SCIP-Jack: A Solver for Steiner Tree Problems in Graphs and their Relatives

<u>Thorsten Koch</u> · Daniel Rehfeldt Zuse Institute Berlin Technical University Berlin

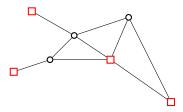
Joint Work with Gerald Gamrath · Stephen Maher · Yuji Shinano

MIP, July, 2017

The Steiner Tree Problem in Graphs

Given:

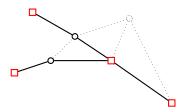
- \triangleright G = (V, E): undirected graph
- \triangleright **T** \subseteq **V**: subset of vertices
- $\triangleright \ c \in \mathbb{R}_{>0}^{E}$: positive edge costs



The Steiner Tree Problem in Graphs

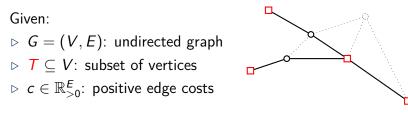
Given:

- \triangleright G = (V, E): undirected graph
- \triangleright $T \subseteq V$: subset of vertices
- $\triangleright \ c \in \mathbb{R}_{>0}^{E}$: positive edge costs



A tree $S \subseteq G$ is called Steiner tree in (G, T, c) if $T \subseteq V[S]$

The Steiner Tree Problem in Graphs



A tree $S \subseteq G$ is called Steiner tree in (G, T, c) if $T \subseteq V[S]$

Steiner Tree Problem in Graphs (SPG)

Find a Steiner tree S in (G, T, c) with minimum edge costs $\sum_{e \in E[S]} c(e)$

SPG (decision variant) is one of Karp's 21 \mathcal{NP} -complete problems.

Some real-world applications of Steiner trees:

- design of fiber optic networks
- prediction of tumor evolution
- deployment of drones
- computer vision
- wire routing
- computational biology
- ▷ ...

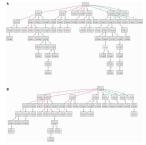
Rooted prize-collecting Steiner tree problem

E.g. An algorithmic framework for the exact solution of the prize-collecting Steiner tree problem (Ljubic et al., 2006)

Applications

Some real-world applications of Steiner trees:

- design of fiber optic networks
- prediction of tumor evolution
- deployment of drones
- computer vision
- wire routing
- computational biology
- ▷..



Rectilinear Steiner minimum tree problem

E.g. Phylogenetic analysis of multiprobe fluorescence in situ hybridization data from tumor cell populations (Chowdhury et al., 2013)

Applications

Some real-world applications of Steiner trees:

- \triangleright design of fiber optic networks
- prediction of tumor evolution
- deployment of drones
- computer vision
- wire routing
- computational biology
- ▷ ...

Hop-constrained directed Steiner tree problem

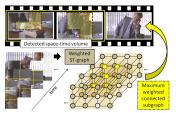
E.g. Local Search for Hop-constrained Directed Steiner Tree Problem with Application to UAV-based Multi-target Surveillance (Burdakov, 2014)

Some real-world applications of Steiner trees:

- \triangleright design of fiber optic networks
- $\,\triangleright\,$ prediction of tumor evolution
- \triangleright deployment of drones
- ▷ computer vision
- \triangleright wire routing

 \triangleright . . .

computational biology



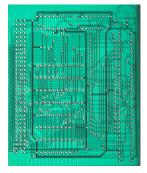
Maximum-weight connected subgraph problem

E.g. Efficient activity detection with max-subgraph search (Chen, Grauman, 2012)

Applications

Some real-world applications of Steiner trees:

- \triangleright design of fiber optic networks
- prediction of tumor evolution
- b deployment of drones
- computer vision
- write routing
- computational biology
- ▷ ...



Group Steiner tree problem

E.g. Rectilinear group Steiner trees and applications in VLSI design (Zachariasen, Rohe, 2003)

Some real-world applications of Steiner trees:

- design of fiber optic networks
- prediction of tumor evolution
- deployment of drones
- computer vision
- ▷ wire routing
- computational biology
- ▷ ...

Maximum-weight connected subgraph problem

E.g. Solving Generalized Maximum-Weight Connected Subgraph Problems for Network Enrichment Analysis (Loboda et al., 2016)

Some real-world applications of Steiner trees:

- ▷ design of fiber optic networks
- ▷ prediction of tumor evolution
- deployment of drones
- computer vision
- ▷ wire routing

▷ ...

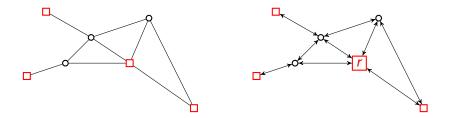
computational biology

Maximum-weight connected subgraph problem

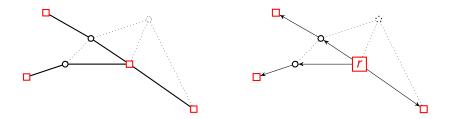
Real-world applications usually require variations of SPG

What we wanted: Solver for many different Steiner problem variants

What we wanted: Solver for many different Steiner problem variants What we had: an old solver for SPG: Jack-III What we wanted: Solver for many different Steiner problem variants What we had: an old solver for SPG: Jack-III; based on > transformation into a Steiner arborescence problem and ...



What we wanted: Solver for many different Steiner problem variants What we had: an old solver for SPG: Jack-III; based on > transformation into a Steiner arborescence problem and ...

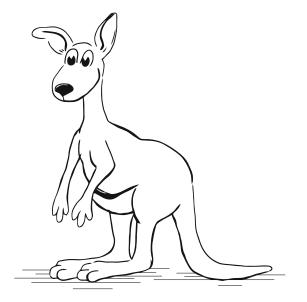


... cutting plane algorithm based on flow balance directed-cut formulation:

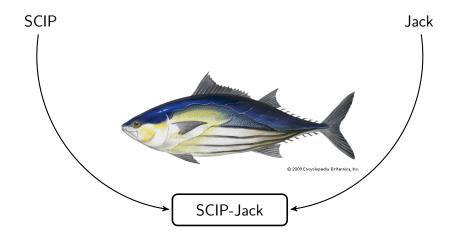
Formulation

$$\begin{array}{ll} \min c^{T} y \\ y(\delta_{W}^{+}) \geq 1 & \text{for all } W \subset V, r \in W, (V \setminus W) \cap T \neq \emptyset \\ y(\delta_{v}^{-}) \leq y(\delta_{v}^{+}) & \text{for all } v \in V \setminus T \\ y(\delta_{v}^{-}) \geq y(a) & \text{for all } a \in \delta_{v}^{+}, v \in V \setminus T \\ y(a) \in \{0,1\} & \text{for all } a \in A \end{array}$$

Framework



SCIP plus Jack



A Steiner class solver

SCIP-Jack can solve SPG and 11 related problems:

Abbreviation	Problem Name
SPG	Steiner tree problem in graphs
SAP	Steiner arborescence problem
RSMT	Rectilinear Steiner minimum tree problem
OARSMT	Obstacle-avoiding rectilinear Steiner minimum tree problem
NWSTP	Node-weighted Steiner tree problem
PCSTP	Prize-collecting Steiner tree problem
RPCSTP	Rooted prize-collecting Steiner tree problem
MWCSP	Maximum-weight connected subgraph problem
RMWCSP	Rooted maximum-weight connected subgraph problem
DCSTP	Degree-constrained Steiner tree problem
GSTP	Group Steiner tree problem
HCDSTP	Hop-constrained directed Steiner tree problem

SCIP-Jack works by combining generic and problem specific algorithms:

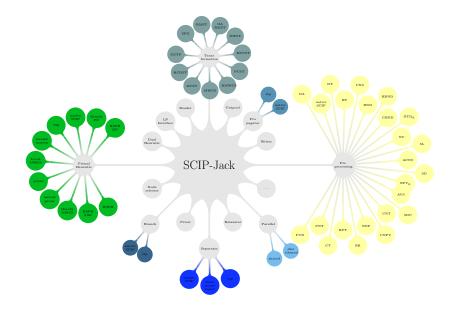
SCIP-Jack works by combining generic and problem specific algorithms:

- ⊳ generic
 - extremly fast separator routine based on new max-flow implementation
 - all general methods provided by SCIP
 - e.g., generic cutting planes and sophisticated branching
- problem specific
 - efficient transformations to Steiner arborescence problem (needed for applying generic separator)
 - preprocessing routines
 - primal and dual heuristics

Conversions, Heuristics and Preprocessing

Problem	Special Constraints	Virtual Vertices	Virtual Arcs	Special Preprocessing	Special Heuristics	
SPG	_	_	\checkmark	\checkmark	\checkmark	
SAP	-	-	-	\checkmark	\checkmark	
RSMT	-	\checkmark	\checkmark	_	_	
OARSMT	-	\checkmark	\checkmark	_	_	
NWSTP	-	-	\checkmark	_	-	
PCSTP	-	\checkmark	\checkmark	\checkmark	\checkmark	
RPCSTP	-	\checkmark	\checkmark	\checkmark	\checkmark	
MWCSP	-	\checkmark	\checkmark	\checkmark	\checkmark	
RMWCSP	-	\checkmark	\checkmark	-	\checkmark	
DCSTP	\checkmark	-	\checkmark	_	\checkmark	
GSTP	-	\checkmark	\checkmark	-	-	
HCDSTP	\checkmark	-	-	\checkmark	\checkmark	

SCIP-Jack



SCIP-Jack is roughly two orders of magnitude faster than Jack-III (both using CPLEX 12.6 as LP-solver). Example: SPG test set E (20 instances, up to 62 500 edges)

SCIP-Jack is roughly two orders of magnitude faster than Jack-III (both using CPLEX 12.6 as LP-solver). Example: SPG test set E (20 instances, up to 62 500 edges)

- Average run time (shifted geometric mean)
 - ► Jack-III: 32.5 seconds
 - SCIP-Jack: 0.3 seconds
- ▷ Maximum run time (both for instance e18)
 - ► Jack-III: 688.3 seconds
 - SCIP-Jack: 34.1 seconds

Comparison with best free SPG solver from DIMACS competition *Mozartballs* (Fischetti et al., 2017)

		Mozartballs			SCIP-Jack		
test set	instances	solved	gap [%]	Ø time [s]	solved	gap [%]	Ø time [s]
vienna-i-adv. E ALUE PUC	85 20 15 50	65 20 13 12	0.08 2.85 4.09	314.3 9.2 137.9 1299.9	82 20 13 11	0.01 _ 1.90 2.52	112.4 0.3 21.5 1416.2

- > 1 h time limit
- ▷ shifted geometric mean for time, arithmetic mean for gap (for unsolved instances)
- ▷ 2.3 GHz, 64 GB RAM (Mozartballs) vs. 3.2 GHz, 48 GB RAM (SCIP-Jack)
- D LP-solver: CPLEX 12.6 (both)
- ▷ MIP-solver: CPLEX 12.6 (Mozartballs) vs. SCIP 4.0 (SCIP-Jack)

But: SCIP-Jack still for most SPG instances more than five times slower than best (but not-freely available) SPG solver (Daneshmand, Polzin, 2014).

- But: SCIP-Jack still for most SPG instances more than five times slower than best (but not-freely available) SPG solver (Daneshmand, Polzin, 2014).
- But but: SCIP-Jack is competitive for hard instances. By using the massively parallel extension of SCIP and 3000 cores we:
- ▷ improved primal bounds for 14 SPG benchmark instances
- ▷ solved 3 SPG benchmark instances for first time to optimality

SCIP-Jack is highly competitive for rooted prize-collecting Steiner tree problems (also for unrooted)

- Example: hardest test instances from DIMACS Challenge 2014 (fiber optic networks, > 20 000 edges)
 - run time in first publication (Ljubic '06):
 - best run time at DIMACS Challenge¹:
 - run time SCIP-Jack:

- > 4000 seconds (scaled)
- > 100 seconds
- < 0.2 seconds

¹previous version of SCIP-Jack

Maximum-Weight Connected Subgraph Problem

Given:

- \triangleright undirected graph G = (V, E)
- \triangleright vertex weights $p \in \mathbb{R}^V$

Maximum-Weight Connected Subgraph Problem (MWCS) Find connected subgraph $S \subseteq G$ such that $\sum_{v \in V[S]} p(v)$ is maximized

Maximum-Weight Connected Subgraph Problem

Given:

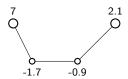
- ▷ undirected graph G = (V, E)
- \triangleright vertex weights $p \in \mathbb{R}^V$

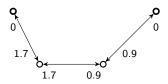
Maximum-Weight Connected Subgraph Problem (MWCS) Find connected subgraph $S \subseteq G$ such that $\sum_{v \in V[S]} p(v)$ is maximized

- ...subject of many recent publications
- ▷ e.g. in computer vision and systems biology

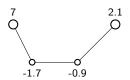
MWCSP P = (V, E, p) is transformed to a Steiner arborescence problem P' = (V', A', T', c'):

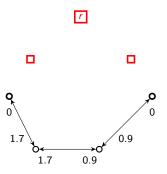
1. Substitute each edge $\{v, w\}$ by two anti-parallel arcs. For each new arc a = (v, w) set $c'(a) = \begin{cases} -p(w), & \text{if } p(w) < 0\\ 0, & \text{otherwise} \end{cases}$



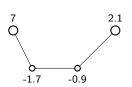


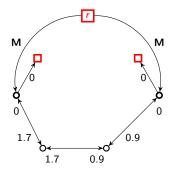
- 1. Substitute each edge $\{v, w\}$ by two anti-parallel arcs. For each new arc a = (v, w) set $c'(a) = \begin{cases} -p(w), & \text{if } p(w) < 0\\ 0, & \text{otherwise} \end{cases}$
- 2. Denote set of all $v \in V$ with p(v) > 0 by $T = \{t_1, ..., t_s\}$; add for each t_i a terminal t'_i ; add root r



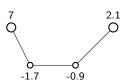


- 1. Substitute each edge $\{v, w\}$ by two anti-parallel arcs. For each new arc a = (v, w) set $c'(a) = \begin{cases} -p(w), & \text{if } p(w) < 0\\ 0, & \text{otherwise} \end{cases}$
- 2. Denote set of all $v \in V$ with p(v) > 0 by $T = \{t_1, ..., t_s\}$; add for each t_i a terminal t'_i ; add root r
- 3. Choose $M \ge \sum_{t \in T} p(t)$ (= 9.1) and add arcs (r, t) of cost M for all $t \in T$



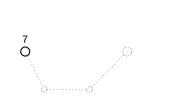


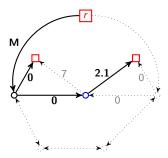
- 1. Substitute each edge $\{v, w\}$ by two anti-parallel arcs. For each new arc a = (v, w) set $c'(a) = \begin{cases} -p(w), & \text{if } p(w) < 0\\ 0, & \text{otherwise} \end{cases}$
- 2. Denote set of all $v \in V$ with p(v) > 0 by $T = \{t_1, ..., t_s\}$; add for each t_i a terminal t'_i ; add root r
- 3. Choose $M \ge \sum_{t \in T} p(t)$ (= 9.1) and add arcs (r, t) of cost M for all $t \in T$
- 4. Add new vertex v_0 , add 0-cost arcs (t_i, v_0) , (t_i, t'_i) and arcs (v_0, t'_i) of cost $p(t_i)$





- 1. Substitute each edge $\{v, w\}$ by two anti-parallel arcs. For each new arc a = (v, w) set $c'(a) = \begin{cases} -p(w), & \text{if } p(w) < 0\\ 0, & \text{otherwise} \end{cases}$
- 2. Denote set of all $v \in V$ with p(v) > 0 by $T = \{t_1, ..., t_s\}$; add for each t_i a terminal t'_i ; add root r
- 3. Choose $M \ge \sum_{t \in T} p(t)$ (= 9.1) and add arcs (r, t) of cost M for all $t \in T$
- 4. Add new vertex v_0 , add 0-cost arcs (t_i, v_0) , (t_i, t'_i) and arcs (v_0, t'_i) of cost $p(t_i)$

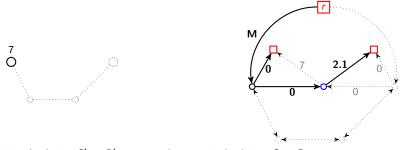




Transformation: MWCSP to SAP

MWCSP P = (V, E, p) is transformed to a Steiner arborescence problem P' = (V', A', T', c'):

- 1. Substitute each edge $\{v, w\}$ by two anti-parallel arcs. For each new arc a = (v, w) set $c'(a) = \begin{cases} -p(w), & \text{if } p(w) < 0\\ 0, & \text{otherwise} \end{cases}$
- 2. Denote set of all $v \in V$ with p(v) > 0 by $T = \{t_1, ..., t_s\}$; add for each t_i a terminal t'_i ; add root r
- 3. Choose $M \ge \sum_{t \in T} p(t)$ (= 9.1) and add arcs (r, t) of cost M for all $t \in T$
- 4. Add new vertex v_0 , add 0-cost arcs (t_i, v_0) , (t_i, t'_i) and arcs (v_0, t'_i) of cost $p(t_i)$



Optimal solution S' to P' corresponds to optimal solution S to P.

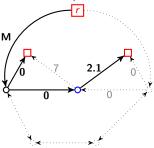
Transformation: MWCSP to SAP

MWCSP P = (V, E, p) is transformed to a Steiner arborescence problem P' = (V', A', T', c'):

1. Substitute each edge $\{v, w\}$ by two anti-parallel arcs. For each new arc a = (v, w) set

$$c'(a) = \begin{cases} -p(w), & \text{if } p(w) < 0 \\ 0, & \text{otherwise} \end{cases}$$

- 2. Denote set of all $v \in V$ with p(v) > 0 by $T = \{t_1, ..., t_s\}$; add for each t_i a terminal t'_i ; add root r
- 3. Choose $M \ge \sum_{t \in T} p(t)$ (= 9.1) and add arcs (r, t) of cost M for all $t \in T$
- 4. Add new vertex v_0^{-} , add 0-cost arcs (t_i, v_0) , (t_i, t_i') and arcs (v_0, t_i') of cost $p(t_i)$



Optimal solution S' to P' corresponds to optimal solution S to P.

$$\sum_{v \in V[S]} p(v) = \sum_{v \in V: p(v) > 0} p(v) - \sum_{a \in A'[S']} c'(a) + M$$

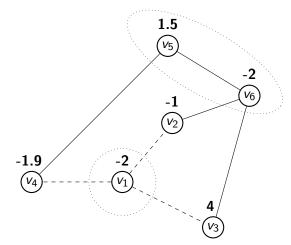
Example for MWCS reduction technique:

Lemma 1

Let $v_i \in V$ with $p(v_i) \leq 0$ and $W \subseteq V \setminus \{v_i\}$, $W \neq \emptyset$ such that (W, E[W]) is connected and $\sum_{w \in W: p(w) < 0} p(w) \ge p(v_i)$ holds. If

$$\left\{ v \in V \setminus W \mid \{v_i, v\} \in E \right\} \subseteq \left\{ v \in V \setminus W \mid \{w, v\} \in E, w \in W \right\}$$

is satisfied, then there is at least one optimal solution that does not contain v_i .



 v_1 and incident edges (dashed) can be eliminated, since each neighbor of v_1 is neighbor to $W = \{v_5, v_6\}$.

Lemma 1 is only a special case of the actual test used in SCIP-Jack, but even this special case is already NP-hard.

- Lemma 1 is only a special case of the actual test used in SCIP-Jack, but even this special case is already NP-hard.
- b the MWCSP reduction techniques of SCIP-Jack are empirically strong, allowing to solve many instances to optimality already during preprocessing

- Lemma 1 is only a special case of the actual test used in SCIP-Jack, but even this special case is already NP-hard.
- b the MWCSP reduction techniques of SCIP-Jack are empirically strong, allowing to solve many instances to optimality already during preprocessing

Comparison with best results for real-world test set *ACTMOD* from DIMACS Challenge:

- Lemma 1 is only a special case of the actual test used in SCIP-Jack, but even this special case is already NP-hard.
- b the MWCSP reduction techniques of SCIP-Jack are empirically strong, allowing to solve many instances to optimality already during preprocessing

Comparison with best results for real-world test set *ACTMOD* from DIMACS Challenge:

- Average run time (shifted geometric mean)
 - Best DIMACS: 4.1 seconds
 - SCIP-Jack: 0.2 seconds
- Maximum run time (for same instance)
 - Best DIMACS: 21.6 seconds
 - SCIP-Jack: 0.5 seconds

ACTMOD Detailed

Detailed computational results for test set ACTMOD, number of vertices (V), arcs (A), and terminals (T) given for transformed SAP.

	Original		Presolved						
Instance	V	A	<i>T</i>	V	A	t [s]	Optimum	Ν	t [s]
drosophila001	5298	187214	72	1	0	0.2	24.3855064	1	0.2
drosophila005	5421	187952	195	24	224	0.4	178.663952	1	0.5
drosophila0075	5477	188288	251	1	0	0.3	260.523557	1	0.3
HCMV	3919	58916	56	1	0	0.1	7.55431486	1	0.1
lymphoma	2102	15914	68	1	0	0.1	70.1663087	1	0.1
metabol_expr_mice_1	3674	9590	151	1	0	0.0	544.94837	1	0.0
metabol_expr_mice_2	3600	9174	86	1	0	0.0	241.077524	1	0.0
metabol_expr_mice_3	2968	7354	115	1	0	0.0	508.260877	1	0.0

Results of running each MWCS reduction technique included in SCIP-Jack exhaustively on 119 instances:

Reduction Method	Removed Vertices[%]	Removed Edges[%]	\varnothing Time [s]
UNPV/BT	41	42	0.01
AVS	59	70	0.01
BT/NNP	88	87	0.02
NPV _k	13	10	0.01
PVD	9	11	0.00
DA	88	89	0.10
all (non-exhaustive)	99.99	99.99	0.02

Performance of SCIP-Jack

Comparision on recently published real-world computational biology test set (SHINY, 39 instances) with two MWCS solvers Heinz2/GMWCS (H2G) as reported in Solving Generalized Maximum-Weight Connected Subgraph Problem for Network Enrichment Analysis (Loboda et al., 2016):

- > Average run time (shifted geometric mean)
 - H2G: > 8 seconds
 - ► SCIP-Jack: < 0.1 seconds
- ▷ Maximum run time
 - ► H2G: > 1000 seconds
 - ► SCIP-Jack: < 0.1 seconds

Performance of SCIP-Jack

Comparision on recently published real-world computational biology test set (SHINY, 39 instances) with two MWCS solvers Heinz2/GMWCS (H2G) as reported in Solving Generalized Maximum-Weight Connected Subgraph Problem for Network Enrichment Analysis (Loboda et al., 2016):

- > Average run time (shifted geometric mean)
 - ► H2G: > 8 seconds
 - ► SCIP-Jack: < 0.1 seconds
- Maximum run time
 - ► H2G: > 1000 seconds
 - ► SCIP-Jack: < 0.1 seconds

SCIP-Jack has recently solved large-scale instance ($> 300\,000$ edges) from the 11th DIMACS Challenge for first time to optimality.

b is available as part of the SCIP Optimizations Suite
http://scip.zib.de

- b is available as part of the SCIP Optimizations Suite
 http://scip.zib.de
- b has plugin-based structure for easy integration of further variants or solving methods

- b is available as part of the SCIP Optimizations Suite
 http://scip.zib.de
- b has plugin-based structure for easy integration of further variants or solving methods
- ▷ is highly competitive for many Steiner tree problem variants

- b is available as part of the SCIP Optimizations Suite
 http://scip.zib.de
- b has plugin-based structure for easy integration of further variants or solving methods
- ▷ is highly competitive for many Steiner tree problem variants
- ▷ more to come ... stay tuned

- b is available as part of the SCIP Optimizations Suite
 http://scip.zib.de
- b has plugin-based structure for easy integration of further variants or solving methods
- ▷ is highly competitive for many Steiner tree problem variants
- ▷ more to come ... stay tuned

Thank you very much!

- K., Martin, Networks, 1998
 Solving Steiner tree problems in graphs to optimality
- Gamrath, K., Maher, R., Shinano, MPC, 2017
 SCIP-Jack A solver for STP and variants with parallelization extentions
- ▷ Shinano, et al., Solving Open MIP Instances with ParaSCIP on Supercomputers using up to 80,000 Cores, IEEE IPDPS, 2016
- ▷ R., K., ZR 16-36, 2016, Transformations for the Prize-Collecting Steiner Tree Problem and the Maximum-Weight Connected Subgraph Problem to SAP
- ▷ Maher, et al., ZR 17-12, 2017, The SCIP Optimization Suite 4.0,

Questions?