New Perspectives on PESP: *T*-Partitions and Separators

<u>Niels Lindner</u> Zuse Institute Berlin Christian Liebchen TH Wildau

ATMOS 2019 @ Garching bei München September 13, 2019

§1

Introduction

Line Networks \rightarrow Periodic Timetables

two lines meeting at a common station

Line Networks \rightarrow Periodic Timetables

event-activity network model

Line Networks \rightarrow Periodic Timetables

PESP instance (unweighted), period time T = 10

Line Networks \rightarrow Periodic Timetables

periodic timetable, period time T=10

Periodic Event Scheduling Problem

Serafini and Ukovich (1989)

Given

- ▶ a digraph G = (V, A) (event-activity network),
- ▶ a period time $T \in \mathbb{N}$,
- ▶ lower and upper bounds $\ell, u \in \mathbb{Z}^{A}_{\geq 0}$, $\ell \leq u$,
- weights $w \in \mathbb{Z}^{A}_{\geq 0}$,

Periodic Event Scheduling Problem

Serafini and Ukovich (1989)

Given

- a digraph G = (V, A) (event-activity network),
- ▶ a period time $T \in \mathbb{N}$,
- ▶ lower and upper bounds $\ell, u \in \mathbb{Z}^{A}_{\geq 0}$, $\ell \leq u$,
- weights $w \in \mathbb{Z}^{A}_{\geq 0}$,

the **Periodic Event Scheduling Problem (PESP)** is to find a *periodic timetable* $\pi \in \{0, 1, ..., T-1\}^V$ and a *periodic tension* $x \in \mathbb{Z}^A$ such that

•
$$\pi_j - \pi_i \equiv x_{ij} \mod T$$
 for all $ij \in A$,
• $\ell \leq x \leq u$,

w^tx is minimum.

Equivalently, minimize the weighted *periodic slack* $w^t y$, where $y := x - \ell$.

Solution Approaches

- branch-and-cut/mixed integer programming (Liebchen, Peeters, ...)
- modulo network simplex heuristic (Nachtigall, Opitz, Goerigk, ...)
- line cluster matching heuristic (Pätzold, Schöbel)
- Boolean satisfiability (Großmann, Nachtigall, ...)

. . .

Solution Approaches

- branch-and-cut/mixed integer programming (Liebchen, Peeters, ...)
- modulo network simplex heuristic (Nachtigall, Opitz, Goerigk, ...)
- line cluster matching heuristic (Pätzold, Schöbel)
- Boolean satisfiability (Großmann, Nachtigall, ...)

PESPlib

► ...

- 20 very hard PESP instances
- no instance solved to optimality, current best gap: 34.64%
- maintained by Marc Goerigk
 - sq num.math.uni-goettingen.de/~m.goerigk/pesplib

§1 Introduction PESPlib: R1L1

after preprocessing: 1214 vertices, 3935 arcs, 2722 linearly independent cycles

§1 Introduction PESPlib: R1L1

current best timetable, weighted slack = 30415672

Niels Lindner: New PESPectives

ATMOS 2019 @ Garching

§2

T-Partitions

§2 *T*-Partitions Trivial Observations

Timetables and *T*-Partitions

Any vector π ∈ {0,..., T − 1}^V partitions the vertex set V into T possibly empty sets:

$$V = \bigcup_{d \in \{0,\ldots,T-1\}} \{ v \in V \mid \pi_v = d \}.$$

Conversely, any *T*-partition (V₀,..., V_{T−1}) of V yields a vector π ∈ {0,..., T − 1}^V.

§2 *T*-Partitions Trivial Observations

Timetables and *T*-Partitions

Any vector π ∈ {0,..., T − 1}^V partitions the vertex set V into T possibly empty sets:

$$V = \bigcup_{d \in \{0,\ldots,T-1\}} \{ v \in V \mid \pi_v = d \}.$$

Conversely, any *T*-partition (V₀,..., V_{T−1}) of V yields a vector π ∈ {0,..., T − 1}^V.

Addition and Subtraction modulo T

From any $\pi_1 \in \{0, \ldots, T-1\}^V$, we can obtain any $\pi \in \{0, \ldots, T-1\}^V$ by adding (mod T) some other vector $\pi_2 \in \{0, \ldots, T-1\}^V$.

Striving for Optimality

Lemma

For every $\pi \in \{0, \ldots, T-1\}^V$, there is a *T*-partition $\mathcal{V} := (V_0, \ldots, V_{T-1})$ such that the periodic timetable $\pi^{\mathcal{V}}$ defined by

$$\pi_v^{\mathcal{V}} := [\pi_v + d]_T, \quad v \in V_d, \quad d = 0, \dots, T-1,$$

is feasible and has minimum weighted slack.

Striving for Optimality

Lemma

For every $\pi \in \{0, \ldots, T-1\}^V$, there is a *T*-partition $\mathcal{V} := (V_0, \ldots, V_{T-1})$ such that the periodic timetable $\pi^{\mathcal{V}}$ defined by

$$\pi_v^{\mathcal{V}} := [\pi_v + d]_T, \quad v \in V_d, \quad d = 0, \dots, T-1,$$

is feasible and has minimum weighted slack.

Maximally Improving *T*-Partition Problem Find such a $\pi^{\mathcal{V}}$. I.e., for a given $\pi \in \{0, ..., T-1\}$ with slack *y*, find a *T*-partition $\mathcal{V} = (V_0, ..., V_{T-1})$ maximizing

$$\sum_{d=0}^{T-1} \sum_{e=0}^{T-1} \sum_{ij \in A \cap (V_d \times V_e)} w_{ij} (y_{ij} - [y_{ij} - d + e]_T)$$

subject to $[y_{ij} - d + e]_T \le u_{ij} - \ell_{ij}$ for all $ij \in A$.

§2 *T*-Partitions **Delay Cuts**

Remarks

- ► This relates PESP to Graph Partitioning and Minimum Cuts: As w.l.o.g. y ≤ T − 1 and hence y = [y]_T, the contribution y_{ij} − [y_{ij} − d + e]_T of arcs belonging to the same part of the T-partition to the objective function is 0.
- Finding a maximally improving *T*-partition is as difficult as solving PESP.
- ▶ Idea for heuristics: Restrict to special classes of *T*-partitions.

§2 *T*-Partitions Delay Cuts

Remarks

- ► This relates PESP to Graph Partitioning and Minimum Cuts: As w.l.o.g. y ≤ T − 1 and hence y = [y]_T, the contribution y_{ij} − [y_{ij} − d + e]_T of arcs belonging to the same part of the T-partition to the objective function is 0.
- Finding a maximally improving *T*-partition is as difficult as solving PESP.
- ▶ Idea for heuristics: Restrict to special classes of *T*-partitions.

Delay Cuts (Goerigk, Schöbel: Multi-Node Cuts)

For $S \subseteq V$ and $d \in \{0, ..., T-1\}$, the *delay cut* $\Delta(S, d)$ is defined as the *T*-partition

$$(V \setminus S, \emptyset, \ldots, \emptyset, \underset{\stackrel{\uparrow}{d}}{S}, \emptyset, \ldots, \emptyset).$$

Intuitively, all events in S get delayed by d.

Examples of Delay Cuts

Examples of Delay Cuts

Modulo network simplex (Nachtigall, Opitz, 2008): A move of the modulo network simplex is a delay cut corresponding to the fundamental cut of the forest arc. The delay depends on the co-forest arc.

Single-node cuts (Nachtigall, Voget, 1996): Delay cuts with |S| = 1.

Examples of Delay Cuts

Modulo network simplex (Nachtigall, Opitz, 2008): A move of the modulo network simplex is a delay cut corresponding to the fundamental cut of the forest arc. The delay depends on the co-forest arc.

Single-node cuts (Nachtigall, Voget, 1996): Delay cuts with |S| = 1.
 Waiting edge cuts (Goerigk, Schöbel, 2012): Delay cuts with |S| = 2, the vertices of S are connected by an arc with small span u − ℓ.

Examples of Delay Cuts

Modulo network simplex (Nachtigall, Opitz, 2008): A move of the modulo network simplex is a delay cut corresponding to the fundamental cut of the forest arc. The delay depends on the co-forest arc.

Single-node cuts (Nachtigall, Voget, 1996): Delay cuts with |S| = 1.
 Waiting edge cuts (Goerigk, Schöbel, 2012): Delay cuts with |S| = 2, the vertices of S are connected by an arc with small span u − ℓ.

 Multi-node cuts (Goerigk, Schöbel, 2012): Delay cuts obtained by a greedy procedure.

İ

Maximally Improving Delay Cuts

Maximally Improving Delay Cut Problem

For a given periodic timetable π , find the delay cut $\Delta(S,d)$ maximizing

$$\sum_{ij \in \delta^+(S)} w_{ij} (y_{ij} - [y_{ij} - d]_T) + \sum_{ij \in \delta^-(S)} w_{ij} (y_{ij} - [y_{ij} + d]_T)$$

such that $\pi^{\Delta(S,d)}$ is feasible.

Maximally Improving Delay Cuts

ZIB

Maximally Improving Delay Cut Problem For a given periodic timetable π , find the delay cut $\Delta(S, d)$ maximizing

$$\sum_{ij\in\delta^+(S)}w_{ij}\left(y_{ij}-[y_{ij}-d]_{\mathcal{T}}\right)+\sum_{ij\in\delta^-(S)}w_{ij}\left(y_{ij}-[y_{ij}+d]_{\mathcal{T}}\right)$$

such that $\pi^{\Delta(S,d)}$ is feasible.

Lemma

For fixed d, finding a maximally improving delay cut can be transformed to a standard maximum cut problem with linear objective, with both positive and negative weights.

Maximally Improving Delay Cuts

Maximally Improving Delay Cut Problem For a given periodic timetable π , find the delay cut $\Delta(S, d)$ maximizing

$$\sum_{ij\in\delta^+(S)}w_{ij}\left(y_{ij}-[y_{ij}-d]_{\mathcal{T}}\right)+\sum_{ij\in\delta^-(S)}w_{ij}\left(y_{ij}-[y_{ij}+d]_{\mathcal{T}}\right)$$

such that $\pi^{\Delta(S,d)}$ is feasible.

Lemma

For fixed d, finding a maximally improving delay cut can be transformed to a standard maximum cut problem with linear objective, with both positive and negative weights.

Remarks

- Although NP-hard, the maximum cut problem can be solved within a reasonable amount of time (Borndörfer, Lindner, Roth, 2019).
- If there is no improving delay cut, then there is also no improving move for modulo network simplex, single- and multi-node cuts.

§**3**

Separators

 $\S3$ Separators

Definition

Idea

- Divide and conquer!
- Top-down instead of bottom-up (Matching approach of Pätzold and Schöbel, ATMOS 2016)

§3 Separators

Definition

Idea

- Divide and conquer!
- Top-down instead of bottom-up (Matching approach of Pätzold and Schöbel, ATMOS 2016)

Definition

Let (G, T, ℓ, u, w) be a PESP instance, G = (V, A). For $\nu : 2^V \to \mathbb{R}_{\geq 0}$ and an imbalance $\alpha \geq 1$, a (ν, α) -separator is a subset $S \subseteq V$ s.t.

ATMOS 2019 @ Garching

- ▶ $\delta(S)$ contains only free arcs, i.e., $ij \in A$ with $u_{ij} \ell_{ij} \ge T 1$,
- $w(\delta(S))$ is minimum,
- $\blacktriangleright \nu(V \setminus S) \leq \nu(S) \leq \alpha \cdot \nu(V \setminus S).$

$\S3$ Separators

Definition

Idea

- Divide and conquer!
- Top-down instead of bottom-up (Matching approach of Pätzold and Schöbel, ATMOS 2016)

Definition

Let (G, T, ℓ, u, w) be a PESP instance, G = (V, A). For $\nu : 2^V \to \mathbb{R}_{\geq 0}$ and an imbalance $\alpha \geq 1$, a (ν, α) -separator is a subset $S \subseteq V$ s.t.

- ▶ $\delta(S)$ contains only free arcs, i.e., $ij \in A$ with $u_{ij} \ell_{ij} \ge T 1$,
- $w(\delta(S))$ is minimum,

$$\blacktriangleright \nu(V \setminus S) \le \nu(S) \le \alpha \cdot \nu(V \setminus S).$$

Examples

•
$$\nu(X) := |X|$$
 (balances number of vertices)

▶ $\nu(X) := |A(G[X])| - |X| + 1$ (\approx balances cyclomatic number)

 $\S3$ Separators

Computational Aspects

Separating

- Computing optimal vertex-balanced cuts is NP-hard.
- Lots of heuristic software is available (e.g., Metis, KaHIP, FlowCutter), but usually only for simple ν.
- We provide mixed integer linear programs with |V| binary variables for the vertex-balanced and cycle-balanced cases.
- ▶ Non-free arcs may be contracted, orientation of arcs is irrelevant.

Computational Aspects

Separating

- Computing optimal vertex-balanced cuts is NP-hard.
- Lots of heuristic software is available (e.g., Metis, KaHIP, FlowCutter), but usually only for simple ν.
- We provide mixed integer linear programs with |V| binary variables for the vertex-balanced and cycle-balanced cases.
- Non-free arcs may be contracted, orientation of arcs is irrelevant.

Combining

- As all arcs in δ(S) are free in a (ν, α)-separator S, feasible timetables on the parts can always be combined to a feasible timetable on the original instance.
- We may apply a delay cut ∆(S, d) to S to get a better timetable, the slacks in the parts remain unchanged.
- ► If L₁, L₂ are lower bounds for the weighted slack on the parts, then L₁ + L₂ is a lower bound for the weighted slack on the whole instance.

$\S3$ Separators

Experiments

Instances

- ▶ 16 PESPlib railway instances RxLy
- 4 BLx bus instances omitted
 (≤ 3 vertices left after contracting non-free arcs)

§3 Separators

Experiments

Instances

- ▶ 16 PESPlib railway instances RxLy
- ► 4 BLx bus instances omitted
 - (\leq 3 vertices left after contracting non-free arcs)

Separators

- ▶ vertex- and cycle-balanced separators, $\alpha \in \{1.05, 1.1, 1.2, 1.5\}$
- initial solution by Metis (vertex case)
- MIP: Gurobi 8.1, 20 minutes, 8 threads

16 / 22

primal run and dual run

Instances 16 PESPlib railway instances RxLy

- 4 BL x bus instances omitted
 - $(\leq 3 \text{ vertices left after contracting non-free arcs})$

Separators

§3 Separators **Experiments**

- vertex- and cycle-balanced separators, $\alpha \in \{1.05, 1.1, 1.2, 1.5\}$
- initial solution by Metis (vertex case)
- MIP: Gurobi 8.1, 20 minutes, 8 threads

Periodic Timetabling

- concurrent PESP solver including MIP (CPLEX 12.8), MNS, Max Cut
- 10 minutes on each part vs. 20 minutes on full instance, 7 threads

event-activity network after preprocessing, 2722 linearly independent cycles

cycle-balanced separator, imbalance 1.2 (1.1975), weight 654851, gap 36.3%

only free arcs

	left	right	cut	combined	original
cyclomatic number	782	653	466		2 7 2 2
weight	29 076 540	17 441 343	654 851		47 172 734
free weight	1163077	239 478	654 851		2 057 406

$\S{3}$ Separators

2×10 minutes of R1L1

	left	right	cut	combined	original
cyclomatic number	782	653	466		2722
weight	29 076 540	17 441 343	654 851		47 172 734
free weight	1163077	239 478	654 851		2 057 406
primal bound	15 029 848	2 985 689	16 653 876	34 669 413	30 861 021
dual bound	10518964	2 341 735	0	12 860 699	16 868 573
\varnothing free wt. slack	11.13	11.15	25.43	15.68	13.15
\varnothing non-free wt. slack	0.07	0.02	-	0.05	0.08

Niels Lindner: New PESPectives

Niels Lindner: New PESPectives

ATMOS 2019 @ Garching

optimality gaps for vertex- and cycle-balanced separators

90 80 70 vertex-1.05 60 vertex 1.1 vertex-1.2 50 vertex 1.5 cycle-1.05 cycle-1.1 40 - cvcle-1.2 cycle-1.5 30 20 10 0 R1L1 R1L2 R1L3 R1L4 R2L1 R2L2 R2L3 R2L4 R3L1 R3L2 R3L3 R3L4 R4L1 R4L2 R4L3 R4L4

§3 Separators Optimality Gaps

100

$\S3$ Separators

Primal and Dual Bounds

primal and dual bounds, original (darker) and best combined (brighter)

Conclusions

- The separator strategy has a structural disadvantage: The arcs in the cut receive a disproportionately high amount of slack.
- The cuts are too heavy in order to produce better primal bounds.
- ► However, the strategy pays off for dual bounds on larger instances.

ZIB

Conclusions

- The separator strategy has a structural disadvantage: The arcs in the cut receive a disproportionately high amount of slack.
- The cuts are too heavy in order to produce better primal bounds.
- ► However, the strategy pays off for dual bounds on larger instances.

Future Tasks

- find better functions ν , e.g., balancing the free weight
- close the optimality gap for (α, ν) -separators
- investigate methods for better dual bounds for PESP
- solve the parts to optimality
- more flexible combining of parts

New Perspectives on PESP: *T*-Partitions and Separators

<u>Niels Lindner</u> Zuse Institute Berlin Christian Liebchen TH Wildau

ATMOS 2019 @ Garching bei München September 13, 2019