀W ′′ ⊆ V ′′\{r}, W ′′ ∩ T 6= ∅ (2.7)

1 ≥
∑

a∈δ−(vp)

ya ∀ vp ∈ V ′′ (p ∈ P) (2.8)

∑
a∈δ+(vp)

ya ≥
∑

a∈δ−(vp)

ya ∀ vp ∈ V ′′ (p ∈ P : t /∈ p∀t ∈ T ) (2.9)

ya ∈ {0, 1} ∀ a ∈ A′′.

The constraints (2.9) are the contracted flow balance constraints. Constraints (2.8) ensure
at most one arc enters each Steiner node. The solutions of (SCPrcon+) are also supersets of
directed Steiner trees for the terminal set T , and there always exists an optimal solution
that is a directed Steiner tree for the terminal set T . We consider a mapping from
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y′′ ∈ RA′′ to y′ ∈ RA′ to relate formulations (SCPrcon+) and (SCPrarc+), namely,

y′|A′′ := y′′, y′p :=
∑

a∈δ−(vp)

y′′a , p ∈ P (2.10)

and a projection from y′ ∈ RA′ to y′′ ∈ RA′′

y′′ := y′|A′′ . (2.11)

Lemma 2.10. PLP (SCPrcon+) = PLP (SCPrarc+)|A′′ .

Proof. “⊇”: Let y′ ∈ PLP (SCPrarc+). Then y′ satisfies all directed (r, t)-cuts for root r
and each terminal t ∈ T\{r} in D′. Let y′′ ∈ RA′′ be the projection from y′ as defined
in equation (2.11). We show that y′ ∈ PLP (SCPrcon+).

Consider a directed (r, t)-cut δ−(W ′′) in D′′. Let

W ′ := W ′′ ∪ {wp : vp ∈W ′′, p ∈ P}.

Then W ′ ⊆ V ′ \ {r} and t ∈ W ′ ∩ T , i. e., δ−(W ′) ⊆ A′ is an (r, t)-cut in D′. Moreover,
identifying A′′ and A′ \A′P, we have δ−(W ′) = δ−(W ′′). It follows that∑

a∈δ−(W ′)
a∈A′

y′a ≥ 1 ⇒
∑

a∈δ−(W ′′)
a∈A′′

y′′a ≥ 1,

i. e., y′′ = y′|A′′ satisfies the directed (r, t)-cut inequality for δ−(W ′′).

Now consider a path p ∈ P with t /∈ p for all t ∈ T , in particular r /∈ p. Combining the
flow balance constraints in (SCPrarc+) for vp and wp, i. e., combining inequalities (2.4)
and (2.5), and again identifying A′′ and A′ \A′P, yields∑

a∈δ+(wp)
a∈A′

y′a ≥ yvpwp ≥
∑

a∈δ−(vp)
a∈A′

y′a ⇒
∑

a∈δ+(vp)
a∈A′′

y′′a ≥
∑

a∈δ−(vp)
a∈A′′

y′′a ,

i. e., y′′ satisfies the contracted flow balance constraints (2.9).

Again identifying A′′ and A′ \ AP and using the flow balance constraints for vp, r /∈ p,
we have

1 ≥ yvpwp ≥
∑

a∈δ−(vp)
a∈A′

y′a ⇒ 1 ≥
∑

a∈δ−(vp)
a∈A′′

y′′a .

For r ∈ p, we have
∑

a∈δ−(vp) y
′′
a = y′′rvp ≤ 1, i. e., y′′ satisfies inequalities (2.8). It follows

that y′′ = y′|A′′ ∈ PLP (SCPrcon+).

“⊆”: Let y′′ ∈ PLP (SCPrcon+). Then y′′ satisfies all directed (r, t)-cuts for root r and
all t ∈ T \ {r} in D′′. Define y′ ∈ RA′ from y′′ as in equation (2.10). We show that
y′ ∈ PLP (SCPrarc+).

Let δ−(W ′) be an (r, t)-cut in D′. We distinguish two cases: (vp, wp) /∈ δ−(W ′) for all
p ∈ P or there exists a p ∈ P such that (vp, wp) ∈ δ−(W ′).
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◦ Let (vp, wp) /∈ δ−(W ′) for all p ∈ P, i. e., we either have vp, wp ∈W ′ or vp, wp /∈W ′
for each p ∈ P. Let

W ′′ := W ′ \ {wp : p ∈ P}.

Then W ′′ ⊆ V ′′ \ {r} and t ∈ W ′′ ∩ T , i. e., δ−(W ′′) ⊆ A′′ is an (r, t)-cut in D′′

and, analogous to the forward direction, δ−(W ′′) = δ−(W ′), again identifying A′′

and A′ \A′P. It follows ∑
a∈δ−(W ′′)
a∈A′′

y′′a ≥ 1 ⇒
∑

a∈δ−(W ′)
a∈A′

y′a ≥ 1.

◦ Now let p ∈ P such that (vp, wp) ∈ δ−(W ′), i. e., wp ∈W ′ and vp /∈W ′. In this case,
we set Ŵ ′ = W ′ ∪ {vp} and get a new (r, t)-cut with δ−(Ŵ ′) ⊆ δ−(W ′)∪ {(u, vp) :
u ∈ V ′} \ {(vp, wp)}. Using y′vpwp =

∑
a∈δ−(vp) y

′
a, we get∑

a∈δ−(W ′)

y′a +
∑

a∈δ−(vp)

ya − yvpwp ≥
∑

a∈δ−(Ŵ ′)

y′a ⇒
∑

a∈δ−(W ′)

y′a ≥
∑

a∈δ−(Ŵ ′)

y′a.

Note that this operation moved vp into Ŵ ′. Iterating over all p ∈ P with (vp, wp) ∈
δ−(W ′), the situation is reduced to the first case.

Now consider a node vp. Identifying A′′ and A′ \ AP we get with the mapping from
y′′ ∈ RA′′ to y′ ∈ RA′ (2.10) ∑

a∈δ−(vp)
a∈A′

y′a =
∑

a∈δ−(vp)
a∈A′′

y′′a = y′vpwp ,

i. e., the flow balance constraints (2.4) for vp are satisfied. Consider a node wp with t /∈ p
for all t ∈ T . Using the contracted flow balance constraints, (2.10), and identifying A′′

and A′ \AP we get ∑
a∈δ+(wp)
a∈A′

y′a =
∑

a∈δ+(vp)
a∈A′′

y′′a ≥
∑

a∈δ−(vp)
a∈A′′

y′′a = y′vpwp ,

i. e., the flow balance constraints (2.5) for wp are satisfied. This shows the claim.

Corollary 2.11. The optimal objective values of the LP relaxations of (SCPrcon+) and of
(SCPrarc+) are equal.

Proof. The proof of Lemma 2.10 shows the following. If y′′ is a solution of (SCPrcon+)
then there exists a solution y′ of (SCPrarc+) that satisfies all flow balance constraints with
equality and y′|A′′ = y′′. Moreover,∑

a∈A′′
c′′a y

′′
a =

∑
p∈P

∑
a∈δ−(vp)

c′′a y
′′
a =

∑
p∈P

c′vpwp y
′
vpwp =

∑
a∈A′

c′a y
′
a.
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Figure 2.3: An SCP instance showing that the flow balance constraints can improve the LP relaxation of
(SCPrcon), i. e., the contracted directed cut formulation without (contracted) flow balance constraints. The
cost of a path corresponds to the number of arcs the path contains, i. e., c1 = c2 = c4 = 3, c3 = 1. An
optimal solution of the LP relaxation of (SCPrcon) has cost 5.5. It is visualized on the right for the contracted
graph with root r := a. All arcs with 0 capacity are omitted in the picture. All other arcs have capacity 0.5,
i. e., we get x1 = x2 = x4 = 0.5 and x3 = y′′13 + y′′43 = 1. All directed (r, t)-cuts are satisfied but the flow
balance constraint in node 3 is violated. An optimal solution of the LP relaxation of (SCPrcon+) has cost 6
which is equal to the cost of the integer optimal solution.

This shows that the optimal objective value of the LP relaxation of (SCPrarc+) is not
larger than the optimal objective value of the LP relaxation of (SCPrcon+).

Conversely, if y′ is a solution of (SCPrarc+), by Lemma 2.10, y′′ = y′|A′′ is a feasible
solution of (SCPrcon+) that satisfies∑

a∈A′
c′a y

′
a =

∑
p∈P

c′vpwp y
′
vpwp ≥

∑
p∈P

∑
a∈δ−(vp)

c′′a y
′′
a =

∑
a∈A′′

c′′a y
′′
a .

This shows the reverse inequality.

Remark 2.12. The arguments of this section can be used to show that one can find a
directed cut formulation for the Steiner connectivity problem that dominates the canoni-
cal undirected cut formulation immediately (without introducing flow balance constraints)
similar as for the Steiner tree problem. However, in contrast to the Steiner tree prob-
lem, this directed cut formulation is obtained by means of an extended formulation. Let
(SCPrcon) be the integer program that is obtained by dropping the contracted flow balance
constraints (2.9) from formulation (SCPrcon+). Then each y′ ∈ RA′ obtained by equa-
tion (2.10) from a solution y′′ ∈ PLP (SCPrcon) satisfies inequalities (2.4), i. e., the flow
balance constraints for node vp, by definition, compare with the proof of Lemma 2.10. It
also satisfies all directed (r, t)-cuts in D′ by the same arguments as given in the proof of
Lemma 2.10. Hence, we have PLP (SCPrcon) ⊆ PLP (SCPrarc)|A′′ and the LP relaxation of
the first model might be stronger.

Figure 2.3 gives an example that the contracted flow balance constraints indeed improve
the LP relaxation of (SCPrcon).

We have seen that (SCPrarc+) is a common extended formulation of (SCPcut) as well
as of (SCPrcon+). The number of variables of (SCPrcon+) is a little smaller than that of
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(SCPrarc+) but still quadratic in |P|, and it is easier to relate (SCPrarc+) to (SCPcut). For
this reason, the succeeding sections will investigate the latter relation.

2.2 Polyhedral Analysis

In this section, we investigate the polytope that is associated with the cut formulation of
the Steiner connectivity problem. We analyze a class of facet defining Steiner partition
inequalities, and discuss the corresponding separation problem. Let

PSCP := conv
{
x ∈ {0, 1}P : x satisfies all Steiner path cut constraints

}
be the Steiner connectivity polytope. We assume that the Steiner connectivity polytope
is nonempty, i. e., the graph G is connected, and each edge is covered by at least one
path of P.

In the two-terminal case, a complete description can be given.

Proposition 2.13. The polytope associated with the LP relaxation of (SCPcut), i. e.,

conv
{
x ∈ [0, 1]P : x satisfies all Steiner path cut constraints

}
is integral for |T | = 2.

Proof. This follows from Lemma 2.5 and the fact that the polytope associated with the
LP relaxation of (SCParc) is integral for two terminal nodes (see, e. g., Cornuéjols [38]).

In general, (SCPcut) is a special set covering problem. Therefore, the results of Balas
and Ng [5] imply the following two lemmas:

Lemma 2.14. PSCP is full dimensional if and only if there exists no Steiner path bridge.

Lemma 2.15. The polytope associated with a Steiner connectivity problem without Steiner
path bridges has the following properties:

1. The inequality xp ≥ 0 defines a facet of PSCP if and only if |Pδ(W )| ≥ 3 for all W
with p ∈ Pδ(W ) and ∅ 6= W ∩ T 6= T .

2. All inequalities xp ≤ 1 define facets of PSCP.
3. All facet defining inequalities αTx ≥ α0 for PSCP have α ≥ 0 if α0 > 0.
4. A Steiner path cut inequality for ∅ 6= W ∩ T 6= T is facet defining if and only if the

following two properties are satisfied:
(a) There exists no W ′, ∅ 6= W ′ ∩ T 6= T , such that Pδ(W ′) ( Pδ(W ), i. e., Pδ(W )

is not dominated.
(b) For every p ∈ P\Pδ(W ) exists a q ∈ Pδ(W ) such that q ∈ Pδ(W ′) for allW ′ ⊂ V ,
∅ 6= W ′ ∩ T 6= T , with Pδ(W ′) \ Pδ(W ) = {p}.
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x1

x2 x3

x4

Figure 2.4: The Steiner partition inequality 2x1 +x2 +x3 +x4 ≥ 2 is facet defining (node sets of the Steiner
partition encircled).

5. The only nontrivial facet defining inequalities for PSCP with integer coefficients and
righthand side equal to 1 are Steiner path cut constraints.

In the following, we assume PSCP to be full dimensional.

2.2.1 Steiner Partition Inequalities

Lemma 2.15 characterizes completely which inequalities of the IP formulation (SCPcut)
define facets of the Steiner connectivity polytope. We investigate in this section inequal-
ities arising from node partitions as one important example of an additional class of
facets.

Let P = (V1, . . . , Vk) be a Steiner partition of the node set V , i. e., P partitions V and
Vi ∩ T 6= ∅ for i = 1, . . . , k and k ≥ 2. Let GP = (VP , EP ) be the graph that arises from
contracting each node set Vi ⊆ V to a single node Vi ∈ VP (let us denote by Vi a node
set in a partition of G as well as a node in the shrunk graph GP ). Note that GP can
have parallel edges but no loops; loops are contracted. Consider a path p ∈ P: p gives
rise to a contracted (not necessarily elementary) path in GP , which we also denote by p.
We say that p contains Vi, in formulas Vi ∈ p, if p contains a node of Vi (even if a path
p ∈ P contains only a single node of GP ). Furthermore, let PP denote the set of paths
p ∈ P that contain at least two distinct shrunk nodes in GP , in formulas

PP = {p ∈ P : ∃Vi, Vj ∈ VP , Vi 6= Vj , Vi ∈ p, Vj ∈ p},

and P := P\PP its complement. Finally, G[Vi] is the graph induced by the nodes Vi, i. e.,
G[Vi] = (Vi, E \ {e = {u, v} ∈ E : u /∈ Vi or v /∈ Vi}).

Lemma 2.16. The Steiner partition inequality ∑
p∈PP

ap xp ≥ k − 1, (2.12)

ap := |{i ∈ {1, . . . , k} : Vi ∈ VP , Vi ∈ p}| − 1

is valid for the Steiner connectivity polytope PSCP.
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The coefficient ap, p ∈ P, counts the number of shrunk nodes that p contains minus one,
i. e., ap is the maximum number of edges that p can contribute to a spanning tree in GP .
The number ap can be smaller than the number of times that p crosses the multi-cut
induced by the Steiner partition.

Note that the inequality can also be stated as
∑

p∈P ap xp ≥ k − 1, because ap = 0 for
p /∈ PP . If k = 2, the partition inequality is a Steiner path cut constraint. An example
of a (facet defining) Steiner partition inequality is illustrated in Figure 2.4.

Proof of Lemma 2.16. We have to show that each 0/1-solution x∗ of the Steiner connec-
tivity problem satisfies ∑

p∈PP

ap x
∗
p ≥ k − 1.

Consider the solution x∗ on the shrunk graph GP . Since each node set Vi, i = 1, . . . , k,
contains a terminal node, the shrunk graph GP has to be connected by the solution x∗,
i. e., the (paths of the) support of x∗ must contain a spanning tree in GP . This means
that the support of x∗ contains at least k − 1 edges in GP .

The following two propositions give sufficient and necessary conditions for a Steiner par-
tition inequality to be facet defining for the SCP. The sufficient conditions are analogous
to those for the Steiner tree polytope, see Grötschel and Monma [57]. Recall P = P\PP .

Proposition 2.17. A Steiner partition inequality is facet defining if the following prop-
erties are satisfied.

1. G[Vi] is connected by P, i = 1, . . . , k.
2. G[Vi] contains no Steiner path bridge in P, i. e., there is no Steiner path cut Pδ(W ) ⊆

P with |Pδ(W )| = 1 for W ⊆ Vi, ∅ 6= W ∩ T 6= T ∩ Vi, i = 1, . . . , k.
3. Each path contains at most two nodes in GP , i. e., ap ∈ {0, 1} for all p ∈ P.
4. GP is 2-node-path-connected, i. e., GP is path-connected after deleting any node

with all incident paths. (compare with Definition 3.10).

Proof. Let P = (V1, . . . , Vk) be a Steiner partition in G and consider the corresponding
partition inequality aTx =

∑
p∈PP apxp ≥ k − 1. Assume that properties 1 to 4 are

satisfied. Let bTx = β be an equation such that

Fa = {x ∈ PSCP : aTx = k − 1} ⊆ Fb = {x ∈ PSCP : bTx = β}

and such that Fb is a facet of PSCP.

We first show that bp = 0 for all p ∈ P. Since p ∈ P, p is completely contained in G[Vj ]
for some j ∈ {1, . . . , k}. Let P′ ⊆ PP be a minimal set of paths connecting GP , i. e.,
for every two nodes in GP there exists a path that is completely covered by paths in P′

and if we remove any path of P′ then there are at least two nodes in GP that are not
connected. Since all paths contain at most two different nodes of GP (property 3), we
have |P′| = k − 1. Set M = P′ ∪ P and M ′ = M \ {p}. Since each G[Vi], i = 1, . . . , k,
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Figure 2.5: Examples of facet defining Steiner partitions that do not satisfy properties 1 (left) and 2 (right)
of Proposition 2.17. In both examples the Steiner partition consists of three node sets which are marked gray.
The square (terminal) nodes have to be connected.

is connected by paths of P (property 1) and p is not a Steiner path bridge for G[Vj ]
(property 2), χM , χM ′ ∈ PSCP and aTχM = aTχM

′
= k − 1, where χM is the incidence

vector of M . Thus, bTχM = bTχM
′ which implies bp = 0.

Let p, q ∈ PP , p 6= q. Consider the graph ĜP = (VP ,PP ) in which p is an edge between Vi
and Vj if it contains Vi and Vj (recall that p ∈ PP contains exactly two nodes, see
property 3). Since GP is 2-node-path-connected, ĜP is 2-node-connected and there
exists a cycle C in ĜP containing p and q. Let P′ be a tree in ĜP containing C\{p}.
Then P′′ = P′ \ {q} ∪ {p} is also a tree in ĜP . Set M = P′ ∪ P and M ′ = P′′ ∪ P.
Then χM , χM ′ ∈ Fa and 0 = bTχM − bTχM ′ = bq − bp. This implies that b ∈ {0, λ}P,
λ ≥ 0, using part 3 of Lemma 2.15. Hence, bTx is a multiple of aTx. This proves that
aTx ≥ k − 1 defines a facet of PSCP.

Different from the Steiner tree case (cf. [57]), properties 1 to 3 are not necessary in the
Steiner connectivity case, see Figure 2.4 (property 3), Figure 2.5 (left: property 1, right:
property 2) for examples. Property 4 is necessary, see Proposition 2.18 below.

We now derive necessary conditions. Let ΦVi(P) be the Vi-contraction of P, i. e., contract
every path p ∈ P iteratively in the following way until no reduction is possible anymore:

◦ If p contains the edges {u, v} and {v, w}, and v /∈ Vi then contract {u, v} and
{v, w} to {u,w}.
◦ If p = ({u1, u2}, {u2, u3}, . . . , {ur−1, ur}), r ≥ 2, with u1 /∈ Vi then contract p to
p = ({u2, u3}, . . . , {ur−1, ur}).
◦ If p = ({u1, u2}, {u2, u3}, . . . , {ur−1, ur}), r ≥ 2, with ur /∈ Vi then contract p to
p = ({u1, u2}, {u2, u3}, . . . , {ur−2, ur−1}).

Proposition 2.18. If the Steiner partition inequality (2.12) is facet defining for a Steiner
partition P with at least three partition sets, then the following properties have to be
satisfied:

1. The shrunk graph GP is 2-node-path-connected.
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G2

G1
Vi

path contains Vi

Figure 2.6: The graph GP in part 1 of the proof of Proposition 2.18 is not 2-node-path-connected and Vi is
an articulation node, i. e., each path that connects G1 and G2 (dashed in the picture) has to contain Vi.

2. Either G[Vi] is connected or for every two subsets V ′i and V ′′i of Vi such that
V ′i ∪̇V ′′i = Vi and V ′i is disconnected from V ′′i , there exists a path p ∈ PP which
contains at least one node of V ′i and one node of V ′′i for all i = 1, 2, . . . , k.

3. For each G[Vi] the set of paths ΦVi(P) does not contain a Steiner path bridge with
respect to G[Vi], i. e., if we remove any p̃ ∈ ΦVi(P) then every two terminal nodes
in G[Vi] are still connected by paths of ΦVi(P) \ {p̃}.

4. If two terminal nodes s and t in some G[Vi] are connected by a path p′ ∈ PP , then
these terminals must be also connected by P or we can subdivide Vi into V ′i and V ′′i ,
Vi = V ′i ∪̇V ′′i , such that s ∈ V ′i , t ∈ V ′′i , and V ′i and V ′′i are not connected by P. In
the second case for each Vj ∈ p′, Vj 6= Vi, there exists a path p′′ ∈ PP with Vj /∈ p′′,
and V ′i ∈ p′′, V ′′i ∈ p′′.

Proof. In the following let P = (V1, . . . , Vk), k ≥ 3, be a Steiner partition with corres-
ponding partition inequality

∑
p∈PP apxp ≥ k − 1.

1. Assume GP is not 2-node-path-connected. In this case there exists a node Vi in GP
which is an articulation node in the following sense: If Vi and all paths incident
to Vi are removed from GP , then the resulting graph is not connected (by the
remaining paths). Suppose w.l.o.g. that Vi separates V1, . . . , Vi−1 from Vi+1, . . . , Vk.
Let G1 = GP [V1, . . . , Vi] and G2 = GP [Vi, . . . , Vk], see Figure 2.6. Let k1 be the
number of nodes of G1 and k2 be the number of nodes of G2. Recall that the
number of nodes of GP is k. Note that Vi is a node of G1 and G2. Therefore we
have k = k1 + k2 − 1.
We construct a smaller Steiner partition P ′ = {V1 ∪ . . . ∪ Vi−1 ∪ Vi, . . . , Vk} which
contains all nodes of G2\{Vi} and all nodes of G1 as a single node. Let the resulting
Steiner partition inequality be

∑
p∈PP ′

a′pxp ≥ k2 − 1.
Similarly, we construct a Steiner partition P ′′ = {V1, . . . , Vi∪Vi+1∪ . . .∪Vk} which
contains all nodes of G1\{Vi} and all nodes of G2 as a single node. We get the
partition inequality

∑
p∈PP ′′

a′′pxp ≥ k1 − 1.
The sum of these two partition inequalities is equal to the partition inequality for P .
Indeed, k1 − 1 + k2 − 1 = k1 + k2 − 2 = k − 1, and a′p + a′′p = ap, see Figure 2.6.
Hence, inequality (2.12) does not define a facet.
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2. Assume w.l.o.g. G[V1] is not connected and there exists no path connecting different
components of G[V1]. Let V ′1 ⊂ V1 be the node set of one connected component of
G[V1] such that (V1\V ′1) ∩ T 6= ∅. Since G is connected (and every edge is covered
by at least one path) there is a node set Vj , j ∈ {2, . . . , k}, say V2, such that
V ′1 and V2 are connected by a path. We construct a new Steiner partition P ′ =
(V1\V ′1 , V ′1 ∪ V2, V3, . . . , Vk) and get the partition inequality

∑
p∈PP ′

a′pxp ≥ k − 1.
Let P̂ = {p ∈ PP : V ′1 ∈ p, V2 ∈ p}, i. e., P̂ contains all paths that connect V ′1 and
V2. One can easily verify that

a′p =

{
ap − 1 if p ∈ P̂

ap otherwise (since V ′1 is not connected to (V1 \ V ′1)).

Since |P̂| ≥ 1, the partition inequality for P is the sum of the partition inequality
for P ′ and the inequalities xp ≥ 0 for all p ∈ P̂. Therefore, the partition inequality
for P is not facet defining.

3. Assume there is a Steiner path bridge p̃ ∈ ΦVi(P) with respect to G[Vi]. Let V ′i
and V ′′i := Vi \ V ′i be two components of G[Vi] that contain terminal nodes which
are only connected by p̃ ∈ ΦVi(P). Then P ′ = (V1, . . . , V

′
i , V

′′
i , . . . , Vk) is a Steiner

partition. Let the corresponding partition inequality be
∑

p∈PP ′
a′pxp ≥ k. We

claim that this partition inequality plus the upper bound inequality −xp̃ ≥ −1 of
p̃ is equal to the partition inequality for P .
The partition P ′ only differs from P in splitting the node set Vi. Because p̃ is the
only path that connects V ′i and V ′′i , we have PP ′ = PP ∪ {p̃}. Furthermore, there
is no path in PP (except p̃, if p̃ ∈ PP ) that contains V ′i and V ′′i . Therefore the
coefficients of all these paths stay the same: a′p = ap for all p ∈ PP ′\{p̃}. For
p̃ ∈ PP we get a′p̃ = ap̃ + 1.

4. Assume w.l.o.g. that there are two terminal nodes s and t in G[V1] that are con-
nected by a path p′ ∈ PP and not connected by paths in P. Let V ′1 be the nodes
reachable from s via paths in P and V ′′1 := V1 \V ′1 . This shows that the first or the
second case of the first part of the statement must hold.
Furthermore, assume w.l.o.g. that V2 ∈ p′ and there is no path p′′ ∈ PP such
that V ′1 ∈ p′′, V ′′1 ∈ p′′, and V2 /∈ p′′. Consider the Steiner partitions P ′ :=
(V ′1 , V

′′
1 , V2, . . . , Vk) and P ′′ := (V1 ∪ V2, V3, . . . , Vk) with corresponding partition

inequalities ∑
p∈PP ′

a′pxp ≥ k and
∑
p∈PP ′′

a′′pxp ≥ k − 2,

respectively. We show that 2 times the partition inequality for P is dominated by
the sum of the partition inequalities for P ′ and P ′′. For the right hand side, we
obtain:

k + k − 2 = 2 · k − 2 = 2 · (k − 1).

For the left hand sides and p ∈ P, we observe that

a′p =

{
ap + 1 if V ′1 ∈ p, V ′′1 ∈ p
ap otherwise

a′′p =

{
ap − 1 if V1 ∈ p, V2 ∈ p
ap otherwise.
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2.2. Polyhedral Analysis

We claim that 2 · ap ≥ a′p + a′′p. Indeed, the only case in which this is not trivially
satisfied is when V ′1 ∈ p and V ′′1 ∈ p (and thus V1 ∈ p), but V2 /∈ p. But this case
contradicts our assumptions.

2.2.2 Separating Steiner Partition Inequalities

Grötschel, Monma, and Stoer [58] showed that separating the Steiner partition inequal-
ities for the Steiner tree problem is NP-hard. This implies that the separation of the
Steiner partition inequalities for the Steiner connectivity problem is also NP-hard. How-
ever, we show in the following that the Steiner partition inequalities for the SCP are
satisfied by all points in PLP (SCPrarc+)|P. This implies that the separation problem for
a superclass of Steiner partition inequalities can be solved in polynomial time.

Theorem 2.19. PLP (SCPrarc+)|P satisfies all Steiner partition inequalities.

Proof. Let y∗ ∈ PLP (SCPrarc+). We show that the projection x∗p = y∗vpwp satisfies all
Steiner partition inequalities.

Consider an arbitrary Steiner partition P = (V1, . . . , Vk) in G and the corresponding
partition inequality

∑
p∈PP apxp ≥ k− 1. W. l. o. g. we assume that r ∈ Vk. Consider the

following chain of inequalities

∑
p∈PP

apx
∗
p

(1)

≥
∑
p∈PP
r∈p

apy
∗
vpwp +

∑
p∈PP
r/∈p

ap
∑

a∈δ−(vp)

y∗a
(2)

≥
k−1∑
i=1

∑
a∈δ−(Wi)

y∗a
(3)

≥ k − 1,

whereWi := {t ∈ T\{r} : t ∈ Vi}∪{wp : Vi ∈ p}∪{vp : Vi ∈ p, r /∈ p}, for i = 1, . . . , k−1.

Inequality (1): Identifying x∗p = y∗vpwp and scaling the flow balance constraints x∗p =
y∗vpwp ≥

∑
a∈δ−(vp) y

∗
a by ap for the paths that do not contain the root node and summing

up gives (1).

Inequality (3): Each node set Wi (i = 1, . . . , k − 1) contains at least one terminal node,
but not the root node r. Hence, the arc set δ−(Wi) is a directed Steiner cut between root
r and Wi. Therefore,

∑
a∈δ−(Wi)

y∗a ≥ 1 must hold. Summing over all these cuts gives
(3).

Inequality (2): The Steiner connectivity digraph D′ contains arcs of the form (i) (r, vp),
(ii) (vp, wp), r ∈ p, (iii) (vp, wp), r /∈ p, (iv) (wp̃, vp), and (v) (wp, t). We show that all
arcs in the cuts δ−(Wi), i = 1, . . . , k − 1, are of the form (ii) and (iv). Indeed, arcs of
the other forms cannot appear in the cuts δ−(Wi), i = 1, . . . , k − 1:

(i) Arcs of the form (r, vp) only exist if r ∈ p. But then, vp /∈Wi due to the definition
of Wi, i. e., (r, vp) /∈ δ−(Wi).

(iii) The nodes vp and wp are either both members or both not members of Wi. In any
case, (vp, wp) /∈ δ−(Wi).
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2 IP Formulations and Polyhedra

(v) Arcs of the form (wp, t) only exist if t ∈ p. If t ∈ Wi, then t ∈ Vi, and therefore
Vi ∈ p. Hence wp ∈Wi, i. e., (wp, t) /∈ δ−(Wi).

Denote by Vp := {Vi : Vi ∈ p, i = 1, . . . , k} the set of shrunk nodes contained in p; then
|Vp| − 1 = ap. The proof proceeds by establishing a relation between ap and the number
of times an arc entering vp appears in the cuts δ−(Wi), i = 1, . . . , k − 1.

Consider an arc (vp, wp) ∈ A′. Then the following chain of equations holds:

ap = |Vp| − 1 = |Vp \ {Vk}| = |{Wi | (vp, wp) ∈ δ−(Wi), i = 1, . . . , k − 1}|. (2.13)

Here, (vp, wp) ∈ δ−(Wi) implies r ∈ p , i. e., Vk ∈ p (r ∈ Vk) and this yields |Vp| − 1 =
|Vp \ {Vk}|. Moreover, (vp, wp) ∈ δ−(Wi) implies Vi ∈ p. Taking the union for i =
1, . . . , k− 1 yields |Vp \ {Vk}| = |{Wi : (vp, wp) ∈ δ−(Wi), i = 1, . . . , k− 1}|. Multiplying
equation (2.13) with y∗vpwp gives

ap y
∗
vpwp = |{Wi | (vp, wp) ∈ δ−(Wi), i = 1, . . . , k − 1}| · y∗vpwp

=

k−1∑
i=1

∑
(vp,wp)∈δ−(Wi)

y∗vpwp .
(2.14)

Consider an arc (wp̃, vp) ∈ A′. Then the following chain of equations and inequalities
holds

ap = |Vp| − 1 ≥ |Vp \ Vp̃| ≥ |{Wi | (wp̃, vp) ∈ δ−(Wi), i = 1, . . . , k − 1}|. (2.15)

Here, (wp̃, vp) ∈ A′ implies Vp ∩ Vp̃ 6= ∅ and this yields |Vp| − 1 ≥ |Vp \ Vp̃|. Moreover,
(wp̃, vp) ∈ δ−(Wi) implies Vi ∈ p and Vi /∈ p̃. Taking the union for i = 1, . . . , k− 1 yields
|Vp \ Vp̃| ≥ |{Wi : (wp̃, vp) ∈ δ−(Wi), i = 1, . . . , k − 1}|. Multiplying inequality (2.15) by
y∗wp̃vp gives

ap y
∗
wp̃vp

≥ |{Wi : (wp̃, vp) ∈ δ−(Wi), i = 1, . . . , k − 1}| · y∗wp̃vp

=

k−1∑
i=1

∑
(wp̃,vp)∈δ−(Wi)

y∗wp̃vp .
(2.16)

Summing (2.14) and (2.16) over all arcs (vp, wp) and (wp̃, vp) gives inequality (2):∑
p∈PP
r∈p

apy
∗
vpwp +

∑
p∈PP
r/∈p

ap
∑

a∈δ−(vp)

y∗a =
∑
p∈P
r∈p

apy
∗
vpwp +

∑
p∈P
r/∈p

ap
∑

a∈δ−(vp)

y∗a

=
∑

(vp,wp)∈A′
r∈p

ap y
∗
vpwp +

∑
(wp̃,vp)∈A′

r/∈p

ap y
∗
wp̃vp

(2.14) and (2.16)
≥

k−1∑
i=1

∑
a∈δ−(Wi)

y∗a.

This shows the claim.
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x1 x2

x3

x4
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b c

a

c

b

4 4̄

3 3̄

2 2̄

1 1̄

Figure 2.7: Left: Steiner connectivity instance with three terminal nodes a, b, c. The inequality x1 + x2 +
x3 + x4 ≥ 2 is valid but not a Steiner partition inequality. Right: Corresponding Steiner connectivity digraph
for r = a.

Remark 2.20. Note that the proof of Theorem 2.19 uses only the flow balance constraints
for node vp, p ∈ P, with r /∈ p, i. e., the flow balance constraints for node wp, for all p ∈ P,
are not necessary to derive the Steiner partition inequalities.

Proposition 2.21. The separation problem for PLP (SCPrarc+)|P can be solved in polyno-
mial time.

Proof. Let P = {y ∈ Rn : Ay ≥ b, y ≥ 0} be a polyhedron, I ⊆ {1, . . . , n}, and x∗ ∈ RI
be a vector. If the optimization problem for P is solvable in polynomial time then the
separation problem “x∗ ∈ P |I?” for the projection is solvable in polynomial time. This
follows from the equivalence of optimization and separation and its consequences, see
Grötschel, Lovász, and Schrijver [56] (intersect P with the affine space y|I = x∗). In our
case, the LP relaxation of (SCPrarc+) can be solved in polynomial time. This implies the
claim.

A direct method to solve the separation problem for PLP (SCPrarc+)|P will be discussed
in Chapter 4 (Subsection 4.1.2).

Corollary 2.22. If x∗ ∈ PLP (SCPcut) does not satisfy all Steiner partition inequalities,
one can construct a cutting plane that separates x∗ from the Steiner connectivity polytope
in polynomial time.

2.2.3 k-Terminal Sets Inequalities

The projected directed cut formulation (SCPrarc+)|P implicitly contains other constraints
that do not correspond to partition inequalities. Consider the following example.

Example 2.23. Figure 2.7 shows a facet defining inequality which is not a Steiner par-
tition inequality. Consider the inequality x1 + x2 + x3 + x4 ≥ 2. Because the right hand
side is 2, a Steiner partition would consist of three node sets, each of which must include
at least one terminal node. However, in every possible partition at least one path contains
all three partition nodes.
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2 IP Formulations and Polyhedra

We show that this inequality is valid for PLP (SCPrarc+)|P. Choose a as root of the as-
sociated directed Steiner tree problem, cf. Figure 2.7. (Choosing b or c as root node
would also produce the inequality.) Consider the node sets Wb = {b, 1, 1̄, 2, 2̄, 4, 4̄} and
Wc = {c, 2, 2̄, 3, 3̄}. The corresponding (a, b)- and (a, c)-cuts, respectively, are

δ−(Wb) = {(a, 1), (a, 4), (3̄, 2)} and
δ−(Wc) = {(a, 3), (1̄, 2), (4̄, 2)}.

We then get

x1 + x2 + x3 + x4 = y11̄ + y22̄ + y33̄ + y44̄ ≥ (ya1) + (y1̄2 + y3̄2 + y4̄2) + (ya3) + (ya4)
= (ya1 + ya4 + y3̄2) + (ya3 + y1̄2 + y4̄2) ≥ 2,

where the flow balance constraints yield the first inequality and the two cut inequalities
for δ−(Wb) and δ−(Wc) yield the second inequality.

The above example motivates a class of k-terminal sets inequalities. The idea is that the
partition inequalities can be extended by considering a node set that does not necessarily
have to contain a terminal node. More precisely, let V1, V2, V3, . . . , Vk ⊂ V be k pairwise
disjoint node sets that each contain at least one terminal node. The k node sets need
not to partition the whole node set V , i. e., define V̄ as V̄ = V \ (∪ki=1Vk). Consider the
Steiner path cut constraints ∑

p∈Pδ(Vi)

xp ≥ 1

for i = 1, . . . , k which are valid for the Steiner connectivity polytope. If we sum up the
Steiner path cut constraints for all node sets Vi, i = 1, . . . , k, we get∑

p∈Pδ(V1)

xp + . . .+
∑

p∈Pδ(Vk)

xp ≥ k. (2.17)

Dividing this inequality by two and rounding up the coefficient on the left hand side and
the right hand side, we get ∑

p∈P

⌈ap
2

⌉
xp ≥

⌈k
2

⌉
, (2.18)

where ap = |{V ∈ {V1, . . . , Vk} : p ∈ Pδ(V )}|. We will call inequality (2.18) k-terminal
sets inequality . It is a {0, 1

2}-Chvátal-Gomory cut [33] of Steiner path cut constraints
since it arises from a sum of Steiner path cut constraints, each multiplied by 0 or 1

2 . The
left of Figure 2.8 gives an example of a k-terminal sets inequality for k = 5.

Remark 2.24. The k-terminal sets inequality has the following properties which are
easy to see:

◦ The 3-terminal sets inequality with V̄ = ∅ is the Steiner partition inequality (2.12)
with three node sets.
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a b

c d
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x1 x2

x3 x4

x5

a b

c d

x1

x2
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c d

Figure 2.8: Left: A Steiner connectivity instance with 5 terminal nodes a, b, c, d, f and five paths. Choosing
each terminal node as a node set, the 5-terminal sets inequality is x1+x2+x3+x4+x5 ≥ 3; it is facet defining.
Right: Choosing the three terminal sets as {a}, {b}, {c} yield the 3-terminal sets inequality x1+x2+x3 ≥ 2.
It dominates the Steiner partition inequality for P = ({a}, {b}, {c}, {d}) which is 2x1 + 2x2 + 2x3 ≥ 3.

◦ If V̄ ∩ T 6= ∅, the k-terminal sets inequality can dominate the Steiner partition
inequality for P = (V1, . . . , Vk, V̄ ), see the right of Figure 2.8 for an example with
k = 3.
◦ The k terminal sets inequality is not facet defining if k is even.

Proposition 2.25. The k-terminal sets inequality is not facet defining if V̄ 6= ∅ and all
paths have length 1, i. e., for the Steiner tree problem.

Proof. If V̄ ∩ T 6= ∅, the k-terminal sets inequality is dominated by the Steiner partition
inequality for the partition (V1, . . . , Vk, V̄ ): Both inequalities have the same left hand
side. Note that an edge/path has coefficient 1 in the k-terminal sets inequality if it has
exactly one endpoint in a node set Vi, i = 1, . . . , k. The right hand side of the Steiner
partition inequality is k and, hence, bigger than the right hand side of the k-terminal
sets inequality which is dk2e.

If V̄ ∩ T = ∅, we show that the k-terminal sets inequality is dominated by the Steiner
partition inequality for, e. g., the partition (V1 ∪ V̄ , . . . , Vk). It is easy to see that each
edge with coefficient 1 in the so-defined Steiner partition inequality has also coefficient
1 in the k-terminal sets inequality. Note that we have only {0, 1}-coefficients in both
inequalities. The right hand side of the Steiner partition inequality is k − 1 which is
always greater than or equal to dk2e for k > 1.

Observation 2.26. The Steiner partition inequality with three node sets is a zero-half
Chvátal-Gomory cut of three Steiner path cut constraints.

We conclude with a small example of a Steiner connectivity instance. This instance has
four terminal nodes and six paths, see the upper-left of Figure 2.9. The nontrivial facets
of the corresponding Steiner connectivity polytope are Steiner path cut constraints (i)
to (iv), Steiner partition inequalities (v) and (vi), and a 3-terminal sets inequality (vii)
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Figure 2.9: Upper-Left: Steiner connectivity instance. Upper-Right: Steiner partition with four sets. The
Steiner partition inequality is x1 + x2 + x3 + x4 + x5 + x6 + x7 ≥ 3. Lower-Left: Steiner partition inequality
x2 + x3 + x4 + x5 + x6 ≥ 2. Lower-Right: Three terminal sets inequality x1 + x2 + x3 + x4 + x7 ≥ 2.

which is not a Steiner partition inequality:

(i) x1 + x2 + x3 ≥ 1 W = {a}
(ii) x2 + x5 + x6 ≥ 1 W = {b}

(iii) x4 + x6 ≥ 1 W = {c}
(iv) x1 + x4 + x7 ≥ 1 W = {d}
(v) x1 + . . .+ x7 ≥ 3 P = ({a, e}, {b, f}, {c}, {d, g})

(vi) x2 + x3 + x4 + x5 + x6 ≥ 2 P = ({a, d, g, e}, {b, f}, {c})
(vii) x1 + x2 + x3 + x4 + x7 ≥ 2 P = ({a}, {b, c, f, g}, {d}).

The Steiner partition inequalities and the 3-terminal sets inequality are visualized in
Figure 2.9.
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Chapter 3

Connecting Sets and Disconnecting
Sets

An st-connecting set P′ ⊆ P induces a (not necessarily unique) st-path in the graph
(V (P′), E(P′)). If all paths have length one, i.e., correspond to exactly one edge, then
every inclusion wise minimal st-connecting set is an st-path. The same statement holds
for st-disconnecting sets and st-cuts. Hence, connecting sets and disconnecting sets
generalize paths and cuts. This does not only hold for a single connection, but also for a
higher level of connectivity, leading to a Menger type result, and even a max-flow-min-cut
theorem. There are, however, also substantial differences to the graph case, most notably,
the lack of directed versions of these duality results and the corresponding polynomial
time algorithms. In a nutshell, path-connectivity generalizes edge-connectivity but not
arc-connectivity.

In this chapter, we show that connecting sets and disconnecting sets form a blocking pair
similar as paths and cuts. This involves the validity of two dual theorems, a generalization
of Menger’s theorem and its companion theorem. While the former one is a well known
result of hypergraph theory, we show for the first time that the companion theorem
also holds. In fact, we prove that the inequality system of the LP relaxation of the cut
formulation for the Steiner connectivity problem with two terminal nodes is TDI. Some
parts of this chapter are published in [18].

The structure of this chapter is as follows. In Section 3.1, we briefly introduce the idea
of blocking theory on the example of paths and cuts and then apply it to connecting
and disconnecting sets, claiming Menger’s theorem w. r. t. paths and a Menger compan-
ion theorem w. r. t. paths. In Section 3.2, we show that the first theorem follows from
hypergraph theory as well as from Hoffman’s general max-flow-min-cut theorem. In Sec-
tion 3.3, we propose an algorithm to find a minimum cost st-connecting set that operates
in the original graph. We show its correctness by proving a TDI result. This proof also
implies the validity of the Menger companion theorem. In Section 3.4, we show that the
incidence matrix of all inclusion wise minimal st-disconnecting sets, indeed, extends the
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3 Connecting Sets and Disconnecting Sets

class of ideal matrices defined by cuts in a graph. We then point out that the results
cannot carry over to directed paths in Section 3.5. We end this chapter by considering
higher orders of connectivity w. r. t. paths. In particular, we generalize the concepts of
k-edge-connected and k-node-connected graphs to our setting in Section 3.6. Again, we
will see that not all generalized concepts yield the same complexity results as in the graph
case.

3.1 Blocking Pairs

Fulkerson [52] motivates a geometric theory of blocking and anti-blocking pairs of poly-
hedra by the existence of combinatorial theorems dealing with maximum packing or
minimum covering problems that occur in dual pairs. One of the examples he gives is
the relation between st-paths and st-cuts. The dual theorems are:

Theorem 3.1. The minimum number of edges of an st-cut is equal to the maximum
number of pairwise edge-disjoint st-paths.

Theorem 3.2. The minimum number of edges of an st-path is equal to the maximum
number of pairwise edge-disjoint st-cuts.

That these theorems are a “dual pair” means that one can be obtained from the other by
interchanging the roles of paths and cuts. We want to show that there are similar results
for connecting and disconnecting sets.

We very briefly recall the basic concepts of blocking theory which we will use in this
chapter. For a more detailed description including also the anti-blocking case see Fulk-
erson [52]. We use similar notations as Borndörfer [8].

Consider a (0, 1)-matrix A and the associated fractional covering problem (FCP)

(FCP) min cTx

s.t. Ax ≥ 1

x ≥ 0.

We are interested in situations in which this LP has an integer optimum; such problems
often have a combinatorial meaning. Denote the polytope associated with (FCP) by
Q(A). Let blA be the matrix that has the incidence vectors of the vertices of Q(A) as
its rows. Then

Q(A) = {x ∈ Rn≥0 : Ax ≥ 1} = conv(blA)T + Rn+
and blA is the blocker of A; we also call A and blA a blocking pair (of matrices). A
(0, 1) matrix is ideal if the polyhedron {x : Ax ≥ 1, x ≥ 0} is integral. The following
holds, see also Cornuéjols [38].

Theorem 3.3. Let A and B be a blocking pair of matrices. A is ideal if and only if B
is ideal.
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Coming back to the above defined dual theorems for paths and cuts, Theorem 3.1 is
known as the edge-version of Menger’s theorem for graphs [73], while Theorem 3.2 is
the companion theorem. This latter theorem was proven by Robacker [86] but did not
find as much attention in the literature as Menger’s theorem. A directed version of the
companion theorem can be found in Grötschel, Lovász, and Schrijver [56, Theorem 8.3.4].
In the setting of Theorem 3.1 the matrix A in (FCP) corresponds to the incidence matrix
of all st-paths while in the setting of Theorem 3.2 A is the incidence matrix of all inclusion
wise minimal st-cuts. The two theorems imply that the fractional covering problems for
the incidence matrix of all st-paths and for the incidence matrix of all inclusion wise
minimal st-cuts are integral. Theorem 3.3 implies that the integrality of one fractional
covering problems, i. e., for the incidence matrix of all inclusion wise minimal st-cuts
or for the incidence matrix of all inclusion wise minimal st-paths, also follows from the
integrality of the other fractional covering problem. Note that Theorem 3.3 does not
imply one of the dual theorems from the other.

Considering the incidence matrix of all inclusion wise minimal st-disconnecting sets,
(FCP) becomes

(MCS) min
∑
p∈P

cp xp

s.t.
∑

p∈Pδ(W )

xp ≥ 1 ∀ s ∈W ⊆ V \ {t}

xp ≥ 0 ∀ p ∈ P.

This is essentially the LP relaxation of the undirected cut formulation for the Steiner
connectivity problem (Chapter 2) with T = {s, t}, except that the upper bounds xp ≤ 1,
for all p ∈ P, are missing. This is, however, not a problem since each optimal solution
of (MCS) satisfies xp ≤ 1 for all p ∈ P if c > 0, and there always exists an optimal
solution with xp ≤ 1 for all p ∈ P if c ≥ 0. Hence, (MCS) and the LP relaxation for the
undirected cut formulation of the SCP have the same minimal solutions, which is exactly
what we are interested in. This leads to the question whether the program (MCS) to
find a minimum st-connecting set is integral and whether a similar result as Theorem 3.2
holds for st-disconnecting sets and st-connecting sets.

Theorem 3.4 (Menger companion theorem w. r. t. paths). The minimum car-
dinality of an st-connecting set is equal to the maximum number of path-disjoint st-
disconnecting sets.

In the same way, we get the question whether Theorem 3.1 generalizes to st-connecting
sets and st-disconnecting sets.

Theorem 3.5 (Menger’s theorem w. r. t. paths). The minimum cardinality of an
st-disconnecting set is equal to the maximum number of path-disjoint st-connecting sets.

The second question is much easier to answer than the first one. In fact, Theorem 3.5
is equivalent to Menger’s theorem for hypergraphs which is well known [50, 65]. It
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3 Connecting Sets and Disconnecting Sets

is also implied by Hoffman’s general max-flow-min-cut theorem. We will explain this
in more detail in Section 3.2. Albeit Theorem 3.5 is widely known and Theorem 3.4
is dual in the sense that the roles of st-connecting sets and st-disconnecting sets are
interchanged, we are not aware of any result in this direction. We show the validity
of Theorem 3.4 in Section 3.3. In fact, we show a stronger result, namely, that the
inequality system of program (MCS) is totally dual integral. The corresponding proof
also implies the correctness of an algorithm to find the minimum cost st-connecting set
without transforming the problem. Using the equivalence of connecting/disconnecting
sets and hyperpaths/hypercuts, it follows that a Menger companion theorem also holds
for hypergraphs. This extends the blocking properties of paths and cuts to hyperpaths
and hypercuts or to connecting sets and disconnecting sets.

3.2 The Max-Flow-Min-Cut Theorem

In Section 1.1.2, we have seen that st-connecting sets correspond to st-hyperpaths and st-
disconnecting sets to st-hypercuts in a hypergraph. This relation implies that Menger’s
theorem w. r. t. paths, Theorem 3.5, is equivalent to Menger’s theorem for hypergraphs
which is known to be true [50, 65]. We show now that this theorem also follows by a flow
argument. More precisely, the max-flow-min-cut theorem also holds for our setting, i.e.,
with respect to paths.

A weighted version of Menger’s theorem, i.e., interpreting the given costs for the paths
as capacities, gives the following dual programs.

max
∑

Pst∈Sst

yPst min
∑
p∈P

cpxp

s.t.
∑
Pst3p

yPst ≤ cp ∀ p ∈ P s.t.
∑
p∈Pst

xp≥ 1 ∀Pst ∈ Sst

yPst ≥ 0 ∀Pst ∈ Sst xp≥ 0 ∀ p ∈ P.

(3.1)

Here, we denote by Sst the set of all (inclusion wise minimal) st-connecting sets and by
Pst ∈ Sst one element, i.e., an st-connecting set. The left program of (3.1) searches for
a maximum number of st-connecting sets such that each path p ∈ P is contained in at
most cp st-connecting sets. The right program of (3.1) searches for the minimum weight
of an st-disconnecting set. It is the fractional covering problem for the incidence matrix
of all inclusion wise minimal st-connecting sets. The left program of (3.1) can also be
interpreted as searching for a maximum flow w. r. t. paths. A flow w. r. t. paths is a set of
pairs (Pst, k), where Pst is an st-connecting set and k ≥ 0 represents a flow along Pst from
s to t, with the property that for each path the sum of the flow along every connecting
set containing the path is less than or equal to the capacity of the path. Indeed, this
is the description of a flow given by Ford and Fulkerson [49] applied to our setting. We
then get the following result which we will show to be valid in the following.

Theorem 3.6 (max-flow-min-cut theorem w. r. t. paths). The minimum weight of
an st-disconnecting set is equal to the maximum flow w. r. t. paths.
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3.2. The Max-Flow-Min-Cut Theorem

Setting c ≡ 1 in (3.1) and in Theorem 3.6 yields Menger’s theorem w. r. t. paths. On
the other hand, the max-flow-min-cut theorem w. r. t. paths for c ∈ Q≥0 follows from
Menger’s theorem w. r. t. paths by multiplying the paths according to their capacities. It
also follows with Hoffman’s general max-flow-min-cut theorem [60]. In fact, Hoffman’s
general max-flow-min-cut theorem was inspired by the work of Ford and Fulkerson [49].
Hoffman “extracts the essence of the arguments” of Ford and Fulkerson to present the
max-flow-min-cut theorem in a more general setting in which results can be applied
to directed and undirected graphs without need to reduce one to the other. In the
following we restrict ourselves to a special case of this theory that is still more general
than the classical max-flow-min-cut theorem, see, e.g., Ahuja, Magnanti, and Orlin [3],
but sufficient for our setting.

Let U be a finite set, associate a cost cu ≥ 0 to every element u ∈ U , and let S =
{S1, . . . , Sn} be a set of subsets Si ⊂ U , i = 1 . . . , n. Each set Si has a linear ordering
“<i”. The ordering is independent for each set, i.e., it is possible that {p, q} ∈ Si ∩ Sj
with p <i q and q <j p, Si, Sj ∈ S. If p ∈ Si ∩ Sj , we define

(Si, p, Sj) = {q ∈ Si : q <i p} ∪ {p} ∪ {r ∈ Sj : p <j r}.

We then require the following:

If p ∈ Si ∩ Sj then there exist S′, S′′ ∈ S with
S′ ⊆ (Si, p, Sj) and S′′ ⊆ (Sj , p, Si).

(3.2)

Consider the following linear programs:

(P ) max
∑
S∈S

yS (D) min
∑
u∈U

cuxu

s.t.
∑
S3u

yS ≤ cu ∀u ∈ U s.t.
∑
u∈S

xu≥ 1 ∀S ∈ S

yS ≥ 0 ∀S ∈ S xu≥ 0 ∀u ∈ U
Note that Hoffman attaches to each set Si ∈ S a nonnegative integer ri such that these
values satisfy a supermodularity condition. The setting above follows with ri = 1, ∀Si ∈
S.

Theorem 3.7 (implied by Hoffman, 1974). If (3.2) is satisfied and c is a nonnegative
integral vector, then the linear programs (P) and (D) have optimal integral solutions.

We now want to show that we can apply Hoffman’s theorem 3.7 to our setting. Let us
consider again the graph G = (V,E) and the set of paths P. The set of paths P can be
identified with the set U and S =: Sst consists of the empty set and all (inclusion wise
minimal) st-connecting sets. The ordering of each st-connecting set Pst ∈ Sst corresponds
to the sequence of paths when traversing Pst from s to t. It is easy to see that Sst defined
in this way satisfies condition (3.2). Let, finally, cp be the nonnegative costs associated
with each p ∈ P. Then (P) becomes the left and (D) the right program in (3.1).

Then Theorem 3.7 implies that the two linear programs in (3.1) have optimal integral
solutions. Hence, Hoffman’s theorem implies the max-flow-min-cut theorem w. r. t. paths
and, therefore also Menger’s theorem w. r. t. paths.
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3.3 A Minimum st-Connecting Set Algorithm and a Com-
panion Theorem

There are at least two ways to solve the minimum st-connecting set problem by trans-
forming it to another problem. One transformation is to replace each path by a clique
of all nodes the path contains; the edge costs in the clique are set to the path cost. The
minimum st-connecting set problem can then be solved by the common shortest path
problem in the resulting undirected graph. Another transformation was given in Subsec-
tion 1.2; here, the problem was transformed into a directed shortest path problem in the
Steiner connectivity digraph.

These transformations, however, do not mean that the minimum connecting set problem
is just a shortest path problem in disguise. To make this argument, we show next that
an arc flow reformulation of the shortest path problem does not carry over from the
graph case to our path connectivity setting. Indeed, in the graph case, the shortest path
problem can be formulated equivalently in terms of cuts and in terms of an arc flow. We
show now that an arc flow formulation does not work for the minimum st-connecting set
problem. To this purpose consider a directed graph (V,A), where each undirected edge
of the original graph G = (V,E) is replaced by two directed arcs. We denote by e(a) the
undirected arc e corresponding to a and introduce flow variables ya, for each a ∈ A. An
arc flow reformulation of the minimum st-connecting set problem would then read:

min
∑
p∈P

cp xp

s.t.
∑

a∈δ+(v)

ya −
∑

a∈δ−(v)

ya =


1 if v = s

−1 if v = t

0 otherwise
∀ v ∈ V

∑
p∈P:e(a)∈p

xp≥ ya ∀ a ∈ A

ya≥ 0 ∀ a ∈ A
xp≥ 0 ∀ p ∈ P.

(3.3)

Indeed, if we require xp ∈ {0, 1} in (MCS) and (3.3), the solution set of program (3.3)
projected onto the space of the x-variables is equal to the solution set of (MCS). However,
as an LP, the cut formulation (MCS) dominates the flow formulation (3.3), see Figure 3.1
for an example. Of course, for the case |p| = 1, ∀p ∈ P, both formulations are equal.
Another difference to the shortest path case is that the problem of finding a directed
minimum cost st-connecting set, i.e., P consists of directed paths which are defined in a
directed graph, is NP-hard. We will show this in Subsection 3.5.

In the remainder of this section, we propose an algorithm to find an st-connecting set
with minimum cost without transforming the problem. Our Algorithm does not only have
complexity advantages, it is also instrumental in showing that the inequality system of
problem (MCS) is TDI. This implies the validity of the companion Menger theorem
w. r. t. paths, Theorem 3.4.
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Figure 3.1: An instance of an undirected minimum st-connecting set problem. The minimum st-connecting
set has cost 30. The flow formulation 3.3 allows a fractional solution with objective value 25 by setting the
path variables to 0.5, i.e., cut and flow formulation are not equal.

A linear system Ax ≥ b is totally dual integral (TDI) if the linear program min{cx :
Ax ≥ b} has an integral optimal dual solution y for every integral c for which the linear
program has a finite optimum, see, e.g., Cornuéjols [38].

Algorithm 3.6 generalizes Dijkstra’s algorithm to our setting. It computes a “minimum
path-connected graph for s” with respect to path costs, i.e., the minimum path-connected
graph for s contains minimum cost sv-connecting sets for all nodes v ∈ V considered in
line 4. If we replace t /∈ Wi by Wi 6= V in the while-loop (line 3), the minimum path-
connected graph for s contains minimum cost sv-connecting sets for all nodes v ∈ V .
The distances from node s are stored in node labels d(v). The algorithm also computes
a dual solution for program (MCS), i.e., a solution for the following program

max
∑
W∈W

yW

s.t.
∑

W∈W:p∈Pδ(W )

yW ≤ cp ∀ p ∈ P (3.4)

yW ≥ 0 ∀W ∈ W,

where W = {W ⊆ V \{t} : s ∈W}.

More precisely, Algorithm 3.6 works as follows. In an initial step, the distance to s is set
to 0 and to infinity for all other nodes; we have v0 = s and W0 = ∅. We assume that
all dual variables, i.e., variables of (3.4), are 0 in the initial step. The algorithm iterates
as long as the node t is not reached (line 3). Assume that h is the last iteration of the
while loop (line 3). In iteration i = 1, . . . , h, the node vi with the minimum distance
is considered (line 4). Note that v1 = s. Then the distances of all nodes of a path
containing v are updated, lines 5 to 13. The node vi is added to Wi−1 and the dual
variable yWi−1 is set, lines 15 and 14. The sets Wi, i = 1, . . . , h produce a sequence of
nested cuts δ(Wi). The distance labels for the nodes vi, i = 1, . . . , h, are nondecreasing
for increasing i.

Algorithm 3.6 is correct. It computes optimal integer solutions for (MCS) and its

69



3 Connecting Sets and Disconnecting Sets

Algorithm 3.6: Primal-dual minimum st-connecting set algorithm.
Input : A connected graph G = (V,E), a set of paths P with costs c ∈ RP

≥0 that
covers all edges E, s, t ∈ V .

Output: A minimum cost st-connecting set P′ ⊆ P; solutions for x and y for
(MCS) and (3.4).

d(s) := 0, d(v) :=∞ ∀ v ∈ V \{s}, n(v) := s, p(v) := ∅ ∀ v ∈ V1

v0 := s, W0 := ∅, i := 1, yW := 0 ∀W ∈ W, xp := 0, ∀p ∈ P, P′ = ∅2

while t /∈Wi−1 do3

vi = argmin {d(u) : u ∈ V \Wi−1}4

for all p ∈ P \ Pδ(Wi−1) with vi ∈ p do5

for all w ∈ V (p) \Wi−1 do6

if d(w) > d(vi) + cp then7

d(w) := d(vi) + cp8

n(w) := vi9

p(w) := p10

end11

end12

end13

yWi−1 := d(vi)− d(vi−1)14

Wi := Wi−1 ∪ {vi}15

i := i+ 116

end17

k := 1, uk := t18

while uk 6= s do19

P′ := P′ ∪ {p(uk)}20

xp(uk) := 121

uk+1 := n(uk)22

k := k + 123

end24

return P′, x, y25

dual (3.4). We show this by proving that, in particular, the inequality system of (MCS)
is TDI.

Proposition 3.8. The inequality system of (MCS) is TDI.

Proof. If cp < 0 for a p ∈ P then (MCS) has no finite solution since x is not bounded
from above; with xp →∞ we can improve the objective. This means that we can assume
a nonnegative integer cost vector c in the following. We prove the claim by showing that
the primal-dual Algorithm 3.6 constructs optimal integral solutions x for (MCS) and y
for the linear program (3.4), respectively, with the same objective value.

The algorithm adds nodes vi to sets Wi = {v1, . . . , vi} in the order of increasing distance
d(vi) from s = v0(= v1), i.e., d(vi−1) ≤ d(vi) ≤ ∞, i = 1, . . . , h, with h being the
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3.3. A Minimum st-Connecting Set Algorithm and a Companion Theorem

last iteration of the while loop 3. This produces a sequence of nested cuts δ(Wi), i =
1, . . . , h− 1.

We first show that y is a solution of program (3.4). Lines 2 and 14 imply y ≥ 0. In fact,
the variables yW can take positive values only for W ∈ {W1, . . . ,Wh−1}. It remains to
show that ∑

W∈W:p∈Pδ(W )

yW ≤ cp ∀ p ∈ P. (3.5)

Let p ∈ P. If vi /∈ p for all i = 1, . . . , h − 1, then p /∈ Pδ(Wi), i = 1, . . . , h − 1, i.e.,∑
W∈W:p∈Pδ(W )

yW = 0 ≤ cp. Otherwise let 1 ≤ i < h be the minimal index smaller than
h such that vi ∈ p, i.e., p /∈ Pδ(Wj) for all 0 ≤ j < i < h but p ∈ Pδ(Wi). Let similarly
i ≤ ` < h be the maximal index smaller than h such that V (p) 6⊆ W`, i.e., we have
p ∈ Pδ(Wj) for i ≤ j ≤ ` < h and we have p /∈ Pδ(Wj) for ` < j < h. Then equation (3.5)
becomes: ∑

W∈W:p∈Pδ(W )

yW =
∑̀
j=i

yWj =
∑̀
j=i

d(vj+1)− d(vj)

= d(v`+1)− d(vi) ≤ d(vi) + cp − d(vi) = cp.

For the last inequality we distinguish the cases v`+1 ∈ p and v`+1 /∈ p. The first case
follows since vi ∈ p. In the second case, v`+1 = vh = t and there exists a node w ∈ p
with w /∈ Wh−1. Since d(v`+1) = d(t) ≤ d(w) and w, vi ∈ p, the second case follows
analogously.

We now show that x is a solution of (MCS). Due to the definition of x we have x ≥ 0.
We have to show that ∑

p∈Pδ(W )

xp ≥ 1 ∀ s ∈W ⊆ V \{t}. (3.6)

Consider the nodes t = u1, . . . , uk = s computed in the while loop starting in line 19
and an st-cut δ(W ). Let i be the largest index with ui /∈ W and ui+1 ∈ W . This index
exists since u1 = t /∈ W and uk = s ∈ W . Then we have xp(ui) = 1, p(ui) ∈ Pδ(W ), and
inequality (3.6) is satisfied.

The objective value of program (3.4) is

h−1∑
i=1

yWi =
h−1∑
i=1

d(vi+1)− d(vi) = d(vh)− d(v1) = d(t)− d(s) = d(t).

Using lines 18 to 24 and 8 to 10 in Algorithm 3.6 we get

d(t) = d(u1) = d(u2) + cp(u1) = d(u3) + cp(u2) + cp(u1) = . . .

= d(uh) +

h−1∑
i=1

cp(ui) = 0 +
∑
p∈P′

cp =
∑
p∈P

cp xp,
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Figure 3.2: Left: Right: Example of a graph for which the (minimal) st-disconnecting sets do not produce
a totally unimodular incidence matrix. Upper right: A graph with six edges in which every minimal st-cut
contains exactly three edges. Lower right: A graph with six edges and each st-path contains exactly three of
them.

i.e., the objective values of (MCS) and (3.4) are equal. The integrality of x is obvious.
Since cp is integral, it follows that d(vi) is integral for i = 0, . . . , h − 1. Therefore yWi ,
i = 1, . . . , h− 1, is also integral (line 14). This shows the claim.

Setting c ≡ 1, Proposition 3.8 turns into the companion Menger theorem w. r. t. paths,
Theorem 3.4.

3.4 Ideal Matrices

Theorems 3.4 and 3.5 show that the incidence matrix of all inclusion wise minimal st-
disconnecting setsAd and the incidence matrix of all inclusion wise minimal st-connecting
sets Ac form a blocking pair of ideal {0, 1}-matrices. Note that these matrices are in gen-
eral not totally unimodular. A matrix is totally unimodular if all its square submatrices
have a determinant equal to 0, 1, or −1. Consider the left of Figure 3.2. The incidence
matrix Ad whose rows corresponds to all inclusion wise minimal st-disconnecting sets for
this example is



x1 x2 x3 x4 x5 x6

{s, a} 1 0 1 1 0 0
{s, a, b, c} 0 1 1 0 0 1
{s, b} 1 1 0 0 1 0
{s} 1 0 0 1 1 0
{s, a, b} 1 1 1 0 0 0
{s, b, c} 0 1 0 0 1 1

 = Ad.

The 3× 3 matrix in the upper left corner has determinant −2 and, therefore, Ad is not
totally unimodular.
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The example also shows that the class of incidence matrices of st-disconnecting sets
genuinely generalizes the class of incidence matrices of st-cuts, i.e., this class contains
more matrices. This can be seen as follows. If Ad were be an incidence matrix of st-cuts
in some graph, the columns of Ad would have to correspond to the edges of a graph, i.e.,
such a graph would have to have six edges. Each cut of the graph contains exactly three
edges, i.e., the edge-degrees of s and t have to be three. Furthermore, there cannot be
an edge connecting s and t since this edge would be contained in every cut. The only
possible graph satisfying these conditions is shown on the upper right of Figure 3.2. But
this graph has eight minimal st cuts instead of the six in matrix Ad.

The matrix Ad also cannot be an incidence matrix of st-paths in an undirected graph
G = (V,E); this graph would have six edges and cannot contain a Steiner path bridge.
Then each (minimal) path from s to t would have to contain exactly three edges. The
only possible graph of this type is shown on the lower right of Figure 3.2. But this graph
has eight minimal st-paths.

3.5 Directed Paths

In this section, we want to show that, unlike in the graph case, the problem of finding
a minimum cost st-connecting set w. r. t. directed paths cannot be handled in the same
way as the undirected case. In fact, in contrast to the undirected case, this problem is
NP-hard.

Let G = (V,A) be a directed graph with no parallel arcs and loops. We are given a set
of directed paths ~P with nonnegative costs cp ≥ 0, p ∈ ~P. We again assume that each
arc of G is covered by a path p ∈ ~P; otherwise the (uncovered) arc can be removed.
Let, furthermore, s, t ∈ V be two specific nodes of G. We call ~P′ ⊆ ~P a directed st-
connecting set if there exists a directed st-path in the subgraph H = (V,A(~P′)), where
A(~P′) = {a ∈ A : ∃p ∈ ~P′ with a ∈ p}. The minimum directed st-connecting set problem
is to find a directed st-connecting set ~P′ ⊆ P with minimum cost. Figure 3.4 shows an
example of this natural problem.

Proposition 3.9. The minimum directed st-connecting set problem is strongly NP-hard,
even for unit costs.

Proof. We reduce the set covering problem to the minimum directed st-connecting set
problem. Recall that in a set covering problem we are given a finite set S, a setM⊆ 2S ,
and a positive integer k. The problem is to find a subsetM′ ⊆M, |M′| ≤ k, such that
for all s ∈ S there exists an M ∈M′ with s ∈M .

Given a set covering instance, let S = {1, . . . , n} be an arbitrary but fixed order of the
elements. We define a directed graph G = (V,A) with node set

V = {1, 2, . . . , n, n+ 1},
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21 3 4

Figure 3.3: Transforming a set covering problem to a
direct st-connecting set problem. We are given S =
{1, 2, 3} and the sets M1 = {1, 2} (corresponding to
the blue path), M2 = {1, 3} (corresp. to the yellow
path), and M3 = {2, 3} (corresp. to the red path).

sa t c
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d
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1
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Figure 3.4: An instance of a minimum directed st-
connecting set problem. A minimum directed st-
connecting set P′ has cost 51 and covers nodes a,
b, and c. The minimum (s, c)-connecting set ~P′′ has
cost 10 and ~P′ ∩ ~P′′ = ∅.

where each element i in S corresponds to node i in V plus one additional node n + 1.
We define the following arcs

(i, i+ 1) i = 1, . . . , n

(i+ 1, j) i, j = 1, . . . , n, i > j.

For each set M ∈ M consider the elements in the natural order and group them such
that the groups consist of consecutive elements, e.g.,

M = {j1, j1 + 1, . . . , j1 + k1, j2, . . . , j2 + k2, . . . , jr, . . . , jr + kr},

with r ≥ 1, ki ∈ {0, . . . , n− 1}, i = 1, . . . , r.

Construct a path p with cost cp = 1 as follows

p = (jr, . . . , jr + kr + 1, jr−1, . . . , jr1 + kr−1 + 1, j1, . . . , j1 + k1 + 1)

After constructing all paths, we remove all uncovered arcs in G. An example for this
construction is illustrated in Figure 3.3.

The construction has the following properties:

1. A set M contains element i, i ∈ {1, . . . , n} if and only if the corresponding path
contains arc (i, i+ 1).

2. Let Wi = {1, . . . , i}, i = {1, . . . , n}. The directed (1, n+ 1)-cut δ+(Wi) contains
only arc (i, i+ 1). All minimal directed (1, n+ 1) cuts are of this form.

We have to show that a cover M′ with at most k elements exists if and only if there
exists a directed (1, n+ 1)-connecting set with cost less than or equal to k.

“⇒”: AssumeM′ is a cover with at most k elements. Choose

~P′ = {p ∈ ~P : p corresponds to a set M ∈M′}.

~P′ has cost ≤ k. Since M′ is a cover and using observation 1, each arc (i, i+ 1), i =
1, . . . , n, is covered by a path p ∈ ~P′. Hence, the directed (1, n+ 1)-path (1, 2, . . . , n+ 1)
is covered by ~P′ and ~P′ is a directed st-connecting set.
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“⇐”: Assume ~P′ is a directed (1, n + 1)-connecting set with cost less than or equal
to k. Choose M′ = {M ∈ M : M corresponds to a path p ∈ ~P′}; |M′| ≤ k. Due
to observation 2 each arc (i, i+ 1), i = 1, . . . , n, is covered by a path p ∈ ~P′. With
observation 1, we get thatM′ covers all elements of S.

Figure 3.4 illustrates that a minimum cost directed st-connecting set ~P′ does not contain
a minimum cost directed sc-connecting set for a node c that “lies” on the st-path induced
by ~P′. This is in contrast to the undirected case and to the directed graph case; it shows
that Algorithm 3.6 cannot be used to compute a minimum directed st-connecting set.

3.6 Connectivity Problems w. r. t. Paths

Considering a graph with nodes and edges, a natural question is to determine how con-
nected it is. The concepts of k-edge-connected and k-node-connected graphs try to
answer this question. A graph is k-edge-connected (k-node-connected) if it is still con-
nected after deleting any set of fewer than k edges (nodes). A well-known consequence
of Menger’s theorem is that a graph is k-edge-connected if and only if there exist k edge-
disjoint paths between every two nodes. In this section we will see that we can generalize
the k-connectivity concept to our setting to answer the question how “path-connected” a
graph is.

Definition 3.10. A graph G is k-path-connected w. r. t. P if G is path-connected after
deleting any set P′ ⊆ P of fewer than k paths, i.e., G′ = (V,E(P \ P′)), |P′| < k, is
connected.
A graph G is k-edge-path-connected w. r. t. P if G is path-connected after deleting any
set of fewer than k edges E′ with all incident paths, i.e., G′ = (V,E(P̃)) with P̃ = P\{p ∈
P : |E′ ∩ E(p)| ≥ 1} is connected.
A graph G is k-node-path-connected w. r. t. P if G is path-connected after deleting any
set of fewer than k nodes V ′ with all incident paths, i.e., G′ = (V \ V ′, E(P̃)) with
P̃ = P \ {p ∈ P : |V ′ ∩ V (p)| ≥ 1} is connected.

Note that we already needed the definition of a 2-node-path-connected graph in Chapter 2
and we will also need this definition in Chapter 7.

It is easy to see that the following holds: G is k-edge-path-connected ⇒ G is k-path-
connected. Definition 3.10 implies that each disconnecting set in a k-path-connected
graph has to contain at least k elements. Hence, a consequence of Menger’s theorem
w. r. t. paths, Theorem 3.5, is the following result which is similar as for the graph case.

Corollary 3.11. A graph G is k-path-connected if and only if there exist k path-disjoint
st-connecting sets between every two nodes s, t ∈ V (⇔ |Pδ(W )| ≥ k ∀ s ∈W ⊆ V \ {t}).

The statement in brackets follows with the equivalence of minimal T -disconnecting sets
and T -path cuts (Lemma 1.1).
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Corollary 3.12. The problem to decide whether a graph G is (k + 1)-path-connected
w. r. t. P can be solved in polynomial time.

Proof. This can be done by a maximum flow computation in the Steiner connectivity
digraph D′, compare with Section 1.2. For every pair of nodes s, t ∈ V we construct
D′ with T = {s, t}, setting the root node to r := s and the edge capacities to 1. It
is easy to see that every two edge-disjoint st-paths in D′ give rise to two path-disjoint
st-connecting sets in G and vice versa. The maximum st-flow in the Steiner connectivity
digraph corresponds to the maximum number of edge-disjoint st-paths in D′. Hence, if
the maximum flow is at least (k+1) in every such graph D′, i.e., for all s, t ∈ V , then the
graph G is (k+1)-path-connected w. r. t. P. Overall, we have to solve O(|V |2) maximum
flow problems.

Note for k = 1: Since we assume that each edge is covered by a path, a graph is
path-connected if and only if the graph is connected. Trivially, k-edge-path-connectivity,
k-node-path-connectivity and k-path-connectivity are equivalent for k = 1 since for this
case nothing is removed.

Remark 3.13. If we interpret a path p in a graph G as a line in a transportation network,
a k-line-connected network guarantees that there still exists a connection between any two
nodes when k − 1 lines cannot be operated. Requiring a k-line-connected network can,
hence, be interpreted as a kind of survivability condition on a line plan.

Proposition 3.14. The problem to decide whether a graph G is (k + 1)-edge-path-
connected with respect to a set of paths P is co-NP-hard.

Proof. When we are given a set of edges E′ with |E′| ≤ k, we can delete these edges with
all incident paths and check whether the resulting graph is connected, i.e., we can check
a no-instance in O(k|P|+ |V |+ |E|). Hence, the problem is in co-NP.

The idea of this proof is to reduce the minimum vertex cover problem to the (k+1)-edge-
path-connectivity problem. Let G = (V ,E) be a graph and k < |V | be a positive integer.
The minimum vertex cover problem is to decide whether there exists a set V ′ ⊂ V with
|V ′| ≤ k and each edge has at least one endpoint in V ′.

Given an instance of the vertex-cover problem, we construct an instance of the k-edge-
path-connectivity problem as follows: Define a graph G = (V,E) with node set

V = {s, t} ∪ {uv, wv : v ∈ V }

and edge set

E = {{s, uv}, {uv, wv}, {wv, t} : v ∈ V } ∪ {{uv, uṽ}, {wv, wṽ}} : v, ṽ ∈ V , v 6= ṽ}.

All edges that are not covered by paths after their construction are deleted afterwards.
We have a path of length 1 for each edge e ∈ E, e 6= {uv, wv}, v ∈ V . Furthermore, we
construct the following paths corresponding to edges in G:

pvṽ = (wv, uv, uṽ, wṽ) for all e = {v, ṽ} ∈ E (pvv = (uv, wv) if {v, v} ∈ E).
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Figure 3.5: Construction of the transformation in the proof of Proposition 3.14. Left: A vertex cover instance.
Right: The corresponding transformation into an edge-path-connectivity instance. There is only one edge
{ui, wi}, i = 1, . . . , 5, the paths containing such an edge are plotted on “parallel lines” to identify them.

Figure 3.5 gives an example of this transformation. We claim that G as defined above is
not (k + 1)-edge-path-connected w. r. t. the constructed paths if and only if there exists
a vertex cover V ′ ⊂ V in G with |V ′| ≤ k.

“⇒:” Let G be not (k+1)-edge-path-connected w. r. t. the constructed paths. Then there
exists a set E∗ with |E∗| ≤ k such that the graph G∗, which results from deleting E∗ with
all incident paths, is not path-connected. Since the two node sets {s}∪{uv : v ∈ V } =: U
and {t} ∪ {wv : v ∈ V } =: W are cliques, in which each edge is covered by a path of
length 1, and |U |, |W | ≥ k + 2, every two nodes in U and every two nodes in W are
connected in G∗ for any set E∗ with |E∗| ≤ k. This means that E∗ has to disconnect
the sets U and W , and we can assume w.l.o.g. that E∗ contains only edges between U
and W . Set V ′ = {v ∈ V : {uv, wv} ∈ E∗}. Then |V ′| = |E∗| ≤ k. We claim that V ′ is
a vertex cover in G. Assume it is not. Then there exists an edge e = {v, ṽ} ∈ E with
v, ṽ ∈ V \ V ′. Due to the construction of V ′ we have {uv, wv}, {uṽ, wṽ} /∈ E∗. Due to
the construction of G the path (wv, uv, uṽ, wṽ) corresponding to {v, ṽ} is not incident to
an edge in E∗ and connects U and W , a contradiction.

“⇐:” Let V ′ ⊂ V be a vertex cover in G with |V ′| ≤ k. Consider the edge set E∗ =
{{uv, wv} : v ∈ V ′}, |E∗| = |V ′| ≤ k. Assume the graph that results from deleting E∗

with all incident paths is st-path-connected. Due to the construction of G there has to
exist a path (wv, uv, uṽ, wṽ) with {uv, wv}, {uṽ, wṽ} /∈ E∗. This means that v, ṽ /∈ V ′,
i.e., the edge {v, ṽ} is not covered by V ′, a contradiction. Hence, G is not k-edge-path
connected for the nodes s and t and therefore not k-edge-path connected.

Proposition 3.15. The problem to decide whether a graph G is (k + 1)-node-path-
connected with respect to a set of paths P is co-NP-hard.

Proof. It is easy to see that the problem is in co-NP. The minimum vertex cover problem
can be transformed to the (k + 1)-node-path-connectivity problem in a similar way as
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3 Connecting Sets and Disconnecting Sets
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Figure 3.6: Construction of the transformation in the proof of Proposition 3.15. Left: A vertex cover
instance. Right: The corresponding transformation into a node-path-connectivity instance. There is only one
edge {s, u1}, the two paths containing this edge are plotted on “parallel lines” to identify them.

the (k + 1)-edge-path-connectivity problem. Given a graph G = (V ,E) and k < |V |,
define a graph G = (V,E) with node set V = {s, t} ∪ {uv : v ∈ V } and edge set

E = {{s, uv}, {uv, t}} : v ∈ V } ∪ {{uv, uṽ} : v, ṽ ∈ V , v 6= ṽ}.

All edges that are not covered by paths after their construction are deleted afterwards.
We have a path of length 1 for each edge e ∈ E, e 6= {s, uv}, v ∈ V . We further construct
a path pvṽ = (s, uv, uṽ) for each edge e = {v, ṽ} ∈ E. Figure 3.6 gives an example of this
transformation. We claim that the graph G is not (k + 1)-node-path-connected if and
only if there exists a vertex cover for G with at most k nodes.

“⇒:” Let G be not (k + 1)-node-path-connected, i.e., there exists a set of nodes V ∗,
|V ∗| ≤ k, such that G is not path-connected after deleting V ∗ with all incident paths.
Since the nodes {t} ∪ {uv : v ∈ V } =: C are a clique with |C| ≥ k + 2, every two nodes
v, w ∈ C with v, w /∈ V ∗ would be still connected after deleting V ∗ with all incident
paths. Hence, the set V ∗ was chosen such that s is disconnected from a node v ∈ C.
With the above argumentation, we get that s hast to be disconnected from all nodes
v ∈ C = V \ {s}, i.e., s /∈ V ∗, and each path incident to s has to contain a node
u ∈ V ∗. Due to the construction of G, every edge in G corresponds to a path incident
to s. Choosing V ′ = {v ∈ V : uv ∈ V ∗} then has to be a vertex cover in G with
|V ′| = |V ∗| ≤ k.

“⇐:” Let V ′ ⊂ V be a vertex cover in G with |V ′| ≤ k. Set V ∗ = {uv ∈ V : v ∈ V ′}.
We show that the graph that results from deleting V ∗ with all incident paths is not
st-path-connected. Assume it is. Then there exists a path (s, uv, uṽ) with uv, uṽ /∈ V ∗,
i.e., v, ṽ /∈ V ′, i.e., the edge {v, ṽ} is not covered by V ′, a contradiction.

Remark 3.16. Checking a graph for 2-edge-path-connectivity (2-node-path-connectivity)
can be done in O(|E|2|P|) (O(|V ||E||P|). There are |E| (|V |) edges (nodes) to check.
Checking one edge (node) means to remove this edge (node) and all incident paths.
Here, all edges that are not covered by a path any more are also removed. Removing

78



3.6. Connectivity Problems w. r. t. Paths

all uncovered edges can be done in O(|P||E|). Then one can use depth first search to
check connectivity in the resulting graph. This takes O(|V | + |E|). In total we get
O(|E|(|E||P|+|V |+|E|)) to check 2-edge-path-connectivity and O(|V |(|E||P|+|V |+|E|))
to check 2-node-path-connectivity
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Chapter 4

Solving the Steiner Connectivity
Problem

In this chapter, we discuss the computational solution of the Steiner connectivity prob-
lem. We implemented the undirected cut formulation as well as the (extended) directed
cut formulation in the branch-and-cut framework SCIP [2, 95]. The extended directed
cut formulation has a quadratic number of variables compared to the undirected one
and, as it will turn out, cannot be solved directly for large-scale instances. We, there-
fore, investigated cutting plane methods for the undirected cut formulation that use the
strength of the directed cut formulation and the strength of the Steiner partition inequal-
ities, respectively. These cutting plane methods are explained in Section 4.1 while two
primal heuristics are described in Section 4.2. Section 4.3 presents our computational
results. Using the methods introduced in this chapter, we show that large Steiner con-
nectivity problems with up to 900 nodes can be solved within reasonable optimality gaps
of typically less than five percent.

4.1 Cutting Planes for the Undirected Cut Formulation

We have seen in Chapter 2 that the extended directed cut formulation (SCPrarc+) implies
strong inequalities for the canonical undirected cut formulation (SCPcut), e. g., the facet
defining Steiner partition inequalities. In the following, we will consider two strategies to
carry over the strength of the directed cut formulation to the undirected cut formulation.
First, we consider a fast heuristic separation method for the Steiner partition inequalities,
called SPI separation, in Subsection 4.1.1. Encouraged by its effectiveness, we then
propose a partial projection method : The idea is to lift an LP solution from the space of
canonical variables to the extended space, to separate there, and to project the cut back.
This algorithm can identify additional cuts and is described in Section 4.1.2 in detail. A
problem of this procedure is that the separation step is based on an exponential system
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4 Solving the Steiner Connectivity Problem

Algorithm 4.7: SPI separation to detect violated Steiner partition inequalities
Input : A connected graph G = (V,E), a set of paths P with costs c ∈ RP

≥0, a set
of terminal nodes T ⊆ V , and a fractional solution x∗ ∈ PLP (SCPcut).

Output: If found, a violated partition inequality.

ωe :=
∑

p∈P:e∈p x
∗
p, ∀ e ∈ E, R(v) = {v}, ∀ v ∈ V , P = {{v} : v ∈ V }1

sort edge weights s.t. ωe1 ≥ ωe2 ≥ . . . ≥ ωe|E| , let {vi, wi} = ei2

for i = 1, . . . , |E| do3

if R(vi) ∩ T = ∅ or R(wi) ∩ T = ∅ or ωei ≥ 1 then4

P := P \ {R(vi), R(wi)} ∪ {R(vi) ∪R(wi)}5

R(wi) = R(vi) := R(wi) ∪R(vi)6

end7

end8

// P is a Steiner partition
for i = 1, . . . , |E| do9

// if both nodes are in different sets
if R(vi) ∩R(wi) = ∅ then10

if
∑
p∈P

ap x
∗
p < |P | − 1, ap := |{|V (p) ∩W | ≥ 1 : W ∈ P}| − 1, p ∈ P then

11

return violated Steiner partition inequality12

end13

P := P \ {R(vi), R(wi)} ∪ {R(vi) ∪R(wi)}14

R(wi) = R(vi) := R(wi) ∪R(vi)15

end16

end17

of inequalities. This is as difficult as working directly with the extended formulation.
We suggest to consider a relaxation to separate cuts from a subsystem of the extended
formulation. This subsystem has to be chosen in such a way that it is, on the one hand,
of tractable size and, on the other hand, produces strong cuts. We discuss a possible
choice of a good subsystem in Section 4.1.3. The resulting partial projection method
can be used to approximate the extended formulation. Since the extended formulation
includes not only Steiner partition inequalities but also other facet defining inequalities,
the partial projection method can in principle find other types of inequalities that cannot
be identified by SPI separation, see the upcoming Example 4.2.

4.1.1 Separating Steiner Partition Inequalities

We propose a heuristic, called SPI separation, to find a Steiner partition of the nodes
that has a good chance to yield a violated Steiner partition inequality. It is motivated
by a graph shrinking procedure that produces a promising Steiner partition of the nodes
for the STP, see, e. g., Grötschel et al. [58] and Günlük [59]. It works as follows in our
case. Let x∗ ∈ PLP (SCPcut) be some fractional solution and ωe :=

∑
p∈P:e∈p x

∗
p be edge
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4.1. Cutting Planes for the Undirected Cut Formulation

weights for all e ∈ E. Sort the edges as e1, . . . , e|E| such that ωe1 ≥ · · · ≥ ωe|E| . We now
recursively shrink the graph by contracting edges in the order of decreasing weight. In a
first step, we shrink edges as long as the edge weight is greater than or equal to 1 or if
one end node of an edge is not a terminal node. If an end node of an edge is a terminal
node, the node that arises from shrinking this edge is also defined as a terminal node.
After this first shrinking procedure each shrunk node contains at least one terminal node
and is, therefore, also a terminal node. If the resulting shrunk graph contains more than
one node, the weights of all remaining edges are smaller than 1. Each shrunk node can
be considered as a partition. We then compute the resulting Steiner partition inequality.
If it is violated, we can add it to the problem. If it is not violated, we shrink the edge
with the largest weight in the shrunk graph and consider the Steiner partition inequality
associated with the resulting graph. This procedure terminates as soon as we have found
a violated cut or when the shrunk graph contains only one node. A detailed description
of the SPI separation heuristic is given in Algorithm 4.7.

4.1.2 Separating Cuts from the Extended Formulation

A direct method to use the extended formulation (SCPrarc+) to separate cuts for the
canonical undirected cut formulation (SCPcut) is as follows: Let x∗ ∈ [0, 1]P be the point
to be separated; denote Ã = A′P = {(vp, wp) ∈ A′ | p ∈ P} and A′′ = A′ \ A′P. Consider
the inequality system associated with (SCPrarc+) for y|P = x∗ =: y∗:

∑
a∈δ−(W ),a∈A′′

ya≥ 1−
∑

a∈δ−(W ),a∈Ã

y∗a ∀W ∈ W

−
∑

a∈δ−(vp)

ya≥ −y∗vpwp ∀ vp ∈ V ′ (p ∈ P : r /∈ p)∑
a∈δ+(wp)

ya≥ y∗vpwp ∀wp ∈ V ′ (p ∈ P : t /∈ p ∀t ∈ T )

ya≥ 0 ∀ a ∈ A′′.

(4.1)

whereW := {W ⊆ V ′ \{r} : W ∩T 6= ∅} is the set of all directed Steiner cuts associated
with root node r. We want to decide whether there is a vector y ∈ PLP (SCPrarc+) with
y|P = x∗ or to prove that no such vector exists. By the Farkas lemma either inequality
system (4.1) or the following inequality system has a solution:

∑
W∈W

(
1−

∑
a∈δ−(W ),a∈Ã

y∗a

)
· µW −

∑
p∈P

y∗vpwp(π
v
p − πwp )> 0∑

W∈W:a∈δ−(W )

µW −
∑

p∈P:a∈δ−(vp)

πvp +
∑

p∈P:a∈δ+(wp)

πwp ≤ 0 ∀ a ∈ A′′

µW ≥ 0 ∀W ∈ W
πvp , π

w
p ≥ 0 ∀ p ∈ P.

(4.2)
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4 Solving the Steiner Connectivity Problem

The first inequality of (4.2) gives rise to a violated cut. Namely, if y /∈ PLP (SCPrarc+) for
y|P = y∗ = x∗, ∑

W∈W

(
1−

∑
a∈δ−(W ),a∈Ã

y∗a

)
· µ∗W −

∑
p∈P

y∗vpwp(π
v∗
p − πw∗p ) > 0

⇐⇒
∑
W∈W

(
1−

∑
(vp,wp)∈δ−(W )

x∗p

)
· µ∗W −

∑
p∈P

x∗p(π
v∗
p − πw∗p ) > 0,

and ∑
W∈W

µ∗W −
∑
W∈W

∑
(vp,wp)∈δ−(W )

µ∗Wxp −
∑
p∈P

(πv∗p − πw∗p )xp ≤ 0,

⇐⇒
∑
W∈W

µ∗W ≤
∑
W∈W

∑
p:(vp,wp)∈δ−(W )

µ∗W xp +
∑
p∈P

(πv∗p − πw∗p )xp

is a cutting plane that separates x∗ from the Steiner connectivity polytope.

The system (4.2) is a feasibility problem that can be solved by minimizing the left-hand-
side of the first inequality subject to the remaining system and the additional constraint
||(µ, πv, πw)|| ≤ 1, where || · || is an arbitrary norm, to bound the variables. There
are 2|P| π-variables, which can be treated directly, and O(2|V

′|) = O(22|P|) µ-variables,
which have to be treated by a column generation procedure. In each iteration, a subset
of the cut system W is considered. When the subset produces a positive objective value,
we have found a violated cutting plane. Otherwise, we must increase the subset by
generating an improving variable µW . Associating dual variables y′′a , a ∈ A′′, with the
constraints of the feasibility problem (4.2), the pricing problem is to find W ∈ W such
that ∑

a∈δ−(W ),a∈A′′
y′′a < 1−

∑
a∈δ−(W ),a∈Ã

y∗a

or to conclude that no such W exists. This is a minimum directed Steiner cut problem
that can be solved in polynomial time, such that the entire separation method has a
polynomial complexity. This result is, however, theoretical; a practical version will be
discussed in the following subsection.

4.1.3 Separating Cuts by Partial Projection

The system (4.1) is of exponential size and therefore difficult to handle. To make this
method practical, we consider a “partial projection” that is based on a relaxation of
(SCPrarc+) restricted to a subset of directed (r, t)-Steiner cut inequalities. After extensive
computational experiments, the following two types of directed (r, t)-Steiner cuts turned
out to be most useful: cuts that are associated with path neighborhoods of the terminals
and of node sets arising in a shrinking procedure similar to the one described in Sec-
tion 4.1.1. It turns out that the resulting subsystem is tractable and produces strong
cuts. To this purpose we construct a nested family of path neighborhood cuts δ−(W i

t )
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4.1. Cutting Planes for the Undirected Cut Formulation

where W i
t is of the form of the node sets Wi in the proof of Theorem 2.19. The combina-

torial motivation for the choice of these cuts is that they approximate the connectivity
requirement of the problem. The path neighborhoods of the first type are iteratively
constructed around each terminal node except the root node and are independent of a
fractional solution x∗. The path neighborhoods of the second type try to contract the
graph in order to identify directed (r, t)-Steiner cuts which likely have small capacity
with respect to the LP solution of the undirected formulation.

A formal description of the construction of the path neighborhoods of the first type is
as follows. We first choose an arbitrary terminal node as root node r ∈ T . Then we
consider for each of the remaining terminal nodes t ∈ T \ {r} a node set V 0

t = {t}, the
set P0

t ⊆ P of paths that intersect V 0
t (i. e., contain t), and we define the initial path

neighborhood of t as the node set

W 0
t := {t} ∪ {wp | p ∈ P0

t } ∪ {vp | p ∈ P0
t , r 6∈ p},

i. e., W 0
t contains t, its neighbors wp, and for each node wp its predecessor vp, provided

it is not connected to the root node r. Then δ−(W 0
t ) forms a directed (r, t)-cut in the

Steiner connectivity digraph. In fact, it is easy to see that

δ−(W 0
t ) = {(vp, wp) ∈ A′ : p ∈ P0

t , r ∈ p} ∪ {(wp̃, vp) ∈ A′ : p̃ /∈ P0
t , p ∈ P0

t , r /∈ p}.

We now grow the sets V 0
t , P0

t , andW 0
t iteratively. To this purpose, we define a connected

node set r /∈ V 1
t ⊃ V 0

t such that the set of paths that intersect V 1
t is minimal, not

containing the root node, and increases P0
t , i. e.,

min
V 0
t ⊂V 1

t ⊆V \{r}
V 1
t connected

|P1
t := {p ∈ P : V 1

t ∩ V (p) 6= ∅}| > |P0
t |,

and we obtain the first path neighborhood

W 1
t := {t} ∪ {wp | p ∈ P1

t } ∪ {vp | p ∈ P1
t , r 6∈ p}.

Repeating this construction, i. e., finding an extended connected node set V i
t ⊃ V i−1

t

such that the set of paths Pit intersecting a node in V i
t has smallest size and increases

Pi−1
t , until all nodes are considered, produces a sequence of say j(t) + 2 path sets and

path neighborhoods

P0
t ⊂ P1

t ⊂ · · · ⊂ P
j(t)+1
t = P and W 0

t ⊂W 1
t ⊂ · · · ⊂W

j(t)+1
t ,

with corresponding directed (r, t)-Steiner cuts

δ−(W i
t ) = {(vp, wp) ∈ A′ : p ∈ Pit, r ∈ p} ∪ {(wp̃, vp) ∈ A′ : p̃ /∈ Pit, p ∈ Pit, r /∈ p} (4.3)

for each t ∈ T \ {r}, i = 0, . . . , j(t). Of course, we do not have to consider all nodes for
each terminal, i. e., we can choose i < j(t). This can be done to reduce the time and
memory consumption of the partial projection method.
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4 Solving the Steiner Connectivity Problem

A formal description of the path neighborhoods arising from the shrinking procedure is
as follows. Let x∗ ∈ PLP (SCPcut) be some fractional solution in the original space of
variables and ωe :=

∑
p∈P:e∈p x

∗
p, be edge weights for all e ∈ E. Then we consider for

each node v ∈ V the set Pv of paths that contain node v, and define a path neighborhood
of v as

W ◦v :=

{
{wp | p ∈ Pv} ∪ {vp | p ∈ Pv, r 6∈ p} ∪ {v}, v ∈ T,
{wp | p ∈ Pv} ∪ {vp | p ∈ Pv, r 6∈ p}, v /∈ T.

Sort the edges as e1, . . . , e|E| such that ωe1 ≥ · · · ≥ ωe|E| . We now recursively perform
two shrinking procedures. We first shrink the graph by contracting edges in the order
of decreasing weight until each shrunk node contains a terminal node. Then we shrink
the graph by contracting edges in the order of decreasing weight until we arrive at a
single node. If nodes u and v are shrunk to a new node w, we define Pw := Pu ∪ Pv
and W ◦w := W ◦u ∪W ◦v . Denote by V ◦ the set of all shrunk nodes (during both shrinking
procedures) that contain a terminal node, but not the root node (the path neighborhoods
of non-shrunk terminal nodes coincide with their initial path neighborhoods of the first
type). Note that we can obtain shrunk nodes that do not contain a terminal node or that
contain the root node, but we do not consider them in V ◦. Each node v ∈ V ◦ contains
a terminal t and therefore defines a directed (r, t)-Steiner cut

δ−(W ◦v ) = {(vp, wp) ∈ A′ : p ∈ Pv, r ∈ p}
∪{(wp̃, vp) ∈ A′ : p̃ /∈ Pv, p ∈ Pv, r /∈ p}.

(4.4)

LetW ′ := {W i
t | t ∈ T \{r}, i = 0, . . . , j(t)}∪{W ◦v | v ∈ V ◦} be the collection of cut sets

arising from these two procedures. We propose to use the resulting two types of path
neighborhoods to approximate the inequality system (4.1) by the subsystem∑

a∈δ−(W ),a∈A′′
ya≥ 1−

∑
a∈δ−(W ),a∈Ã

y∗a ∀W ∈ W ′

−
∑

a∈δ−(vp)

ya≥ −y∗vpwp ∀ vp ∈ V ′ (p ∈ P : r /∈ p)

ya≥ 0 ∀ a ∈ A′′,

(4.5)

i. e., instead of all directed (r, t)-Steiner cuts, we consider those arising from path neigh-
borhoods, i. e., we replace the set W by W ′. We also omit the flow balance constraints
for nodes wp, p ∈ P, to further reduce the size. Note that they are not important for the
Steiner partition inequalities, compare with Remark 2.20. We additionally bound the
variables of the dual of (4.5) by 1 in order to normalize.

The path neighborhood cut subsystem (4.5) is tractable because it contains a polynomial
number

∑
t∈T (j(t) + 1) + |V | + |V | − 1 ≤

∑
t∈T |V | + |T | + 2|V | − 1 ∈ O(|T | · |V |) of

cuts (each new path neighborhood of the first type reaches a new node, and there are
at most |V | + |V | − 1 considered node sets in the shrinking procedure). It is strong in
the sense that it can produce facet defining inequalities. These include Steiner partition
inequalities such as the one shown in Figure 2.4. In general, a Steiner partition inequality
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Figure 4.1: Left: Steiner connectivity instance with three terminal nodes a, b, c. The Steiner partition
inequality 2x1 + x2 + x3 + x4 ≥ 2 is valid. Right: Corresponding Steiner connectivity digraph for r = a.

will be separated with our path neighborhood cut subsystem, if each node set of the
partition satisfies the following condition: The paths that intersect the node set of a
partition correspond to a path neighborhood. This is, e. g., the case for T = V and
the Steiner partition inequality corresponding to the partition Vt = {t}, t ∈ T . The
following example shows a different case where the path neighborhood cut subsystem
implies a Steiner partition inequality. We then give an example to show that the path
neighborhood cut subsystem implies also other types of facet defining inequalities.

Example 4.1. We show that the Steiner partition inequality shown in Figure 2.4 can
also be separated with our path-neighborhood cut subsystem as follows. To this purpose
we illustrated the instance and the Steiner connectivity digraph for root node r = a in
Figure 4.1. Let x∗ ∈ PLP (SCPcut) with x∗2 = x∗3 = x∗4 = 0.5 and x∗1 = 0. Obvi-
ously x∗ satisfies all Steiner cut inequalities but not 2x1 + x2 + x3 + x4 ≥ 2. Con-
sider the path-neighborhood cut subsystem (4.5) for the two initial path-neighborhoods
W 0
b := {1̄, 2̄, 4, 4̄, b} and W 0

c := {1̄, 3̄, 4, 4̄, c}

y3̄4≥ 1− y∗
11̄
− y∗

22̄
(W 0

b ) (µb)
y2̄4 ≥ 1− y∗

11̄
− y∗

33̄
(W 0

c ) (µc)
−y1̄4−y2̄4−y3̄4≥ −y∗44̄

(π4)

(all other path-neighborhood cuts are redundant). The dual is

(1− y∗
11̄
− y∗

22̄
)µb + (1− y∗

11̄
− y∗

33̄
)µc − π4 · y∗44̄

> 0

µb − π4≤ 0
µc − π4≤ 0
µb, µc≥ 0

π4≥ 0.

A valid solution is µb = µc = 1, π4 = 1. This yields the cutting plane

(1− x1 − x2) + (1− x1 − x3)− x4 ≤ 0 ⇔ 2x1 + x2 + x3 + x4 ≥ 2.

It is a facet defining Steiner partition inequality.
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4 Solving the Steiner Connectivity Problem

Example 4.2. Consider again the SCP instance in Figure 2.7 that gives an example of
a three terminal sets inequality which is not a partition inequality (compare with Sub-
section 2.2.3). We show that this inequality can be separated with our path-neighborhood
cut subsystem as follows. Let x∗ ∈ PLP (SCPcut) with x∗1 = x∗2 = x∗3 = 0.5 and x∗4 = 0.
Obviously x∗ satisfies all Steiner cut inequalities but not x1 + x2 + x3 + x4 ≥ 2. Con-
sider the path-neighborhood cut subsystem (4.5) for the two initial path-neighborhoods
W 0
b := {1̄, 2, 2̄, 4̄, b} and W 0

c := {2, 2̄, 3̄, c}

y3̄2 ≥ 1− y∗
11̄
− y∗

44̄
(W 0

b ) (µb)
y1̄2 +y4̄2≥ 1− y∗

33̄
(W 0

c ) (µc)
−y1̄2−y3̄2−y4̄2≥ −y∗22̄

(π2)

(all other path-neighborhood cuts are redundant). The dual is

(1− y∗
11̄
− y∗

44̄
)µb + (1− y∗

33̄
)µc − π2 · y∗22̄

> 0

µb − π2≤ 0
µc − π2≤ 0
µb, µc≥ 0

π2≥ 0.

A valid solution is µb = µc = 1, π2 = 1. Since y∗
11̄

= x∗1 = 0.5, y∗
22̄

= x∗2 = 0.5,
y∗

33̄
= x∗3 = 0.5, and y∗

44̄
= x∗4 = 0, the value of the first inequality in this system is 0.5.

This yields the cutting plane

(1− x1 − x4) + (1− x3)− x2 ≤ 0 ⇔ x1 + x2 + x3 + x4 ≥ 2.

It is a facet defining three terminal sets inequality, see again Subsection 2.2.3.

4.2 Primal Heuristics

We developed two types of primal heuristics for the Steiner connectivity problem. The
first one is a greedy type heuristic based on LP values (and on objective coefficients in an
initial step). In the initial step we sort the paths in decreasing order of their coefficients
in the objective function. We then repeatedly choose the path with the highest coefficient
and fix it to zero if the network is still connected. Otherwise, the path is fixed to one.
The procedure terminates when all paths are fixed. If we have LP values at hand, we
sort the paths in increasing order of their LP value. We then repeatedly choose the path
with the smallest LP value and proceed as in the initial step.

The second primal heuristic is based on the idea of Takahashi and Matsuyama [99] for
the Steiner tree problem, compare also with Subsection 1.4.2. We briefly recall the idea
that is given in Algorithm 1.4. The starting cost of all paths in this heuristic is set to
(1 − x∗p) · cp for p ∈ P, where x∗ is the optimal solution for the current LP. We start
from one terminal and connect the next terminal that can be reached by a cost-minimal
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connecting set. We then set the cost of all used paths to zero and search for a cost-
minimal connecting set to the next closest terminal. This process is continued until all
terminals are connected.

The result of the second heuristic depends on the choice of the starting terminal. It is
usually too time consuming to consider all terminals. We therefore use a similar strategy
as Koch and Martin [66] for the Steiner tree problem: We try the terminal that gave the
best solution the last time the heuristic was started and in addition 5 randomly selected
terminals.

4.3 Computational Analysis

We will now show that the Steiner partition inequalities indeed significantly improve
the LP relaxation of the canonical undirected cut formulation and help to solve Steiner
connectivity problems. We have implemented the methods described in the preceding
subsections and tested them on six transportation networks that we denote as China,
Dutch, SiouxFalls, Anaheim, Potsdam, and Chicago. Instances Anaheim, SiouxFalls,
and Chicago use the graphs of the street networks with the same names from the Trans-
portation Network Test Problems Library of Bar-Gera [98]. Instances China, Dutch, and
Potsdam correspond to public transportation networks. The Dutch network was intro-
duced by Bussieck [28] in the context of line planning. The Potsdam data were provided
to us in a joint project on line planning by the local public transport company ViP
Verkehrsgesellschaft Potsdam GmbH. The China instance is artificial; we constructed it
as a showcase example, connecting the twenty biggest cities in China by the 2009 high
speed train network. All data but the one of Anaheim includes coordinates of the points
of the network. A visualization of the networks can be seen in Figure 4.2. Along with
the transportation networks we also considered the two “textbook-examples” given in
Figures 2.7 and 2.9 of Chapter 2.2 which we denote by “Tiny1” and “Tiny2”.

All instances are associated with an OD matrix. We define as terminal nodes all stations
with positive supply or demand, i. e., such that there exists a positive entry in the corres-
ponding row or column of the OD matrix. The paths can then be interpreted as possible
lines (e. g., bus lines in the street networks) to connect the terminal nodes/OD nodes.
In the Potsdam instance we distinguish between edges of different types, e. g., edges for
tram lines and edges for bus lines. Solving the Steiner connectivity problems with costs
depending on the lengths of the lines amounts to the construction of a connected line
plan with minimum cost (where each line is operated once). Such a solution can be used
to estimate a lower bound on the cost of a line plan.

For each network, we consider two benchmark instances of the Steiner connectivity prob-
lem. These were constructed as follows. For each network we randomly chose a set of
node pairs and computed the shortest path between each pair (instances with suffix 1)
and the three shortest paths between each pair (instances with suffix 2). In the Potsdam
instances the edges of such a path have to be of the same type (e. g., bus, tram). For the
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Figure 4.2: Network of instances Dutch (upper left), China (upper right), Sioux Falls (middle left), Chicago
(middle right), and Potsdam.
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Table 4.1: Street and public transportation networks. The columns are as follows: name of the instance,
number of terminal nodes, total number of nodes, number of (directed) edges (including OD edges), number
of paths, and number of nodes and arcs of the associated Steiner connectivity digraph. (We inserted all
terminals twice into the Steiner connectivity digraph in order to use them as sources and sinks at the same
time; this speeds up the computations.) The last column gives the maximal length of a path.

name |T | |V | |E| |P| |V ′| |A′| max |p|

Tiny1 3 4 4 4 14 15 2
Tiny2 4 7 10 7 22 36 2
China1 20 20 98 130 300 9 621 6
China2 20 20 98 211 462 29 225 6
Dutch1 23 23 106 173 392 18 582 6
Dutch2 23 23 106 263 572 53 449 6
SiouxFalls1 24 24 124 186 420 14 650 6
SiouxFalls2 24 24 124 311 670 50 252 6
Anaheim1 38 454 1 344 1 713 3 502 777 466 20
Anaheim2 38 454 1 344 5 135 10 346 7 346 857 20
Potsdam1 107 885 3 572 2 401 5 016 949 440 20
Potsdam2 107 885 3 572 5 349 10 912 5 747 714 20
Chicago1 386 909 3 672 2 546 5 864 1 419 999 20
Chicago2 386 909 3 672 7 638 16 048 12 858 604 20

three smallest instances (China, Dutch, and SiouxFalls) we restricted the lengths of the
paths to 6 edges. For the three largest instances (Anaheim, Potsdam, and Chicago) we
considered paths with at most 20 edges. These restrictions were chosen in order to avoid
that only very few paths connect the whole network; very long lines are also not desired
in public transport. The costs of the paths correspond to the lengths of the paths in
kilometers, which is given by the lengths of the edges in the network data. All instances
were reduced by some preprocessing, see Section 8.1 in Chapter 8.

Table 4.1 gives some statistics on the instances. It shows the number of nodes, edges,
and arcs for the networks and the associated Steiner connectivity digraphs as well as the
number of paths for all instances. One can see that the number of arcs of the Steiner
connectivity digraph, which is the number of variables in the strengthened directed cut
formulation (SCPrarc+), is nearly quadratic in the number of paths P.

Table 4.2 presents the performance of the undirected cut formulation including SPI sep-
aration in comparison to the undirected cut formulation, the strengthened directed cut
formulation, and the undirected cut formulation extended by partial projection. More
precisely, the table shows the LP value and the computation time in CPU seconds for
solving the LP relaxation of

◦ the weak cut formulation (SCPw
cut),

◦ the cut formulation (SCPcut),
◦ the strengthened directed cut formulation (SCPrarc+),
◦ the weak cut formulation improved by the SPI separation method (SCPw,SPI

cut ), and
◦ the weak cut formulation improved by the partial projection method (SCPw

cut+).
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4 Solving the Steiner Connectivity Problem

A ‘*’ in the time column indicates that the time limit of five hours was reached. A
‘–’ indicates that this formulation exceeds the memory limit of the used computer. All
computations were done with version 1.2.0 of SCIP [2, 95] on an Intel Quad-Core 2, 3.0
GHz computer (in 64 bit mode) with 6 MB cache, running Linux and 16 GB of memory.
By default, we use the simplex method of Cplex 12.1 [61] for solving LPs (in single core
mode).

We initialize all formulations with the following cut∑
p∈P

apxp ≥ |T | − 1, ap = min{|{t ∈ T : t ∈ p}|, |p|},

which can be interpreted as computing the minimum number of lines to connect all ter-
minal nodes. Here, each line is weighted by the minimum of its length and the number of
terminal nodes it contains. Note, if all nodes are terminal nodes, each path is weighted
by its lengths which is the number of terminal nodes minus one. In this case the above
inequality corresponds to the Steiner partition inequality where each node (=terminal
node) forms a single partition set. Then a cutting plane algorithm depending on the for-
mulation was run until no improvement could be made or the time limit was exceeded.
For the directed cut formulation we inserted all terminals twice into the Steiner connec-
tivity digraph in order to use them as sources and sinks at the same time, i. e., we used
back cuts (compare with Koch and Martin [66]) from terminal to root node which speeds
up the computations. The partial projection method was stopped if we did not find a cut
or if the LP value did not change for ten rounds of cuts by more than 1% (formulation
(SCPw

cut+)). For the bigger instances Anaheim, Potsdam, and Chicago, we started the
first partial projection separation round after the objective value could not be improved
by at least 1.5% in one Steiner partition separation round. This is done to get a better LP
value for initializing the path neighborhoods of the shrinking procedure, which is not nec-
essary for the smaller instances. To keep the path neighborhood cut subsystem within a
tractable size, we consideredW ′ := {W i

t | t ∈ T \{r}, 0 ≤ i ≤ max{3,
⌈ |V |
|T |
⌉
} for the path

neighborhoods of the terminals and stopped the procedure when |δ−(W i
t )| ≥ 100 000. For

the two big Chicago instances, we stopped the shrinking procedure for the path neigh-
borhoods after the first shrinking step, i. e., after all nodes are contained in a partition
set with at least one terminal node, see Section 4.1.3.

Let us now analyze the results in Table 4.2. The advantage of the weak cut formulation
(SCPw

cut) is its compactness. This formulation has the smallest number of variables and
inequalities. Moreover, the separation problem for the weak Steiner path cut constraints
can be solved in the original undirected graph. The weak cut formulation (SCPw

cut),
therefore, has the shortest computation times. Considering the cut formulation (SCPcut),
we only get a small increase of the LP value for few instances compared to the weak cut
formulation (SCPw

cut), whereas the computation time of (SCPcut) always takes much
longer, since the separation problem requires the construction of the Steiner connectivity
digraph. However, the Steiner connectivity digraph can be used to improve the LP
bound significantly via the strengthened cut formulation (SCPrarc+). The weaknesses of
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4 Solving the Steiner Connectivity Problem

this model are the long computation times and the memory consumption, since it uses
the arcs of the Steiner connectivity digraph as variables. Note that the size of the Steiner
connectivity digraph depends on the number and length of the paths in the original graph,
which can become very large. For this reason, the strongest formulation, the strengthened
directed cut formulation (SCPrarc+), becomes practically intractable for large problems.
Its LP value could not be computed for Anaheim2 and for Chicago2, because of the
excessive memory consumption. Model (SCPw

cut+) combines the compactness of the weak
cut formulation with the quality of the strengthened directed cut formulation. The results
show that (SCPw

cut+) indeed approximates the strengthened directed cut formulation very
well. Its memory consumption can be controlled via the definition of the considered cuts.
Its LP value can therefore be computed for all instances. Considering the LP value of
model (SCPw,SPI

cut ), it becomes apparent that most of the strength of the directed cut
formulation can also be achieved by separating Steiner partition inequalities as described
in Section 4.1.1. For seven instances the LP bounds of model (SCPw,SPI

cut ) are as good
as the LP bounds of (SCPrarc+) or (SCPw

cut+); for two instances (SCPw,SPI
cut ) even yields

the best LP bounds that can be computed within the given time limit. The results
imply that the Steiner partition inequalities are the key to improve the undirected cut
formulation for most Steiner connectivity instances. Model (SCPw,SPI

cut ) provides an easy
and time-saving way to utilize them computationally, models (SCPrarc+) and (SCPw

cut+)
provide quality certificates in terms of strong lower bounds.
We also used a branch-and-cut method to solve the Steiner connectivity problem for the
six test instances (without the “Tiny-examples”). We used the default heuristics of SCIP,
the strong branching rule, and the two heuristics described in Subsection 4.2. The SCIP
separators were turned off, no presolving, nor propagating, the minimal efficiency for a
cut to be included was reduced to 0.001 for the root node. We only made 1 separation
round per node. We limited the computation time for each instance to 10 hours. The
results for the models (SCPw

cut), (SCPw
cut+), and (SCPw,SPI

cut ) are shown in Tables 4.3, 4.4,
and 4.5. These results slightly differ from the results given in our earlier Paper [20]; the
results in Tables 4.3, 4.4, and 4.5 include the second heuristic, the results given in the
Paper [20] do not include the second heuristic. This heuristic needs much time. We,
therefore, did not compute as many nodes in ten hours as in the results in [20]. However,
the primal solution especially for the Potsdam instances can be improved by around 1%
to 1.6%.

The instances China, Dutch, SiouxFalls, and Anaheim1 can be solved by all three formu-
lations. (SCPw,SPI

cut ) and (SCPw
cut+) need much less nodes than (SCPw

cut). Anaheim2 can
also be solved by (SCPw,SPI

cut ) and (SCPw
cut+) but not by (SCPw

cut) within the given time
limit. (SCPw,SPI

cut ) performs best on Anaheim2, it solves the problem in the root node
within seconds. Model (SCPw,SPI

cut ) finds the best solutions for nearly all instances except
Potsdam2, here the partial projection method finds the best solution. The gap for all
instances can be reduced by SPI separation, for Potsdam1, Potsdam2, and Chicago1 the
gap is below 5%. This shows that indeed large scale Steiner connectivity problems can
be solved to proven optimality or near optimality.
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Table 4.3: Solving (SCPw
cut) with branch-and-cut using SCIP. The time is given in seconds; a ‘*’ indicates

that the computation time limit of 10 hours was reached. Instances solved to optimality are in bold characters.
We highlighted the best values for primal solution and dual bound by a green color, for instances solved to
optimality, we highlighted the shortest computation time.

name bb nodes time dual bound primal solution gap

China1 47 <1 8382.0 8382 0.00%
China2 23 <1 8089.0 8089 0.00%
Dutch1 31 <1 198.0 198 0.00%
Dutch2 19 <1 198.0 198 0.00%
SiouxFalls1 3 068 33 114.0 114 0.00%
SiouxFalls2 515 10 112.0 112 0.00%
Anaheim1 491 148 976603.0 976603 0.00%
Anaheim2 37 038 * 826098.5 836167 1.22%
Potsdam1 12 587 * 261912.0 269156 2.77%
Potsdam2 2 543 * 256862.3 266051 3.58%
Chicago1 671 * 2689.0 2806 4.35%
Chicago2 164 * 2214.2 2778 25.47%

Table 4.4: Solving (SCPw
cut+) with branch-and-cut using SCIP.

name bb nodes time dual bound primal solution gap

China1 1 <1 8382.0 8382 0.00%
China2 1 <1 8089.0 8089 0.00%
Dutch1 3 <1 198.0 198 0.00%
Dutch2 6 <1 198.0 198 0.00%
SiouxFalls1 1 2 114.0 114 0.00%
SiouxFalls2 1 2 112.0 112 0.00%
Anaheim1 150 293 976603.0 976603 0.00%
Anaheim2 3 703 13 110 831749.0 831749 0.00%
Potsdam1 9 619 * 2626091.1 268784 2.35%
Potsdam2 2 175 * 257157.9 263877 2.61%
Chicago1 268 * 2703.1 2939 8.73%
Chicago2 5 * 2303.7 2980 29.35%

Table 4.5: Solving (SCPw,SPI
cut ) with branch-and-cut using SCIP.

name bb nodes time dual bound primal solution gap

China1 11 <1 8382.0 8382 0.00%
China2 1 <1 8089.0 8089 0.00%
Dutch1 33 <1 198.0 198 0.00%
Dutch2 1 <1 198.0 198 0.00%
SiouxFalls1 1 <1 114.0 114 0.00%
SiouxFalls2 1 <1 112.0 112 0.00%
Anaheim1 121 42 976603.0 976603 0.00%
Anaheim2 1 170 831749.0 831749 0.00%
Potsdam1 12 225 * 262186.3 267881 2.17%
Potsdam2 2 556 * 256918.5 265114 3.19%
Chicago1 611 * 2685.8 2800 4.25%
Chicago2 68 * 2332.5 2772 18.84%
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Chapter 5

Concluding Remarks for Part I

In the first part of this thesis we introduced the Steiner connectivity problem that gen-
eralizes the Steiner tree problem to a path-connectivity setting. We investigated its
complexity, approximation results, integer programming formulations, and polyhedral
aspects. It turned out that the Steiner connectivity problem has strong relations to
the Steiner tree problem, the (submodular) set covering problem, and that it can be
interpreted in the context of hypergraphs. The relation to Steiner tree problems yields
polynomially solvable cases if the number of terminal nodes is fixed. Moreover, the 2-
approximation algorithm of Goemans and Williamson for Steiner tree and Steiner forest
problems can be generalized to the Steiner connectivity problem. We showed that this
yields a k + 1-approximation if all paths contain at most k edges or at most k terminal
nodes. The relation to the set covering problem yields a log k approximation if all nodes
are terminal nodes. The two terminal case gives rise to a TDI description; this yields
a combinatorial companion theorem to Menger’s theorem for hypergraphs and charac-
terizes paths and cuts in hypergraphs as well as connecting and disconnecting sets as a
blocking pair. Table 5.1 summarizes similarities and differences between the Steiner tree
problem and the Steiner connectivity problem.

We further discussed the relative strengths of different formulations of the Steiner con-
nectivity problem, namely, the undirected and the directed cut formulation in several
variants. If we take the corresponding LP relaxations as a measure of strength, we
obtain the following picture:

PLP (SCPw
cut) ⊇ PLP (SCPcut) = PLP (SCParc)|P ⊇

PLP (SCPSPI
cut )

PLP (SCPcut+)
⊇ PLP (SCPrarc+)|P,

PLP (SCPw
cut) ⊇

PLP (SCPw,SPI
cut )

PLP (SCPw
cut+)

⊇ PLP (SCPrarc+)|P.

Here, (SCPSPI
cut ) and (SCPcut+) denote the cut formulation including SPI separation and

partial projection, respectively. As (SCPcut) is so hard to compute, we resorted to the
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Table 5.1: Comparing complexity and polyhedral results for the Steiner tree problem and the Steiner connec-
tivity problem.

Steiner tree problem Steiner connectivity problem

general case NP-hard
|T | = k polynomial
|T | = 2 Menger’s theorem and Menger’s companion theorem

T = V polynomial NP-hard
minimum spanning tree Greedy: H(k)-approx.

k max. number of edges in paths

primal-dual alg. 2-approximative (k + 1)-approximative
k minimum of

(a) max. #edges/path,
(b) max. #terminals/path

polyhedral results directed formulation dominates undirected formulation
(has to include flow balance constr.)

Steiner partition ineq. implied by directed formulation

associated weak versions PLP (SCPw,SPI
cut ) and PLP (SCPw

cut+), see the second line of in-
clusions. SPI separation and partial projection lead to incomparable formulations: The
latter might produce only part of the or different SPIs, but some additional inequali-
ties not covered by the former. The tightest formulation is produced by the extended
formulation PLP (SCPrarc+)|P.

In practice, however, the strongest formulation does not necessarily produce the best
results, because there is a tradeoff between the strength of a dual bound and the time
needed to compute it. The ranking depends on the time limit and whether we compute an
LP bound or an IP value. If the goal is to produce the best bound (including branching)
a good choice is formulation PLP (SCPw,SPI

cut ). This is somewhat unexpected: Neither the
tightest formulation PLP (SCPrarc+)|P nor the related formulation PLP (SCPw

cut+) domi-
nate the other formulations – although PLP (SCPw

cut+) is close to PLP (SCPw,SPI
cut ). In a

sense, this result confirms the general experience that extended formulations have strong
theoretical properties, but they do not necessarily provide formulations well suited for
practical computations – more research is needed to understand this behavior.

In the context of line planning, the Steiner connectivity problem corresponds to comput-
ing a cost minimal line plan for a given line pool, ignoring capacities. The considered
cut inequalities and Steiner partition inequalities are also valid for line planning. We will
consider capacitated versions of such inequalities to improve the LP relaxation of the line
planning models in Chapter 7.
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The Line Planning Problem
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Chapter 6

Line Planning Models

In this chapter, we investigate the line planning problem, a fundamental problem in
the design of a public transportation system. It consists of finding a set of lines in an
infrastructure network and their frequencies of operation (line planning) such that a
given travel demand can be routed (passenger routing). There are two main objectives,
namely, minimization of operation costs (the operator’s point of view) and minimiza-
tion of travel and transfer times (the passengers’ point of view). A great challenge is
the integration of line planning and passenger routing; it discloses essential degrees of
freedom. Another major challenge is the treatment of transfers. Existing models either
relax one of these two important aspects or they are of extremely large scale, and seem
to be computationally intractable.

We propose a novel direct connection approach that allows an integrated optimization
of line planning and passenger routing, including accurate estimates of the number of
direct travelers, for large-scale real-world instances. To analyze the improvement over
existing models that integrate line planning and passenger routing, we also introduce
the approaches of Borndörfer, Grötschel, and Pfetsch [15] and of Schöbel and Scholl [93].
Borndörfer, Grötschel, and Pfetsch propose a multi commodity flow model that generates
passenger and line paths dynamically but neglects a large number of transfers. Schöbel
and Scholl use a change-and-go graph to achieve a detailed treatment of transfers. The
drawback of this model is its enormous size. The new approach combines the advantages
of the existing models to arrive at a model of manageable size including a transfer treat-
ment. Indeed, a comparison of all models in Chapter 8 shows that the direct connection
approach is currently the only computationally tractable integrated line planning and
passenger routing method that provides good estimates of transfer times. Some parts of
this chapter are published in [17, 23].

The chapter is structured as follows. We give an overview of the literature dealing with
the line planning problem in Section 6.1. The basic notations and definitions for the line
planning problem are stated in Section 6.2. We discuss the approaches of Borndörfer,
Grötschel, and Pfetsch [15] and of Schöbel and Scholl [93] in Sections 6.3 and 6.4, respec-
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tively. Our new direct connection approach is introduced in Section 6.5. We end this
chapter by comparing all introduced models in Section 6.6.

6.1 Literature Overview

Line planning has been investigated extensively in the operations research literature over
the last forty years. Topics range from heuristic approaches over integer programming
models with fixed passenger routes to the simultaneous optimization of line planning
and passenger routing. The task of all approaches is to find a set of lines (paths in a
given infrastructure network) with frequencies (how often the line is operated in a given
time horizon) such that a given travel demand (usually a point-to-point demand in the
network) can be satisfied. In the following we will overview the main developments to
approach the line planning problem with integer programming methods. We will start
by summarizing the main results concerning the complexity of this problem and will
then discuss models and solution methods. Here, we will distinguish between approaches
that assume a fixed passenger routing, i. e., the number of passengers that travel over
each edge in the infrastructure is known in advance, and approaches that integrate a
passenger routing, i. e., line planning and passenger routing is done simultaneously. A
comprehensive survey article on methods and models to deal with the line planning
problem is given by Schöbel [92]. The article also discusses further approaches not
considered here and covers all of the relevant literature up to the year 2010.

Nearly all integer programming approaches for line planning are based on a so-called line
pool, i. e., in a “pre-phase” a set of possible lines is generated, e. g., governed by given
rules and length restrictions, and afterwards the optimization model chooses a subset of
lines out of the line pool. An exception to such a two stage approach is proposed by
Borndörfer, Grötschel, and Pfetsch [15, 16], see also below, who integrated the generation
of lines in the optimization model. If not stated otherwise all approaches discussed in
the following assume a predefined line pool. For the computation of a line pool see, e. g.,
Ceder and Wilson [34] who describe a method to enumerate all lines satisfying a length
restriction with respect to a shortest path.

Complexity. The line planning problem is NP-hard in nearly all cases. Bussieck [29]
shows that the feasibility problem for line planning with fixed passenger routing is NP-
hard. The feasibility problem is to find a set of lines (out of a given set) such that given
lower and upper bounds on the sum of the frequencies for every edge in the infrastructure
network are satisfied. The lower and upper bounds on the sum of the frequencies can be
interpreted as a minimum operation frequency to transport all passengers and a maximum
operation frequency to guarantee a safe service. Claessens, van Dijk, and Zwaneveld [37]
show that the cost optimization problem for line planning with fixed passenger routing is
NP-hard, i. e., finding a line plan with minimum costs that satisfies given lower bounds
on the sum of the frequencies for all edges in the network.

Schöbel and Scholl [93] show that line planning with integrated passenger routing is also
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NP-hard. More precisely, they show that finding a set of lines fulfilling a given budget
constraint and allowing a passenger routing with a minimal number of transfers is NP-
hard. Their proof can be easily extended to show that the line planning problem with
integrated passenger routing is already NP-hard for one OD pair. Torres et al. [102]
analyze the complexity of line planning problems for special network topologies, namely,
paths and trees, and different degrees of freedom in line construction, e. g., lines skipping
some stations on their route, so-called express lines, and uni-directional lines. Their
analysis is motivated by the Trolebus system of Quito in Ecuador which consists of a
trunk route and a number of feeder bus systems. They show that nearly all combinations
of topology, line construction, and line cost structure lead to NP-hard problems. The
only polynomially solvable case is on a path-graph with no express lines, no fixed costs
for lines, and no directed lines.

Fixed Passenger Routing. The first branch and bound approach for line planning
problems was developed by Bouma and Oltrogge [27]. They investigated line planning
problems of Nederlandse Spoorwegen, which operates three types of railway transporta-
tion systems, two types for regional traffic and one for intercity traffic, which mainly
differ in their speed. Each transportation system is considered individually; they propose
a method, the so-called system split, to compute an a priory distribution of passengers to
the different transportation systems. The idea is that passengers change to fast trains as
early as possible and to slow trains as late as possible. Taking the additional assumption
that passengers travel on shortest paths, one can fix the passenger flow on each edge in
the network, independent of the line plan. A subsequent second planning step then uses
integer programming techniques to cover this fixed passenger flow by lines. Bouma and
Oltrogge’s system split approach was taken up and improved by several research groups,
who all provide computational analyses for a benchmark data set of the Dutch regional
and intercity network. Bussieck, Kreuzer, and Zimmermann [30] maximize the passenger
convenience by maximizing the number of direct travelers. They start with a model in
which direct travelers of one demand relation are associated with a specific line. This
leads to a large scale model which is hard to compute. They propose a relaxation by
aggregating the direct travelers on all usable lines which yields an upper bound on the
number of direct travelers. This relaxation can be solved quite efficiently. Computing
the “real” number of direct travelers for the frequencies of the lines as in the solution of
the relaxed model, i. e., setting the lines in the direct traveler model to the frequencies
computed by the relaxed model, yields a lower bound on the number of direct travelers.
They show that the gaps between these two bounds are small (< 3.1%). A disadvan-
tage of this model is that solutions often result in long routes for the lines. The line
operating cost usually depends on the lengths of the lines. This motivated Claessens,
van Dijk, and Zwaneveld [37] to propose a model that minimizes the operating costs of
a line plan, i. e., the costs of the personnel and the rolling stock. They derive a model
with a nonlinear objective function and nonlinear constraints, propose a linearization,
and solve it using a branch and bound algorithm including preprocessing techniques and
the generation of lower bounds. In their computations they compare an optimal solu-
tion of the cost minimization approach with an optimal solution of the direct travelers
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approach. The costs can be reduced by around 17% while the number of direct travelers
decreases by 6%. Bussieck [29] discusses both approaches, the direct traveler and the
cost minimization approach, in detail; he further presents complexity results, polyhe-
dral investigations, algorithmic aspects, and detailed computations. Bussieck, Lindner,
and Lübbecke [31] reconsider the nonlinear cost minimization model of Claessens, van
Dijk, and Zwaneveld [37]. They study different linearizations of the model and propose
a variable fixing method to obtain good primal solutions. More precisely, they use the
nonlinear model to determine “promising lines” and solve the integer linear model only
for this line set. In this way, they obtain a good primal solution after five minutes which
is then used as an upper bound in a branch-and-bound algorithm for a linearized model.
Goossens, van Hoesel, and Kroon [55] develop a sophisticated branch-and-cut algorithm
for the linearized cost minimization model of Claessens, van Dijk, and Zwaneveld. They
propose several preprocessing methods, cutting planes, and branching rules. In a compu-
tational analysis they compare their algorithm to the integer programming solver Cplex
6.6.1 (which was at that time the state of the art) and conclude that their algorithm
performs significantly better.

The drawback of a fixed passenger routing is that it ignores that the passenger flow
strongly depends on the line plan which is to be computed. Hence, approaches that con-
sider an integrated line planning and passenger routing become more and more popular.

Integrated Passenger Routing. Schöbel and Scholl [93] and Scholl [94] propose a
model to compute a line plan that minimizes the travel times including a penalty for
each transfer. To this end, they construct a so-called change-and-go graph. This graph
contains multiple copies of infrastructure edges for all passing lines and transfer edges
for all possible transfers from one line to another. They propose a Dantzig-Wolfe decom-
position to solve the LP relaxation of the change-and-go model. Recently, Schmidt [91]
proposes a model also based on the change-and-go graph that minimizes the travel and
transfer times under the assumption that the capacities of the lines allow a shortest path
routing for all passengers. The idea is to overcome unrealistic effects in a system opti-
mum, e. g., that a passenger has to use a long detour because the capacity of a shortest
path is used up by other passengers; in reality passengers probably do not behave this
way. A system optimum is usually computed by the other line planning models. A
drawback of the shortest path routing of Schmidt, however, is that some instances may
not even yield valid solutions since the total capacities do not suffice to transport all
passengers on shortest paths.

Borndörfer, Grötschel, and Pfetsch [15] present a multi commodity flow model that
allows to generate the paths of the passengers and the lines dynamically during the
optimization process. The objective is a weighted sum of travel times and operating
costs. As mentioned above, the advantage of this model is that it does not require a
predefined line pool. Requirements on valid lines, e. g., turning restrictions, are integrated
in the dynamic line generation. They showed the tractability of their model by solving
its LP relaxation for data of the public transport system in Potsdam, a city in Germany,
and present a heuristic to find a feasible solution. Solving the (integer) model by a

104



6.2. Notation

branch-and-bound method remains a challenge. However, computational results for a
branch-and-bound implementation of this model for a given line pool (with up to 30 000
lines) are presented by Borndörfer, Neumann, and Pfetsch [25].

Nachtigall and Jerosch [74] propose to partition the passenger paths into partial routes of
direct connections. This allows to count the number of transfers on each passenger path.
They consider a utility function for each path by subtracting the travel time (including a
transfer penalty) for each path from a minimum possible travel time multiplied by a given
detour parameter. If the utility gets negative the passengers will not travel by public
transport and are therefore “lost”. The objective of the model is to maximize the overall
utility. They propose a dynamic generation of the passenger paths similar to Borndörfer,
Grötschel, and Pfetsch. They present computational results for the bus network (line
pool of 119 lines) and the tram network (line pool of 18 lines) of Berlin. Using a system
split, the travel demand is distributed to the different transportation systems without
fixing it to the edges, and each transportation system is solved independently.

Considering these three approaches, one can conclude that a detailed treatment of trans-
fers in line planning with integrated passenger routing seems to involve a model of enor-
mous size. The change-and-go model of Schöbel and Scholl requires a capacity constraint
for each edge in each line. In the model of Nachtigall and Jerosch, each partial passen-
ger route has to be assigned to a certain line that can operate this partial route. This
leads to a number of capacity constraints in the same dimension as for the change-and-go
approach which increases polynomially with the number of considered lines, i. e., such
models are hard to handle for real world problems. Compared to that, the model of
Borndörfer, Grötschel, and Pfetsch is of “relatively small” size since the capacity con-
straints are aggregated for each transportation mode, e. g., bus or tram. However, this
aggregation does not allow the treatment of transfers within one transportation mode.
We will propose in this chapter a new approach that handles transfers in an approxima-
tive way. We will see that the resulting model can be solved as efficiently as the model of
Borndörfer Grötschel, and Pfetsch for a given line pool, and that it estimates the number
of direct travelers quite accurately. To this purpose, we will introduce the column gener-
ation model of Borndörfer, Grötschel, and Pfetsch [15] in Section 6.3 in more detail. The
change-and-go approach of Schöbel and Scholl [93] is described in Section 6.4; we will use
this approach for evaluations. The new approach is proposed in Section 6.5. All three
models use the same setting and basic notation which we will introduce in the following
section.

6.2 Notation

We state in this section basic notation and definitions for a mathematical treatment of
the integrated line planning and passenger routing problem. Our setting is as follows.

Transportation Network. Considering the public transport in a city, we are usu-
ally given different modes of transportation, e. g., bus, tram, and subway. Let M
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Figure 6.1: Multi-modal transportation network in Potsdam. Red: tram, violet: bus, blue: ferry, large nodes:
termini, small nodes: stations, light blue: rivers and lakes.

be the number of different transportation modes and let Ni = (Vi, Ei) be an undi-
rected graph representing the infrastructure of mode i = 1, . . . ,M , i. e., stations or
stops and streets (e. g., for bus transportation) or tracks (e. g., for tram transporta-
tion) are given as nodes and edges of an infrastructure network. We then denote by
N = (V,E) = (V1 ∪ . . .∪ VM , E1 ∪ . . .∪EM ∪EM+1) an undirected graph representing a
multi-modal transportation network. Here, ET := EM+1 ⊆

⋃
1≤i,j≤M Vi×Vj are transfer

edges, i. e., walking connections between stations of different or equal modes. All other
edges EL := ∪Mi=1Ei are called infrastructure edges or line edges. Each edge e ∈ E has a
length le ∈ Q≥0 and a travel time τe ∈ Q≥0. We add a transfer penalty σ ∈ Q≥0 to the
travel time of each transfer edge e ∈ ET . Figure 6.1 shows three infrastructure networks
(bus, tram, ferry) of the public transportation system of the city of Potsdam in Germany.

OD Matrix and Demand Graph. Line planning is usually based on demand data in
the form of so-called origin-destination matrices (OD-matrices). An OD matrix gives the
number of passengers that want to travel from one point in the network to another point
within a fixed time horizon. We call the points where passengers start and end their trips
OD nodes and denote them by VO. Each OD node is connected to the transportation
network N by so called OD edges which we denote by EO, i. e., EO ⊆ VO×(V1∪. . .∪VM ).
Sometimes, an OD node is connected by a single OD edge to N , i. e., the OD node is
linked to exactly one station in the public transport network. In other cases, an OD
node is a virtual node representing a certain area (a traffic cell) and all stations (network
nodes) within the cell are connected to this OD node by OD edges. We are also given
lengths le ∈ Q≥0 and travel times τe ∈ Q≥0 on the OD edges e ∈ EO. Let the entries
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of the (not necessarily symmetric) OD matrix be denoted by (dst) ∈ QVO×VO
≥0 , i. e., dst

is the number of passengers that want to travel from s ∈ VO to t ∈ VO. We denote by
D = {(s, t) ∈ VO × VO | dst > 0} the set of all OD-pairs, i. e., the set of every two OD
nodes with positive travel demand.

Let H = (VO, F ) be the (undirected) demand graph, where F =
{
{u, v} |u, v ∈ VO, duv+

dvu > 0
}
is the set of edges between every two OD nodes u, v ∈ VO with positive demand

in at least one direction.

Lines and Frequencies. Given a set of termini Ti ⊆ Vi for each mode i ∈ 1, . . . ,M , a
line ` of mode i is a simple path in the mode infrastructure network Ni = (Vi, Ei) that
starts and ends at a terminus. Let L be the set of all lines; L can be given explicitly by a
so called line pool or implicitly by a set of rules that allow to generate lines dynamically.
This depends on the model and on the restrictions for the validity of lines. Throughout
this thesis we assume a given line pool. Denote by F ⊆ N a set of possible frequencies
at which these lines can be operated. It is possible to restrict the set of frequencies for
different modes. In this case we denote by Fi ⊆ F the set of possible frequencies for mode
i. Then, in the following, a combination of line ` and frequency f is always chosen such
that f ∈ Fi if line ` has mode i. We further denote by F` ∈ N≥0 the maximal possible
frequency of line ` which is, of course, equal for all lines of the same mode. Finally, we
define by Fe ∈ N the maximum operation frequency of edge e ∈ E, i. e., Fe is an upper
bound on the sum of the frequencies of lines operating on edge e.

A line plan is a tuple (L′, f ′) with L′ ⊆ L being a subset of lines and f ′ being a function
that assigns exactly one frequency to each line ` ∈ L′, i. e., f ′ : L′ → F .

Capacities and Costs. For a line ` ∈ L of mode i ∈ {1, . . . ,M} and a frequency f ∈ F ,
we are given a capacity κ`,f = κi · f with κi being the capacity of a line of mode i and a
cost c`,f = Ci + f ·

∑
e∈` c

i
e. The latter term includes a fixed cost Ci ∈ Q≥0 depending

on the transportation mode and an operating cost per edge cie ∈ Q≥0 depending also
on the transportation mode; a possible definition can be cie = ci · le with ci ∈ Q≥0,
i ∈ {1, . . . ,M}, i. e., the operating cost depends on the length of the edge.

Passenger Routing Graph. Passengers travel along routes in a directed passenger
routing graph G = (V ∪VO, A) that arises from the network (V ∪VO, E∪EO) by replacing
each edge e ∈ E∪EO with two antiparallel arcs a(e) and ā(e); conversely let e(a) ∈ E∪EO
be the undirected edge corresponding to a ∈ A. We will denote by AT the set of all
transfer arcs (a ∈ AT ⇔ e(a) ∈ ET = EM+1), by AO all OD arcs (a ∈ AO ⇔ e(a) ∈ EO)
and by AL all infrastructure arcs or line arcs (a ∈ AL ⇔ e(a) ∈ EL = ∪Mi=1Ei). Travel
times and lengths of the undirected edges are carried over to their directed counterparts.
Let us say that an undirected line covers arcs a(e) and ā(e) if it contains edge e ∈ E,
i. e., we interpret an undirected line ` in such a way that passengers can travel on this
line in both directions. Denote by Pst the set of all possible directed passenger paths
from s ∈ VO to t ∈ VO in G and by P =

⋃
(s,t)∈D Pst the set of all such paths. The travel

time of path p ∈ P is τp =
∑

a∈p τa.

Line Planning Problem. A feasible line plan is a line plan, i. e., a tuple (L′, f ′), L′ ⊆ L,
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Figure 6.2: Public transport network with seven stops, seven lines (left), and given demand (right).

f ′ : L′ → F , that provides enough capacity for the given demand, i. e., there exists a multi
commodity flow to transport the given demand that satisfies the capacities implied by the
line plan. The line planning problem is to find a feasible line plan that optimizes a certain
objective. There are mainly two competing objectives for line planning: minimizing
passenger discomfort such as travel times or number of transfers, and minimizing the
costs of a line plan.

Example 6.1. The left of Figure 6.2 shows an infrastructure network of some public
transport system. The nodes represent stations/stops and the edges represent, e. g., streets
connecting the stations/stops. The numbers on the edges give the travel times in min-
utes. The picture also shows a pool of seven possible lines that can be established in the
infrastructure network. The table on the right of Figure 6.2 lists demands that have to be
satisfied, e. g., 50 passengers want to travel from station/stop a to f . Here, we assume
that an OD node corresponds to exactly one station/stop. Each line can be operated once
or twice, i. e., F = {1, 2}; a line can transport 50 passengers at each operation, i. e.,
κ = 50. Finally, passengers can transfer in every stop/station from one line to another
line if both lines contain this stop/station.

Operating each line twice produces a feasible line plan. If each transfer counts as 5 min-
utes, then operating lines `2, `3, `5, `7 once and `4 twice is an alternative feasible solution
with minimal travel time connections, including transfer penalties, for all passengers. In
fact, all passenger can travel directly, i. e., without transfers, on shortest connections
w. r. t. travel times and transfer penalties. A feasible line plan with a minimum number
of lines is, e. g., to operate lines `2, `6, `7 twice. This solution is also cost minimal if we
only consider a constant cost for establishing a line and no operating costs.

Remark 6.2. If the demand graph H = (VO, F ) is connected, then a feasible line plan
must connect all OD nodes. In other words, if we neglect capacities and frequencies of the
lines and consider a cost optimization, the line planning problem with connected demand
graph reduces to the Steiner connectivity problem, see Definition 1.2.

In the following, we will consider three approaches to model the integrated line planning
and passenger routing problem in order to analyze situations as those discussed in Ex-
ample 6.1 above. In particular, we will investigate models to find a feasible line plan that
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minimize a weighted sum of total travel times and line operating costs. Furthermore, we
will analyze how transfer penalties (as considered in the example) can be best included
in the total travel time.

6.3 Basic Dynamic Model

The first model we will consider in detail is a “discrete frequency variant” of the model
proposed by Borndörfer, Grötschel, and Pfetsch [15]. They developed a multi-commodity
flow model that aims at a dynamic generation of line and passenger path variables. The
objective is a combination of total passenger travel times and operating costs. We will
consider a variant that has the above mentioned features but handles the frequency of a
line explicitly, i. e., we consider a finite set of possible integral frequencies for each line
instead of a continuous frequency. We will denote this model as the basic dynamic model.

6.3.1 Integer Program

The integer programming formulation for the basic dynamic model (BD) is

(BD) min λ
∑
`∈L

∑
f∈F

c`,f x`,f + (1− λ)
∑
p∈P

τp yp∑
p∈Pst

yp = dst ∀ (s, t) ∈ D (6.1)

∑
p:a∈p

yp ≤
∑

`:e(a)∈`

∑
f∈F

κ`,f x`,f ∀ a ∈ AL (6.2)

∑
f∈F

x`,f ≤ 1 ∀ ` ∈ L (6.3)

∑
`:e∈`

∑
f∈F

f · x`,f ≤ Fe ∀ e ∈ E (6.4)

x`,f ∈ {0, 1} ∀ ` ∈ L, ∀ f ∈ F (6.5)
yp ≥ 0 ∀ p ∈ P. (6.6)

We consider two types of variables, a binary variable x`,f ∈ {0, 1} that indicates if line `
is operated with frequency f ∈ F , and a continuous variable yp ≥ 0 that accounts for
the number of passengers traveling on path p. The objective of program (BD) aims at a
minimization of line operating costs and passenger travel times, weighted by a parameter
0 ≤ λ ≤ 1. Equations (6.1) stipulate a passenger flow of dst for each OD-pair (s, t) ∈ D.
Inequalities (6.2) enforce sufficient transportation capacity on each arc. Inequalities (6.3)
ensure that a line is operated with at most one frequency, while inequalities (6.4) bound
the sum of the frequencies of lines that can be operated on an individual edge.
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We use a path formulation for both passenger paths and line paths since it allows to
include possible restrictions of passenger paths and/or line paths, e. g., to avoid long
detours in the network or to require, e. g., an unsplittable flow of the passenger demand.
Pfetsch and Borndörfer consider different passenger routings in terms of a path based
model in [78]. They also discuss an arc formulation for passenger and line paths in [16].

Program (BD) differs from the one in Borndörfer, Grötschel, and Pfetsch [15] by the use
of binary variables x`,f for the operation of line ` ∈ L at frequency f ∈ F instead of a
binary variable x` that indicates if line ` is operated and a continuous variable f` ≥ 0
for the frequency of line `. We use a discrete set of frequencies since this is an important
requirement in practice. It can, however, be shown that we get the same LP relaxation
for model (BD) as Borndörfer, Grötschel, and Pfetsch for the case F` ≥ Fe for all ` ∈ L,
e ∈ E. More precisely, the following is true.

Proposition 6.3. Let F` ≥ Fe for all ` ∈ L, e ∈ E, i. e., the maximal frequency to
operate a line is at least as high as the maximum operation frequency of an edge. Let
further be the costs and the capacities as defined in Section 6.2, i.e., κ`,f = κi · f with
κi ≥ 0 and c`,f = Ci + f ·

∑
e∈` c

i
e with Ci, cie ≥ 0 for all ` ∈ L, f ∈ F . Then each

optimal LP solution x∗ of (BD) satisfies x∗`,f = 0 for all ` ∈ L, f ∈ F \ {F`}.

Proof. Assume there is an optimal LP solution x∗ for model (BD) with x∗`,f1 > 0 for
f1 ∈ F \ {F`}, ` ∈ L. Let f̃ :=

∑
f∈F f · x∗`,f . Note that 0 ≤ f̃ ≤ Fe ≤ F` for all ` ∈ L,

e ∈ E. Then x∗∗ := x∗ with x∗∗`,f := 0 for all f ∈ F \ {F`} and x∗∗`,F` := f̃
F`

yields an LP
solution x∗∗ for (BD) with the same capacities as for x∗ and lower cost since∑

f∈F
κ`,fx

∗
`,f = κi

∑
f∈F

f x∗`,f = κif̃ = κiκiF`x
∗∗
`,F`

=
∑
f∈F

κ`,fx
∗∗
`,f∑

f∈F
c`,fx

∗
`,f =

∑
f∈F

Ci x∗`,f +
∑
f∈F

fx∗`,f ·
∑
e∈`

cie =
∑
f∈F

Ci x∗`,f + F`x
∗∗
`,F`

∑
e∈`

cie

≥
∑
f∈F

c`,fx
∗∗
`,f (

∑
f∈F

x∗`,f ≥ x∗∗`,f ).

Proposition 6.3 implies that we can omit all line variables that do not correspond to
the maximal frequency in the LP relaxation of model (BD), i. e., inequalities (6.3) are
redundant for the LP relaxation of model (BD):

(BDLP) min λ
∑
`∈L

γ` f` + (1− λ)
∑
p∈P

τp yp∑
p∈Pst

yp = dst ∀ (s, t) ∈ D∑
p:a∈p

yp ≤
∑

`:e(a)∈`

κ` f` ∀ a ∈ AL∑
`:e∈`

f` ≤ Fe ∀ e ∈ E

f` ≥ 0 ∀ ` ∈ L
yp ≥ 0 ∀ p ∈ P,
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where x`,F · F` is substituted by f` and γ` := Ci

F`
+
∑

e∈` c
i
e. This is exactly the same LP

relaxation as Borndörfer, Grötschel, and Pfetsch derived in their paper [15]. Note that
they use the same definition of line cost and the same assumption, namely, f` ≤ F , ` ∈ L
with F ≥ Fe for all e ∈ E.

6.3.2 Pricing Problem

The number of passenger variables in model (BD) is usually large, i. e., exponential in
the number of arcs of the passenger routing graph. To handle such a problem, the LP
relaxation is solved by column generation and the integer program by a branch-and-price
algorithm. A column generation or a dynamic generation of variables means that the
linear program is solved iteratively by looking in each step at a subset of variables and
adding additional variables if they have negative reduced cost. The problem of finding
variables with negative reduced cost is called the pricing problem, see also Desrosiers and
Lübbecke [42] for a didactical example of column generation.

The reduced cost can be read off the dual program. Associate dual variables π (un-
bounded), µ ≥ 0, ψ ≥ 0, and η ≥ 0 with constraints (6.1), (6.2), (6.3), and (6.4) of
program (BD). The dual program is then

max
∑

(s,t)∈D

dstπst −
∑
`∈L

ψ` −
∑
e∈E

Feηe

πst −
∑
a∈p

µa≤ (1− λ)τp ∀ (s, t) ∈ D, ∀ p ∈ Pst,

κ`,f
∑

a:e(a)∈`

µa − ψ` − f
∑
e∈`

ηe≤ λc`,f ∀ ` ∈ L, ∀ f ∈ F

µa≥ 0 ∀ a ∈ A
ηe≥ 0 ∀ e ∈ E.

The reduced cost τp for variable yp with p ∈ Pst, (s, t) ∈ D, is

τp = (1− λ)τp − πst +
∑
a∈p

µa = −πst +
∑
a∈p

(µa + (1− λ)τa).

The pricing problem for the y-variables is to find a path p with τp < 0 or to conclude that
no such path exists. This can be done in polynomial time as follows. For all (s, t) ∈ D, we
search for a shortest (s, t)-path p with respect to the nonnegative weights (µa+(1−λ)τa)
on the arcs; we can, for instance, use Dijkstra’s algorithm. If the length of this path p is
less than πst, then yp is a candidate variable to be added to the LP, otherwise, we proved
that no such path exists (for the pair (s, t)).

Proposition 6.4. The pricing problem for passenger path variables in the LP relaxation
of program (BD) is a shortest path problem. It can be solved in polynomial time.

Remark 6.5. Assume L is not a predefined line pool but has to be generated dynamically.
Since the LP relaxation of model (BD) is equivalent to the LP relaxation of the original
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model of Borndörfer, Grötschel, and Pfetsch it follows with the same arguments as in [15]
that the pricing problem for the line path variables is a longest path problem and thus
NP-hard. If the lines have length in O(log |V |), it can be solved in polynomial time.

A drawback of model (BD) is the treatment of transfers. Passenger paths and line
paths are only coupled via the capacity constraints (6.2) in program (BD). Since an arc
aggregates the utilization of all lines of the same mode, passengers are not assigned to
a line and, thus, many transfers, especially between lines of the same mode, cannot be
controlled. Transfers along transfer arcs, in particular transfers between lines of different
modes, can be considered by adding a transfer penalty to the travel time of those arcs.
Using an appropriate expansion of the graph, i. e., using multiple copies of infrastructure
arcs, one for each line, and including an arc for each possible transfer, would allow to
incorporate all transfers. This is the idea of the change-and-go model which we will
introduce in the following section.

6.4 Change-and-Go Model

Schöbel and Scholl [93] proposed an approach that allows a detailed treatment of trans-
fers. The inclusion of transfers is necessary because transfers are an important decision
factor when choosing the travel routes in public transport. The idea of this model is to
set up a so-called change-and-go network that contains a copy of each node and each
edge for every line that contains this node and edge, respectively. Further transfer edges
are added when needed.

6.4.1 Integer Program

A formal description of the change-and-go model is as follows. The basis is a directed
change-and-go graph GCG = (V,A) which corresponds to the passenger routing graph,
see Section 6.2. Its nodes V = VO ∪ VL represent origin/destination nodes and station-
line-pairs, i. e.,

VL = {(v, `) : v ∈ V, ` ∈ L, v ∈ V (`)}, VO = {s ∈ VO : ∃ t ∈ VO, dst + dts > 0}.

Its arcs A = AO ∪ AL ∪ AT connect nodes of VO to nodes of VL (OD arcs, AO) and
different nodes in VL. We distinguish connections between different nodes of the same
line (traveling arcs, AL), and different nodes at the same station (transfer arcs, AT ):

AO = {(s, (v, `)), ((v, `), s) : s ∈ VO, (v, `) ∈ VL, (s, v) ∈ AO}
AL = {((u, `), (v, `)) : (u, `), (v, `) ∈ VL, (u, v) ∈ A}
AT = {((v, `), (v, ˜̀)) : (v, `), (v, ˜̀) ∈ VL, ` 6= ˜̀}

∪{((u, `), (v, ˜̀)) : (u, `), (v, ˜̀) ∈ VL, ` 6= ˜̀, (u, v) ∈ AT }.

Travel times and lengths of arcs inGCG are set to travel times and lengths of the “original”
arcs in G, all transfer arcs are (additionally) penalized by σ ∈ Q≥0. Denote by e(a) ∈ EL

112



6.4. Change-and-Go Model

a b c

d

e

`1

`2

`3

a b c

d

e

`1

`2

`3

Figure 6.3: Construction of an undirected change-and-go graph. Left: A small piece of a transportation
network with three lines, OD nodes (unfilled nodes), and OD edges (dotted). Right: Undirected change-and-
go graph: the line nodes (VL) are filled, OD nodes (VO) not; the line arcs (AL) correspond to solid edges,
transfer arcs (AT ) to dashed edges, and OD arcs (AO) to dotted edges.

the edge in the infrastructure network that is associated with a ∈ AL. Note that each
a ∈ AL is associated with exactly one line ` ∈ L; denote by `(a) the line that is associated
with a ∈ AL.

To keep track of all relevant details of the construction, Figure 6.3 shows a visualization
of the undirected counterpart of the change-and-go graph. We get the full change-and-go
graph by replacing each edge with two oppositely directed arcs.

We use the same notation for the passenger routing in GCG as for the passenger routing
in G. We denote by Pst the set of all possible directed paths from s ∈ VO to t ∈ VO
in GCG and by P =

⋃
(s,t)∈D Pst the set of all such paths. The travel time τp of the

passenger path p ∈ P then accounts for the travel time and all transfer penalties. The
integer programming formulation (CG) of the line planning problem based on the change-
and-go graph is

(CG) min λ
∑
`∈L

∑
f∈F

c`,f x`,f + (1− λ)
∑
p∈P

τp yp∑
p∈Pst

yp = dst ∀ (s, t) ∈ D (6.7)

∑
p:a∈p

yp ≤
∑
f∈F

κ`(a),f x`(a),f ∀ a ∈ AL (6.8)

∑
f∈F

x`,f ≤ 1 ∀ ` ∈ L (6.9)

∑
`:e∈`

∑
f∈F

f · x`,f ≤ Fe ∀ e ∈ E (6.10)

x`,f ∈ {0, 1} ∀ ` ∈ L, ∀ f ∈ F (6.11)
yp ≥ 0 ∀ p ∈ P. (6.12)

We have a binary variable x`,f that indicates if line ` is operated with frequency f , and
a continuous variable yp that accounts for the number of passengers traveling on path p.
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The model (CG) minimizes a weighted sum of line operating costs and passenger travel
times including a penalty for each transfer. Equations (6.7) stipulate a passenger flow
of dst for each OD-pair (s, t) ∈ D. Inequalities (6.8) enforce sufficient transportation
capacity on each line arc. Inequalities (6.9) ensure that a line is operated with at most
one frequency, and inequalities (6.10) bound the sum of the line operation frequencies
for each edge.

6.4.2 Pricing Problem

We associate dual variables π (unbounded), µ ≥ 0, ψ ≥ 0, and η ≥ 0 with con-
straints (6.7), (6.8), (6.9), and (6.10) of (CG). The dual program of the LP relaxation of
(CG) is then

max
∑

(s,t)∈D

dstπst −
∑
`∈L

ψ` −
∑
e∈E

Feηe

πst −
∑
a∈p

µa≤ (1− λ)τp ∀ (s, t) ∈ D, ∀ p ∈ Pst,

κ`,f
∑

a:`(a)=`

µa − ψ` − f
∑
e∈`

ηe≤ λc`,f ∀ ` ∈ L, ∀ f ∈ F

µa≥ 0 ∀ a ∈ AL
ηe≥ 0 ∀ e ∈ E
ψ`≥ 0 ∀ ` ∈ L.

It is easy to see that we get the same passenger path pricing problem, a shortest path
problem, as for model (BD), see Subsection 6.3.2, except that the underlying graph is
the change-and-go graph.

6.5 Direct Connection Models

The change-and-go model (CG) can be used to compute the travel times including a
penalty for each transfer. It uses the same line variables as the basic dynamic model,
but a more detailed definition of passenger path variables and a much larger number of
rows, namely, one row for every arc in every line. This makes the model much larger and
leads to memory problems and high computation times when solving the problem.

On the other hand, the basic dynamic model (BD) can be solved much faster, but it
neglects transfers within a transportation mode. This is a serious drawback, because in
urban public transport the number of transfers is an important convenience factor and
also a decision factor for using public transport. We therefore want to propose in this
section a novel direct connection approach that tries to combine the advantages of both
models. It focuses on direct connections by penalizing paths that do not provide direct
connections.
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Figure 6.4: A public transport network with six stops (filled nodes), four OD nodes (unfilled), and three
lines; OD edges are dotted. Recall that the directed passenger routing graph is constructed by replacing
each undirected edge by two directed arcs. The paths (s1, a, b, c, d, t1) and (s1, b, c, d, t1) are s1t1-dcpaths
for line `1, i. e., P0,`1

s1t1
= {(s1, a, b, c, d, t1), (s1, b, c, d, t1)}; P0,`2

s1t1
= {(s1, a, b, c, f, t1), (s1, b, c, f, t1)}. No

s1t2-path is supported by a direct connection line, i. e., there exists no s1t2-dcpath, i. e., P0
s1t2 = ∅. Note

that P0,`1
s2t1

= {(s2, b, c, d, t1)} and P0,`2
s2t1

= {(s2, b, c, f, t1)}, i. e., |P0,`1
s2t1
| = |P0,`2

s2t1
| = 1 but δ−(t1) = 2.

We will first introduce an intermediate direct line connection model that accounts exactly
for the number of travelers on direct connections according to the model assumptions.
We then derive in two steps the direct connection model as a compact approximation of
the direct line connection model. We finally extend the direct connection model by the
incorporation of unavoidable transfers.

6.5.1 Exact Model – Direct Line Connections

The idea of the direct connection model is to favor direct connections by adding a transfer
penalty to the travel time of paths including transfers, i. e., if the passengers on some
path are forced to transfer in the computed line plan, we associate with the travel time an
additional transfer penalty. To formulate this idea, we extend the notation of Section 6.2
as follows.

A direct connection st-passenger path for line ` or an st-dcpath for line ` is an st-passenger
path p of the form p = (s, a0, v1, . . . , vr, ar, t), where e(ai) ∈ `, i = 1, . . . , r − 1, i. e.,
passengers can travel along p from origin s directly to destination t via line ` without
transfers. Let P0,`

st ⊆ Pst be the set of st-dcpaths for line ` and P0
st =

⋃
`∈L P

0,`
st ,

P0,` =
⋃

(s,t)∈D P
0,`
st be their union over lines and OD pairs, respectively. Figure 6.4

illustrates the notation. Note that |P0,`
st | > 1 is possible if |δ+(s)| > 1 or |δ−(t)| > 1

(s, t ∈ VO). Let further P0,`
st (a) = {p ∈ P0,`

st : a ∈ p} be the set of st-dcpaths for line `
that pass over arc a and P0

st(a) =
⋃
`∈L P

0,`
st (a), P0,`(a) =

⋃
(s,t)∈D P

0,`
st (a) their union

over lines and OD pairs, respectively. We denote by Lst = {` ∈ L : P0,`
st 6= ∅} the set

of all direct connection lines for s, t, and let Lst(a) = {` ∈ Lst : a ∈ `} be the set of all
lines that support an st-dcpath via arc a. A path p is a direct connection st-passenger
path (st-dcpath), if it is an st-dcpath for some line `. We denote by P0 =

⋃
(s,t)∈D P0

st

the union of all st-dcpaths, i. e., the set of all dcpaths. For a dcpath p ∈ P0, we set the
travel time to the sum of the arc travel times τp,0 =

∑
a∈p τa. For an st-passenger path

p ∈ P, we set the travel time to the sum of the arc travel times plus a summand σ(p) to
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arrive at a travel time of τp,1 = σ(p) +
∑

a∈p τa, where σ(p) = σ if p does not contain a
transfer arc, i. e., p ∩ AT = ∅, and 0 otherwise, since we already incorporated a penalty
on transfer arcs.

We introduce path flow variables z`p,0, p ∈ P0, and yp,1, p ∈ P, for the number of
passengers that travel on dcpath p on line ` and on path p with at least one transfer,
respectively. Note that the definition of the variables yp,1 also involves dcpaths p ∈
P0 ⊆ P. The idea is that a passenger on a dcpath has to transfer if there is not enough
transportation capacity of direct connection lines. Having further variables x`,f ∈ {0, 1}
for the operation of line ` at frequency f , we state the direct line connection model (DLC)
as follows:

(DLC) min λ
∑
`∈L

∑
f∈F

c`,f x`,f + (1− λ)
(∑
`∈L

∑
p∈P0,`

τp,0 z
`
p,0 +

∑
p∈P

τp,1 yp,1

)
∑
`∈Lst

∑
p∈P0,`

st

z`p,0 +
∑
p∈Pst

yp,1 = dst ∀ (s, t) ∈ D (6.13)

∑
`∈L

∑
p∈P0,`(a)

z`p,0 +
∑

p∈P:a∈p
yp,1 ≤

∑
`∈L:e(a)∈`

∑
f∈F

κ`,f x`,f ∀ a ∈ A (6.14)

∑
p∈P0,`(a)

z`p,0 ≤
∑
f∈F

κ`,f x`,f ∀ ` ∈ L, ∀ a ∈ A (6.15)

∑
f∈F

x`,f ≤ 1 ∀ ` ∈ L (6.16)

∑
`∈L:e∈`

∑
f∈F

f · x`,f ≤ Fe ∀ e ∈ E (6.17)

x`,f ∈ {0, 1} ∀ ` ∈ L, ∀ f ∈ F (6.18)

z`p,0 ≥ 0 ∀ ` ∈ L, ∀ p ∈ P0,` (6.19)

yp,1 ≥ 0 ∀ p ∈ P. (6.20)

Model (DLC) minimizes a weighted sum of line operating costs and passenger travel
times. Note that the st-passenger path variables yp,1 incur a penalty for each transfer
arc and exactly one transfer penalty otherwise, i. e., the number of transfers may be
underestimated. Equations (6.13) enforce the passenger flow. Inequalities (6.14) guar-
antee sufficient total transportation capacity on each arc. Constraints (6.15), the direct
line connection constraints, ensure sufficient transportation capacity for direct connec-
tion passenger paths on each arc of each line. Inequalities (6.16) ensure that a line is
operated at one frequency at most and inequalities (6.17) bound the sum of the line
operation frequencies for each edge.

Model (DLC) includes a variable z`p,0 for the assignment of each direct connection pas-
senger path p to a direct connection line `. This is similar to the direct traveler model of
Bussieck, Kreuzer, and Zimmermann [30]. Using our notation the direct traveler model
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(DT) reads as follows

(DT) max
∑

(s,t)∈D

∑
`∈L

w`stz
`
st∑

`∈L:e∈`

∑
f∈F

κ`,fx`,f ≤ ce ∀e ∈ E (6.21)

∑
`∈L:e∈`

∑
f∈F

κ`,fx`,f ≥ ce ∀e ∈ E (6.22)

∑
`∈L

z`st ≤ dst ∀(s, t) ∈ D (6.23)∑
(s,t)∈D:`∈Lst,e∈q`(s,t)

z`st ≤
∑
f∈F

κ`,fx`,f ∀` ∈ L, ∀ e ∈ ` (6.24)

x`,f ∈ {0, 1} ∀ ` ∈ L, ∀ f ∈ F (6.25)

z`st ≥ 0 ∀ (s, t) ∈ D, ∀ ` ∈ Lst, (6.26)

where w`st is, e. g., inversely proportional to the travel time from s to t on line `. Model
(DT) has for each OD pair (s, t) ∈ D and each direct connection line ` ∈ Lst a variable
z`st that assigns direct travelers from s to t to line `. The capacity constraints (6.21)
and (6.22) of model (DT) ensure that given lower bounds c ∈ RE≥0 and upper bounds
c ∈ RE≥0 for the demand on each edge in the network are satisfied. Inequalities (6.23)
bound the number of direct travelers for each OD pair (s, t) ∈ D by the maximal number
of travelers for (s, t) while inequalities (6.24) bound the number of direct travelers of line
` ∈ L on edge e ∈ E by the capacity of line `.

Note that the direct traveler model does not distinguish between the paths (s1, a, b, c, d, t1)
and (s1, b, c, d, t1) in Figure 6.4. Indeed, exactly one st-path has to be assigned to each
direct connection line ` ∈ Lst in advance (which we denoted by q`(s, t) ⊆ ` in model
(DT)). The main difference, however, between the direct traveler model (DT) and the
direct line connection model (DLC) is the passenger routing. More precisely, the bounds
c, c ∈ RE≥0 in (DT) are supposed to guarantee that a precomputed passenger routing
is possible. The optimization model then computes frequencies for the lines satisfying
these bounds such that the number of direct travelers is maximal. Here, it is allowed
that passengers change their routes to use direct connection lines. But these changes are
only allowed according to the given capacity bounds on the edges, i. e., the precomputed
passenger routing restricts these changes. All other passengers, i. e., passengers on non-
direct connections, are not considered. It is, hence, possible that direct travelers force
other passengers to use long detours by utilizing the capacity on short connections. Even
more, it is not clear whether there exists a passenger routing for all passengers that yields
the number of direct travelers computed with model (DT). Model (DT) also does not
include the costs of a line plan, compare with Section 6.1. Model (DLC) overcomes both
drawbacks of model (DT). It computes a passenger routing depending on the computed
line plan and minimizes costs for the line plan as well as travel times for passengers on
direct connections and non-direct connections.
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A problem with both models is their complexity. A line of length k is usually a direct
connection line for O(k2) OD-pairs, such that the number of variables is much larger than
the number of lines. Moreover, choices between several possible direct connection lines
for every dcpath produce lots of degeneracy. Bussieck [29] stated that solving the LP
relaxation of the direct traveler model for medium and large problem sizes with Cplex
3.0 “required an exhaustive use of resources [...] which is absolutely unacceptable for a
practically relevant approach”. Hence, Bussieck [29] and Bussieck, Kreuzer, and Zimmer-
mann [30] propose an approximation model by aggregating direct traveler variables of the
same OD pair. They end up with one direct traveler variable for each OD pair (s, t) ∈ D.
We will use a similar idea to compress our model by relaxing the explicit assignment of
dcpaths to direct connection lines. However, in contrast to Bussieck, Kreuzer, and Zim-
mermann we keep the traveling paths for all passengers on direct connections, i. e., we
end up with a direct connection passenger path variable yp,0 for each path p ∈ P0

st and
each OD pair (s, t) ∈ D.

6.5.2 Approximation Model I – Relaxing Direct Line Capacities

To construct a compact approximation of (DLC), we eliminate the assignment of passen-
ger paths to particular lines by aggregating the dcpath variables as yp,0 =

∑
`∈L z

`
p,0, i. e.,

we introduce line-independent dcpath variables yp,0 for the number of direct travelers on
path p. Such a substitution can be easily done in the objective of model (DLC) and in the
constraints (6.13) and (6.14). More effort is needed to replace the direct line connection
constraints ∑

p∈P0,`(a)

z`p,0 ≤
∑
f∈F

κ`,f x`,f ∀ ` ∈ L, ∀ a ∈ A. (6.15)

The left hand side of a direct line connection constraint is the number of all passengers on
direct connections using a certain direct connection line on a certain arc. This number
is bounded by the capacity of the considered line. Since the left hand side involves
only dcpath variables for one line, there is no easy way to rephrase (6.15) in terms of
aggregated dcpath variables. A simple approximation is the following∑

p∈P0
st(a)

yp,0 ≤
∑

`∈Lst:e(a)∈`

∑
f∈F

κ`,fx`,f ∀ a ∈ A, ∀ (s, t) ∈ D. (6.27)

Constraints (6.27) ensure that there is enough capacity on direct connection lines for
each OD pair and each arc individually. More precisely, considering OD pair (s, t) ∈ D
and arc a ∈ A, constraints (6.27) guarantee that the number of direct travelers from s
to t on a is always smaller than or equal to the total capacity of all direct connection st-
lines containing a. However, the needed capacity of a direct connection line is probably
underestimated since it is a direct connection line for several OD pairs. We explain this
problem by means of an example, consider Figure 6.5. Assume we have demands of 50
from s1 to t1 and from s2 to t1 and lines `1, `3, and `4 are operated once with capacity 50
each. Line `2 is not operated. Then constraints (6.27) are satisfied for OD pair (s1, t1)
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Figure 6.5: A public transport network with five stops (filled nodes), four OD nodes (unfilled), and three
lines; OD edges are dotted. Recall that the directed passenger routing graph is constructed by replacing each
undirected edge by two directed arcs.

as well as for OD pair (s2, t1) and for arcs (2, 3) as well as (3, 4), e. g., for (s1, t1) and arc
(2, 3) we get

y(s1,1,2,3,4,t1),0 + y(s1,1,2,3,6,t1),0 ≤
∑
f∈F

(κ`1,fx`1,f + κ`2,fx`2,f ),

for (s2, t1) and arc (2, 3) we get

y(s2,2,3,4,t1),0 + y(s2,2,3,6,t1),0 ≤
∑
f∈F

(κ`1,fx`1,f + κ`2,fx`2,f ).

But the capacity of line `1 does not suffice to transport the passengers from s1 to t1 and
the passengers from s2 to t1 directly; 50 passengers have to change from `3 to `4. In
this example both OD pairs (s1, t1) and (s2, t1) have the same set of direct connection
lines, i. e., Ls1t1 = Ls2t1 . The relaxation of the direct line connection constraints can
therefore be improved by considering all direct connection passenger paths on one arc
using the same set of direct connection lines. We then get for arc (2, 3) in our example
the following constraint

y(s1,1,2,3,4,t1),0 + y(s1,1,2,3,6,t1),0 + y(s2,2,3,4,t1),0 + y(s2,2,3,6,t1),0 ≤
∑
f∈F

(κ`1,fx`1,f +κ`2,fx`2,f ).

We say that OD-pairs (s, t) and (u, v) are dc-equivalent with respect to arc a, if Luv(a) =
Lst(a), i. e., if the st- and the uv-dcpaths via arc a are supported by the same set of
direct connection lines (also via arc a). In Figure 6.5 the OD pairs (s1, t1) and (s2, t1)
are dc-equivalent with respect to arc (2, 3) because Ls1t1(2, 3) = Ls2t1(2, 3) = {`1, `2}.
They are also dc-equivalent to arc (3, 4) because Ls1t1(3, 4) = Ls2t1(3, 4) = {`1}. Denote
by [s, t]a the corresponding equivalence class, i. e., (u, v) ∈ [s, t]a if Luv(a) = Lst(a). Let
D(a) = {[s, t]a} be the set of equivalence classes for dc-equivalent OD-pairs w. r. t. a.
Then a better approximation than (6.27) for the direct line capacity constraints is∑

(u,v)∈[s,t]a

∑
p∈P0

uv(a)

yp,0 ≤
∑

`∈Lst(a)

∑
f∈F

κ`,f x`,f ∀ a ∈ A, ∀ [s, t]a ∈ D(a). (6.28)

We want to further improve this relaxation by adding to the left hand side of con-
straint (6.28) for a ∈ A [s, t]a ∈ D(a) all OD pairs whose set of direct connection lines
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1 2 3 4
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Figure 6.6: A transportation network with four stations {a, b, c, d} and four lines `1 = (1, 2, 3, 4), `2 =
(2, 3, 4), `3 = (1, 2, 3), and `4 = (2, 3). We have F = {1}, κ`,1 = 1 for all `, and a passenger demand of one
from s1 to t1 and from s2 to t2.

on arc a is a subset of the direct connection lines on a for (s, t). We explain this idea
again on Figure 6.5. Assume we have a further positive demand from s1 to t2. A direct
connection s1t2-path is only supported by line `1, i. e., the set Ls1t2(2, 3) = {`1} of direct
connection lines for (s1, t2) w. r. t. arc (2, 3) is included in the set Ls1t1(2, 3) = {`1, `2} of
direct connection lines for (s1, t1) w. r. t. arc (2, 3). The number of direct travelers from
s1 to t2 can then be included in the left hand side of constraints (6.28) for arc (2, 3) and
equivalence class [s1, t1](2,3). We then get

y(s1,1,2,3,4,t1),0 + y(s1,1,2,3,6,t1),0 + y(s2,2,3,4,t1),0 + y(s2,2,3,6,t1),0

+y(s1,1,2,3,4,t2),0 + y(s1,1,2,3,4,5,t2),0 ≤
∑
f∈F

(κ`1,fx`1,f + κ`2,fx`2,f ).

We say that OD-pair (u, v) is dc-dominated with respect to arc a by OD-pair (s, t) if
Luv(a) ⊆ Lst(a). Denote by [s, t]≤a the corresponding domination set, i. e., (u, v) ∈ [s, t]≤a
if Luv(a) ⊆ Lst(a). Then the dcpath variables yp,0 for the number of direct travelers on
path p must satisfy the following direct connection constraints for each arc a and each
class [s, t]a of equivalent OD-pairs:

∑
(u,v)∈[s,t]≤a

∑
p∈P0

uv(a)

yp,0 ≤
∑

`∈Lst(a)

∑
f∈F

κ`,f x`,f ∀ a ∈ A, ∀ [s, t]a ∈ D(a). (6.29)

These constraints enforce sufficient transportation capacity to route all uv-dcpaths,
(u, v) ∈ [s, t]≤a , via arc a. That this is still an approximation can be seen in Fig-
ure 6.6. In this example the OD pairs (s1, t1) and (s2, t2) are not dc-equivalent w. r. t.
arc (2, 3) nor is one dc-dominated by the other; namely, we have Ls1t1(2, 3) = {`1, `3}
and Ls2t2(b, c) = {`1, `2}. Line `1 is a direct connection line for both OD pairs. Setting
x`1,1 = x`4,1 = 1 and x`2,1 = x`3,1 = 0 satisfies the direct connection constraints (6.29)
and implies enough capacity to transport all passengers. But either the passenger from
a to c or the one from b to d has to transfer, i. e., the number of direct travelers is
overestimated.

We finally obtain the following relaxed line connection model (RLC) by using variables
yp,0 instead of z`p,0 and substituting the direct line connection constraints (6.15) by the
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direct connection constraints (6.29).

(RLC) min λ
∑
`∈L

∑
f∈F

c`,f x`,f + (1− λ)
( ∑
p∈P0

τp,0 yp,0 +
∑
p∈P

τp,1 yp,1

)
∑
p∈P0

st

yp,0 +
∑
p∈Pst

yp,1 = dst ∀ (s, t) ∈ D (6.30)

∑
p∈P0:a∈p

yp,0 +
∑

p∈P:a∈p
yp,1 ≤

∑
`∈L:e(a)∈`

∑
f∈F

κ`,f x`,f ∀ a ∈ A (6.31)

∑
(u,v)∈[s,t]≤a

∑
p∈P0

uv(a)

yp,0 ≤
∑

`∈Lst(a)

∑
f∈F

κ`,f x`,f ∀ a ∈ A, ∀ [s, t]a ∈ D(a) (6.29)

∑
f∈F

x`,f ≤ 1 ∀ ` ∈ L (6.32)

∑
`∈L:e(a)∈`

∑
f∈F

f · x`,f ≤ Fe ∀ e ∈ E (6.33)

x`,f ∈ {0, 1} ∀ ` ∈ L, ∀ f ∈ F (6.34)

yp,0 ≥ 0 ∀ p ∈ P0 (6.35)
yp,1 ≥ 0 ∀ p ∈ P. (6.36)

Model (RLC) minimizes a weighted sum of line operating costs and passenger travel
times. As in model (DLC) the st-passenger path variables yp,1 incur a penalty for each
transfer arc and exactly one transfer penalty otherwise. Equations (6.30) enforce the pas-
senger flow. Inequalities (6.31) guarantee sufficient total transportation capacity on each
arc. Constraints (6.29), the direct connection constraints, approximate the sufficiency
of transportation capacity for direct connection passenger paths on each arc. Inequali-
ties (6.32) ensure that a line is operated at one frequency at most and inequalities (6.33)
bound the sum of the line operation frequencies for each edge.

The size of model (RLC) is smaller than the size of model (DLC). Model (RLC) has a
smaller number of variables since it relaxes the assignment of passenger paths to particu-
lar lines. The number of direct connection constraints is also in general smaller than the
number of direct line connection constraints since the number of OD pairs is in general
smaller than the number of lines. A problem with model (RLC) is that the sets P0, P0

st,
and P0

st(a) are all defined via dcpath sets {P0,`
st , ` ∈ L} that are in turn defined in terms

of individual lines, i. e., we have p ∈ P0
st if there exists an ` ∈ L such that p ∈ P0,`

st .
This means that the pricing problem for the direct connection passenger path variables
is hard to handle without looping over all lines, i. e., (RLC) is algorithmically as hard
as (DLC), even though it is more compact. In the following section we will propose a
relaxation of the sets P0, P0

st, and P0
st(a) to overcome this problem in the direct con-

nection model. In this relaxation the specific routes of direct st-connection lines are not
important. Rather it is only relevant which edges in the public transport network are
covered by these direct st-connection lines. In this way, the effort for pricing the direct
connection passenger path variables is reduced since we do not have to loop over lines
anymore.
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6.5.3 Approximation Model II – Relaxing Direct Connections

Model (RLC) substitutes the variables z`p,0 by aggregated variables yp,0 and relaxes the
direct line connection constraints. We will now propose an approximation of model (RLC)
that further relaxes the set of direct connection passenger paths in such a way that an
efficient pricing becomes possible. To this purpose, consider for each OD-pair (s, t) ∈ D
the set P0

st =
⋃
`∈Lst P

0,`
st of all st-dcpaths and unite them to construct what we call

a direct connection st-passenger routing graph Gst = (Vst, Ast) =
⋃
p∈P0

st
(V (p), A(p)),

where V (p) and A(p) denote the nodes and arcs of dcpath p, respectively, see Figure 6.7
for an example. Note that Gst can be constructed in polynomial time. We proceed
by considering all st-paths in Gst as relaxed st-dcpaths (st-rdcpaths); let P0+

st be the
set of all such st-rdcpaths, P0+

st (a) = {p ∈ P0+
st : a ∈ p} the set of all st-rdcpaths via

arc a, and P0+ =
⋃

(s,t)∈D P
0+
st the set of all rdcpaths. Obviously, P0+

st ⊇ P0
st, i. e.,

P0+
st overestimates the number of direct connections between origin s and destination t,

see again Figure 6.7. Replacing all sets of direct connection passenger paths by the
corresponding sets of relaxed direct connection passenger paths in model (RLC) yields
the following direct connection model (DC)

(DC) min λ
∑
`∈L

∑
f∈F

c`,f x`,f + (1− λ)
( ∑
p∈P0+

τp,0 yp,0 +
∑
p∈P

τp,1 yp,1

)
∑
p∈P0+

st

yp,0 +
∑
p∈Pst

yp,1 = dst ∀ (s, t) ∈ D (6.37)

∑
p∈P0+:a∈p

yp,0 +
∑

p∈P:a∈p
yp,1 ≤

∑
`∈L:e(a)∈`

∑
f∈F

κ`,f x`,f ∀ a ∈ A (6.38)

∑
(u,v)∈[s,t]≤a

∑
p∈P0+

uv (a)

yp,0 ≤
∑

`∈Lst(a)

∑
f∈F

κ`,f x`,f ∀ a ∈ A, ∀ [s, t]a ∈ D(a) (6.39)

∑
f∈F

x`,f ≤ 1 ∀ ` ∈ L (6.40)

∑
`∈L:e(a)∈`

∑
f∈F

f · x`,f ≤ Fe ∀ e ∈ E (6.41)

x`,f ∈ {0, 1} ∀ ` ∈ L, ∀ f ∈ F (6.42)

yp,0 ≥ 0 ∀ p ∈ P0+ (6.43)
yp,1 ≥ 0 ∀ p ∈ P. (6.44)

Model (DC) is a relaxation of model (RLC). It only differs from model (RLC) by consider-
ing the (possibly bigger) set of rdcpaths P0+ instead of the set of dcpaths P0. Model (DC)
is, hence, also a relaxation of model (DLC). The advantage of model (DC) compared to
model (RLC) is an improved tractability since the pricing problem for the relaxed direct
connection passenger path variables for an OD pair (s, t) is just a shortest path problem
in the direct connection st-passenger routing graph while the pricing problem for model
(RLC) involves an enumeration of all direct connection lines, see Subsection 6.5.5.
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a
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hi
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`4

`1 c d e

f

h

Figure 6.7: Left: A transportation network with nine stations and five lines `1 = (b, c), `2 = (b, c, d, h, e),
`3 = (a, c, f, d, e), `4 = (i, h, g), and `5 = (c, d, g). There are two ce-dcpaths (c, f, d, e) and (c, d, h, e).
Right: A direct connection ce-passenger routing graph. The path p = (c, d, e) is an ec-rdcpath but not an
ec-dcpath, i. e., p = (c, d, e) ∈ P0+

ce but p = (c, d, e) /∈ P0
ce.

6.5.4 Model Extension – Unavoidable Transfers

The set of dcpaths P0 represents all paths in the network that are covered by direct
connection lines. Model (RLC) associates with each other path in the set P \P0 exactly
one transfer (if they contain no explicit transfer arcs). In the following we want to
improve this approach by accounting for the number of unavoidable transfers kp w. r. t.
the set of lines L. The number kp indicates for each path p ∈ P the minimum number of
transfers a passenger has to do with respect to the predefined set of lines. More precisely,
considering a certain passenger path, it may not be possible to cover this path by a single
line or even by two lines, i. e., in any definition of a line plan, passengers on the path
under consideration have to transfer at least once or twice, respectively. We call such
transfers unavoidable. We consider three types of variables:

◦ A variable yp,kp for all p ∈ P\P0, i. e., we associate non-direct connection passenger
paths with its number of unavoidable transfers.

◦ A variable yp,0, for all p ∈ P0, i. e., we have a variable associating direct connection
passenger paths with 0 transfers.

◦ A variable yp,1, for all p ∈ P0, i. e., we have a variable associating direct connection
passenger paths with 1 transfer if the capacity of direct connection lines does not
suffice.

This approach needs a slight change in the notation. Namely, we associate with τa on all
transfer arcs a ∈ AT just the travel or walking time and do not incorporate the transfer
penalty. Each path p ∈ P \ P0 associated with kp unavoidable transfers gets travel and
transfer time τp,kp = τp + kpσ =

∑
a∈p τa + kpσ. Note that one can identify yp,0 and

yp,1, p ∈ P, with variables yp,kp and yp,kp+1, respectively. The integer programming
formulation of the direct connection model with unavoidable transfers (UT) is
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(UT) min λ
∑
`∈L

∑
f∈F

c`,f x`,f + (1− λ)
( ∑

p∈P0

(τp,1 yp,1 + τp,0 yp,0) +
∑

p∈P\P0

τp,kp yp,kp

)
∑

p∈P0
st

(yp,0 + yp,1) +
∑

p∈Pst\P0
st

yp,kp = dst ∀ (s, t) ∈ D (6.45)

∑
p∈P0:a∈p

(yp,0 + yp,1) +
∑

p∈P\P0:a∈p

yp,kp ≤
∑

`∈L:e(a)∈`

∑
f∈F

κ`,f x`,f ∀ a ∈ A (6.46)

∑
(u,v)∈[s,t]≤a

∑
p∈P0

uv(a)

yp,0 ≤
∑

`∈Lst(a)

∑
f∈F

κ`,f x`,f ∀ a ∈ A, ∀ [s, t]a ∈ D(a) (6.47)

∑
f∈F

x`,f ≤ 1 ∀ ` ∈ L (6.48)

∑
`∈L:e(a)∈`

∑
f∈F

f · x`,f ≤ F ∀ e ∈ E (6.49)

x`,f ∈ {0, 1} ∀ ` ∈ L, ∀ f ∈ F (6.50)

yp,0, yp,1 ≥ 0 ∀ p ∈ P0 (6.51)

yp,kp ≥ 0 ∀ p ∈ P \ P0. (6.52)

Model (UT) minimizes a weighted sum of line operating costs and passenger travel times.
The passenger path variables yp,kp incur a penalty for each unavoidable transfer (including
all transfer arcs). The passenger path variables yp,1 incur a penalty for one transfer
caused by insufficient capacity of direct connection lines. Equations (6.45) enforce the
passenger flow. Inequalities (6.46) guarantee sufficient total transportation capacity on
each arc. Analogous to model (RLC) the direct connection constraints (6.47) approximate
the sufficiency of transportation capacity for direct connection passenger paths on each
arc. Inequalities (6.48) ensure that a line is operated at one frequency at most and
inequalities (6.49) bound the sum of the line operation frequencies for each edge.

Example 6.6. Consider again the network given in the left of Figure 6.7. The given set
of lines is L = {`1, `2, `3, `4, `5}. The path p1 = (b, c, d) is a bd-dcpath since it is covered
by line `2. It, hence, has kp1 = 0 unavoidable transfers. We consider the variables yp1,0
and yp1,1 as in model (RLC). The path p2 = (c, d, e) has kp2 = 1 unavoidable transfer,
i. e., in model (UT) we consider a variable yp2,kp2 = yp2,1. So far, model (UT) would not
improve model (RLC). However, path p3 = (i, h, d, f) has kp3 = 2 unavoidable transfers.
In model (UT) we consider the variable yp3,kp3 = yp3,2, i. e., this path is associated with 2
transfers, in model (RLC) it is associated with only one transfer.

Algorithm 6.8 computes a travel-time minimal path from a given node s ∈ V to all other
nodes including a uniform transfer penalty σ ∈ Q+ for each transfer w. r. t. a given set
of lines L. The input of the algorithm is a directed graph G = (V,A), nonnegative arc
weights τa, a ∈ A, a transfer penalty σ, a start node s, and a set of lines L, i. e., simple
paths in G. Let ` ∈ L. We denote by q`(u, v) the subpath q ⊆ ` and u, v ∈ V being the
start and end node of q and by dist`(u, v) =

∑
a∈q`(u,v) τa the travel time of this path.

The distance, i. e., the travel time plus transfer penalties from s to a node v ∈ V is stored
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Algorithm 6.8: A modified Dijkstra algorithm to compute shortest paths from s
to all other nodes including transfer penalties with respect to L.
Input : A connected graph G = (V,A) with arc weights τa ∈ Q≥0, a ∈ A, a

transfer penalty σ ∈ Q≥0, a start node s, a set of lines L.
Output: Shortest paths including transfers from s to all other nodes.

d(s) := 0, d(v) := min{dist`(s, v) : s, v ∈ `, ` ∈ L} ∀ v ∈ V \{s},1

tr(v) :=

{
0 d(v) <∞
∞ otherwise

∀ v ∈ V , mark s, all other nodes are unmarked.

while exists unmarked node v do2

Choose v with d(v) = min{d(w), w unmarked}3

for all ` ∈ L with v ∈ ` do4

for all unmarked w with w ∈ ` do5

if d(v) + σ + dist`(v, w) < d(w) then6

d(w) := d(v) + σ + dist`(v, w)7

tr(w) := tr(v) + 18

p(w) := q`(v, w)9

end10

end11

end12

mark v13

end14

in d(v). The distance for the start node is 0. The distance for all other nodes v ∈ V \{s}
is initialized by the length of a shortest path from s to v covered by a direct sv-connection
line. Here, we assume that min ∅ =∞, i. e., all nodes that cannot be reached by a direct
connection line from s get an initial distance of infinity. The algorithm works similar
to Dijkstra’s algorithm. In each step an unmarked node v with minimum distance is
considered. The weights for all (unmarked) nodes w that can be reached from v via a
line are updated if the travel time from v to w plus one transfer penalty plus the distance
from s to v is smaller than the distance from s to w considered so far. Then the node v is
marked, d(v) is the minimum travel time plus transfer penalties from s to v, tr(v) gives
the number of transfers, and p(v) the last transfer free part of the path from s to v. Note
that the algorithm is stated in a simplified form that ignores transfer arcs and OD arcs.
The inclusion of those arcs requires just some technical effort, which we skip for ease of
exposition.

Algorithm 6.8 reminds of Algorithm 3.6 of Section 3.3. Setting c ≡ 1, Algorithm 3.6 can
be interpreted as computing the minimum number of paths/lines that connect the nodes
s ∈ V and v ∈ V , i. e., the minimum number of unavoidable transfers from s to v plus 1.
Conversely, replacing dist`(v, w) for each v, w ∈ ` by the cost c` of line ` and setting
σ = 0, Algorithm 6.8 computes the same distance labels d(v), v ∈ V , as Algorithm 3.6
with L = P.
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Lemma 6.7. Algorithm 6.8 computes a shortest path from node s to all other nodes
including a transfer penalty for all transfers with respect to the line pool L. The running
time is O(|V | log |V |+ |L||V |2).

6.5.5 Pricing Problems

In the following, we consider the passenger path pricing problems for the three direct
connection models (DLC), (DC), and (UT). We skip the intermediate model (RLC); the
pricing for this model can be handled in a similar way as for model (UT).

Direct Line Connection Model

Associate dual variables π (unbounded), µ ≥ 0, ν ≥ 0, ψ ≥ 0, and η ≥ 0 with constraints
(6.13), (6.14), (6.15), (6.16), and (6.17) of program (DLC). The dual of the LP relaxation
of (DLC) is

max
∑

(s,t)∈D

dstπst −
∑
`∈L

ψ` −
∑
e∈E

Feηe

πst −
∑
a∈p

µa −
∑
a∈p

ν`,a≤ (1− λ)τp,0 ∀ ` ∈ L, ∀ (s, t) ∈ D, ∀ p ∈ P0,`
st

πst −
∑
a∈p

µa≤ (1− λ)τp,1 ∀ (s, t) ∈ D, ∀ p ∈ Pst

κ`,f
∑

a:e(a)∈`

(µa + ν`,a)− ψ` − f
∑
e∈`

ηe≤ λc`,f ∀ ` ∈ L, ∀ f ∈ F

µa≥ 0 ∀ a ∈ A
ν`,a≥ 0 ∀` ∈ L, ∀ a ∈ A : e(a) ∈ `
ψ`≥ 0 ∀ ` ∈ L
ηe≥ 0 ∀ e ∈ E.

The pricing problem for the passenger variables is twofold: Find an st-dcpath with
negative reduced cost or find a path from s to t with at least one transfer and negative
reduced cost. The reduced costs can be computed as follows

τ̄p,0 = −πst +
∑
a∈p

(µa + ν`,a + (1− λ)τa) , p ∈ P0,`
st (6.53)

τ̄p,1 = −πst +
∑
a∈p

(µa + (1− λ)τa) + (1− λ)σ(p), p ∈ Pst. (6.54)

The first case requires to consider each direct connection line individually since the arc
weights depend on the line. More precisely, for each line ` ∈ Lst one has to find a weight
minimal path p ∈ P0,`

st with arc weights set to µa + ν`,a + (1 − λ)τa. If the weight of
the path is less than πst, the path is added to the model. The arc weights depend on
` ∈ Lst, i. e., we have to consider each direct connection line for OD pair (s, t) with all
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its edges. For a given line ` the set |P0,`
st | is usually very small, in particular, |P0,`

st | = 1,
s, t ∈ VO, if |δ+(s)| = |δ−(t)| = 1, i. e., the path p ∈ P0,`

st is usually implied by `. We can
assume a running time of O(|Lst||Vst|) to find an st-dcpath with negative reduced cost
or to conclude that no such path exists. If all direct connection st-lines have parallel
routes between s and t this bound is strict. Recall that Vst is the set of nodes in the
direct connection st-passenger routing graph, which was defined in Subsection 6.5.3.

In the second case we have to distinguish whether p contains a transfer arc or not. This
can be done by a shortest path algorithm with two labels for each node. We have to
compute (i) a shortest path p with p∩AT = ∅ and (ii) a shortest path p with p∩AT 6= ∅.
The arc weights are set to ωa = µa + (1− λ)τa ≥ 0 for a ∈ A in both cases. Only in case
(i) we have to add (1 − λ)σ to the weight of the path. If we have found, in case (i) or
case (ii), a path with weight smaller then πst, the associated variable has to be added to
the problem.

Proposition 6.8. The pricing problem for the passenger path variables in model (DLC)
can be solved in polynomial time. In particular, finding an st-dcpath with negative reduced
cost or concluding that no such path exists, can be done in O(|Lst||Vst|). Finding an st-
path with at least one transfer or concluding that no such path exists, needs O(|V | log |V |+
|A|) time.

Direct Connection Model

Consider the solution of the LP relaxation of model (DC) by column generation. Asso-
ciate dual variables π (unbounded), µ ≥ 0, ν ≥ 0, ψ ≥ 0, and η ≥ 0 with constraints
(6.37), (6.38), (6.39), (6.40), and (6.41) of program (DC). The dual of the LP relaxation
of (DC) is

max
∑

(s,t)∈D

dstπst −
∑
`∈L

ψ` −
∑
e∈E

Feηe

πst −
∑
a∈p

µa −
∑
a∈p

νa,[s,t]a ≤ (1− λ)τp,0 ∀ (s, t) ∈ D, ∀ p ∈ P0+
st

πst −
∑
a∈p

µa≤ (1− λ)τp,1 ∀ (s, t) ∈ D, ∀ p ∈ Pst

κ`,f
∑

a:e(a)∈`

(
µa +

∑
[s,t]a∈D(a)

νa,[s,t]a
)
− ψ` − f

∑
e∈`

ηe≤ λc`,f ∀ ` ∈ L, ∀ f ∈ F

µa≥ 0 ∀ a ∈ A
νa,[s,t]a ≥ 0 ∀ a ∈ A, ∀ [s, t]a ∈ D(a)

ψ`≥ 0 ∀ ` ∈ L
ηe≥ 0 ∀ e ∈ E.

(6.55)
The pricing problem for the passenger path variables decomposes again into two cases.
Find an st-rdcpath with negative reduced cost or find a path from s to t with at least
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one transfer and negative reduced cost. The reduced costs can be computed as follows

τ̄p,0 = −πst +
∑
a∈p

(
µa + νa,[s,t]a + (1− λ)τa

)
, p ∈ P0+

st (6.56)

τ̄p,1 = −πst +
∑
a∈p

(µa + (1− λ)τa) + (1− λ)σ(p), p ∈ P0
st. (6.57)

The second case is analogous to the passenger path pricing problem for model (DLC). In
the first case we have to find an st-rdcpath with weight smaller then πst. This means that
we have to solve exactly one shortest path problem in Gst for each OD pair (s, t) ∈ D.
This can be done by Dijkstra’s algorithm. The arc weights are set to ωa = µa+νa,[s,t]a +
(1− λ)τa ≥ 0 for a ∈ Ast, i. e., they are independent of a line.

Proposition 6.9. The pricing problem for the passenger path variables in model (DC)
can be solved in polynomial time. In particular, finding an st-rdcpath with negative re-
duced cost or concluding that no such path exists can be done in O(|Ast|+ |Vst| log |Vst|).
The pricing problem for an st-path with at least one transfer needs O(|V | log |V | + |A|)
time.

We often have |Lst| > |Ast| in our test instances in Chapter 8. Hence, the pricing problem
for rdcpaths can be solved much faster than the pricing problem for dcpaths.

Direct Connection Model with Unavoidable Transfers

Associate dual variables π (unbounded), µ ≥ 0, ν ≥ 0, ψ ≥ 0, and η ≥ 0 with constraints
(6.45), (6.46), (6.47), (6.48), and (6.49) of program (UT). The dual of the LP relaxation
of (UT) is

max
∑

(s,t)∈D

dstπst −
∑
`∈L

ψ` −
∑
e∈E

Feηe

πst −
∑
a∈p

µa −
∑
a∈p

νa,[s,t]a ≤ (1− λ)τp,0 ∀ (s, t) ∈ D, ∀ p ∈ P0
st

πst −
∑
a∈p

µa≤ (1− λ)τp,1 ∀ (s, t) ∈ D, ∀ p ∈ P0
st

πst −
∑
a∈p

µa≤ (1− λ)τp,kp ∀ (s, t) ∈ D, ∀ p ∈ Pst \ P0
st

κ`,f
∑

a:e(a)∈`

(
µa +

∑
[s,t]a∈D(a)

νa,[s,t]a
)
− ψ` − f

∑
e∈`

ηe≤ λc`,f ∀ ` ∈ L, ∀ f ∈ F

µa≥ 0 ∀ a ∈ A
νa,[s,t]a ≥ 0 ∀ a ∈ A, ∀ [s, t]a ∈ D(a)

ψ`≥ 0 ∀ ` ∈ L
ηe≥ 0 ∀ e ∈ E.
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Algorithm 6.9: A modified version of Algorithm 6.8 to compute a shortest path
from s to t including a positive number of unavoidable transfers with respect to L
or at least one transfer penalty.
Input : A connected graph G = (V,A) with arc weights τa ≥ 0, a ∈ A, a transfer

penalty σ, start node s, end node t, set of lines L.
Output: Shortest paths including at least one transfer penalty from s to t.

d(s) := 0, d(v) := min{dist`(s, v) : s, v ∈ `, ` ∈ L} ∀ v ∈ V \{s},1

tr(v) :=

{
0 d(v) <∞
∞ otherwise

∀ v ∈ V , mark s, all other nodes are unmarked.

if d(t) <∞ then2

d(t) = d(t) + σ3

tr(t) = 14

end5

while exists unmarked node v and t is not marked do6

Choose v with d(v) = min{d(w), w unmarked}7

for all ` ∈ L with v ∈ ` do8

for all unmarked w with w ∈ ` do9

if d(v) + σ + dist`(v, w) < d(w) then10

d(w) = d(v) + σ + dist`(v, w)11

tr(w) = tr(v) + 112

p(w) = q`(v, w)13

end14

end15

end16

mark v17

end18

The reduced costs can be computed as follows

τ̄p,0 = −πst +
∑
a∈p

(
µa + νa,[s,t]a + (1− λ)τa

)
, p ∈ P0, (6.58)

τ̄p,1 = −πst +
∑
a∈p

(µa + (1− λ)τa) + (1− λ)σ, p ∈ P0, (6.59)

τ̄p,kp = −πst +
∑
a∈p

(µa + (1− λ)τa) + (1− λ)kpσ, p ∈ P \ P0 (kp ≥ 1). (6.60)

We have three cases since we distinguish between yp,0, yp,1, p ∈ P0, and yp,kp , p ∈
P \ P0. The second case, equation (6.59) can be interpreted as finding a path with one
(unavoidable) transfer which is caused by insufficient capacity of direct connection lines.

In the first case, equation (6.58), we have to find an st-dcpath with weight smaller
than πst. The arc weights are set to ωa = µa + νa,[s,t]a + (1−λ)τa ≥ 0 for a ∈ A. We can
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6 Line Planning Models

solve this problem by the initialization step in line 1 of Algorithm 6.8 to find a shortest
st-dcpath w. r. t. ω. If the weight of this path is less than πst, the path is added to the
model.

The second and third case can be handled simultaneously. We have to find a path with
at least one (unavoidable) transfer. We can set the arc weights to µa + (1− λ)τa ≥ 0 for
a ∈ A, and use Algorithm 6.9 to compute a shortest path in combination with the number
of unavoidable transfers. This algorithm is a slightly modified version of Algorithm 6.8.
It adds a transfer penalty in the case that we can reach t from s directly in lines 2 to 5.
This corresponds to a transfer caused by insufficient capacity of direct connection lines
(the second case, equation (6.59)). The third case, equation (6.60), i. e., the case that
t can be reached via a path p that is not covered by direct connection lines and has kp
unavoidable transfers, is handled in the while loop.

Proposition 6.10. The pricing problem for the passenger path variables in model (UT)
can be solved in polynomial time. In particular, the pricing problem for an st-dcpath
can be solved in O(|Lst||Vst|), while the pricing problem for an st-path with at least one
unavoidable transfer can be solved in O(|V | log |V |+ |L||V |2).

6.6 Model Discussion

We first relate models (DLC), (RLC), (DC), and (UT). Then we compare models (BD),
(DC), and (CG).

To relate the models (DLC) and (DC), we show now that (DC) is a relaxation of the
projection of model (DLC) onto the space of the dcpath variables. This can be seen as
follows. For each st-dcpath p ∈ P0

st, link the flow variables yp,0 and z`p,0 via equations

yp,0 =
∑

`∈L:p∈P0,`
st

z`p,0. (6.61)

Consider the polytopes

P := {(x, y1, z) ∈ R(L×F)×P×P0,L

≥0 | (DLC)(6.13)− (6.17)},
PQ := {(x, y0, y1, z) ∈ R(L×F)×P0×P×P0,L

≥0 | (6.61), (DLC)(6.13)− (6.17)},
Q := {(x, y0, y1) ∈ R(L×F)×P0×P

≥0 | ∃z ∈ RP0,L
≥0 s.t. (x, y0, y1, z) ∈ PQ},

with P0,L = ∪̇`∈LP0,`
st , i. e., a direct connection path is indexed with each possible direct

connection line. P is the solution set of the LP relaxation of (DLC). PQ extends this set
into a higher-dimensional space by adding the aggregated flow variables (yp,0); hence, P
is the projection of PQ onto the space of (x, y1, z) variables. Q is the projection of PQ
onto the space of (x, y0, y1) variables, i. e., Q describes exactly the feasible combinations
of line plans and aggregated direct connection passenger flows.
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6.6. Model Discussion

Let Q = {Ax + By ≤ b}; then adding constraints Ax + By ≤ b to model (RLC)
produces a strengthening of this model that is equivalent to the direct line connection
model (DLC), i. e., that handles all direct connections correctly. Note that the cuts
in the system Ax + By ≤ b can be separated using Benders decomposition, i. e., this
construction is algorithmic. Both models, (RLC) and (DC), replace the Benders cut
system Ax + By ≤ b by the smaller, explicit, and purely combinatorial set of direct
connection constraints (6.29) and (6.39), respectively. Model (DC) further uses rdcpaths
instead of dcpaths, i. e., it considers a larger set of paths P0+

st ⊇ P0
st. This makes model

(DC) algorithmically tractable. Indeed, considering the LP relaxation, we have shown
that the pricing problem for passenger path variables is a shortest path problem in Gst
for relaxed direct connection passenger paths, and a (polynomially solvable) constrained
shortest path problem in G for paths with at least one transfer.

Models (DLC), (RLC), and (DC) can be seen as a ”first order approximation” to model
(CG): Models (DLC), (RLC), and (DC) do not consider transfer penalties for the second,
third, etc., transfer in a passenger path that cannot be attributed to a transfer arc.
Model (UT) provides an approximation of higher order by additionally accounting for
unavoidable transfers. All models except (DLC) further relax the assignment of direct
connection paths to particular lines. They can also be seen as a ”transfer improvement” of
model (BD) since (BD) arises from (DC) by dropping the direct connection constraints
and (DLC), (RLC), and (UT) are more detailed than (DC). Model (UT) extends the
idea behind model (RLC) toward multiple transfers. It treats direct connections in the
same way as model (RLC), but it further incorporates unavoidable transfers. Adding
the constraints Ax + By ≤ b to model (UT) produces a strengthening of the direct
line connection model (DLC) that considers possible second, third, etc., unavoidable
transfers.

Let us denote by vR(M) the optimal objective value of relaxation R of an integer pro-
gramming model M . Considering the IP values and the LP relaxation values of all
defined models, we, finally, get the following picture:

Proposition 6.11. Model (DC) dominates model (BD) as an integer program and with
respect to the LP relaxation. Model (CG) dominates models (DLC) and (UT) as an
integer program and with respect to the LP relaxation. Models (DLC) and (UT) dominate
model (RLC) (which dominates (DC)) as an integer program and with respect to the LP
relaxation. We, therefore, get

vIP(CG) ≥
{
vIP(DLC)
vIP(UT)

}
≥ vIP(RLC) ≥ vIP(DC) ≥ vIP(BD),

vLP(CG) ≥
{
vLP(DLC)
vLP(UT)

}
≥ vLP(RLC) ≥ vLP(DC) ≥ vLP(BD).
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Figure 6.8: Left: Public transport network with seven stops and seven lines. Right: Feasible line plan for
demand given in Table 6.1.

Table 6.1: Comparing line planning models according to the inclusion of a transfer penalty for passenger
paths. The first column gives the travel demand for the instance in Figure 6.8. The second and third columns
indicate possible passenger paths to fulfill the demand. In the last four columns it is marked whether the
considered model associates a transfer penalty with the considered passenger paths for the line plan given in
the right of Figure 6.8.

transfer penalty added by model
demand path travel time no. trans. (BD) (DC) (DLC) (UT)

a→ f 50 p1 = (a, e, f) 20 0 0 0 0 0
a→ b 50 p2 = (a, e, b) 25 1 0 1 1 1
d→ f 20 p3 = (d, g, f) 22 1 0 1 1 1
d→ c 80 p4 = (d, g, c) 22 0 0 0 0 0
g → b 40 p5 = (g, f, b) 20 1 0 0 1 1
c→ a 30 p6 = (c, g, e, a) 31 2 0 1 1 2

In the following example we compare the models according to the transfer penalties that
are included.

Example 6.12. The left of Figure 6.8 revisits the Example 6.1. Recall that the capacity
of a line is κ` = 50 for all ` ∈ {`1, . . . , `7}. The possible frequencies are F = {1, 2}.
The right of Figure 6.8 shows a feasible solution for the demand given in the first column
of Table 6.1. In this solution lines `3, `4 are operated with frequency 2 and `5, `6 with
frequency 1. Note that a line provides the capacity in both directions on all edges it is
operated. Table 6.1 also gives the possible passenger paths (column 2) with pure travel
times (column 3), i. e., without transfer penalties, and number of transfers (column 4).
The public transport network features only one transportation mode, i. e., model (BD)
does not include any transfer penalty. It is not stated in the table but model (CG) in-
cludes a transfer penalty for each transfer. Model (DC) cannot rule out path p5 as a direct
connection path because each edge of the path is covered by a direct connection line (edge
{g, f} by `6 and edge {f, b} by `5), so the direct connection constraints are satisfied; but
there is no direct connection line covering all edges of this path. For each other non-direct
connection path one transfer penalty is included in model (DC). Model (DLC) considers
each direct connection path correctly since in model (DLC) each direct connection pas-
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6.6. Model Discussion

senger path is associated with a direct connection line. All other paths are associated with
one transfer penalty. Model (UT) detects that p5 is not a direct connection path because
the line pool contains no line ˜̀ containing edges {g, f} and {f, b}. If the line pool would
contain ˜̀ and the solution would be as in the right of Figure 6.8, model (UT) would also
consider path p5 as a direct connection path. Moreover, model (UT) accounts for two
transfer penalties for path p6 = (c, g, e, a) since the whole line pool yields no possibility to
cover this path by at most two lines. The last four columns of Table 6.1 summarize the
inclusion of transfer penalties for the four models.

We have seen that model (CG) includes a complete treatment of transfers. However, com-
putational experiments show that the change-and-go model is hard to handle. Namely,
the LP relaxation for only half of our test instances could be solved within 5 hours;
the LP relaxation of the other instances are even not solved after 10 hours, see Chap-
ter 8. The basic dynamic model (BD), on the other hand, can be solved quite efficiently.
The integrality gaps are close to 0, and some instances can even be solved to optimal-
ity within 10 hours, see Chapter 8. However, the example above shows that transfers
are often not accounted in model (BD). The transfer handling capabilities of the direct
connection models are between those of model (BD) and model (CG). Indeed, a compu-
tational comparison of the models (BD), (DC), and (UT) in Chapter 8 will show that
model (DC) performs similar as model (BD) in a branch-and-bound context concerning
the integrality gap. Moreover, this model gives a good estimate on the number of direct
travelers. In fact, the number of direct travelers can be significantly improved by model
(DC) compared to model (BD). Model (UT) is much harder to solve then model (DC).
It further improves the solutions of model (DC) only a little bit. We, therefore, think
that model (DC) is currently the best choice to solve the integrated line planning and
passenger routing problem.
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Chapter 7

Polyhedral Aspects

The Steiner tree problem is a prototype of all problems where nodes are connected by
edges or arcs, see Dell’Amico, Maffioli, and Martello [4]. The (capacitated) network
design problem generalizes this connectivity setting to the installation of numeric arc
capacities to satisfy a given demand. Basic inequalities for the Steiner tree problem,
e. g., the cut inequalities, and fundamental classes of facet defining inequalities, e. g.,
the Steiner partition inequalities, can be extended to the network design problem to
obtain strong inequalities such as (multi-facility) cutset inequalities, see, e. g., Magnanti,
Mirchandani [71] and Raack [84], band inequalities, see, e. g., Stoer and Dahl [97], and
Steiner partition band inequalities, see again Stoer and Dahl [97].

The Steiner connectivity problem is a prototype of all problems where nodes are connected
by paths. The line planning problem generalizes this connectivity setting to the choice of
lines with positive frequencies, i. e., the installation of numeric path capacities, to satisfy
a given demand. The Steiner connectivity problem can, hence, be seen as an idealized
line planning problem (Remark 6.2), i. e., an uncapacitated line planning problem. In the
same way as for the Steiner tree problem and the network design problem, we can extend
valid inequalities for the Steiner connectivity problem to the line planning problem. On
the other hand, it is also possible to generalize inequalities for the network design problem
to the line planning problem since the latter can be seen as a generalization of the first,
similar as the Steiner connectivity problem is a generalization of the Steiner tree problem.
Figure 7.1 illustrates the described setting.

In this chapter, we will show that cutset inequalities, band inequalities, and Steiner par-
tition band inequalities for the network design problem can be applied or generalized
to the line planning problem. Although the close relation between the line planning
problem and the network design problem has been observed before, see, e. g., Magnanti
and Wong [72], only few results for the network design problem have been carried over
or generalized to the line planning problem. As far as we know, only Dix [44] pursues
a similar approach as for the network design problem, namely, she describes the line
planning problem with continuous frequencies by metric inequalities and derives cutset
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Figure 7.1: Relations between the Steiner tree problem, Steiner connectivity problem, (capacitated) network
design problem, and line planning problem with important classes of inequalities. Horizontal edges represent
the generalization from edges/arcs (left) to paths (right); vertical edges correspond to the generalization from
pure connectivity (top) to connectivity w. r. t. capacity (bottom).

inequalities. We go one step further, put band inequalities in the context of line plan-
ning, and prove that the class of Steiner partition band inequalities yields facet defining
inequalities for the line planning problem. Steiner partition band inequalities generalize
not only k-graph-partition band inequalities for the network design problem, see, e. g.,
Stoer and Dahl [97] and Wessäly [104], but also Steiner partition inequalities of the
Steiner connectivity problem, see again Figure 7.1 and compare with Chapter 2.

The structure of the chapter is as follows. We define the line planning polytope in terms
of metric inequalities and investigate basic properties, e. g., its dimension, in Section 7.1.
We first restrict our investigation to one metric inequality and consider a relaxation of
the line planning polytope defined by one metric inequality. In Section 7.2 we apply band
inequalities to our setting obtaining a large class of facet defining inequalities for this
relaxation. We show that the mixed integer rounding technique also yields facet defining
inequalities for this polytope in Section 7.3. In Section 7.4 we apply the developed
technique to a special class of metric inequalities, the cutset inequalities. Finally, we
investigate Steiner partition band inequalities in Section 7.5.

7.1 The Line Planning Polytope

In this section we define the line planning polytope. This polytope describes all feasible
line plans. Recall that the line planning problem is to find a feasible line plan that
optimizes a certain objective; and a feasible line plan has to provide enough capacity for
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a given passenger demand. We will see that the line planning polytope can be defined
by the class of so-called metric inequalities.

To clarify the setting, we will recall and simplify the notation of Section 6.2. Let G =
(V,E) be an undirected graph, L a set of lines (paths in G) and F = {f1, . . . , fm} ⊆ N
a set of frequencies. For ease of notation, in this chapter, we do not distinguish between
OD edges and edges of different transportation types. We also assume that each line
can be operated with any frequency in F . Let further d ∈ QV×V

≥0 be a demand matrix;
we denote by D = {(s, t) ∈ V × V | dst > 0} the set of all node pairs with positive
demand. Let κ`,f ∈ Q≥0 be the capacity of line ` operated with frequency f ∈ F ; we
have κ`,f < κ`,g for f < g, f, g ∈ F , ` ∈ L, and define κ`,0 := 0, ` ∈ L. We denote by
(V,A) the directed counterpart of G that arises from G by replacing each edge e ∈ E
with two antiparallel arcs a(e) and ā(e); conversely let e(a) ∈ E be the undirected edge
corresponding to a ∈ A.

A vector x∗ ∈ {0, 1}L×F is feasible for the line planning problem if the following two
conditions are satisfied:

(f1)
∑

f∈F x
∗
`,f ≤ 1 for all ` ∈ L and

(f2) the arc capacities ca, a ∈ A, defined as ca =
∑

`∈L:e(a)∈`
∑

f∈F κ`,fx
∗
`,f , support d,

i. e., the capacities allow a multi-commodity flow routing for the given demand d.

Choosing L′ = {` ∈ L :
∑

f∈F x
∗
`,f > 0} and f ′(`) =

∑
f∈F f · x∗`,f , condition (f1) says

that the tuple (L′, f ′) is a line plan, condition (f2) requires that this line plan is feasible.

There exists a theorem, known as the Japanese Theorem, stating necessary and sufficient
conditions for a capacity vector to support a given demand:

Theorem 7.1 (Iri [62], Kakusho and Onaga [76]). A capacity vector c̄ supports a
demand d if and only if∑

a∈A
ωac̄a ≥

∑
(s,t)∈D

distω(s, t)dst ∀ω ∈ QA
≥0, (7.1)

where distω(s, t) is the length of a shortest st-path with respect to ω.

Inequalities (7.1) are called metric inequalities since ω can be restricted such that the
triangle inequalities are satisfied, i. e., ωuv ≤ distω(u, v) for (u, v) ∈ A, i. e., ω induces a
(pseudo-)metric in G, see Stoer and Dahl [97]. If all data is rational, it is even sufficient
to consider ω ∈ NA0 , see also Raack [84].

Corollary 7.2. The vector x∗ ∈ {0, 1}L×F is feasible for the line planning problem if
and only if∑

a∈A
ωa

∑
`∈L:e(a)∈`

∑
f∈F

κ`,fx
∗
`,f ≥

∑
(s,t)∈D

distω(s, t)dst ∀ω ∈ QA
≥0 (7.2)

∑
f∈F

x∗`,f ≤ 1 ∀ ` ∈ L. (7.3)
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Proof. Inequalities (7.2) correspond to the metric inequalities (7.1) for the arc capacities
as defined in (f2), inequalities (7.3) correspond to (f1), i. e., (f1) and (f2) are satisfied
and, hence, the claim follows.

We denote by

PLPP = conv{x ∈ {0, 1}L×F : x satisfies inequalities (7.2) and (7.3)}

the line planning polytope. In the following we want to investigate the line planning
polytope. We will consider basic properties, e. g., its dimension, and methods to derive
valid inequalities for PLPP that may separate some fractional points satisfying inequal-
ities (7.2) and (7.3). To this purpose, we apply and generalize results of Dix [44] and
Stoer and Dahl [97] for related problems to our setting.

Dix [44] defined a polytope PLPP′ for the line planning problem with continuous frequen-
cies where the x-variables only depend on the lines (not on their frequencies) and the arc
capacities are defined by ca =

∑
`∈L:e(a)∈` F ·κ` ·x`, with Fκ` being the maximal capacity

for line `. Dix stated a result analogous to Corollary 7.2 for this setting, considered basic
polyhedral properties, and motivated cutset inequalities for PLPP′ . We use similar ideas
as Dix [44] to prove basic properties of PLPP in Section 7.1.1.

Stoer and Dahl [97] considered a polytope for the network design problem which is
equivalent to

PNDP = conv{x ∈ {0, 1}E :
∑
a∈A

ωa
∑
f∈F

κe(a),fxe(a),f ≥
∑

(s,t)∈D

distω(s, t)dst ∀ω ∈ QA
≥0∑

f∈F
xe,f ≤ 1 ∀ e ∈ E},

i. e., it can be seen as a special case of PLPP where each line corresponds to one edge.
More precisely, Stoer and Dahl considered a polytope defined as

P̄NDP = {y ∈ {0, 1}E :
∑
a∈A

ωa
∑
f̄∈F̄

κ̄e(a),f̄ye(a),f̄ ≥
∑

(s,t)∈D

distω(s, t)dst ∀ω ∈ QA
≥0

1 ≥ ye,f̄1 ≥ · · · ≥ ye,f̄m ≥ 0 ∀e ∈ E}.

Remark 7.3. Let F̄ = {f̄1, . . . , f̄m} and define fi =
∑i

j=1 f̄j , i = 1, . . . ,m, and
κe,fi =

∑i
j=1 κ̄e,f̄j , then xe,fm = ye,fm and xe,fi = ye,fi − ye,fi+1

, i = 1, . . . ,m − 1, is
a transformation between x ∈ PNDP and y ∈ P̄NDP which is described by a regular
matrix, i. e., the polytopes PNDP and P̄NDP are equivalent.

This means that a facet of one polytope can be transformed into a facet of the other
polytope and vice versa. Dahl and Stoer present an investigation of P̄NDP in [97]. They
considered band inequalities, which can be applied in a straight forward way to our
setting, and partition inequalities, which we will generalize to our setting. It will turn
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out that these partition inequalities also generalize the Steiner partition inequalities of
the Steiner connectivity problem considered in Subsection 2.2.1.

Bussieck [29] investigates a different polytope, namely, the polytope associated with the
direct traveler model (DT). It covers the line planning problem with a fixed passenger
routing, i. e., the needed capacity for each arc/edge in the network is known in advance.
Hence, a description for the capacity vector by metric inequalities (7.1) is not necessary
in his setting.

7.1.1 Basic Properties of the Line Planning Polytope

In the following, we analyze the dimension of the line planning polytope and conditions
for basic inequalities to be facet defining.

Proposition 7.4. The polytope PLPP is full-dimensional if and only if for all ` ∈ L the
polyhedron

P` = {x ∈ PLPP |x`,f = 0 ∀ f ∈ F}
is nonempty, i. e., for each line exists a solution in which the line is not operated.

Proof. “⇒” Assume the polytope P` is empty for some line ` ∈ L. Then either PLPP is
empty or each valid solution x∗ ∈ PLPP satisfies

∑
f∈F x

∗
`,f = 1. In both cases PLPP is

not full dimensional.

“⇐” We assume that the polytope P` is nonempty for each ` ∈ L and that the polytope
PLPP is not full dimensional, i. e., there exists a linear equation aTx = α with nonzero
coefficients a that is satisfied by each solution of PLPP. Let ` ∈ L be any line. By assump-
tion there exists a solution x∗ with x∗`,f = 0 for all f ∈ F . Denote by e`,f ∈ {0, 1}L×F
the unit vector that has a 1 at the position corresponding to line ` and frequency f and 0
at all other positions. Then the vectors x∗ + e`,f for each f ∈ F are feasible for PLPP.
Then we have aTx∗ = aT (x∗+e`,f ) = α and by subtraction we get a`,f = 0 for all f ∈ F .
Since the line ` was chosen arbitrarily, we get a = 0, a contradiction. Therefore, the
equality system of polytope PLPP is empty and PLPP is full dimensional.

We assume in the following that the polytope PLPP is full-dimensional, i. e., the condition
of Proposition 7.4 holds.

Proposition 7.5.

1. The inequalities
∑

f∈F x`,f ≤ 1 are facet-defining for PLPP for all ` ∈ L.

2. Let ` ∈ L, f ∈ F . The inequality x`,f ≥ 0 defines a facet for PLPP if and only if
the polytope

P`,˜̀ = {x ∈ PLPP |x˜̀,f̃ = 0 ∀ f̃ ∈ F} ∩ {x ∈ PLPP |x`,f = 0}

is nonempty for each ˜̀∈ L, i. e., setting x`,f = 0 does not imply that a certain line
is operated with positive frequency in any solution.
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Proof. 1. Let ` ∈ L. We can define the following solutions.

(a) χX ∈ PLPP for the set X = {(˜̀, fm) : ˜̀∈ L}, i. e., setting all lines to the maximal
frequency.

(b) χX˜̀,f ∈ PLPP with X˜̀,f = X \ {(˜̀, fm)} ∪ {(˜̀, f)} for all ˜̀∈ L, f ∈ F \ {fm}, i. e.,
reducing the frequency of any line.

(c) χX˜̀,0 ∈ PLPP with X˜̀,0 = X \ {(˜̀, fm)}, for all ˜̀ ∈ L \ {`}, i. e., setting any line
but ` to 0.

The cases (b) and (c) yield solutions since the line planning polytope is full-dimensional.
We have 1 + |L|(|F| − 1) + (|L| − 1) = |L||F| affinely independent vectors and each such
vector satisfies the inequality

∑
f∈F x`,f ≤ 1 with equality. Therefore, this inequality is

facet defining.

2. “⇒” Assume the polytope P`,˜̀ is empty for an ˜̀∈ L\{`}, i. e., setting x`,f = 0 implies∑
f̃∈F x˜̀,f̃ = 1. In this case the polytope {x ∈ PLPP : x`,f = 0} is not full dimensional

⇒ it contains at most |L×F|− 1 linearly independent vectors with x`,f = 0 ⇒ x`,f ≥ 0
does not define a facet.

“⇐” Let ` ∈ L and f ∈ F . If P`,˜̀ 6= ∅ for all ˜̀ ∈ L \ {`}, the vectors of the proof of
part 1 (of this proposition) where the component associated with ` and f is set to 0 are
feasible and affinely independent.

7.1.2 Polytope for One Metric Inequality

In the following we want to discuss two methods to derive new inequalities from a metric
inequality such that the new inequalities are valid for all integral solutions of PLPP but
may separate fractional solutions satisfying inequalities (7.2) and (7.3). One method is to
identify a band, i. e., frequencies for the lines such that the considered metric inequality
is not satisfied. Such a band gives rise to so-called band inequalities which correspond to
cover inequalities for knapsack problems with generalized upper bound constraints. The
other method is to use mixed integer rounding, i. e., the metric inequality is multiplied
with a scalar and then the coefficients and the right hand side are rounded exploiting the
integrality requirements of the x-variables.

Consider some metric inequality, i. e., let ω ∈ QA
≥0. We set a`,f =

∑
a∈A:e(a)∈` ωaκ`,f and

b =
∑

(s,t)∈D distω(s, t)dst. Let LM be the set of lines with a`,f > 0 for a frequency f ∈ F .
Then the metric inequality corresponding to ω reads as follows, compare with (7.2):∑

`∈LM

∑
f∈F

a`,fx`,f ≥ b. (7.4)

Recall that a`,0 = 0 for all ` ∈ L and a`,f1 < a`,f2 for f1 < f2. In the following we identify
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this inequality with the tuple (a, b) and assume that b > 0. Let

PM = conv{x ∈ {0, 1}LM×F |x satisfies (7.4),
∑
f∈F

x`,f ≤ 1 ∀ ` ∈ LM}.

be the polytope for the metric inequality (7.4) with additional generalized upper bound
constraints. Note that the definition of this polytope is independent of whether ` is a
path or just an edge in the considered graph, i. e., the polytope PM is equivalent to the
ICOV polytope defined by Stoer and Dahl, i. e., the polytope for one metric inequality.
We can, hence, transfer their results to our setting by using the transformation given in
Remark 7.3. Each inequality valid for PM is also valid for PLPP by setting the coefficients
of all variables corresponding to lines in L \ LM to 0. In the next two sections, we show
that the band inequalities and the mixed integer rounding technique yield facet defining
inequalities for PM .

7.2 Band Inequalities

The band inequalities were originally proposed and analyzed for the telecommunication
network design problem by Stoer and Dahl [97]. They can be defined for any metric
inequality. We apply them to our setting. The idea of a band inequality is to associate
with each line a frequency such that the considered inequality is not satisfied. We start
with the definition of a valid band.

Definition 7.6. We call any assignment B : LM → F ∪{0} of lines in LM to a positive
frequency or zero a band for LM . The band B is valid for (a, b) if∑

`∈LM

a`,B(`) < b.

If we have found a valid band then we know that at least one line ` ∈ LM has to be
operated at a higher frequency than B(`). This is the idea of the band inequality.

Lemma 7.7. Let B be a valid band for (a, b), then the band inequality∑
`∈LM

∑
f∈F
f>B(`)

x`,f ≥ 1

is valid for PLPP.

The band inequalities are of particular interest if the valid band is maximal.

Definition 7.8. A band B valid for (a, b) is maximal if there does not exist a valid band
B̃ for (a, b) with B(`) ≤ B̃(`) for all ` ∈ LM and B(˜̀) < B̃(˜̀) for at least one ˜̀∈ LM ,
in particular ∑

`∈LM

a`,B(`) <
∑
`∈LM

a`,B̃(`) < b.
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Band inequalities are equivalent to cover inequalities for the knapsack problem with
generalized upper bound constraints. Stoer and Dahl [97] showed that band inequalities
are facet defining for the network design polytope for one metric inequality if and only
if the band is maximal. More precisely, Dahl and Stoer proved the following result
(interpreted in our notation).

Proposition 7.9. Assume that b ≤ a`,fm for all ` ∈ LM , i. e., operating any line at its
maximal frequency satisfies the metric inequality (7.4). Let B be a valid band for (a, b)
and |LM | ≥ 2. Then the band inequality

∑
`∈LM

∑
f∈F
f>B(`)

x`,f ≥ 1 (7.5)

is facet defining for PM if and only if the band is maximal.

We give an example of a band inequality that is not facet defining if the assumption
b ≤ a`,fm for all ` ∈ LM is not satisfied, and we show that the assumption is not
necessary.

Example 7.10. Consider three lines LM = {1, 2, 3} and three frequencies F = {1, 2, 3};
set ai,1 = 1, ai,2 = 3, and ai,3 = 5 for i = {1, 2, 3}. The right hand side is b = 7. The
metric inequality and the generalized upper bound constraints for this example are:

x1,1 + 3x1,2 + 5x1,3 + x2,1 + 3x2,2 + 5x2,3 + x3,1 + 3x3,2 + 5x3,3 ≥ 7

x1,1 + x1,2 + x1,3 ≤ 1

x2,1 + x2,2 + x2,3 ≤ 1

x3,1 + x3,2 + x3,3 ≤ 1.

Let PM be the polytope defined by all integral solutions of the above inequalities and the
nonnegative constraints xi ≥ 0, i = 1, 2, 3. A valid and maximal band for the metric
inequality is B(1) = B(2) = 1, B(3) = 2. The associated band inequality is x1,2 + x1,3 +
x2,2 + x2,3 + x3,3 ≥ 1. It is the sum of the two inequalities x1,2 + x1,3 + x2,2 + x2,3 +
x3,1 +x3,2 +2x3,3 ≥ 2 (number (15) in Table 7.1) and x3,1 +x3,2 +x3,3 ≤ 1 (a generalized
upper bound constraint) which are facet defining inequalities for PM . However, setting
B(1) = B(2) = 2 and B(3) = 0 is also a maximal valid band. The corresponding band
inequality is x1,3 + x2,3 + x3,1 + x3,2 + x3,3 ≥ 1 (number (18) in Table 7.1) which is facet
defining for PM , i. e., the assumption b ≤ a`,fm for all ` ∈ LM is not necessary for a
band inequality to be facet defining. The nontrivial facets for this instance were computed
by PORTA [101] and are listed in Table 7.1.

Note that the separation problem for band inequalities is NP-complete since it is equiv-
alent to a knapsack problem with ordering constraints, see Dahl and Stoer [40].
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Table 7.1: Facets for the polytope described by all vectors x ∈ {0, 1}3×3 that satisfy the inequalities given
in Example 7.10. The facets were computed by PORTA [101]. We list the coefficients and the right hand
side for all facets but the trivial facets and the generalized upper bound constraints.

a1,1 a1,2 a1,3 a2,1 a2,2 a2,3 a3,1 a3,2 a3,3 ≥ b

(1) 1 2 3 1 2 3 1 2 3 5
(2) 1 2 2 1 2 2 1 2 2 4
(3) 1 1 2 1 1 2 1 1 2 3
(4) 1 2 2 1 1 2 1 2 3
(5) 1 1 2 1 2 2 1 2 3
(6) 1 2 2 1 2 1 1 2 3
(7) 1 1 2 1 2 1 2 2 3
(8) 1 2 1 2 2 1 1 2 3
(9) 1 2 1 1 2 1 2 2 3
(10) 1 1 1 1 1 1 1 1 2
(11) 1 1 1 1 1 1 1 1 2
(12) 1 1 1 1 1 1 1 1 2
(13) 1 1 2 1 1 1 1 2
(14) 1 1 1 1 2 1 1 2
(15) 1 1 1 1 1 1 2 2
(16) 1 1 1 1 1 1
(17) 1 1 1 1 1 1
(18) 1 1 1 1 1 1

7.3 Improving Inequalities by Mixed Integer Rounding

The metric inequality (7.4) can also be strengthened by a mixed integer rounding tech-
nique. We can generate mixed integer rounding inequalities from ax ≥ b as follows.

Proposition 7.11. (Wolsey [106]) Let r := b − bbc, r`,f := a`,f − ba`,fc. The mixed
integer rounding inequality∑

`∈LM

∑
f∈F

(rba`,fc+ min{r`,f , r})x`,f ≥ rdbe (7.6)

is valid for PM .

Multiplying inequality (7.4) by a scalar λ ∈ R+ does not change the polytope PM ,
i. e., we can try different values for λ to find strengthening inequalities for PM by the
mixed integer rounding method. Obviously, this only yields nontrivial inequalities if
the right hand side of the scaled inequality ax ≥ b is not integral. Dash, Günlück, and
Lodi [41] showed which multipliers are relevant to get all different mixed integer rounding
inequalities for a given set of constraints. Applied to our setting their results yield the
following theorem.

Theorem 7.12 (Dash, Günlück, and Lodi [41]). Each non-redundant mixed integer
rounding inequality for ax ≥ b is defined by rational multipliers taking values in (0, 1)
with a denominator equal to a`,f , ` ∈ L, f ∈ F , or equal to b.
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Example 7.13. Consider again the instance given in Example 7.10 with the metric in-
equality

x1,1 + 3x1,2 + 5x1,3 + x2,1 + 3x2,2 + 5x2,3 + x3,1 + 3x3,2 + 5x3,3 ≥ 7.

Multiplying this inequality by 1
3 and applying mixed integer rounding yields inequality

1
3x1,1 + 1

3x1,2 + 2
3x1,3 + 1

3x2,1 + 1
3x2,2 + 2

3x2,3 + 1
3x3,1 + 1

3x3,2 + 2
3x3,3 ≥ 1

3 · 3
⇔ x1,1 + x1,2 + 2x1,3 + x2,1 + x2,2 + 2x2,3 + x3,1 + x3,2 + 2x3,3 ≥ 3.

which is facet defining for PM (as defined in Example 7.10), compare with number (3) in
Table 7.1.

7.4 Cutset Inequalities

We have seen in the previous two sections how metric inequalities can be strengthened
by band inequalities and by the mixed integer rounding technique. In this section we
consider capacitated cutset inequalities which are the most important and most investi-
gated metric inequalities, see, e. g., Raack [84]. We can define band inequalities for and
apply mixed integer rounding to capacitated cut inequalities to generate strengthened
inequalities for the line planning problem.

A capacitated cutset inequality stipulates a minimal capacity requirement on a cut in a
graph, i. e., a partition of the nodes into two sets such that the demand that has to be
transported from one set to the other is positive. Capacitated cutset inequalities can be
derived from metric inequalities as follows. Let ∅ 6= W ⊂ V be a nonempty node set
and S = δ+(W ) be the arcs of the cut from W to V \W . Define ωa = 1 for a ∈ S and
ωa = 0, a /∈ S. The metric inequality (7.2) for this setting reads∑

a∈S

∑
`∈L:e(a)∈`

∑
f∈F

κ`,fx`,f ≥
∑

(s,t)∈D

distω(s, t)dst, (7.7)

i. e., here a`,f =
∑

e∈S:e∈` κ`,f and b =
∑

(s,t)∈D distω(s, t)dst to get the structure of (7.4).

Let W̄ := V \W , S̄ = δ+(W̄ ) = δ−(W ), ω̄a = 1 for all a ∈ S̄, and ω̄a = 0 for all a /∈ S̄.
Then distw(s, t) = distω̄(t, s), for all s ∈W, t ∈ W̄ . The metric inequality for this setting
reads ∑

a∈S̄

∑
`∈L:e(a)∈`

∑
f∈F

κ`,fx`,f ≥
∑

(s,t)∈D

distω̄(s, t)dst. (7.8)

Since the lines are undirected, inequalities (7.7) and (7.8) have the same left hand side.
In particular, inequality (7.7) dominates inequality (7.8) if∑

(s,t)∈D:s∈W,t/∈W

dst >
∑

(s,t)∈D:s/∈W,t∈W

dst.

144



7.4. Cutset Inequalities

If the relation is the other way round inequality (7.8) dominates inequality (7.7).

Let LS = {` ∈ L | ∃ a ∈ S : e(a) ∈ `} be the set of all lines that have at least one edge
covering an arc connecting a node in W with a node in W̄ = V \W , α` =

∑
a∈S,e(a)∈` 1

be the number of all such edges line contained in `, and

dS = max{
∑

(s,t)∈D:s∈W,t/∈W

dst,
∑

(s,t)∈D:s/∈W,t∈W

dst}

be the maximum of the total number of passengers who want to travel either from a node
in W to a node in W̄ or from a node in W̄ to a node in W . In the following we assume
that dS > 0. We then define the capacitated cutset inequality as∑

`∈LS

∑
f∈F

α`κ`,fx`,f ≥ dS . (7.9)

Assume
∑

(s,t)∈D:s∈W,t/∈W

dst >
∑

(s,t)∈D:s/∈W,t∈W

dst. Then the capacitated cutset inequal-

ity (7.9) is, in general, dominated by the metric inequality (7.7) since in (7.9) each
demand between a node in W and a node in V \W is weighted with 1 while in (7.7) it is
possible that distω(s, t) ≥ 1 for s ∈ W and t /∈ W . Both inequalities are equivalent (for
undirected graphs) if the node sets W and V \W are connected, see Costa, Cordeau,
and Gendron [39]. More precisely, the result of Costa, Cordeau, and Gendron [39] for
our setting reads as follows.

Proposition 7.14. The capacitated cutset inequality (7.9) and the metric inequality (7.7)
are equivalent if and only if the following two conditions hold.

1. For each OD pair (s, t) ∈ D with s ∈W and t ∈ V \W there exists an st-path that
crosses the cut S exactly once.

2. For each OD pair (s, t) ∈ D with s, t ∈ W or s, t ∈ V \W there exists an st-path
that never crosses the cut S.

Setting B(`) = 0, for all ` ∈ LS , is a trivial band for the capacitated cutset inequal-
ity (7.9). Certainly this is not necessarily a maximal band. It yields∑

`∈LS

∑
f∈F

x`,f ≥ 1. (7.10)

This inequality can be interpreted as “at least one line has to be operated on this cut”.
We call this inequality a line cutset inequality. The trivial band can be easily improved
as follows. Let

f̃ := argmax
f∈F∪0

∑
`∈LS

α`κ`,f < dS

 ,

i. e., setting every line in LS to frequency f̃ is not sufficient to transport all passengers
on the cut. Applying the improved trivial band to the capacitated cutset inequality (7.9)
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yields ∑
`∈LS

∑
f∈F
f>f̃

x`,f ≥ 1, (7.11)

the improved line cutset inequality. It is easy to see that the improved line cutset in-
equality is not facet defining if the band is not maximal. In the next section, we will
discuss a more general setting that yields also sufficient conditions for a band inequality
derived from a capacitated cutset inequality to be facet defining for PLPP.

7.5 Steiner Partition Band Inequalities

Stoer and Dahl [97] also presented and analyzed so-called k-graph-partition band inequal-
ities. The idea is to combine the Steiner partition inequalities and the band inequalities.
In the following, we generalize the k-graph-partition band inequalities to our case and
call them Steiner partition band inequalities.

Let P = (V1, . . . , Vk), k ≥ 2, be a capacitated Steiner partition of the node set V , i. e.,
for each Vi, i = 1, . . . , k, we have

dVi := max{
∑

(s,t)∈D:s∈Vi,t/∈Vi

dst,
∑

(s,t)∈D:s/∈Vi,t∈Vi

dst} > 0,

i. e., Vi contains at least one OD node with positive supply or demand. Let GP =
(VP , EP ) be the graph that arises from contracting each node set Vi to a single node
Vi ∈ VP . Here, we denote by Vi a node set in a partition of G as well as a node in the
shrunk graph GP . Note that GP can have parallel edges. Furthermore, let LP := {` ∈
L | ∃Vi, Vj ∈ VP , Vi 6= Vj , Vi ∈ `, Vj ∈ `} be the set of lines containing at least one edge
in EP and L := L\LP its complement. Finally, G[Vi] is the graph induced by the nodes
Vi, i. e., G[Vi] := (Vi, Ei) with Ei := {e = {u, v} ∈ E : u, v ∈ Vi}.

Let B : LP → F ∪{0} be an assignment of all lines in LP to a positive frequency or zero.
We call B a P -band and say that B is valid if∑

e∈δGP (W )

∑
`:e∈`

κ`,B(`) < dW ∀ ∅ 6= W ⊂ VP

with δGP (W ) = {{u, v} ∈ EP : u /∈W, v ∈W}, i = 1, . . . , k, and

dW := max{
∑

(s,t)∈D:s∈W,t/∈W

dst,
∑

(s,t)∈D:s/∈W,t∈W

dst}.

A P -band B is called maximal if there exists no valid P -band B̃ with B(`) ≤ B̃(`) for
all ` ∈ LP and B(˜̀) < B̃(˜̀) for at least one ˜̀∈ LP .
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`1

`2 `3

`4

a

b c

d a

b c

d

35

20

20

25

Figure 7.2: Example of a Steiner partition band inequality. Left: Graph with four lines (`1 = (a, b, c, d),
`2 = (d, a, b), `3 = (a, d, c), `4 = (b, c)) partitioned into three sets. The capacity of each line is 10, the
possible frequencies are 1, 2, or 3. Right: Demand Graph: 35 passengers want to travel from a to b, 25 from
a to c, 20 passengers between b and c in both directions. A valid band is given by setting the frequency of
`1, `3, `4 to 1 and of `2 to 2. The corresponding Steiner partition band inequality is 2x`1,2 +2x`1,3 + x`2,3 +
x`3,2 + x`3,3 + x`4,2 + x`4,3 ≥ 2.

Lemma 7.15. Let P be a Steiner-partition and B a valid P -band. Furthermore, let
a` := |{i ∈ {1, . . . , k} : Vi ∈ VP , Vi ∈ `}|−1. Then the Steiner partition band inequality
defined as ∑

`∈LP

∑
f∈F
f>B(`)

a` x`,f ≥ k − 1 (7.12)

is valid for PLPP.

Proof. Assume there exists a point x∗ ∈ PLPP with∑
`∈LP

∑
f∈F
f>B(`)

a` x
∗
`,f < k − 1.

The coefficient a`, ` ∈ LP , counts the number of nodes in GP that ` contains minus one,
i. e., a` is the maximum number of edges that ` can contribute to a spanning tree in GP .
Therefore the solution x∗ connects at most k − 1 nodes of GP by lines with frequencies
greater than the frequencies defined for the valid P -band B. This means that there is
at least one node Vi that is not incident to lines with frequencies greater than the ones
defined for B. Since B is a valid P -band we get∑

e∈δGP (Vi)

∑
`:e∈`

∑
f∈F

κ`,f x
∗
`,f < dVi .

This is a contradiction to x∗ being a point in PLPP.

An example of a Steiner partition band inequality can be seen in Figure 7.2.

Denote by T = {v ∈ V : ∃w ∈ V s.t. dvw + dwv > 0} ⊆ V the set of nodes with
positive supply or demand. Let H = (T, F ) be the (undirected) demand graph with

147



7 Polyhedral Aspects

F =
{
{u, v} |u, v ∈ T, duv + dvu > 0

}
. In the following we assume that the demand

graph is connected. Then every solution for the line planning problem is a T -connecting
set, compare with Chapter 1. Let

PSCP := conv{y ∈ {0, 1}L : y satisfies all Steiner path cut constraints}

be the Steiner connectivity polytope as defined in Chapter 2, i. e., the polytope that
contains all T -connecting sets. Then we have

x ∈ PLPP ⇒ y ∈ PSCP with y` =
∑
f∈F

x`,f ∀` ∈ L. (7.13)

If we assume that the maximal frequency fm is large enough, i. e., setting any line to the
maximal frequency always satisfies the required demand for the edges on which the line
is operated, we also get

y ∈ PSCP ⇒ x ∈ PLPP with x`,fm = y`, x`,f = 0 ∀` ∈ L, f ∈ F \ {fm}. (7.14)

Stoer and Dahl [97] showed that a k-graph-partition band inequality is facet defining for
the network design polytope if the band is maximal and the (underlying uncapacitated)
Steiner partition inequality is facet defining for the (underlying) Steiner tree problem.

We generalize the properties to our case and get the following result.

Proposition 7.16. Let P be a Steiner partition of G and B a valid P -band. The Steiner
partition band inequality (7.12) is facet defining for PLPP if the following properties are
satisfied.

1. The underlying uncapacitated Steiner partition inequality
∑
`∈LP

a`y` ≥ k− 1 is facet

defining for PSCP.
2. The maximal frequency is large enough, i. e., (7.14) is satisfied.
3. Each line contains at most two nodes in GP , i. e., a` ∈ {0, 1} for all ` ∈ L.
4. The P -band B is maximal.

Recall that property 1 implies that the shrunk graph GP is 2-node-path-connected for
the case that the partition contains at least three sets (see Definition 3.10), compare with
Proposition 2.18. If the partition contains only two sets, the shrunk graph is trivially 2-
node-path-connected. Compare the following proof also with the one of Proposition 2.17.

Proof. Let P = (V1, . . . , Vk) be a Steiner partition in G and consider the corresponding
partition inequality aTx =

∑
`∈LP

∑
f∈F a`,fx`,f ≥ k− 1. Assume that properties 1 to 4

are satisfied. Let bTx = β be an equation such that

Fa = {x ∈ PLPP | aTx = k − 1} ⊆ Fb = {x ∈ PLPP | bTx = β}

and such that Fb is a facet of PLPP. Let further F SCP
a = {y ∈ PSCP | aT y = k − 1} be a

facet of PSCP (property 1).
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We first show that b`,f = 0 for all ` ∈ L and f ∈ F . Since the underlying uncapacitated
Steiner partition inequality

∑
`∈LP a`y` ≥ k − 1 is facet defining for PSCP (property 1),

there exists L′ ⊆ L \ {`} with χL′ ∈ F SCP
a . According to property 2 we get χX ∈ PLPP

with X = {(`′, fm) : `′ ∈ L′} and χX ∈ Fa. Define Xf := X ∪ {(`, f)} then χXf ∈ Fa
and aTχX = aTχXf = k − 1. Thus, bTχX = bTχXf which implies b`,f = 0.

With a similar construction, we get that b`,f = 0 for all ` ∈ LP and f ≤ B(`).

Let `1 ∈ LP and f1, f2 > B(`1). Choose a set L′ ⊆ LP , `1 ∈ L′, such that χL′∪L ∈ F SCP
a ,

i. e., |L′| = k − 1. This is possible with property 1. Define

Xi = {(`, fm) : ` ∈ (L′ ∪ L) \ {`1}} ∪ {(`1, fi)}, i = 1, 2.

Then χXi ∈ PLPP; this follows with χL
′∪L ∈ PSCP, property 2, and the maximality of the

band B. We also have χXi ∈ Fa, i = 1, 2, since |L′| = k − 1, and 0 = bTχX1 = bTχX2 =
b`1,f1 − b`1,f2 . Hence, the coefficients for one line and different frequencies higher than
the frequency defined by the band are equal.

Let `3 ∈ LP \ {`1}. Consider the graph ĜP = (VP ,LP ) in which ` is an edge between Vi
and Vj if it contains Vi and Vj (recall that ` ∈ LP contains exactly two nodes). Since
GP is 2-node-path-connected, ĜP is 2-node-connected and there exists a cycle C in ĜP
containing `1 and `3. Let L′′ be a tree in ĜP containing C \ {`3}. With property 1 we
have χL′′∪L ∈ F SCP

a , χL′′\{`1}∪{`3}∪L ∈ F SCP
a , i. e., |L′′| = |L′′ \ {`1} ∪ {`3}| = k − 1.

Define

X3 = {(`, fm) : ` ∈ L∪L′′\{`1}}∪{(`1, f1)} X4 = {(`, fm) : ` ∈ L∪L′′\{`1}}∪{(`3, f3)}

with f3 > B(`3); recall f1 > B(`1). Then χXi ∈ PLPP, i = 3, 4; this follows with the
same arguments as above. We also have χXi ∈ Fa, i = 3, 4, since |L′′| = k − 1, and
0 = bTχX3 = bTχX4 = b`1,f1 − b`3,f3 . Hence, the coefficients for different lines and
frequencies higher than the frequency defined by the band are equal. It finally follows
that bTx is a multiple of aTx. This proves the claim.

Proposition 7.17. Properties 1 and 4 are also necessary conditions for a Steiner parti-
tion band inequality to be facet defining.

Proof. We first show that property 1 is necessary. Let P be a Steiner partition of G and B
a valid P -band. Assume the Steiner partition band inequality (7.12) is facet defining for
PLPP. Let {xj ∈ PLPP, j = 1, . . . , |L||F|}, be a set of linearly independent vectors that
satisfy inequality (7.12) with equality. We argue that the transformation given in (7.13)
yields |L| linearly independent vectors for PSCP satisfying the corresponding Steiner
partition inequality with equality. Define a matrix A ∈ {0, 1}|L||F|×|L||F| with columns
being xj , j = 1, . . . , |L||F|. Assume that L = {1, . . . , n} and the rows ((i− 1)|F|+ 1) to
(i|F|), i = 1, . . . , |L|, of A correspond to line i. Define a matrix B ∈ {0, 1}|L|×|L||F| with
bij = 1 for j ∈ {(i − 1)|F| + 1, . . . , i|F|} and bij = 0 otherwise. The multiplication of
B and A , i. e., BA ∈ {0, 1}|L|×|L||F|, corresponds to the transformation given in (7.13).
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We get rank(B ·A) ≥ rank(B) +rank(A)−|L||F| = |L| [48]. Hence there are |L| linearly
independent vectors in BA and each such vector y satisfies

∑
`∈LP a`y` ≥ k − 1 with

equality, i. e., the Steiner partition inequality is facet defining for PSCP.

Now we show that property 4 is necessary. Assume the P -band B is not maximal. Then
there exists a valid P -band B̃ with B(`) ≤ B̃(`) for all ` ∈ LP and B(˜̀) < B̃(˜̀) for at
least one ˜̀∈ LP . Then the Steiner partition band inequality for B is dominated by the
Steiner partition band inequality for B̃.

Corollary 7.18. A band inequality for a capacitated cutset inequality is facet defining
for PLPP if

1. The corresponding Steiner path cut inequality is facet defining for PSCP, compare
with Lemma 2.15.

2. The maximal frequency is large enough, i. e., (7.14) is satisfied.
3. The P -band B is maximal.

The second property in the above corollary is not necessary. To see that, note that
the metric inequality considered in Example 7.10 can be interpreted as a capacitated
cutset inequality. The example then shows that a band inequality can be facet defining
if property 2 is not satisfied.
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Chapter 8

Solving the Line Planning Problem

In this chapter, we describe algorithms for the solution of the integrated line planning and
passenger routing problem. We will compare the models (BD), (DC), and (UT) according
to their computability and solution quality. It turns out that the direct connection
model (DC) is the best computationally tractable line planning method that provides
good estimates of direct travelers. We will show that its direct connection constraints
strongly improve the number of direct travelers in comparison to the basic dynamic
model (BD) which ignores a large number of transfers. Model (UT) only provides little
better estimates of direct travelers than model (DC). However, it is, especially for large
instances, much harder to solve than the models (DC) or (BD). We also tried to compute
the change-and-go model (CG), however, even the root LP relaxation could only be
solved for half of the instances within 10 hours.

We developed a branch-and-cut-and-price algorithm based on our investigation of the
line planning models in Chapters 6 and 7. This involves heuristics, cutting planes,
and pricing methods for the passenger path variables. In Section 8.1 we describe the
test instances and some preprocessing of the data. We propose primal heuristics in
Section 8.2, investigate approaches to find violated cutting planes in Section 8.3, and
suggest a constraint branching in Section 8.4. We then compare the computational
performance, e. g., the number of solved branching nodes, as well as primal and dual
bounds, of the models (BD), (DC), and (UT) and evaluate the solutions according to the
exact number of direct travelers using the change-and-go graph in Section 8.5.

8.1 Data and Preprocessing

We consider four transportation networks that we denote as China, Dutch, SiouxFalls,
and Potsdam. The instance SiouxFalls uses the graph of the street network with the
same name from the Transportation Network Test Problems Library of Bar-Gera [98].
Instances China, Dutch, and Potsdam correspond to public transportation networks.
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8 Solving the Line Planning Problem

The Dutch network was introduced by Bussieck in the context of line planning [28].
The China instance is artificial; we constructed it as a showcase example, connecting
the twenty biggest cities in China by the 2009 high speed train network. The Potsdam
instances are real-world multi-modal public transportation networks of the years 1998
and 2009; the Potsdam network distinguishes different modes for bus, tram, regional, and
commuter trains. The Potsdam2010 instance arose within a project with the Verkehr in
Potsdam GmbH (ViP) [96] to optimize the 2010 line plan [10, 24], see also Chapter 9.

The Potsdam data is given by a network file and an OD matrix in Visum format. We
transformed the data for all other instances also into Visum format. Visum is a software
system of the ptv AG [83] for “traffic analyses, forecasts, and data management”.

For China, Dutch, and SiouxFalls all nodes are considered as termini, i. e., nodes where
lines can start or end. We constructed a line pool by generating for each pair of termini
all lines that satisfy a certain length restriction. To be more precise, the number of edges
of a line between the two termini s and t must be less than or equal to k times the
number of edges of the shortest path between s and t. For each network, we increased
k in three steps to produce three instances with different line pool sizes. The Dutch
and China instance number 3 contains all lines, i. e., all paths that are possible in the
network. For instance Potsdam1998 we defined all nodes as termini that are termini of
operating lines in the associated year. The line pools for the Potsdam network of 1998 are
generated similar as for the other instances with one exception, namely, we considered
the given turning restrictions on crossings. The termini for Potsdam2010 were explicitly
given. The line pool contains all possible lines that fulfill the ViP requirements as well
as given lines for regional and commuter traffic which are not operated by ViP. The
instance Potsdam2010+ describes the final setting that we used for optimizing in the
project Stadt+, compare with Chapter 9. It has the same set of lines as Potsdam2010,
but restricts the set of possible frequencies for all tram lines. It further includes all
additional requirements given by ViP such as a minimum frequency requirement for a
set of stations/stops. These additional constraints are discussed in Chapter 9. We do not
consider the two big instances Anaheim and Chicago from the Transportation Network
Test Problems Library of Bar-Gera [98] as we have done for the SCP, because they lead to
very artificial looking super-large scenarios of questionable significance. Indeed, taking all
nodes as termini, as for the Dutch, China, and SiouxFalls instances, produces hundreds
of thousands of line paths, even if we allow only shortest paths. The real-world instance
Potsdam2010 has only 3 433 lines, although the underlying transportation network is
larger than that of Anaheim. We feel that a substitution of missing data by a complete
enumeration of all possibilities exceeds its reasonable limits here.

Recall that we assume lines to operate in both directions. This means that one-way
streets are an obstacle; they only occur in the Potsdam data. We assume that relaxing
one-way streets has little influence on the optimal solution. More precisely, we allow
to operate lines on one-way streets in both directions in the optimization model and,
if necessary, reroute the lines to satisfy the geographical restrictions afterwards. We
further implemented some checking routines for the given data as well as several routines
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to remove dispensable information before starting with the optimization. Note that we do
not modify the data. The preprocessing may reduce the size of the public transportation
network. It involves the following ideas:

◦ We remove isolated nodes. Sometimes the data contains nodes in the network that
are not connected to other nodes. These nodes are called isolated.
◦ We remove unused OD nodes and uncovered network nodes with all incident arcs.

Unused OD nodes have no traffic, i. e., no supply or demand is given for these nodes.
Uncovered network nodes are not contained in any line and cannot be reached by
foot, i. e., are also not relevant for the passenger traveling paths. Checking for
uncovered network nodes requires that the set of lines is given.
◦ We remove parallel edges/arcs of the same transportation mode in the public trans-

port network and keep the edge/arc with the smallest travel time.
◦ We remove a node and its incident arcs if it is a non-terminus and non-OD node

with exactly one neighbor of the same transportation mode.
◦ We contract intermediate nodes, i. e., nodes v with exactly two neighbors u and w

of the same mode; the arcs (u, v) and (v, w) are replaced by the arc (u,w) with
travel time τuw = τuv + τvw and length luw = luv + lvw.
◦ We contract nodes that do not correspond to stops/stations, i. e., passengers cannot

change lines at these nodes. Such nodes correspond, e. g., to crossings or light
signals.

The preprocessing is mainly important for real-world data since those data often include
more information than needed (e. g., the position of light signals) and is prone to incon-
sistencies. Indeed, the preprocessing reduces only (but largely) the Potsdam network.
For Potsdam1998 (Potsdam2010) the number of nodes can be reduced by around 55.8%
(61.8%), the number of OD nodes can be reduced by around 3.6% (7.8%), and the number
of edges can be reduced by around 16.5% (37.3%).

Table 8.1 gives some statistics about the test instances after preprocessing. The columns
labeled |D|, |V |/|VO|, |A|, and |L| list the number of OD pairs with nonzero demand,
nodes/OD nodes (note that VO ∩ V = ∅), arcs, and lines after the preprocessing. The
columns labeled x-vars and cons (dc-cons) give the number of x-variables for the fre-
quency set F = {3, 6, 9, 18} and the number of constraints for the models (BD), (DC),
and (UT) after the presolving of SCIP. The numbers in brackets in column cons (dc-cons)
list the number of additional direct connection constraints of models (DC) and (UT). We
will come back to this in Section 8.5 when explaining computational results. The last two
columns give the number of nodes and arcs in the corresponding change-and-go graph.
Especially the transfer arcs can highly enlarge the size of the change-and-go graph since
we have to insert transfer arcs for every two lines that operate the same station. If an
important transfer station is contained in many lines, say k lines, then a straight forward
implementation of the change-and-go graph includes a complete graph on k nodes for this
transfer station. An equivalent but more efficient construction is based on inserting an
additional auxiliary transfer node. This requires only 2k transfer arcs instead of k(k−1)
arcs. For k ≥ 4 this is an improvement since 2k < k(k− 1), k ≥ 4. In formulas, the idea
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Table 8.1: Statistics on the line planning instances. The first column lists the instances. The next three
columns list the number of nonzero OD pairs, number of nodes/OD nodes, and number of edges of the
preprocessed passenger routing graph. Columns 5, 6, and 7 show the size of the line pool and give statistics
on the number of variables and constraints for the models (BD), (DC), and (UT) after the presolving of
SCIP. The last two columns list the number of nodes and arcs of the change-and-go graph.

instance |D| |V |/|VO| |A| |L| x-vars cons (dc-cons) |V| |A|

Dutch1 420 23/23 106 402 1 608 1 080 (1 832) 1 880 10 200
Dutch2 420 23/23 106 2 679 10 716 3 341 (7 544) 18 573 105 804
Dutch3 420 23/23 106 7 302 29 208 7 945 (9 736) 61 270 352 740
China1 379 20/20 98 474 1 896 1 178 (2 754) 2 742 15 264
China2 379 20/20 98 4 871 19 484 5 457 (8 162) 44 431 256 604
China3 379 20/20 98 19 355 77 420 19 931 (12 443) 229 702 1 339 262
SiouxFalls1 528 24/24 124 866 3 464 1 779 (4 400) 4 868 27 188
SiouxFalls2 528 24/24 124 9 397 37 588 10 197 (16 844) 77 078 443 386
SiouxFalls3 528 24/24 124 15 365 61 460 16 145 (21 220) 146 515 848 072
Potsdam1998a 7 734 344/107 2 746 207 756 8 894 (3 538) 2 615 20 218
Potsdam1998b 7 734 344/107 2 746 1 907 7 560 10 606 (25 916) 41 474 366 153
Potsdam1998c 7 734 344/107 2 746 4 342 17 300 12 981 (38 107) 126 666 1 096 732
Potsdam2010 4 443 851/236 5 542 3 433 13 696 10 158 (33 166) 93 897 609 411
Potsdam2010+ 4 443 851/236 5 542 3 433 13 624 10 350 (33 166) 93 897 609 411

is as follows. Let L(u) be the set of lines containing node u.

◦ If |L(u)| < 4 then we insert transfer arcs ((u, `i)(u, `j)) and ((u, `j)(u, `i)) for all
lines `i, `j ∈ L(u).
◦ If |L(u)| ≥ 4 then we insert an additional auxiliary node vu and transfer arcs

((u, `), vu) and (vu, (u, `)) for all lines ` containing u. The transfer penalties are
only added on the arcs (vu, (u, `)).

The average number of lines containing the same node, i. e., for which transfer arcs have
to be included, is 80 for Dutch1, 135 for China1, 200 for SiouxFalls, 13 for Potsdam1998a,
and 367 for Potsdam2010, i. e., the above construction is already an improvement for the
smallest instances.

We tried to compute the root LP relaxation of model (CG) for all instances listed in Ta-
ble 8.1 on computers with an Intel(R) Xeon(R) CPU X5672 with 3.20GHz, 12MB cache,
and 48GB of RAM. The root LP could be solved for Dutch1, Dutch2, China1, China2,
SiouxFalls1, and Potsdam1998a within 5 hours. The root LP of all other instances, which
make 7 instances out of 13, could not be solved within 10 hours. We, therefore, restrict
ourselves to computing solutions for (BD), (DC), and (UT) and describe the application
of our solution methods to these models.
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8.2 Primal Heuristics

The objective functions of the line planning models contain two competing parts, the costs
of a line plan and the travel times of the passengers. In this section, we introduce primal
heuristics to round the line variables according to one part in the objective. The first
idea is to round the frequencies of the lines such that the travel times of the passengers
do not increase. The second idea is to reduce the number of lines in an LP solution as
long as the increase in travel time is smaller than the cost of the deleted line.

We distinguish between fast rounding heuristics and diving heuristics. All heuristics are
independent of the computation of direct travelers and can therefore be applied to models
(BD), (DC), and (UT).

Rounding Heuristics

Rounding heuristics set all integer or binary variables to an integral value in a first step
and then recompute the resulting LP to find the best values for all continuous variables
in a second step, see, e. g., Berthold [7]. Such rounding heuristics are usually fast. In the
following we describe a rounding heuristic for line planning models. We assume that we
are given a feasible LP solution.

The simplest idea is to set the frequency for each fractional line to the next integral
frequency which is higher than or equal to the sum of the frequencies of the line in the
LP solution. In this way, the passenger paths do not have to be changed since the so-
defined capacities of the lines suffice to cover all passenger paths. The travel times of
the resulting IP solution are, therefore, not higher than the travel times of the initial
LP solution. We slightly improve this idea by setting the frequency of a fractional line
to the minimal value such that the resulting capacity reaches either the capacity of the
line of the LP solution or the maximal number of passengers on an arc of the line that
are not covered by lines whose frequencies have already been fixed. Note that an arc
can be contained in several lines and the sum of the capacity of all these lines has to
be greater than or equal to the number of passengers on the arc. The lines are rounded
in the order as they are defined. We call this heuristic round. We further modify this
heuristic and consider a different order of the lines. The order is induced by a weight
s(`) for each line ` ∈ L. We will use as weights the sums of the pseudocosts of the
associated variables (for all frequencies) of the lines. A pseudocost is a statistic on the
cost value of the variable if it is rounded down, i. e., these pseudocosts are getting more
meaningful during the branching process. We get them by a SCIP method. The lines
are sorted in decreasing order w. r. t. their weights, and we first round the line with the
highest weight. We call this modification roundSorted. Algorithm 8.10 gives a detailed
description of the heuristic. Note that it starts by reducing the arc weights by the
capacity of all integral line variables before it continues with the rounding of fractional
lines. We also considered to sort the lines according to the number of passengers or the
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Algorithm 8.10: Algorithm for heuristic roundSorted. The algorithm for heuris-
tic round is the same without the sorting step in line 13.
Input : LP solution (x∗, y∗) of (BD)/(DC)/(UT); weights s(`) for all ` ∈ L.
Output: IP solution (x?, y∗) of (BD)/(DC)/(UT).
Set arc weights wa :=

∑
p:a∈p y

∗
p, L̄ := ∅1

for ` ∈ L do2

for f ∈ F do3

if x∗`,f = 1 then4

x?`,f := 15

// reduce arc weights according to the capacity of line `
wa := max{0, wa − κ`,f} for all a : e(a) ∈ `6

end7

if x∗`,f is fractional then8

L̄ := L̄ ∪ {`}9

end10

end11

end12

Sort lines in L̄ such that s(`1) ≥ s(`2) ≥ . . . ≥ s(`|L̄|)13

for i = 1 . . . |L̄| do14

f̃ := minf∈F∪{0}

{
κ`i,f ≥

∑
f∈F κ`i,fx

∗
`i,f

or κ`i,f ≥ max{wa | a : e(a) ∈ `i}
}

15

x?
`i,f̃

:= 116

wa := max{0, wa − κ`i,f̃} for all a : e(a) ∈ `i // update arc weights17

end18

number of different passenger paths using arcs of the line. However, this sorting is more
time consuming and yields no better results.

Diving Heuristics

A diving heuristic fixes a subset of variables that are not fixed so far and resolves the
modified LP, see again Berthold [7]. It then fixes the next subset of variables and so on.
The procedure stops if one of the following conditions is satisfied:

◦ The modified LP is infeasible.
◦ The objective value of the modified LP is not better than the best known IP

solution.
◦ All variables are fixed.

We will describe two diving heuristics for our line planning problem which always yield
feasible solutions for the line planning models (BD), (DC), and (UT) as defined in Chap-
ter 6. Both heuristics try to find a promising subset of lines with positive LP value,
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i. e., all lines with 0 frequencies in the LP solution are fixed to 0. The first rounds the
variables successively up, the second rounds the variables successively down.

Algorithm 8.11: Algorithm for heuristic diveSorted.
Input : LP solution (x∗, y∗) of (BD)/(DC)/(UT); weights s(`) for all ` ∈ L.
Output: IP solution (x?, ·) of (BD)/(DC)/(UT).
L̄ := {` ∈ L | ∃ f ∈ F with 0 < x∗l,f < 1}, x?`,f := x∗`,f ∀` ∈ L \ L̄1

while L̄ 6= ∅ do2
˜̀= argmax {s(`) | ` ∈ L̄}3

f̃ := minf∈F{κ˜̀,f ≥
∑

f∈F κ˜̀,fx
?
˜̀,f
}4

x?˜̀,f̃ := 1 (constraint for modified LP)5

(x∗, y∗) := solution of modified LP (for x?)6

L̄ := {` ∈ L | ∃ f ∈ F with 0 < x∗l,f < 1} // update L̄7

end8

Algorithm 8.12: Algorithm for heuristic roundFreqObj.
Input : LP solution (x∗, y∗) of (BD)/(DC)/(UT).
Output: IP solution (x?, ·) of (BD)/(DC)/(UT).
L̄ := {` ∈ L | ∃ f ∈ F with 0 < x∗l,f < 1}, x?`,f := x∗`,f ∀` ∈ L \ L̄1

while L̄ 6= ∅ do2
˜̀ := argmin {

∑
f∈F x

∗
`,f · f : ` ∈ L̄}3

f̃ := minf∈F{κ˜̀,f ≥
∑

f∈F κ˜̀,fx
∗
˜̀,f
}4

C˜̀ = c˜̀,f̃ −
∑

f∈F c˜̀,fx
∗
˜̀,f

// additional operating cost5

x?˜̀,f := 0 for all f ∈ F (constraint for modified LP)6

(x∗∗, y∗∗) := solution of modified LP for (x?)7

if vLP (x∗∗, y∗∗) > vLP (x∗, y∗) + 0.9 · C˜̀ · λ then8

x?˜̀,f̃ := 1 // backtracking9

(x∗∗, y∗∗) := solution of modified LP for (x?)10

end11

(x∗, y∗):=(x∗∗, y∗∗)12

L̄ := {` ∈ L | ∃ f ∈ F with 0 < x∗l,f < 1} // update L̄13

end14

The idea of the first diving heuristic is the same as for roundSorted. It just resolves
the LP after each fixing of a line to a frequency. More precisely, we choose a line `
whose frequency is not fixed so far and for which the weight s(`) is maximal. We set
the frequency to the minimal value such that the capacity of the line of the (current)
LP solution is reached. Note that this capacity is always smaller than or equal to the
maximal number of passengers on an arc of ` that are not covered by lines already fixed
if we have no other constraints than those in the models (BD),(DC), and (UT). This is
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Table 8.2: Time in seconds and integrality gap for the four different primal heuristics after solving the root
node of model (DC) (λ = 0.8).

round roundSorted diveSorted diveObj
instance time gap time gap time gap time gap

N1 <1 1.34% <1 0.72% 1 0.61% 2 0.53%
N2 16 2.93% 15 1.66% 26 1.80% 36 1.38%
N3 54 2.75% 55 1.74% 92 2.02% 102 1.41%
China1 1 2.28% 1 2.35% 2 0.79% 3 0.95%
China2 93 4.33% 92 1.50% 124 0.54% 146 1.09%
SiouxFalls1 3 0.28% 2 0.28% 4 0.22% 6 0.11%
SiouxFalls2 88 0.24% 103 0.24% 166 0.24% 198 0.12%
SiouxFalls3 209 0.20% 209 0.20% 1859 0.20% 427 0.13%
Potsdam1998a 54 0.48% 56 0.46% 126 0.33% 550 0.27%
Potsdam1998b 501 1.74% 500 1.15% 1803 0.55% 3380 0.38%
Potsdam1998c 1788 1.90% 1784 1.01% 8055 0.56% 7909 0.40%
Potsdam2010 331 3.17% 334 2.75% 1279 2.24% 894 1.26%
Potsdam2010+ 239 - 245 - 4 497 16.84% 753 0.93%

Table 8.3: Time in seconds and integrality gap for the four different primal heuristics after solving the root
node of model (BD) (λ = 0.8).

round roundSorted diveSorted diveObj
instance time gap time gap time gap time gap

N1 <1 1.10% <1 0.65% <1 0.38% <1 0.88%
N2 1 1.37% 1 1.10% 1 0.36% 2 0.60%
N3 3 1.32% 2 1.01% 3 0.36% 4 0.79%
China1 < 1 1.32% <1 1.10% <1 0.27% <1 0.66%
China2 1 1.37% 1 1.17% 2 0.27% 2 0.56%
China3 8 1.25% 8 1.34% 11 0.26% 11 0.73%
SiouxFalls1 <1 0.10% <1 0.10% <1 0.10% <1 0.03%
SiouxFalls2 6 0.08% 5 0.08% 8 0.08% 7 0.06%
SiouxFalls3 12 0.11% 13 0.11% 16 0.11% 15 0.02%
Potsdam1998a 19 0.49% 19 0.45% 27 0.29% 223 0.27%
Potsdam1998b 9 0.97% 9 0.97% 18 0.38% 168 0.44%
Potsdam1998c 12 0.90% 12 0.81% 26 0.42% 202 0.43%
Potsdam2010 8 4.04% 9 4.41% 19 2.76% 82 1.96%
Potsdam2010+ 10 - 10 - 17 2.75% 62 1.00%

in contrast to the rounding heuristic roundSorted and because we resolve the LP after
each fixing. A detailed description of the heuristic gives Algorithm 8.11. We call this
heuristic diveSorted.

The aim of the second diving heuristic is to reduce the number of lines of the LP solution.
In each step we choose the line with the smallest fractional value and set all variables
of this line to 0. Let x∗ be the LP solution for the line variables. Let further C` =
c`,f̃ −

∑
f∈F c`,fx

∗
`,f be the additional operating cost for line `, i. e., the increase in the

cost when the line is rounded to frequency f̃ := minf∈F{κ`,f ≥
∑

f∈F κ`,fx
∗
`,f}. If

158



8.3. Cutting Planes

the objective value of the resulting LP exceeds the old objective value plus 90% of the
additional operating cost, we set the variable of the line with frequency f̃ to 1. A detailed
description of the heuristic is given by Algorithm 8.12. We call this heuristic diveObj.

Tables 8.2 and 8.3 show computation times and integrality gaps for the different heuristics
for model (DC) and (BD), respectively. For model (DC) we skip the China3 instance,
since it can only be solved if a start solution is given. It can be seen that the best
solutions are found by the diving heuristics which also take much more computation
time than the rounding heuristics; the increase in computation times can be up to a
factor of 10, on average it is 2. For model (DC), the heuristic diveObj finds the best
solutions for all instances but the China instances. It also uses only little more time than
the heuristic diveSorted with the exception of large instances, e. g., Potsdam1998c and
Potsdam2010. For the Potsdam2010+ instance, only the heuristic diveObj finds a good
solution in acceptable time; we cannot explain why the heuristic diveSorted needs so
much more time than diveObj but several computations lead to a similar result. The
rounding heuristics do not consider the additional constraints, such as the minimum
frequency requirement, which are included in Potsdam2010+. Hence, the fixing of the
variables generally does not yield a valid solution (in the root node). In model (BD)
the best solutions are mainly found by the heuristic diveSorted. However, extensive
computations show that applying the three heuristics roundSorted, diveSorted, and
diveObj in the root node and the two heuristics roundSorted and diveObj every 10 th
and 5 th depth, respectively, is a good choice for both models. We will use this strategy
in the following. For the Potsdam2010+ instance we will not consider the heuristic
diveSorted; the rounding heuristic will be included because it needs not much time and
there is a little chance that it yields a valid solution. We will use the same choice also
for model (UT) without testing other calibrations explicitly for this model.

8.3 Cutting Planes

In the following, we will analyze different strategies to find additional cutting planes based
on the concepts of Chapter 7. Since the separation problems for the band inequalities
and the Steiner partition (band) inequalities are NP-hard, we consider heuristic ap-
proaches to find promising capacitated cutset inequalities and violated Steiner partition
inequalities; these approaches are based on solution approaches for the Steiner connec-
tivity problem, see Chapter 2. We will see that the main effects on the dual bound can
be achieved by some improved line cutset inequalities and some mixed integer round-
ing inequalities on capacitated cutset inequalities added in a preprocessing step. We
additionally identified further violated inequalities that strengthen the relation between
passenger path variables and line variables. These inequalities and the preprocessing cuts
yield, in general, a remarkable increase of the dual bounds.

Max Flow Separation and Preprocessing Cuts. The separation problem for vio-
lated line cutset inequalities (7.10) is equal to the separation problem for Steiner path
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cut constraints in the cut formulation of the Steiner connectivity problem, compare with
Section 2.1.1, i. e., it can be solved in polynomial time by a max flow algorithm in the
Steiner connectivity digraph, see Section 1.2. Here, terminal nodes correspond to OD
nodes and paths to lines. Similar as for the Steiner connectivity problem, the construc-
tion of the Steiner connectivity digraph is too time- and memory consuming. Therefore,
we relax the problem and search for violated “weak line cutsets”, i. e., we use a max flow
algorithm in the passenger routing graph in which the capacity of an arc is set to the sum
of the line variables (x-variables) containing this arc. The advantage of this method is
that we do not have to construct the Steiner connectivity digraph. The disadvantage is
that a line may be counted several times in the computed cut. If the so-defined value of a
cut that disconnects an OD pair is less than 1, we compute the total travel demand over
this cut. In this way, we get a capacitated cutset inequality (7.9). We use this inequality
to generate improved line cutset inequalities (7.11) and to apply mixed integer rounding,
compare with Chapter 7. We call all violated constraints that are generated in this way
max flow cuts.

Recall that we initialized the computations for the Steiner connectivity problem by
(directed) Steiner path cuts around the terminal nodes. In the line planning setting,
this approach corresponds to considering a cut around each OD node with positive
supply or demand, i. e., a cut δ−(W )/δ+(W ) in the passenger routing graph G with
W = {s} ∪ {v ∈ V : (s, v) ∈ AO} for each s ∈ VO such that there exists t ∈ VO with
dst > 0 or dts > 0. We, further, consider OD bridges in the passenger routing graph. An
arc a is an OD bridge if its removal would disconnect at least one OD pair, i. e., there exist
W ⊂ V , s ∈ W , t /∈ W such that dst > 0 and δ−(W ) = {a}. In both cases we compute
the total travel demand for the resulting cut. This yields a capacitated cutset inequality.
We again use this inequality to generate improved line cutset inequalities (7.11) and to
apply mixed integer rounding. We call all additional constraints that are generated in
this way preprocessing cuts.

One short remark to the mixed integer rounding technique. Theorem 7.12 limits the set
of multipliers that lead to different mixed integer rounding inequalities. We decided to
divide the capacitated cutset inequality (7.9) by each coefficient of the left hand side.
This is also common practice in, e. g., SCIP. We usually have few different coefficients
in the capacitated cutset inequality (7.9), namely, we often have α` ≤ 3, |F| ≤ 5, and
κ`1,f 6= κ`2,f only if `1 and `2 do not have the same transportation mode, i. e., multiplying
the capacitated cutset inequality (7.9) with 1

α`κ`,f
for each coefficient α`κ`,f in (7.9) and

then considering the mixed integer rounding inequality (7.6) can be done in constant
time.

In computational experiments, we found out that including preprocessing cuts or max
flow cuts increases the dual bound. However, we did not find any further violated max
flow cuts if we included all preprocessing cuts. Note that the default settings of SCIP
already provide several cutting plane separation methods, e. g., mixed integer rounding
cuts, Gomory cuts, and flowcover cuts, see Achterberg [1] and Wolter [107]. These
separation methods might imply some valid inequalities that we also would find by our
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separation methods. Anyway, we include the preprocessing cuts but no flow cuts in the
following.

Separation by Graph Shrinking. We have considered a heuristic separation for the
Steiner partition inequalities, the SPI separation, in Section 4.1.1, which is based on a
graph shrinking procedure. A valid Steiner partition band inequality for the line planning
problem can be derived from the trivial band, i. e., B(`) = 0 for all ` ∈ L. We, therefore,
consider this separation method also for the line planning problem.

We further consider a slightly different graph shrinking procedure. The idea is similar
to a shrinking procedure considered in telecommunication network design to determine
cuts, see, e. g., Raack et al. [85]; Dix [44] considered a similar shrinking procedure for
line planning with continuous frequencies. It works as follows. For a given LP solution
(x∗, y∗) of the line planning problem let ωa :=

∑
`∈L:e(a)∈`

∑
f∈F κ`,fx

∗
`,f −

∑
p∈P,a∈p yp,

for all a ∈ A, be some arc weights in the passenger routing graph representing the
unused capacity of an arc. Here, we set wa = ∞ for all OD arcs a ∈ AO. Sort the
arcs in decreasing order of their weights and shrink the arcs in this order until the graph
contains N ∈ N components and each of the N components contains at least one OD
node. We then enumerate all cuts in the shrunk graph and consider the capacitated
cutset inequality for each cut. We again use this inequality to generate the improved
cutset inequality (7.11) and to apply mixed integer rounding. We call this separation
method capacitated shrinking separation.

The SPI separation method, that was quite good for the Steiner connectivity problem,
did not find any violated cuts in all our computations for the line planning problem.
The capacitated shrinking separation method found violated cuts only for few instances.
We considered the values 3, 4, and 5 for the number of components N . We nevertheless
apply this latter separation method in the root node and set N = 5.

Coupling Passenger Paths and Lines. All cuts considered so far were motivated by
the investigation of the line planning polytope, compare with Chapter 7. They describe
possible line capacities to support the given demand, i. e., the cuts only involve the x-
variables associated with line paths. In the following, we will consider valid inequalities
that also incorporate the passenger flow which is to computed. Inequalities containing
the y-variables associated with passenger paths usually affect the pricing problem of the
passenger variables. We, nevertheless, consider in the following inequalities that couple
passenger path variables and line path variables since these inequalities, albeit slowing
the passenger path pricing algorithm down, have a strong effect on the dual bound.

The idea is as follows. If an arc a is covered by a passenger path, at least one line has to
cover arc a, i. e., in formulas,

∑
p∈Pst:a∈p

yp > 0⇒
∑

`∈L:e(a)∈`

∑
f∈F

x`,f ≥ 1 ∀ (s, t) ∈ D, ∀ a ∈ A. (8.1)
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We, further, have∑
p∈Pst

yp = dst ⇒
∑
p∈Pst
a∈p

yp ≤ dst ⇒
∑
p∈Pst
a∈p

yp
dst
≤ 1 ∀ (s, t) ∈ D, ∀ a ∈ A. (8.2)

Combining (8.1) and (8.2) yields∑
p∈Pst:a∈p

yp
dst
≤

∑
`:e(a)∈`

∑
f∈F

x`,f ∀ (s, t) ∈ D, ∀ a ∈ A. (8.3)

The same idea can also be applied to direct connection passenger paths, i. e., if an arc a
is covered by direct st-connection travelers, at least one direct st-connection line has to
cover arc a. We then get the following constraints∑

p∈P0+
st (a)

yp,0
dst
≤

∑
`∈L0st(a)

∑
f∈F

x`,f ∀ (s, t) ∈ D, ∀ a ∈ Ast. (8.4)

We call inequalities (8.3) coupling constraints and inequalities (8.4) coupling constraints
for direct connections or just dc-coupling constraints. Violated coupling constraints (8.3)
can be added to model (BD) as well as to model (DC). In the latter case, we have
yp = yp,0 + yp,1. However, computations show that it is better to search only for vi-
olated dc-coupling constraints (8.4) in model (DC). We will also separate dc-coupling
constraints (8.4) in model (UT).

Including dc-coupling constraints (8.4) in model (DC) with associated dual variable ξ
only adds an additional summand in the first inequality of the dual program (6.55). The
reduced cost for a direct connection st-passenger path changes as follows

τ̄p,0 = −πst +
∑
a∈p

(
µa + νa,[s,t]a +

1

dst
ξa + (1− λ)τa

)
∀ (s, t) ∈ D, ∀ p ∈ P0+

st , (8.5)

i. e., only the arc weights differ. The pricing problem remains to find a shortest st-rdcpath
with arc weights now set to µa + νa,[s,t]a + 1

dst
ξa + (1 − λ)τa. The pricing problem for

model (UT) with dc-coupling constraints (8.4) also only differs in the arc weights.

The changes in the pricing problem for model (BD) caused by the coupling constraints (8.3)
are more drastic. The reduced cost for a passenger path variable becomes

τ̄p = −πst +
∑
a∈p

(
µa +

1

dst
ξa + (1− λ)τa

)
∀ (s, t) ∈ D, ∀ p ∈ Pst, (8.6)

i. e., now, the arc weights depend on the considered OD pair which was not the case
without coupling constraints (8.3). This means that the computation time for the pric-
ing problem for model (BD) increases. Without coupling constraints (8.3) we could
compute a shortest paths tree from one node to all other nodes. Including coupling
constraints (8.3), we have to compute the shortest path for every two nodes individually
since the arc weights may differ.
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8.3. Cutting Planes

Table 8.4: Time in seconds and dual bound for model (DC) after solving the root node without additional
cuts, with preprocessing cuts, and with coupling constraints for passenger paths and lines for λ = 0.8. The
SCIP default separation routines are included.

without cuts prepro cuts coupl. cons.
instance time dual time dual time dual

N1 <1 2606076 1 2607200 2 2611485
N2 13 2592857 15 2594781 49 2606166
N3 50 2592026 65 2594032 157 2605251
China1 1 2599683 3 2599718 4 2601112
China2 89 2510624 102 2510738 136 2511057
SiouxFalls1 2 645226 4 645226 4 645247
SiouxFalls2 81 639191 71 639191 101 639214
SiouxFalls3 193 638578 228 638578 326 638580
Potsdam1998a 48 1020617 49 1020869 81 1021189
Potsdam1998b 459 982631 500 982838 2027 984141
Potsdam1998c 1696 981268 1942 981476 7787 982778
Potsdam2010 302 207423 202 207958 4079 208743
Potsdam2010+ 227 210976 244 211003 7984 211911

Table 8.5: Time in seconds and dual bound for model (BD) after solving the root node without additional
cuts, with preprocessing cuts, and with coupling constraints for passenger paths and lines for λ = 0.8. The
SCIP default separation routines are included.

without cuts prepro cuts dc-coupl. cons.
instance time dual time dual time dual

N1 <1 2583227 1 2588250 1 2588315
N2 <1 2583152 4 2587685 4 2587691
N3 2 2583152 5 2587310 6 2587310
China1 <1 2510271 2 2510669 2 2510728
China2 <1 2509617 3 2509880 3 2509880
China3 7 2509409 9 2509526 9 2509526
SiouxFalls1 <1 641703 1 641703 1 641703
SiouxFalls2 4 639173 7 639173 7 639173
SiouxFalls3 11 638578 14 638578 15 638578
Potsdam1998a 17 971252 20 971947 32 972063
Potsdam1998b 6 956775 10 957460 51 957660
Potsdam1998c 9 956695 13 957374 99 957538
Potsdam2010 7 195477 6 197207 115 197412
Potsdam2010+ 6 198945 7 199253 1340 199929

Tables 8.4 and 8.5 show times and dual bounds for the root LP without additional cuts,
with the preprocessing cuts, and with preprocessing cuts and the coupling constraints for
the models (DC) and (BD), respectively. For model (DC), we skip the China3 instance,
since it can only be solved if a start solution is given. The capacitated shrinking method
finds few cuts for only few instances with very little effect on the dual bound. The results
are, therefore, not presented in the tables. Nevertheless, we will include this separation
method (only in the root node) in our computations, since it takes little separation time.
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8 Solving the Line Planning Problem

The preprocessing constraints improve the root LP of model (DC) by around 0.02% for
the Potsdam1998 instances and by around 0.07% for the Dutch instances. The biggest
improvement is for Potsdam2010 with around 0.26%. The improvement for the China
instances is in the order of per mill; the SiouxFalls instances could not be improved.
The coupling constraints (8.4) together with the preprocessing cuts improve the root LP
value by around 0.1% to 0.5% for the Dutch and Potsdam instances. The improvement
for the China and SiouxFalls instances stays in the order of per mill. The amount
of the improvement for model (BD) is similar, it is however mainly achieved by the
preprocessing cuts and little by the coupling constraints (8.3). We include the separation
of the coupling constraints in our computations in each branching node.

8.4 Branching Rule

The SCIP framework offers only a branching on variables. However, the SOS frequency
constraints, e. g., (6.40) for model (DC), produce unbalanced the branch-and-bound trees
with this strategy. This is due to the fact that x`,f = 0 prohibits just one frequency for
the line while x`,f = 1 fixes one frequency with the effect that all other frequencies for
this line have to be 0. A better strategy is to branch on the SOS frequency constraints.
This constraint branching is a branching on the minimum resp. maximum frequency of
a line, i. e., a line has to be operated with at least a minimum frequency or a line can
be operated with at most a maximum frequency. This prohibits or permits a (small) set
of frequencies. However, a straight forward implementation (as we did) of such an SOS
constraint branching is in most cases not better than the sophisticated branching rules
implemented in the SCIP framework. But we found out that a constraint branching in
a broader sense leads to an improvement of the LP bound during the branching process.
The idea is to branch on the number of lines with a minimum/maximum frequency on an
arc. For this purpose, we included additional auxiliary branching variables ha,i ∈ Z≥0,
a ∈ A, i ∈ F , that account for the number of lines with frequency greater than or equal
to i on arc a, and the corresponding branching constraints

∑
`∈L:e(a)∈`

∑
f∈F :f≥i

x`,f = ha,i ∀ a ∈ A, ∀ i ∈ F .

Including these branching variables and constraints, the branching rules implemented in
the SCIP framework branch either on a variable x`,f , ` ∈ L, f ∈ F , or on a branching
variable ha,i ∈ Z≥0, a ∈ A, i ∈ F . The latter choice corresponds to a constraint
branching. In this way, we combine the sophisticated SCIP branching rules with a
constraint branching.
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8.5. Computational Comparison of Line Planning Models

Table 8.6: Transportation capacities (in passengers) and costs (in e/km) for the line planning instances
according to the available modes. The networks for the Potsdam instances contain different transportation
modes; the costs for the transportation modes not operated by the local public transport company of Potsdam
(ViP) are set to 0. The numbers for the Potsdam instances have been set after consultation with ViP. For
the year 1998 ViP gave us the capacities for a medium utilization of the transportation modes; the numbers
for the year 2010 correspond to a maximum utilization for bus, tram, and ferry. The capacities for the other
instances are equal to the Potsdam1998 numbers for the corresponding mode.

instances mode capacities (in passengers/line) costs (in e/km)
ferry bus tram S-Bahn IC/IR ferry bus tram S-Bahn IC/IR

Dutch - - - - 600 - - - - 100
China - - - - 600 - - - - 100
SiouxFalls - 57 - - - - 1.96 - - -
Potsdam1998 39 57 114 536 600 0 1.96 2.34 0 0
Potsdam2010 100 125 170 536 600 0 1.96 2.34 0 0

8.5 Computational Comparison of Line Planning Models

We will now present computational results for the models (BD), (DC), and (UT). We set
the parameters as follows. The possible frequencies for all lines are 3, 6, 9, and 18; this
corresponds to a cycle time of 60, 30, 20, and 10 minutes in a time horizon of 3 hours. The
line pools of the Potsdam instances contain also lines for regional and commuter trains.
These lines are not operated by ViP and we therefore fix them to given frequencies in our
computations. The number of x-variables with the above frequency set is equal for the
models (BD), (DC), and (UT); Table 8.1 lists these numbers for the different instances.
The number of all constraints but the direct connection constraints is also equal for all
models. Table 8.1 shows these numbers for the different instances in the column cons (dc-
cons). The numbers in brackets give the number of direct connection constraints which
are the additional constraints in models (DC) and (UT). One can see that the number of
direct connection constraints is higher than the number of all other constraints for most
instances; for the bigger Potsdam1998 instances the factor is 2.5. We set the costs of the
lines proportional to their lengths plus a fixed cost term that is used to reduce the number
of lines. More precisely, we set c`,f = C + f · ci ·

∑
e∈` le with fixed cost C = 100 and

operating cost ci for line ` with transportation mode i as given in Table 8.6. Table 8.6
also lists capacities for the different instances. The objective weighing parameter is set
to λ = 0.8 and the transfer penalty to σ = 15 minutes. This choice was influenced by
the computations for the Potsdam line plan 2010, see Chapter 9. Moreover, the costs
are usually of a smaller order of magnitude than the total travel times. Hence, choosing
λ > 0.5 is a reasonable choice for a balanced objective function.

The instances were solved using the constraint integer programming framework SCIP
version 2.1.0, see [2, 95] with Cplex 12.3 [61] as LP-solver. We used the default settings
of SCIP with two exceptions. The first is to use only “fast SCIP heuristics”. The second
is to change the LP pricing parameter to “quickstart steepest edge” for the China instances
and the Potsdam instances in all computations since the number of computed branching
nodes increased for this parameter. Moreover, China3 could not be solved for models
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8 Solving the Line Planning Problem

Table 8.7: Statistics on the computations for model (DC) including branching variables (bv) and without
branching variables. The columns list the instance, the number of branching nodes, the LP value at the end
of the computations, the best solution value, and the integrality gap for both runs. The computation time
was limited to 10 hours except for the run labeled as Potsdam2010+∗, which was solved to optimality using
the branching variables after 12 hours. Comparing both runs, we highlighted the better values by a green
color.

(DC) with bv (DC) without bv
instance nodes LP-val. best sol gap nodes LP-val. best sol gap

Dutch1 363 2613065 2613065 opt. 403 886 2613065 2613065 opt.
Dutch2 11 760 2608329 2608329 opt. 128 360 2607016 2608526 0.06%
Dutch3 32 438 2607039 2608009 0.04% 26 228 2606221 2608526 0.09%
China1 412 908 2603726 2610301 0.25% 607 403 2604021 2610826 0.26%
China2 7 082 2511251 2520677 0.38% 7 247 2511363 2522842 0.46%
China3 843 2510045 2520677 0.42% 770 2510136 2522842 0.45%
SiouxFalls1 262 557 645393 645708 0.05% 297 289 645317 645707 0.06%
SiouxFalls2 10 071 639280 639748 0.07% 10 051 639221 639536 0.05%
SiouxFalls3 4 380 638623 638811 0.03% 4 722 638581 638843 0.04%
Potsdam1998a 9 355 1021881 1022793 0.09% 3 482 1021513 1022605 0.11%
Potsdam1998b 1 281 984249 986111 0.19% 322 984423 985811 0.14%
Potsdam1998c 212 982784 984954 0.22% 105 982908 984848 0.20%
Potsdam2010 1 119 208864 209350 0.23% 455 208810 209380 0.27%
Potsdam2010+ 1 028 212136 212209 0.03% 710 212056 212291 0.11%

Potsdam2010+∗ 1 447 212175 212175 opt.

(DC) and (UT) using the default LP pricing algorithm which is “steepest edge”, but it
can be solved with a starting solution and the “quickstart steepest edge” pricing. For the
Dutch and SiouxFalls instances the number of solved branching nodes not necessarily
increased for the quickstart steepest edge LP pricing due to numerical problems. We,
therefore, kept the default settings for these instances. Line/frequency variables were
enumerated, for the pricing of the passenger path variables we implemented Dijkstra’s
shortest path algorithm and a labeling algorithm for the constrained shortest paths case
for model (DC).

We set a time limit of 10 hours for all instances. All computations were done on computers
with an Intel(R) Xeon(R) CPU X5672 with 3.20GHz, 12MB cache, and 48GB of RAM.

Tables 8.7, 8.8, and 8.9 show statistics on the number of branching nodes, dual bound,
best solution, and the integrality gap for models (DC), (UT), and (BD). We made com-
putations including the additional branching variables, see Section 8.4, and without these
branching variables. The results for both runs are listed in the tables. In both runs we
used the solution of an instance with smaller line pool as starting solution for the instance
with larger line pool, e. g., Dutch2 is initialized with a starting solution corresponding
to the solution of Dutch1. We first discuss each table individually and then compare the
results for the different models.

The integrality gaps for model (DC), see Table 8.7, are very small, namely, far below
1%. Around half of the instances are solved to optimality and very close to optimality.

166



8.5. Computational Comparison of Line Planning Models

Table 8.8: Statistics on the computations for model (UT) including branching variables (bv) and without
additional branching variables. The columns list the instance, the number of branching nodes, the LP value at
the end of the computations, the best solution value, and the integrality gap for both runs. The computation
time was limited to 10 hours, except for instances with a superscript2. Computations for instances marked
by the superscript1 do not involve the diving heuristic. Potsdam1998b2 was solved with the diving heuristic
diveObj; we stopped the computation after the root node was solved (including separators), which took
approximately 20 hours. Comparing both runs, we highlighted the better values by a green color.

(UT) with bv (UT) without bv
instance nodes LP-val. best sol gap nodes LP-val. best sol gap

Dutch1 479 2613065 2613065 opt. 125 182 2612547 2613065 0.02%
Dutch2 4 379 2607596 2608329 0.03% 3 719 2606768 2609443 0.10%
Dutch3 553 2606029 2608329 0.09% 519 2605342 2609430 0.16%
China1 18 206 2602727 2610600 0.30% 19 701 2603092 2609821 0.26%
China2 207 2511074 2523100 0.48% 254 2511189 2526324 0.60%
China3 3 - 2523100 - 33 2510049 2525041 0.60%
SiouxFalls1 17 170 645592 646109 0.08% 14 503 645505 646028 0.08%
SiouxFalls2 166 639223 639763 0.07% 169 639216 639671 0.07%
SiouxFalls3 56 638580 638972 0.06% 50 638580 638986 0.06%
Potsdam1998a 4 146 1024810 1026489 0.16% 1 857 1024715 1026089 0.13%
Potsdam1998b1 72 982243 988394 0.63% 95 982279 990079 0.79%
Potsdam1998b2 1 981934 985173 0.33%
Potsdam1998c1 5 980745 988924 0.83% 10 980513 990051 0.97%
Potsdam20101 26 210372 215240 2.31% 54 210433 214989 2.17%
Potsdam2010+1 20 213670 - - 56 213500 225117 5.44%

Table 8.9: Statistics on the computations for model (BD) including branching variables (bv) and without
additional branching variables. The columns list the instance, the number of branching nodes, the LP value at
the end of the computations, the best solution value, and the integrality gap for both runs. The computation
time was limited to 10 hours except for Potsdam2010+∗ which was solved after 10 hours and 10 minutes to
optimality. Comparing both runs, we highlighted the better values by a green color.

(BD) with bv (BD) without bv
instance nodes LP-val. best sol gap nodes LP-val. best sol gap

Dutch1 4 071 625 2590913 2591303 0.02% 6 235 018 2588611 2592090 0.13%
Dutch2 499 380 2589654 2591303 0.06% 1 655 950 2587996 2592090 0.16%
Dutch3 92 539 2588770 2591242 0.10% 230 454 2587415 2592090 0.18%
China1 1 482 899 2511481 2514522 0.12% 4 745 360 2511043 2515181 0.16%
China2 137 396 2510277 2514522 0.17% 700 773 2509956 2515181 0.21%
China3 27 325 2509639 2514522 0.21% 78 434 2509526 2515181 0.23%
SiouxFalls1 643 713 641846 641846 opt. out of memory
SiouxFalls2 58 115 639267 639344 0.01% 58 215 639175 639343 0.03%
SiouxFalls3 78 260 638631 638632 0.00% 32 502 638578 638704 0.02%
Potsdam1998a 9 342 973021 973839 0.08% 7 243 972491 973236 0.08%
Potsdam1998b 1 409 958119 959735 0.17% 1 546 958010 959945 0.20%
Potsdam1998c 1 912 957822 959735 0.20% 1 003 957828 959732 0.20%
Potsdam2010 2 472 198287 199004 0.36% 414 198026 199114 0.55%
Potsdam2010+ 3 253 200234 200315 0.04% 3 613 200178 200353 0.09%

Potsdam2010+∗ 4 662 200315 200315 opt.
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Two instances can be solved to proven optimality in 10 hours if the additional branching
variables are included. We solved the Potsdam2010+ instance also to proven optimality
after 12 hours in the run with the additional branching variables. Without the ad-
ditional branching variables only Dutch1 can be solved to proven optimality within 10
hours. Considering, however, the values of dual bound and best solution for all instances,
including the additional branching variables does not result in a clear win over the com-
putations without the branching variables. The detailed picture is as follows. For the
Dutch instances, the SiouxFalls instances, and the two Potsdam2010 instances including
the branching variables is a better choice than skipping these additional variables. The
Dutch instances and the Potsdam2010 instances benefit most: Dutch1 and Dutch2 can
be solved to proven optimality within 10 hours. Potsdam2010+ can be solved to proven
optimality after 12 hours, last row in Table 8.7. Considering just the number of solved
branching nodes, the computations are getting not necessarily harder if the branching
variables are included. All Potsdam instances even seem to be easier to solve with the ad-
ditional branching variables since in these computations the number of solved branching
nodes is significantly higher. However, for Potsdam1998b and Potsdam1998c the better
solutions and the better dual bounds are achieved for the computation without branch-
ing variables. A better solution was also found for Potsdam1998a in the computations
without the branching variables.

Model (UT), Table 8.8, is hard to solve. For the bigger instances, i. e., Potsdam1998c,
Potsdam2010, and Potsdam2010+, we had to turn off the diving heuristic diveObj due
to a large memory consumption of more than 20 GB; even solving only the root node
including the diving heuristic for Potsdam1998b (marked with1) took more than 20 hours.
We only made this computation once, without branching variables, since we only solved
the root node. A comparison of the table entries for Potsdam1998b1 and Potsdam1998b2

shows that the diving heuristic diveObj closes more than 50% of the integrality gap that
we have after 10 hours without this heuristic. Comparing LP value, best solution, and
integrality gap for the computations with and without the additional branching variables,
the picture looks similar as for model (DC). The instance Dutch1 can be solved to proven
optimality when the branching variables are included. The inclusion of the additional
branching variables is also recommended for the other Dutch instances. For nearly all
other instances, one method finds the better solution within 10 hours while the other
computes a stronger LP bound.

In contrast to model (DC) and (UT), it is clearly preferable to include the branching
variables for model (BD). In all but one instance (which is Potsdam1998c), this method
computes a stronger LP bound. Moreover, the difference between the LP bound for Pots-
dam1998c computed with branching variables and without branching variables is very
small. The SiouxFalls1 instance could even be solved to optimality with branching vari-
ables while the computations without the branching variables lead to insufficient memory
after solving more than 1.3 million branching nodes since nearly as much branching nodes
are still open. The best solution for SiouxFalls3 is close to be optimal for the compu-
tations with branching variables after 10 hours. Moreover, the Potsdam2010+ instance
could be solved to proven optimality after 10 hours and 10 minutes if the branching vari-
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ables are added. Albeit there are three instances for which the run without branching
variables found better solutions, the difference to the solutions in the run with branching
variables is small, namely, in the order of per mill and only for one instance 0.06%.

Comparing the results for the different models, model (UT) is much harder to solve
than model (DC). The number of solved branching nodes within 10 hours with model
(UT) is for each instance much lower than the number of solved branching nodes with
model (DC), e. g., for China1 and China2 these numbers are for model (UT) below 5%
of the numbers for model (DC). Moreover, all integrality gaps are smaller for model
(DC) than for model (UT). It was not possible to compute solutions with the diving
heuristic diveObj for model (UT) for the instances Potsdam1998b, Potsdam1998c, and
both Potsdam2010 instances within 10 hours. At first glance, model (DC) seems to be
harder to solve than model (BD) since the number of solved branching nodes is usually
smaller for (DC) than for (BD). However, the integrality gaps are similar for (DC) and
(BD). The Dutch instances 1 and 2 are even solved to optimality with model (DC)
while SiouxFalls1 is solved to optimality with model (BD). Moreover, the Potsdam2010+
instance could be solved to optimality for both models after little more than 10 hours and
12 hours, respectively. Considering the computational tractability of all three models,
models (BD) and (DC) perform very good and much better than model (UT) for large
instances.

We evaluate the quality of the solutions of model (DC), (UT), and (BD) by computing
an optimal passenger routing, including penalties for all transfers, in a change-and-go
graph similar to that of Schöbel and Scholl [93]. Namely, for the best solution of the
associated model we construct nodes and arcs for each line individually, i. e., the change-
and-go graph contains a copy of each node and arc for every line that contains this node
and arc. Further transfer arcs are added between two nodes of different lines whenever
a transfer between these two lines is possible on this node. The travel time of every arc
is set to the travel time of the associated arc in G, all transfer arcs are penalized by σ.
We then fix the frequencies of the lines according to the best solution and route the
passengers to minimize the total travel and transfer times, i. e., we compute the number
of transfers for all passengers in a system optimum routing. Table 8.10 shows the results
of this evaluation for the best solutions computed with model (DC), (UT), and (BD). It
lists the travel times in minutes in the change-and-go graph, the costs of the line plan,
the objective, i. e., 0.8·costs + 0.2·travel times, the number of direct travelers predicted
by the considered model, the (“exact”) number of direct travelers computed in the system
optimum in the change-and-go graph, and the over- or under-estimation in percent of the
predicted number of direct travelers to the “exact” number of direct travelers, i. e., this
number is positive if the number of direct travelers was over estimated by the considered
model.

It can be seen that the exact number of direct travelers is very close to the number of
direct travelers predicted by models (DC) and (UT), which is exactly what we wanted
to achieve. Although the difference is in general a little smaller for model (UT) than
for model (DC), the numbers for over/underestimation are very similar for both models.
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Table 8.10: Evaluation of the best solutions of models (DC), (UT), and (BD) of Tables 8.7, 8.8, and 8.9 in
the change-and-go graph. The columns list travel times (in minutes), costs, objective value, number of direct
travelers1 predicted by the considered model, number of direct travelers2 by computing a system optimum
passenger routing in the change-and-go graph, and over- or under-estimation of predicted direct travelers in
comparison to direct travelers in the change-and-go graph.

problem travel times costs obj. dir. trav.1 dir. trav.2 over/under est.

Dutch1 (DC) 1.279·107 68 900 2613305 179 496 179 496 0
Dutch1 (UT) 1.279·107 69 500 2613305 179 596 179 656 -0.03%
Dutch1 (BD) 1.325·107 57 800 2696781 183 582 151 552 +21.11%

Dutch2 (DC) 1.279·107 67 500 2612122 180 644 179 544 +0.61%
Dutch2 (UT) 1.279·107 66 900 2612138 180 484 179 384 +0.61%
Dutch2 (BD) 1.325·107 57 800 2696781 183 582 151 552 +21.11%

Dutch3 (DC) 1.281·107 65 000 2614374 179 384 178 206 +0.66%
Dutch3 (UT) 1.279·107 66 900 2612138 180 484 179 384 +0.61%
Dutch3 (BD) 1.338·107 57 700 2721286 183 582 149 584 +22.73%

China1 (DC) 1.254·107 265 287 2720586 749 461 719 112 +4.22%
China1 (UT) 1.259·107 263 985 2729728 749 920 713 690 +5.08%
China1 (BD) 1.527·107 234 536 3242545 759 950 532 804 +42.63%

China2 (DC) 1.250·107 240 852 2692979 759 950 709 595 +7.10%
China2 (UT) 1.246·107 245 656 2689361 759 902 719 802 +5.57%
China2 (BD) 1.527·107 234 536 3242545 759 950 532 804 +42.63%

China3 (DC) 1.250·107 240 852 2692979 759 950 709 595 +7.10%
China3 (UT) 1.246·107 245 656 2689361 759 902 719 802 +5.57%
China3 (BD) 1.527·107 234 536 3242545 759 950 532 804 +42.63%

SiouxFalls1 (DC) 3.294·106 8 896 666011 360 600 357 079 +0.99%
SiouxFalls1 (UT) 3.253·106 8 998 657781 360 600 359 300 +0.36%
SiouxFalls1 (BD) 3.622·106 8 295 730966 360 600 335 559 +7.46%

SiouxFalls2 (DC) 3.418·106 5 389 687911 360 600 351 812 +2.50%
SiouxFalls2 (UT) 3.457·106 5 596 695832 359 400 352 295 +2.02%
SiouxFalls2 (BD) 3.807·106 5 179 765451 360 600 324 182 +11.23%

SiouxFalls3 (DC) 3.361·106 4 501 675840 360 400 354 287 +1.73%
SiouxFalls3 (UT) 3.351·106 4 690 673894 360 600 356 153 +1.25%
SiouxFalls3 (BD) 4.017·106 4 278 806879 360 600 312 601 +15.35%

Potsdam1998a (DC) 5.056·106 27 509 1033218 70 574 71 038 -0.65%
Potsdam1998a (UT) 5.042·106 27 221 1030204 71 409 71 445 -0.05%
Potsdam1998a (BD) 5.101·106 29 081 1043379 83 926 68 825 +21.94%

Potsdam1998b (DC) 4.834·106 30 180 990991 78 543 79 192 -0.82%
Potsdam1998b (UT) 4.826·106 31 779 990591 79 276 79 219 +0.07%
Potsdam1998b (BD) 4.940·106 29 354 1011392 84 894 74 213 +14.39%

Potsdam1998c (DC) 4.852·106 29 645 994024 78 839 78 890 -0.06%
Potsdam1998c (UT) 4.813·106 39 873 994458 79 560 79 580 -0.03%
Potsdam1998c (BD) 4.974·106 28 951 1017874 84 874 72 702 +16.74%

Potsdam2010 (DC) 1.025·106 9 017 212257 38 255 38 232 +0.06%
Potsdam2010 (UT) 1.019·106 15 257 215906 38 377 38 375 +0.01%
Potsdam2010 (BD) 1.067·106 8 820 220412 41 089 35 647 +15.27%

Potsdam2010+ (DC) 1.026·106 12 661 215258 38 112 38 102 +0.03%
Potsdam2010+ (UT) 1.020·106 27 055 225565 38 207 38 358 -0.39%
Potsdam2010+ (BD) 1.051·106 10 730 218712 41 097 36 740 +11.86%
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8.5. Computational Comparison of Line Planning Models

The only bigger over/underestimations (of nearly 7% for (DC) and 5% for (UT)) are in
the China instances. However, the China instances also display the largest prediction
improvement in comparison to model (BD), namely, around 40%. But the predicted num-
ber of direct travelers can also be significantly improved with model (DC) in comparison
to model (BD) for all other instances; the improvement is around 7% for the Potsdam
and SiouxFalls instances and around 15% to 20% for the Dutch instances. Model (UT)
further improves the number of direct travelers for all instances except for Dutch2 and
China1. But the improvement is relatively small compared to the improvement between
(BD) and (DC), namely, less than 1.6% for China2 and China3, and less than 1% for all
other instances. Moreover, considering the objective values (4th column), the solution for
the instances SiouxFalls2, Potsdam1998c, Potsdam2010, and Potsdam2010+ computed
with (UT) are worse than the corresponding solutions computed with (DC). Recall that
model (UT) is computationally hard to handle for large instances such the Potsdam
instances and, hence, computing good solutions (in reasonable time) is difficult.

We therefore conclude that (DC) is currently the best computationally tractable model
for the integrated line planning and passenger routing problem. It provides good esti-
mates of the number of direct travelers.
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Chapter 9

Potsdam 2010 – Line Optimization
in Practice

In this chapter, we report on the project Stadt+ to optimize the 2010 line plan for
Potsdam, a medium sized city in Germany. This project lasted from March 2009 until
February 2010 and was organized within the project B15 (Service Design in Public Trans-
port) of the DFG Research Center Matheon Mathematics for key technologies together
with the ViP Verkehrsbetriebe Potsdam GmbH. ViP is the public transport company
of Potsdam and in charge of 50 buses and 55 trams to operate 496 bus stops, 126 tram
stations, and 2 ferry stops in a network with a total length of 389 km. Around 27 million
passengers per year use the public transport in Potsdam.

A reorganization of the line plan in Potsdam became necessary when ViP took over six
additional bus lines that were formerly operated by Havelbus Verkehrsgesellschaft mbH in
the year 2009. A new line plan should be established in the year 2010 with the following
requirements

◦ no higher cost than the cost of the old line plan including the six additional bus
lines,
◦ service improvement, i. e., minimization of travel times and number of transfers,
◦ compliance with a set of practical requirements, e. g., a minimum cycle time for

the tram, minimum frequency requirements for each station, minimal and maximal
lengths for lines with respect to travel time and distance.

ViP had planned all former line plans “by Hand” on the basis of experience. The aim of
the project Stadt+ was to prove that a new line plan can also be constructed with the
support of combinatorial optimization methods and that such a plan can even improve
a “hand-made” line plan.

In an iterative process of computation and communication, we fine-tuned our model and
set up a data base that was suitable for the application of optimization methods. We
included all additional planning requirements in the model. The final optimized solution
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reduced the cost by around 4% and the perceived travel time by around 6%. ViP also
certified that this line plan was indeed practicable. However, our solution moved some
transport from the tram-network to the bus-network which ViP did not want for fear
of demand reductions. The Potsdam line plan for 2010 that ViP finally established in
practice, therefore, slightly deviates from our optimized solution. However, we could
show that mathematical optimization can indeed support line planning. It offers a useful
setting to classify solutions according to travel times and costs with bounds on the best
possible values for both objectives. Main parts of this chapter are published in [10, 22, 24].

We briefly explain the preparation of the data in Section 9.1. Then we describe the
optimization model including the definition of the parameters and the implementation
of additional requirements for the Potsdam line plan in Section 9.2. In Section 9.3, we
will compare our final solution with the ViP solution for 2010 using the traffic planning
software Visum [83]. We end this chapter with some concluding remarks in Section 9.4.

9.1 Data

ViP uses the traffic planning software Visum of the ptv AG [83]. Visum can be used
to analyze, visualize, plan, and simulate public and individual traffic. The network data
for the city of Potsdam and the OD data were also given in Visum format, and we
decided to exchange the Potsdam data between ZIB and ViP in this format. The input
for the optimization tool is the network data and the OD data of Potsdam, the output is
again the network data including all computed lines. Hence, it is possible to analyze our
solution using Visum. In a first step, we established the interface for input and output
which existed in a rudimentary state but had not been tested and needed improvements.

At the beginning of the project Stadt+, it turned out that the given network data needed
a major reorganization. This was finished in August 2009. More precisely, the given
network data represented the status quo of the year 2007. Some stations and connections
were missing, some other data were imprecise or not reasonable. The modification of the
data required, of course, knowledge of the city and the current public transportation
network. It was, hence, done by ViP and included the following aspects:

◦ combining different OD-nodes and reconnecting them to the network,
◦ refining the network and defining additional connections for certain transportation

modes and/or pedestrians,
◦ updating of turning relations,
◦ updating the locations of stations and connections.

When one investiagtes a real world problem the first time and makes computations that
have to “survive” in practice, the identification of additional requirements that an op-
timized solution has to fulfill, generally, takes some time. It needs some practice for
the “optimizer” to translate all practical requirements into a form that fits with the opti-
mization tool as well as for the “practitioner” to communicate all important requirements,
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especially if these are seen as natural. For some of the requirements the data also has to
be enriched, e. g., to define a minimum frequency requirement for some stations/stops,
i. e., how often the station/stop should be served by a line. Indeed, adjusting the data
and/or the optimization tool was an iterative process which was not finished until our
final optimization and evaluation at the end of the project. Fortunately, the Visum data
interface offers a good environment to include new “attributes” for stops/stations and
connections. In close cooperation with ViP we extended the data by some definitions
that are needed for the computation to fulfill the requirements on a line plan for Potsdam,
which are,

◦ defining termini, i. e., stations as starting (or end) stations for lines,
◦ defining a minimum frequency requirement for some stations,
◦ blocking some stations for operation with new lines,
◦ defining important transfer stations.

The detailed meaning of these definitions is explained in the next section.

9.2 Model Specification

The goal of the project Stadt+ was to find a line plan that minimizes the travel time and
the number of transfers at a cost being not higher than that of the old plan including
the six additional bus lines. ViP emphasized the importance of a minimal number of
transfers. We decided to use the change and go approach, see Section 6.4, for our main
computations since at this time we had not invented the direct connection model of Sec-
tion 6.5. For the computation of a cost minimal line plan and other lower bounds (Pareto
curve) we also used the basic dynamic model (BD), see Section 6.3. It turned out that
the number of all relevant lines for Potsdam was below 3500, and, therefore, the change
and go approach was a computational nightmare but possible. The computation of just
one solution took several days. Indeed, the project Stadt+ motivated the investigation
of our new model, the direct connection model of Section 6.5.

In the following, we describe the calibration of the optimization tool including the gener-
ation of new lines, the inclusion of all practical requirements in the optimization model
as well as the calibration of parameters such as cost, capacity, and weighing parameter
for the objective function.

Generating new Lines. New lines should satisfy the following requirements.

◦ Termini, i. e., start and end of a line are predefined stations/stops.
◦ A line has to fulfill all turning restrictions.
◦ A line is not allowed to serve blocked stations/stops.
◦ The travel time for each direction is limited to 45 minutes.
◦ Railroad crossings are prohibited.
◦ A line has to serve at least 5 stations.
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◦ A line has to contain at least one of the important transfer nodes defined in the
data (see Section 9.1).
◦ The route of a bus line is only allowed to be at most 45% parallel to the route of

a tram line.
◦ Some possible turning restrictions are not applied if this would omit a serving of a

nearby important transfer station.
◦ The maximal number of stations/stops of a line is 80.
◦ The length of a line is at most four times the length of a shortest path between the

end stations.

The last two requirements have rather technical reasons to reduce the computation time
for generating all lines satisfying the other above defined requirements. We made a
preprocessing afterwards and removed a line, if it serves exactly the same OD nodes as
another line. In this way, the number of lines was reduced by around 60% and we ended
up with a little less then 3500 valid lines.

Practical Requirements. ViP operates around 20 bus and tram lines in Potsdam.
The basic cycling time over the whole day is 20 minutes in the city, in the peripheral
area it can also be 30 or even 60 minutes. Considering the time from 6 to 9 am (3 hours),
we get a frequency set of F = {3, 6, 9, 18}. For some stations, the line plan has to fulfill
a minimum frequency requirement of 3, 6, 9, or 18, i. e., the station has to be served
by a line every 60, 30, 20, or 10 minutes. We denote by Fv ∈ {3, 6, 9, 18} the minimum
frequency requirement for station v. Here, an operation of every 30 and every 10 minutes
can also be done by two lines with a cycling time of 60 minutes, and by two lines with a
cycling time of 20 minutes, respectively. The other two values for the minimum frequency
requirement have to be fulfilled by at least one line with exactly the needed frequency.
In formulas, we get the following constraints for our model:∑

`:v∈`

∑
f≥Fv

x`,f ≥ 1 ∀ v ∈ V1 (Fv ∈ {3, 9}) (9.1)

∑
`:v∈`

(x
`,(
Fv
2 )

+
∑
f≥Fv

2x`,f ) ≥ 2 ∀ v ∈ V2 (Fv ∈ {6, 18}). (9.2)

The set V1 denotes the stations/stops with a minimum frequency requirement of 3 or
9, (i. e., the service has to be every 60 or 20 minutes) and the set V2 denotes the sta-
tions/stops with a minimum frequency requirement of 6 and 18 minutes (i. e., the service
has to be every 30 or 10 minutes).

Tram lines are more important for ViP than bus lines. Reasons for this are that tram
lines are of higher prestige, offer usually more comfort, and are more favored by the
passengers compared to bus lines. Hence, we included a rule that the minimum frequency
requirements for all stations served by bus and tram lines have to be satisfied by tram
lines only, i. e., if v is a station that is served by bus and tram lines, we consider only
tram lines in the inequalities (9.1) and (9.2). Additional requirements for the tram lines
are that the minimum cycling time is always 20 minutes and that parallel traffic of bus
lines should be avoided. The first requirement can be achieved by reducing the set of
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possible frequencies for tram lines, the latter is considered during the generation of new
lines.

Costs and Capacities. ViP calculates with costs per kilometer to estimate the expected
cost of vehicle and duty operation. This is exactly the same approach as in our model.
The calculated costs of ViP of August 2009 are 2.34e per kilometer for tram lines and
1.96e per kilometer for bus lines. The capacity of a bus was fixed to 125 passengers and
the capacity of a tram to 170 passengers. In our computations we considered also lines
of other transport companies if they are operated in the city of Potsdam since passengers
transfer from and to those lines; this includes, e. g., the local railway traffic and the S-
Bahn of Berlin. The frequencies of these lines were fixed to the (at that time) current
frequency and we assumed a capacity of 600 passengers for local railway traffic and 536
passengers for the S-Bahn Berlin.

Finally, we included a fixed cost term of 100e per line. This number expresses no real
cost. We only included a fixed cost term to also minimize the number of lines in a line
plan. We chose a number which is of similar dimension as the operating cost of a line in
the considered time horizon.

Optimization Model. For the optimization model, we refer to the notation given in
Section 6.2 and the definition of the change-and-go model given in Section 6.4. The final
optimization model is

minλ
∑
`∈L

∑
f∈F

c`,f x`,f + (1− λ)
∑
p∈P

τp yp∑
p∈Pst

yp = dst ∀ (s, t) ∈ D (9.3)

∑
p:a∈p

yp ≤
∑
f∈F

κ`(a),f x`(a),f ∀ a ∈ AL (9.4)

∑
f∈F

x`,f ≤ 1 ∀ ` ∈ L (9.5)

∑
`:v∈`

∑
f≥Fv

x`,f ≥ 1 ∀ v ∈ V1 (Fv ∈ {3, 9}) (9.1)

∑
`:v∈`

(x
`,(
Fv
2 )

+
∑
f≥Fv

2x`,f ) ≥ 2 ∀ v ∈ V2 (Fv ∈ {6, 18}) (9.2)

x`,f ∈ {0, 1} ∀ ` ∈ L, ∀ f ∈ {3, 6, 9, 18} (9.6)
yp ≥ 0 ∀ p ∈ P. (9.7)

The objective is a weighted sum of line operating cost and total passenger travel and
transfer time. We add a transfer penalty of 15 minutes on all transfer arcs. The weighing
parameter is set to λ = 0.8, see the discussion below. Inequalities (9.3) ensure that the
given demand is satisfied. Inequalities (9.4) require enough capacity for each arc a ∈ AL
in the network. Recall that an arc a ∈ AL is associated with exactly one line `(a).
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Figure 9.1: Pareto curve. The green (blue) curve represents the cost in e (travel time in minutes) in
dependence of λ. A value of λ = 0 omits costs, a value of λ = 1 omits travel time.

Constraints (9.5) ensure that each line is operated by at most one frequency. Finally,
inequalities (9.1) and (9.2) are the minimum frequency requirements introduced above.

Pareto Curve. To investigate the influence of the parameter λ on the objective value,
we computed the optimal objective value of the LP relaxation for 17 different values of λ.
Since the size of the cost is much lower than the size of the total travel times, we set half
of the samples between λ = 0.8 and λ = 1. The results are plotted in Figure 9.1. This
figure shows the total traveling time and the total line cost depending on λ. The solution
visualized on the left of the x-axis (λ = 0.1) corresponds to a minimization of mainly
the travel time; the solution visualized on the right of the x-axis corresponds mainly to
a cost minimization. We did not include the pure extreme points in the graphic, i. e., a
pure cost minimization and a pure travel time minimization. In both extreme solutions
the part not being considered in the objective explodes because there is no need to bound
this value. This would distort the picture. Therefore, we skipped these cases to keep
track of the relevant cases.

The two curves show the following: A shift of the weighing parameter from a solution
that minimizes the travel time to a solution that minimizes the cost results in a hardly
remarkable increase of travel times in the beginning but a more remarkable decrease of
costs. At the value of λ = 0.8 the increase in travel time gets higher. In fact, more
detailed computations for λ = 0.8 yields solutions with costs in the range ViP expected.
We, therefore, used λ = 0.8 for our computations.

9.3 Results

We needed more than 2000 minutes to compute a first solution of the above defined
optimization model. We made some modifications and further computations to improve
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the solution. We were not able to prove that this solution is optimal but the optimality
gap was less than 3%. In recent computations with the new model (DC), compare with
Chapter 8, we could solve the instance to optimality within 12 hours. The optimal
solution of model (DC) improves the final solution of this project by 0.4%, see also the
remark at the end of this section.

In this section we want to analyze our final solution (OPT). To this purpose, we also
computed a line plan that minimizes the cost and a line plan that minimizes the travel
times. We denote by P10 the line plan that ViP implemented as line plan in Potsdam
in the year 2010. All four line plans fulfill the requirements of the preceding section and
are visualized in Figure 9.2. In Subsection 9.3.2, we will compare these four line plans to
analyze costs, total travel time, and number of transfers with respect to the extreme cases.
We did a detailed evaluation of the line plans OPT and P10 by analyzing the optimization
results, see also [22, 24], and by using the software Visum, see [10], respectively. Both
methods lead to similar results which will be discussed in Subsection 9.3.1. An evaluation
with Visum, however, is the accepted practice by public transport companies. We will,
therefore, present a detailed comparison of the line plans P10 and OPT using Visum in
Subsection 9.3.3.

9.3.1 Optimization vs. Simulation

In the following, we want to compare the passenger routing computed by our optimization
method with the passenger routing computed by a Visum simulation. To this purpose,
we briefly describe both methods first. Then we globally compare the passenger paths
resulting from both methods.

Since the optimization model integrates a passenger routing, the costs and the total travel
time as well as the number of transfers can be read off the computed solution, easily.
The final routing in the optimization model is a system optimum. This means that a
passenger routing is computed that minimizes the total travel and transfer times for all
passengers. Hence, it is possible that some passengers have to use detours if the capacities
of the shortest paths are utilized by other passenger routes. For the Potsdam instance,
however, at most 2 paths are computed for every OD pair. Omitting the capacities of
the lines yield similar results concerning travel times and number of transfers. Hence,
for the given demand data the passengers rarely have to use long detours.

The software Visum offers different methods to compute a distribution of the passengers
based on a line plan and the OD data. In this way, detailed travel path patterns can be
identified which yield statistics on the utilization of the lines, on the travel times, and
on the number of transfers. We used a passenger distribution that is qualified for urban
networks and for line plans not containing an exact timetable and included a transfer
penalty of 15 minutes equal to the penalization in the optimization model.

Visum computes nearly all possible passenger paths for each OD pair which are some-
times more than 100 possibilities. These paths differ mainly in start and end stations
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Figure 9.2: Visualization of four different line plans for Potsdam: Upper left: P10, Upper right: OPT, Lower
left: cost minimal line plan, Lower right: travel time minimal line plan.

(e. g., if the OD node has more than one neighboring station), transfer stations, as well
as a different choice of lines that operate parallel routes. Considering the line plan OPT,
our optimization yields 4 457 paths (for 4 443 OD pairs); 3 984 (89%) of them are also
computed by Visum with a traveler volume of 32 453 passengers, out of 47 743 in total,
which is 68%. This shows that the passenger distribution in the optimization model and
in a Visum simulation is not equal but similar.

In the following we compare the line plans OPT and P10 according to costs and travel
times. In a global comparison, in Subsection 9.3.2, i. e., a comparison of the minimum
possible travel time and the minimum possible cost, we used the results given by our
optimization method. For the detailed comparison of the line plans OPT and P10, in
Subsection 9.3.3, we present the results derived with Visum.
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P10 OPT min. cost min. time

no. of lines (bus) 16 16 17 120
no. of lines (tram) 7 7 6 18
km (bus) 2392 2497 1644 10565
km (tram) 1440 1207 1054 3156

cost 8057 7717 5688 28091

travel+transfer time 6.2484 6.1927 6.7344 6.0812
travel time 5.1641 5.1550 5.2889 5.1422

Table 9.1: Characteristic numbers (computed by optimization tool) of the line plans P10, OPT, as well as
for the cost minimal, and the travel time minimal solutions. The considered time horizon is one day from 6
to 9 am. The time is given in seconds ·107. Transfer times include a penalization of 15 minutes per transfer.

no. transfers P10 OPT min. cost min. time

0 35876 36355 32492 37425
1 11689 11249 14477 10205
2 178 139 741 113
3 1 1 34 1

Table 9.2: Number (computed by optimization tool) of transfers for the four line plans. The numbers in the
first column give the number of passengers that have to transfer 0, 1, 2, or 3 times. Here, the passengers are
distributed according to a system optimum, i. e., as long as capacities are not used by other passengers each
passenger can travel on the travel time shortest path (including a transfer penalty of 15 minutes).

9.3.2 Cost vs. Travel Time

We first analyze costs and travel times by comparing the line plans OPT and P10 with
the line plans that minimize cost and travel time, respectively. Here, we consider the
numbers computed by the optimization model, since we have no Visum evaluation for
the extreme solutions. However, it will turn out that the “Visum numbers” for P10
and OPT are similar to the optimization numbers (as it was also argued above). The
characteristic numbers computed by our optimization method for all four line plans are
given in Table 9.1. A visualization of the four line plans is shown in Figure 9.2.

The cost minimal solution is optimal, i. e., 5688e is a lower bound on the daily cost for
operating a line plan between 6 and 9 am that fulfills all requirements. The solution
of the minimal travel time is nearly optimal. The difference to an optimal solution is
at most 0.4%, i. e., a lower bound on the travel time including transfer penalties for all
passengers is 6.06·107 seconds.

The solutions P10 and OPT offer a compromise between these extreme variants. In both
cases a slight increase of the travel time compared to the minimum travel time yields a
notable reduction in costs. Compared to the cost minimal solution, the line plans P10
and OPT reduce mainly the number of transfers. The numbers for OPT are a little
better than for P10: The travel time is around 1% below the travel time of P10 whereas
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OPT P10

average total travel time 36min 3s 36min 39s
average time in vehicle 13min 8s 14min 36s
average transfer waiting time 1min 30s 1min 29s
average start waiting time 13min 23s 12min 32s
average walking time 1min 38s 1min 37s
average perceived travel time 26min 27min 37s
average distance 9,862 9,868

total travel time 28685h 41min 12s 29165h 8min 37s
total time in vehicle 10444h 19min 42s 11616h 48min 51s
total transfer waiting time 1187h 58min 42s 1181h 51min 3s
total start waiting time 10642h 48min 26s 9970h 53min 15s
total walking time 1297h 15min 48s 1286h 23min 45s
total perceived travel time 20691h 40min 3s 21979h 27min 34s
total distance 470828,526 471129,845

total number of transfers 10595 11141
passengers with 0 transfer 37338 36851
passengers with 1 transfer 10088 10503
passengers with 2 transfers 243 306
passengers with more than 2 transfers 7 9

Table 9.3: Statistics for the line plans OPT and P10 generated with Visum.

the cost can be reduced by around 4%. The lower travel time is mainly achieved by a
reduction of transfers, see Table 9.2. The lower costs are a result of the reduction of the
tram network.

9.3.3 OPT vs. P10

In the following, we will present the results of a detailed evaluation of the line plans OPT
and P10 with Visum.

The number of operated kilometers computed with Visum is 2 321 bus-km and 1 440
tram-km for P10 and 2 393 bus-km and 1 207 tram-km for OPT. This yields a cost of
7 918e for P10 and 7 514e for OPT which is a cost reduction of around 5% for OPT
compared to P10. Comparing these numbers to those computed by optimization, see
Table 9.1, the only deviation is in the number of operated bus kilometers. This yields
a slightly higher cost in the optimization numbers in both line plans. Hence, comparing
different line plans results in nearly equal statements.

Table 9.3 shows all relevant numbers of the passenger distribution computed by Visum.
The travel time in the OPT plan is slightly below the travel time in the P10 plan,
the improvement is 1.6%. But more remarkable is the reduction of around 10% for
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1 1

Figure 9.3: Tram lines (left) and bus lines (right) that are different in the OPT plan and the P10 plan;
graphics generated withVisum [83].

the in-vehicle-time, i. e., the time passengers spend driving in busses, trams, etc. The
in-vehicle-time improvement is not compensated by more transfers. In fact, the total
number of transfers even decreases by around 5%. To be more precise, considering the
total of 47 743 passengers, then 487 additional passengers reach their destination without
transfer in the OPT plan; the number of passengers that have to transfer once, twice, and
more than twice can be reduced by 415, 63, and 2, respectively. Only the walking time
increases a little in the OPT solution by around 1%, and the start waiting time increases
by around 6%. This increase is probably due to a slight reduction of the cycling time,
i. e., some stations are served a little less in the OPT plan than in the P10 plan. The
average perceived travel time which is a weighted sum of the different parts of the travel
time and an important criterion to quantify the travel paths, amounts to 26 minutes in
the OPT plan and to 27 minutes and 37 seconds in the P10 plan, an improvement of
around 6%.

Line Routes

Considering routes and frequencies of the lines, then 11 of 16 bus lines and 4 of 7 tram
lines are identical in OPT and P10. Figure 9.3 illustrates the line routes of the 5 bus
lines and 3 tram lines that are different in OPT and P10. Lines in the OPT plan that are
not in P10 are denoted by the prefix “new”. In the following, we compare the effects of
the different line routes on OD pairs with average or high demand. In our case, these are
relations with 10 and more passengers. We consider each line in P10 and its counterpart
in OPT if both are different.

Tram line 98. The routes of the P10 line 98 and the OPT line new16 are almost
identical. Schloss Charlottenhof is an endpoint of the line new16 while the line 98 operates
three more stations and has its endpoint at Bhf Pirschheide. The shortening of the line
in the OPT plan results in an additional transfer for a connection between the south-east
and the south-west of Potsdam. However, the demand for such connections is relatively
small; the cost can be reduced by around 82e.
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Tram line 92. The route of the tramline new13 in the OPT plan is also a shortened
version of the tramline 92 in the P10 plan. Line new13 has its endpoint at Bisamkiez
while the line 92 is operated beyond the Bisamkiez including Johannes-Kepler-Platz and
ends at Marie-Juchacz-Str. Therefore, the line 92 offers a direct connection between
Kirschallee and the south-east of Potsdam. Such a direct connection is not present in
the OPT plan, however, there are satisfactory alternatives with one transfer and less
travel time. One transfer is needed to travel from OD node Konrad-Wolf-Allee to OD
node Kirschallee (38 passengers) with a travel time of 39 minutes and 25 seconds. The
connection in the P10 plan is transfer free but a travel time of 45 minutes and 50 seconds
is needed. The difference in the tram kilometers between 92 and new13 is 5 km per route
which corresponds to a cost reduction of 224e in the OPT plan.

Tram line 99. The examples of lines in the P10 plan and lines in the OPT plan
considered so far only differ in the length of their routes. More differences exist between
the routes of the line 99 in the P10 plan and the line new10 in the OPT plan. Both lines
have one of their endpoints in Fontanestr. but at Platz der Einheit the routes split. The
route of new10 proceeds into the north-west with endpoint at Kirschallee while the route
of 99 proceeds to the south-east with endpoint at Marie-Juchacz-Str.

The operation of line new10 instead of line 99 reduces the cost by around 239e but it
also offers a direct connection between Babelsberg and Bornstedter Feld resp. Kirschallee.
The demand for this connection is much higher than the demand for direct connections
covered by line 99. Moreover, there are good alternatives for all relations which are
covered by the line 99 in the P10 plan, e. g., a transfer free connection between origin
node Kirchsteigfeld Nord and destination node S-Bahnhof Babelsberg (11 passengers)
has a travel time of 47 minutes and 4 seconds, a connection with one transfer has a travel
time of 44 minutes and 5 seconds. In the OPT plan passengers need 24 minutes and 9
seconds for a connection with one transfer. The omission of line 99 in the OPT plan is
therefore compensated by good alternatives. In contrast to that, the line new10 offers
direct connections that are not compensated by satisfactory alternatives in the P10 plan.
In the OPT plan 83 Passengers from origin node Kirschallee reach their destination node
Rathaus Babelsberg without transfers in 27 minutes and 17 seconds, in the P10 plan
they have to transfer at least once and have a travel time of at least 38 minutes and 54
seconds.

Bus line 638. The routes of the lines 638 and new1163 differ only slightly, compare
with the left of Figure 9.4. The bus line 638 operates seven additional stations in Groß
Glienicke. These stations are also operated by a third line that is present in both line
plans OPT and P10. The passengers of these stations are, therefore, also transported in
the OPT plan, however, the frequency at this stations is reduced. The cost reduces by
around 30e.

Bus line 698. The bus line 698 which is a feeder line for the tram in the P10 plan has
the longer line new13832 as its counterpart in the OPT plan. The station Weißer See is
an endpoint of the line 698 while the line new13832 serves additional important transfer
stations such as Reiterweg/Alleestr. and Platz der Einheit and ends at Hauptbahnhof.
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1 1

Figure 9.4: Left: Comparing the routes of the line 638 in the P10 plan and the line new1163 in the OPT
plan. Right: OD pairs with a direct (i. e., transfer free) connection provided by the bus lines new28256 and
new30369. The numbers on the red lines correspond to the demand of the associated OD pair; graphics
generated with Visum [83].

This line offers 40 passengers of the OD nodes Max-Eyth-Allee and Schneiderremise to
reach the Hauptbahnhof without transfers. The line is extended from 6 to 13 km whereas
the frequency is reduced to an operation of once per hour. Therefore, the cost increases
by only 17e but also 4 stations in the OPT plan are only served once per hour.

Bus lines 603 and 605. The former HVG line 605 connects Golm with the inner-city
of Potsdam. The line new29524 also starts in Golm but at Bahnhof Golm/Universität
instead of Wissenschaftspark. At Platz der Einheit the route proceeds to the north
passing Reiterweg/Alleestr. and ends at Höhenstr. similar as line 603 in the P10 plan.
The line new29524, therefore, corresponds to a merged version of the lines 603 and 605
and reduces the cost by around 46e. However, in the OPT plan a direct connection
between OD node Altes Rad and Hauptbahnhof is missing. 23 passengers can use the
line 605 for a direct connection to the Hauptbahnhof and 42 passengers reach the OD
node Eiche from Hauptbahnhof in 36 minutes and 40 seconds. At least one transfer and
42 minutes and 6 seconds are needed in the OPT plan. On the opposite, 18 passengers
between Rathaus and Brandenburger Vorstadt get a transfer free connection. In the P10
plan they have to transfer at least once which is disproportionate to the average travel
time of 6 minutes.

Bus line 699. The last two bus lines in the OPT plan which are different to the P10 plan
are the lines new28256 and new30369 which we want to consider as variants. They have
one endpoint in Babelsberg/Post and the other at Stern-Center in the south-east and
therefore have a longer route than the line 699. Between Bhf Rehbrücke and Konrad-
Wolf-Allee/Sternstr. the route of the line 699 is identical to new28256 and new30369.
The cost increases by around 201e when operating new28256 and new30369 instead of
699. However, these two lines offer a direct connection for several OD pairs with high
demand, see the right of Figure 9.4. The passengers on these OD pairs have to transfer
at least once in the P10 plan.
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1 1

Figure 9.5: Left: Comparing transfer free connections according to OD nodes and the difference in the
utilization of the capacity of the edges. A green district (corresponding to an OD node) symbolizes that more
passengers can reach their destination in the OPT plan without a transfer than in the P10 plan; a red district
symbolizes the converse relation. The red edges correspond to more used capacity in the OPT plan, the blue
edges correspond to more used capacity in the P10 plan. Right: Considering the used capacity of the lines
that are equal in both plans. The bigger the blue edges the bigger is the difference in used capacity; graphics
generated with Visum [83].

Passenger Routes

The left of Figure 9.5 shows a comparison of the passengers traveling directly, i. e., without
transfers, between the P10 plan and the OPT plan: The OPT plan offers more transfer
free connections in the green-marked OD nodes while the P10 plan offers more transfer
free connections in the red-marked OD nodes. It can be seen that for the majority of
OD nodes the OPT plan offers more transfer free connections than the P10 plan; this
especially pertains to the OD nodes where the “new”-lines are operated.

The total number of lines operating in Potsdam is 41. This number also includes lines
of other operators than ViP such as Deutsche Bahn and Berliner Verkehrsbetriebe. Al-
though only 8 of these 41 lines in Potsdam are different in the OPT plan and the P10
plan, this has a noticable effect on the passenger behavior in terms of different passenger
routes and on the capacity utilization in the entire network. The left of Figures 9.5 shows
the capacity utilization for all edges in the network. The red edges are used by more
passengers in the OPT plan compared to the P10 plan while the blue edges are used by
more passengers in the P10 plan compared to the OPT plan. The right of Figures 9.5
shows the difference in the utilized capacity for lines that are equal in the OPT plan
and the P10 plan. The bigger the blue edges, the bigger is the difference, i. e., changes
of a line route do not only concern the passengers that have used the line before but
also other passenger that may be attracted by the new line route. We also detected this
effect in the evaluation with the optimization tool. Figure 9.6 shows the utilization of
the tram line 96 in the P10 plan (left) and in the OPT plan (right). In both plans the
line operates in the same way. But the interaction of all lines in the OPT plan seems to
improve the attractivity of line 96 compared to the P10 line plan.

Remark 9.1. Using the new direct connection model (DC), the line planning problem for
Potsdam 2010 including all practical requirements with the above defined parameters can
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Figure 9.6: Utilization of the tram line 96 in the P10 plan (left) and in the OPT plan (right). The x-axis
represents the stations from Viereckremise to Marie-Juchacz-Str. in the order of service.

be solved to optimality within 12 hours. The costs of the optimal solution DC-OPT are
7 936e, and, therefore, still lower than for P10 but higher than for OPT. The total travel
times of DC-OPT are smaller than for OPT; evaluating both solutions in the change-
and-go graph shows that DC-OPT improves OPT in total by around 0.13%. The number
of direct travelers increases by around 1.8%. A brief comparison of the DC-OPT line
plan with the P10 line plan shows that it only differs in one tramline but replaces 5 bus
lines by 12 new (shorter) ones.

9.4 Conclusion

The evaluations with Visum corroborate the results of the line optimization. The pas-
senger distribution in the optimization model yields similar results concerning travel and
transfer times as the simulation with Visum. Hence, a better solution, e. g., with re-
spect to travel and transfer times, in the optimization model is also a better solution in
practice. The OPT plan fulfills all planning requirements and improves the P10 plan in
all important aspects such as travel time, number of transfers, and cost. The savings
in costs are achieved by reducing the number of operated kilometers. This can be seen
especially well in the tram network and in the reduction of some frequencies. For many
OD-relations the OPT plan offers better travel alternatives than the P10 plan; for rela-
tions that are affected by the reduction the OPT plan offers satisfactory alternatives or
the demand is very small and, therefore, longer travel paths can be accepted.

The potential of optimization and simulation depends of course on the quality of the given
data. The OD matrix is a weak point since it represents an aggregation of the data for a
considered time horizon, usually a day. Moreover, the demand is also influenced by the
offered line plan. In the case of Potsdam, a reduction of the tram service may result in a
reduction of passenger demand for public transport. This is, so far, not considered in the
line planning models, and this was also one argument that ViP, in the end, established
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partly different line routes than those we had computed.

Nevertheless, the advantage of optimization tools is the comprehensive consideration of
all given data and the possibility to include a variety of requirements that have to be
fulfilled by a solution. A careful disposition, analysis, and maintenance of the data results
in the computation of line plans that offer globally good connections for the passengers.
New and highly demanded lines are generated while lines with little demand are reduced
or canceled. Furthermore, it is possible to compute different variants by moving the focus
between cost minimization and quality maximization while all planning requirements are
satisfied automatically. In this way, a good compromise between quality of service and
cost for operating lines can be identified and justified. The project Stadt+ has shown
that mathematical programming and optimization tools make a valuable contribution to
plan and to improve public transportation.
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Chapter 10

Concluding Remarks for Part II

In the second part of this thesis we investigated the integrated line planning and passenger
routing problem. We proposed a new model for this problem, the direct connection
model (DC), and discussed two existing models, namely, the change-and-go model (CG)
of Schöbel and Scholl and the basic dynamic model (BD) of Borndörfer, Grötschel, and
Pfetsch. As objective for all three models we considered a weighted sum of minimizing
the line operating costs and the passenger travel times. A comparison of the three models
yielded the following picture

vIP(CG) ≥ vIP(DC) ≥ vIP(BD),
vLP(CG) ≥ vLP(DC) ≥ vLP(BD),

where vR(M) is the optimal objective value of relaxation R of an integer programming
model M . Hence, the theoretically best among the three models for line planning with
integrated passenger routing is the change-and-go model (CG). However, this model is
also of largest size. It is defined on the change-and-go graph whose number of nodes
(arcs) is approximately the product of the number of lines and nodes (arcs) of the under-
lying graph for the direct connection model and the basic dynamic model, respectively.
Table 10.1 lists the size of the change-and-go graph compared to the underlying graph of
model (BD) and (DC). It also lists the number of capacity constraints and the running
time of a pricing round for the passenger path variables since these are the numbers that
differ in all three models. Note that the number of capacity constraints for model (DC)
includes all direct connection constraints which can be seen as capacity constraints for
direct travelers. In contrast to models (BD) and (DC), the capacity constraints and the
pricing problem for the passenger path variables of model (CG) strongly depend on the
size of the line pool. Indeed, our computations for the project Stadt+ to compute the
line plan for Potsdam showed that model (CG) is a computational nightmare. We needed
several days to compute a good solution. Using the new direct connection model (DC)
the same setting can be solved to optimality within 12 hours. Evaluating both solutions
in the change-and-go graph shows that the DC-solution improves the best CG-solution
in total by around 0.13%. This shows that model (DC) is computationally tractable for
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Table 10.1: Comparing the sizes and the computational results of models (CG), (DC), and (BD); 1geometric
mean on 14 instances after 10 hours of computation; 6root LP for 8 of 14 instances could not be solved within
10 hours; 3difference of direct travelers predicted by model and exact direct travelers in system optimum.

(CG) (DC) (BD)

graph GCG = (V,A) G = (V,A) G = (V,A)
|V| ∈ O(|L||V |)
|A| ∈ O(|L||A|)

capacity constr. |A| ∈ O(|L||A|) |A|+O(|A||D|) |A|
pricing pass. O(|VO|(|V| log |V|+ |A|)) O(|D|(|V | log |V |+ |A|)) O(|VO|(|V | log |V |+ |A|))
path var. shortest path tree ∀v ∈ VO weights for st-rdcpaths shortest path tree ∀v ∈ VO

depend on (s, t) ∈ D

optimality gap1 inf 2 0.041% 0.039%
∆ direct traveler1,3 0.0% 0.39% 19.26%

real world instances and that it yields good solutions concerning passenger travel times
and line operating costs.

As far as we know, public transport line planning in practice is currently not supported
by mathematical optimization tools. In this thesis we have shown that this is possible.
The direct connection model is a suitable tool to support the solution of a first strategic
planning problem in public transport by mathematical optimization. This improves the
entire planning process of a public transport system from line planning to the subsequent
operational planning steps. Line optimization has a leverage effect, since a line plan
provides the basis for vehicle and duty scheduling. As optimization tools for vehicle
and duty scheduling are already integrated in planning software for public transport,
line optimization tools can extend this tool chain from operational planning to strategic
planning.
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Appendix A

Matheon Adventskalender –
Exercises

The Digitaler Adventskalender [43] of the DFG research center Matheon provides math-
ematical riddles or exercises. Every day, from December 1 st to December 24 th., a door
on the calender webpage opens at 18:00 to reveal the exercise of the day which has to
be solved correctly and if possible until midnight to have the greatest chance of winning
a prize. The idea is to popularize mathematics and to give the general public an under-
standing of the research done within the Matheon projects, and indeed the large number
of participants, more than 12 000 in the year 2012, made the calender a big success. The
exercises were conceived by the Matheon researchers; I also contributed riddles for the
years 2008 to 2012. They are all related to the Steiner connectivity problem and/or to
the line planning problem. The riddles of the years 2011 and 2012 were voted by the
participants as the “ultimative Kalenderaufgabe” 2011 and 2012, respectively. In the
following I list these exercises, each followed by the solution on a subsequent page.

Figure A.1: Digitaler Adventskalender of Matheon [43].
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Figure A.2: Links: Geschenkedepots, eine Strecke zwischen zwei Depots gibt an, dass dazwischen Geschenke
ausgetauscht werden müssen. Rechts: Liniennetz der Turboschlittenfirma Schneeflocke.

A.1 Die Turboschlitten Rettung (2008)

Der Weihnachtsmann rauft sich die Haare. Das aber auch jedes Jahr immer irgendetwas
schief gehen muss! Diesmal sind aus irgendeinem Grund die Geschenke in den Depots
durcheinander gekommen. Es gibt vier wichtige Depots, von denen die Geschenke am
Weihnachtsabend in die ganze Welt verteilt werden. Die Verteilung der Geschenke ist
bereits bis ins kleinste Detail geplant. Es gibt einen straffen Zeitplan, der eingehalten
werden muss. Und erst jetzt, wenige Tage vor Weihnachten, fällt der pragmatischen
Weihnachtswichtelin Linda auf, das jemand geträumt haben muss und die Geschenke
zum Teil in falsche Depots geliefert wurden. Seufzend schaut der Weihnachtsmann das
immermüde Rentier Kalle an, das gerade aus Depot B kam. Aber es hilft ja nichts, die
Geschenke müssen an ihre eigentlichen Depots gebracht werden. Der Weihnachtsmann
beruft eine außerordentliche Versammlung mit allen weihnachtlichen Helfern ein und
erklärte das Problem:

„Ich habe im ersten Bild (Figure A.2 links) skizziert, zwischen welchen Depots Geschenke
ausgetauscht werden müssen und zwar sind es genau die Depots, die in dem Bild direkt
miteinander verbunden sind, also zwischen A und B, A und C, B und D und zwischen
C und D. Um die Geschenke noch schnell vor Weihnachten in die richtigen Depots zu
bringen, müssen wir wohl die Dienste der Turboschlittenfirma Schneeflocke in Anspruch
nehmen. Sie haben sieben verschiedene Turboschlittenlinien, die verschiedene Stationen
anfahren. Ich habe das Turboschlitten-Liniennetz im zweiten Bild (Figure A.2 rechts)
skizziert. Wichtig sind für uns die rechteckig markierten Stationen. Da stehen unsere vier
Geschenkedepots A, B, C und D. Die Linien verkehren jeweils in Hin- und Rückrichtung.
Außerdem ist die Kapazität jeder Linie groß genug alle Geschenke zu transportieren.
Wir können jede einzelne der sieben Linien mieten. Allerdings kostet jede Linie, die wir
mieten extra. Es ist vielleicht auch nötig, die Geschenke unterwegs von einer Linie auf
eine andere umzuladen, wenn es keine direkte Linienverbindung zwischen zwei Depots
gibt oder unser Budget nicht für eine umladefreie Verbindung ausreicht. Leider habe
ich bei der Firma Schneeflocke bisher nur den Rätselkönig Andi erwischt. Er hat mir
natürlich nicht die Kosten (in Euro) direkt verraten, sondern als Rätsel aufgegeben:“
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A.1. Die Turboschlitten Rettung (2008)

◦ Die Kosten der Linie 3 sind doppelt so groß wie die von Linie 5.
◦ Die Kosten der Linie 1 sind doppelt so großwie die von Linie 7.
◦ Die Kosten der Linie 4 sind um 5 größer als die von Linie 3 und um 5 kleiner als

die von Linie 1.
◦ Die Kosten von Linie 7 sind 2

3 so groß wie die von Linie 3.

„Die Kosten von Linie 2 und Linie 6 wollte mir Andi nicht verraten,“ seufzt der Weih-
nachtsmann. „Er meinte, ich solle mir überlegen, wie viel ich bereit wäre zu zahlen. Wenn
ich ihm meine Antwort stichhaltig begründen kann, dann bekommen wir 50% Rabatt auf
alles.“

Sofort bricht ein allgemeines Gemurmel aus. Viele sind empört, dass so kurz vor Weih-
nachten der Rätselkönig Andi sein Spiel mit ihnen treibt. Dennoch beginnen viele über
mögliche Verbindungen mit den Turboschlittenlinien zu diskutieren. Der Weihnachts-
mann ist erstaunt, wie viele (mehr oder weniger kluge) Aussagen zusammen kommen.
Er notiert sich einige Punkte, von denen er sicher ist, dass sie bei der Auswahl der Linien
von Nutzen sein können bzw. helfen den Rabatt zu erhalten. Auf eine Aussage sollte
sich der Weihnachtsmann aber lieber nicht verlassen, wenn er bei seiner Entscheidung
zur Linienwahl Kosten und/oder Bequemlichkeit berücksichtigen will. Welche?

Antwortmöglichkeiten:
1. Die pragmatischeWeihnachtswichtelin Linda meint: „Wenn wir Linie 4 nicht nehmen,

müssen wir Linie 6 wählen.“
2. Das schlaue Rentier Karla sagt: „Es kann keine Lösung mit nur zwei Linien geben.“
3. Der träge Weihnachtself Olaf brummelt: „Keine der Linien ist so wichtig, dass wir

sie unbedingt wählen müssen, um alle Geschenke transportieren zu können.“
4. Die großäugige Weihnachtswichtelin Babette meint: „Ich glaube, Linie 1 ist nie in

einer kostenminimalen Lösung, egal wie die Kosten von Linie 2 und Linie 6 sind.“
5. Benno, der Kopfrechenkönig unter den Rentieren, sagt: „Eine kostenminimale Lö-

sung ohne Linien 2 und 6 kostet 80 Euro.“
6. Das immermüde Rentier Kalle murmelt: „Falls wir wirklich mindestens drei Lin-

ien brauchen, müssen nicht alle der gewählten Linien zwei verschiedene Depots
miteinander verbinden.“

7. Die selbstbewusste Weihnachtselfin Gerda sagt: „Falls die Kosten der Linie 2 kleiner
gleich 35 sind, gibt es eine kostenminimale Lösung, die Linie 2 enthält.“

8. Der extravagante Weihnachtswichtel Bob kontert: „Falls die Kosten der Linie 6
kleiner gleich 30 sind, gibt es eine kostenminimale Lösung, die Linie 6 enthält.“

9. Das aufgeweckte Rentier Charlotte meint: „Wenn die Linien 2 und 6 jeweils nur
halb so teuer sind wie Linie 7, können wir für weniger als 100 Euro alle Geschenke
ohne Umladen transportieren. Und da ist noch nicht mal der Rabatt eingerechnet.“

10. Der faule Weihnachtself Paul meint: „Zum Glück müssen wir keine Geschenke
zwischen Depot B und C transportieren. Das wäre nie ohne Umladen gegangen.“
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Richtige Lösung: Antwort 7

Zur Berechnung der Linienkosten ergibt sich folgendes Gleichungssystem (c` Kosten von
Linie `)

c3 = 2 · c5

c1 = 2 · c7

c4 = c3 + 5
c4 = c1 − 5
c7 = 2

3c3

Es ergibt sich
c1 = 40
c3 = 30
c4 = 35
c5 = 15
c7 = 20

Es ist relativ leicht zu sehen, dass die Depots nicht mit zwei oder weniger Linien miteinan-
der verbunden werden können. Daher sind mindestens drei Linien notwendig. Wenn es
nur um Kosten geht, wird man nicht mehr als drei Linien auswählen.

Seien x und y die Kosten der Linien 2 und 6. Man kann sich nun alle Lösungen mit drei
Linien anschauen und folgendes feststellen:

◦ Eine kostenminimale Lösung ohne Linien 2 und 6 ist die Wahl der Linien 3, 4, 5
mit Kosten 80 (Antwort 5 ist eine richtig Aussage).
◦ Eine kostenminimale Lösung mit Linie 2 (aber ohne 6) ist die Wahl von den Linien

2, 4, 5 mit Kosten 50 + y.
◦ Eine kostenminimale Lösung mit Linie 6 (aber ohne 2) ist die Wahl von den Linien

3, 6, 7 mit Kosten 50 + x
◦ Eine kostenminimale Lösung mit Linie 2 und Linie 6 ist die Wahl der Linien 2, 6,

7 mit Kosten 20 + x+ y.

Es ergibt sich für die 10 Aussagen

1. Aussage richtig: In Depot D fahren nur die Linien 2 und 6. Um Depot D anzu-
fahren, muss wenigstens eine der beiden Linien gewählt werden.

2. Aussage richtig: Alle Linien fahren höchstens zwei Depots an. Alle Linien die zwei
Depots anfahren, haben entweder ein Depot gemeinsam oder treffen sich nicht.
Daher braucht man wenigstens 3 Linien.

3. Aussage richtig: In jedem Schnitt im Liniennetzgraph, der zwei Depots voneinan-
der trennt, gibt es mindestens zwei Linien, d. h., es gibt immer mindestens zwei
verschiedene Möglichkeiten zwei Depots miteinander zu verbinden.

4. Aussage richtig: Ergibt sich aus den obigen Feststellungen.
5. Aussage richtig: Ist die erste Feststellung.
6. Aussage richtig: Siehe z. B. Linien 2, 4 und 5.
7. Aussage falsch: Wenn sowohl Linie 2 als auch Linie 6 über 30e kosten, ist die Wahl

der Linien 3, 4, 5 am kostengünstigsten.
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8. Aussage richtig: Kostet Linie 6 weniger oder gleich 30e und Linie 2 mehr als 30e
ist die Wahl der Linien 3, 6, 7 am kostengünstigsten. Falls auch die Kosten von
Linie 6 kleiner gleich 30 sind, ist die Wahl der Linien 2, 6, 7 am besten. In jedem
Fall ist in einer kostenminimalen Lösung die Linie 6 enthalten.

9. Aussage richtig: Eine Lösung ohne umladen ist 1, 2, 4, 6 mit Kosten 40 +10 + 35 +
10 = 95.

10. Aussage richtig: Es gibt keine Linie, die Depot B und C direkt miteinander verbindet.
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Figure A.3: Links: Ein Beispiel mit 7 Standorten und 9 Straßen. Rechts: Eine Lösung mit zwei Linien, blau
und rot.

A.2 Linienplanung (2009)

Nächstes Jahr wird alles anders! Das hat der vorweihnachtliche Verwaltungsrat bereits
beschlossen. Um die ständig wachsende Anzahl an Weihnachtswünschen erfüllen zu kön-
nen, soll es nächstes Jahr mehrere Standorte geben, in denen Geschenke verpackt werden.
Die genaue Zahl an Standorten ist noch nicht fest, aber es soll wenigstens vier geben.
Die Standorte werden durch ein Straßennetz verbunden werden. Auch wie das aussehen
wird, ist noch nicht ganz klar. Da kommt es auf die geografischen Gegebenheiten an. Auf
eines kann man sich aber verlassen, alle Standorte sind über das Straßennetz miteinander
verbunden, und es gibt keine parallelen Straßen. Ein Beispiel, wie es aussehen könnte,
ist in Abbildung A.3, links, dargestellt.

Damit die Verteilung der Geschenke zwischen den Standorten gut funktioniert, sollen
auf dem Straßennetz Transportlinien eingerichtet werden. Diese Linien sollen so gewählt
werden, dass jeder Standort von jedem anderen durch die Nutzung der Linien erreicht
werden kann. Umsteigen geht an jedem Standort, der von den betreffenden Linien bedient
wird. Linien können überall definiert werden, und verschiedene Linien können sich eine
Straße teilen. Es gibt dabei folgende Bedingungen an die Linien:

1. Eine Linie soll stets genau vier Standorte miteinander verbinden und darf nur auf
den gegebenen Straßen fahren.

2. Linien fahren in beide Richtungen und in jeder Richtung an jedem der vier Standort
nur einmal vorbei.

Das rechte Bild in Abbildung A.3 zeigt eine Lösung für das Beispiel auf der linken Seite.

Zur Vereinfachung wird angenommen, dass die Kapazitäten der Linien und die Länge
der Straßen keine Rolle spielen.

Der Weihnachtsmann hat sich bezogen auf ein gegebenes Straßennetz und gegebene Stan-
dorte bereits überlegt, wie man diese Linien definieren kann. Hier ist seine Idee:

1. Zu Beginn wähle eine beliebige Linie, die vier Standorte miteinander verbindet.
Die Standorte, die von dieser Linie angefahren werden, werden notiert.

2. Wenn es noch Standorte gibt, die nicht notiert sind, dann füge eine Linie dazu, die
mindestens einen notierten Standort und mindestens einen nicht notierten Standort
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enthält. Notiere alle neu angefahrenen Standorte. Wiederhole diesen Schritt so
lange, wie es noch nicht notierte Standorte gibt.

Der Weihnachtsmann stellt das Problem und seinen Lösungsvorschlag fünf seiner wichtig-
sten Helfer vor. Hier sind ihre Aussagen:

◦ Anton: Es gibt Konstellationen von Standorten und Straßennetz für die es keine
Lösung gibt.
◦ Beate: Falls es eine Lösung gibt, dann liefert der Lösungsvorschlag vom Weih-

nachtsmann eine Lösung.
◦ Claudia: Gibt es zwischen je zwei Standorten bezogen auf des Straßennetz (ohne

Linien) zwei verschiedene Wege, dann bekommen wir mit dem Algorithmus eine
Lösung mit minimaler Anzahl an Linien.
◦ Doreen: Ist das Problem lösbar und gilt für die Anzahl der Standorte n, dass n− 1

durch drei teilbar ist, dann gibt es eine Lösung, so dass keine zwei Linien, die
gleiche Straße benutzen.
◦ Emil: Wenn es eine Lösung gibt, dann werden mindestens dn−1

3 e viele Linien
benötigt (n ist die Anzahl der Standorte).

Der Weihnachtsmann denkt kurz nach und ist der Meinung, dass nur drei Aussagen
stimmen. Welche sind es?

Antwortmöglichkeiten:
1. Anton, Beate, Claudia
2. Anton, Beate, Doreen
3. Anton, Beate, Emil
4. Anton, Claudia, Doreen
5. Anton, Claudia, Emil
6. Anton, Doreen Emil
7. Beate, Claudia, Doreen
8. Beate, Claudia, Emil
9. Beate, Doreen, Emil
10. Claudia, Doreen, Emil

197



A Matheon Adventskalender – Exercises
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Figure A.4: Beispielnetze.

Richtige Lösung: Antwort 3

◦ Die Aussage von Anton ist korrekt. Das Beispiel in der linken Abbildung A.4 hat
vier Standorte und alle sind über Straßen miteinander verbunden. Aber man kann
keine Linien finden, die genau vier Standorte anfahren und jeden in jeder Richtung
nur einmal.
◦ Die Aussage von Beate ist richtig. Wenn es eine Lösung gibt, dann kann man

eine Linie, die alle Bedingungen erfüllt finden. Gibt es noch nicht angefahrene
Standorte, so muss einer dieser Standorte direkt durch eine Straße von einen der
vier (von der ersten Linie angefahrenen) Standorte erreichbar sein. In jedem Fall
kann man eine Linie finden, die drei von den bereits angefahrenen Standorten
enthält und den neuen Standort.
Die Behauptung folgt dann per Induktion.
◦ Die Aussage von Claudia stimmt nicht. Betrachte dazu die mittlere Abbildung A.4.

Es gibt zwischen je zwei Standorten zwei verschiedene Wege. Eine Minimallösung
enthält zwei Linien, z.B. `1 = {a, c, e, g} und `2 = {b, d, f, g}. Wenn der Algo-
rithmus aber mit Linie {f, d, c, e} beginnt, werden noch mindestens zwei Linien
benötigt, um die restlichen Standorte zu bedienen.
◦ Die Aussage von Doreen stimmt nicht. Betrachte dazu die rechte Abbildung A.4.

Es sind mindestens drei Linien nötig, um alle Standorte miteinander zu verbinden.
Da es aber nur sechs Straßen gibt, müssen sich die Linien Straßen teilen.
◦ Die Aussage von Emil stimmt. Eine Linie, die genau vier Standorte enthält,

fährt über genau drei Straßen. Um n Standorte miteinander zu verbinden, muss
man über n − 1 Straßen fahren, d. h. n−1

3 ist eine untere Schranke an die Anzahl
benötigter Linien. Da wir Linien ganz oder gar nicht nehmen, kann dieser Zahl
aufgerundet werden.

Damit haben Anton, Beate und Emil recht.
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A.3 Der lange Weg nach Hause (2010)

Letztes Jahr war die Weihnachtsfeier wieder sehr unterhaltsam. Susanne hatte über’s
Jahr viele Witze gesammelt und auf eine ihr unnachahmlich komischen Weise zum Besten
gegeben. Kalles Parodie vom Chef, der mal wieder früher gehen musste, war auch nicht
von schlechten Eltern, und Claudias Rumkugeln hielten, was sie versprachen, im wahrsten
Sinn des Wortes. Nur die Heimfahrt war durch Schneegestöber und vereiste Züge gestört
und zog sich bis zum Morgengrauen hin. Zum Glück hatten alle das gleiche Ziel und so
zog sich nicht nur der Heimweg sondern auch die Feier bis zum Morgengrauen.

Dieses Jahr haben Susanne, Claudia und Kalle überlegt, ob sie eine Fahrgemeinschaft
bilden. Aber dann muss einer auf die leckeren Rumkugeln verzichten. Das will und
kann keiner versprechen. Stattdessen sinnieren alle drei über den Nahverkehr und die
möglichen Probleme. Hier sind ihre Aussagen:

◦ Insgesamt gibt es fünf Strecken (direkte Verbindungen zwischen zwei Stationen).
◦ Erst wenn mindestens zwei Strecken durch Schneeverwehungen nicht mehr passier-

bar sind, dann kommen wir nicht mehr an unser Ziel.
◦ Es verkehren mehrere Linien. Eine Linie ist dabei immer eine Menge von Strecken.

Für diese Strecken gilt, dass der Bus an jeder Station, an der er vorbeikommt, auch
hält. (Es gibt also keine Expresslinien.)
◦ Schade eigentlich, dass wir immer mindestens einmal umsteigen müssen.
◦ Es müssen mindestens 3 der 6 Linien, die wir nutzen können, ausfallen, damit wir

nicht mehr ans Ziel kommen.
◦ Falls die Linien 1, 4 und 5 ausfallen, kommen wir nicht an unser Ziel.
◦ Das gleiche gilt, wenn Linien 2, 3 und 6 ausfallen.
◦ Ebenso, falls Linien 1, 2 und 3 ausfallen oder 2, 5 und 6.
◦ Selbst wenn Linie 5 fährt aber nicht die Linien 1,3 und 4, kommen wir nicht an.

Eine 3er Kombination an Linien fehlt noch, die bei Ausfall dazu führt, dass Susanne,
Claudia und Kalle nach der Weihnachtsfeier nicht mehr nach Hause kommen. Welche?

Antwortmöglichkeiten:
1. 1, 2, 6
2. 1, 4, 6
3. 1, 2, 5
4. 2, 3, 4
5. 2, 4, 5
6. 2, 4, 6
7. 3, 4, 5
8. 3, 4, 6
9. 3, 5, 6
10. 4, 5, 6

Hinweis: Weil im Forum die Fragen aufkamen:
◦ Linien können in beide Richtungen fahren.
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◦ Gründe fuer das Nichtnachhausekommen sind:
– Streckenausfälle (mindestens 2)
– Linienausfälle (mindestens 3)

Beide sind voneinander unabhängig. Der Fahrer einer Linie kann also trotz freier
Strecken im Spekulatiusrausch liegen. Und wenn eine Strecke verschneit ist, dann
scheitert das Nachhausekommen nicht an den Linien, sondern am Schnee. Schnee
legt also keine Linien lahm sondern Strecken. Für die Bestimmung der fehlenden
Linienkombination kann davon ausgegangen werden, dass der Schnee keine Rolle
spielt.
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Figure A.5: Links: Nahverkehrsnetz mit 5 Strecken (Kanten), das alle Voraussetzungen der Aufgabe erfüllt.

Richtige Lösung: Antwort 3

Das Nahverkehrsnetz hat 5 Strecken/Kanten. Da mindestens zwei Kanten ausfallen
müssen, um vom Start s zum Ziel t zu kommen, ist das Netz zweifach-zusammenhängend,
d. h., es gibt mindestens zwei kantendisjunkte Wege von s nach t. Weiterhin muss es min-
destens sechs verschiedene minimale Schnitte im Netz geben, da es sechs Kombinationen
von je drei Linien gibt, die durch Ausfall keine Verbindung mehr von s nach t zulassen.
Als einzige Möglichkeit gibt es daher nur das Netz in Abbildung A.5, links.

Es gibt 6 Linien, d. h., auf mindestens einer Strecke verkehren 2 Linien. Weiterhin
ist Voraussetzung, dass mindestens 3 der 6 Linien ausfallen müssen, so dass es keine
Verbindung mehr von s nach t gibt. Im Netz müssen daher entweder auf den oberen zwei
Kanten je zwei Linien verkehren oder auf den unteren drei Kanten. Schaut man sich die
in der Aufgabe gegebenen „Linienschnitte“ an, kommt Linie 4 immer in Verbindung mit
1 und Linie 6 immer in Verbindung mit Linie 2 vor. Durch ein wenig probieren kann
man feststellen, dass sich Linie 1 und 4 eine Strecke teilen müssen sowie 2 und 6. Des
weiteren kommen Linie 1 und 2 ebenfalls zusammen in einem Schnitt vor. Das heißt,
Linie 1 und 2 müssen jeweils zwei Kanten enthalten. Durch ein wenig probieren, erhält
man (bis auf Symmetrien) das Liniennetz in Abbildung A.5, rechts. Der einzige mögliche
Linienschnitt mit drei Linien, der in der Aufgabe nicht erwähnt wird, ist der mit Linie
1, 2 und 5.

Ausgehend vom Netz aus Abbildung A.5, links, kann man auch ein Gleichungssystem
aufstellen, um die Belegung der Kanten durch Linien herauszufinden. Wir betrachten
dazu folgende Mengen

◦ A = {a, b, c, d, e} Kanten im Netz
◦ L = {1, 2, 3, 4, 5, 6} Menge der Linien
◦ I = {{a, e}, {a, d}, {a, c}, {b, e}, {b, d}, {b, c}} Kantenkombination, die zu mini-

malen Schnitten führen
◦ J = {{1, 4, 5}, {1, 3, 4}, {2, 3, 6}, {1, 2, 3}, {2, 5, 6}} ∪ {j0} Linienschnitte aus der

Aufgabe zusammen mit dem gesuchten Schnitt
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und zwei Variablentypen.

◦ xij Kantenkombination i enthält Linienschnitt j
◦ y`a Linie ` fährt auf Kante a

Folgendes Gleichungssystem führt zu verschiedenen (symmetrischen) Belegungen von
Linien zu Kanten, alle Lösungen führen aber zum gleichen fehlenden Schnitt

(i)
∑
j∈J

xij = 1 ∀ i ∈ I

(ii)
∑
i∈I

xij = 1 ∀ j ∈ J

(iii) xij −
∑
a∈i

y`a ≤ 0 ∀ ` ∈ L

(iv)
∑
a∈i

∑̀
∈L
y`a = 3 ∀ i ∈ I

(v) xij ∈ {0, 1} ∀ i ∈ I, ∀ j ∈ J
(vi) y`a ∈ {0, 1} ∀ ` ∈ L, ∀ a ∈ A

Erklärung zu den einzelnen Zeilen des Gleichungssystems

◦ (i) Jeder Kantenkombination wird genau ein Linienschnitt zugeordnet.
◦ (ii) Jedem Linienschnitt wird genau eine Kantenkombination zugeordnet.
◦ (iii) Wenn Linienschnitt i der Kantenkombination j zugeordnet wird, muss jede

Linie aus dem Linienschnitt auf wenigstens einer Kante der Kantenkombination
fahren
◦ (iv) Für jede Kantenkombination gilt, dass genau drei Linien auf Kanten dieser

Kombination fahren (da jeder Linienschnitt nur drei Linien hat)
◦ (v) Entschneidungsvariable, ob Kantenkombination i Linienschnitt j enthält (xij =

1) oder nicht (xij = 0)
◦ (vi) Entschneidungsvariable, ob Linie ` auf Kante a fährt

Man erhält als Lösung welche Kanten den gesuchten Linienschnitt enthalten und wie
die Linien auf den Kanten fahren. Daraus kann man leicht ablesen, dass der fehlende
Linienschnitt die Linien 1, 2 und 5 enthält.
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A.4 Gesprächige Wichtel (2011)

Es sollte eine tolle Überraschung werden. In den letzten Jahren hat es die viele Arbeit
immer nicht zugelassen. Aber dieses Jahr will der Osterhase seinen guten Freund, den
Weihnachtsmann, am Weihnachtsabend besuchen und hat sich schon sehr auf das über-
raschte Gesicht von ihm gefreut. Doch irgendwie haben drei Wichtel, Franz, Rita und
Ole, von dem geplanten Besuch erfahren. Leider können sie nichts für sich behalten.
Sobald sich Wichtel treffen, reden sie über alles, was sie gehört haben. Selbst, wenn
der Weihnachtsmann dabei ist, werden alle Informationen ausgetauscht. Bei folgenden
Aktivitäten treffen Wichtel bzw. Wichtel und Weihnachtsmann aufeinander.

◦ Franz und Hella treffen sich bei einer heißen Schokolade.
◦ Ole, Hella und Emil gehen schwimmen.
◦ Emil und Theo treffen sich in der Sauna.
◦ Theo und Erika diskutieren gerne bei einem Glas Wein.
◦ Ina, Harry und Nelly spielen zusammen Skat.
◦ Rita und Harry treffen sich beim Tischtennis.
◦ Erika, Nelly, Alfons und Caro spielen zusammen Poker.
◦ Theo Hanna und der Weihnachtsmann gehen zusammen rodeln.
◦ Ina, Caro und der Weihnachtsmann spielen zusammen Basketball.
◦ Alfons und der Weihnachtsmann fahren zusammen Ski.

Welche Aktivitäten müssten bis zum Weihnachtsabend ausfallen, damit der Weihnachts-
mann sicher nichts vom geplanten Besuch erfährt?

Antwortmöglichkeiten:
1. Schokolade trinken und Schwimmen
2. Wein trinken und Tischtennis
3. Poker und Rodeln
4. Skat und Sauna
5. Skat und Poker
6. Basketball und Ski
7. Tischtennis und Rodeln
8. Sauna und Basketball
9. Ski und Schwimmen
10. Wein trinken und Schokolade trinken
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Figure A.6: Konstellationen in denen Wichtel bzw. Wichtel und Weihnachtsmann aufeinander treffen.

Richtige Lösung: Antwort 4

Eine Darstellung der Wichtel und ihre Teilnahme an den verschiedenen Aktivitäten ist
in Figure A.6 dargestellt

Der Weihnachtsmann hört von dem Besuch, wenn es eine Kette von sich schneidenden
Aktivitäten/Flächen gibt, die den Weihnachtsmann (blauer Punkt) und mindestens einen
der drei Wichtel Franz, Rita, Ole (rote Punkte) enthält.

Man sieht sofort, dass bei Ausfallen von Skat und Sauna (Antwort 4) keine solche Kette
mehr existiert. Nun kann man sich noch vergewissern, dass bei allen anderen Antwort-
möglichkeit immer wenigstens eine Kette bestehen bleibt.
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A.5 Wer war es? (2012)

Der Weihnachtsmann ist verärgert. Eine leckere Sahnetorte sollte auf ihn im Teehaus
warten. Er hatte sich schon den ganzen Tag darauf gefreut, sie in seiner Pause am
Nachmittag zu essen. Aber, was für eine Überraschung, neun Weihnachtswichtel hatten
sich bereits im Teehaus versammelt, als er ankam. Und von einer Sahnetorte war weit
und breit nichts zu sehen. Die Weihnachtswichtel, sonst immer gesprächig, schauten
verdruckst auf den Boden. Niemand wollte was wissen oder gesehen haben. Der Weih-
nachtsmann schaute sie lange an und überlegte. Es blieb ja nicht viel geheim vor ihm.
Der Besuch vom Osterhasen letztes Jahr war auch keine Überraschung. Und dieses Jahr
war eine Theateraufführung geplant. Sollte wohl auch eine Überraschung werden, aber ir-
gendwie hat der Weihnachtsmann schon einiges in Erfahrung bringen können. Er wusste,
dass alle Wichtel den Tag über mit Vorbereitungen für das Theaterstück beschäftigt
waren. Die Vorbereitungen beinhalten Einstudieren, Vorsprechen, Nase pudern, Dekori-
eren des Bühnenbildes und Anprobe. Jede Aktivität befindet sich in einem anderen Haus.
Zwischen je zwei Häusern gibt es eine Verbindung, die mit dem Schlitten bewältigt wer-
den kann. Entweder geht es auf dieser Verbindung bergauf oder bergab. Wenn es in
eine Richtung bergauf geht, geht es natürlich in die Gegenrichtung bergab. An diesem
Tag hat jeder der neun Wichtel drei der fünf Aktivitäten besucht. Die Wege dazwis-
chen haben alle mit dem Schlitten zurückgelegt. Nach der letzten Aktivität sind alle
mit ihrem Schlitten ins Teehaus gefahren. Auch diese Verbindungen verlaufen entweder
bergauf oder bergab, je nachdem, von wo man kommt. Folgende weitere Informationen
hat der Weihnachtsmann:

◦ Alle neun Wichtel haben die gleiche Anzahl an bergauf-Verbindungen gehabt. (Die
Fahrt zum Teehaus ist dabei mitgezählt.)
◦ Idrin und Tol sind die Einzigen, die von ihrer letzten Aktivität bergab zum Teehaus

rodeln konnten.
◦ Die erste Station von Idrin war die Anprobe, danach fuhr er hinauf zum Dekorieren.
◦ Anprobe und Dekorieren waren die 2. und 3. Station für Sharna und Rorrina.
◦ Zarna begann mit Dekorieren, fuhr danach zur Anprobe und als letztes zum Ein-

studieren.
◦ Miira begann mit der Anprobe. Ihre 2. Station war das Nase pudern.
◦ Tinder begann wie Sharna mit dem Einstudieren. Beide hatten die gleiche 2.

Station.
◦ Erden begann wie Rorrina mit Nase pudern. Die 2. Station von Erden war Deko-

rieren, zu der er hinunterfuhr.
◦ Der einzige, der mit dem Vorsprechen begann, war Nor.
◦ Vom Vorsprechen geht es in alle Richtungen bergab.

Folgendes kann vorausgesetzt werden: Alle Wichtel haben gleichzeitig ihre erste Aktivität
begonnen. Geht es von der ersten Aktivität zur zweiten bergauf, braucht jeder Wichtel
10 Minuten, geht es bergab, braucht jeder Wichtel 5 Minuten. Für die Verbindungen
danach gilt: bergab braucht jeder Wichtel 2 Minuten weniger als für die letzte Verbindung
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davor, bergauf braucht jeder Wichtel doppelt so lange wie für die letzte Verbindung
davor. Alle Wichtel brauchen bei jeder Aktivität im Haus die gleiche Zeit. Wer war
unter diesen Voraussetzungen der/die erste, der/die im Teehaus ankam und damit die
beste Möglichkeit hatte, unbemerkt die Sahnetorte zu verspeisen?

Antwortmöglichkeiten:
1. Zarna
2. Idrin
3. Miira
4. Tinder
5. Sharna
6. Tol
7. Erden
8. Rorrina
9. Nor
10. Es kann keine eindeutige Aussage gemacht werden.
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Richtige Lösung: Antwort 3

Die Informationen, die der Weihnachtsmann kennt, ergeben folgendes Bild:

Aktivitäten
Name 1 2 3 Ende 1. Verbindung 2.Verbindung 3.Verbindung

Zarna D A E T bergab bergauf bergauf
Idrin A D T bergauf bergauf bergab
Miira A N T bergauf bergab bergauf
Tinder E A T bergab bergauf bergauf
Sharna E A D T bergab bergauf bergauf
Tol T bergauf bergauf bergab
Erden N D T bergab bergauf bergauf
Rorrina N A D T bergab bergauf bergauf
Nor V T bergab bergauf bergauf

Die grün markierten Infos können aus den anderen hergeleitet werden, z.B. Sharna und
Rorrina fahren als zweites bergauf, da Idrin von A nach D bergauf fährt. Da alle die
gleiche Anzahl an Bergauf-Verbindungen haben, fahren Sharna und Rorrina als erstes
bergab. Es folgt, dass Miira zuerst bergauf fährt, da sie die ersten beiden Aktivitäten in
umgekehrter Reihenfolge besucht als Rorrina, als zweites also bergab, usw.

Es sind nur die Fahrzeiten auf den Verbindungen relevant. Es ergibt sich aus dem Text:

◦ bergauf, bergauf, bergab: 10 + 20 + 18 = 48
◦ bergauf, bergab, bergauf: 10 + 8 + 16 = 34
◦ bergab, bergauf, bergauf: 5 + 10 + 20 = 35

Da Miira die einzige ist, die bergauf, bergab, bergauf fährt, ist sie als erste im Teehaus.
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